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SUMMARY

The work presented in this dissertation focuses on the developed and implementation of
real-time control techniques for turbulent wall-bounded flows, with the aim of achiev-
ing skin-friction drag reduction. After an initial control system was developed that uti-
lized instantaneous wall-shear stress fluctuations, wall-pressure fluctuations were sub-
sequently used as the input quantity to the real-time flow control systems considered in
this dissertation. Furthermore, the control algorithm complexity was escalated from a
relatively simple feedforward opposition control logic to an adaptive control strategy.

The research presented in this dissertation is fully experimental in nature. Experimen-
tal activities were conducted in two main facilities. The bulk of testing was performed
in the W-Tunnel at Delft University of Technology: an open-return wind tunnel, where a
modular test section was integrated to perform experiments on zero-pressure–gradient
turbulent boundary layer flows. A subset of measurements were conducted at the Center
for International Cooperation in Long-Pipe Experiments (CICLoPE) at Bologna Univer-
sity, in Italy. Here, simultaneous measurements were conducted of velocity fluctuations
in the logarithmic region and wall-pressure.

A stochastic spectral correlation analysis between wall-pressure fluctuations and ve-
locity fluctuations in the logarithmic of a turbulent pipe flow reveal Reynolds-number–
independence of the wall-pressure linear coherence spectrum. This is a first-of-its-kind
result, hinting at the feasibility of scaling an input sensing strategy based on wall-pressure
fluctuations from a low-Reynolds-number environment to operational engineering con-
ditions.

An initial controller based on wall-shear stress fluctuations was developed to target
drag-producing large-scale structures in the logarithmic region. The flow response was
measured in terms of both the statistical (and spectral) response of the TBL flow to real-
time control and in terms of the effect the control has not only on the friction coefficient,
but also on the integral measures. This analysis revealed three main findings: (1) an
attenuation of energy at streamwise wavelengths characteristic of large-scale motions,
(2) a decrease in skin-friction and (3) an attenuation of the statistical integral measures
of skin-friction (i.e. bulk production and FIK terms).

A similar control architecture was also implemented that employed wall-pressure (and
wall-pressure–squared) as the input quantity. It was found that the wall-pressure–squared
term improves the accuracy of an estimator enabling the prediction of off-the-wall ve-
locity fluctuations from a wall-based position. Furthermore, its inclusion is essential,
given that the linear term does not retain sufficient coherence over the relatively large
streamwise extent separating input and actuation locations.

The final controller that was developed in the context of this dissertation is an adap-
tive one, relying on the Filtered-X Least Means Squares (Fx-LMS) algorithm. This strat-
egy does not rely on a-priori system identification, as was the case for the previous two
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XII SUMMARY

control strategies mentioned above. Instead, it automatically identifies the coefficients
of the transfer functions relating input to output in the controller. For this study, this
algorithm was deployed both to a flow case that was strongly modulated by cylinder vor-
tex shedding and to a fully broadband turbulent boundary layer flow. In the former case,
the controller readily identified the shedding frequency as the control target. For the lat-
ter, the controller converges to a situation where the large-scales were targeted and their
intensity successfully attenuated.
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1
INTRODUCTION

The greatest enemy of progress is the illusion of knowledge.

John Young (STS-9)

This initial chapter presents the context, motivation and scientific background to the

research work that will be elaborated upon in this dissertation. An overview of the state-

of-the-art in experimental active flow control development is presented that forms the ba-

sis of this work. Additionally, relevant literature describing the complex dynamics of a

turbulent boundary layer flow is introduced as the theoretical background to the work.

3
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4 1. INTRODUCTION

1.1. MOTIVATION
Air transport is a pillar of modern society, enabling high-speed, cost-efficient movement
of people and goods both regionally and globally. Infrastructure investments, advancing
aircraft technology and low air fares are constantly driving the number of yearly air pas-
sengers up. According to a June 2024 report by the International Air Transport Authority,
in fact, total air passenger numbers are forecast to increase by more than 30% in 2027,
compared to 2023 numbers [IATA, 2024]. Such high demand not only poses a concern
in terms of current infrastructure capacity, air traffic congestion and long-term accessi-
bility to economically sustainable air travel, but also on how its scale affects global car-
bon emissions and fuel consumption. Ritchie [2024] illustrates how, in 2021 (just before
the COVID-19 pandemic), the contribution of aviation emission was almost 2.5% of the
global emissions of CO2. With the expected increase in global passenger numbers, the
percentage contribution is only set to considerably increase, especially as other indus-
trial efforts gradually commit to de-carbonization.

The combustion of kerosene for powering aircraft engines is the main culprit for in-
tense carbon emission in the aviation industry. With the fuel consumption being directly
correlated to the aerodynamic drag that needs to be overcome in flight, it is of utmost
important to understand the flow mechanisms that correlate to drag production. For
flight in the transonic regime, as is the norm for commercial jetliners, drag can be de-
composed in form, wave and friction components. The first two result from the pressure
distribution around the vehicle [and do not fall within the scope of this work], whereas
the latter results from the entire flow-exposed (i.e. wetted) surface area of the vehicle
being “encapsulated" in a viscous layer (the boundary layer) in order to abide by the no-
slip condition. While initially laminar and generating relatively low friction, a boundary
layer quickly transitions to a turbulent state, whereby its friction coefficient drastically
increases. Throughout most of an aircraft’s wetted surface area, the boundary layer is
actually turbulent.

Friction (or viscous) drag alone contributes to, approximately, 50% of the total drag

of a commercial jet transport aircraft in cruise flight [Ricco et al., 2021].

Research into turbulent wall-bounded flows has been the focus of many scientific re-
search groups around the globe for several decades. Most of the initial studies focusing
on turbulent boundary layers (TBLs) focus on the dynamics of the so-called coherent

structures forming within it, that can be considered as regions of fluid that display either
temporal or spatial coherence in a quantity of interest [Jiménez, 2018]. The dynamical
interplay between such structures at the vast range of scales that characterizes a TBL at a
sufficiently high friction Reynolds number needs to be untangled to analyze the under-
lying drag-producing mechanisms. This understanding has the potential to generate a
profound impact on the (1) design of flow-exposed surfaces and (2) the definition of con-
trol systems targeting wall-bounded turbulence for skin-friction drag reduction. While
the former aspect is not within the scope of this dissertation [entails the definition of
passive control methods], the latter forms the fil rouge that binds this work together.
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The control of wall-bounded turbulence and, more specifically, TBL flows has been
explored both in its passive and active forms. With passive techniques promising low
complexity, minimal added cost and high effectiveness, active control strategies have the
potential to achieve much higher performance compared to their passive counterpart,
at the cost of non-zero input-power. While the question of whether or not net energy
savings can be achieved is one that still needs an answer [which will not be provided in
dissertation], it is critical to explore the feasibility of implementing active flow control
techniques. In particular, the focus of this work is to investigate and implement reactive
(real-time) control strategies targeting a reduction in skin-friction drag. Real-time con-
trol techniques also have an added benefit in being selective: the controller is designed to
only act upon specific features in the flow (in a pre-determined manner, in some cases)
as the target for control; e.g. coherent structures of a certain scale. A great array of control
algorithms can be employed to optimize the controller’s performance and efficiency. In
essence, real-time (or re-active) control can be designed to only target the features of the
wall-bounded flow that are, in fact, drag-producing, while otherwise being inoperative.

Active flow control is sparking interest in the aviation industry, but has not yet seen
widespread deployment (nor consideration) when compared to passive solutions. The
latter, for instance, include passive surface modifications, such as riblets and small-
scale surface protrusions. Riblets are currently considered the most promising passive
drag reduction technology. They consisted of shallow elongated ridges that extend in
the streamwise direction and allow the near-wall turbulence production cycle to stabi-
lize. They, in particular, have seen entry into service embedded in an adhesive film for
retrofitting of operational aircraft fleets (see Fig. 1.1a or the work of MicroTau1). Airlines,
for instance, have retrofitted aircraft with the technology2, and do report promising fuel
savings.

The aviation industry, in general, is rather keen on adopting passive flow control tech-
niques, mainly due to their operating costs (i.e. maintenance). However, passive tech-
niques for skin-friction drag reduction are rather novel and their technologies readiness
level is low (apart from riblets). Still, passive flow control technologies targeting different
aerodynamic phenomena (e.g. flow separation or mixing) have seen extensive deploy-
ment in the aviation industry, such as fixed leading edge vortex generators (see Fig. 1.1b)
for stall mitigation and swirling flaps for enhancing mixing in the combustion chambers
of aeronautical engines.

The potential of active flow control techniques for achieving considerably higher con-
trol authority compared to passive techniques is undeniable. Not only for skin-friction,
but also for separation control, for instance. In fact, the industry commissioned sev-
eral studies, run both by private industrial entities, as well as by government-funded
research centers, whose aim is to investigate the feasibility of integrating active flow
control into full-scale aircraft. The DARPA consortium, for instance, was tasked with
initiating a study into the replacement of the traditional hinged control surfaces with
active flow control techniques for modifying the flow around regions of a wing where,
conventionally, an actuator would be located. This would therefore generate a control
moment that induces a rotation of the aircraft about a given axis. The programme took

1MicroTau - microtau.com.au
2Lufthansa Technik - lufthansa-technik.com/en/aeroshark

microtau.com.au
lufthansa-technik.com/en/aeroshark
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(a) (b)

Figure 1.1.: (a) Photograph of the aft section of a Lufthansa aircraft retrofitted with a ri-
blet skin. Courtesy of Lufthansa Technik GmbH. (b) Photograph of the array
of leading-edge vortex generators on the wing of a military trainer aircraft
(TA-4J Phantom). Copyright free.

shape under the designation X-65 CRANE, which is still in the early development stages
(a wind tunnel model used in this programme is illustrated in Fig. 1.2a). Furthermore,
NASA and Boeing collaborated in the ecoDemonstrator programme to retrofit an exist-
ing operational jetliner (photograph in Fig. 1.2b) to incorporate sweeping jets into the
vertical stabilizer, to reduce its aerodynamic drag.

(a) (b)

Figure 1.2.: (a) Photograph of the wind tunnel model employed for testing in the prelimi-
nary phases of the CRANE program, run by DARPA. Courtesy of Aurora Flight
Sciences. (b) Photograph of the Boeing 757 ecoDemonstrator, incorporat-
ing active flow control solutions to mitigate the drag of the vertical stabilizer.
Courtesy of Boeing.

The reader might notice, however, how the efforts that have characterized the imple-
mentation of active flow control in full-scale aircraft were not actually targeting drag
reduction. Both in the case of the X-65 and the ecoDemonstrator, the goal is to enhance
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the performance of control surfaces by means of active flow control techniques, but not
to reduce skin-friction drag. One can find other examples in the open literature and pub-
licly available news that similar attempts have been performed in fields other than the
aerospace one, such as high-speed rail transport (where, anyway, skin-friction drag is
not critical).

This work sets out to explore the applicability and implementation of real-time ac-
tive flow control techniques to a zero-pressure-gradient turbulent boundary layer flow
for skin-friction drag reduction in an experimental setting. As for any real-time control
system, one first needs to clarify three main aspects:

1. what the controller should target;

2. what input it should be based on;

3. how the controller should actuate upon its target.

These three points form the core of this dissertation and will be discussed in the re-
maining of this section and in subsequent chapters.

1.2. TURBULENT BOUNDARY LAYER CONTROL
Up until this point in this dissertation, several flow phenomena have been mentioned
whose control with active means improves aircraft performance. From this section on-
ward, the focus of this work is going to exclusively pivot towards the analysis of turbulent
wall-bounded flows and their control with the aim of skin-friction drag reduction.

Several studies can be found in the literature that implement active control strate-
gies for the reduction of skin-friction drag in a zero-pressure-gradient turbulent bound-
ary layer (ZPG-TBL), among which the publications of Abbassi et al. [2017], Cheng et al.
[2021a] and Yu et al. [2021] are some examples. A rather wide range of control configura-
tions can be evinced from the literature, with differences lying in the control target, the
type of actuators, the choice of algorithm, etc. In the foregoing, a review of the main pub-
lications available in the open literature that inspired this work is going to be presented.
Additionally, the main pitfalls and challenges are going to be illustrated that still prevent
active flow control strategies from attaining a commercially-viable technology readiness
level. In particular, the three main requirements for the successful implementation of a
control strategy are listed below.

1. Maximum net power saving. Being the "Holy Grail" of any flow control technique,
this requirement translates not only to the employment of low-power hardware
and low-overhead control algorithms, but also to the design of both sensors and
actuator that are minimally-intrusive in the TBL flow. For instance, a configura-
tion relying on active surfaces protruding into the flow would obviously not be
suited to meet this requirement, because of the additional parasitic drag induced
by the system itself. Therefore, as will emerge from the following sections of this
dissertation, the work presented here will rely on wall-embedded hardware only.
Furthermore, exploiting the (by-design) selectivity of the controller, by tuning it to
only target certain structures in the flow and being inactive for the rest of the time,
increases the control system’s efficiency.
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2. Low complexity. Considerations of complexity (and cost) are essential for the
widespread adoption of a control system in an industrial setting. Therefore, a con-
trol configuration making use of a relatively low number of sensors and actuators
should be employed. This results in the need of both effective actuators, as well as
the identification of a control target with a relatively long spatio-temporal lifespan
and slow dynamics. This removes the need for constant and finely-spaced (spa-
tially) control stations.

3. Reynolds-number scaling. Engineering systems operate at Reynolds-numbers
that are orders of magnitude larger than laboratory experiments. Therefore, care-
ful consideration must be posed on the scalability of a chosen control method.
For real-time control, requirements for parameters such as loop frequency and
hardware miniaturization scale rather unfavorably with an increase in Reynolds
number.

All three requirements call for complex design choices and careful analysis of the cho-
sen control parameters, which are closely interlinked with the dynamics of the turbulent
boundary layer flow.

Strategies for friction control of wall-bounded turbulence rely on the fundamental
understanding of boundary layer flows and their friction-generating mechanisms. Re-
search has revealed how different coherent structures exist, and how the structures’ char-
acteristics vary as a function of wall-normal distance, particularly when considering
their sizing and spatio-temporal dynamics [Kline et al., 1967, Falco, 1977, Kim and Adrian,
1999, Lee and Sung, 2011, Jiménez, 2018]. In the inner region, structures scale with the
viscous length scale ν/Uτ, and time scale ν/U 2

τ , with ν being the kinematic viscosity and
Uτ ≡

√
τw /ρ being the friction velocity (τw is the wall-shear stress and ρ is the fluid

density). Variables that are normalized following inner-scaling will be presented with a
superscript "+". In the outer region, instead, structures scale with the boundary layer
thickness δ as the characteristic length scale and δ/U∞ as time scale, with U∞ now be-
ing the free-stream velocity. The ratio of outer-to-inner length scales is provided by the
friction Reynolds number, which is defined as Reτ ≡ δUτ/ν.

1.2.1. NEAR-WALL CYCLE CONTROL

When focusing on control, a large number of studies aim at manipulating the near-wall
cycle (NWC) dynamics (for instance, Rathnasingham and Breuer [1997], Tardu [1998],
Rathnasingham and Breuer [2003], Bai et al. [2014], Qiao et al. [2017], among others) and
this generally leads to a disruption of the turbulence production cycle in the inner region
[Orlandi and Jiménez, 1994, Hamilton et al., 1995, Jimenez and Pinelli, 1999]. For engi-
neering systems of practical relevance, friction Reynolds numbers are in the order of
O

(
103

)
to O

(
106

)
, depending on the application. Inner-layer structures that are mainly

responsible for fueling near-wall cycle dynamics decrease in size with increasing Reτ,
and their characteristic frequency increases. The work of Kasagi et al. [2009] presents
a clear schematic (reported hereby in Fig. 1.3), illustrating how the characteristic size
and frequency changes depending on the application in consideration. By inspection of
Fig. 1.3, one can immediately appreciate how, although near-wall cycle structures might
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be a suitable control target for low-Reynolds-number application, such as pipelines or
automotive, high-speed transportation systems require a degree of control complexity
(i.e., speed and miniaturization) that renders the usage of conventional control hard-
ware unfeasible. For this reason, work in the literature has been carried out to explore the
usage of micro-electromechanical systems (MEMS, Sheplak et al. [2004]) that can com-
ply with the implementation of a control strategy relying on the employment of MEMS
is the inherent need for a fine spatial distribution of sensors and actuators. That is due
to the small-scale structures, that characterize the near-wall cycle dynamics, having a
spatio-temporal lifespan that is rather short.

Figure 1.3.: Spatiotemporal scales of coherent structures in the near-wall cycle in engi-
neering applications. Closed circles correspond to a 30 wall-unit length and
0.01 wall-unit frequency in different applications. Taken from Kasagi et al.
[2009].

In fact, one can inspect the linear coherence spectrum between near-wall quantities
(e.g., streamwise velocity fluctuations) at two distinct streamwise locations. Linear co-
herence, in this context, can be explained as the frequency-dependent degree of pre-
dictability of the flow at the downstream location, given the upstream measurement.
Samie et al. [2020], amongst others, perform such an analysis for a turbulent channel
flow (TCF) at Reτ ≈ 590. Given the characteristic streamwise wavelength of near-wall
structures of λ+

x = U+
c / f + ≈ 1000 (with Uc being the convection velocity and f the fre-
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quency), they observed how coherence at this wavelength drops from a value of γ2
uu → 1

for streamwise separations of ∆x+ < 100, to γ2
uu < 0.5 for ∆x+ = 870 (with ∆x+ being

the inner-scaled streamwise separation between the upstream and downstream mea-
surements stations). This means that, for control to be streamwise persistent, a high
amount of streamwise input-output stations would need to be integrated into an aero-
dynamic surface. In fact, even with a separation of ∆x+ ≈ 1000, the spacing in physical
units would be mere tens of millimeters, requiring hundreds, if not thousands of control
stations to be installed on, e.g., an aircraft fuselage.

From the available literature, it is apparent that a strategy based on the identification
and control of near-wall structures does not scale favorably with Reynolds number, thus
leading to the question of what can be a good candidate for control for drag reduction of
a ZPG-TBL.

1.2.2. LARGE-SCALE MOTIONS CONTROL

As mentioned above, near-wall scales in a TBL are characterized by a relatively small size
and relatively high passage frequency. These structures mostly convect within the inner
layer of a TBL, encompassing the near-wall and buffer regions, up to y/δ≈ 0.2. At higher
wall-normal locations, more elongated structures start to appear and dominate the spec-
tral energy distribution of the fluctuating velocity signals. These structures are known as
large-scale, or very-large scale (depending on their size) motions (LSMs and VLSMs, re-
spectively). With longer characteristic time and length scales, they present themselves
as a more appealing target for real-time control, compared to near-wall scales.

First evidence of these large-scale structures was first uncovered by Kim and Adrian
[1999], who found evidence of uniform momentum zones with a characteristic stream-
wise wavelength of 12-14 times the radius of the pipe in which they were conducting
experiments. They propose a physical model that illustrates how these extended struc-
tures result from the concatenation of several hairpin packets, with a characteristic time
scale of, roughly, 400 viscous units. In later study, Hutchins and Marusic [2007] stud-
ied the development of LSMs in a TBL experiment and show how their length can com-
monly exceed 20δ and exhibit distinctive spanwise coherence (see Fig. 1.4a). Addition-
ally, these structures exhibit a spanwise-meandering behavior, whereby these structures
display a spanwise spatial oscillation with a sinusoidal shape (see Figs. 1.4b,c). In gen-
eral, LSMs refer to regions of lower velocity induced between the legs of hairpin packets,
and regions of higher velocity outside of said packets. Due to the streamwise momen-
tum difference between high- and low-speed zones, large-scale rollers are formed with a
downwash and upwash in the zones with a momentum surplus and deficit, respectively
[Hutchins and Marusic, 2007].

Although these uniform momentum zones form in the logarithmic region and, in gen-
eral, LSMs are mostly energetic in said region of the TBL, a modulation effects exists,
whereby these structures modulate inner-region dynamics. In other words, beneficially
for real-time control purposes, LSMs present a large degree of wall-coherence [Baars et al.,
2017], i.e., a measurable imprint on the wall in the form of a low-frequency compo-
nent. In particular, modulation is a type of scale interaction, whereby the amplitude
of the small-scale (in this case, near-wall) fluctuations is continuously proportional to
the near-wall footprint of the large-scale velocity fluctuations. In addition to modula-
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(a) (b)

(c)

Figure 1.4.: Experimental data visualizing evidence of (V)LSMs in turbulent boundary
layers, taken from the work of Hutchins and Marusic [2007]. (a) Two-point
correlations of the streamwise velocity fluctuations on a horizontal (xz)-
plane calculated at y/δ = 0.087 at Reτ ≈ 1100. (b) Instantaneous PIV snap-
shot on a visualization combining a horizontal and a vertical plane at Reτ ≈
1100. (c) Example of a wire-rake signal at y/δ = 0.15 for Reτ ≈ 14380. The
x-axis is reconstructed using Taylor’s hypothesis and a convection velocity
based on the local mean, U = 15.9 m/s.

tion, which is a non-linear phenomenon, superposition consists of a linear imprint of
large-scale fluctuation onto near-wall, inherently small-scale, fluctuations. This results
in a large-scale “footprint" being measurable at the wall, which enables the identifica-
tion of kernels (or transfer functions) that can be used to estimate the flow state in the
logarithmic region, based on near-wall input quantities [Sasaki et al., 2019]. A controller
can therefore be designed to detect (and actuate upon) LSMs with marginal intrusive-
ness, thanks to the detectable footprint these impart on the near-wall flow.

The energy carried by LSMs increases with Reynolds number, and these structures not
only carry the bulk of the turbulence kinetic energy (TKE) in a TBL (up to 45% of it, ac-
cording to Lee and Sung [2011]), but are also responsible for most of the kinetic energy
production mechanisms at high-Reτ conditions [Smits et al., 2011a]. For TBL flows at
Reτ & 2000, they are responsible for the appearance of a secondary peak in the energy
spectrogram of stramwise velocity fluctuations, evidence of which has been extensively
documented by the turbulence community [Hutchins and Marusic, 2007, Deck et al., 2014,
Baars and Marusic, 2019, among others]. For an increasing friction Reynolds number,
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Marusic et al. [2021] illustrate how the spectral signature of the near-wall flow sees a in-
creasing contribution by large-scale (i.e. low-frequency) structures (see Fig. 1.5). This
benefits potential net power savings. This conclusion, however, is in contrast with the re-
sults from the work of Gatti and Quadrio [2016] and Gatti et al. [2024], who instead show
a decrease in the effectiveness of large-scale control with increasing Reynolds number.
Nonetheless, it is interesting to investigate the potential of controlling large-scale mo-
tions in real-time by means of local, discrete forcing, instead of by applying a spanwise
wall-forcing. In fact, large-scale fluctuations in turbulence quantities induced by the
passage of LSMs correlate to skin-friction drag production mechanisms since, as illus-
trated by Renard and Deck [2016], LSMs carry a major part of the Reynolds shear stress,
u′v ′.

From the brief review that was presented above, one can find a large body of literature
studying the dynamics of large-scale motions in a ZPG-TBL flow and its relation to skin-
friction drag. In general, the two main conclusions are that, at high Reynolds numbers:

1. the flow displays a vast range of scales, and that large-scale motions are increas-
ingly responsible for turbulence kinetic energy (TKE) production as the Reynolds
number increases;

2. a large degree of wall-coherence is measurable between the large-scales, mostly
inhabiting the logarithmic region, and the near-wall flow. This can be leveraged to
build a controller that can interact with large-scale motions, but employing wall-
based input quantities only.

Figure 1.5.: Pre-multiplied spectra of wall-shear stress fluctuations at three values of
Reτ, displaying the contribution of both small and large scales. Taken from
Marusic et al. [2021].

From a control perspective, and especially from a perspective of a feasible imple-
mentation of real-time control strategy at application-level conditions, large-scale mo-
tions form the ideal target for real-time flow manipulation. Their larger length and time
scales make them more accessible to conventional control hardware, while their growing
contribution to TKE production and near-wall superposition at high-Reτ makes them a
strategically relevant target for control. Various experimental activities are presented in
this dissertation that explore various real-time control system architectures. All of these
will consider large-scale motions as the prime target for control.
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1.3. THE CHALLENGE OF CHOOSING AN INPUT QUANTITY
Up to this point in this dissertation, a general overview has been presented of the re-
quirements underlying the design of a real-time control system and the necessity to
identify a control target that is accessible using conventional control hardware (i.e. not
MEMS). From this point onwards, the focus of this dissertation is going to pivot towards
analyzing a control system targeting coherent structures convecting in a TBL flow.

A generic schematic of a (two-dimensional) flow control system is displayed in Fig. 1.6.
Here, a TBL flows from left to right in the diagram, grazing over several points of inter-
est on the wall for the definition of a control law. Point I represents the location of a
hypothetical input sensor while, at a downstream distance (s1), an actuator produces a
control output (point A ). Point E , located at a further distance (s2) downstream of the
actuator, acts as an error sensor for advanced control laws that will be discussed in a
later chapter of this dissertation (Ch. 7). The information relayed from points I and E

are elaborated in real-time by the controller, which is based on a transfer function (H )
that models the physical dynamics of the TBL by (1) estimating the state of the flow at
the streamwise location of point A and (2) incorporating the measurements of point E

for optimization of the control law.

TBL flow

I A E

s1 s2

H

Figure 1.6.: Schematic displaying a generic control system for a TBL flow, whereby tar-
geted features travel with the incoming flow (from left to right).

However, as a first and fundamental step in the definition of a real-time control system,
one needs to consider which quantity is going to be considered as the input to the real-
time controller (measured at point I in Fig. 1.6). The remainder of this section is going
to be dedicated to reviewing preliminary concepts, requirements and literature enabling
the selection of a suitable input quantity.

The main issue relating to the selection of such input quantity is the problem of observ-

ability. Critical to the design of any control system, this concept was first introduced in
the work of Kalman [1963]. In essence, considering a linear state-space representation of
a dynamic system, such system is said to be observable if, for every possible evolution of
the state and control vectors, the current state can be estimated from output information
only (i.e. the information measured by physical sensors). Although a linear representa-
tion might be challenging to define for a dynamic system characterized by strong non-
linearity such as a TBL, the concept of observability is one that needs to be carefully con-
sidered. In fact, the need for a control system with a low degree of complexity translates,
by design, to a sparse input sensor layout, with which limited information can be in-
ferred of the TBL flow, which raises issues in regards to observability. Literature showing
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implementation of real-time control strategies in wall-bounded flows shows how max-
imum observability of off-the-wall velocity fluctuations can be attained by placing the
input sensing plane not at the wall (y = 0), but rather at an off-the-wall location (e.g.

Guseva and Jiménez [2022]). However, it must be noted that full three-dimensional and
temporal access to the fluid domain is available in a numerical simulation, as is the case
for the work of Guseva and Jiménez [2022], as well as most other studies found in the
literature on this topic. Instead, in a laboratory context, not only it is practically unfea-
sible to implement such an input configuration, but it would also be detrimental to the
overall drag performance of the system, as sensors located off-the-wall would produce
additional drag.

To understand which wall-based quantities best correlate to the passage of LSMs, there
are two main factors to consider:

1. Wall-coherence. The degree with which an off-the-wall state can be predicted
from a wall-based position.

2. Sensing complexity. The number and cost of necessary sensors and the ease of
integrating the acquisition (and the potentially needed filtering) of the signal in
real-time by the controller.

1.3.1. NEAR-WALL FLOW FLUCTUATIONS

Instantaneous fluctuations in wall-shear stress possess a strong correlation with stream-
wise velocity fluctuations at off-the-wall locations. Given the superposition effect that
was mentioned in the above, by which the near-wall flow retains the “footprint" of larger
structures convecting at higher wall-normal locations, this wall-based quantity retains
a strong correlation with velocity fluctuations induced by LSMs. Thus, this makes it an
ideal candidate for the estimation of a large-scale velocity state.

In the literature, considerable work has been conducted on the study of the large-scale
superposition of the near-wall flow. For instance, Mathis et al. [2009] illustrate how the
structures inhabiting the logarithmic region (i.e. LSMs) cause a significant superposition
of the scales found in the buffer layer of a TBL flow. They also report how this superposi-
tion signature becomes increasingly intense as the Reynolds number increases logarith-
mically with Reτ. Based on this strong correlation, Baars et al. [2016] propose a stochas-
tic strategy to couple the near-wall flow to higher wall-normal locations, given the self-
similarity that exists between wall-attached eddies of all scales [Baars et al., 2017]. In
particular, a universal self-similar scaling of wall-attached eddies exists, comprising ed-
dies having a characteristic size bounded by an inner scale of λx /y ≈ 14 and by an outer
one of λx /δ ≈ 10. This is in accordance with the Attached Eddy Hypothesis (AEH), a
comprehensive review of which can be found in the work of Marusic and Monty [2019].
This is evidence of a self-similar hierarchy of scales across the boundary layer.

1.3.2. WALL-PRESSURE FLUCTUATIONS

Another input quantity that sparks significant interest in being employed as an input
quantity for real-time control is wall-pressure fluctuations. In fact, juxtaposed to wall-
shear stress measurements, whereby complex sensors are required to accurately mea-
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sure it, wall-pressure sensors are characterized by low complexity and low cost, which
renders them ideal for widespread deployment.

Studies on wall-pressure fluctuations of turbulent wall-bounded flows have focused
on, amidst other aspects, the scaling of the pressure intensity and spectral signature.
Scaling trends are a function of the friction Reynolds number, Reτ. In particular, the
works of Farabee and Casarella [1991], Tsuji et al. [2007] and Klewicki et al. [2008] revealed
a characteristic inner-spectral peak in the wall-pressure spectra at a frequency of f +

p ≈
0.04. The amplitude of said peak increases in magnitude with an increase in Reτ, as does
the large-scale energy content. Efforts with direct numerical simulation (DNS) have con-
firmed these trends [e.g., Jiménez and Hoyas, 2008, Panton et al., 2017, Yu et al., 2022]
and illustrated how, when considering spatial spectra, the inner-spectral peak resides at
λ+

x,p ≈ 250 (thus f +
p and λ+

x,p are related at the peak-scale through a streamwise convec-
tion velocity of U+

c ≈ 10).
Relations between velocity structures and wall-pressure events have also been inves-

tigated. For instance, Thomas and Bull [1983] revealed characteristic wall-pressure sig-
natures associated with burst-sweep events in a turbulent boundary layer (TBL) flow,
which are exclusively confined to the near-wall region. Gibeau and Ghaemi [2021] re-
ported a low but significant scale-dependent linear coherence between wall-pressure
(see Fig. 1.7), and streamwise (u) and wall-normal (v) velocity fluctuations in a TBL flow,
at low frequencies (in the remainder of our manuscript lower-case quantities denote the
fluctuations, while upper case ones signify time-averaged quantities). They ascribed this
stochastic coupling to the passage of large-scale motions (LSMs). Recently, the work of
Deshpande et al. [2024] assessed the growth of broadband energy in the wall-pressure
spectrum by considering how the energy in velocity fluctuations, associated with active
(producing turbulence kinetic energy) and inactive motions, scales with Reτ and how
this energy contributes to the energization of the intermediate and large pressure scales.
Linking the wall-pressure field to the turbulence dynamics of LSMs is highly relevant
for real-time flow control, because LSMs are a feasible target for an experimental imple-
mentation of control, as mentioned in § 1.2. Moreover, a larger fraction of the turbulent
velocity scales becomes strongly correlated across the wall-normal direction, and leaves
a distinct imprint on the dynamics of near-wall turbulence and wall-pressure fluctua-
tions [e.g., Marusic et al., 2010, Tsuji et al., 2015].

1.4. CONTROL LAW DEFINITION

Large-scale control was first pioneered for the control of wall-bounded turbulent flows in
the legacy work by Schoppa and Hussain [1998] and did not consider a real-time strategy.
They showed that large-scale spanwise velocity forcing could lead to a 50 % reduction in
friction drag. However, the relatively low Reynolds number of Reτ ≈ 180 implied that:
(1) control was effectively targeting a weak instability as turbulence was only marginally
sustained [Canton et al., 2016b,a], and (2) large-scale control at those low values of Reτ
was matching the NWC dynamics ‘equally-well’. That is, in the context of practical appli-
cations, a large-scale control strategy requires a high-enough Reynolds number for suf-
ficient scale separation to appear. This is conveniently achieved through experimental
studies. Recently, predetermined control with large-scale forcing was proven effective at
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Figure 1.7.: Contour plot showing the variation of the linear coherence between wall-
pressure and (a) streamwise and (b) wall-normal velocity fluctuations, as a
function of dimensionless frequency, obtained from time-resolved particle
image velocimetry data. Taken from Gibeau and Ghaemi [2021].

high Reτ [Marusic et al., 2021, Deshpande et al., 2022] and the inherent lower-frequency
nature of outer scales also renders LSMs a more approachable target than inner scales,
when considering real-time implementations. Many more contributions can be found in
the literature that implement a control strategy whereby large-scale structures in a TBL
are targeted, but only following a pre-determined (i.e. open-loop) action. Cheng et al.
[2021a], for instance, demonstrate how a considerable friction-drag reduction can be
obtained by the periodic blowing action of jet actuators at frequencies characteristic of
the passage of LSMs. A similar control configuration was adopted by Yu et al. [2021],
whereby the optimal pulsing and relative output phase of each jet in an array was iden-
tified by means of genetic optimization.

In general, blowing jets have also been demonstrated to be effective for the active (al-
beit open-loop control) control of turbulent boundary layers even in a distributed con-
figuration. Distributed microblowing occupies a particular place in the evolution of tur-
bulent boundary-layer control strategies. As reviewed by Kornilov [2015], finely perfo-
rated surfaces with uniform microblowing have been shown to consistently reduce skin-
friction drag, in some cases by up to 90%, and to delay separation under adverse pres-
sure gradients. The principle lies in weakening near-wall turbulent structures by inject-
ing low-momentum fluid, which reduces shear stresses and alters Reynolds stress dis-
tributions. Early works, such as Hwang [2004] and Tillman and Hwang [1999], demon-
strated drag reduction in both subsonic and supersonic applications using distributed
microblowing, while later experiments [Kornilov and Boiko, 2012, 2014] extended this to
flat plates and non-uniform blowing configurations. However, as Kornilov [2015] em-
phasizes, effectiveness depends critically on geometric parameters such as porosity, ori-
fice arrangement, and uniformity of injection. While distributed microblowing remains
a relatively simple and reliable passive/active hybrid method, its limitations—energy
cost, sensitivity to uniformity, and scale-dependence—highlight the need for algorith-
mic approaches that can adaptively optimize control inputs in real time. Thus, in the
context of this dissertation, microblowing serves as a motivating case for the develop-
ment of real-time control algorithms capable of addressing the unsteady, nonlinear dy-
namics of turbulent boundary layers.
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Cheng et al. [2021b] also propose a control strategy based on the utilization of plasma
actuators to induce streamwise vortices, which stabilize the motion of large-scale quasi-
streamwise vortices induced by large-scale features in the flow. Although some control
output do cause skin-friction drag by themselves, such as wall-normal blowing, it is im-
portant to be able to decouple the effects the actuator has on the flow from the effects
of the control logic. In this regard, it is necessary to compare the response of the TBL to
real-time (i.e. targeted) actuation to a case where the flow was subjected to fully random
control.

In fact, the work presented in this dissertation revolves around the development and
implementation of control strategies where the control output is determined in a reac-
tive fashion. In this regard, when choosing a control law for a problem at hand, one
needs to consider several factors, relating to the dynamical system at hand, the avail-
able hardware for sensing and actuation and the degree of physical modeling embed-
ded within the control law. This last factor, in particular, is of crucial importance when
considering real-time overhead management by the controller. In fact, the computa-
tional cost for a real-time controller is a function of the degree of physical modeling
performed in real-time. For instance, if the modeling were based on a full representa-
tion and time-marching of the Navier-Stokes equations (i.e. an ultra-white box model,
see Fig. 1.8), it would be extremely costly and, realistically, not manageable by conven-
tional real-time processors. Decreasing cost, model predictors can incorporate hybrid
analytical-empirical relations, with an increasing dependence on input-output data. A
model whose dependence on physical laws decreases, while increasingly being a func-
tion of empirical input-output data (black-box), lacks interpretability, with the benefits
corresponding to low-overhead computations and (usually) low-memory requirements.

For the present dissertation, one needs to consider that all real-time control efforts
have been implemented experimentally in a laboratory setting. Thus, the option of run-
ning expensive high-order models was not feasible. Therefore, this work employs tech-
niques pertaining to the categories of grey-box, black-box and model free controller de-
sign.

1.4.1. FEEDFORWARD OPPOSITION CONTROL

The array of available control algorithms for control of nonlinear systems is rather long,
as can be evinced from the comprehensive review by Brunton and Noack [2015]. How-
ever, most require the availability of dense spatio-temporal information, which are usu-
ally not accessible when implementing control in an experimental setting in a wind tun-
nel facility. Even less complex system representation, such as a linear state-space system,
would lack the requirement information on local gradients and flow derivatives to fully
describe the TBL dynamics. Thus, relatively “simple" control laws need to be defined
that can take input-output data into account.

Opposition control is a type of stabilizing control [Brunton and Noack, 2015] that was
initially applied to turbulent flows in the context of computational investigations. This
technique proved rather effective in suppressing turbulent fluctuations and even reduc-
ing skin-friction drag [Choi et al., 1994, Guseva and Jiménez, 2022]. This type of con-
trol was pioneered experimentally in the works of Rebbeck and Choi [Rebbeck and Choi,
2001, 2006] for the control of NWC dynamics with great success. Their control con-
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Figure 1.8.: Diagram showing hierarchical model dependence on governing equations,
adapted from Brunton and Noack [2015].

figuration was based on measuring inner-region turbulence fluctuations by employing
a wall-wire and piston-driven jet as the actuator (see Fig. 1.9). With a hot-wire probe
mounted downstream, they could monitor the performance of the control system and
verify whether the intensity of near-wall sweeps was actually attenuated.

Input sensor
Actuator

Hot-wire

Figure 1.9.: Diagram showing the control architecture for performing opposition control
of the near-wall cycle sweeps in a low-Reynolds-number TBL. Adapted from
the work of Rebbeck and Choi [2001].

A few years later, Abbassi et al. [2017] demonstrated a selective opposition control sys-
tem to target LSMs carrying higher streamwise momentum than average, in an attempt
to reduce the skin-friction drag induced by large-scale events in a TBL at Reτ ≈ 14000. A
spanwise array of jet actuators, together with hot-film input sensors located upstream,
counteracted the naturally-occurring drag-producing LSMs. This yielded a reduction of
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the intensity of the velocity fluctuations in the logarithmic region, as well as a ∼ 3 % re-
duction in the mean wall-shear stress.

The present work builds upon the approach taken by Abbassi et al. [2017]: the mo-
mentum surplus that characterizes high-speed zones is to be counteracted by lower-
streamwise-momentum fluid, generated by a wall-normal blowing jet actuator. To mini-
mize the parasitic drag associated with the control system, wall-embedded flush-mounted
hardware is required. This constraint leads to an estimation problem of the flow state at a
point away from the input sensor when aiming at the manipulation of large-scale struc-
tures at their wall-normal location of maximum intensity (e.g., in the geometric center of
the logarithmic region). Still, the question remains as to how accurate estimations of the
flow state at a location above the actuator can be performed. Abbassi et al. [2017] took
Gaussian kernels as transfer functions and convolved those with the input signals. In the
present work, we employ a data-driven approach to obtain the input-output relation,
namely to relate changes in wall-shear fluctuations to velocity fluctuations in the log-
arithmic region. Using spectral Linear Stochastic Estimation (LSE) [Tinney et al., 2006,
Baars et al., 2016], it was possible to generate such a physics-informed kernel.

1.4.2. CLOSED-LOOP ADAPTIVE CONTROL

Traditional opposition control relies on the prior identification of a transfer function to
estimate the flow state that needs to be controlled. Generally, as will emerge from fol-
lowing chapters in this dissertation, such transfer function is identified in a prior step
to the deployment of the controller to the plant in consideration. However, the de-
sign and deployment of a real-time controller for commercial engineering flow con-
trol applications would benefit from adaptability to the performance envelope of the
dynamic plant it is applied to (e.g. cruise conditions for an airliner). Adaptive control
algorithms can be employed, in this context, to (1) automatically identify the system dy-
namics, and (2) adapt to slowly-varying conditions in the fluid dynamic system. The
Filtered-x Least Mean Squares (Fx-LMS) algorithm is one that has proven itself as being
applicable to achieve control adaptability, as shown in the literature for both acoustic
noise attenuation [Hansen, 2001] and control of convective harmonic flow disturbances
[Kotsonis et al., 2013].

A comprehensive review of the Fx-LMS can be found in Hansen [2001], of which a
brief summary is provided here. In particular, the Fx-LMS algorithm is an adaptive con-
trol strategy that was initially developed for active noise control (e.g. noise-cancelling
devices [Hansen, 2001]). This algorithm (whose block diagram is presented in Fig. 1.10)
essentially operates as a gradient-descent–based optimizer that works towards the min-
imization of an error signal. Whereas in the case of acoustic noise attenuation the goal
would be to minimize the noise in a certain environment, in this work it coincides with
the attenuation (or opposition) of the turbulence-induced fluctuations at the location of
the downstream array of error sensors, located at point E in Fig. 1.6. This is accomplished
with the aid of the real-time identification of two finite impulse response (FIR) kernels:
the cancellation path (FIR 2) and the control (FIR 1) kernels. The former is identified in
an initial phase of the deployment of the Fx-LMS and models the conditional response
of the error signal as a function of the actuator output (plotted in Fig. 2.1c). The latter,
instead, is deployed as the primary control kernel, when convolved in real-time with the
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input signal (plotted in Fig. 2.1d). A more elaborate description of the algorithm can be
found in Hansen [2001]; essentially, the controller identifies the most energetic fluctua-
tions in the flow and actuates upon those.

Figure 1.10.: Block diagram of the Fx-LMS algorithm, applied to a flow control problem
targeting harmonic convective flow instabilities in a transitional boundary
layer [Kotsonis et al., 2013].

1.5. OBJECTIVES OF THIS WORK
The research presented in this dissertation focuses on the experimental investigation of
real-time control techniques for skin-friction drag reduction in a ZPG-TBL. Particular fo-
cus is devoted to the analysis of the response of the TBL to the action of the controller,
both in terms of temporal and spatial statistics. Additionally, a secondary strong focus
point of this work is the definition and identification of transfer functions that can ac-
curately represent the state of the boundary layer flow at off-the-wall position from a
purely wall-based measurement. For the first time, a control implementation is pre-
sented that relies on wall-pressure fluctuations as an input to the real-time controller,
after careful considerations of coherence between wall-pressure and off-the-wall veloc-
ity fluctuations in a TBL flow.

This thesis is divided into two main parts, the first of which focuses on the physical
relation between wall-pressure and off-the-wall velocity fluctuations in a turbulent wall-
bounded flow. The objectives of this part are the following:

• to present a reliable methodology to disambiguate between hydrodynamic and
acoustics-driven fluctuations in a temporal signal acquired experimentally;

• to analyze the spectral coupling between wall-pressure and off-the-wall velocity
fluctuations and its scaling across a wide range of Reynolds numbers.
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The second part of the work deals with the design and the development of a real-
time control strategy targeting large-scale structures in the TBL to quench low-frequency
drag-producing mechanisms. In particular, the objectives were:

• to describe the implementation of a feedfoward real-time controller using instan-
taneous wall-shear stress fluctuations as the input quantity and to quantify the
response of the flow to it in terms of both mean skin-friction drag and integral
metrics of wall-shear stress decomposition;

• to report on the deployment of a pioneering real-time control system using wall-
pressure, instead of wall-shear, as the input quantity.

Finally, the last part of this thesis focuses on the implementation of an adaptive con-
troller to the problem of the TBL flow. Due to the increased complexity in controller
design compared to the feedforward opposition controller, a two step approach is taken
for its design.

• First, the controller is deployed to a flow characterized by highly-harmonic distur-
bances. This step is meant to provide a proof-of-concept for the implementation
of the adaptive controller as well as to test its applicability to convective flow dis-
turbances in a turbulent wall-bounded flow.

• Second, once this preliminary testing was completed, the adaptive control law was
then deployed to the fully broadband TBL case.

This dissertation is divided into several chapters. Chapter 2 contains the description
of the wind tunnel facilities used for carrying out the experimental work contained in
this dissertation as well as the measurement techniques. Chapter 3, consequently, first
describe the intricacies behind the choice and filtering of the input quantity for real-
time control, with Ch. 4 describing the statistical correlation that exists between wall-
pressure and off-the-wall velocity fluctuations and the latter analyzing methods to filter
noise-contaminated wall-pressure signals. Chapter 5 presents a first implementation of
a feedforward controller, based on wall-shear stress as the input quantity, before switch-
ing to the use of wall-pressure in the implementation of a similar controller in Ch. 6.
Finally, Ch. 7 reports on the implementation of an adaptive control strategy to the TBL
flow problem, before concluding this dissertation in Chapter 8.
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Science is fun. Science is curiosity. We all have natural curiosity. Science is a process of

investigating. It’s posing questions and coming up with a method. It’s delving in.

Sally Ride (STS-41-G)

The work presented in this dissertation is mostly based on data acquired experimentally.

This section contains the presentation of the wind tunnel facilities employed for testing

and data collection. In particular, the bulk of the experimental campaigns were conducted

at the Delft University of Technology, in the W-Tunnel open-return wind tunnel facility.

Additionally, part of this dissertation is based on data collected at the center for Interna-

tional Cooperation for Long-Pipe Experiments (CICLoPE) at the University of Bologna, in

Italy. Furthermore, this section contains the presentation of the measurement techniques

employed for the characterization and analysis of the flow.
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2.1. TURBULENT BOUNDARY LAYER FACILITY

With wall-bounded turbulence flow control receiving growing attention in recent years
and it being the exclusive focus of this dissertation, it is necessary to develop the capa-
bility to study such flows in the most complete way possible. It can be challenging and
costly to recreate application-level conditions in an accurate computational simulation
[e.g. direct numerical simulations (DNS)], given the enormous volume of resources re-
quired. Even experimental approaches are cursed with scaling to high friction Reynolds
numbers and Mach numbers matching real flight conditions at altitude. For the present
study, the goal was to design an experimental testing facility enabling the study of a ZPG-
TBL flow at low-to-moderate values of Reτ (that can also be reached by DNS simula-
tions).

For a non-cryogenic and non-pressurized facility, there are two options available for
generating a TBL at a given friction Reynolds number: (1) having a high freestream veloc-
ity and short development length and, vice-versa, (2) having a long development length
and a relatively low freestream velocity. The latter is usually the preferred option, as it
allows for the flow to have measurable scales, while still attaining the desired friction
Reynolds numbers. The low velocity, in fact, generates a relatively thick boundary layer,
resulting in the structures within it being relatively easily accessible with standard ex-
perimental techniques (e.g. particle image velocimetry). Conversely, the latter approach
creates a thin boundary layer, rendering experimental data acquisition more challeng-
ing, given the higher requirement for spatial resolution of the measurement sensors. For
this reason, in this study, a test section is designed with a relatively long streamwise de-
velopment length, but having a relatively low freestream velocity, following the “long and
slow” approach.

This section describes the design and the final layout of the experimental facility, as
well as the characterization of the TBL flow generated within it.

2.1.1. FACILITY LAYOUT

Experiments were conducted in the W-tunnel at Delft University of Technology. This
facility is an open-loop wind tunnel driven by a centrifugal fan which can attain a max-
imum velocity of 17 m/s. The flow is accelerated through a contraction having an exit
area of 60×60 cm2 and a contraction ratio of 2.78. A TBL test section was designed and
built in September 2021 that consists of two twin segments with a length of 1.8 m each,
which are placed downstream of the contraction exit plane. To avoid the propagation of
vibrations through the test sections, they are free-standing in isolation, approximately 5
mm downstream of the lips of the contraction. The facility features modular floor plat-
ing to allow for insertion of control hardware and instrumentation. The leading edge of
both the lower wall has a hyper-elliptical shape, while the upper wall has a knife-edge-
shaped leading edge [Narasimha and Prasad, 1994], allowing the top and bottom inflow
boundary layers to bleed off. P40 sandpaper is used as a tripping element on all four
walls at the inlet of the upstream test section. A Venturi channel was created below the
lip of the wind tunnel’s contraction to alleviate blockage and prevent separation at the
leading edge. Figure 2.1a shows a schematic of the test setup in use, with Figs. 2.1b and
2.1c displaying photographs of the facility in use for testing.
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The tunnel’s ceiling was made adjustable in height over the full length of the test sec-
tion in order to modify the streamwise pressure gradient, Çp/Çx. The ceiling consists of
a 4 mm thick polycarbonate plate with a smooth curvature. Through an iterative pro-
cess, the ceiling was configured for a ZPG and the final ceiling height is displayed in
Fig. 2.2a. The ZPG was characterized using two streamwise rows of static pressure taps
in the floor (at z ′ =±0.20 m), from which the local pressure coefficient could be inferred
as Cp = 2(P −P∞)/(ρU 2

∞) (with P∞ being the freestream static pressure and P the mean
static pressure at the streamwise station considered; plotted in Fig. 2.2b). For the nom-
inal free-stream velocity of the current study (U∞ ≈ 15 m/s), the acceleration parame-
ter K ≡ (ν/U 2

e )(dUe /dx) [Schultz and Flack, 2007] remained in an acceptable range for
a ZPG condition, since K < 1.6 ·10−7 (see Fig. 2.2c) for the entire length of the test sec-
tion. In the definition of K , the velocity at the edge of the boundary layer, Ue , equals
U∞ for this study; its value was inferred from the measured static pressure at the floor
by assuming Çp/Çy ≈ 0. Finally, the free-stream turbulence intensity was found to be√

u2/U∞ ≈ 0.15 % at the primary measurement region (this was inferred using hot-wire
anemometry, described later).

(a)

(b) (c)
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3.60 m

0.60 m

Venturi
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0.60 m

0.50 m
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Inlet
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y

z

Figure 2.1.: (a) Schematic of the modular TBL test section installed in the W-Tunnel at
Delft University of Technology. (b) Photograph of the TBL test section in
November 2024. (c) Photograph of the TBL in use during a particle image
velocimetry acquisition in May 2022.

A Pitot-static probe is installed on one of the vertical walls of the downstream section,
2.9 m downstream of the trip. The probe allows to infer the freestream velocity at that
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(a)

(b)

(c)

Figure 2.2.: Plots of (a) the ceiling height, (b) the pressure coefficient and (c) the accel-
eration parameter as a function of downstream distance from the sandpaper
trip throughout the TBL test section.

location, which will be used for reference and normalization for all measurements. Ad-
ditionally, a microphone is mounted at the same streamwise location as the Pitot probe,
to measure the freestream acoustic signature of the wind tunnel facility. This consists of a
single GRAS 46BE 1/4-in. CCP free-field microphone, with its standard grid-cap replaced
by a GRAS RA0020 nosecone. This is intended to reduce stagnation-driven turbulence
pressure fluctuations on the otherwise flow-exposed diaphragm.

In the foregoing, data will be presented following the definition of a Cartesian (x, y, z)
right-handed coordinate system, also displayed in Fig. 2.1a. Its origin is located on the
wall at x ′ = 3.10 m downstream of the sandpaper trip and in the spanwise center of the
test section. The x-axis is aligned with the freestream velocity and positive in the down-
stream direction. The y-axis indicates the wall-normal direction and is positive when
pointing away from the wall. Finally, the z-axis completes the right-handed system and
indicates the spanwise coordinate.

2.1.2. TURBULENT BOUNDARY LAYER CHARACTERISTICS

A characterization of the uncontrolled TBL flow at the primary measurement location of
x = 0 is here reported, based on first- and second-order statistics computed from hot-
wire data. The freestream velocity for all measurement conducted in this experimen-
tal facility was set at U∞ = 15 m/s. Figure 2.3a presents profiles of both the streamwise
mean velocity and turbulence kinetic energy (TKE). A set of canonical boundary layer
parameters was inferred through a composite fit procedure on the mean velocity pro-
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file [Chauhan et al., 2009], with logarithmic layer constants of κ = 0.38 and B = 4.7. Pa-
rameters are reported in Table 2.1, where characterization data is included for two more
freestream velocity values, namely U∞ = 5 m/s and U∞ = 10 m/s. Here, θ is the momen-
tum thickness and the viscous length scale is denoted with the symbol l∗ ≡ ν/Uτ.

U∞ (m/s) δ (mm) θ (mm) Reθ Uτ (m/s) Reτ l∗ (µm) t∗ (µs)

5 72.6 6.89 2 248 0.204 988 72.35 346.67
10 71.3 6.86 4 572 0.377 1 783 39.37 102.65
15 69.9 6.83 6 930 0.480 2 227 30.54 61.79

Table 2.1.: Experimental parameters of the baseline TBL flow in the W-Tunnel facility at
x = 0, for U∞ = 15 m/s.

Since the measured streamwise TKE is subject to a well-known attenuation of small-
scale energy, associated with the the finite resolution of hot-wire sensing length (l+ ≈ 41)
[Hutchins et al., 2009], the missing energy can be accounted for as seen from the cor-
rected measurement profile [following Smits et al., 2011b]. For both the mean velocity
and corrected streamwise TKE profiles, the measurement data compare well to those of
a DNS of channel flow [Lee and Moser, 2015] in the inner region and at a comparable
value of Reτ. This provides reassurance of a representative baseline flow.

(a) (b)

(c)

y+ = 3.9
p

Reτ

Figure 2.3.: (a) Wall-normal profiles of the mean streamwise velocity and streamwise
TKE, based on hot-wire data and compared to DNS data of channel flow
at Reτ = 2000 [Lee and Moser, 2015]. TKE corrected for attenuation due to
sensor resolution [Smits et al., 2011b]. (b) Premultiplied energy spectrogram
of the streamwise velocity; filled iso-contours correspond to magnitudes of
0.2:0.2:2.2. (c) Energy spectrum of the streamwise velocity fluctuations in the
geometric center of the logarithmic region, y+

L = 3.9
p

Reτ.

For spectral analyses of the velocity u(y, t ), the one-sided spectrum is considered here
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as φuu(y ; f ) = 2〈U (y ; f )U∗(y ; f )〉, where U (y ; f ) =F
[
u(y, t )

]
is the temporal fast Fourier

Transform (FFT). Here, the angular brackets 〈·〉 denote ensemble-averaging and the su-
perscript “∗” indicates the complex conjugate. Ensembles of N = 217 samples were sub-
ject to a Hanning windowing procedure, and resulted in a spectral resolution of d f =
0.39 Hz. In addition, a 50 % overlap was implemented to yield a total of 120 ensembles for
averaging. Energy spectra throughout the TBL flow are premultiplied, and are presented
as an inner-scaled spectrogram, f +φ+

uu(y ; f ), in Fig. 2.3b. Being the primary location of
interest for studying LSMs within the logarithmic region, Fig. 2.3c presents the broad-
band spectrum of streamwise velocity fluctuations in the geometric center of the loga-
rithmic region, at y+ = 3.9

p
Reτ = 190. The Reynolds number being relatively low does

not yet allow for a noticeable outer-spectral peak to appear, but the inner-spectral peak
is apparent at (y+; f +) ≈ (15;0.01). Moreover, a significant scale separation is present
between energetic motions in the outer layer (say at f + . 10−3) and the NWC peak at
f + ≈ 10−2. The uncontrolled TBL conditions reported in Table 2.1 and Fig. 2.3 repre-
sent the baseline (uncontrolled) case, to which the controlled flow will be compared in
subsequent chapters.

2.2. CICLOPE LONG-PIPE FACILITY

The results presented in Ch. 3 and Ch. 4 was carried outside of Delft University of Tech-
nology. Measurements were also performed in the long-pipe facility at the center for In-
ternational Cooperation in Long-Pipe Experiments. The facility is managed by the CIRI
Aerospace Institute of the University of Bologna and is located in a former military and
industrial bunker built in the 1930s in Predappio, Italy. The underground location is ideal
for minimizing external acoustic noise sources, but requires constant climate control to
keep humidity and temperature at relatively low and acceptable values. This, however,
ensures stable environmental conditions for testing.

The long-pipe facility itself consists of a closed-loop wind tunnel (see Fig. 2.4a): a
111.15 m-long circular pipe (Fig. 2.4b) with a radius of R = D/2 = 0.4505 m. The pipe
is divided into 22 independent segments, originally intended for ease of assembly and
transportation, which culminate into the test section (Fig. 2.4c), located at the down-
stream end of the facility. Each segment is 5.05 m long and realized in carbon fiber.
The facility is equipped with a heat exchanger to ensure the temperature set for test-
ing does not oscillate more than 1◦C . The flow is driven by two coaxial fans, spinning
in opposite directions, through turning vanes and a contraction, which ensures laminar
flow is present at the upstream end of the long pipe. The flow is not tripped, ensur-
ing transition only occurs “naturally". The flow in the test section (nominally at 105.9 m
= 117.5D downstream of the pipe inlet) can be considered fully developed. The high
friction Reynolds number that can attained in the facility (up to Reτ ≈ 50000) allows
the study of a turbulent wall-bounded flow, although by design not ZPG, at Reynolds
numbers nearing application-level orders of magnitude. Its design allows the for the full
range of scales to be measurable with standard flow measurement equipment (e.g. off-
the-shelf miniature hot-wire probes) at the test section location. Further details relating
to the design and the characterization of the turbulent flow in the facility are described
in the literature [Bellani and Talamelli, 2016, Örlü et al., 2017a].
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(a) (b)

(c)

(d)
Flow

FlowFlow

Figure 2.4.: (a) Schematic of the CICLoPE laboratory in Predappio, Italy. Courtesy of
Fiorini [2017]. Labels refer to (1) the test section, (2) the carbon fiber pipe,
(3) the contraction, (4) the heat exchanger and (5) the fan. (b) Photograph of
the upper segment of the long-pipe facility. (c) Photograph of the test sec-
tion of the long-pipe facility, with (d) showing one of the four modular plugs
allowing access to the flow on the final segment of the long-pipe.

At each of the 22 carbon fiber segments, the pipe flow can be accessed at four lo-
cations by means of modular wall plugs, equally distributed in the azimuthal direc-
tions (Fig. 2.4d). For the experiments reported in this work, friction Reynolds numbers
were in the range 4794 . Reτ . 47015 (with corresponding center-line velocities of
3.837m/s ≤UCL ≤ 44.60m/s).

2.3. MEASUREMENT TECHNIQUES

Throughout this work, several different measurement techniques are employed to mea-
sure specific properties and patterns of the turbulent flows in consideration. The fore-
going contains a brief review of the main flow measurement techniques and their inte-
gration into the experimental facilities, although a more elaborate description of those
can be found in the literature.

2.3.1. WALL-PRESSURE MEASUREMENTS

In this work, measurements of wall-pressure were carried out for two main objectives.
The first was to study and understand the scaling of the statistical coupling between
streamwise velocity and wall-pressure fluctuations, which is mainly treated in Ch. 3 and
Ch. 4. The second one, building on top of the knowledge acquired with the first, was
to employ wall-pressure fluctuation as the quantity for real-time control of a TBL for
skin-friction drag reduction (Ch. 5 and Ch. 6). While the bulk of the data acquired to
tend to the first objective was collected in the CICLoPE facility, real-time control experi-
ments were only performed at Delft University of Technology. However, the integration
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of the pressure sensors for measuring instantaneous fluctuations of hydrodynamic wall-
pressure was equal for both cases.

Regarding the measurement of instantaneous pressure fluctuations in turbulent flows,
some of the literature investigates the statistics of pressure fluctuations at off-the-wall
stations (e.g. the work of Tsuji et al. [2007], among others), using Preston-tube-like probes
to traverse the boundary layer and generate statistics along the wall-normal direction.
This technique, however, is intrusive for application in real-time flow control, as (1) the
sting holding the probe acts as an additional source of drag and alters the flow around it
and (2) limits the accessibility of flow diagnostic techniques assessing the performance
of the control system. Thus, measurements of fluctuating wall-pressure need to be col-
lected at the wall.

THE CHALLENGES OF MEASURING WALL-PRESSURE FLUCTUATIONS

Carrying out unsteady wall-pressure measurement is a challenging feat for a plethora of
reasons, which will be discussed in the foregoing. These range from spatial resolution
issues to contamination of the signals by non-hydrodynamic sources, which all under-
mine the reliability of wall-pressure measurements.

For the selection of an appropriate sensor, one needs to keep in mind that the intensity
of wall-pressure fluctuations is comparable to the intensity of typical acoustic emissions
in a wind tunnel facility. In particular, Farabee and Casarella [1991] and Klewicki et al.
[2008] report semi-empirical relations that relate the intensity of wall-pressure fluctua-
tions to mean wall-shear stress, whereby O (p ′

w ) = O (p ′
acoustic). Furthermore, given the

requirement of time-resolved wall-pressure measurements and the pressure intensity
(p ′) that characterizes wall-pressure fluctuations, microphones were selected as the sen-
sors of choice. This, however, results in the need to discriminate, in post-processing,
hydrodynamic from acoustics-driven pressure-information, to only retain the former.
Filtering techniques were applied to accomplish this that are going to be presented in
Ch. 3.

Also, for spatially-resolved hydrodynamic wall-pressure measurements, the require-
ment is that the sensing “length" of the sensor to be relatively small (in viscous units).
Namely, the work of Gravante et al. [1998a] proves that full spatial resolution in wall-
pressure measurements can only be achieved if the sensing diameter (dp ) is such that
d+

p < 27. A larger sensing diameter would result in the microphone effectively acting as
a hardware-induced spatial filter. In fact, any commercially available off-the-shelf pres-
sure microphone features a sensing diaphragm whose size is considerably larger than
the requirement set by Gravante. In order to artificially increase the spatial resolution of
the microphone, therefore, it is necessary to integrate the device into a wall-embedded
cavity. The cavity communicates with the grazing turbulent flow by means of a circular
pinhole orifice (see Fig. 2.5a). Technically, the required of increased spatial resolution
is not fundamental for the control experiments presented in this work. In fact, LSMs
exhibit a characteristic size that does not necessarily require the microphone to be em-
bedded in a pinhole cavity. However, the setup mentioned above was developed also for
the acquisition of fully-resolved spectra.

Given the integration in a pinhole cavity, the geometry of the cavity itself results in it
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acting as a Helmholtz resonator, with a resonance frequency fr at:

fr =
a0

2π

√
S

Vc (tp + t∗)+P
. (2.1)

Here, a0 is the speed of sound, S =πd 2
p /4 is the area of the pinhole orifice, Vc =πD2

c L/4
is the volume of the cavity and tp is the thickness of the neck (see Fig. 2.5a and Tab. 2.2
for details). Finally, t∗ and P are end-corrections that account for the added mass that
needs to be displaced as a result of fluid oscillating not only within the neck, but also in
the vicinity of the orifice. Different definitions for end corrections can be found in the
work of, e.g., Chanaud [1994]. For wall-pressure measurements, the cavity needs to be
designed such that resonance occurs at a frequency that is considerably higher than the
frequency-band of interest.

Parameter dp Dc tp L fr

W-Tunnel 0.4 mm 6.0 mm 1.0 mm 2.0 mm 2 725 Hz
CICLoPE 0.3 mm 4.6 mm 1.1 mm 0.2 mm 4 350 Hz

Table 2.2.: Table reporting the geometric parameters defining the pinhole cavities inte-
grated in the W-Tunnel and in CICLoPE, as well as the corresponding reso-
nance frequency.

(a) (b) (c)

pi

pc

White noise

Dc

dp

L
t

pi

pc

Mic.

Figure 2.5.: (a) Schematic of the pinhole cavity for wall-pressure measurements. (b) Pho-
tograph of the characterization experiment of the pinhole cavity resonance
frequency in the anechoic facility at Delft University of Technology. (c) Pho-
tograph of the GRAS 46BE microphone, employed for wall-pressure mea-
surements. Courtesy of GRAS.

Correcting for the Helmholtz resonance is straightforward once the pinhole cavity has
been characterized. Whereas Eq. 2.1 provides a design frequency fr , it does not consider
how the amplitude and phase of the measured pressure in the cavity relates to the inlet
pressure. This can be modelled through a single input/output impulse transfer function,
Hr ( f ), by considering the mass-spring-damper system-equivalent of the resonator. Its
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gain and phase are formulated as

|Hr

(
f
)
| =

[(
1−

(
f

fr

)2)2

+
(

2ξ f

fr

)2
]−0.5

, and ϕ
[
Hr

(
f
)]
=− tan−1

[
2ξ

(
f / fr

)

1−
(

f / fr

)2

]
. (2.2)

Here, ξ is a damping constant and fr is the resonance frequency. Both ξ and fr require
empirical characterization through a calibration experiment, using acoustic pressure ex-
citation. This experiment was conducted in a facility that is anechoic at frequencies
above 200 Hz [Merino-Martínez et al., 2020]. White noise was produced with a Bose®

speaker and was recorded simultaneously by a reference microphone (measuring the
excitation pressure at the inlet, pi ) and the cavity microphone (pc ), see Fig. 2.5b. Sig-
nals were acquired for a length of Ta = 150 s at a sample rate of fs = 51.2 kHz. With the
signal recordings, the experimental characterization of the Helmholtz resonator can be
obtained by dividing the input-output cross-spectrum by the input spectrum:

H
exp
r =

〈
Pc

(
f
)

Pi

(
f
)〉

〈
Pi

(
f
)

P∗
i

(
f
)〉 . (2.3)

The Bode plot of an exemplary kernel (obtained for the pinhole used for testing in
the W-Tunnel at Delft University of Technology) is displayed in Figs. 2.6a and 2.6b. The
former plot illustrates the gain of the resonator’s transfer function, showing a clear peak
around the resonance frequency. In parallel, the latter plot shows the spectral phase vari-
ation, indicating a reversal at the location of the resonance frequency. The highlighted
area in both graphs illustrates the region where the resonance phenomenon impacts
wall-pressure statistics in spectral space.

Finally, the correction of wall-pressure spectra for cavity resonance assumes the form
of a simple division, in the frequency domain, of the raw spectrum by the square of the
gain of the transfer kernel, as φpp = φpp,r/|HL |2 (here, φpp and φpp,r are the corrected
and the raw wall-pressure spectra, respectively).

UNSTEADY WALL-PRESSURE SENSORS CHARACTERISTICS

The sensors consist of GRAS 46BE 1/4-in. free-field CCP microphones (see Fig. 2.5c),
having a nominal sensitivity of 3.6 mV/Pa. These have an adequate dynamic range to
capture the pressure fluctuations of interest (35 to 160 dB, with a reference pressure of
pref = 20µPa) with an accuracy of ±1 dB within the range of 10 Hz to 40 kHz. These mi-
crophones have an adequate dynamic range to capture the full range of wall-pressure
fluctuations [Tsuji et al., 2007, Klewicki et al., 2008].

2.3.2. HOT-WIRE ANEMOMETRY

Hot-wire anemometry (HWA) is a minimally-intrusive measurement technique that al-
lows for time-resolved measurements of velocity fluctuations. In the present work, HWA
is used extensively not only as a flow diagnostic technique for assessing the performance
of the control system downstream of the actuator location, but also for embodying the
role of error sensor in the context of an adaptive control strategy (see Ch. 7).
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Figure 2.6.: (a) Gain and (b) phase of the pinhole cavity’s transfer kernel. A comparison
is made between the kernel obtained from the acoustic calibration, and a
model kernel fitted to these empirical results. The filled area indicates the
frequency range at which the resonance phenomenon starts to impact the
statistics of wall-pressure.

The relatively small hot-wire probe sensing size allows for collecting data at precise
spatial locations, if coupled with an accurate traversing system. Given the small wire di-
ameter, the thermal inertia of the sensor is minimized while, at the same, maximizing
spatial resolution. In fact, the wire can measure velocity fluctuations whose intensity is
only a small fraction of the freestream velocity thanks to its fast frequency response. In
this project, the hot-wire probe was operated in conjunction with a constant tempera-
ture anemometer (CTA). This type of velocity sensors relies on a Wheatstone bridge for
operations, whereby one of the four resistances composing the bridge is now replaced
by the hot-wire probe. A comprehensive review of this technique can be found in the
work of Lomas [1985].

Calibration of the hot-wire probe is required to relate the output-voltage signal to a
velocity measurement, namely U = f (E), where E is the voltage. The calibration func-
tion f takes the form of King’s Law, relating known velocity measurements to known
voltages measured by the CTA bridge. Given the sensitivity of the hot-wire probe to tem-
perature variations in the wind tunnel facility, constant monitoring of this quantity is
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required. In the W-Tunnel, temperature drifts exist, although marginal over the course
of a standard acquisition run. In the CICLoPE laboratory, temperature is constantly con-
trolled by means of a heat exchanger, as explained in § 2.2. On top of this, measure-
ment time-series were corrected for temperature drift following the procedure outlined
by Hultmark and Smits [2010].

HOT-WIRE CONFIGURATION

For the bulk of the experimental campaigns conducted at Delft University of Technol-
ogy, a TSI IFA-300 CTA bridge was used, which features automatic overheat ratio adjust-
ment. The hot-wire probe itself was a standard Dantec 55P15 boundary layer probe (see
Fig. 2.7c), with a nominal wire diameter of dHW = 5µm and length of lHW = 1.25 mm,
yielding a wire aspect ratio of lHW/dHW = 250. Data were sampled at a rate of fs =
51.2 kHz using a 24-bit A/D conversion. The hot-wire was calibrated in-situ by fitting
King’s Law to 17 points of increasing velocity. The velocity probe was sting-mounted
(see Fig. 2.7a) onto a Zaber X-LRQ-E traversing system, comprising two stages, allowing
for traversing in two directions: the streamwise and wall-normal ones. With a step ac-
curacy of 10 µm (smaller than 0.3 viscous units for the TBL flow in consideration), the
precision of traversing is enough to capture both the outer, as well as the inner, flow
dynamics, where the wall-normal gradient of the streamwise velocity component is the
strongest.

For measurements in CICLoPE facility, the same type of boundary layer probe was
operated in conjunction with a Dantec 90C10 CTA bridge. On top of single-probe HWA
measurements, employed to measure time-series of the streamwise velocity component,
dual-wire (or x-wire) probe probe measurements were carried out as well. This allowed
for the accurate measurement of the wall-normal velocity fluctuations. The length and
diameter of both wires in the x-wire probe (Dantec 55P61, see Fig. 2.7d) are equal to the
ones of the single boundary layer probe’s. In CICLoPE, hot-wire probes were calibrated
ex-situ by employing a planar calibration jet. The single-wire probe was calibrated by
fitting a 5th-order polynomial function to 11 points of increasing velocity to obtain the
calibration curve U = f (E). For the calibration of the x-wire, instead, seven velocity set-
tings and thirteen angular positions were set to generate a two-dimensional look-up ta-
ble [Burattini and Antonia, 2004]. This relates the two velocity components to the volt-
age measured by each of the two wires: (U1,U2) = f (E1,E2). Both the single and x-wire
probes were sting-mounted into the pipe flow facility at a fixed wall-normal position
(within the logarithmic region of the flow, see Ch. 4 and Fig. 2.7b for additional details).

UNCERTAINTY QUANTIFICATION

The uncertainty in the hot-wire measurements was computed following the procedure
of Smith et al. [2018], whereby the uncertainty of the measurement is not defined by the
raw number of samples acquired, but rather by the number of uncorrelated (or effective)
samples in the dataset. In case of time-varying data, such as time-series data, two sam-
ples are said to be uncorrelated if they occur over a time interval that is greater than the
integral time scale (Ti ). In particular, Ti can be defined as:
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(a) (c)

(b)

(d)

Figure 2.7.: (a) Photograph of the single-wire Dantec 55P15 [schematic shown in (c)]
sting-mounted in the W-Tunnel facility. (b) Photograph of the x-wire Dantec
55P61 [schematic shown in (d)], mounted in the CICLoPE long-pipe facility
at a fixed wall-normal location.

Ti =
∫∞

0
R(τ)dτ , (2.4)

with R(τ) being the autocorrelation function of the time series. Once the integral scale
is known, one can divide the total length of the signal by Ti , to find the number of ef-
fective samples in the time series. Given the extremely broadband nature of a turbulent
signal, the effective number of samples (Ns ) required for statistical convergence has a
lower bound in the number of required turnovers of the lowest frequency of interest.
Once that is established, then the uncertainty for first and second-order statistics can be
computed following Eqs. 2.5 and 2.6, respectively:

εu =
σup

Ns

, (2.5)

εσu =
σup

2(Ns −1)
, (2.6)

with σu = u′ being the standard deviation of the velocity time-series.
The application of this procedure for data collected in the W-Tunnel results in un-

certainties in the estimation of the average velocity and standard deviation (at y+ ≈ 15,
where turbulence fluctuations are the most intense) of 0.26 % and 1.02 %, respectively.

2.3.3. PARTICLE IMAGE VELOCIMETRY

Particle image velocimetry (PIV) is a non-intrusive optical technique that allows for the
measurement of two and three-dimensional velocity fields. Although a much more ex-
tensive review of the technique can be found in the work of Raffel et al. [2018], this sec-
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tion introduces some of the main concepts and configurations that will be exploited in
this work. For the work presented in this dissertation, PIV acquisitions were only per-
formed in the W-Tunnel at Delft University of Technology.

This technique is based on the tracking of particle clusters across the field of view of
the imaging sensor between two frames in one image pair, separated by a small time
interval, ∆t . Particles (here having a diameter of ≈ 1µm and being generated from the
atomization of a water-glycol mixture by a SAFEX 2010+ for machine) need to be illumi-
nated by an intense light source, such that the light scattered by the particles can be cap-
tured by the sensor on the camera. For planar two-dimensional two-component (2D2C)
acquisitions typical of this work, the light source takes the form of a Quantel Evergreen
200 Nd:YAG double-pulse laser. The collimated laser light is expanded into a sheet with
a thickness of δz ≈ 1mm. The camera-mounted optics required for imaging need to
account for both the diffraction of the scattered light and the required depth of field to
ensure that that all particles within the laser sheet and the field of view are in focus.
Given the low-speed acquisition setup, the acquisition frequency is set to fPIV = 15 Hz,
resulting in consecutive image pairs being statistically uncorrelated. Imaging equipment
in this work consisted of up to three LaVision sCMOS cameras. These are low-speed,
16-bit, double-shutter cameras, with a sensor size of 2560×2160px2 and pixel pitch of
6.5µm. Cameras were fitted with fixed-focal-length Nikkor lenses, whose focal lengths
and f-stop values varied depending on the corresponding acquisition (see Chs. 5, 6 and
7).

For statistical convergence, a suitable number of images has to be determined, as a
function of the maximum requirement for uncertainty set by the measurements. Equa-
tions 2.5 and 2.6 can be employed for this matter, with the only difference in that the
effective number of samples (Ns ) is now directly the number of image pairs to acquire,
given the null statistical correlation between consecutive pairs. Given the highest stan-
dard deviation of streamwise velocity can be found at the inner-peak location of y+ ≈ 15

and that it equals u2
+
= 8.1 ∴ σu = 1.38 m/s, 3000 image pairs are required to bring the

uncertainty for both first and second-order statistics below our acceptable threshold of
≈ 3%. Calibration of the acquisition equipment was performed in-situ by fitting a poly-
nomial model to a grid of equally-spaced points on a two-dimensional calibration target.

In this work, two main imaging planes were selected for PIV acquisitions. In particu-
lar, data were collected on wall-normal (x y), as well as on wall-parallel (xz) planes. The
former allows for precise measurements of both the full dynamics of the boundary layer
(referred to as “wide-field measurements” in the foregoing) in the wall-normal direction
(from the wall up to the far wake) and accurate measurements of the near-wall flow (the
“near-wall” measurements), also allowing for direct computation of the wall-shear stress
(τw ). Processing was performed with the aid of LaVision DaVis 10.2, which is a commer-
cial software package allowing for multi-pass processing operations. In particular, for
wide-field wall-normal and wall-parallel acquisitions, an initial pass with an interroga-
tion window having size of 48× 48 px2 was performed, followed by a final pass with a
window having size of 24 × 24 px2. The overlap length was set to 50% of the window
size, resulting in a final vector pitch of one vector every 12 pixels. Instead, for near-wall
measurements, a Langrangian particle tracking method was preferred (see § 5.7.1). The
vector pitch in physical units is, of course, dependent on the spatial arrangement of the
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cameras and, thus, it will be reported for each analysis in the corresponding chapter of
this dissertation.

MEASUREMENT CONFIGURATION

Hereby we introduce the measurement setup (in terms of hardware placement) for the
planar PIV acquisitions. Figure 2.8 displays the hardware configuration for the two types
of acquisitions that have been performed in the context of this work in Delft University
of Technology: on the x y and xz-planes (streamwise–wall-normal and streamwise–wall-
parallel planes, respectively). For both types of acquisitions, the laser sheet was intro-
duced in the test section from the downstream end of the facility. The laser sheet was
aligned with either plane of interest by rotating the cylinder lenses in the sheet-forming
optics by 90 degrees.

(a) (b)

LaserLaser

sCMOS #1

sCMOS #1

sCMOS #2

sCMOS #2

FoV #1

FoV #1

FoV #2

FoV #2

U∞U∞

Figure 2.8.: (a) Schematic of the hardware configuration for planar 2D2C PIV acquisi-
tion in the W-Tunnel in Delft University of Technology on the x y-plane (wall-
normal), featuring two sCMOS cameras. (b) Schematic of the hardware con-
figuration for planar 2D2C PIV acquisition in the W-Tunnel in Delft Uni-
versity of Technology on the xz-plane (wall-parallel), featuring two sCMOS
cameras.

Usually, PIV acquisitions have been performed with two sCMOS cameras in order to
extend the field of view of the acquisition and enhance the statistics in the streamwise
direction (apart for the results presented in Ch. 7, where three cameras were used). The
fields of view (FOVs) of each camera overlap over a short extent to ensure continuity in
the statistics and for ease of calibration and post-processing. For acquisitions on the
x y-plane, the two cameras were mounted on a tripod structure on the side of the wind
tunnel facility (Fig. 2.8a), while for wall-parallel PIV measurements they were mounted
on the ceiling of the facility while pointing downwards to the wall (Fig. 2.8b).

UNCERTAINTY QUANTIFICATION

For PIV measurements, uncertainty on the computed velocity vector can be calculated
locally. The work of Sciacchitano [2019] provides a comprehensive review of the several
error sources that can affect PIV measurements and, consequently, methods for comput-
ing the uncertainty of said acquisitions. The statistical uncertainty related to the number
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of frames (which can be computed using the same equations presented above for the un-
certainty in HWA measurements) was computed to be 1.2% for the mean and 0.7% for
the standard devtion of streamwise velocity at the location of the inner-spectral peak.
Additionally, PIV acquisitions suffer from uncertainty caused by asymmetries in the cor-
relation between interrogation windows. For this work, said uncertainty was computed
to be at most 1%.

2.3.4. OIL FILM INTERFEROMETRY

Oil film interferometry (OFI) is a precise and localized measurement technique, allowing
for the direct measurement of wall-shear stress. The working principle of OFI (summa-
rized in the schametic in Fig. 2.9a) is the stretching of a thin layer of fluid of known vis-
cosity under the influence of wall-shear stress. The fluid is deposited on a light-reflecting
wall in the form of a drop. As the flow stretches the drop into a thin film, the light emitted
from a source at a known wavelength (λlight) is reflected on the surface of the drop and
on the reflective wall underneath it. The resulting interference between these two wave
fronts results in a pattern consisting of alternating bright and dark fringes on the surface
of the drop (see Fig. 2.9c). The mean wall-shear stretches the drop in the streamwise
direction, and the wavelength of bright-dark pattern developed under the influence of
shear gradually increases with time (see Fig. 2.9b), and the rate of increase of said wave-
length can be related to the skin-friction.

A more comprehensive review of this experimental technique can be found in the pub-
lications of Squire [1961] and Tanner and Blows [1976]. For this work, the local nature of
OFI enables the measurement of shear stress at specific locations along the wall, pro-
viding crucial insights into localized flow dynamics of the TBL flow under the influence
of control, enhancing the accuracy of turbulence characterization. In fact, OFI is partic-
ularly useful in complex experimental setups where precise measurement of wall shear
stress is critical, while being too complex to obtain from other experimental techniques.

OFI CONFIGURATION

The bulk of the OFI measurements in this work were conducted in the context of Ch. 6.
Here, OFI measurements were performed at 30 locations on the wall downstream of the
actuator array and at three streamwise stations: x/δ= {2,3,4}. Droplets were positioned
at spanwise stations lying both directly downstream of a jet actuator as well as in be-
tween them. Xiamter PMX-200 silicone fluid with a viscosity of µoil = 100 cSt was em-
ployed. Given the need to accurately monitor the viscosity of the oil and to correct for
temperature (and, thus, viscosity) drifts in post-processing, four type-K thermocouples
were used for monitoring the temperature in the freestream flow, on the underside of
the wall-plate and on the side walls of the test section. A Nikkon D7500 camera with
a Nikkor 135 mm lens was employed in time-lapse mode to capture 100 images of the
oil droplets developing on the wall under the influence of the wall-shear at intervals
of 10 s (Fig. 2.1c displays the evolution of the drop at three time instants). This cam-
era has a sensor size of 5595× 3738px2, with a pixel pitch of 4.2µm. The camera was
mounted onto a fixed tripod structure and tilted to achieve a ≈ 45◦ viewing angle onto
the oil droplet. Illumination was provided by a sodium-based light, with a characteristic
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Figure 2.9.: (a) Schematic of the working principle of the OFI measurement technique,
showing the incoming and reflected light waves. (b) Photographs displaying
the development of a single oil droplet at three different time instants, during
a measurement in the W-Tunnel in Delft University of Technology. (c) Detail
of the of the pattern forming on the thin oil sheet consisting of bright-dark
fringes.

wavelength of λlight = 589 nm. Image processing was performed by computing a linear
fit to the increasing fringe separation as a function of time [Gluzman et al., 2022].

UNCERTAINTY QUANTIFICATION

Uncertainties in oil film measurements stem from several different factors, most of which
are attributable to the physical measurement setup. The variation of oil viscosity with
temperature needs to be carefully characterized in order to avoid significant error prop-
agation in post-processing. Additionally, the viewing angle of the camera also needs to
be carefully measured. Rezaeiravesh et al. [2018] characterizes the several error sources
that can affect OFI measurements. Error propagation was performed in this work, and
the uncertainty was measured to be 2.5%.
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3
WALL-PRESSURE FILTERING

Focus on the journey, not on arriving at a certain destination.

Chris Hadfield (ISS Expedition 35)

Measuring hydrodynamic pressure fluctuations in a turbulent flow experimentally is

a challenging task as the signal is often contaminated by other interfering sources; most

importantly by acoustic noise. This chapter analyses three different noise-removal tech-

niques: proper orthogonal decomposition (POD), harmonic POD (hPOD), and condi-

tional spectral analysis (CSA). The reported techniques are presented with decreasing de-

gree of required user-input. The aim of applying these techniques is to isolate hydrody-

namic wall-pressure fluctuations, which co-exist with acoustic-induced pressure fluctu-

ations within the raw pressure time series. The effectiveness of the filtering approach is

presented first by considering a set of synthetic signal designed considering a sparse ar-

ray of five different microphones capturing wall-pressure fluctuations of a turbulent pipe

flow.

Parts of this chapter are published in:

• L. Lazzarini, G. Dacome, G. Bellani, W. J. Baars, A. Talamelli (2025) Wall pressure filtering using spec-
tral and modal analysis. In preparation.
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3.1. INTRODUCTION

The scaling of turbulent wall-pressure fluctuations is a topic of significant interest, both
for advancing the fundamental understanding of turbulent wall-bounded flows and for
various engineering applications, such as flow control. This is most significant at spec-
tral bands where hydrodynamic near-wall pressure fluctuations and acoustic-driven phe-
nomena are active.

The main problem with utilizing wall-pressure as the input quantity to a real-time flow
control system in an experimental setting is the contamination caused by external noise
sources. In fact, the intensity of hydrodynamic turbulence-induced wall-pressure fluctu-
ations is of a similar order of magnitude as the pressure fluctuations induced by acous-
tic waves generated by the operation of a wind tunnel facility [Farabee and Casarella,
1991, Tsuji et al., 2007, Klewicki et al., 2008]. This calls for the development, both for
real-time operations and for post-processing requirements, of techniques that allows
for disambiguation of acoustic-driven from turbulence-driven fluctuations. In particu-
lar, noise-filtering relies on the identification of spatio-temporal modes that correlate to
the characteristic signature of the acoustic-driven pressure fluctuations. This procedure
can either be accomplished via modal decomposition of spatio-temporal wall-pressure
signals, or by following conditional spectral filtering, as will be reviewed in the foregoing.

POD-based methods are highly versatile and have been proven to be highly effective
in identifying coherent structure in experimental datasets. There are two commonly
known formulations of POD: “Lumley’s POD", also known as conventional POD [Lumley,
1967], and “Harmonic POD" (hPOD) [Payne and Lumley, 1967, Leib et al., 1984]. The
former has been introduced to the turbulence community in the 1960s, with seminal re-
views of this technique provided by Tutkun and George [2017] and Podvin and Fraigneau
[2017]. The conventional approach is preferred when temporal resolution overcomes
the spatial one; such a condition is typically met while performing experiments where
time-resolved acquisitions are employed. However, combining harmonic analysis with
classical POD is certainly not a new idea [Payne and Lumley, 1967, Leib et al., 1984]. Due
to its efficiency and straightforward implementation, the discrete Fourier transform is
the preferred approach to perform harmonic analysis on homogeneous, stationary, or
periodic signals. The literature [Aubry et al., 1988, Baars and Tinney, 2014, Towne et al.,
2018, Tinney et al., 2019] contains numerous examples of the POD technique being ap-
plied to both spatial and time-resolved data in turbulent flows. However, care must
be taken while interpreting POD modes with regard to physical structures. Inevitably,
modal decomposition requires the user to select the proper POD modes for reconstruct-
ing a turbulence signal. In POD, the modes are ranked by energy content, with the first
few modes typically capturing the largest scales or most energetic features of the flow.
However, high-energy modes do not always coincide with specific flow structures, es-
pecially in a broadband turbulent flow. They often represent coherent features that can
span multiple physical phenomena. Consequently, interpreting these modes as physical
structures requires caution, especially when dealing with complex flows or interactions,
such as in wall-bounded turbulence or flows dominated by large coherent structures,
such as (V)LSMs.

In addition to modal techniques, which rely on the user selecting the modes of interest,
various noise-removal methods have been developed to enhance the quality of data ob-
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tained from turbulent flows, without the need to ‘interfere’ with the filtering operation.
Among these, spectral subtraction methods [Lauchle and Daniels, 1987, Horne, 1989]
have been employed to remove both acoustic and vibration contamination from un-
steady surface pressure measurements of turbulent pipe flow. Conditional spectral anal-
ysis, used by Bonness and Jenkins Jr [2012] was generalized by Richardson et al. [2023]
for an arbitrary number of contaminant-input and contaminated output signals.

In this chapter, the effects of applying the described filtering techniques to extract
physical information are explored. Such quantities are practically a robust input for
a real-time control system aimed at modifying wall-bounded turbulence [Baars et al.,
2024]. The goal of the present study is to demonstrate an application of the filtering tech-
niques mentioned above to a dataset mimicking an acquisition where hydrodynamic
wall-pressure fluctuations were measured with sparsely distributed sensors. These will
be correlated with velocity to build a unique data set coming from wall-bounded turbu-
lent flows at high Reynolds number at the CICLoPE laboratory (see Ch. 4).

3.2. METHODOLOGY

Here, the fundamentals are presented of the conventional POD, the hPOD and spectral
decomposition techniques, that offers a complementary framework for analyzing com-
plex systems by decomposing the data into principal components. To validate the effec-
tiveness of these filtering procedures, a synthetic signal was generated comprising multi-
ple sinusoidal components with added Gaussian noise, simulating the 5 different micro-
phones that were employed during wind tunnel testing (see Ch. 4). The signal composi-
tion allows for an analysis of each method’s ability to extract the underlying sinusoidal
components and perform noise removal. Conventional and harmonic POD will be ap-
plied following the terminology of Tinney et al. [2020], whereas the spectral subtraction
methodology is based on the work of Richardson et al. [2023].

3.2.1. SPARSE SENSOR AND DEFINITIONS

A generic configuration of sparsely located sensors is presented in Fig.3.1. In wind tunnel
testing, time-resolved sensor acquisition focuses on capturing dynamic data with high
temporal resolution, often from sensors (such as pressure transducers or microphones)
that record unsteady phenomena. These sensors (S1 ...Sn) are often sparsely placed at lo-
cations (x1, y1) ... (xn , yn) to balance data resolution, cost and physical restrictions of the
facility. Sparse sensor placement is particularly important in large wind tunnels, where
covering the entire test section with sensors is usually impractical. Instead, key regions
of interest are usually equipped with sensors to ensure meaningful and high-quality data
acquisition. The ability to combine and process the signals from these sparsely located,
time-resolved sensors is crucial to obtain clean, usable data (Pi ). Using techniques like
POD, hPOD or spectral analysis allows researchers to differentiate between real aerody-
namic effects and the noise (ξi ) introduced by the wind tunnel environment.
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Figure 3.1.: Generic sparse sensors configuration in wind tunnels, S1 ...Sn represents the
sensors, x1 ... xn and y1 ... yn are perspectively the coordinate of each sensor
location, f correspond to the filter applied, Pi represents the filtered signal,
ξi represents the noise isolated by the filtering operation.

3.2.2. TESTING ON A SYNTHETIC SIGNAL

A synthetic signal generator was implemented to create artificial signals that can be em-
ployed to test the filtering procedures before their applications on the actual sparse mea-
surements of wall-pressure fluctuations from a wind tunnel facility (CICLoPE, see Ch. 4).
In wind tunnel experiments, the greatest contaminant is acoustic noise produced by the
operation of the facility itself. In particular, four unsteady wall-pressure sensors were
employed whose signal contains both the quantity of interest as well as the contaminant.
Additionally, a fifth sensor was considered, that only measured the contaminant signal.
In case of pressure measurements, facility acoustic noise, caused by the operation of the
fan and mechanical vibrations of the tunnel, propagates at the speed of sound, while
maintaining high coherence at the locations of all five sensors employed. Turbulence-
induced hydrodynamic wall-pressure fluctuations, instead, given the length scales of
typical wall-pressure structures, retain very low correlation when convecting with the
mean fluid velocity.

Given these characteristics, the synthetic signal simulates the acoustic noise by in-
corporating two arbitrary high-amplitude tones (at f = 90 Hz and at f = 190 Hz). Turbu-
lence, instead, is modeled as broadband white noise in the band 10Hz < f < 2500Hz (see
Fig.3.2). The four wall-pressure sensors are fed a signal resulting from the linear super-
position of the two components (acoustic and turbulence-induced), with the amplitude
of the acoustic tones being ≈ 50 times higher than the background turbulence-induced
noise. The centerline microphone, instead, by design, does not measure wall-pressure
fluctuations, but only records acoustic noise.

By simulating such conditions, one can evaluate the effectiveness of the filtering tech-
niques, such as POD, harmonic POD, or spectral analysis, to ensure that the final pro-
cessed signal is free of undesired noise sources. Successfully filtering out these com-
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ponents allows for an accurate representation of the desired flow information, ensuring
more reliable data.

2 2 2

Figure 3.2.: Synthetic signal generator, the six plot shows the time-series along with the
power spectral density of the signal at each steps: The carrier, Noise and the
combination of the two are presented from left to right.

3.3. FILTERING WITH CLASSICAL PROPER ORTHOGONAL

DECOMPOSITION
POD calls for the definition of a kernel constructed by Hilbert-Schmidt’s theory of inte-
gral equations with symmetric kernels. The general form for this kernel (R) is written as
follows:

R(x,x′) = 〈p(x, t )p∗(x′, t )〉 , (3.1)

where t is time and p is the unknown sought-after signal. Here, brackets 〈〉 denote
ensemble averaging, x is a three-dimensional spatial vector, and ∗ denote the complex
conjugate. As the classical POD decomposition does not capture inherent phase-shifts
in the data, a preliminary step in the filtering must be performed. In particular, all signals
must be temporally aligned, such that their relative phase is null. Whether the choice is
made to apply scalar or vector form of the technique will have a deep effect on both the
size of the kernel and the number of component it is constructed. The integral eigen-
value problem thus becomes:

∫L

0
R(x,x′)φ(n)(x′)dx′ =λ(n)φ(n)(x′), (3.2)

from which eigenvalues (λ) and eigenfunctions (φ) are obtained (L is the extent of the
physical domain). It is clear from the formulation above that there is a unique kernel
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for each solution, thus implying that there is a unique (φ) for each mode. To generate a
reduced order model, one must create the expansion coefficients by projecting the raw
data onto the ‘eigen modes’:

a(n)(t ) =
∫L

0
p(x, t )φ(n)(x)dx. (3.3)

Modes are both orthogonal and time varying. Once decomposition is performed, data
can be reconstructed as (denoted as p f for a lower-order reconstruction):

p f (x, t ) =
∑

n={1...5}
a(n)(t )φ(n)(x). (3.4)

The sum is performed over selected POD modes. If all modes are to be retained in the
reconstruction of the reduced-order model, the original signal will be obtained.

An application of classical spatial POD will be presented here using a synthetic sig-
nals to prove the effectiveness of the algorithm. POD eigenmodes as function of mode
number and sensor are depicted in Fig. 3.3, where modes 2, 3, 4 and 5 contain significant
information related to the signal, while mode 1 seem to be constant and inactive at every
sensor. Figure 3.5a depicts the pre-multiplied power spectral densities of the denoised
(blue) and original (green) signals. Upon inspection of the plots, one can immediately
perceive how the tonal peaks of the synthetic signal are attenuated almost completely
with respect to the original signal, while the broadband noise appears unaltered.

xM 1

xM 2

xM 3

xM 4

xM 5

x

Figure 3.3.: Spatial modes φ(n)(x) plotted as a function of mode number, n, and consid-
ered sensors.

3.4. FILTERING WITH HARMONIC PROPER ORTHOGONAL

DECOMPOSITION
Applying a spectral-based kernel to tackle the POD eigenvalue problem resembles solv-
ing Eq.(3.2). In each scenario, the formulations condense any stationary, periodic, or
homogeneous field direction (in space or time) into a collection of harmonic modes.
The new kernel (Ř) will then be defined as follows:
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Ř(x,x′; f ) =
1

2π

∫+∞

−∞
〈p(x, t )p∗(x′, t +τ)〉e−i 2π f τdτ , (3.5)

with τ being the temporal variable and f the frequency. Such kernel can be used to solve
the eigenvalue problem:

∫L

0
Ř(x,x′; f )φ̌(n)(x′; f )dx′ =λ(n)( f )φ̌(n)(x; f ). (3.6)

The random orthogonal expansion coefficients are then obtained as follows:

Ǎ(n)( f ) =
∫L

0
P̃ (x; f )φ̌(n)∗(x; f )dx. (3.7)

The dataset is then reconstructed on a per-frequency basis, following the same pro-
cedure as for classical POD. Here, of course, one does not reconstruct the original time
series, but its complex Fourier transform:

P̃ f (x; f ) =
∑

n={1...5}
Ǎ(n)( f )φ̌(n)(x; f ). (3.8)

The application of hPOD to a set of five synthetic signals demonstrated effective sig-
nal decomposition and filtering. An analysis was performed by examining the dominant
mode as a function of sensor position and frequency, revealing key insights into the be-
havior of the signals. To further validate the effectiveness of hPOD, pre-multiplied power
spectral densities were compared between the original synthetic signals and the hPOD-
filtered output (see Fig. 3.5b). This comparison highlighted a successful attenuation of
two significant tonal peaks by 98.1% and 94.9%, respectively, indicating a reduction in
unwanted frequency components. Notably, only the first mode, which is highlighted in
the figure 3.4, was discarded during the reconstruction process to achieve a noise-free
signal, highlighting the precision of hPOD in targeting specific frequency contributions
while preserving the integrity of the signal.

3.5. FILTERING WITH CONDITIONAL SPECTRAL ANALYSIS
Conditional spectra analysis is helpful when dealing with several noise sources and sen-
sors. Richardson et al. [2023] proposed such a technique to remove facility noise adopt-
ing a multiple-input, multiple-output approach. Here, the same methodology is imple-
mented, only considering four contaminant signals.

Assume a linear relationship between a complex column vector of s measured partially
coherent input contamination signal C̃ =F (c), where F is defined as the Fourier trans-
form of the contamination signals (c) expressed as time series, and a corrupted column
vector of q output signals D̃ = F (d). The input contamination signals are individually
filtered using an unknown complex matrix H ∈ Cq×s (with q = 1 being the number of
output signals and s = 5 the number of spatially-coherent input signals) and superim-
posed with the desired, yet unknown, considered signals P̃ =F (p). The values of H are
assumed not to be correlated with C and produce contaminated pressure signals D. The
model is given by:
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Figure 3.4.: Real part of spatial modes φ(n)(x; f ), n = 1 : 5, plotted as a function of fre-
quency and sensors considered.

D
q×1

= H
q×s

C
s×1

+ P
q×1

, (3.9)

which illustrates how the total (measured) signal is actually the linear combination
between the unknown quantity of interest and some contaminant inputs. Multiplying by
the complex conjugate transpose C∗, computing the spectral densities and considering
that C and P are uncorrelated:

Gcd
q×s

= H
q×s

Gck cl
s×s

. (3.10)

The matrices Gcd and Gck cl
represent, respectively, the cross-spectral densities be-
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tween inputs and outputs and the auto-spectral densities of the inputs. The previous
equation can be solved by matrix inversion provided that Gck cl

is not singular:

H =Gcd G−1
ck cl

. (3.11)

The final goal is to obtain the cross-spectral densities of the raw pressure signals, so P

can be isolated:

P
q×s

= D
q×1

− H
q×s

C
s×1

(3.12)

Gpk pl
=Gdk dl

−Gcd H∗−HGdc +Gcd G−1
ck cl

Gck cl
H∗ (3.13)

=Gdk dl
−HGdc (3.14)

=Gdk dl
−Gcd G−1

ck cl
Gdc . (3.15)

The diagonal and off-diagonal terms of Gpk pl
provide the denoised auto-spectral den-

sities and cross-spectral densities, respectively. Figure 3.5c demonstrates the impact of
the CSA filter on five synthetic signals. One served as the unknown pressure signal, while
the other four acted as contamination sources. The pre-multiplied power spectral den-
sities of the raw (green line) and de-noised (orange line) signals are displayed. The two
peaks are clearly identified and attenuated: the second peak is fully filtered, while the
first peak remains with an almost negligible intensity, as highlighted in the inset.

The application of three different filtering techniques: POD, hPOD, and CSA, to retain
hydrodynamic fluctuations in synthetic signals with tonal peaks at 90 Hz and 190 Hz
demonstrated that all techniques effectively detected and filtered out the tonal peaks.
However, CSA partially retained the low-frequency peak (2.2%), while hPOD retained
only 1.9% and 6.1% of the two tonal peaks, respectively. The effectiveness of the filtering
methods was evaluated by the capacity to reconstruct the original signal, with recon-
struction quality quantified through the integral of the pre-multiplied power spectra. All
techniques achieved high-quality results, with reconstruction levels exceeding 90% of
the original noise-free signal.

Figure 3.5d illustrates the differences between the pre-multiplied power spectral den-
sities of the original synthetic signal (SS) and three filtering techniques, with each curve
offset by two units to improve clarity. Instead of evaluating the overall reconstruction
accuracy using integral differences between the SS and filtered signals, the focus here is
on the normalized results, emphasizing the frequency content of the filtered signal. This
approach allows us to identify local deviations or imperfections in the filtering process.
The figure shows that both POD and hPOD effectively capture the original behavior of
the synthetic signal, whereas CSA struggles to match the SS values, likely due to the low
SNR of the synthetic data. Although POD and hPOD deliver more accurate reconstruc-
tions, they require careful mode selection to achieve optimal results. In contrast, CSA,
despite its lower reconstruction accuracy—potentially due to the sparse configuration
used—offers a simpler approach, as it does not require detailed consideration of mode
shapes during processing.
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(a) (b)

(c) (d)

Figure 3.5.: (a) Pre-multiplied power spectral density of the original synthetic signal
(green) and the reconstructed synthetic signal using only POD modes 2, 3, 4,
and 5 (blue line). (b) Pre-multiplied power spectral densities of the raw syn-
thetic data (highlighted in green) and reconstructed data using the harmonic
POD technique (light blue), retaining only modes 2, 3, 4, and 5. (c) Pre-
multiplied power spectral density of the unfiltered synthetic signal (green)
and the filtered signal using CSA (orange). (d) Ratio of pre-multiplied power
spectral densities of the filtered signal and original, noise-free, signal (φ̃nn).
Light blue line refers to hPOD results, dark blue line highlight POD data while
orange line depicts CSA filtering operation. The results are offset by 2 unit to
enhance the readability of the figure. Black dashed line reports the location
of the two tonal peaks respectively at 90 H z and 190 H z. The three solid black
lines presents the reference of the synthetic signal.
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CORRELATION BETWEEN

WALL-PRESSURE AND VELOCITY AT

HIGH Reτ

We are infinite beings with infinite possibilities.

Bernard A. Harris Jr. (STS-63)

An experimental study was conducted in the CICLoPE long-pipe facility to investigate

the correlation between wall-pressure and turbulent velocity fluctuations in the logarith-

mic region, at high friction Reynolds numbers (4794 . Reτ . 47015). Hereby, the scal-

ability is explored of employing wall-pressure to effectively estimate off-the-wall veloc-

ity states. Coherence spectra for wall-pressure and streamwise (or wall-normal) veloc-

ity fluctuations collapse when plotted against λx /y and thus reveals a Reynolds-number-

independent scaling with distance-from-the-wall. When the squared wall-pressure fluc-

tuations are considered instead of the linear wall-pressure term, the coherence spectra

for the wall-pressure–squared and velocity are higher in amplitude at wavelengths cor-

responding to large-scale streamwise velocity fluctuations. This higher coherence typifies

a modulation effect, because low-frequency content is introduced when squaring the wall-

pressure time series. Finally, quadratic stochastic estimation is employed to estimate tur-

bulent velocity fluctuations from the wall-pressure time series only. Results suggest that

wall-pressure sensing can be employed for meaningful estimation of off-the-wall velocity

fluctuations, and thus for real-time control of energetic turbulent velocity fluctuations at

high Reτ applications.

Parts of this chapter are published in:

• G. Dacome, L. Lazzarini, A. Talamelli, G. Bellani, W. J. Baars (2025) Scaling of wall-pressure–velocity
correlations in high Reynolds number turbulent pipe flow. J. Fluid Mech. 1013, A48.
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4.1. INTRODUCTION
The design of a feasible real-time control system calls for the definition of robust input
sensing strategies that can be scaled from an experimental (laboratory) setup to typi-
cal conditions of engineering systems. Given the relative simplicity and low cost that
characterize unsteady wall-pressure sensors (e.g. microphones), the question arises as
to whether pressure fluctuations at the wall of a turbulent flow can be employed to ac-
curately estimate the state of the flow at off-the-wall positions. The work of Baars et al.
[2024] investigates the spectral coherence between wall-pressure and streamwise veloc-
ity fluctuations in the logarithmic region in the case of turbulent wall-bounded flows at
low values of Reτ. In this chapter, the aim is to extend the findings of the literature to
a considerably larger range of friction Reynolds number, and to analyze the estimation
accuracy of velocity fluctuations from wall-pressure data. This sets the foundation of
using wall-pressure as a reliable input quantity for real-time flow control of a turbulent
wall-bounded flow.

4.2. EXPERIMENTAL METHODOLOGY

4.2.1. EXPERIMENTAL FACILITY

An experimental campaign was carried out in the Center for International Cooperation
in Long-Pipe Experiments (CICLoPE, see Figs. 4.1a,b). The laboratory is realised inside a
mountain to keep stable environmental conditions and to minimise background noise,
while sound-absorbing material ensures minimal acoustic interference in the test sec-
tion. The closed-loop facility comprises a 111.15 m-long circular pipe with a radius of
R = D/2 = 0.4505 m. The primary streamwise location for measurements (where the
flow is fully developed) is at x ′ = 110.1m = 244.4R downstream of the pipe inlet. For the
experiments reported, the pipe flow was operated at seven center-line velocities, with a
maximum of UCL = 44.60m/s (corresponding to Reτ ≡UτR/ν= 47015). Test conditions
are elaborated upon in § 4.2.3. For presenting results, a Cartesian coordinate system is
adopted with its origin at the primary streamwise location for measurements (at the cen-
ter of sensor M1, indicated in Fig. 4.1c). Here the x-axis denotes the streamwise direction
(positive in the downstream direction) and the y-axis denotes the wall-normal direction
(y = 0 at the wall, and positive towards the center-line of the pipe). A comprehensive
description of all design details of the facility can be found in § 2.2 of this dissertation
and in the literature [Talamelli et al., 2009, Bellani and Talamelli, 2016].

4.2.2. MEASUREMENT INSTRUMENTATION

Time-resolved pressure sensors were integrated in the wall of the pipe, each within its
own cavity communicating with the flow through a pinhole orifice. Figure 4.1e pro-
vides a schematic of the axisymmetric geometry of the pinhole and its corresponding
sub-surface cavity, comprising a pinhole orifice diameter of dp = 0.3 mm, a pinhole
depth of tp = 1.1 mm, an effective cavity diameter of D = 4.6 mm and a cavity length of
L = 0.2 mm. The size of the pinhole orifice ensures a sufficient spatial measurement res-
olution for the purpose of the coherence analysis (§ 4.2.3). However, because of the sub-
surface-cavity geometry, a Kelvin-Helmholtz resonance occurs. This resonance phe-
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Figure 4.1.: (a,b) Photographs of the CICLoPE laboratory, with in (b) the test section at
the downstream end of the long-pipe facility. (c) Schematic of the micro-
phone sensor placement (M 1 to M 4 were mounted in the pipe wall, and
M 5 was mounted along the pipe center-line). (d) Illustration of the points
in the area of interest where acquisitions with single-wire and x-wire probes
were performed. (e) Schematic of the pinhole–sub-surface-cavity, used to
mount the microphones in the pipe wall.

nomenon was quantified by means of an acoustic characterization experiment, follow-
ing an identical procedure (in the exact same facility) as the one described by Baars et al.
[2024, pp. 30-32]. Similar procedures can be found in other works [e.g., Gravante et al.,
1998b, Tsuji et al., 2007, Gibeau and Ghaemi, 2021]. In short, pressures at the orifice in-
let (pi ) and within the cavity (pc ) were measured simultaneously, in quiescent flow con-
ditions, under a broadband acoustic excitation in an anechoic facility. A linear trans-
fer kernel was constructed, relating cavity to inlet pressure in the frequency domain:
H

exp
r

(
f
)
= 〈P̃c ( f )P̃∗

i
( f )〉/〈|P̃i ( f )|2〉. Here the angled brackets 〈...〉 indicate ensemble av-

eraging, the ∗ denotes the complex conjugate, and capitalised variables with a tilde in-
dicate the Fourier transformed quantity, e.g., P̃c ( f ) =F

[
pc (t )

]
. Subsequently, a second-

order model was fit to the gain of this transfer kernel and is denoted as |Hr ( f )|. This
procedure enabled the identification of the resonance frequency of the pinhole–sub-
surface-cavity at fr = 4350 Hz. Implications of the resonance phenomenon on the wall-
pressure measurements and coherence analyses are discussed later in § 4.4.

Regarding the pressure sensors themselves, GRAS 46BE 1/4 in. CCP free-field micro-
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phones were employed. These have an adequate dynamic range (35 to 160 dB, with a
reference pressure of pref = 20µPa) with an accuracy of ±1 dB within the range of 10 Hz
to 40 kHz. Data were acquired with two NI9234 analogue-input boards, comprising a
24-bit A/D conversion resolution. A total of five microphones were employed (labelled
M 1 to M 5 in Fig. 4.1c): four were integrated in the pipe for wall-pressure measurements
(M 1 to M 4), and one was mounted on a streamlined holder along the pipe center-line
for monitoring the acoustic noise of the facility (M 5). Microphone M 5 was equipped
with a GRAS RA0020 nose cone to reduce stagnation-driven turbulence pressure fluctu-
ations on the otherwise flow-exposed diaphragm. The wall-mounted microphones were
arranged in two streamwise pairs, separated by a distance of 4.22 m (∆x = 9.37R). Mi-
crophones in one pair were located in azimuthally-opposite positions to facilitate the
removal of facility (acoustic) noise.

Time series of streamwise velocity at two wall-normal locations in the logarithmic re-
gion (y A = 0.011 m= 0.025R and yF = 0.061 m= 0.135R), and at five streamwise locations
(points A to E in Fig. 4.1d), were acquired using hot-wire anemometry (HWA). Synchro-
nised measurements were performed of all microphones’ signal at once, while velocity
could only be measured at a single y-location for a given run. Each measurement was
performed with an acquisition frequency of fs = 51.2 kHz, for an uninterrupted dura-
tion of Ta = 480 s (relatively long time series were acquired to ensure sufficient conver-
gence of the spectral statistics at the lowest frequencies of interest). A Dantec Streamline
90C10 CTA module was used, with a Dantec 55P15 single-wire boundary layer probe.
Additionally, time series of the wall-normal velocity component were acquired using
a Dantec 55P61 miniature x-wire probe at one point in the logarithmic region (point
A in Fig. 4.1d). All Pt-plated tungsten wires of the single-wire and x-wire probes com-
prised sensing lengths of lhw = 1.25 mm and nominal diameters of dhw = 5µm (thus,
lhw/dhw ≈ 250). Hot-wire probes were calibrated ex-situ by employing a planar calibra-
tion jet. The single-wire probe was calibrated by fitting a 5th-order polynomial function
to 11 calibration points of velocity versus measured voltage, U = f (E). For the x-wire in-
stead, seven velocity settings and thirteen angular positions were set to generate a two-
dimensional look-up table [Burattini and Antonia, 2004] relating the two velocity com-
ponents to the measured voltages of each wire: (U1,U2) = f (E1,E2). During the mea-
surements, the probe was oriented in such a way that it measured the streamwise (u)
and wall-normal (v) velocity components simultaneously. More details of similar HWA
measurements in the CICLoPE facility can be found in the works by Örlü et al. [2017b]
and Zheng et al. [2022].

4.2.3. EXPERIMENTAL CONDITIONS AND MEASUREMENT RESOLUTION

Seven experimental conditions were considered for measurements of the fluctuating
wall-pressure and velocity in the CICLoPE long-pipe facility. Flow parameters of all test
cases are reported in Table 4.1. With the aid of a heat exchanger, the facility was oper-
ated at constant temperature and the angular velocities of the two co-axial fans were set
to generate center-line velocities in the range 3.837m/s ≤ UCL ≤ 44.60m/s (measured
with a Pitot-static probe). Corresponding values of the wall-shear stress, τw , were in-
ferred from static pressure drop measurements [following Fiorini, 2017]. Values for the
air density were indirectly measured with the air flow temperature and barometric pres-
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Case 1 2 3 4 5 6 7

Label
P

ip
e

fl
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w

p
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e
te

rs

Reτ 4 794 7 148 14 004 22 877 31 614 38 271 47 015
Uτ (m/s) 0.162 0.242 0.473 0.773 1.068 1.293 1.588
τw (Pa) 0.032 0.070 0.269 0.718 1.368 2.008 3.001
l∗ (µm) 94.0 63.0 32.2 19.7 14.3 11.8 9.58

UCL (m/s) 3.837 5.833 12.11 20.71 29.50 34.13 44.60

In
st

ru
m

e
n

ta
ti

o
n

c
h

a
ra

c
te

ri
st

ic
s

d+
p 4.257 6.347 12.43 20.31 28.07 33.98 41.75

l+hw 13.30 19.84 38.86 63.48 87.72 106.2 130.5
f +

s 29.71 13.36 3.482 1.305 0.683 0.466 0.301
TaUCL/R 4 088 6 214 12 902 22 066 31 431 36 364 47 520

y+
A

117.1 174.6 342.0 558.6 771.9 934.5 1 148
y+

F
649.2 968.0 1 896 3 097 4 281 5 182 6 366

Table 4.1.: Flow parameters corresponding to the seven test conditions in the CICLoPE
long-pipe facility, with alongside nondimensional parameters of the instru-
mentation’s geometry and acquisition details.

sure, so that values for the friction velocity, Uτ, could be computed. For the experiments
reported in this work, friction Reynolds numbers were in the range 4794.Reτ . 47015.

Spatial and temporal resolutions need to be considered for both the fluctuating wall-
pressure and velocity measurements. For the measurement of wall-pressure, the pinhole
orifice diameter dictates the spatial resolution, while for the measurement of velocity the
hot-wire sensing length is determining the spatial resolution. The temporal resolution
was limited by the acquisition frequency. All three parameters relevant for the measure-
ment resolutions (dp , lhw and fs ) are listed in Table 4.1 after normalization with the
viscous scales.

For fully-resolved wall-pressure measurements the pinhole orifice diameter must be
d+

p < 20 [Gravante et al., 1998b]. Hence, the pinhole diameter is not sufficiently small to
claim fully-resolved wall-pressure measurements for test cases 4 to 7 (the relatively large
values of d+

p result in an attenuation of small-scale energy). However, this work does not
revolve around conducting fully-resolved measurements, but rather focuses on the cor-
relation between velocity fluctuations in the logarithmic region and wall-pressure. As
reviewed in § 4.1, the scales of interest for the correlation analyses reside at streamwise
wavelengths of λx /y & 3 (when considering u fluctuations) and λx /y & 1 (when con-
sidering v fluctuations). Smaller streamwise scales in both the pressure and pressure-
squared time series are not relevant, as they do not correlate with the ones in the turbu-
lent velocity signals. Consequently, for all Reτ test cases, a minimum streamwise wave-
length that needs to be resolved for the coherence analyses is given by λx,res/y A = 1 (re-
call that y A is the lowest wall-normal position being considered), resulting in a stream-
wise wavelength of λx,res = y A = 11 mm. The pinhole orifice diameter of dp = 0.3 mm
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is a factor 36.6 smaller and, thus, sufficient for capturing the streamwise wavelengths of
interest.

When considering the spatial resolution of the HWA measurements, a similar reason-
ing can be applied. Statistically, the velocity structures of relevance to the wall-pressure–
velocity correlations adhere to a self-similar scaling in all three dimensions. Baidya et al.
[2019] showed that the aspect ratio of coherent velocity structures is 7:1, in terms of their
characteristic streamwise-to-spanwise length scales. Hence, the smallest structures of
relevance have spanwise wavelengths of λz,res = λx,res/7 ≈ 1.6 mm. For the HWA mea-
surements with the x-wire probe, the spanwise separation between both sensing wires
is ≈ 1.0 mm, which is sufficient to resolve the scales of interest. In the y-direction the
sensing length of the x-wire probe is also adequate, given the strong wall-normal coher-
ence of the velocity structures. For the single-wire probe, its spanwise sensing length of
lHW = 1.25 mm is more than sufficient given that the u fluctuations of interest are three
times larger than the v fluctuations of interest.

Regarding the temporal measurement resolution, this is set by the data acquisition
rate. For the highest Reτ test case (number 7), the acquisition time step is largest in
terms of viscous time scales and equals ∆T + = 1/ f +

s ≈ 3.3. Even though Hutchins et al.
[2009] indicates a required time step ∆T + of unity or less for fully-resolved measure-
ments, the current acquisition rate is more than sufficient given the interest in much
lower frequencies (larger spatial scales) than the ones corresponding to the dissipative
regime.

4.3. POST-PROCESSING OF WALL-PRESSURE SIGNALS

Even though the CICLoPE laboratory has been designed to minimize noise in the test
section, the facility is non-anechoic and acoustic pressure fluctuations do contaminate
the measured wall-pressure signals. A superposition of facility noise onto the time series
of the hydrodynamic wall-pressure affects the wall-pressure statistics. Furthermore, the
correlation analyses are affected since, by construction, facility noise and velocity fluc-
tuations are uncorrelated. Therefore, a normalized correlation (with the additive facility
noise present) is lower than the true value [Saccenti et al., 2020].

Wall-pressure measurements by means of microphones, mounted within sub-surface-
cavities communicating with the flow through a pinhole orifice, result in signal contam-
ination from two main sources: (1) acoustic noise from the flow facility, and (2) acous-
tic resonance as a consequence of the pinhole–sub-surface-cavity geometry (see Ch. 2).
While a correction for the latter can directly be implemented in the frequency domain
and takes the form of a division of the spectrum by the gain-squared of a correction ker-
nel (as done in § 4.4), the former requires a more elaborate procedure. In particular,
when considering a raw pressure time series of one of the microphones in Fig. 4.1c, it
is necessary to disambiguate hydrodynamic wall-pressure signatures from the one in-
duced by acoustic phenomena. In the case of turbulence-induced fluctuations, espe-
cially wall-pressure, they possess negligible streamwise and spanwise (azimuthal) co-
herence when considering relatively large sensor separations. Acoustic pressure fluctu-
ations, however, convect from sensor to sensor retaining high correlation between de-
tection stations, both in the streamwise and spanwise directions directions of the flow.
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With the experimental setup illustrated in § 4.2, the acoustic waves produced by the
operation of the CICLoPE facility will be detected by all microphones embedded with the
aid of the pinhole–sub-surface-cavity, M 1 to M 4, and the microphone mounted along
the center-line of the pipe, M 5. However, the pressure time series measured by M 5 will
not contain hydrodynamic wall-pressure fluctuations. Removing facility noise requires
the identification of spatial modes that are correlated among the spatially-separated
sensors and whose signatures are also detected by the center-line microphone. Har-
monic proper orthogonal decomposition (hPOD) is suitable to identity these modes as,
compared to conventional POD, the spatial decomposition is performed in the spec-
tral domain, which accounts for phase-shifts of pressure signatures between sensors
[see Tinney et al., 2020]. During hPOD, a signal is decomposed into complex-valued and
frequency-dependent eigenvalues and eigenmodes. These eigenvalues and eigenmodes
follow from solving an eigenvalue problem with the harmonic complex-valued kernel
(see § 3.4).

For one of the current datasets (test case 3, Reτ ≈ 14004), the five frequency-dependent
eigenvalues are shown in Fig. 4.2a. The first two eigenvalues contain clear signatures of
facility noise, especially at the low frequencies. The spectra of the first four eigenval-
ues show a broadband distribution in the mid-to-high frequency band, whereas the fifth
eigenvalue only has significant energy in the low-frequency band at f . 60 Hz. To de-
termine which mode set to retain for filtering the wall-pressure time series, the spatial
distribution of eigenmodes is also examined. In particular, by construction of the exper-
iment, the ideal set of modes to retain consists of the ones that exhibit no activity at the
center-line microphone, M 5. To aid in the selection of modes, only frequencies in the
range 0 < f < fc , with fc = 70 Hz are considered, as the facility noise is concentrated in
this band. The magnitude of the eigenmodes, integrated over the aforementioned fre-
quency range, is displayed in Fig. 4.2b. Upon inspection of the five curves, it is clear that
modes 3 and 4 are the ones encompassing negligible activity at the position of the center-
line microphone, xM 5. Based on this, it was decided to reconstruct the wall-pressure
time series with modes 3 and 4 only. And so, the filtered wall-pressure time series can
be computed as the inverse Fourier transform of the frequency-dependent lower-order
(following Eq. 3.4):

P̃w, f

(
x; f

)
=

∑

n={3,4}
Ǎ(n) ( f

)
φ̌(n) (x; f

)
→ pw, f (x, t ) =F

−1 [
P̃w, f (x; f )

]
. (4.1)

For the other friction Reynolds numbers considered in this study (see Table 4.1), a sim-
ilar procedure was applied. Similar conclusions could be drawn in regards to the selec-
tion of modes to retain for filtering, with the only minor difference lying in the selection
of the upper frequency bound for acoustic contamination, fc . For increasing Reynolds
numbers, fc increases; physically this is caused by a larger blade passing frequency of
the axial fans operating the pipe flow facility.

For reference, when considering the other two filtering technique mentioned in Ch. 3,
Fig. 4.3 reports the effect of the three filtering procedures for one Reynolds number,
namely Reτ = 14004. As per the figure, all proposed techniques successfully attenuate
facility noise. Only a negligible amount of acoustic energy survives at low frequencies in
the case of the spectral subtraction method at low Reynolds number.
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Figure 4.2.: (a) Spectra of the eigenvalue obtained from the complex-valued Ř kernel, for
test case 3 (Reτ ≈ 14004). (b) Normalised magnitude of the complex modes
Φ

(n), for n = 1. . .5, integrated over the range 0 < f . 70 Hz. Each curve is
offset by one unit vertically for graphical readability.
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Figure 4.3.: Power spectral densities of the hydrodynamic pressure fluctuation from mi-
crophone M 1 at Reτ = 14004: raw signal (grey) and signals filtered using
POD (blue), filtered with hPOD (light blue) and filtered using CSA (orange).

4.4. WALL-PRESSURE STATISTICS IN THE CICLOPE FACILITY

Statistics of the wall-pressure fluctuations are presented to demonstrate the validity of
the data for the correlation analyses presented in § 4.5-4.6.
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Figure 4.4.: Probability density functions of the wall-pressure fluctuations in the CIC-
LoPE facility, for all Reτ test cases considered (see Table 4.1). Current data are
compared to a pdf obtained from atmospheric boundary layer data at Reτ ≈
106 [Klewicki et al., 2008, label K08], and a band representing the spread of
pdf’s obtained from zero-pressure-gradient TBL data at 1313 . Reτ . 3826
[Tsuji et al., 2007, label T07]. A standard N (0,1) Gaussian distribution is
added for reference. Probability density functions are plotted with (a) a lin-
ear scale and (b) a logarithmic scale on the ordinate axes.

Probability density functions (pdf’s) of the wall-pressure time series are shown in Fig. 4.4a
and Fig. 4.4b, with a linear and logarithmic scale on the ordinate axes, respectively. For
both figures the amplitude-axes are scaled with the wall-pressure intensity (root-mean-
square), denoted as p ′

w . Superimposed are several pdf’s from the literature: a pdf corre-
sponding to an atmospheric boundary layer flow at Reτ ≈ 1×106±2×105 [Klewicki et al.,
2008], and a band representing the spread of pdf’s corresponding to zero-pressure-gradient
TBL flow at 1313 . Reτ . 3826 [Tsuji et al., 2007]. All pdf’s of the current datasets show
negligible disparity between the test cases, and are consistent with the distributions from
the literature. Minor deviations appear in the tails of the pdf’s (Fig. 4.4b), yet compara-
ble with the degree of deviation in the work by Tsuji et al. [2007] and without a noticeable
monotonic trend with an increase in Reτ.

Pre-multiplied energy spectra of wall-pressure fluctuations are shown in Fig. 4.5a and
Fig. 4.5b for all values of Reτ, with an inner-scaled and outer-scaled streamwise wave-
length on the abscissa, respectively. Here, the streamwise wavelength is obtained by
applying Taylor’s hypothesis: λx ≡ Uc / f , where f is the frequency, and Uc is the con-
vection velocity taken as U+

c = 10. Despite the convection velocity of the wall-pressure
field being scale-dependent [e.g., Luhar et al., 2014], and the temporal-to-spatial con-
version of near-wall fluctuations in velocity/pressure not abiding by Taylor’s hypothesis
[Dennis and Nickels, 2008, del Álamo and Jiménez, 2009], the conversion is kept equal
across all test cases. In essence, temporal spectra are compared (since λ+

x = 10U 2
τ/ν/ f =

10/ f +). Still the temporal-to-spatial conversion was applied because § 4.5–4.6 consider
all coherence spectra as a function of wavelength for ease of comparison to the only data
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Figure 4.5.: (a,b) Pre-multiplied energy spectra of wall-pressure fluctuations, for all Reτ
test cases considered (an increase in colour intensity of corresponds to an
increase in Reτ following test cases 1 → 7, listed in Table 4.1), as a function of
(a) the viscous scaled wavelength and (b) the outer-scaled wavelength. Note
that the temporal spectra are plotted as spatial spectra by converting fre-
quency into wavelength, using λx ≡Uc / f with U+

c = 10. Vertical dashed lines
in sub-figure (b) indicate the minimum wavelength in the dataset for which
wall-pressure–velocity correlations become appreciable when considering u

fluctuations (λx /y A = 3) and v fluctuations (λx /y A = 1). (c,d) Gain of transfer
kernel Hr that characterizes the pinhole–sub-surface-cavity as described in
§ 4.2.2, including in (c) the gain of the raw kernel, H

exp
r (light grey line).

available (those from spatial DNS of turbulent channel flow).
Before commenting on the wall-pressure spectra, note that Fig. 4.5c and Fig. 4.5d present

the gain of the transfer kernel that characterizes the pinhole–sub-surface-cavity (de-
scribed in § 4.2.2). Because the transfer kernel is a function of frequency, and the frequency-
to-wavelength conversion includes the friction velocity of each test case, seven identical
kernels are shown (but shifted along λx ). For reference, the raw experimental kernel,
H

exp
r , is shown in Fig. 4.5c for the highest Reτ test case with a thick grey line, while

the other kernels correspond to the fitted kernel of the second-order model, Hr . No-
ticeably, resonance occurs at scales where the wall-pressure spectra are energetic. It
is thus necessary to correct the spectra for the amplification/attenuation effect. Cur-
rent wall-pressure spectra were corrected before plotting, by dividing the spectra with
the frequency-dependent model kernel [φpp ( f ) = φpp, f ( f )/|Hr ( f )|2, with φpp, f being
the spectrum after removing facility noise from the raw measurements of wall-pressure
following § 4.3]. The resonance-correction works theoretically, but practically the kernel
(which was found with the aid of a flow-off experiment) changes when wall-bounded
turbulence grazes the pinhole orifice [see Dacome et al., 2024], making the correction
imperfect. In practice, this results in an erroneous ‘wiggle’ in various spectra, and is
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most noticeable in the spectrum of test case 7.
Close inspection of the wall-pressure spectra reveals expected Reynolds-number trends.

The location of the inner-spectral peak at λ+
x,p ≈ 250 (Fig. 4.5a) agrees with previous work

[Farabee and Casarella, 1991, Tsuji et al., 2007, Klewicki et al., 2008, Panton et al., 2017].
A slight increase in the inner-spectral peak magnitude, with an increase in Reτ, is also
noticeable for test cases 4 to 7 [expected per the trends in Tsuji et al., 2007, Panton et al.,
2017, Yu et al., 2022]. The large-scale energy content also progressively increases with
Reτ and exhibits a collapse in outer-scaling, for the range λx /R & 0.2 (Fig. 4.5b). This
trend is in line with the findings reported in DNS studies at lower Reτ [Panton et al., 2017,
Yu et al., 2022]. It also conforms to the work by Deshpande et al. [2024], who reason that
the intermediate and large scales of the wall-pressure spectra grow with Reτ due to the
contributions of both the active and inactive motions in the grazing flow. Spectra corre-
sponding to test cases 1 and 2 are outliers in that their broadband peak-magnitudes are
relatively high. It is postulated that this is due to an incomplete removal of facility noise,
as any remaining signature of facility noise is more pronounced in the spectra of lower
Reτ test cases. That is, the degree of facility noise was quantified with a signal-to-noise
ratio (SNR), defined as the intensity-ratio of turbulence-induced wall-pressure fluctua-
tions, relative to those induced by facility noise: SNR = p ′

w /(p ′
w,r − p ′

w ). Here, p ′
w,r is

the pressure intensity (root-mean-square) of the raw, measured wall-pressure. SNRs in
the dataset increase monotonically with Reτ, in the interval 0.08 ≤ SNR ≤ 0.25. Addi-
tive facility noise is thus more noticeable in the spectra at lower Reτ. For the remainder
of the paper, it is important to recall from § 4.2.3 that for the correlation analysis the
scales of interest reside at streamwise wavelengths beyond λx /y ≈ 3 (when considering
u fluctuations) and λx /y ≈ 1 (when considering v fluctuations). Both of these limits
are indicated in Fig. 4.5b; within the scale-range of interest the spectra are not affected
by the kernel-correction and only the two lowest test cases seem affected by additive
(acoustics-driven) noise.

As a final wall-pressure statistic, wall-pressure intensities are considered, resulting
from the integration of the energy spectra. Here, the root-mean-square intensity is con-
sidered and inner-normalized following p ′+

w = p ′
w /τw . Wall-pressure intensities are plot-

ted in Fig. 4.6 and compared to a variety of datasets from the literature. Data from chan-
nel flow DNS are added Panton et al. [2017], together with the various datasets assem-
bled by Klewicki et al. [2008] (and named in the caption), that include both numerical
and experimental studies, comprising zero-pressure-gradient turbulent boundary layer
(ZPG-TBL), turbulent channel (TCF) and pipe flows. The current data confirms the trend
of increasing pressure intensity with Reτ, and closely follows the empirical relation of
Klewicki et al. [2008]. Only the data point of test case 1 (at Reτ ≈ 4794) is an outlier,
which is ascribed to the imperfect facility noise-filtering causing an overestimation of
the wall-pressure intensity.

4.5. COHERENCE BETWEEN STREAMWISE VELOCITY AND

WALL-PRESSURE
To analyse the scale-dependent coupling between the fluctuations in streamwise ve-
locity (u) and wall-pressure (pw ), the linear coherence spectrum (LCS) is employed.
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Figure 4.6.: Wall-pressure intensity inferred from integrating the wall-pressure spectra.
Current results are compared to several datasets available from the liter-
ature. Data are taken from the DNS studies of Panton et al. [2017] (P17-
DNS, •, ZPG-TBL), Choi and Moin [1990] (CM90-DNS, H, TCF) and Yu et al.
[2022] (YU-DNS, �, pipe flow). Furthermore, data are collected from exper-
imental studies of ZPG-TBL flows: Blake [1970] (B70, △), Bull and Thomas
[1976] (BT76, ⊳), Farabee and Casarella [1991] (FC91, ⊲), Horne [1989] (H89,
�), Klewicki et al. [2008] (K08, ), McGrath and Simpson [1987] (MS87, ),
Schewe [1983] (S83, ) and Tsuji et al. [2007] (T07, ◦), and of experimental
studies of pipe flows: Lauchle and Daniels [1987] (LD87, ⋆) and Morrison
[2007] (M07, �). Solid and dashed lines are the formulations presented by
Klewicki et al. [2008], in which the pressure variance increases logarithmi-
cally with increasing Reτ.

The LCS describes the stochastic coupling, on a per-scale basis, as the degree of phase-

consistency. The LCS is defined as the magnitude-squared of the cross-spectrum be-
tween u and pw , normalized with the two auto-spectra of u and pw :

γ2
upw

(
y,λx

)
≡

|〈Ũ
(
y,λx

)
P̃∗

w (λx )〉|2

〈|Ũ
(
y,λx

)
|2〉〈|P̃w (λx ) |2〉

, (4.2)

where the angled brackets 〈...〉 indicate ensemble averaging, the ∗ denotes the com-
plex conjugate, and capitalised variables with a tilde indicate the Fourier transformed
quantity, e.g., P̃w ( f ) = F

[
pw (t )

]
. Because in the remainder of the manuscript scale-

dependent data as a function of streamwise wavelength are presented, the argument in
(4.2) is taken as λx and is, as for the energy spectra in § 4.4, obtained by applying Taylor’s
hypothesis: λx ≡Uc / f , with U+

c = 10.
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Figure 4.7.: (a) Coherence spectra for the fluctuations in streamwise velocity and wall-
pressure, and (b) the streamwise velocity and wall-pressure–squared. Two
sets of coherence spectra are shown, corresponding to velocity fluctuations
measured at point A (blue colour scale) and point F (red colour scale); an
increase in colour intensity corresponds to an increase in Reτ following test
cases 1 → 7, listed in Table 4.1. Reference data are shown with a light grey
shaded area, associated with the spread of coherence spectra from spatial
DNS data at Reτ = 5200 [Baars et al., 2024]. (c) Coherence spectra for the
fluctuations in streamwise velocity and wall-pressure, and (d) the streamwise
velocity and wall-pressure–squared, for test case 3 (Reτ ≈ 14004), and for ve-
locity fluctuations measured at points E, A-D spanning a range of streamwise
locations, −0.07 ≤ x/R ≤ 0.67. Note that all current coherence spectra are
generated from temporal data, and plotted as spatial spectra by converting
frequency into wavelength using λx ≡Uc / f with U+

c = 10.

Figures 4.7a,b present the LCS for u and pw , for two positions of the velocity mea-
surement (points A and F in Fig. 4.1d) and for all values of Reτ. In presenting the scale-
dependent spectra, the choice is made to scale λx with the distance-from-the-wall, so
that the abscissae are in terms of λx /y with y = {y A , yF } for these graphs. With negligible
coherence reported at small wavelengths, a steady rise in the LCS can be observed in
Fig. 4.7a for increasing λx /y until a local maximum is reached at (λx /y,γ2

upw
) ≈ (14,0.1).

Given that the current data span nearly a decade in Reτ, it can be concluded that the
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region of coherence centered at λx /y ≈ 14 is Reynolds-number invariant.

Only the two LCS corresponding to test cases 1 and 2 have a slightly lower value near
λx /y = 14. This is ascribed to the incomplete removal of facility noise in the wall-pressure
spectra of these two test cases (recall the discussion in § 4.4), and the fact that addi-
tive noise in the spectra causes an attenuation of the LCS. A second region of significant
coherence appears at large wavelengths where the velocity fluctuations continue to be
energetically relevant. To illustrate this, an amplitude threshold of the pre-multiplied
streamwise energy spectra is taken as k+

x φ
+
uu = 0.2 at the large-scale end. Energy levels

only drop below this threshold for outer-scaled wavelengths of λx,lim/R & 35. This limit
is included in Fig. 4.7a for reference, and corresponds to λx,lim/y ≈ {250,1500} for y =
{y A , yF }, respectively. Moreover, this region of high coherence (in excess of γ2

upw
= 0.5)

becomes relevant at a scale of λx,lim/R ≈ 3.5 (or λx,lim/y ≈ {25,150} for y = {y A , yF } as
indicated with thin solid lines in Fig. 4.7a), and thus adheres to a Reynolds-number in-
variant scaling whenλx is scaled with the outer-scale, R. This large-scale region of strong
coherence between u fluctuations in the logarithmic region and the wall-pressure field is
presumably related to global velocity modes [Bullock et al., 1978, del Álamo and Jiménez,
2003]. These global modes are ‘inactive’ in the view of Townsend’s attached-eddy hy-
pothesis [Townsend, 1976] (thus large-scale eddies that do not contribute to the Reynolds
shear stress uv). Inactive motions are coupled to the very large scales in the pressure
spectrum [as shown explicitly by Deshpande et al., 2024], while the active motions con-
tribute directly to the intermediate scales.

Before further discussing the trends of the coherence spectra, the coherence involv-
ing the quadratic term of the wall-pressure is inspected. The inclusion of this term
was deemed important for stochastically estimating off-the-wall velocities from wall-

pressure data. The quadratic term of the wall-pressure is taken as p2
w =

[
p2

w

]
r −

[
p2

w

]
r

with
[
p2

w

]
r denoting the time series of the wall-pressure–squared prior to the subtraction

of its mean. Differently to the behaviour displayed by the linear term of wall-pressure,
the LCS for u and p2

w rises starting from λx /y ≈ 7 (see Fig. 4.7b). Again a Reynolds-
number invariant trend appears in the rise of coherence around scales of λx /y = 14
and beyond, with once more the LCS of test cases 1 and 2 comprising a lower magni-
tude due to the incomplete removal of facility noise from the wall-pressure spectra. To
further conclude the Reynolds-number invariant trends observed in Figs. 4.7a,b, the cur-
rent experimental coherence spectra generated from temporal data are compared to the
coherence spectra presented by Baars et al. [2024], generated from spatial DNS data of
turbulent channel flow. These reference data are shown with the light grey shaded area,
indicating the spread of coherence spectra at Reτ = 5200 when considering a range of
wall-normal positions across the logarithmic region [80 . y+ . 0.15Reτ, see Fig. 6 of
Baars et al., 2024]. Moreover, Baars et al. [2024] also revealed a Reynolds-number invari-
ant trend for these DNS data, spanning 550 . Reτ .≈ 5200. It must be noted that even
though these DNS data are associated with turbulent channel flow, it was shown that co-
herence spectra from a relatively low Reynolds number TBL flow (Reτ ≈ 2280) were also
in agreement with these channel flow data. And so, with the current LCS for pipe flow
collapsing for the full range of Reτ, for both wall-normal positions, y = {y A , yF } (while
agreeing with the reference data), it can be concluded that the coherence is statistically
similar across several canonical flow geometries.
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Universal trends in the coherence spectra are reflective of how coherent velocity fluc-
tuations are interlinked to the wall-pressure. The scales around which γ2

upw
and γ2

up2
w

become non-zero (λx /y ≈ 3 andλx /y ≈ 7, respectively), as well as the logarithmic growth
of coherence [most noticeable in Fig. 4.7b, where γ2

up2
w
∝ ln

(
λx /y

)
] follow a pattern pre-

sented in the work by Baars et al. [2017]. They considered the coherence between the
near-wall velocity fluctuations and the ones in the logarithmic region. The logarithmic
growth of coherence, which occurs over the inertial-range of wavelengths, was inter-
preted as the range of scales that contains turbulence energy that is statistically self-
similar (following a hierarchical structure of wall-attached eddies).

An increase in large-scale coherence for the wall-pressure–squared term suggests that
large-scale u fluctuations modify (modulate) the wall-pressure field following nonlinear
dynamics. To analyse this phenomenon, a Hilbert transform is used to retrieve an “enve-
lope" of the wall-pressure time series. Figure 4.8a presents the normalised wall-pressure
time series (p̃w = pw /p ′

w ) at Reτ ≈ 14004 for microphone M 1, over a short time inter-
val, together with the magnitude of its Hilbert transform, |H(p̃w )|, and the de-meaned
wall-pressure–squared time series. By visual inspection, these last two time series have
similar large-scale energy content. Figure 4.8b quantifies this further by overlaying the
LCS for u and |H(p̃w )| and the LCS for u and p2

w (those are identical to the ones shown
in Fig. 4.7b). A remarkable collapse is observed for the two sets of LCS spectra, for all Reτ
cases considered. Hence, the large-scale variations in the wall-pressure intensity are di-
rectly linked to the passage of streamwise velocity fluctuations modulating the near-wall
intensity [Tsuji et al., 2015].

Gaining knowledge on how the coherence decays as a function of the streamwise sep-
aration between the velocity measurement and the wall-pressure sensor is highly rele-
vant for real-time flow control (e.g., when sensors and actuators are separated to allow
for control actions while the flow convects downstream). For the current data, the γ2

upw

and γ2
up2

w
coherence spectra are considered as a function of the streamwise distance of

the velocity measurement (relative to the wall-pressure sensor at x = 0), for test case 3
corresponding to Reτ ≈ 14004. Coherence spectra are shown in Figs. 4.7c,d, for γ2

upw

and γ2
up2

w
, respectively. When increasing the streamwise distance, γ2

upw
decays with the

coherence decreasing faster at smaller scales, as is expected. Similar conclusions were
drawn for all other Reτ test cases. When inspecting the decay in γ2

up2
w

(Fig. 4.7d), it be-

comes clear that the coherence with the quadratic wall-pressure term remains consider-
ably larger than the one with the linear term. This means that the mechanism of large-
scale modulation of the smaller-scale wall-pressure fluctuations (by the large-scale u

fluctuations) is dominant over the direct (linear) imprint of u fluctuations on the wall-
pressure.

4.6. COHERENCE BETWEEN WALL-NORMAL VELOCITY AND

WALL-PRESSURE
To further characterise the dynamics between fluctuations in velocity and wall-pressure,
the foregoing presents a similar analysis as the one described in § 4.5, but now consid-
ering v fluctuations. Coherence spectra for v and pw (Fig. 4.9a) exhibit local maxima
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Figure 4.8.: (a) Normalised wall-pressure time series of microphone M 1, for test case 3
(Reτ ≈ 14004), its Hilbert transform, and the corresponding de-meaned wall-
pressure–squared. (b) Coherence spectra for the fluctuations in streamwise
velocity and wall-pressure–squared (dashed lines, identical to the coherence
spectra in Fig. 4.7b), compared to the coherence spectra for fluctuations in
the streamwise velocity at point y A and the Hilbert transform of the wall-
pressure (solid lines).

aroundλx /y ≈ 10 [instead ofλx /y ≈ 8, as indicated by Baars et al., 2024] andγ2
v pw

≈ 0.15,
a magnitude which is roughly 50% higher than local maxima in the LCS for u and pw .
Squaring the wall-pressure fluctuations brings higher levels of γ2

v p2
w

(see Fig. 4.9b), start-

ing to rise at λx /y ≈ 3. A similar Reynolds-number-independence is observed as was
seen in the coherence analyses with the u fluctuations.

Higher coherence between wall-normal velocity and wall-pressure fluctuations com-
plies with earlier findings [e.g., Gibeau and Ghaemi, 2021]. In fact, given the non-permeability
boundary condition, fluid motions directed towards the wall (with a negative v-component)
will stagnate and thus give rise to a positive fluctuation in wall-pressure. Conversely,
v > 0 fluctuations will tend to lower the unsteady wall-pressure. In general, the higher
correlation between v and pw can be ascribed to the Orr-mechanism [see Jiménez, 2013,
Luhar et al., 2014, among others]. Therefore, there exists a rather strong coupling be-
tween v and pw . Note, however, that the current work is motivated by using wall-pressure
information to, eventually, predict the off-the-wall velocity fluctuations. Using pres-
sure information to predict wall-normal velocity fluctuations for real-time control is not
as effective as when considering streamwise velocity fluctuations, because the stream-
wise ones provide a stronger contribution to wall-shear stress generating mechanisms
[e.g., Deck et al., 2014, among others]. Furthermore, v fluctuations have a considerably
shorter characteristic wavelength than u fluctuations (λ+

x ≈ 250 for the former, and λ+
x ≈

1000 for the latter). This not only requires faster processing for real-time operations, but
would also constrain the sensor-actuator spacing due to the faster de-correlation of the
v fluctuations in the streamwise direction.



4.7. STOCHASTIC ESTIMATION OF STREAMWISE VELOCITY FLUCTUATIONS

4

69

(a) (b)

λx /y A = 1 λx /y A = 1

λx /y A = 8 λx /y A = 8

λx /yλx /y

γ
2 v

p
w

γ
2 v

p
2 w

Figure 4.9.: (a) Coherence spectra for the fluctuations in wall-normal velocity and wall-
pressure, and (b) the wall-normal velocity and wall-pressure–squared. Two
sets of coherence spectra are shown, corresponding to velocity fluctuations
measured at point A; an increase in colour intensity corresponds to an in-
crease in Reτ following test cases 1 → 7, listed in Table 4.1. The light grey
shaded area is associated with the spread of coherence spectra from DNS
data, as reported by Baars et al. [2024]. Note that all current coherence spec-
tra are generated from temporal data, and plotted as spatial spectra by con-
verting frequency into wavelength using λx ≡Uc / f with U+

c = 10.

4.7. STOCHASTIC ESTIMATION OF STREAMWISE VELOCITY

FLUCTUATIONS

For real-time control purposes, wall-pressure sensing can be employed to generate an
estimate of the fluctuating velocities in the logarithmic region of a wall-bounded tur-
bulent flow. To this end, the foregoing will examine the accuracy of the prediction of u

fluctuations, performed with Linear and Quadratic Stochastic Estimation methods (LSE
and QSE, respectively). These methods solely employ the time series of wall-pressure,
and wall-pressure–squared, as the input quantities.

Estimates of the u fluctuations in the logarithmic region at position ye can be formed
through a convolution of time-domain kernels. Estimates of unconditional time series
of off-the-wall velocity fluctuations, with the LSE and QSE procedures, follow from the
formulations:

ûLSE
(
ye , t

)
=

(
hl ⊛pw

)
(t ) (4.3)

ûQSE
(
ye , t

)
=

(
hl ⊛pw

)
(t )+

(
hq ⊛p2

w

)
(t ) , (4.4)

where the (stochastic) temporal kernels of the linear term (hl ) and quadratic term (hq )
are the inverse Fourier transforms of the complex, frequency-domain kernels, e.g., hl

(
ye , t

)
=

F
−1

[
HL

(
ye , f

)]
and similar for hq . The linear kernel equals the cross-spectrum between

u and pw , divided by the auto-spectra of pw (the input quantity during the estimation
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method),
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〈Ũ
(
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(
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)
〉
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(
f
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, (4.5)

whereas the quadratic kernel includes the wall-pressure–squared term, p2
w , instead of

the linear one,

HQ

(
ye , f

)
=

〈Ũ
(
ye , f

)
P̃∗

w,sq

(
f
)
〉

〈|P̃w,sq

(
f
)
|2〉

, (4.6)

with P̃w,sq

(
f
)
=F

[
p2

w (t )
]
. Given the current dataset, two estimation locations are con-

sidered (ye = y A and ye = yF ). Further details of the stochastic estimation procedures
can be found elsewhere [Naguib et al., 2001, Baars et al., 2024].

To evaluate the accuracy of the estimation with respect to the reference time series,
u(y0, t ), the Pearson correlation coefficient is employed. It is defined as the ratio of the
covariance of two input signals to the product of the standard deviation of the two. Fig-
ure 4.10b presents values of ρ

[
uW (y, t ), ûQSE(y, t )

]
= cov

[
uW (y, t ), ûQSE(y, t )

]
/(u′

W û′
QSE):

the correlation coefficient between the reference time series uW (y, t ) at points A and F

(see Fig. 4.1b) to the QSE-based time series, ûQSE(y, t ). Here time series uW (y, t ) is not
equal to u(y, t ), because uW only retains wall-attached eddies. Effectively, uW is a large-
scale pass-filtered signal of u, with its Reynolds number-invariant kernel characterized
by a definitive cut-off at λx /y = 14 [Baars et al., 2017].
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Figure 4.10.: (a) Correlation coefficient computed with the QSE-based streamwise veloc-
ity fluctuations in the logarithmic region, ûQSE, and the reference time se-
ries, uW . (b) Correlation coefficient computed with the LSE-based stream-
wise velocity fluctuations in the logarithmic region, ûLSE, and the refer-
ence time series, uW . Reference data are taken from Baars et al. [2024] at
Reτ ≈ 2300.

With the exception of the data at the two lowest Reτ test cases 1 and 2—whose time
series are still affected by imperfect noise filtering (see § 4.3)—collapse for all Reτ test
cases considered. A slight attenuation of ρ is observed with respect to the reference
data, which is attributed to a systematic error [Saccenti et al., 2020] caused by addi-
tive facility noise. Furthermore, the data are in good agreement with the reference data
from Baars et al. [2024] at Reτ ≈ 2300. This result solidifies the conclusion of Reynolds-
number independent estimation accuracy of wall-attached velocity fluctuations, based
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on wall-pressure sensing alone. As expected, a lower correlation coefficient appears in
Fig. 4.10b, where the estimation is performed with only the linear term of wall-pressure
(thus using the LSE method). The performance of the statistical estimator now decays by
about 20% with respect to QSE-based estimation, across the given range of wall-normal
distances.

4.8. CONCLUSIONS
This chapter illustrates a unique correlation analysis that was performed to understand
the relation between velocity fluctuations in the logarithmic region of a turbulent wall-
bounded flow and the wall-pressure fluctuations. With a unique experimental dataset
spanning a decade in Reynolds number, it was possible to prove Reynolds-number in-
dependence of the spectral coherence between wall-pressure and velocity fluctuations,
both for the streamwise and wall-normal components. Additionally, the quadratic term
of wall-pressure fluctuations is extremely beneficial for employing wall-pressure fluctu-
ations as an input to a real-time control system. In particular, not only its spatial co-
herence decreases less rapidly than the linear term in the streamwise direction, but also
its inclusion in a stochastic estimation procedure greatly improves the accuracy of this
technique. This is highly relevant when needing to identify a real-time transfer kernel
to map the instantaneous input signal to a physical control output. To conclude, wall-
pressure fluctuations represent a viable input quantity for a real-time control system for
the manipulation of a wall-bounded turbulent flow not only for experimental activity at
relatively low Reynolds numbers, but also for high-Reτ applications.





III
FEEDFORWARD CONTROL OF

TURBULENT BOUNDARY LAYERS

73





5
FEEDFORWARD CONTROL WITH

WALL-SHEAR STRESS INPUT

Mystery creates wonder and wonder is the basis of man’s desire to understand.

Neil Armstrong (Apollo 11)

This chapter explores the dynamic response of a turbulent boundary layer to large-

scale reactive opposition control, at a friction Reynolds number of Reτ ≈ 2240. A surface-

mounted hot-film is employed as the input sensor, capturing large-scale fluctuations in

the wall-shear stress, and actuation is performed with a single on/off wall-normal blow-

ing jet positioned 2.4δ downstream of the input sensor, operating with an exit velocity of

vj = 0.4U∞. With the control-off calibration-experiment conducted a-priori, a transfer

kernel is identified so that the velocity fluctuations that are to-be-controlled can be es-

timated. Direct measures of the skin friction-drag are inferred from PTV data. Results

indicate that the opposing control logic yields the lowest wall-shear stress (3% lower than

the desynchronized control, and 10% lower than the uncontrolled flow). Finally, a FIK-

decomposition of the skin-friction coefficient revealed that the off-the-wall turbulence

follows a consistent trend with the PTV-based wall-shear stress measurements, although

biased by an increased shear in the wake of the boundary layer given the formation of a

plume due to the jet-in-crossflow actuation.

Parts of this chapter are published in:

• G. Dacome, R. Mörsch, M. Kotsonis, W. J. Baars (2024) Opposition flow control for reducing skin-
friction drag of a turbulent boundary layer. Phys. Rev. Fluids 9, 064602.
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5.1. INTRODUCTION
Before delving into the development of a real-time control system utilizing wall-pressure
fluctuations as the principal input quantity, it is important to generate a proof-of-concept
for a real-time controller interacting with a TBL flow. For this matter, since the intricacies
of the employment of wall-pressure are not yet known to the community, it was decided
to first tackle the definition of a controller considering instantaneous wall-shear stress
fluctuations instead. Wall-shear is a quantity that displays high levels of statistical co-
herence with off-the-wall streamwise velocity fluctuations and, therefore, renders it an
ideal candidate to evince physical phenomena from a wall-based location. This is in
reason of the superposition of a large-scale footprint onto the near-wall flow (see Ch. 1).
Abbassi et al. [2017] documents the implementation and the TBL response to such a real-
time controller, with encouraging findings.

The principal goal of this part of the work, in further contrast to the work of Abbassi et al.
[2017], is to relate changes in the mean skin-friction drag to changes in the turbulence
statistical integral measures of the TBL flow as a result of control in an attempt to un-
ravel the physical mechanisms underlying changes in skin-friction as a result of con-
trol. For Zero-Pressure-Gradient (ZPG) uncontrolled TBL flows this has been detailed
by Renard and Deck [2016] and Deck et al. [2014]; they relate integral measures of the
TKE production (and a FIK decomposition [Fukagata et al., 2002] of the turbulent flow
field) to the mean wall-shear stress. While it is known from aforementioned studies
that the chosen actuator (a wall-normal blowing jet) can potentially reduce skin-friction
drag, the goal of this work is to analyze the variation of wall-shear stress as a function of
the chosen control mode (i.e. of reactive, real-time actuation targeting drag-producing
large-scale structures). With a unique experimental dataset the relation of such integral
measures of the flow to the mean wall-shear stress downstream of the control-action will
be examined.

5.2. EXPERIMENTAL SETUP AND METHODOLOGY

5.2.1. TURBULENT BOUNDARY LAYER SETUP

Experiments were carried out in an open-return wind tunnel facility (W-Tunnel) at the
Delft University of Technology. This facility has a contraction ratio of 4:1, with a square
cross-sectional area of 0.6×0.6 m2 at the inlet of the test section. Driven by a centrifugal
fan, the flow at the test section’s inlet can reach a velocity of up to∼ 16.5 m/s. A schematic
of the facility is presented in Fig. 5.1a. More details regarding the design of the facility can
be found in § 2.1.

5.2.2. MEASUREMENT TECHNIQUES

Time-series of the streamwise velocity component were acquired using Hot-Wire Anemom-
etry (HWA). A TSI IFA-300 Constant Temperature Anemometer (CTA) was used, with a
standard Dantec 55P15 boundary layer probe. Data were sampled at a rate of f +

HW
= 3.16

( fHW = 51.2 kHz) with a 24-bit A/D conversion for an uninterrupted duration of Ta =
150 s at each measurement point. This acquisition duration equates to TaU∞/δ≈ 32000
boundary layer turnover times; this was checked to be sufficient for converged spec-
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Figure 5.1.: (a) Schematic of the turbulent boundary layer test section at the Delft Uni-
versity of Technology. (b) Schematic indicating the locations of hot-wire
measurements, with a streamwise profile taken at y+

L
= 3.9

p
Reτ and a wall-

normal profile taken at x = 2δ. (c) Positions of the fields of view for PTV (filled
dark green) and PIV (open light green) measurements.

tral statistics at the lowest frequencies of interest. The hot-wire was calibrated in-situ
by fitting King’s Law to 17 points of increasing velocity. Measurement time-series were
corrected for temperature drift following the procedure outlined by Hultmark and Smits
[2010]. By mounting the probe to a dual-axis traversing system, with a step accuracy of
10 µm (smaller than 0.3 viscous units), a wall-normal profile consisting of 40 logarithmically-
spaced points was acquired at x = 2δ. A streamwise profile was also measured within
the geometric center of the logarithmic region, at a location of y+

L
= 3.9

p
Reτ ≈ 190

(yL = 6.3 mm), see Fig. 5.1b. The uncertainty in the hot-wire measurements was com-
puted following the procedure of Smith et al. [2018], and resulted in uncertainties in
the estimation of the average velocity and standard deviation (at y+ ≈ 15) of 0.26 % and
1.02 %, respectively.

Planar Particle Tracking Velocimetry (PTV) data were acquired with a Field Of View
(FOV) of approximately 0.33δ× 0.28δ. A relatively small FOV was chosen to maximise
the resolution in the viscous sub-layer, such that the wall-shear stress could be inferred
directly from the velocity gradient at the wall, τw =µÇu/Çy |y=0 (see § 5.7.1). Particle Im-
age Velocimetry (PIV) was also employed in a planar Two-Dimensional Two-Component
(2D2C) configuration, with a larger FOV spanning approximately 3.6δ× 0.8δ (divided
over two cameras). This PIV campaign was tailored to studying the flow well into the
wake of the boundary layer. For both the PTV and PIV measurements, data were acquired
at several streamwise locations, indicated in Fig. 5.1c with the blue filled rectangles (for
PTV) and the green open rectangles (for PIV). Table 5.1 lists the acquisition parameters
for both the PTV and PIV campaigns. LaVision Imager sCMOS cameras with a sensor
size of 2650×2160 pix2 were used in both types of acquisitions. All measurement sets
comprised a total of 2000 statistically independent image pairs that were recorded at a
frequency of 15 Hz. Illumination was provided by a Quantel Evergreen 200 Nd:YAG laser,
operating in double-pulse mode with a maximum energy per pulse of 125 mJ. Finally,
seeding was generated by an atomized glycol-water mixture, yielding an average particle
size of ∼ 1 µm.
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Campaign FOV size # cam. dt (µs) lf (mm) f# Res. (pix/mm)

PTV 0.33δ×0.28δ 1 15 200 11 114
PIV 3.6δ×0.8δ 2 35 105 8 18

Table 5.1.: Image acquisition parameters for the PTV and PIV campaigns, with dt being
the time separation between images in one pair, and lf and f# the focal length
and f-stop of the camera lens.

5.3. DESIGN AND CHARACTERIZATION OF ACTUATORS

Control experiments were only performed in the W-tunnel facility at Delft University of
Technology. Control experiments required several pieces of hardware: input sensors,
actuators and real-time controllers. Different input sensors and controllers were used
across this work, and an introduction to each input sensor type will be provided in the
relevant section of this dissertation. The actuators, however, were common to all control
experiments. Thus, a review of the design choices and parameters is included hereby.

During this study, control is performed in real-time of the large-scale structures in a
TBL flow. The requirement to develop an effective actuator is thus central for the suc-
cessful implementation of such a control strategy. Given the challenge to impart a sig-
nificant control action on large-scale structures in the logarithmic region, it is necessary
to design an actuator device that is able to effectively target those, without generating
unwanted additional drag. For this reason, the most effective configuration for such an
actuator is one whereby the device is embedded in the wall of the wind tunnel facility.
For effective real-time active control for skin-friction control, selectivity is key. In par-
ticular, skin-friction is a mean quantity; nevertheless, instantaneous, as well as spatial,
fluctuations occur. For this reason, the work is based on a control strategy which is able
to influence skin-friction in a time-varying sense and is spatially selective (from Ch. 5
onwards). Spatial selectivity derives from the natural behavior of LSMs, which show al-
ternating high and low-momentum zones (causing an increase and decrease in instan-
taneous skin-friction, respectively) both in the streamwise and spanwise directions (see
Fig. 5.2). A controller that aims at the opposition of turbulence drag-inducing motions,
will therefore target the high-speed zones.

In summary, the principal requirement is to design an actuator that is effective enough
to interact with structures in the logarithmic region while, at the same time, minimize
the interference with the natural development of the wall-bounded flow.

For this reason, a non-zero net mass flux blowing jet is chosen as the actuator. Since
its exit velocity and frequency response can be tuned with relatively simple adjustments
to the hardware, this actuator is ideal for tuning the region of interaction between the jet
flow and the grazing crossflow. The development of a jet in crossflow in a TBL flow is such
that an upwash is created downstream of the injection point as a result of wall-normal
momentum injection. Additionally, the steady jet in crossflow creates a counter-rotating
vortex pair (CVP), originating from the roll-up of the jet plume as the mean shear of the
turbulent crossflow transfers streamwise momentum to it. Off the center-line, this CVP
generates a downwash [New et al., 2003, Sau and Mahesh, 2008, Mahesh, 2013]. For a
thorough overview of the actuators that have been studied and developed in the litera-
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Figure 5.2.: Schematic of coherent large-scale structures controlled by wall-normal
blowing jets on a spanwise wall-normal plane. Taken from Abbassi et al.
[2017].

ture for active flow control, the work of Cattafesta and Sheplak [2011] is a recommended
read.

5.3.1. ACTUATOR ARCHITECTURE

The principal target of the jet actuator is to interact with large-scale motions convect-
ing within the logarithmic region (i.e. point T in Fig. 5.4) of the TBL flow based on
an input signal measured a distance s1 upstream of the control location (i.e. point I

at y = yL in Fig. 5.4). Furthermore, the actuator is required to produce streamwise-
persistent features upon exhausting into the turbulent crossflow for prolonged control
authority downstream of the control point. Thus, the jet flow exhausts in the grazing
TBL flow through a rectangular exit slit. The slit was strongly elongated in the stream-
wise direction and comprised dimensions of 15 mm × 1.5 mm (in the x and z directions,
respectively), or approximately 0.2δ×0.02δ (see Fig. 5.3). The streamwise elongation of
the exit slit ensures the formation of a more persistent vortical structure in the stream-
wise direction, compared to the case when the jet exit is circular in shape [Gutmark et al.,
2008, Pokharel and Acharya, 2021].

At the same time, given the highly three-dimensional nature of the TBL flow, it is es-
sential to consider that actuation will need to tackle instantaneously spanwise-varying
conditions and increase the region of influence of the control system. Thus, an archi-
tecture consisting of an array of jet actuators (instead of a single actuator) is necessary
for successful implementation of a control framework with sufficient control author-
ity to quench drag-producing large-scale turbulent structures. The spanwise separa-
tion between adjacent jets was established following the study of Hutchins et al. [2011],
whereby point-to-point two-dimensional correlation maps were presented of the stream-
wise velocity coherence in the logarithmic region of a TBL. In particular, the peak-to-
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peak distance between the large-scale high-correlation zones was reported to be 0.3δ.
This distance is also chosen as the spanwise separation between consecutive jet actua-
tors in this work.

Flow
0.

2δ
0.02δ 0.3δ

x

z

Figure 5.3.: Schematic displaying the layout of the actuator array designed for the real-
time control experiments described in this dissertation and employed for all
flow control experiments.

Compressed dry air is drawn from the laboratory pneumatic system and feeds into the
actuator, which is operated in an on/off state using an electrically actuated, nominally
closed, binary solenoid valve (FESTO MHJ-10-S-2). This valve has a maximum switching
frequency, according to the manufacturer, of 1 kHz. Figure 5.4 illustrates a schematic of
the installation and working principle of the jet actuator in the TBL crossflow, as inte-
grated in the control system (with H being an arbitrary control law). By way of charac-
terization experiments, described in the following section, the frequency response was
quantified as well as the jet trajectory into the TBL crossflow as a function of the jet exit
velocity.

s

U∞

Input sensor

Controller

Solenoid valve
(FESTO MHJ-10-S-2)

s1

LSMs

Jet actuator (vj = 0.4U∞)

H

Dry air supply

T

I

yL

Figure 5.4.: Two-dimensional schematic of the control system for real-time boundary
layer manipulation, integrated in the W-Tunnel facility.
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5.3.2. CHARACTERIZATION OF THE JET ACTUATORS

Since the aim of control is to manipulate large-scale structures in the logarithmic region,
the actuator should have enough control authority to reach such wall-normal locations
where LSMs are most energetic. Thus, the actuator’s (jet in crossflow) wake needs to trail
within this region to achieve a proper interaction. The jet flow may not reach a sufficient
height when the jet exit velocity, vj, is too low. Conversely, if vj is too high, the jet’s trajec-
tory may penetrate the edge of the boundary layer, thereby altering the free-stream flow
and generating unwanted additional drag. To study how the jet trajectory depends on its
exit velocity, a characterization experiment was conducted. The wall-normal jet flow was
operated in a continuous on-state at several velocity ratios, r = vj/U∞. The mean veloc-
ity field was inferred from two-dimensional two-component particle image velocimetry
(2D2C-PIV) performed with 2000 image pairs, and over a FOV spanning roughly 1.8δ in
x and 0.35δ in y . The trajectory of the jet is taken as the streamline emanating from the
center of the jet exit plane, as shown in Fig. 5.5a for several velocity ratios. It is evident
that the two highest velocity ratios of r = 0.5 and 0.6 result in trajectories with a high
likelihood of penetrating the upper edge of the logarithmic region (here indicated with
the dashed line at y/δ = 0.2) within x/δ < 0.5. As expected, with a lower velocity ratio
of r = 0.4, the jet trajectory remains within the logarithmic region for a prolonged dis-
tance (∼ 1δ) and is therefore adopted in the current study. The momentum coefficient
for r = 0.4 is Cµ = (ρjv

2
j lj)/(ρ∞U 2

∞δ) = 0.75, with lj = 0.15 mm being the length of the
jet exit-slit. Velocity ratios lower than r ≤ 0.3 cause the plume to remain within the log-
arithmic region for a longer streamwise extent. However, the feed system, including a
pressure regulator, was not able to produce a stationary flow across the slit, as relatively
large velocity fluctuations were observed over time.

(a) (b)

(c)

Figure 5.5.: (a) Trajectories of the wall-normal jet actuator flow within the grazing TBL
flow, for three different velocity ratios. Lower and upper bounds of the loga-
rithmic region are also indicated. A filled contour in the background shows
the magnitude of in-plane velocity for the r = 0.4 case; the jet exit slit is in-
dicated with a red line. (b) Phase-averaged jet exit velocity over 2048 on/off
cycles. (c) Periodic valve command over one period of T j = 1/ f j ≈ 83 ms.
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Latency is essential to consider in designing an opposition control system, for timing
purposes as well as the frequency response of the jet actuator. The hardware latency
associated with the time it takes for the compressed air to accelerate through the valve,
pneumatic tubing and flow conditioners, was quantified with an experiment: the valve
was operated at a constant frequency fj, with a 50 % duty cycle (for a total duration of
2048 periods). This frequency was based on a statistical time-scale of the LSMs, follow-
ing fj = Uc /(2lLSM) ≈ 12 Hz, where Uc is the convection velocity taken at the geometric
center of the logarithmic region, y+

L = 3.9
p

Reτ, and lLSM = 6δ is the statistical length of
a high- or low-speed region [Hutchins and Marusic, 2007, Baars and Marusic, 2019]. A
time-series of the jet exit velocity was measured with HWA as described in § 2.3.2, but
with the difference being the use of a Dantec 55P11 probe. This probe was placed at
y = 3 mm above the center of the jet exit slit. Phase-averaged responses of the jet exit
velocity (with t = 0 being the instant of the valve on-command) over all periods are pre-
sented in Fig. 5.5b. The velocity sharply rises approximately 1 ms after the on-command,
and overshoots its steady-state value after roughly 3 ms. Subsequently, steady-state is
reached at roughly 6 ms. When the valve receives the off-command, the shut down phase
lasts for approximately 10 ms before the exit velocity returns to zero. It was confirmed
that shortening the period of actuation did not alter the start- and shut-down transients.
Hence, the maximum frequency for which an on- and off-state is reached is constrained
by a 6 ms start-up time and a 10 ms shut-down time; this yields a frequency response of
fact ≈ 63 Hz. Table 5.2 reports the main values associated with the latency of the actuator
hardware.

Variable Description Value

τa,1 Start-up time of the valve 3 ms
τa,2 Time required for jet plume to reach the logarithmic region 3 ms
τa,3 Shut-down time 10 ms

Table 5.2.: Table reporting the latency values of the actuator hardware

5.4. CONTROL SYSTEM ARCHITECTURE
From a high-level perspective, the control system consists of a wall-embedded sensor
and actuator, and a real-time target machine. Downstream flow measurements are per-
formed to assess the controller’s performance. For the controller to be effective, it is
critical for the input sensor to provide sufficient information to estimate the state of
the to-be-controlled plant (i.e., the TBL flow). Similarly, the actuator is required to have
enough control authority to generate a significant effect in the logarithmic region, where
the large-scale structures are most energetic.

The control logic aims at actuating upon structures that convect in the logarithmic
region and that leave a footprint at the wall [Marusic et al., 2010, Baars et al., 2016]. Sim-
ilar to Abbassi et al. [2017], a Dantec 55R47 glue-on hot-film was selected as the surface-
mounted input sensor. Its sensing element measures 0.1 mm in the streamwise direction
(δx+

HF
= 3.2) and 0.9 mm (δz+

HF
= 28.8) in the spanwise one. The sensor is deposited on
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a ∼ 50µm thick (1.6l∗) KaptonT foil. This thickness makes the hot-film a non-intrusive
sensor, since it can be considered hydrodynamically smooth. The sensor was glued in
the spanwise center at x = −2.4δ (x = −0.17 m), to a polycarbonate insert within floor
panel C (see Fig. 5.1). Its lead-wires were routed downstream and out of the tunnel
through 0.4 mm diameter holes.

The hot-film was operated using a second CTA channel in the TSI IFA-300 anemome-
ter, also used for operating the hot-wire (§ 2.3.2). The sensor operating temperature was
set at 90 ◦C, yielding an overheat ratio of 1.18. No sensor calibration was performed or
applied, and so the raw voltage-output of the CTA bridge was fed directly into the con-
troller. Working with the raw voltage as proxy for the wall-shear stress is justified, given
that the control action is binary (controlling an on/off jet) and only involves thresholding
around the mean value of the input signal. Moreover, the system identification proce-
dure described in § 5.5 is performed with the raw voltage signal, and it was verified that
coherence characteristics are retained even without calibrating the sensor.

For actuation, a non-zero net mass flux blowing jet is used. Since its exit velocity and
frequency response can be tuned with relatively simple adjustments to the hardware,
this actuator is ideal for tuning the region of interaction between the jet flow and the
grazing crossflow. The development of a jet in crossflow is such that an upwash is created
downstream of the injection point as a result of wall-normal momentum injection. Addi-
tionally, the steady jet in crossflow creates a Counter-rotating Vortex Pair (CVP), originat-
ing from the roll-up of the jet plume as the mean shear of the crossflow transfers stream-
wise momentum to it. Off-centerline, this CVP generates a downwash [New et al., 2003,
Sau and Mahesh, 2008, Mahesh, 2013]. Note that an investigation of the off-centerline
behaviour of the boundary layer is not part of the current study; the sole focus is on the
impact of control directly downstream of the injection point (z = 0). The jet flow ex-
hausts in the grazing TBL flow through a rectangular exit slit. Given the requirement of
the control system to be persistent downstream, the slit was strongly elongated in the
streamwise direction and comprised dimensions of 15 mm × 1.5 mm (in the x and z di-
rections, respectively), or approximately 0.2δ×0.02δ. The streamwise elongation of the
jet exit slit ensures the formation of a more persistent vortical structure in the stream-
wise direction, compared to the case when the jet exit is circular in shape [Gutmark et al.,
2008, Pokharel and Acharya, 2021].

Compressed dry air feeds into the actuator, which is operated in an on/off state using
an electrically actuated, nominally closed, binary solenoid valve (FESTO MHJ-10-S-2).
By way of PIV characterization experiments, described in § 5.3, the frequency response
was quantified as well as the jet trajectory into the TBL crossflow as a function of the
jet exit velocity. For the frequency response, latencies were inferred from the charac-
terization experiments, and are associated with the time it takes for fluid to accelerate
through the pneumatic components (τa,1 ≈ 3 ms), for the jet plume to reach the loga-
rithmic region (τa,2 ≈ 3 ms), and for the jet to shut-down (τa,3 ≈ 10 ms). Even though
the solenoid valve has a maximum switching frequency of 1 kHz, the maximum operat-
ing frequency for which on- and off-states are reached is lower due to the latencies and
equals fact ≈ 63 Hz, given the 6 ms start-up time and 10 ms shut-down time. Concerning
the exit velocity, in the final control configuration it was set at vj = 0.4U∞ (vj = 6 m/s).
This ensured that the jet plume remained within the bounds of the logarithmic region for
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a downstream distance of approximately 1δ. As mentioned in § 5.3, a lower exit veloc-
ity can be beneficial to ensure a lower disturbance on the TBL flow; however, technical
limitations of the compressed air supply did not allow operation at lower r .

5.5. SYSTEM IDENTIFICATION PROCEDURE

The Linear Coherence Spectrum (LCS) evaluates the stochastic degree of coupling be-
tween the voltage fluctuations of the wall-mounted hot film, e(t ) [the input] and the
streamwise velocity fluctuations within the logarithmic region, u(t ) [the output], as a
function of the streamwise separation distance s. The LCS is defined as [Bendat and Piersol,
2000],

γ2
L( f , s) =

|〈E( f )U∗( f , s)〉|2

|〈E( f )〉|2|〈U ( f , s)〉|2
, (5.1)

where | · | denotes the modulus. Here E( f ) and U ( f , s) are the temporal FFT’s of the in-
put and output signals, respectively. The coherence is bounded by 0 (no coherence) and
1 (perfectly coherent) and is presented in Fig. 5.6a as a function of f δ/U∞ and sepa-
ration distance, s/δ. With an increase in s, the coherence decays only marginally and
its maximum value at low frequencies still remains at a level beyond 0.35 at the most
downstream position. Figure 5.6b shows the LCS for s = 2.4δ in specific, which corre-
sponds to the sensor-actuator spacing that was implemented (the reasoning for this is
provided in § 5.5.1). Fig. 5.6b shows an initial trend of coherence that is nearly constant
for low frequencies up to f δ/U∞ ≈ 0.1 with γ2

L ≈ 0.3, which is proven to be a sufficient
coherence-magnitude for an opposition control scheme on the large-scale energy (in
terms of its binary accuracy, see § 5.5.2). Coherence drops sharply for smaller scales be-
yond f δ/U∞ & 0.1, which renders it impossible to actuate upon those turbulence scales.

(a) (b)

Figure 5.6.: (a) Spectrogram of γ2
L( f , s), as a function of frequency and the separation

distance s between the wall-mounted hot film and velocity fluctuations in
the logarithmic region. Filled iso-contours correspond to magnitudes of
0.05:0.05:0.5. (b) One coherence spectrum for s = 2.4δ.
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An input-output relation can be inferred from a calibration experiment in order to re-
late the input’s voltage fluctuations to the velocity fluctuations at the downstream target-
point (see Fig. 5.7); allowing for an LSE of the latter during real-time control. Given the
presence of significant coherence, the linear transfer kernel, HL( f ), will relate an esti-
mate of the output (denoted with a hat) and the input signal in the frequency domain,
following

Û ( f , s) = HL( f , s)E( f ). (5.2)

The complex-valued kernel has a frequency-dependent gain and phase, given by

|HL( f , s)| =
|〈E( f )U∗( f , s)〉|

〈|E( f )|2〉
, and (5.3)

φH ( f , s) = arctan

{
I

[
〈E( f )U∗( f , s)〉

]

R
[
〈E( f )U∗( f , s)〉

]
}

, (5.4)

where 〈E( f )U∗( f , s)〉 is the input-output cross-spectrum.
Both the input sensor and actuator of the control system interact with the grazing

flow (see Fig. 5.7 for a schematic representation of the control system). The stream-
wise sensor-actuator spacing, s, has important implications given that an increase in s

will result in a progressive loss-of-coherence between the turbulence velocities at both
stations. Practically, there is a minimum (non-zero) spacing that is realizable for two pri-
mary reasons: (1) coherent structures in TBL flow possess an average streamwise incli-
nation angle of 14◦ to 16◦ due to the mean shear [Hutchins et al., 2012, Baars et al., 2017];
their footprints are only visible to the wall-based sensor after their signature has passed
in the logarithmic region, and (2) input processing introduces latencies in addition to
the one of the actuator described earlier. Hence, only with a non-zero distance s it can
be guaranteed that there is enough time to act upon LSMs in real-time. In order to in-
spect whether a sufficient correlation remains present between sensor and actuator for
a non-zero spacing s, a Single-Input/Single-Output (SISO) linear time-invariant system
analysis was applied as reported in Appendix 5.5. A sufficient level of linear coherence
was observed between the input and target locations (points I and T in Fig. 5.7), par-
ticularly for a sensor-actuator spacing of s = 2.4δ that is used in the current study. A mo-
tivation for this spacing is presented later on. Given the significant coherence, a linear
transfer kernel, HL , relating the streamwise velocity u(t ) in the logarithmic region (the
target point) to the voltage signal e(t ) of the hot-film (the input point) was determined
through an LSE procedure based on data of a control-off experiment (Appendix 5.5). A
bode plot of the frequency-dependent kernel HL( f ) is shown in Figs. 5.8a,b. A maximum
gain of |HL | ≈ 2.6 ms−1/V occurs at f δ/U∞ ≈ 0.06. The gain decays at higher frequency
and is retained up to a cut-off frequency of f δ/U∞ ≈ 0.7, at which the coherence drops
below a threshold of γ2

L = 0.05. Beyond this frequency, the scales are incoherent and the
kernel’s phase becomes random.

Instead of performing an estimation in spectral space following Eq. (5.2), the time-
domain convolution equivalent is embedded on a real-time controller. The convolu-
tional estimate is û(t ) = (h⊛e)(t ), with h being the inverse FFT of the frequency-domain
kernel, h(τ) = F

−1
[
HL( f )

]
(and h thus resembles a Finite Impulse Response (FIR) fil-

ter for the input data). The inverse FFT over the full range of frequencies for generating
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s

U∞

Hot-film
(Dantec 55R47)

Controller
(NI cRIO-9122)

Solenoid valve
(FESTO MHJ-10-S-2)

s = 2.4δ
LSMs

Jet actuator (vj = 0.4U∞)

HL

Dry air supply

T

I

yL

Figure 5.7.: Schematic of the control system for real-time boundary layer manipulation,
integrated in the W-Tunnel facility.

h(τ) from HL( f ) yields a kernel in the physical domain with the length of one ensemble
size (N = 217, thus ∆tN = 2.56 s). However, given that an FIR convolution in real-time in-
troduces an inherent delay of half the filter-width, the kernel h(τ) is only retained over a
temporal horizon of τH /2 = 7.5 ms (centered at the peak-instance of the FIR filter, see the
temporal extent of the dotted kernel in Fig. 5.8c). The shortened kernel length ensures
that the sensor-actuator spacing of s = 2.4δ is attainable in real-time. Note that omit-
ting the tails of the kernel is justified given the negligible contribution to the estimate.
Future improvements of a short kernel can be based on the Wiener-Hopf framework so
that causality of the kernel is taken into account [Martini et al., 2022].

Finally, the control loop was implemented on a National Instruments Compact Recon-
figurable Input-Output (NI-cRIO-9122) machine with an embedded Field Programmable
Gate Array (FPGA) chassis (cRIO-9022). The control logic was implemented in LabVIEW
on the FPGA chip with a loop frequency of fFPG A = 2 kHz, and FPGA processing was con-
ducted with a 16-bit fixed-point precision. The kernel h(τ) was down-sampled to the
loop frequency of the FPGA controller ( fHW → fFPG A). When operating in real-time, the
input signal was also sampled at the loop frequency with the aid of an analog-to-digital
NI-9234 input module. Trigger commands were provided to the solenoid valve with the
aid of a 5V analog signal that was relayed through a NI-9472 digital output module.

5.5.1. CONTROL LOGIC DEFINITION

For the control problem the actuator interacts with the high- and low-speed LSMs. Based
on the input sensor and the pre-identified transfer kernel, the controller is able to es-
timate the flow state û at the target-point through the convolution mentioned before:
û(t ) = (h⊛e) (t ). Note that input signal e(t ) is a zero-mean signal since the controller
only acts upon the fluctuations. The zero-mean signal was obtained in real-time by the
subtraction of a converged running mean over a 2 s interval duration [this accounts for
a potential drift in the hot-film reading, Jimenez et al., 1981]. Based on the real-time es-
timate û(t ), high- and low-speed zones are then targeted following a nominal control
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(a)

(b)

(c)

Figure 5.8.: (a,b) Bode plot of kernel HL( f ) with the frequency-dependent gain and
phase. The gain is shown with both the raw data and a bandwidth-moving fil-
tered version (25% bandwidth). (c) Kernel in physical time, both at the sam-
pling frequency of the calibration experiment (solid line; fHW = 51.2 kHz)
and at the controller frequency (round markers; fFPG A = 2 kHz).

law:

vj(t ) =
{

0.4U∞, if û(t ) ≥ 0

0, if û(t ) < 0
(5.5)

with vj being the binary velocity state of the jet actuator. This opposition controller
will thus only actuate on those large-scale events which are estimated to be more drag-
producing than the mean flow. A reinforcing controller was also implemented, where
the control law is inverted and the actuator targets a low-speed region instead. In order
to also isolate the effect of operating the jet in a synchronized manner with respect to
the incoming LSM structures, versus a desynchronized manner (in essence no real-time
control), a desynchronized control law was also implemented following Abbassi et al.
[2017]. For the desynchonized control, an on/off signal from the opposition control case
was used for actuation, irrespective of the input signal. Given the sensor-actuator spac-
ing s, the control system needs to digitize the analog voltage-input signal, convolve it
with the transfer kernel and generate the control-output within the time it takes for the
LSM structures to convect to the target point. With s = 2.4δ (s = 0.17 m) and Uc = 9.9 m/s,
this duration is τconv = s/Uc ≈ 17.2 ms. The sensor-actuator spacing was chosen based
on an analysis of the delays inherent to a real-time controller. First, as mentioned in § 5.5,
the real-time convolution of the input signal with the FIR-like kernel requires half the
temporal horizon, thus τH /2 = 7.5 ms. Additionally, a delay of τFPG A = 0.5 ms is added
due to the controller looping at fFPG A = 2 kHz. As explained in §5.4, the actuator itself
also introduces two sources of lag: τa,1 ≈ 3 ms and τa,2 ≈ 3 ms. In total, the controller
requires the following time for providing an output:

τC = τH /2+τFPG A +τa,1 +τa,2 ≈ 14ms. (5.6)
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Since τconv > τC the sensor-actuator spacing of s = 2.4δ yields a slightly conservative
setup. However, this was deliberately done so that control that would be ‘too early’ could
also be investigated. But, for the nominal opposition control mode presented in this
paper an extra delay of 7 control loops (i.e., 3.5 ms) was implemented for correct timing
of the opposition and reinforcing control modes.

5.5.2. PERFORMANCE EVALUATION OF THE STATE ESTIMATION

The state of the boundary layer that the controller actuates upon, û(t ), is an estimate.
To gauge the performance of the controller, the binary accuracy of the estimated state
will be considered, û(t ), that the control actuates upon. Fig. 5.9a displays the measured
streamwise velocity u(t ), as well as the LSE-based estimate simulating real-time condi-
tions. Note that the estimate û(t ) would be shifted by half the kernel’s horizon length as
a result of the real-time convolution, but this shift is omitted for evaluating the binary
accuracy. Since the controller only actuates based upon the estimated signal’s sign, it is
possible to binarize u(t ) and û(t ) and compare them directly. At every instant, a true pos-
itive (TP) prediction is made when both signals are positive, whereas both signals being
negative will yield a true negative (TN) prediction. Additionally, false positive (FP) and
false negative (FN) outputs will occur if u(t ) < 0 and û(t ) ≥ 0, or vice versa, respectively.
The binary accuracy (BACC) is then defined as,

BACC =
TTP +TTN

Ta
, (5.7)

with the numerator representing the cumulative time that the estimate is true posi-
tive (TTP ) and true negative (TTN ). Note that a BACC of unity does not mean that the
û(t ) = u(t ), but only that sg n [û(t )] = sg n [u(t )] ∀ t . Fig. 5.9b reports the binary perfor-
mance with BACC equal to 72.1%. This value is significantly larger than 50 % (which
would indicate a random process) and justifies the wall-based sensing approach for re-
active real-time control. In fact, albeit the imperfect binary accuracy, results in later sec-
tions corroborate a statistically correct implementation and targeting of the large-scale
structures.

5.6. RESPONSE OF THE TURBULENT BOUNDARY LAYER FLOW

5.6.1. MEAN FLOW AND TURBULENCE KINETIC ENERGY

Wall-normal profiles of the mean velocity and streamwise TKE (based on the hot-wire
profile taken at x = 2δ) aid in explaining the effect of control on the TBL, and allow for a
direct comparison to the work of Abbassi et al. [2017]. Fig. 5.10a presents the profiles for
both the uncontrolled flow and the opposing, reinforcing and desynchronized control
cases. It is evident that only in the logarithmic region a velocity deficit manifests itself
for the control cases, in comparison to the uncontrolled flow. This is consistent with the
jet injecting momentum in the wall-normal direction, thereby reducing streamwise mo-
mentum from the grazing TBL flow [Smith, 2002, Mahesh, 2013]. At x = 2δ, the jet plume
penetrates primarily within the logarithmic region (recall Fig. 5.5a and its discussion),
while the mean velocity in the inner region already recovered to the uncontrolled flow
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(a) (b)

Figure 5.9.: (a) Sample portion of the measured streamwise velocity u(t ), at x = 0 and
y = yL , compared to the estimated velocity û(t ). (b) Pie chart of the binary
performance of the estimation, with in blue the true positive (TP) and true
negative (TN) predictions; in red the false positive (FP) and false negative
(FN) ones (values are in percentage).

condition. Since the jet is activated for the same fraction of time amongst all three con-
trol modes (50 %), the wall-normal momentum being injected into the boundary layer is
equal and thus explains the collapse of the profiles in Fig. 5.10a.

Distinctions between the control modes become apparent from the streamwise TKE,

u2, presented in Fig. 5.10b. All profiles collapse in the wake and show that the control in-
fluence is confined to the inner region. Near the upper edge of the logarithmic region, a

hump of u2 occurs for all control modes and increases when moving from the opposing,
to the desynchronised, and finally to the reinforcing control case. This trend is reflec-
tive of the presence of an internal shear layer between the upper side of the jet plume
and the grazing TBL flow [Sau and Mahesh, 2008]. The opposing control case lowered
the u-variance the most, below y/δ ≈ 0.1. This reduction is not only apparent in the
logarithmic region, but persists down to the wall.

To analyse how the energy across all turbulent scales is changed as a result of control,
premultiplied energy spectra are considered in a similar manner as in Fig. 2.3b. Fig. 5.11a
displays the spectrogram f +φ+

uu,des
( f , y) for the desynchornized case with the black iso-

contours, overlayed on a filled contour that represents the percentage difference in spec-
trograms between said case (φuu,des ) and the uncontrolled flow (φuu,unc ), following

∆φuu =
φuu,des −φuu,unc

φuu,unc
×100. (5.8)

A region of remarkably higher energy is observed above y/δ ≈ 0.1 for all frequencies.
This relates to the location where an increase in streamwise TKE was also observed in
Fig. 5.10b (note that u2 =

∫
φuud f ). Given the nature of the jet actuator, not only wall-
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(a) (b)

Logarithmic region

Logarithmic region

Figure 5.10.: (a) Wall-normal profiles of mean streamwise velocity, U /U∞, and (b)

streamwise TKE, u2/U 2
∞, for the uncontrolled case, as well as for the three

control modes, at x = 2δ.

normal momentum is imparted to the flow, but the shear layer developing between the
jet plume and the TBL flow enhances turbulent fluctuations. This increase in TKE is thus
broadband in nature and is unavoidable with the current type of actuator flow. In fact,
actuation by means of unsteady wall-normal momentum injection biases the effect of
control towards an increase in energy in the logarithmic region and wake of the TBL,
irrespective of the control law. However, this was measured not to have an effect on the
absolute skin-friction, as will be presented in § 5.7. Below y/δ≈ 0.1, a slight decrease in
energy is observed. The superposition effect that the jet actuator was suggested to have
in §5.6.1 also appears to be present over a vast frequency band in proximity to the wall
(0.1 < f δ/U∞ < 10). To highlight the changes in spectral energy that the turbulence in
the boundary layer undergoes as a result of purely the control logic, and not the actuator-
induced flow, reactive control cases are compared to the desynchronised one.

Figs. 5.11b and 5.11c present the percentage difference in the spectrograms with re-
spect to the desynchronised control mode for the TBL targeted by opposing and re-
inforcing control, respectively. An almost perfect symmetry is visible: a region of re-
duced energy for opposing control is juxtaposed to one of increased energy for the re-
inforcing control mode, with a maximum effect residing around the geometric center
of the logarithmic region at y+

L
= 3.9

p
Reτ (indicated by the dashed line). A reduction

of ∼ 40 % in φuu in the opposing mode is accompanied by a ∼ 45 % increase in spectral
energy for the reinforcing case. For both modes, the largest change in energy is con-
centrated at f δ/U∞ < 0.1, which indicates a successful targeting of the low-frequency
(i.e., large wavelength) structures in the logarithmic region. Recall from § 5.5 that the
higher-frequency (smaller-scales) cannot be targeted with the real-time controller due
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(a) (b) (c)

Figure 5.11.: (a) Filled contours: percentage difference in the premultiplied energy spec-
trograms of the streamwise velocity, between the TBL affected by desyn-
chronised control and the uncontrolled case. Black contours: spectro-
gram of the TBL flow subject to desynchronised control (contour levels at
0.4:0.4:2.0). Light blue contours: spectrogram of the uncontrolled TBL flow
(contour levels at 0.4:0.4:2.0). (b) Percentage difference spectrograms be-
tween the flow subject to opposing control and the desynchronised case. (c)
Percentage difference spectrograms between the flow subject to reinforcing
control and the desynchronised case. Difference in the energy spectrum
at yL shown below the contour plots in (a,b,c) for the corresponding case.
All spectrograms were acquired at x = 2δ and filtered with a bandwidth-
moving filter of 25% in width.

to the absence of input/output coherence at these scales. Energy spectra in the geomet-
ric center of the logarithmic region (displayed explicitly in the insets below the contour
plots in Fig. 5.11) furthermore reveal how the percentage difference collapses to zero for
f & 0.3U∞/δ.

5.6.2. CONDITIONALLY AVERAGED VELOCITY FLUCTUATIONS

Conditional averages of the streamwise velocity were constructed for examining the local
response of the TBL flow. Time-series of the streamwise velocity acquired using HWA at
all 40 wall-normal locations in the boundary layer were conditioned on the positive-
gradient zero-crossings of the estimated velocity signal, û(t ), following

ũ(y,τ) = 〈u(y, t ) |
(
û(y, t ) = 0 ∧ Çû/Çt (y, t ) > 0

)
〉, (5.9)
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with τ being the time coordinate of the conditional average and τ = 0 corresponding to
the positive-time-gradient zero-crossing. The present work considers the conditional
average in a variable time interval (VTI) formulation [Erengil and Dolling, 1991]. Given a
signal α(t ), it can be binarized to obtain α(t ) = 1 where α(t ) ≥ 0 and α(t ) = 0 otherwise.
In the context of the work, this signal corresponds to the estimated velocity signal û(t ),
which is thresholded to create the on/off signal that drives the actuator in real-time. For
the VTI analysis, following Eq. (5.9), the signal is conditioned α(t ) on the rising edges of
the binarized signal α(t ) between the previous and the consecutive falling edges:

α̃(τ) =
Nc∑

i=1

[
α(t ) | (t f ,i−1 < τ< t f ,i )

]

Nc
, (5.10)

with Nc being the total number of conditioning points (i.e. the total number of averaged
signal samples), t f ,i is the time instant corresponding to the falling edge in α(t ) following
the conditioning rising edge and t f ,i−1 the instant corresponding to the preceding falling
edge.

The conditionally averaged velocity contour, ũ(y,τ)/U∞, is shown in Fig. 5.12 for the
uncontrolled, opposing and reinforcing control cases. The time coordinate τ is non-
dimensionalized using the factor U∞/δ, making it representative of the non-dimensional
distance from the streamwise position of the actuator to the downstream position of the
hot-wire probe (x = 2δ). Thus, the zero-crossing occurs at τU∞/δ = (2δ/Uc )U∞/δ ≈ 3
(remember Uc = u(y+

L
≈ 190) is the convection velocity in the logarithmic region). In

the contour representation a total time-interval of ∆τU∞/δ≈ 11.2 is presevered around
the conditioning point. When the convection velocity reduces, such as at locations close
to the wall, the time needed for the response to be measured is longer. Hence, the time-
instant of the zero-crossing in ũ(y,τ) gradually shifts towards increasing values of τwhen
approaching the wall.

The uncontrolled case in Fig. 5.12a reports the baseline velocity fluctuations the con-
troller will actuate upon. The effect of control becomes apparent in the conditional av-
erages for the opposing and reinforcing cases. The former causes an overall reduction
of more than 60 % in the amplitude of the oscillation observed in the uncontrolled case,
while the latter clearly amplifies it by approximately 60 %. This effect is particularly visi-
ble in the bottom insets, showing the conditionally-averaged time-series at yL . Residing
back to the wall-normal TKE profiles presented in Fig. 5.10b, an increase in TKE in the
logarithmic region and in the wake of the TBL was noticeable when control is active.
However, this is accompanied in the conditional average with still a reduction in the am-
plitude of ũ as seen in Fig. 5.12. This can be explained as follows: the spectrograms in
Fig. 5.11 revealed a broadband increase in energy in the wake of the TBL. Since the con-
troller only detects and acts upon large-scale velocity structures, with frequencies lower
than f δ/U∞ . 0.3, conditionally-averaging on the velocity fluctuations targeted by con-
trol inherently averages-out the small-scale fluctuations.

Conditional average velocity fluctuations as shown in Fig. 5.12 only report the fluctu-
ations in streamwise velocity as a result of control, but fail to capture the global interac-
tion of the actuator flow with the grazing TBL flow. This void can be filled by utilizing
PIV velocity fields, which are here presented for a domain with dimensions of roughly
1.8δ×0.8δ (half of the FOV listed in the bottom line of Table 5.1). Processing was per-
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(a) (b) (c)

Figure 5.12.: Conditionally averaged response, ũ/U∞(y,τ), of the streamwise velocity,
conditioned on the zero-crossing positive-time-gradient of the estimated
signal û(t ). Detail of response at yL shown below the filled contour plot. (a)
Uncontrolled flow, (b) opposing and (c) reinforcing control modes.

formed with the aid of LaVision DaVis 10.2 utilizing a multi-pass approach, leading to a
final vector resolution of 2.25 vectors/mm. The acquisition was synchronized to the con-
troller and was triggered with a specified delay, relative to the instance of an actuator on-
command. This was repeated for a sequence of delays, allowing a visualization of the jet
plume entering into the grazing TBL flow. The fields shown in Fig. 5.13 display the per-
centage variation of the streamwise velocity component, ∆ucontr ol =

(
ucontr ol /uunc −1

)
×

100 (%), with respect to the uncontrolled flow for three temporal delays, τ̃. Results for
the opposing control mode are shown in the top row, whereas the results correspond-
ing to the reinforcing strategy are shown in the bottom one. The low-velocity (blue)
region on the bottom of each contour plot corresponds to the jet plume entering the
domain. At an early stage (τ̃U∞/δ = 1.1, or τ̃ = 5 ms), a higher-than-average velocity is
observed for the opposing case, which also persists at τ̃U∞/δ= 2.1 (τ̃= 10 ms), suggest-
ing that the controller successfully targets high-speed events. The opposite condition is,
instead, measured in the reinforcing control scenario, where the controller is observed
to intervene on low-speed events rather than high-speed ones. When time elapses to
τ̃U∞/δ = 4.3 (τ̃ = 20 ms), the conditional flow field evolves to a condition where lower
and higher streamwise velocity above the actuator are observed for the opposing and
reinforcing cases, respectively.
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Figure 5.13.: Phase-averaged field of the percentage variation of mean streamwise ve-
locity component u for opposing (top row) and reinforcing (bottom row)
control modes with respect to the uncontrolled flow. Phase-averaged ac-
quisition acquired at τ̃U∞/δ= 1.1, τ̃U∞/δ= 2.1, and τ̃U∞/δ= 4.3. All fields
were filtered with a Gaussian filter having a kernel width of 0.25δ×0.25δ and
σ= 0.1δ. Dashed lines indicate the position of the hot-wire profile. Shown
in red is the position of the jet exit slit.

5.7. EFFECT OF CONTROL ON TURBULENT SKIN-FRICTION

DRAG
The principal goal is to investigate the change in turbulent skin-friction drag in relation
to a control logic that specifically targets drag-producing large-scale structures. While
any wall-normal jet actuator causes reductions in wall-shear stress, which can even lead
to flow separation in the near-field of the actuator for elevated momentum coefficients,
the goal of this section is to illustrate the benefits of performing timely actuation to at-
tenuate high-momentum large-scale events.

The dimensional form of the wall-shear stress, τw = µÇu/Çy |y=0, is analysed in terms
of the skin-friction coefficient,

C f =
τw

q∞
= 2

U 2
τ

U 2
∞

. (5.11)

Here, q∞ = ρ∞U 2
∞/2 is the freestream dynamic pressure. However, due to heat transfer

effects from a hot-wire to the tunnel’s surface, the HWA technique cannot reliably cap-
ture the velocity in the linear region [Shi et al., 2003, Zanoun et al., 2009]. As such, tradi-
tional estimates of C f from hot-wire measurements typically rely on boundary layer scal-
ing laws and mathematical fits to the streamwise velocity profile (e.g., the composite fit
[Chauhan et al., 2009] or the well-known Clauser fit procedures). With a boundary layer
strongly affected by control and additional momentum injection from the jet actuator,
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the assumptions behind these methods are violated. Therefore, a direct measurement of
the velocity gradient at the wall, based on PTV, is pursued in the current work.

5.7.1. SKIN FRICTION DETERMINATION FROM PTV
The PTV technique was applied to a relatively small FOV of size 0.33δ×0.28δ (recall Ta-
ble 5.1). The acquisition was not time-resolved, thus all PTV tracks consist of only two
points. A PTV-based approach was implemented with an unparalleled resolution of ve-
locity vectors over a PIV-based technique. With the given pixel resolution and typical in-
terrogation window sizes, only very few valid vectors would be obtained from PIV in the
linear region (y+ < 5) for the Reynolds number of Reτ ≈ 2240. Given the linear depen-
dence u+ = y+ for the velocity profile in this region, only two measurement points would
theoretically be required to compute the gradient, Çu/Çy . However, more information is
required to increase the robustness of the measurement-based due to stochastic noise
and uncertainty. The following six post-processing steps were implemented to infer the
skin-friction data from the raw images.

1. Particle track computation. 2D Lagrangian particle tracks are computed with the
aid of LaVision DaVis, version 10.2. Only a small subset of the original FOV is re-
tained, that encompasses the wall and a small region above and below it (∆y =
0.05δ and the full streamwise extent).

2. Wall identification. Reflections of the particles in the flow result in mirrored parti-
cle tracks “below" the wall. This reflection allows for a precise identification of the
wall. The ensemble-averaged mean velocity field is computed through traditional
PIV processing on a subset of image pairs (500 out of the 2 000 in total), after which
the wall position is found by utilizing the wall-mirrored field [Kempaiah et al., 2020,
Sun et al., 2021]. That is, a parabola fitted to points in the linear region (both above
and below the reflection line) yields u = f (y). Its minimum velocity point is taken to
be the y-position of the wall, denoted as yw . This procedure is performed over 330
streamwise positions spanning the entire FOV (corresponding to the vector spacing
of the coarse PIV processing), resulting in a functional form for the wall position,
yw (x).

3. Particle track correction. Each y-coordinate from the particle tracks found in step
1 is corrected to account for the true wall-position. This correction is based on
each x position of the particle track, for which the wall position yw (x) is known.
After this correction, the wall-normal profiles of u are symmetric around y = 0, as
seen in Fig. 5.14.

4. Binning definition. All corrected tracks are binned spatially. Streamwise-elongated
bins of size 128×1 pix2 are initialized. Given the pixel resolution of the images, this
equates to a size of 1.08×0.008 mm2 (34.7l∗×0.27l∗). Note that the FOV spans 20
bins in x (given the 2 650 pixels in the streamwise direction, and the 128 pixel bin
size). The degree of elongation is only feasible if the wall is parallel to the major axis
of the bin, which was ensured through steps 2 and 3.

5. Binning procedure. Each individual particle track is collected in the bins defined
in step 4 according to the coordinates of their mid-points.
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6. Velocity profile generation. Particle tracks in each bin are averaged to compute the
mean streamwise velocity per bin. Knowing the vertical bin spacing, the gradient
Çu/Çy can be determined to infer C f .

The higher the number of particle tracks, the more statistically reliable the estimation
of the mean C f becomes. A convergence analysis was performed by considering one
single bin at y+ ≈ 15, where the highest fluctuations in streamwise velocity fluctuations
occur. For convergence of the mean streamwise velocity u, it was found that at least
1 500 image pairs are required for an estimate within 0.8 % of its final value (determined
from all 2 000 image pairs).

For each of the vertical profiles (each corresponding to one column of bins), 18 veloc-
ity vectors reside within the range y+ < 5. Fig. 5.14 displays 9 wall-normal profiles of u.
The (corrected) wall is positioned at y = 0 and is shown with the blue dashed line. Due
to some noise in the particle images in proximity to the wall, the points that were se-
lected for determining the gradient Çu/Çy were within the range 2 < y+ < 4.5 (a buffer of
0.5l∗ is taken between the linear and the buffer regions). This results in 11 points (black
markers in Fig. 5.14) being available for fitting the linear relation, shown in light blue.
To enforce the no-slip condition at the wall, the fitting procedure also includes the con-
straint (u, y) = (0,0). The final value of the wall-shear stress is taken as the average of the
individual gradients computed from each of the 20 wall-normal profiles in one FOV, thus
assuming streamwise-invariance.

Figure 5.14.: PTV-based profiles of the streamwise velocity u with increasing wall-normal
distance y for the uncontrolled flow at the FOV centered at x/δ = 2.0. Pro-
files are sequentially separated in the horizontal direction by ∆u = 2 m/s for
ease of inspection.

The procedure thus far allows for an estimation of C f for each FOV of the PTV cam-
paign and thus for the three FOV’s centered at x/δ = {2,2.5,3} (recall Fig. 5.1c). At the
same time, four control modes are considered (uncontrolled flow, and desynchronized,
opposing and reinforcing control). Fig. 5.15a displays the percentage difference between
the C f of the desynchronized case and the one of the other three cases (thus ∆C f =
100(C f ,i −C f ,des )/C f ,des , with i being the control mode in consideration and C f ,des cor-
responds to the desynchronized case). The choice of the desynchronized control as the
reference case follows the same reasoning as was followed in presenting the spectro-
grams in § 5.6.1. Opposing control shows a reduction of 7-11 % in C f , whereas the rein-
forcing case reduces friction by 3-7 %, depending on the streamwise location. All control
modes appear to reduce friction drag with respect to the uncontrolled flow, which is
mainly the consequence of the jet injecting wall-normal momentum, which reduces the
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streamwise momentum of the grazing TBL flow. Reinforcing control has a comparable
effect on the TBL to the desynchronised mode in this regard, but it is evident that the
opposing mode reduces C f by 2-3 % for all streamwise locations.

(a) (b)

Coles-Fernholz

Figure 5.15.: (a) Percentage difference between the skin-friction coefficients of uncon-
trolled, opposing and reinforcing cases with respect to the desynchronized
one with error bars showing the uncertainty. (b) Absolute skin-friction co-
efficient for the four control modes with error bars showing the uncertainty.
Dashed line plotted for the value of C f estimated from the Coles-Fernholz
relation.

Fig. 5.15b displays the absolute skin friction coefficient. The displayed error bars were
computed by assuming that each vertical profile of the streamwise velocity from binned
PTV tracks generates a statistically independent result, and thus indicate the estimation
uncertainty. This uncertainty can be attributed to two main factors: (1) the uncertainty
in the convergence of the average streamwise velocity from the PTV measurements, and
(2) the uncertainty in the linear fitting procedure described earlier. The former can be
computed by considering the number of tracks in each bin and can be defined as ε =
σu/

p
Nt , where σu is the standard deviation of the streamwise velocity samples in the

considered bin and Nt the number of tracks. The latter source of error stems from the
linear fitting procedure at each streamwise location and is defined as the average RMS
residual across all fitted curves.

The skin friction from the empirical Coles-Fernholz relation (C f = 2
[ 1
κ lnReθ+C

]−2
,

with κ = 0.38, C = 3.7 and Reθ = 6830) is also plotted in Fig. 5.15b. The uncontrolled
flow experiment yields a C f that is roughly 15 % lower than the one found with the
skin-friction determination. This discrepancy is minor, given that the empirical Coles-
Fernholz relation is valid for equilibrium (ZPG) and smooth-wall TBL flow. The experi-
ment may include a residual signature from the upstream trip [Marusic et al., 2015] and
the jet exit slit embedded within the wall. As such, the uncontrolled and desynchronized
cases serve as baseline scenarios.

5.7.2. TURBULENT SKIN FRICTION INTEGRALS

Direct assessments of skin friction do not capture the mechanisms behind skin-friction
generation. Analysis of PIV data on a larger field of view allows for the computation
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of TBL integral measures, and to relate them to the changes in skin friction for differ-
ent control modes. The work of Abbassi et al. [2017] is thus extended, in an attempt to
shed more light on the effect of the different control modes on the main skin-friction-
generating mechanisms. At first, the TKE production term is informative for investi-
gating the relation between the mean C f and fluctuations of velocity. TKE production is

defined as the product of the Reynolds stress component Rx y = u′v ′ and the wall-normal
gradient of u [Pope, 2000], for a “two-dimensional" turbulent boundary layer:

P
(
y
)
=−u′v ′ Çu

Çy
. (5.12)

A bulk TKE production following P̃ =
∫

P (y)dy is an indicator of the total turbulent
shear stress within the TBL flow [Deck et al., 2014, Harsha and Lee, 1970]. Essential to
the computation of P is the Reynolds shear stress Rx y , of which a comparison is shown
in Fig. 5.16, for the uncontrolled and the desynchronised control cases. While for the un-
controlled case the Reynolds stress monotonically decreases with increasing y (and re-
sembles a streamwise invariant behaviour), the desynchronised case is associated with a
band of high-magnitude Rx y around y/δ≈ 0.35 at x/δ= 2. A large increase in the magni-
tude of Rx y occurs where the jet enters the domain. As the plume develops into the mid-
to-far field of the jet actuator, given the relatively low velocity ratio, the plume resembles
a concatenation of hairpin vortices, which eventually rise and break up Sau and Mahesh
[2008], creating an internal shear layer and, thus, an increase in turbulent fluctuations.
The signature of high Rx y magnitude persists to the downstream end of the FOV in
Fig. 5.16b.

(a)

(b)

Jet trajectory

Hot-wire profile

Hot-wire profile

Figure 5.16.: Contours of the Reynolds stress Rx y obtained from PIV data for (a) the un-
controlled flow, and (b) the desynchronised control case; the jet trajectory
is duplicated from Fig. 5.5a. Shown in red is the position of the jet exit slit.

To continue a more quantitative assessment, the TKE production term at a single stream-
wise location (x = 2δ) is considered first. Further on, this is extended to all streamwise
locations captured by the PIV data in Fig. 5.16. So for x = 2δ, Fig. 5.17a displays the
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premultiplied TKE production term as a function of wall-normal distance, for the four
control modes. Streamwise averaging over a width of 0.2δ in the interval 1.9 < x/δ< 2.1
was performed to attenuate measurement noise. The production curve for the uncon-
trolled case rises to a maximum around y/δ ≈ 0.01, before plateauing in the logarith-
mic region and further decreasing into the wake; this is consistent with the literature
[Harsha and Lee, 1970, Pope, 2000]. The TKE production curves for all other cases show
a lower magnitude, up to y/δ ≈ 0.2. The region of strong Rx y on the upper side of the
jet flow-trajectory (seen in Fig. 5.16b) is responsible for the drastic increase in P . In
order to assess changes in the bulk TKE production, integrals of the curves shown in
Fig. 5.17a are considered. Here, the integration is split into two different domains. A
first contribution comes from integrating the profiles from the lowest y-location up to
y/δ = 0.2, where the control cases show a decrease in TKE production. A second con-
tribution comes from the part of the curve at y/δ > 0.2, up to the upper edge of the
FOV near y/δ ≈ 0.8. Fig. 5.17b displays the two portions of the bulk TKE production as
a percentage change with respect to the uncontrolled flow. The first integral shows a
trend that resembles the behaviour observed in Fig. 5.15. Namely, the uncontrolled case
shows the highest value, followed by reinforcing, desynchronized and opposing control
modes. The integral in the outer region of the boundary layer contributes up to ∼ 30%
to the total integral value, P̃ , in the uncontrolled case. For the flow subject to control,
this shows a drastic increase of the control modes’ production term with respect to the
uncontrolled flow, which is again ascribed to the region of strong Rx y in Fig. 5.16b. This
drastic increase in off-diagonal Reynolds stresses is purely related to the development
of a shear layer between the main jet plume and TBL crossflow and does not alter the
principal working mechanism of the opposition control logic, as can also be observed
from direct skin-friction measurements (see Fig. 5.15).

Fukagata et al. [2002] derived the so-called FIK identity to decompose the flow con-
tributions to turbulent skin friction coefficient into three components, each of which is
responsible for a different mechanism of skin-friction generation [Fukagata et al., 2002,
Kasagi and Fukagata, 2006]. The first component (C f ,1, Eq. 5.13a) is dependent on the
displacement thickness of the boundary layer and is known as the “laminar component".
For a TBL flow, C f ,1 only accounts for a marginal fraction of the total friction coefficient
(about 1.4% in the present study). The second component (C f ,2, Eq. 5.13b) is related
to turbulence fluctuations generating wall-shear and is dependent on the off-diagonal
Reynolds stress. Finally, the last component accounts for the spatial and temporal de-
velopment of the flow (C f ,3, Eq. 5.13c) and is relatively small for a ZPG-TBL [Deck et al.,
2014]. For the current analysis, given long-time average statistics, the temporal term
Çu/Çt can be neglected.
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(a) (b)

y/δ= 0.2

Figure 5.17.: (a) Plot of normalized, premultiplied TKE production yP =
y u′v ′(ÇU /Çy)/U 3

∞, as a function of wall-normal distance at x = 2δ and the
four control modes. Wall-normal profiles of P were computed by averaging
PIV data in the streamwise direction in the interval 1.9 < x/δ < 2.1. (b) Bar
chart displaying the percentage difference of the integrated TKE production
term with respect to the uncontrolled flow, for 0 ≤ y/δ ≤ 0.2 (blue) and for
0.2 < y/δ≤ 0.8 (grey bars).

C f ,1 =
4(1−δ∗/δ)

Reδ
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In must be stressed here that a few assumptions underlying the formulation of the FIK
identity are not met in the present work. Namely, the controlled TBL is not in a canonical
state (especially in the region close to the actuator) and the flow is spanwise inhomoge-
neous. However, given the complexity in performing direct skin-friction measurements
and the strong relation that exists between the principal term of the FIK identity, C f ,2,
and drag-producing mechanisms, it is still explored as a metric in evaluating the change
in flow physics as a result of control on the TBL and validating the drag-reducing trend
inferred with direct C f measurements.

The integrand of C f ,2 ( f2(y) in Eq. 5.13b) vaguely resembles the premultiplied TKE pro-
duction term, where Rx y is scaled with the wall-normal coordinate. However, the former
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scales directly with y , while the latter scales with 1− y/δ, thus being multiplied by a fac-
tor that decreases with wall-normal distance. Fig. 5.18a displays the integrand of C f ,2 as
a function of y/δ and the four control modes. A steady rise is observed up to y/δ≈ 0.01,
followed by a plateauing region. In the wake of the boundary layer, again a sharp peak
is reminiscent of the enhanced Reynolds shear stress caused by the jet plume. Fig. 5.18b
shows Eq. (5.13b) split up in two contributions: again, up to y/δ = 0.2 (blue) and from
0.2 to the edge of the FOV (grey). Also for this metric, the observation can be made that
the opposing control law is the most effective in lessening shear stress (at least when
integrated up to the y/δ= 0.2).

(a) (b)

y/δ= 0.2

Figure 5.18.: (a) Integrand of the C f ,2 expression of Eq. (5.13b) as a function of wall-
normal distance, for x = 2δ and the four control modes. (b) Bar chart dis-
playing the percentage difference of the integrated ÇC f ,2/Çy term with re-
spect to the uncontrolled flow, for 0 ≤ y/δ ≤ 0.2 (blue bars) and for 0.2 <
y/δ≤ 0.8 (grey bars).

The analysis of turbulent skin-friction drag integrals assists in identifying where im-
portant mechanisms occur within the TBL that contribute to the generation of skin-
friction drag. Both the integrated TKE production (Fig. 5.17) and C f ,2 (Fig. 5.18) reveal
how the spatio-temporal dynamics of the TBL are altered as a function of y . The full
integrals over the available wall-normal range suggest an increase in skin-friction drag,
but this contradicts the measured skin-friction coefficients presented in § 5.7.1. This dis-
crepancy can be explained by analysing the trends of the curves in the wake of the TBL
flow. By inspection of the TKE profiles in Fig. 5.10b, as a well of the distribution of Rx y in
Fig. 5.16b, it is evident how the jet plume created by the actuator is responsible for this
sudden rise. Instabilities induced by the break-up of the shear layer of the jet in the TBL
are superimposed on top of the naturally-occurring Reynolds stresses, thus biasing the
integral values of P̃ and C f ,2. Still, the reduction in the integrand curves observed in the
logarithmic region and below show that the main wall-shear producing dynamics are, in
fact, suppressed below the wall-normal coordinate where Rx y suddenly rises.

The integrand of C f ,3 ( f2(y) in Eq. 5.13c) is presented in Fig. 5.19a at x = 2δ and shows
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a rather low and constant value, especially when compared to the dominant (second)
component, as illustrated in the bar chart in Fig. 5.19b. Here, the relative contributions of
the three components of skin-friction are presented for the uncontrolled case as well as
the three control modes, in comparison to the friction coefficient components obtained
for the uncontrolled flow. For the latter, the magnitude of the relative contributions of
the three components of skin-friction to the total wall-shear is in accordance with the
results of Deck et al. Deck et al. [2014] at Reθ = 7,000. For the three active control modes,
it is evident that the dominant contributing component is C f ,2 at y/δ > 0.2, which is
greatly increased by the actuator-induced internal shear layer.

(a) (b)

y/δ= 0.2

Figure 5.19.: (a) Integrand of the C f ,3 expression of Eq. (5.13c) as a function of wall-
normal distance, for x = 2δ and the four control modes. (b) Bar chart dis-
playing the relative contribution to the total skin-friction coefficient of each
of the three FIK-components for the four control modes. A further subdivi-
sion of C f ,2 is made to report contributions from different regions in wall-
normal direction.

While Figs. 5.17, 5.18 and 5.19 present an analysis of the turbulence integral quan-
tity at one streamwise location of x/δ = 2, Fig. 5.20 illustrates the streamwise varia-
tion of the same integral quantities over the whole domain captured by the PIV acquisi-
tions. As it was the case for the above-mentioned figure, integration was performed on
streamwise-averaged wall-normal profiles having a width of 0.2δ. Figs. 5.20a and 5.20c
display the streamwise variation of the integral quantities in the vicinity of the jet ac-
tuator (−0.1 ≤ x/δ ≤ 1). Given the dominant presence of the jet exit plume developing
through the inner region of the TBL in the considered part of the domain, strong spatial
gradients are hereby induced, which result in the local integral attaining extreme values.
Figs. 5.20b and 5.20d, however, report the same variation in a region of the fluid domain
where the streamwise development of the jet plume has tapered off. Here, the trend
that was already discussed in Figs. 5.17 and 5.18 is evident for a much larger streamwise
extent. The opposing control scheme causes the most reduction in both P̃ and C f ,2,
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with reinforcing control instead causing either an increase or no change in either met-
ric. Given that direct skin-friction measurements are characterized by a relatively high
uncertainty, this trend consistency also serves as validation to the direct inference pro-
cedure.

(a) (b)

(c) (d)

Hot-wire profile

Hot-wire profile

Figure 5.20.: (a,b) Streamwise percentage variation in turbulence kinetic energy inte-
grated in the region 0 < y/δ ≤ 0.2 for the three cases influenced by control
with respect to the uncontrolled flow. Shown for (a) −0.1 ≤ x/δ ≤ 1 and (b)
for 1 < x/δ ≤ 3. (c,d) Streamwise percentage variation in C f ,2 integrated
in the region 0 < y/δ ≤ 0.2 for the three cases influenced by control with
respect to the uncontrolled flow. Shown for (c) −0.1 ≤ x/δ ≤ 1 and (d) for
1 < x/δ≤ 3.

5.8. CONCLUSIONS
This chapter reports an experimental implementation of a real-time control system based
on instantaneous wall-shear stress fluctuations. The results confirm the successful im-
plementation of a drag-reducing real-time control strategy, with drag reduction of about
3% for the opposing control scenario. However, the core of the work lies in the under-
standing of the alteration of the skin-friction drag production mechanisms by means of
the investigation of the integral drag measures. Although an increase in the drag integral
statistics is observed above the logarithmic region, which is induced by the increase in
fluctuations caused by the breakup of the actuator-induced flow, drag production met-
rics are considerably attenuated in the logarithmic region and below. In general, this
works proves the effectiveness of targeting LSMs, pointing at a considerable streamwise
persistence of this control method.
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WALL-PRESSURE INPUT

Your vision is not limited by what your eye can see, but by what your mind can imagine.

Ellison Onizuka (STS-51-L)

A multiple-input multiple-output control logic is experimentally implemented for real-

time control of large-scale velocity fluctuations in a turbulent boundary layer. Spatially

sparse wall-pressure data are employed as the input quantity to the controller, measured

by a spanwise array of microphones. Downstream of these, a spanwise array of on/off

wall-normal jet actuators oppose large-scale positive streamwise velocity fluctuations in

real-time. System identification is performed by applying an adaptive Wiener filtering

procedure to relate the system state (streamwise velocity fluctuations) to the system input

(signals of wall-pressure and wall-pressure–squared). In particular, the wall-pressure–

squared term exhibits a higher coherence with large-scale structures compared to the lin-

ear term, and aids in increasing the accuracy of control. It is revealed that the controller

is successful in selectively reducing the streamwise kinetic energy contained in large-scale

structures by ≈ 25%. This work provides evidence that wall-pressure can be employed re-

liably to detect large-scale velocity structures for real-time control, even with limited ob-

servability, a sparse sensing layout, and low signal-to-noise ratios of input sensing caused

by acoustic facility noise in experimental applications.

Parts of this chapter are published in:

• G. Dacome, M. Kotsonis, W. J. Baars (2025) Experimental study of real-time control of a turbulent
boundary layer using wall-pressure sensing. Exp. Therm. Fluid Sci. In review.
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6.1. INTRODUCTION

Wall-pressure fluctuations have been found to display non-negligible coherence with
streamwise velocity fluctuations in the logarithmic region of a turbulent wall-bounded
flow. This highlights the potential of employing wall-pressure fluctuations for the esti-
mation of the passage of LSMs for control purposes. In particular, the findings of Ch. 4 re-
veal Reynolds-number-invariant distance-from-the-wall scaling of wall-pressure–velocity
and wall-pressure–squared–velocity coherence. This suggests ease of scalability of an
input strategy utilizing wall-pressure fluctuations as the input quantity, from a labora-
tory to an engineering setting. In light of the findings of Ch. 4 and the exploration of a
feedforward control system configuration, illustrated in Ch. 5, the present chapter delves
into the definition of a multi-channel feedforward multiple-input single-output control
system targeting LSMs in the logarithmic region for skin-friction drag reduction. The
novel, and pioneering, element of this part of the work is the utilization of wall-pressure,
instead of wall-shear, as the input quantity to the real-time control system.

6.2. CONTROL SYSTEM DESIGN AND EXPERIMENTAL SETUP

A schematic of the real-time control system for the TBL in consideration (described in
§ 6.2.1) is presented in Fig. 6.1. An upstream sensing zone and a downstream actuation
zone (described in § 6.2.2) are separated by a streamwise distance, s. The state of the TBL
flow to control corresponds to the instantaneous velocity fluctuations in the logarithmic
region, at the streamwise location of the actuators (point P in Fig. 6.1 when considering
the sensor/actuator in the spanwise center). An estimate for the streamwise velocity
fluctuations, û(t ), is to be obtained from the wall-based pressure. The quantity û(t )
is what determines the controller’s output, following an opposition control logic (see
§ 6.2.3). Transfer functions (denoted by h in Fig. 6.1) relate wall-pressure input data to
velocity states, and its system identification procedure will detailed in § 6.3.

6.2.1. TURBULENT BOUNDARY LAYER FACILITY

Experiments were carried out in an open-return wind tunnel facility (W-Tunnel) at the
Delft University of Technology. The facility has a cross-sectional area of 0.6×0.6 m2 at
the inlet of a dedicated test section for studying TBL flows. This section has a total length
of 3.75 m, and includes a flexible ceiling configured for a zero-pressure-gradient stream-
wise development of the flow. A Cartesian right-handed coordinate system (x, y, z) is
employed for presenting results throughout the paper; this coordinate system is cen-
tered at x ′ = 2.90 m downstream of a boundary layer trip (P40-grit sandpaper) and at the
spanwise centerline of the test section. Hence, x = 0 aligns with the actuation zone. One
operating condition is considered, with a freestream velocity of U∞ = 15 m/s. Without
control and at x = 0, the TBL attains a thickness of δ = 0.07 m and a friction velocity of
Uτ = 0.49 m/s, resulting in Reτ ≈ 2240. Parameters of the canonical TBL flow (includ-
ing the momentum thickness, θ, and the wake parameter, Π) are reported in Tab. 6.1.
Additional details of the facility can be found in Ch. 2.
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U∞ (m/s) δ (mm) θ (mm) Reθ Uτ (m/s) Reτ Π l∗ (µm)
15 69.9 6.83 6 830 0.49 2 240 0.61 31.25

Table 6.1.: Experimental parameters of the uncontrolled TBL flow in the W-Tunnel facil-
ity at x ′ = 2.90 m downstream of the sandpaper trip (x ′ = 0).
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Figure 6.1.: Schematic representation of the control hardware (i.e., sensors and actua-
tors) employed for control embedded in the TBL facility as well as the loca-
tion of the main flow measurements. More details regarding the specifics of
flow measurement techniques will be elaborated on in § 6.5.

6.2.2. CONTROL HARDWARE

To allow for sensing based on wall-pressure (usually found in the literature as pw , it is go-
ing to be referred to in the foregoing as p), a spanwise array of seven microphones was
employed (Fig. 6.1). The array was positioned at x =−2.4δ and comprised a total width
of b = 1.8δ (spanwise spacings between adjacent sensors of ∆zm = 0.3δ = 0.17b). Spac-
ing ∆zm was chosen so that the mean spanwise separation of (V)LSMs in a TBL could
be resolved [Hutchins et al., 2011]. Sensors consisted of GRAS 46BE 1/4-in. free-field CCP
microphones with a nominal sensitivity of 3.6 mV/Pa. These have an adequate dynamic
range to capture the pressure fluctuations of interest (35 to 160 dB, with a reference pres-
sure of pref = 20µPa) with an accuracy of ±1 dB within the range of 10 Hz to 40 kHz. Each
microphone was integrated within a circular sub-surface-cavity, communicating with
the boundary layer flow by means of a circular neck-orifice (or pinhole), having a diam-
eter of d+

p = 12.8 (dp = 0.4 mm). Cavity resonance poses no concern to the utilization of
this sensor configuration, as the resonance frequency of fr = 2725 Hz [Baars et al., 2024]
lies well beyond the frequency band of interest for real-time flow control. An additional
microphone of the same make and model was mounted at x = −2.4δ on a streamlined
holder in the freestream flow; this microphone was fitted with a GRAS RA0020 nosecone
to reduce stagnation-driven turbulence pressure fluctuations. This monitors the acous-
tic noise emitted by the wind tunnel and facilitates the implementation of acoustic noise
removal in real-time.
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Seven non-zero-net-mass-flux unsteady blowing jets were employed as actuators. These
were arranged in a spanwise array and located at x = 0, at a distance of s = 2.4δ down-
stream of the wall-embedded microphones (Fig. 6.1). The spanwise positioning and sep-
aration between actuators was chosen to be the same as for the input sensors. Com-
pressed, dry air exhausts into the TBL flow through streamwise-elongated rectangular
slits having dimensions of 0.2δ× 0.02δ. This type of actuator is intended to oppose
downward-directed large-scale events originating in the logarithmic region, by induc-
ing an upwash at (and downstream of) the injection location. All jets were operated in
an on/off fashion, and their exit velocities were either 0 (off) or vjet = 0.4U∞ (on). This
exit velocity ensured that the jet plume trails within the logarithmic region, without pen-
etrating beyond y = δ [see § 5.3 for additional details].

Finally, the controller itself was implemented using MathWorks Simulink, and de-
ployed on a Speedgoat Performance (P3) real-time target machine. A control loop fre-
quency of floop = 10 kHz was adopted to ensure adequate timing. Wall-pressure signals
were acquired with a Speedgoat IO109 24-bit analog input module, while binary out-
put signals for on/off actuation of the valves are sent through a Speedgoat IO205 digital
output module.

6.2.3. INPUT SIGNAL CONDITIONING

A challenge when employing wall-pressure sensing is that the signals acquired by the mi-
crophones not only contain hydrodynamic wall-pressure fluctuations, but also additive
acoustic noise. A sample spectrum of one of the acquired microphone signals is shown
in Fig. 6.2a, and is duplicated in Fig. 6.2b (curve p4,r ). Although Ch. 3 and § 4.3 treat some
techniques to remove facility acoustic noise in post-processing to obtain the hydrody-
namic wall-pressure signal, those techniques are not applicable in real-time. Filtering in
real-time can be accomplished following a simple subtraction, at each time-step, of the
spatial mean of the eight input microphones [including the raw pressure fluctuations in
the freestream, p8,r (t )]:

pk, f (tm) = pk,r (tm)−
1

8

8∑

k=1
pk (tm), (6.1)

with pk,r being the raw signal, pk, f the resulting filtered pressure signal and k a sub-
script indicating a discrete spanwise location [i.e. pk (t ) = p(zk , t )]. The outcome of the
noise-filtering procedure results in the curve p4, f in Fig. 6.2b.

This technique was proven effective in the work of Baars et al. [2024] as a low-overhead
technique for noise-filtering. Once this is complete, the freestream pressure signal is ter-
minated, as it carries no wall-pressure information that can be used for the estimation
of the off-the-wall velocity state, û(t ). The remaining seven wall-pressure fluctuation
signals are further filtered with a Butterworth low-pass filter (the output of which is pre-
sented as curve p4 in Fig. 6.2b) having a cut-off frequency of fcδ/U∞ = 0.84 ( fc = 180 Hz).
This frequency is chosen such that all high-energy wall-pressure fluctuations are re-
tained, while removing any remaining signature of facility noise (as well as cavity res-
onance), which anyhow resides beyond the frequency range of interest.
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fcδ/U∞ = 0.84

fcδ/U∞ = 0.84
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Figure 6.2.: (a) Spectrum of the raw signal from the central input sensor [p4,r (t )]. (b)
Spectrum obtained after the application of the noise-filtering procedure and
the conditioning low-pass filter on p4,r (t ).

6.3. ADAPTIVE FILTERING PROCEDURE FOR SYSTEM

IDENTIFICATION
For system identification, a transfer function needs to be found that relates the instan-
taneous wall-pressure measurements to velocity fluctuations in the logarithmic region at
the streamwise location of the actuator array. Instead of a single multiple-input multiple-
output (MIMO) kernel, seven MISO spatio-temporal kernels were found, each relating
the instantaneous wall-pressure measurements to the velocity fluctuations measured at
the spanwise locations of each of the seven actuators.

Each one of the MISO kernels was obtained as an adaptive Wiener filter kernel. This
filter consists of an array of taps (or coefficients), obtained by solving the linear system
of equations Φh =Ψ:




Φ11 Φ12 . . . Φ1N

Φ21 Φ22
...

...
. . .

ΦN 1 ΦN N







h1k

h2k

...
hN k



=




Ψ11

Ψ21
...

ΨN k




. (6.2)

Here, Φi j = 〈pi p j 〉 is the cross-correlation between the input signals (i.e. between the
wall-pressure time-series measured at different spanwise locations) and Ψi k = 〈pi uk〉
is the cross-correlation between the reference velocity signal at one spanwise location,
uk (t ), and the input signals, pi (t ). For the problem considered in this work, N = 7. The
identified vector of filter taps, hL,k , is one that, when convolved with the spatial array
of instantaneous wall-pressure measurements at time-step tm , produces an estimate of
the velocity fluctuations in the logarithmic region at time-step tm+1.

To adequately model the convective footprint of large-scale motions, it is essential to
include temporal dynamics. For this, Eq. 6.2 can be solved at multiple time-steps con-
tained within an arbitrary temporal horizon tm−H < t < tm , with tm being the present
time step and ∆th = tm − tm−H is the total horizon length. The filter is convolved in real-
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time with the input wall-pressure signals as a finite impulse response (FIR) filter on the
horizon to generate seven velocity estimates, ûk,L(tm), at one time-step and one span-
wise location:

ûL,k (tm) = h1k (tm) ·p1(tm)+h2k (tm) ·p2(tm)+·· ·+hN k (tm) ·pN (tm)

+h1k (tm−1) ·p1(tm−1)+h2k (tm−1) ·p2(tm−1)+·· ·+hN k (tm−1) ·pN (tm−1)

+h1k (tm−2) ·p1(tm−2)+h2k (tm−2) ·p2(tm−2)+·· ·+hN k (tm−2) ·pN (tm−2)

+ . . .

+h1k (tm−H ) ·p1(tm−H )+h2k (tm−H ) ·p2(tm−H )+·· ·+hN k (tm−H ) ·pN (tm−H )

= hL,k (t )⊛p(t ).
(6.3)

The same procedure can be applied independently for the wall-pressure–squared term,
whereby seven additional kernels (hQ,k ) are identified that relate instantaneous wall-
pressure–squared to velocity fluctuations. The estimated velocity signal, û(zk , t ) at a
single spanwise location, therefore, is obtained from a quadratic stochastic estimation
(QSE) procedure through the inclusion of both kernels:

ûk (t ) = hL,k (t )⊛p(t )
︸ ︷︷ ︸

LSE

+hQ,k (t )⊛p2(t )

︸ ︷︷ ︸
QSE

. (6.4)

6.3.1. QUADRATIC STOCHASTIC ESTIMATION FOR SYSTEM

IDENTIFICATION

A relation must be established between the input quantity [wall pressure and wall pres-
sure square fluctuations, p(z, t ) and p2(z, t )] and the state of the dynamic plant to con-
trol [streamwise velocity fluctuations in the logarithmic region, u(z, t )]. For the system
identification procedure, data were acquired by the seven wall-embedded microphones,
the microphone situated in the freestream, and a hot-wire probe located above each of
the seven downstream actuator jets during a control-off scenario. Seven multiple-input
single-output (MISO) kernels were generated, using an adaptive Wiener filtering proce-
dure (see 6.3 for technical details) relating a spatio-temporal wall-pressure matrix to a
single hot-wire time series in the logarithmic region above each actuator: uk (t ). Seven
additional MISO kernels were obtained independently by applying the same Wiener fil-
tering procedure to a spatio-temporal matrix of wall-pressure–squared fluctuations (in-
stead of the linear ones). The identification of seven different kernels is, statistically,
not necessary. In fact, a canonical TBL flow is homogeneous in the spanwise direction,
meaning that a kernel identified for any given spanwise position should be deployable
(given the appropriate spanwise shift) for the estimation of any of the seven output sig-
nals. In this work, however, all seven kernels are identified to remove uncertainties re-
lated to the specific TBL flow in the facility at Delft University of Technology. The esti-
mated signal, at spanwise location zk , is then generated by the convolution of the input
signals with the transfer kernels:

ûk (t ) = hL,k (t )⊛p(t )+hQ,k (t )⊛p2(t ). (6.5)
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Here, hL,k and hQ,k are the spatio-temporal kernels relating the linear and quadratic
terms of wall-pressure, respectively, to the velocity fluctuations in the logarithmic re-
gion at location zk ; the terms p and p2 refer to arrays containing the spatial distribu-
tion of the wall-pressure and wall-pressure–squared signals at one time-step (i.e., p(ti ) =
[p1(ti ) p2(ti ) . . . p7(ti )] and p2(ti ) = [p2

1(ti ) p2
2(ti ) . . . p2

7(ti )]). The term p2
k
= p2

k,r − p2
k

is the (temporally) de-meaned wall-pressure–squared signal, with p2
r being the wall-

pressure–squared signal prior to the subtraction of its mean.

(a)

(b)

(c)

h4 (t = 0)

α

α

∆th

∆th

τU∞/δ

Figure 6.3.: Spatio-temporal kernels relating streamwise velocity fluctuations above the
central actuator jet to the instantaneous (a) wall-pressure and (b) wall-
pressure–squared fluctuations. Each row of the matrix displayed in the con-
tour plot represents the temporal variation of the transfer kernel. The extent
of the temporal horizon, ∆th , is the temporal extent over which the kernel
is convolved with the input signals in real-time. (c) Spanwise profile of both
hL,4 and hQ,4 at t = 0.

Figure 6.3a displays one of the seven linear kernels (kernel hL,4, see 6.3 for the nota-
tion). The central row of the contour has the largest amplitude among rows, since the
correlation is maximum for spanwise co-located wall-pressure and streamwise veloc-
ity fluctuations. Symmetric bands of positive and negative correlation appear on either
side of z = 0 (see Fig. 6.3c), which are consistent with the two-point correlation pattern
of large-scale structures in the logarithmic region of a TBL [Hutchins et al., 2011]. Simi-
lar observations can be asserted for the kernel relating velocity to wall-pressure–squared
fluctuations: hQ,4 (see Fig. 6.3b). Note that for ease of comparison, both kernels pre-
sented in Figs. 6.3a and 6.3b are normalized, such that their maximum intensity is equal
to unity. In reality, the ratio of the peak-intensities α= hQ,k,peak/hL,k,peak = 1.8, meaning
the quadratic component has greater influence than the linear one (see Fig. 6.5b). The
truncation of the kernel at the edges of the temporal horizon introduces an error in the
estimation when convolution is performed with an input signal. Future improvements
for optimizing a time-constrained (short) kernel can be implemented through a Wiener-
Hopf framework in future developments of this flow control strategy, so that the adverse
effect of kernel truncation is minimized [Martini et al., 2022].

To understand the importance of the quadratic wall-pressure term, one needs to con-
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sider that the large-scale structures that are to be targeted by the controller carry most
of their energy at scales where the coherence between wall-pressure and velocity fluc-
tuations is relatively low. Therefore, a controller purely based on the linear term of hy-
drodynamic wall-pressure fluctuations is defective in accuracy, as it does not encom-
pass any large-scale statistical coupling. However, Naguib et al. [2001] illustrated that
the turbulent-turbulent source term of the Poisson equation for pressure is proportional
to the square of the wall-pressure. Therefore, the inclusion of the wall-pressure–squared
term to the estimation problem is essential for bringing the accuracy of the controller
to a level comparable (and higher, depending on the specific wavelength considered) to
the accuracy of an equivalent wall-shear–based estimation [Baars et al., 2024].

Finally, the accuracy of the control logic can be inferred from the system identification
procedure. In particular, given the binary nature of the control output (with the actuator
either being ‘on’ or ‘off’ according to the sign of the velocity estimate, as discussed next in
§ 6.3.2), an appropriate metric to assess the accuracy of the controller is the binary accu-

racy. This metric is a statistical measure of the probability that the sign of the estimated
signal is equal to the sign of a “true" reference signal. In the present work, the binary
accuracy is computed by comparing the estimated signal, ûk (t ), to a large-scale filtered
time-series of the raw streamwise velocity fluctuations signal in the logarithmic region,
measured with a hot-wire probe [see Baars et al., 2024, for details]. The so-computed
accuracy amounts to 72.1%, which is considerably higher than the binary accuracy cor-
responding to a completely random estimation (i.e., 50%).

6.3.2. CONTROL LOGIC

To generate the control output, the velocity state estimates [ûk (t )] are binarized to pro-
duce digital on/off sequences that drive the solenoid valves. Nominally the controller
operates with an opposition control law, which counteracts large-scale streamwise ve-
locity regions with a positive estimated velocity fluctuation (Eq. 6.6). Similarly to Ch. 5,
reinforcing and desynchronized control modes were also implemented.

vjet,k(t ) =
{

0.4U∞, if ûk (t ) ≥ 0

0, if ûk (t ) < 0
. (6.6)

Note that the output signal needs to be accurately timed with the passage of large-
scale structures in the logarithmic region, to account for their convection time between
the sensing and actuation stations. For this reason, an accurate bookkeeping of the con-
troller latency, delays introduced by hardware components, and flow convection times
is necessary in order to ensure a properly timed output, a description of which can be
found in 6.4.

6.4. OUTPUT TIMING
For accurate timing of the control output, it is essential to consider the physical sep-
aration between the input and output control hardware, as well as their inherent la-
tency. In fact, given convection between upstream (sensor array) and downstream (ac-
tuator array) stations, there is a limited time interval available for the generation of the
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estimated signal, before structures convect past the actuators’ location. With s = 2.4δ
(s = 0.17 m) and Uc = 9.9 m/s (the measured mean streamwise velocity in the logarith-
mic region, at y+ = 190), this duration is τconv = s/Uc ≈ 17.2 ms. First, the real-time
convolution of the input signal with the FIR filter requires half the temporal horizon,
thus τh/2 = 7.5 ms. Additionally, a delay of τloop = 0.1 ms is added due to the controller
looping at floop = 10 kHz. As explained in § 5.3, the actuator itself also introduces a me-
chanical lag of τa ≈ 6 ms. Thus, the controller requires the following time for providing
an output:

τC = τh/2+τloop +τa ≈ 13.6ms. (6.7)

Since τconv > τC , the sensor-actuator spacing of s = 2.4δ yields a slightly conservative
setup (i.e., the control output is “early"). Hence, to accurately time the actuation, an
internal delay of 3.6 ms was added within the controller.

6.5. FLOW ASSESSMENT METHODOLOGY

Several measurement techniques were employed to assess the response of the TBL flow
to control. These include HWA for time-resolved statistics of the streamwise velocity
fluctuations and PIV for an analysis of the turbulent flow within a wall-parallel plane
located in the logarithmic region.

For HWA measurements, a TSI IFA-300 constant temperature anemometer was em-
ployed, with a standard Dantec 55P15 boundary layer probe. The acquisition configu-
ration for HWA data in this work is identical to the one presented in Ch. 5 and, thus, the
interested reader is referred to that part of the work for further details.

Spatial data were also acquired on a wall-parallel (x, z)-plane in the logarithmic re-
gion at y+

PIV ≈ 190 (yPIV = 5.9 mm) by means of low-speed planar two-dimensional two-
component (2D2C) PIV. The field of view (FoV) spanned 3.5δ×1.8δ, encompassing the
full spanwise extent of the actuator array. The upstream edge of the FoV is located at
x = 0.2δ (see Fig. 6.1). For imaging on this plane, two LaVision sCMOS cameras were
used. These are low-speed, 16-bit, double-shutter cameras, with a sensor size of 2560×
2160px2 and pixel pitch of 6.5µm. A Nikkor 60 mm lens was fitted to both cameras, with
their f-stops set at f# = 11. The two imagers were positioned above the test section such
that their respective FoVs overlap over a streamwise extent of 0.15δ. Seeding consisted
of 1 µm tracer particles from an atomized glycol-water mixture, injected into the wind
tunnel flow by a SAFEX 2010+ fog machine. Tracer particles had a diameter of 2-3 px
on the image plane. Illumination was provided by a Quantel Evegreen 200 Nd:YAG laser,
operating in double-pulse mode with a maximum energy per pulse of 125 mJ. The acqui-
sition frequency was set to 15 Hz, and the time separation between frames in one image
pair was dt = 75µs, ensuring an average pixel displacement of ≈ 10 px. A total of 3 000
images were acquired per case, yielding a statistical uncertainty of 0.95% for the mean
flow and 2.3% on second-order statistics. Processing was performed with the aid of LaV-
ision DaVis 10.2 by employing a multi-pass algorithm, whereby an initial window of size
48×48px2 was first convolved with the particle images, followed by one having size of
24×24px2. The overlap length was set to 50% of the interrogation window size. The final
vector resolution was 60.68 vectors/δ (0.87 vectors/mm).
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6.6. FLOW RESPONSE TO CONTROL

6.6.1. WALL-NORMAL STATISTICS

Response of the TBL flow to control is here considered in terms of the mean and the
variance of the streamwise velocity, along a wall-normal profile at (x, z) = (2δ,0) (see
Fig. 6.1).

(a) (b)

Uncontrolled

Desynchronized

Reinforcing

Opposing

yr

Figure 6.4.: Wall-normal profile of (a) the mean and (b) the turbulence kinetic energy of
the streamwise velocity at (x, z) = (2δ,0), obtained from hot-wire data. Sub-
figure (b) also illustrating variance of the velocity signal filtered in the spec-

tral range 20 < λx /yr < 500 (u2
f

), where the largest effect of control is ob-

served (see § 6.6.2).

The mean velocity profile is presented in Fig. 6.4a for the uncontrolled flow as well
as for the opposing, reinforcing and desynchronized control modes. A reduction in the
mean streamwise velocity for all three control modes is observed, compared to the base-
line flow. This observation is consistent with the wall-normal momentum injection im-
parted by the actuators (see § 5.3). No conclusive difference can be noticed between
these curves, and this is ascribed to the actuators being ‘on’ for the same fraction of time
(≈ 50%) among all three control modes. Further inspection of this plot reveals how the
effect of control diminishes in the wake of the TBL, where all mean velocity profiles col-
lapse for y/δ& 0.4.

Inspection of the streamwise TKE in Fig. 6.4b reveals pronounced differences between
control modes. With the flow exposed to opposing control clearly portraying a lower
energy content, with respect to the flow undergoing control by the other two control
laws, a reduction in the streamwise TKE of ≈ 10% is first evidence of the effectiveness
of this controller in quenching energetic structures in the TBL. Furthermore, this trend
matches the findings of Ch. 5, albeit this study utilized a different architecture and used
wall-shear stress as input quantity instead of wall-pressure. As will emerge in the forego-
ing, the controller is mostly effective in a specific (low-frequency, i.e. large-scale) spectral
band, whereby 20 < λx /y < 500 (see § 6.6.2 for technicalities regarding the scaling of the
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streamwise wavelength). Thus, Fig. 6.4b also display curves corresponding to the wall-

normal profile of streamwise large-scale–filtered velocity variance (u2
f

, in black). These

profiles are better suited in displaying the effect of the controller on the TBL flow. In fact,
the increase in unfiltered variance around y/δ ≈ 0.2 is known to be caused (see § 6.6.2)
by the actuator-induced flow, and not by the targeting of LSMs implemented by design.

6.6.2. SPECTRAL ANALYSIS IN THE LOGARITHMIC REGION

Given the goal of the work to prove the effectiveness of a wall-pressure–based real-time
controller, it is necessary to understand how the control output modifies the turbulence
spectrum. In particular, Fig. 6.5a presents the pre-multiplied inner-scaled spectra of the
streamwise velocity fluctuations at y+ = 190. Here, the choice is made to normalize the
abscissa as λx /yr according to wall-scaling, with yr = 5.9 mm being the wall-normal
coordinate of the velocity probe. Wall-scaling was proven to be effective in collaps-
ing the coherence spectra between wall-pressure and streamwise velocity [Baars et al.,
2024], which is reported in Fig. 6.5b. Here, the coherence between streamwise velocity
and wall-pressure (and wall-pressure–squared) is reported between p4(t ) and velocity
fluctuations above the central wall-pressure sensor at y+ ≈ 190. Comparing Fig. 6.5a to
Fig. 6.5b, it is evident how the most notable effect of control does not appear in proximity
of the shallow peak of γ2

up at λx /yr ≈ 14, but is rather more relevant towards larger wave-
lengths, where the squared wall-pressure term displays the most coherence with u(t ).
In fact, as the coherence between velocity and the linear term of wall-pressure rapidly
decays with downstream distance, the squared term remains more coherent (see Ch. 4).

A direct comparison of the uncontrolled case to the cases under active control high-
lights an energy increase towards to the low-wavelength (or high-frequency) end of the
spectrum, irrespective of control mode. The reason for this energy increase towards
to the small-scale end of the spectrum is twofold: (1) the topology of the wake of the
actuator-induced flow and (2) the spectral energy content of the velocity estimate, û(t ).
On the one hand, the actuator jet-in-crossflow system, in fact, generates an internal
shear layer within the TBL. As the jet plume convects downstream of the injection point,
the shear layer becomes unstable, causing small-scale eddies to break-up and, there-
fore, cause small-scale energy to increase. On the other hand, the estimated velocity
signal is characterized by non-negligible energy content in the small scales. In fact, the
pre-multiplied energy spectra of the estimated (output) signal for the central spanwise
location [û4(t )] is presented in Fig. 6.5c. Here, a considerable energy content is visible to-
wards the low-wavelength end of the spectrum (λx /yr . 20), which corresponds to the
sharp energy increase measured in the flow subject to active control, particularly when
considering the binarized output that is actually driving the actuators.

6.6.3. RESPONSE OF THE TBL IN THE LOGARITHMIC REGION

Results in the previous section have shown the response of the TBL along either a wall-
normal profile or at a single point in the logarithmic region. In the foregoing, results
obtained over a two-dimensional plane, resulting from the processing of PIV data, will
be introduced. The plane of interest encompasses a FoV that captures the downstream
development of the jet actuators’ wake, up to a distance of 4δ from the injection loca-
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(a)

(b)

(c)

20 <λx /yr < 500

Binarized
Non-binarized

Figure 6.5.: (a) Inner-scaled pre-multiplied energy spectrum of streamwise velocity fluc-
tuations at y+ = 190 for the uncontrolled flow as well as for the three active
control modes. (b) Linear coherence spectrum between the streamwise ve-
locity fluctuations and the fluctuations of wall-pressure and wall-pressure–
squared at z = 0. (c) Pre-multiplied energy spectrum of the estimated signal
û4(t ). Also indicating the spectral range where the control effect is mostly
noticeable with a pale band. Note that the temporal spectra are plotted as
spatial spectra by converting frequency into wavelength, using λx ≡ Uc / f

with U+
c =U (y = yr ).

tion (see Fig. 6.1a). This allows to thoroughly analyse the spatial response of the TBL to
control both at spanwise locations directly downstream and in-between actuators.

Figure 6.6a displays contours of the large-scale–filtered variance of the streamwise ve-
locity fluctuations in the opposing case. Filtering was performed on each instantaneous
vector field to only retain the scales affected by control: λx /y & 20 (see Fig. 6.5a). For this,
an anisotropic streamwise-aligned Butterworth 3rd-order low-pass filter kernel was con-
volved with the instantaneous spatial data with a cutoff wavelength of λx = 20y . Smaller
scales are omitted to allow for the visualization of the flow response induced by the con-
troller, and not by small-scale energy-increasing mechanisms discussed above. Seven
low-intensity streaks are visible at the upstream edge of the FoV, which extend all the
way to the downstream edge of the domain. These correspond to each of the seven jet
actuator wakes, which persist almost up to the downstream edge of the FoV, where the jet
plume rises above the laser sheet. Between the wakes of the seven actuators, the velocity
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variance is higher than the variance of the uncontrolled flow at the same location. As the
jet flow is injected into the TBL crossflow, in fact, a counter-rotating vortex pair is gener-
ated, whereby streamwise vorticity carries low-momentum fluid from the downstream
near-wall region towards the freestream flow. Conversely, higher-momentum fluid is
brought towards the wall by the lateral downward-directed segment of the rotating vor-
tex.

A more direct comparison between the three flow cases in consideration is provided in
Fig. 6.6b, whereby the opposing and random cases are compared, in terms of the differ-

ence in the large-scale–filtered variance [∆u2
f
=

(
u2

f opp
−u2

f rnd

)
/u2

f opp
×100]. This visu-

alization clearly displays an overall reduction in streamwise large-scale–filtered variance
when the control law is set to selectively oppose high-intensity LSMs. Some small-sized
regions of the PIV domain do display a relative energy increase, in-between core of the
developing jet plumes. The beneficial energy-attenuating effect becomes more homo-
geneous for x/δ& 2.5, with maximum local attenuation reaching 25-30%.

(a)

(b)

Figure 6.6.: (a) Contour plots of large-scale–filtered variance on a wall-parallel plane of
the streamwise velocity for the flow subject to opposing control. (b) Contour
displaying the percentage difference in large-scale–filtered variance between
the flow subject to opposing and random control strategies. Showing the
location of the hot-wire probe at (x, y, z) = (2δ, yr ,0) as a black diamond (�).
Displaying the spanwise position of the actuators with black squares (�, note
that they were positioned at x = 0).
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6.6.4. DIRECT SKIN-FRICTION QUANTIFICATION

The principal objective of the real-time controller is to act upon large-scale velocity fluc-
tuations in the logarithmic region as, upon superimposition onto smaller scales in the
inner region, a drag reduction can be obtained. Quenching turbulent velocity fluctu-
ations, in fact, can have a profound impact on the principal skin-friction–generating
mechanisms [Deck et al., 2014, Renard and Deck, 2016]. Figure 6.7 presents the obtained
skin-friction values for both the uncontrolled flow and the flow subject to opposing con-
trol. In particular, Figs. 6.7a,b present absolute wall-shear stress for the two cases, while
Fig. 6.7c reports the relative change between the two, ∆τw = 100×(τw,opp−τw,unc)/τw,unc.
The relative difference reports a positive friction drag reduction across most points, apart
from a few outliers, especially at x = 2δ and x = 3δ. The deviation in these measurement
points is attributed to post-processing or measurement error, and not to physical dis-
crepancies in wall-shear. Uncertainty analysis was, however, not performed for these
measurements. Still, some points appear as outliers, which results from some user-
introduced error or low robustness of the technique. However, when considering the
overall trend in skin-friction drag for both flow cases a global spanwise uniformity can
be deducted both for the controlled and uncontrolled flows. At this downstream posi-
tions, in fact, the wake of the jet-induced actuator flow, in the proximity of the wall, is
not affected by spanwise variations in the flow in the logarithmic region and above.

6.7. CONCLUSIONS
To the author’s knowledge, this chapter marks the first time that real-time control of wall-
bounded flow has been attempted by utilizing wall-pressure fluctuations as the input
quantity. The results detailing the response of the TBL flow to control confirm a success-
ful implementation of this pioneering control strategy, both in terms of velocity statistics
and of direct skin-friction measurements. Although small-scale energy was introduced
in the flow as a result of the actuator-induced flow, this chapter validates the finding of
the previous Ch. 4 in the context of being able to use wall-pressure (and wall-pressure–
squared) fluctuations as a reliable input quantity.
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(a) (b)

(c)

Figure 6.7.: Absolute wall-shear stress at several locations on the wall downstream of the
jet actuators obtained from OFI data for (a) the uncontrolled flow and (b) the
flow subject to opposing control. (c) Relative difference between the wall-
shear stress of the opposing and uncontrolled cases.
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This final chapter of the dissertation comprises a study and a series of experiments con-

ducted on the development and deployment of a more advanced control logic compared

to the feedforward opposition control logic illustrated in previous chapters. In particu-

lar, an adaptive Filtered-X Least Means Squares (Fx-LMS) algorithm was deployed for the

control of a wall-bounded turbulent flow. Given the increased complexity behind the de-

sign of this control law, initial experiments were not conducted on the control of a fully

broadband turbulent flow, as was the case in previous parts of this work. Instead, a flow

case characterized by strong harmonic content and periodic behavior was considered: a

TBL modulated by vortex shedding in the wake of a two-dimensional spanwise-aligned

cylinder. Building on top of the results obtained from this preliminary set of experiments,

this chapter will be concluded by presenting results obtained from the deployment of the

same control algorithm to the fully broadband case.
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7.1. INTRODUCTION
In earlier chapters of this dissertation, an opposition control law was defined and a static
transfer function was identified based on input-output data acquired a priori. In partic-
ular, simultaneous data were usually acquired from the input sensor(s) and the flow state
in the logarithmic region at the streamwise position of the actuator (usually, streamwise
velocity fluctuations). For engineering applications, the ability to acquire such data prior
to the deployment of the controller is not fully representative of the input-output sys-
tem dynamics that characterize the flow. For instance, cruise airspeed or altitude for an
airliner might change, thus changing the local Reynolds number and, thus, also chang-
ing the transfer function that estimates the flow state, given a certain input signal. A
controller can automatically adapt to slowly-varying conditions is beneficial in terms of
operational flexibility.

Literature on the implementation of such control strategies for turbulent flow control
applications is limited. Few studies are available that either tackle the problem from an
analytical [Breuer and Wu, 2006] or a numerical point of view [Farazmand and Sapsis,
2019], considering very-low-Reynolds number flows. Further work that illustrates the
application of adaptive control strategies to flow control problems can be found in the
publication by Kotsonis et al. [2013], who deploy an adaptive controller for the attenua-
tion of harmonic flow disturbances in a transitional boundary layer flow.

To the author’s knowledge, there exists no work in the open literature that deals with
the implementation of an adaptive controller to (1) a turbulent wall-bounded flow and
(2) in an experimental setting. The complexity to deal with the former issue lies in the
fact that a turbulent wall-bounded flow, such as a TBL, is inherently characterized by
fluctuations with an extremely broadband spectrum. Thus, a controller faces the chal-
lenge of needing to identify spectral components that can attenuate a certain (arbitrary)
“error” signal. The latter issue, instead, stems from the fact that, as was mentioned in
previous chapters, access to the fluid domain is limited in a laboratory setting. This ren-
ders the identification of the required transfer kernels more intricate, as only spatially
sparse information are available to the controller.

In this chapter, the development of a control strategy based on the adaptive feedfor-
ward Filtered-X Least Mean Squares (Fx-LMS) algorithm is going to be illustrated. First,
the working principle of the Fx-LMS algorithm will be presented in § 7.2, together with
initial testing performed on acoustic wave control in § 7.3. Consequently, the algorithm
is going to be first deployed for the control of a turbulent flow with a strong harmonic
content: a TBL flow modulated by the vortex shedding in the wake of a spanwise-aligned
two-dimensional cylinder (§ 7.4). The response of the flow is going to be analyzed by
means of both HWA and PIV measurements, with an attenuation of the vortex shedding
intensity expected as a result of control. Finally, the Fx-LMS algorithm is going to be
employed for the control of the fully broadband TBL flow (§ 7.5)



7.2. THE FX-LMS ALGORITHM

7

125

7.2. THE FX-LMS ALGORITHM
The Fx-LMS algorithm is an adaptive control strategy that was initially developed for ac-
tive noise control (e.g. noise-cancelling devices) [Hansen, 2001]. This algorithm (whose
block diagram is presented in Fig. 7.1) essentially operates as a gradient-descent–based
optimizer that works towards the minimization of an error signal. Whereas in the case of
acoustic noise attenuation the goal would be to minimize the noise at a certain “error"
location, in this work it coincides with the attenuation (or opposition) of the turbulence-
induced fluctuations at the location of the downstream array of error sensors. This is
accomplished with the aid of the real-time identification of two finite impulse response
(FIR) kernels: the cancellation path [FIR 2, with coefficients w(2)] and the control [FIR 1,
with coefficients w(1)] kernels.

The former is identified in an initial phase of the deployment of the Fx-LMS (prior
to the identification of the control kernel) and models the conditional response of the
error signal as a function of the actuator output. In order to model the response of the
error signal to an arbitrary action of the actuator, a control output needs to be generated
whose statistics differ from the ones of the dynamic plant to control. This difference is
required not to “bias” the controller towards the unique signature of the dynamic system
to-be-controlled and avoid overfitting to it, thus leading to loss of generality. For this
reason, Hansen [2001] suggests an approach whereby a completely random signal is fed
to the actuator in this phase of system identification. When dealing with highly non-
linear complex dynamic systems, one can resort to an approach that is designated as
overall modelling in the work of Hansen [2001]. Here, the random signal (r) driving the
actuator is linearly combined with the physical input signal (x), with a certain input-to-
random intensity ratio (regulated by the gain G in the block diagram in Fig. 7.1). The
random signal consisted of white noise, bandpassed in the frequency range of interest.
The resulting signal is denoted as f(2)(k) = x(k)+Gr(k). [Note that the quantities denoted
by a bold symbol are taken as arrays over a certain temporal horizon.] Then, at time-step
k, the FIR 2 filter coefficients w(2) at the following time-step, k+1, are given by the update
law:

w(2)(k +1) = w(2)(k)−2µ2e(k)f(2)(k) , (7.1)

with µ2 = 10−5 being the convergence (or learning) rate. During the identification of the
cancellation path kernel, the goal is to minimize the difference the error signal and the
difference ∆

(2) = x(2)(k)⊛ f(2)(k)− e(k). Once FIR 2 is identified, a copy of said kernel is
deployed to the bottom-left block in Fig. 7.1, and is used to produce the filtered input
signal that feeds into the LMS update law for the identification of FIR 1, which is rather
similar to the one for FIR 2:

w(1)(k +1) = w(1)(k)−2µe(k)f(1)(k) . (7.2)

Now, µ1 = 10−3 is the learning rate and f(1)(k) = w(2)(k)⊛x is the result of the convolu-
tion with the cancellation path transfer function with the input signal, over a designated
temporal horizon. Here, the goal is to minimize the error signal. A small note on the
convergence rates µ1 and µ2 is in order. In fact, the value of both constants is highly de-
pendent on the dynamic plant to be controlled. Too large of a value leads to divergence
in the identification of the corresponding kernel (either FIR1 or FIR2). Instead, too low of
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a value leads to extremely slow convergence, leading to impractical identification delays.
In this work, both constant were chosen following a sensitivity analysis of the identified
kernel coefficients and convergence behaviour.

In essence, the goal of the Fx-LMS procedure is to perform a gradient-descent–based
optimization of the coefficient of the FIR kernels that need to be identified. The com-
plete derivation for the update law in Eq. 7.1, as well as most technicalities regarding the
development of the Fx-LMS algorithms, can be found in the work of Hansen [2001].

Flow
s1 s2

Input mics. Error mics.Act.

Control

System id.
FIR 1

FIR 2

FIR 2

LMS update

LMS update

Random signal G

Figure 7.1.: Block diagram of the single-channel feedforward FxLMS algorithm, recre-
ated and adapted from the work of Hansen [2001].

7.3. INITIAL DEVELOPMENT AND TESTING OF THE FX-LMS
ALGORITHM

For the initial development and troubleshooting of the adaptive Fx-LMS algorithm, a
control experiment was realized with the aim to attenuate (multi-)tonal planar acoustic
waves. The choice of this particular configuration is owed to the initial intended target
for the deployment of the Fx-LMS algorithm: noise-canceling devices [Hansen, 2001],
with an example schematic of which found in Fig. 7.2a. Initial testing of the Fx-LMS
algorithm on an acoustic problem had three principal goals.

1. To establish the performance of the Fx-LMS algorithm on a quiescent flow case,
where the only control target was the attenuation of harmonic acoustic waves.

2. To understand the principal limitations and pitfalls of the control algorithm in re-
lation to subsequent experiments, where the input signals are going to be broad-
band in nature.

3. To troubleshoot with real (i.e. not simulated) signals.
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(a)

(b)

Source

Input mic.

Control

Error mic.
d1

d2

Figure 7.2.: (a) Schematic of control system for the cancellation of acoustic waves. Taken
from the work of Hansen [2001].(b) Schematic of the setup for acoustic noise
control testing carried out for the current work.

Here, a disturbance source (or a periodic flow excitation, as shown in the left-hand side
of the diagram as a propeller) is used to generate the wave fronts that need to be atten-
uated1. Downstream (in the direction sound propagation) a second speaker is located
that acts as actuator. Finally, an error microphone is placed in the line of action of both
the input and the control speakers. This is where an attenuation of the acoustic waves
should be achieved and measured. Note that, in our work, the input consist of acoustic
waves with three distinct tonal peaks, namely located at finput = {310Hz,700Hz,1000Hz}
and denoted by dashed gray vertical lines in Fig. 7.3. The simplicity of this sound spec-
tral signature was chosen in such a way that the controller should readily identify the
three tonal peaks (or at least the most energetic ones) and attenuate their intensity. The
corresponding spectrum of the sound emitted by the input speaker is shown as a solid
black curve in Fig. 7.3.

The hardware employed for this test comprised comprised a Fun Generation BP115A
140W speaker as the input (sound source) and a Marshall MG51G as the control speaker.
The input and error sensors consisted of a single GRAS46BE 1/4-in. free-field CCP micro-
phone, located at a distance of d1 = 3.5 m from the input speaker and d2 = 1.2 m from the
control speaker (see Fig. 7.2b). The algorithm was run on a Speedgoat Performance real-
time target machine at a loop frequency of floop = 10 kHz within a Simulink real-time
environment. The input and output signals were produced by the same control model
and sent to the speakers by means of a 16-bit analog output module (IO235). The signal
of the error microphone was measured with the aid of a 24-bit A/D module (IO109).

The spectra presented in Fig. 7.3 already hint at an effective implementation of the Fx-
LMS algorithm for acoustic noise cancellation. In particular, the signal driving the con-
trol speaker has the same spectral signature as the input. To verify the inner workings of

1Please note that the testing environment was not anechoic, meaning that random reflections and reverber-
ations were present at the time of testing.
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Figure 7.3.: Power spectral density spectra of the input and output waves generated by
the input and output speakers shown as solid and dashed black curves, re-
spectively. The spectra of the signals measured by the error microphone for
the uncontrolled (unc.) and controlled (Fx-LMS) cases, instead, are shown
with as a light gray and dark red curves, respectively.

the controller, the two identified FIR filters (cancellation path and control kernels) can
be analyzed. Both of them are plotted in Fig. 7.4 and clearly show a periodicity that is
consistent with the lowest-frequency tonal peak that characterizes the spectral signa-
ture of the input sound waves (and whose period is indicated by a vertical dash-dotted
line). The relative phase-shift between FIR 1 and FIR 2 is to be owed to the different
physical locations of the control and input speakers. The temporal extent (or horizon) of
the identified kernels is such that the lowest dominant frequency can be captured within
said horizon. However, too long of an horizon can lead to issues with the statistical con-
vergence of the kernel as the controller needs to run gradient-based optimization for a
large number of coefficients [Hansen, 2001].

To analyze the effect of the Fx-LMS–based controller onto the acoustics of this prelim-
inary experiment, one can also directly inspect the time series of the error microphone,
to compare uncontrolled and actuated cases. First, the input signal (measured by the
input speaker) is plotted in Fig. 7.5a. The error microphone’s time series is then plotted
over a longer time interval, including the time when the Fx-LMS controller was actually
started (dash-dotted vertical line), upon conclusion of the cancellation path identifica-
tion procedure, in Fig. 7.5b. Here, one can appreciate the reduction of the amplitude of
the envelope (i.e. the intensity) of the error signal, following the deployment of the con-
troller. Over an interval of ≈ 2 s, in fact, the control kernel is identified by the controller
and the intensity of the error signal drops to a steady noise-attenuated level. Finally,
Fig. 7.5c shows the time series of the error signal before and after the activation of the
controller (in black and red solid curves, respectively). The reduction of the amplitude
of the controlled signal is clear when superimposed on top of the uncontrolled one. Fi-
nally, the time series of the output signal is also plotted. A time-shift is applied to correct
for the non-zero travel time from the output speaker to the error microphone. Once ap-
plied, it is clear how the output signal acts in phase opposition to the input signal such
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Figure 7.4.: Plot of the FIR coefficients for the cancellation path and control kernels. Dis-
playing the length of the period of the first tonal peak at f = 310Hz as a dash-
dotted black vertical line. Here, the x-axis refers to time on the horizon of the
controller. t = 0 is the present, with increasing t referring to values in the
past.

that, when superimposed, the result is an attenuated condition.

7.4. CONTROL OF CYLINDER VORTEX SHEDDING
The step to applying the Fx-LMS algorithm to a fully broadband TBL flow is one that is
not easily accomplished. Therefore, an intermediate step is taken, whereby harmonic
disturbances are introduced in a broadband turbulent flow. For this purpose, vortex
shedding in the wake of a two-dimensional spanwise-aligned cylinder is going to be con-
sidered. The high-intensity harmonic passage of vortices in the Kálmán vortex street is
superimposed onto the broadband signature of the TBL flow in which the cylinder is
immersed. The Fx-LMS controller, therefore, is expected to readily identify the vortex
shedding as the principal component to oppose.

7.4.1. EXPERIMENTAL IMPLEMENTATION

Experiments were carried out in an open-return wind tunnel facility (W-Tunnel) at the
Delft University of Technology, the detailes of which can be found in § 2.1. A coordi-
nate system (x, y, z) is used that has its origin on the wall at the spanwise center of
the test section, at a distance of 2.90 m downstream of the trip. To harmonically force
the flow, a wall-parallel, spanwise-oriented cylinder was installed, having a diameter of
D = 0.032 m. The diameter of the cylinder such that vortex shedding would occur at fre-
quency that is representative of the passage of LSMs in the logarithmic region of a TBL.
The cylinder was positioned with its centerline at (x, y) = (−7.3,1.5)D. A schematic of
the experimental setup is presented in Fig. 7.6a.

Input sensors consisted of eight GRAS 46BE quarter-inch free-field CCP microphones,
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(a) (b)

(c)

Figure 7.5.: (a) Time series of the input signal over a short time interval. (b) Time series
of the error microphone signal over a time interval when the Fx-LMS con-
troller has completed the identification of the cancellation path kernel and
the identification of the control kernel is started (at t = 6 s, as shown by the
vertical dash-dotted line). Also displaying the envelope of the error signal
to further illustrate the attenuation of its intensity. (c) Time series of the un-
controlled microphone signal (Unc.), the time series of the error microphone
subject to control (Fx-LMS) and the output signal (Aligned output).

having a nominal sensitivity of 3.6 mV/Pa. Seven of them were integrated in a spanwise
array of pinhole-cavities, flush-mounted to the wind tunnel wall at x =−5.3D. Addition-
ally, a single microphone was sting-mounted into the freestream flow to monitor acous-
tic noise and to facilitate real-time noise-removal. Note that the freestream microphone
was not employed in the control loop for other purposes other than for noise-cancelling
procedures.This procedure is based on a real-time projection of all eight instantaneous
pressure signals onto pre-identified spatial POD modes. Actuators comprise three wall-
normal blowing jets triggered simultaneously, activated by fast-acting on/off solenoid
valves, with an exit velocity of vjet = 0.8U∞. The actuators are situated at x = 0. Finally,



7.4. CONTROL OF CYLINDER VORTEX SHEDDING

7

131

(a)

(b)

Flow

Flow

Freestream mic.

D

2.8D

H W

H F

yL

D

4.1D 10D

3.6D

2D

5.3D

4.3D
x

y

z

Input mics.

Input mics.

PIV FoV

Error mic.

Error mic.

Actuators

Act.

HWA

Figure 7.6.: (a) Schematic of the experimental setup in Delft University of Technology
for testing the Fx-LMS algorithm for the control of the vortex shedding in-
duced in the wake of a spanwise-aligned two-dimensional cylinder. (b) Illus-
tration showing the extent of the field of view employed for planar PIV acqui-
sitions and the position of the wall-normal profile where hot-wire anemom-
etry measurements were performed.

error sensors are integrated at x = 4.3D and consisted of 7 PUI AOM-5035L-HD3 electret
microphones. A noise-correction procedure based on POD was also implemented for
this downstream array of sensors. The control loop runs at a frequency of floop = 2.5 kHz
on a Speedgoat Performance real-time target machine.

For assessment of the controlled flow, fields of the streamwise and wall-normal veloc-
ity components were acquired using two-dimensional two-component (2D2C) planar
PIV. For this, a setup comprising three cameras was employed, resulting in a streamwise-
elongated field of view (FoV), having a size of 10D×2.4D (4.57δ×1.10δ, see Fig. 7.6b). The
imagers consisted of LaVision sCMOS cameras, which are double-shutter, low-noise,
low-speed cameras, with a sensor size of 2560 × 2160px2 and a pixel pitch of 6.5µm.
A total of 4 000 images were acquired per case. Illumination was provided by a Quan-
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tel Evergreen 200 Nd:YAG double-pulse laser, with a maximum energy output per pulse
of 125 mJ. Finally, seeding particles with a mean diameter of ≈ 1µm were used, gener-
ated by the atomization of a glycol-mixture by a SAFEX 2010+ fog machine. Processing
was performed with the aid of LaVision DaVis 10.2 and a multi-pass routine, with the
first window having a size of 48×48px2, followed by one having size of 24×24px2. With
a window overlap of 50% in both passes, the final vector pitch was 19.20 vec/D (42.00
vec/δ). Additionally, hot-wire measurements were performed along a wall-normal pro-
file at the streamwise location of the error microphones (see the dash-dotted line in
Fig. 7.6b). Technicalities regarding the hardware for running the HWA measurements
can be found in § 2.3.2.

7.4.2. SYSTEM IDENTIFICATION

Following the system identification procedure outlined in § 7.2, the cancellation path
and control kernels were identified, and are plotted in Fig. 7.7. Similarly to the con-
trol of acoustic waves mentioned in the previous section and the kernels for which were
presented in Fig. 7.4, the kernels that were identified for the control of harmonic vortex
shedding converge to a sinusoidal wave whose period matches the one that character-
izes the period of vortex shedding. This confirms that the Fx-LMS alghorithm correctly
identifies the dominant frequency in the flow and, inherently, works towards attenuating
it.

Figure 7.7.: Plot of the FIR coefficients for the cancellation path (FIR 2) and control (FIR
1) kernels for the control problem aiming at the attenuation of vortices in the
wake of a spanwise-aligned two-dimensional cylinder. Displaying the length
of the period of the characteristic vortex shedding ( f = 88Hz) as a dashed
black vertical line.
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7.4.3. FLOW RESPONSE TO ADAPTIVE CONTROL

The response of the flow to control is here presented first in terms of streamwise veloc-
ity spectra along a wall-normal profile at x = 4.3D. Pre-multiplied energy spectra of the
streamwise velocity component are shown in Fig. 7.8a, in terms of a spectrogram for the
uncontrolled flow: φuu(St∗, y/D). Here, St∗ refers to the characteristic Strouhal num-
ber St∗ = f D/U∗, with U∗ = 12.5 m/s being the average streamwise velocity at the y-
location of the cylinder axis (y = 2D) in the clean TBL (i.e., when no cylinder is installed
in the test section). The spectrogram in Fig. 7.8a shows a sharp energy increase around
St∗ = 0.22 ( f = 85 Hz). The high-intensity energy is concentrated, as expected, around
the upper and lower shear layers of the cylinder wake Michelis and Kotsonis [2015]. The
percentage difference of the wall-normal spectrogram of the controlled flow, with re-
spect to the uncontrolled case, is presented in Fig. 7.8b. A clear reduction in peak-energy
of up to ≈ 39% at St∗ ≈ 0.22 is observed in the region 0.2 ≤ y/D ≤ 1. Similar conclu-
sions can be drawn from wall-normal hot-wire velocity profiles acquired at x = 0 and
x = 2.15D, but the results are not presented here for brevity. Stronger attention is given
to the spectrum at y = 1.5D (in line with the axis of the cylinder, in Fig. 7.8c), where
a comparison is drawn between the uncontrolled and the opposing flow cases and an
attenuation is observed of the vortex shedding peak is observed for the flow subject to
opposition control by the Fx-LMS algorithm.

Generalizing the findings from hot-wire anemometry measurements, planar PIV data
can be processed to show the total energy (i.e. the variance) of fluctuations of the wall-

normal velocity component, v2. Figure 7.9a reports a contour of wall-normal velocity
variance in the PIV FoV (see Fig. 7.6b) for the vortex shedding flow in the wake of the
cylinder, but without control being applied. Figure 7.9b reports, instead, the same con-
tour, but now for the random and opposing control modes. By close inspection, one can
notice that, in the upstream portion of the contour plot, the random control variance is,
on average, higher than for the opposing mode. This points at a successful targeting of
the most energetic v-fluctuations by the controller and, in fact, an overall reduction in
wall-normal variance can be formally evinced from the relative difference in variance,
reported in Figure 7.9c.

Consequently, the response of the flow to control is now presented in terms of the
wall-normal velocity spatial spectra, extracted from PIV data throughout the complete
FoV. We hereby compare the spectral response of the flow under opposing control to
the one where random control was deployed. Energy spectra of the wall-normal veloc-
ity component are shown in Fig. 7.10a, as a spectrogram for the flow under the influ-
ence of random control: φv v (St∗, y/D). To be noted that, since the original dataset is
distributed spatially (PIV-based vector fields), a transformation needs to be applied to
convert spatial information to temporal data. Two assumptions are hereby made: (1) we
apply Taylor’s frozen turbulence hypothesis, as f = U∗/λ =⇒ St∗ = D/λ, with λ being
the spatial wavelength of v-velocity fluctuations, and (2) that the flow is homogeneous
in the streamwise direction (x). However, the flow is slowly developing along x, thus in-
troducing a slight distortion in the spectra presented in the foregoing. The spectrograms
in Fig. 7.10a and Fig. 7.10b show a sharp energy increase around St∗ = 0.22 ( f = 85 Hz).
The percentage difference of the wall-normal spectrogram of the controlled flow, with
respect to the uncontrolled case, is presented in Fig. 7.10c. A clear reduction in peak-
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(a) (b)

(c)

Figure 7.8.: (a) Spectrogram φuu(y ; f ) of the fluctuations of streamwise velocity, mea-
sured along a wall-normal profile with hot-wire anemometry for the uncon-
trolled case. (b) Same as (a), but now considering the difference-spectrogram
between the case where the flow was subject to opposing control and the
case where random control was performed. (c) Spectrum of the streamwise
velocity fluctuations at y/D = 1.5, directly comparing the uncontrolled case
to the one where Fx-LMS control was applied. Displaying the location of the
characteristic vortex shedding frequency at St∗ = 0.22 with a vertical dotted
line.

energy of up to ≈ 15% at St∗ ≈ 0.22 is observed in the region 0.7 ≤ y/D ≤ 2.2. Similar
conclusions can be drawn from wall-normal hot-wire velocity profiles acquired at x = 0
and x = 4.3D, but the results are not presented here for brevity.

Thus far, results confirm that, spectrally, the controller is able to successfully coun-
teract and attenuate the highly-energetic wall-normal velocity fluctuations that occur in
the wake of the spanwise-aligned cylinder. In the foregoing, it will be shown how the



7.4. CONTROL OF CYLINDER VORTEX SHEDDING

7

135

(a)

(b)

(c)

Figure 7.9.: (a) Contour of the variance of wall-normal velocity fluctuations in the wake
of the spanwise-aligned cylinder for the uncontrolled case, captured with
planar PIV. (b) Same as (a), but now considering the case where control was
opposing the vortex shedding (filled contours) and where random control
was applied instead (white contours, levels at 0:1.6:16). (c) Filled contour of
the difference between the variance of wall-normal velocity fluctuations in
the opposing and random control scenarios. Dashed black line referring to
the nominal hot-wire streamwise position.

controller interacts with the incoming flow and, specifically, which structures are iden-
tified by the Fx-LMS algorithm as the ones to be targeted. This is accomplished via the
presentation of phase-averaged velocity fields:

〈uk〉 =
1

nk

∑

i∈bin k

ui , (7.3)

where nk is the number of frames in each bin, with the number of bins depending
on the chosen discretization of the phase (φi = 2π · ti mod T /T , with ti being the time
instant the frame was taken and T the characteristic period of the conditioning signal)
of the conditioning signal. In fact, phase-averaging requires the selection of a condi-
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(a) (b) (c)

Figure 7.10.: Spectrogram φv v (y ; f ) of wall-normal velocity fluctuations (acquired with
planar PIV) of the (a) opposing and (b) random cases. (c) Difference spec-
trogram between the opposing and random control cases. Displaying the
location of the characteristic vortex shedding frequency at St∗ = 0.22 with a
vertical dotted line.

tioning signal and conditioning events. For this work, the former is chosen to be the
control signal (i.e. the signal that is sent to the actuator before binarization), whereas
the latter consist of its positive-gradient zero-crossings. Figure 7.11 presents the phase-
averaged v-fields for the uncontrolled case, where the signature of the vortex shedding
in the Kármán vortex street can clearly be noticed [please note that, when considering
phases “away" from the condition point (i.e., φ = 0), the amplitude of the averaged os-
cillation decreases, given the limited length of the integral time scale]. For comparison,
Fig. 7.12 presents the phase-averaged contours for the case subject to opposition con-
trol with the aid of the Fx-LMS algorithm. Whereas the shedding was extremely clear in
Fig. 7.11, here one can notice a disruption of the naturally-occurring vortex shedding, to
give way to a more smeared sequence of spanwise-aligned vortices. In particular, the
downward-directed motions appear of lower intensity, given the upward-directed actu-
ator flow. This is clear evidence of the correct implementation of considerable control
effect that was obtained with this adaptive control law. A word of caution needs to be
mentioned. In fact, for the last three phases in consideration (i.e. ϕ= {3π/3,4π/3,5π/3}),
the jet should nominally be off. However, a clearly non-zero vertical velocity component
is appreciably visible in the vicinity of x = 0, where the actuator was placed. Although
the reason for this is still unclear to the author, two factors can potentially be the cause
of this observation:

1. A leak in the feed system. Improper closing of the solenoid on the plane of acqui-
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Figure 7.11.: Phase-averaged wall-normal velocity fields for the uncontrolled flow mod-
ulated by periodic vortex shedding, conditioned on the positive-gradient
zero-crossings of the control signal before binarization for actuation. The
phase-average consists of 6 evenly-spaced bins: from ϕ = 0 to ϕ = 5π/3.
The streamwise location of the jet actuators is indicated with the aid of a
blue rectangle.

sition (i.e. the central valve) could explain a mild outflow of fluid from the jet exit
slit.

2. The relatively high frequency of actuation. As mentioned in § 5.3, the frequency
response of the actuator and the pneumatic feed system is such that, when ap-
proaching a frequency of ≈ 100 Hz, the flow measured at the jet exit slit does not
fully shut down. In fact, a frequency-response analysis of the jet outflow revealed
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Figure 7.12.: Phase-averaged wall-normal velocity fields for the flow modulated by pe-
riodic vortex shedding and controlled by means of the Fx-LMS algorithm,
conditioned on the positive-gradient zero-crossings of the control signal
before binarization for actuation. The phase-average consists of 6 evenly-
spaced bins: from ϕ = 0 to ϕ = 5π/3. The streamwise location of the jet
actuators is indicated with the aid of a blue rectangle.

characteristic start-up and shut-down times, as given in § 5.3. Given that the spec-
trum of the control signal, although broadband, peaks at f ≈ 88 Hz, it is plausible
that the limit frequency of the actuator is reached.

Albeit the uncertainty in the full functionality and reliability of the actuator, our results
confirm the effective deployment of the Fx-LMS to the cylinder-induced vortex shedding
control, as a clear reduction in shedding intensity was measured. Now the questions
arises as to the Fx-LMS controller will perform in a flow characterized by a more broad-
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band spectral signature, such as an equilibrium TBL flow.

7.5. APPLICATION TO FULLY BROADBAND TBL
One of the principal goals of this dissertation is to develop real-time flow control tech-
niques for a TBL flow. The analysis of a control problem involving the attenuation of
harmonic wake vortex shedding downstream of a spanwise-aligned cylinder was just a
preliminary experiment to verify the working principle of the Fx-LMS algorithm. Having
successfully tested the controller in harmonic conditions, one can now analyze its per-
formance when applied to the fully broadband TBL flow scenario (i.e. with no cylinder).

7.5.1. EXPERIMENTAL IMPLEMENTATION

The experimental setup employed for the real-time control of the TBL flow using an
adaptive control law is the same as described in § 7.4.1. Clearly, the cylinder was re-
moved such that the dynamic plant in consideration for control was the “clean” TBL
flow without the superposition of a harmonic forcing. The major difference with respect
to the experimental setup for the control of wake vortices was in the input and error
sensors. Instead of wall-pressure sensing, an architecture now based on wall-shear and
velocity fluctuations is adopted. This was for two principal reasons.

• Loss of coherence. As highlighted in Ch. 4, the decay of coherence between wall-
pressure and streamwise velocity fluctuations is rather sharp as a function of stream-
wise separation of the two sensors. The streamwise separation is acceptable up to
a distance of roughly 2δ, when factoring in the quadratic term of wall-pressure,
and this was the main factor underlying the success of the opposition control
strategy based on wall-pressure input of Ch. 6. However, the separation between
streamwise input and downstream error sensors is, in the context of this part of the
dissertation, of 4.4δ. The considerably larger separation between the two sensors
leads to extremely low coherence between the corresponding signals and, thus, an
ineffective control system.

• Stronger signal-to-noise ratio. Given the broadband nature of the TBL dynamics
not modulated by wake vortex shedding, a quantity that is relatively immune to
contamination by external noise sources will certainly aid the controller in identi-
fying the principal statistical events that need to be attenuated.

The input and error sensors that were employed in this phase of the dissertation, there-
fore, consist of three flush-mounted hot-films as the input sensors. These are Dantec
55R47 glue-on hot-film probes. Being these the same sensors that were used in Ch. 5, the
interested reader can refer to that part of the work for further specifications and techni-
calities regarding the characteristics and integration of these in the experimental facility.
The location of the three input sensors is designated with the symbol H F in Fig. 7.6a.
The error sensor, instead, consisted of a single hot-wire probe located at the stream-
wise position of the error microphones, used in the vortex shedding experiment, but at
y+ = 190 (in the logarithmic region, see Fig. 7.6a). Three jet actuator only were employed
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in this control loop: the ones located directly downstream of the three hot-film probes
used as input sensors.

The controller was run in single-input single-output mode. Thus, the identification
of both FIR kernels needed for the Fx-LMS algorithm was run by only considering the
central hot-film’s and the hot-wire’s signal. The identified kernels, once converged, were
then deployed to the three spanwise stations: i.e. the three hot-film–actuator pairs. This
is justified following spanwise homogeneity of the flow in the spanwise direction.

7.5.2. SYSTEM IDENTIFICATION

Identification of the FIR kernels underlying the deployment of the Fx-LMS algorithm for
the broadband case follows the same procedure outline in the above for both the acous-
tic wave control and the control of vortex shedding in the wake of a cylinder. Both kernels
are plotted in Fig. 7.13a. Note that the length of the temporal horizons of both kernels are
different. The longer streamwise separation between the hot-film probe and error sen-
sor, compared to the separation between the input sensor and the jet actuator, requires a
longer temporal horizon for the identification of the cancellation path kernel. Although
the same physical separation between sensors was employed for the experiments aimed
at the attenuation of cylinder wake vortices, that was a periodic system. Vortex shed-
ding was strongly concentrated around a tonal peak, which inherently results in both
the control and cancellation path kernels being characterized by the same wavelength.
However, being the TBL a dynamic system characterized by broadband fluctuations, no
such tonal properties exist. Thus, one needs to account for the high energy contained in
the low-frequency components (contained over the longer streamwise extent), to allow
for proper system identification.

To understand the structures identified by the controller as the most energetic one,
a spectrum is plotted of both kernels, together with the spectrum of the hot-film input
signal (see Fig. 7.13b). For ease of comparison, the magnitude of the FIR kernels is nor-
malized in such a way that the maximum amplitude is equal to the maximum amplitude
of the spectrum of the input signal. By inspection of said figure, one can immediately
see how the dominant feature being targeted by the Fx-LMS controller corresponds to
f δ/U∞ ≈ 0.7, which lies in the spectral range displaying the most energy in the input
signal, hinting at a correct identification of the most energetic frequency components in
the dynamic plant.

7.5.3. TBL RESPONSE TO ADAPTIVE CONTROL

The results of the Fx-LMS control applied to TBL fluctuations in terms of the spectrum
of streamwise velocity fluctuations (see Fig. 7.14) provide important insights into the
system’s behavior under different control strategies. In the opposing case, where the
control system generates an anti-phase signal to counteract the turbulence, a clear and
statistically-significant reduction in the fluctuation levels is observed at large wavelengths.
This reduction is in line with the theoretical expectation that an anti-phase signal would
suppress disturbances in the turbulent flow by introducing “destructive" control inputs.
The spectral analysis of the opposing case shows a significant decrease in the energy at
the frequencies corresponding to the turbulence, reinforcing the idea that Fx-LMS con-
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(a)

(b)

Figure 7.13.: (a) Plot of the control and cancellation path kernels identified for the con-
trol of the fully broadband TBL flow. The length of the temporal horizons
of either kernels are different. Note the different time axis for each of the
curves. (b) Spectra of the hot-film input and error hot-wire signals, as well
as the normalized magnitude of the cancellation path and control kernels.

trol is effective in actively attenuating targeted disturbances when the control signal is
appropriately aligned with the turbulence.

Overall, the spectral response of the flow to control aligns with the expected theoretical
outcome: the opposing control reduces spectral energy. These findings underscore the
effectiveness of Fx-LMS control in targeted suppression of turbulence, as well as its lim-
itations in dealing with broadband disturbances. While the system demonstrates clear
potential for active control in turbulent flows, further refinement and potentially alter-
native adaptive techniques may be necessary to handle the more unpredictable, chaotic
nature of turbulence. However, this work demonstrates the effectiveness of this control
algorithm, without resorting to complex high-dimensional non-linear control laws.

7.6. CONCLUSIONS
This chapter proves the potential of the adaptive Fx-LMS algorithm to be suitable for
its application in real-time turbulence control. Not only it displays significant perfor-
mance for a flow case subjected to strong harmonic forcing, but it also demonstrates its
applicability to a broadband flow case. In essence, from a physical perspective, the Fx-
LMS algorithm is able to accurately retain the information that remains correlated over
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Figure 7.14.: Pre-multiplied spectra of the streamwise velocity fluctuations, measured
with the aid of a hot-wire probe located at (x, y, z) = (2δ, yL ,0). Comparing
the uncontrolled case (blue) to the case where opposing control was per-
formed using the Fx-LMS algorithm.

the large streamwise extent separating input and error sensors. In a turbulent bound-
ary layer case, this only coincides with structures having typical length scales of several
boundary layer thicknesses: the LSMs.
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Do good work.

Gus Grissom (Apollo 1)

This chapter summarizes the main findings and conclusions based on the research work

that has been presented in previous chapters. Furthermore, it reflects on the societal rel-

evance of the work contained in this booklet and provides recommendations for future

developments.
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8.1. CONCLUSIONS
The work contained in this dissertation examines the development and deployment of
real-time control strategies for skin-friction drag reduction in a turbulent boundary layer
flow by means of manipulation of large-scale velocity fluctuations. A pioneering use of
wall-pressure as the input quantity for real-time control has also been explored an im-
plemented experimentally, with successful attenuation of targeted velocity fluctuations.

WALL-PRESSURE SENSING, FILTERING AND SCALING

A preliminary part of the work (Ch. 3) has demonstrated the effectiveness of applying
reduced-order models, such as classical proper orthogonal decomposition (POD), har-
monic POD (hPOD), and conditional spectral analysis (CSA), to extract meaningful phys-
ical insights from wall-pressure measurements taken in a high-Reynolds-number turbu-
lent pipe flow facility: the Centre for International Cooperation on Long-Pipe Exper-
iments (CICLoPE). Specifically, the challenge has been addressed of filtering unwanted
noise originating from facility-related sources and preserving the key hydrodynamic wall-
pressure information. The filtered energy spectra confirmed the alignment of the small-
scale energy peak at λ+

x ≈ 250, which is consistent with the expected near-wall flow dy-
namics. Moreover, a progressive increase in large-scale energy content with increasing
Reτ was observed, as predicted by the literature.

In general, Ch. 3 proves the potential of these reduced-order models not only in de-
noising complex turbulent datasets but also in reliably retrieving hydrodynamic pressure
information. This is critical for further applications in flow control and drag reduction
strategies, where robust wall-pressure measurements are crucial. These methods pro-
vide a solid foundation for further developments in turbulence studies, ensuring that
essential flow features are captured even in the presence of facility noise.

Once filtering techniques have been established to reliably retain hydrodynamic wall-
pressure fluctuations, statistical correlations of hydrodynamic wall-pressure and veloc-
ity fluctuations in the logarithmic region of a turbulent pipe flow were experimentally
investigated (Ch. 4). With a unique dataset acquired in the CICLoPE long-pipe facility,
spanning a large range of friction Reynolds numbers (4794.Reτ . 47015), this study re-
veals definitive Reynolds number trends of the scale-dependent wall-pressure–velocity
coherence. For the linear coherence between the u velocity (and v velocity) and wall-
pressure, a Reynolds-number-independent scaling of the coherence spectra appears at
the intermediate scale range when scaled with distance-from-the-wall. This trend is also
statistically similar across several wall-bounded flows when compared to the data avail-
able from the open literature. When the squared wall-pressure fluctuations are consid-
ered instead of the linear wall-pressure, the coherence spectra for the wall-pressure and
velocity fluctuations are higher in amplitude at the (very) large-scale end of the spectra.
Physically, this link between wall-pressure–squared and velocity typifies a modulation
effect. Squaring the wall-pressure introduces low-frequency content that is reflective of
how the higher-frequency wall-pressure intensity varies. Current findings of the coher-
ence spectra bear relevance to stochastic estimation schemes, in which wall-pressure
can be considered as an input to estimate off-the-wall velocity fluctuations. With the
aid of a quadratic stochastic estimation method, it was shown that, for each Reτ investi-
gated, the estimated time series and a true temporal measurement of velocity inside the
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turbulent pipe flow yielded a normalized correlation coefficient of up to ρ ≈ 0.6 (while
this was below 0.4 for a linear stochastic estimation method excluding the wall-pressure–
squared term). This demonstrates that (sparse) wall-pressure sensing can be employed
for meaningful estimation of off-the-wall velocity fluctuations. Also, it is shown that
wall-pressure as an input for estimation schemes is scalable to application-level con-
ditions.

FEEDFORWARD REAL-TIME CONTROL OF TBL FLOW

In Ch. 5, successful experimental real-time targeting of large-scale motions has been ac-
complished by means of a control system comprising a surface-mounted hot-film as
the input sensor and a wall-embedded blowing jet actuator, located downstream of the
sensing element. An opposition control logic was implemented for which the controller
activated the actuator at regions of streamwise momentum surplus. The inverse con-
trol law, reinforcing control, was also implemented, where the jet fired into regions of
momentum deficit with the goal of enhancing turbulence instead of suppressing it.

The principal objective of this part of the dissertation was to analyze skin-friction
drag-generating mechanisms by considering statistical integral measures. The bulk tur-
bulence kinetic energy production term decreases up to a wall-normal location where
the actuator-induced fluctuations are strong. The sharp increase in the Reynolds shear
stresses Rx y induces a bias in this integral measure as well as the second component
of skin-friction following FIK-decomposition: C f ,2. The applicability of the FIK decom-
position relies on the assumption of zero-pressure-gradient turbulence, which might be
violated in proximity to sites where flow control is performed by means of fluidic ac-
tuators. However, when focusing on the region downstream of the actuator (x/δ > 1),
the Reynolds shear-stresses show streamwise-invariant behavior in the logarithmic re-
gion, where the LSMs were targeted. When evaluating C f ,2 in this region, an identical
trend in the change of the skin-friction was found as compared to the direct PTV-based
measurements. This opens up an avenue for using off-the-wall flow field information
downstream of control for the purpose of optimizing a drag-reducing control scheme.
Still, the observation that statistical integrands directly reflect changes in PTV-inferred
skin-friction coefficient supports the conclusion that the controller presented in Ch. 5 is
able to alter skin-friction generating mechanisms not only in the logarithmic region, but
also in the near-wall region, where small viscous scales are energetically dominant.

A feedforward real-time control logic had already proven effective in the literature in
the work of Abbassi et al. [2017], and in this work further working mechanisms of this
strategies have been elucidated and clarified. With the experimental real-time control
configuration presented in Ch. 5 and the treatment and scaling of wall-pressure mea-
surements illustrated in Chs. 3 and 4, the groundwork is laid for tackling a change in the
input quantity of the controller: from wall-shear stress to wall-pressure fluctuations.

Evidence of the efficacy of a control strategy utilizing wall-pressure fluctuations as the
input quanity can be found in an attenuation of the variance of large-scale velocity fluc-
tuations in the logarithmic region (Ch. 6). Despite an increase in small-scale energy,
which is attributed to shear layer instability in the wake of the jet actuator, this con-
trol method proves to be effective in a spectral band where the most coherence can be
found not between wall-pressure, but rather wall-pressure–squared, and velocity fluc-
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tuations. Consistently with results from the literature, in fact, the squared term retains
more coherence than the linear term when considering streamwise separation between
upstream and downstream stations. For the first time, the efficacy of an opposition
control strategy targeting large-scale structures based on sparse wall-pressure measure-
ments is proven. This was shown to be effective even in the presence of strong contam-
ination by facility noise in the input signal. Future work in our group is currently being
conducted on the implementation of more advanced control algorithms, such as adap-
tive control strategies, in an attempt to further increase the accuracy of the controller
and mitigate the adverse effects of the actuator-induced flow on the spectral response of
the TBL.

ADAPTIVE CONTROL OF WALL-BOUNDED TURBULENCE

The final chapter of this dissertation (Ch. 7) reports on the development and implemen-
tation of an adaptive control strategy for the control of large-scale velocity fluctuations
in a turbulent wall-bounded flow. Based on Fx-LMS control algorithm, an initial investi-
gation was carried out to analyze the response of a TBL flow, strongly modulated by vor-
tex shedding. This was induced by a two-dimensional spanwise-aligned cylinder, whose
shedding frequency closely matched the one of the most energetic large-scale modes of
an uncontrolled TBL. In this preliminary phase of deployment of the Fx-LMS, an atten-
uation of the intensity related to the cylinder vortex shedding was observed, in compli-
ance with the objective of the study. In a secondary phase of this chapter, the Fx-LMS
algorithm was deployed to the fully broadband TBL case, without modulation by a two-
dimensional cylinder. Although with limited flow diagnostics available, it was possible
to confirm a successful deployment of the control law for the control and attenuation of
large-scale–induced velocity fluctuation in the logarithmic region.

8.2. RECOMMENDATIONS AND OUTLOOK

This booklet has touched upon several aspects of the development and experimental
implementation of real-time flow control strategies for the control of velocity fluctua-
tions in turbulent wall-bounded flows. However, this dissertation does not tackle many
more issue that afflict full-scale deployment of real-time flow control technology for tur-
bulence, nor it claims that real-time control systems, such as the ones described in pre-
vious chapters, can be directly integrated in engineering systems. With the technology
readiness of a “lab-proven" technique, the maturity of turbulence real-time control is
not high-enough for industrialization. Still, this work serves as proof of concept and
for unraveling large-scale flow mechanisms that contribute to the production of friction
drag and develop low-complexity real-time control systems for its control.

Regarding the work conducted as part of this dissertation, the main line of work that
certainly requires more thorough investigation is the analysis of the response of the TBL
flow to the adaptive Fx-LMS control law. While at the moment only limited hot-wire di-
agnostics have been presented, a more complete PIV campaign would be required to
fully characterize the two- (and three-)dimensional flow field. From the algorithmic
point of view, the author strongly suggests moving from a single-channel feedfoward
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single-input single-output Fx-LMS algorithm to a formulation whereby a multiple-input
multiple-output configuration is considered.

This step would ensure an improvement in the reliability and the precision of the con-
troller, and aid in the development of an adaptive control strategy that is in-line with
the requirements of an industrially-viable control system. Furthermore, with industri-
alization and up-scaling in mind, one needs to thoroughly tackle the issue of net power
savings of the control system. Skin-friction force reduction occurs on order of magni-
tude that are way lower than the current state-of-the-art actuators power requirements,
especially when considering the power required to drive real-time processing hardware
and input sensors.

Addressing the above challenges would represent a step forward in the direction of un-
derstanding the requirements, design issues and constraints of a real-time control sys-
tem for skin-friction drag reduction and, eventually, deployment to engineering systems
of practical relevance.
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BIOGRAPHICAL NOTE

Figure 1.: The author of this disser-
tation heroically engag-
ing in the act of surfing a
0.2 m-high swell.

It was a bright sunny day1 on July 8th 1996, and the
clocks were striking 5 AM2. Giulio came into this
world the same way he will approach most of his
life: following his guts, at a time and in a place he
was not supposed to be born in: the former (albeit
temporary) capital of the Roman Empire: Ravenna
(Italy). World domination wishes (and utter panic
from his parents’ side) aside, Giulio grew up in
the place he was actually supposed to be born in:
Milan (Italy). Once he realized that he could not
make his birth town the capital of the world again,
he spent most of his childhood playing with Le-
gos and, once completed, disassembling them and
turning them into, of course, cutting-edge aircraft.
This is when he realized that he had a strong in-
terest and passion for anything that flew, which
turned his head up in search for a path to the sky.

His interest in Lego aircraft matured into a gen-
uine passion for aeronautics, which led him to

pursue scientific secondary studies in Italy, and then venture into the world below sea
level: The Netherlands. Here, he undertook studies in Aerospace Engineering both for
his B.Sc. and M.Sc., making him unravel a particular interest towards fluid mechanics.
After his masters, instead, he rose to new heights by diving deep into the (still-below-
sea-level) field of Aerodynamics for his Ph.D. Here, Giulio’s interests for aerodynamic
experimental activities grew so much that he now monitors outside air temperature at
all times to the tenth of a degree.

Actually, him being keen on fluid mechanics was a constant throughout his whole life;
his university years have only acted as an emotional trigger. In fact, he has always been
very fond of sailing, swimming and, more recently, surfing (the interested reader is re-
ferred to Fig. 1 of this chapter).

1The author is not 100% certain of weather conditions on that day.
2±2 hr
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