

TR 26s 27p§
-}652141

Parallel Natural Language Parsing:
From Analysis to Speedup

Parallel Natural Language Parsing:
From Analysis to Speedup

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.ir. K.F. Wakker,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen

op dinsdag 6 november 2001 om 10:30 uur
door Marcellus Paulus VAN LOHUIZEN

informatica ingenieur
geboren te Alphen aan den Rijn.

Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr.ir. H.J. Sips
Prof.dr.ir. A. Nijholt

Toegevoegd promotor:
Dr.ir. R. Sommerhalder

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr.ir. H.J. Sips, Technische Universiteit Delft, promotor

Prof.dr.ir. A. Nijholt , Universiteit Twente, promotor

Dr.ir. R. Sommerhalder, Technische Universiteit Delft, toegevoegd promotor
Prof.dr.ir. J.L.G. Dietz, Technische Universiteit Delft

Prof.dr. H.J. van den Herik, Universiteit Maastricht

Prof.dr. F.J. Peters, Universiteit Leiden

Dr. J.A. Carroll, University of Sussex, Groot-Brittannié

Published and distributed by:

Marcel P. van Lohuizen
ISBN 90-9015281-4

Keywords: parallel parsing, natural language

Copyright (© 2001 by Marcel P. van Lohuizen

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage retrieval system, without written
permission of the author.

E-mail author: mp@vanlohuizen.com

Preface

The research presented in this thesis done in the context of the “Parallel Natural Language
Interfaces” subproject of the IMPACT project. The IMPACT project was headed by the
ING bank and founded by the organization for High Performance Computing and Network-
ing (HPCN), itself partly funded by NWO. The goal of this subproject was to improve the
performance of natural language interfaces. Considering the context of the research, there
was a strong focus on achieving speedup by means of parallel processing. Although the
research goals aim at improving the performance of natural language interfaces in general,
the research in this thesis focuses on parallel parsing. The reason for this was that the pars-
ing component of the Deltra system, which initially was the target platform of our research,
was by far the most computationally expensive component. The parsing component is often
the most computationally expensive component for other natural language processing ap-
plications as well. To broaden the scope of our research, we also investigated a parser for a
different grammar (LinGO) at a later stage of the project.

Although a dissertation often appears to be an individual achievement, there are a number
of people to whom I am indebted. First and foremost, I would like to thank my promotors
Henk Sips and Anton Nijholt and added promotor Ruud Sommerhalder for the guidance
and support they have given me. I am especially grateful to Ruud Sommerhalder for his
involvement with the successful completion of my dissertation.

Also, the contents of this thesis would not have been what it is had I not had the right
people around me. In this respect, I would like to thank several people. Firstly, I would
like to thank Job Honig, for the many discussions often related to natural language parsing,
Stephan Oepen, for providing me with the opportunity to get on track with the LinGO
grammar, and Ulrich Callmeier for the help and support with the porting effort to make my
parser compatible with the LinGO grammar. Secondly, I would like to thank all the people
that enabled me to run my experiments on the right machinery: Jan Hol, for allowing me
to use the 8 processor UltraSparc of the Faculty of Aerospace Engineering, and Takashi
Ninomiya and Makino Takaki of the Department of Information Science at the University
of Tokyo, for running experiments on their 64 processor UltraSparc. In computer science
research, often little can be done without the availability of the right machinery.

Thirdly, I would like to thank all the colleagues that may not have been directly involved
with my research, but have nevertheless given a great deal of support. Here an attempt to
name all of them: my office room mates throughout the years: Leon Aronson, Mathijs de
Weerdt, Roman van der Krogt, Paul Dechering, and David Lindeijer, which helped a great
deal with all kinds of questions and who hardly ever told me to shut up when I was talking
too much, other fellow Ph.D. students: Anca Bucur, Jeroen Valk, Ihor Kuz, Johan Pouwelse,
Jonne Zutt and Ruud de Rooij, the system administrators: Paulo Anita, Onno Roep, and Hub
Engelen, the secretaries: Toos Brussee and Coby Bouwer, who were of great support, and
all the other colleagues of the department I spent a great deal of time with and who were
always willing to help out: André Bos, Leo Breebaart, Dick Epema, Jan Heijnsdijk, Frits

vi Preface

Kuijlman, Koen Langendoen, Kees van Reeuwijk, Hans Tonino and Cees Wittenveen.
Finally, I would like to thank my mother for making the necessary arrangements in the final
phase of my promotion, for putting up with me in the last year when I was overly consumed
with my work and not always the nicest person, and for always being there when I needed
her.

Mountain View, CA, September 2001 Marcel P. van Lohuizen

Contents

Preface

1 Introduction
L.1 Natural Language Processing
12 FocusofResearch.
L3 Conmtext

2 Natural Language Parsing
21 PasingSchemata,
211 ParsingSchemata
2.1.2 Mappings between Parsing Schemata
213 Common ParsingSchemata
2.1.4 Parsing Schemata for Parallel Parsing
22 Unification-Based Grammars
2.2.1 Unification of Typed Feature Structures
222 Unification-basedGrammars
223 Algorithms for Unification
224 Parallel Unification
23 TabularParsing,
231 ChartParsing

233 ParallelChartParsing.
24 Existing Parallel Natural Language Parsers

3 Analysis and Optimization of Parallel Computations
3.1 ParallelComputing
311 ParallelModels

32 Scheduling
321 Bounds for Optimal Schedulings
322 SchedulingAlgorithms
323 WorkfirstPrinciple

11
12
16
17
18
21
22
27
28
29
30
31
32

35
35
35
37
37
38
38

vil

viil Contents
33 DomainDecompositiono oo ., 41
331 Imtroduction.ttt 41

3.3.2 Parttitioning Algorithms 42

34 CachingPrinciples 43
341 Teminologyo it ittt 43

3.4.2 Techniques to Improve Cache Utilization 45

4 Parallelism in Parsing Computations 47
41 Imtroductionttt 47
42 ParsingasDeduction 47
421 Definitionsottt e 48

422 StrictParsingSystems 00 oL L 49

43 Task-Graph Analysist 50
43.1 TaskDependenciest 50

432 TaskGraphst nnnn 53

433 MetricsontheTaskGraph 54

434 Results 00 i i it ittt 55

44 Parallelism and ParsingSchemata 56
44.1 Justification GraphasTaskGraph 58

442 BaseParsingSchema, 58

443 Measurementso vt it e e e e 59

5 Communication in Parallel Parsing 63
51 Inmtroduction ittt 63
52 CommunicationModel0 0 L. 63
53 GroupingHeuristics L 0o oo 65
5.3.1 Reducing the Upper bound of Communication 65

53.2 GroupingHeuristics 0., 66

54 Evaluation ¢ ittt it e e e e 67

6 Efficient Thread-safe Unification 4!
61 Introductionttt it ittt 71
6.2 SeparatingScratchFields 72
63 ThelndexingTechnique 74
6.3.1 Thelndexing Algorithm 75

632 StructureSharingo e 78

63.3 OtherOptimizationsot uueennn 80

64 Performance COmparisono v v vt v vt v vt e e 81

Contents ix
641 ResultsforLinGO 81

642 ResultsforDeltra. 83

6.5 Comparison to other Algorithms 83

6.6 Conclusions and Future Directions 85

7 Design and Implementation of a Parallel Parser 87
71 Imtroduction, 87

72 Scheduling 88
721 DataStructures 9%

7.2.2 Scheduling Algorithm 90

7.2.3 Preventing Duplicate Matches 92

724 WorkStealing. 93

725 Temination i 95

73 Implementation 96
7.3.1 Overallarchitecture 97

732 PasingProcess 98

74 Theoretical Analysis 98

7.5 Empirical Analysis 100

8 Optimizing Cache Performance 105
8.1 Imroduction i iniinnnanna. . 105

82 Model 107
821 MemoryLayout 107

822 CacheMissEquations 108

8.2.3 Choosing the Right Valueforb. 110

8.3 Optimizing SpatialReuse u... 111

84 BlockingStrategies, 112
84.1 SimpleBlocking 112

84.2 CategorizedBlocking. 113

85 Results., 113

9 Conclusions and Suggestions for Future Research 117
References 121
Summary 131
Summary in Dutch 137

X Contents
About the Author 143
index 145

Chapter 1

Introduction

The most natural way of communication for humans is, in most cases, the use of natural
language. The field of natural language processing aims at giving computers the ability to
process or understand human language for any of a wide variety of applications. Applica-
tions of natural language processing that aim at coming to a full understanding of a given
sentence or text are typically computationally intensive. The trade off between linguistic
accuracy and computational performance can therefore be an important issue. In this the-
sis, we will investigate the possibilities for improving the performance of natural language
processing by using modern day multiprocessors.

1.1 Natural Language Processing

In recent years, the field of natural language processing has gradually found its way from
theory to specific, often large-scale, applications. Just about a decade ago, most of the
research focussed on, for example, knowledge representation and small-scale research sys-
tems. Although theoretical issues remain an important topic of research, a lot of today’s
research focuses on large-scale applications of natural language processing for real-life
problems. Some of the major forces prompting this shift were EU and US government spon-
soring of research on specific applications, simple market-driven demand, and the overall
Zeitgeist itself (Wilks, 1996), (edi, 1995).

Natural language processing has many applications, including machine translation, for the
automated translation of written or spoken language, natural language interfaces, to provide
simple interfaces to otherwise complicated software or machinery, information extraction,
for the automated extraction of information from texts, and information retrieval, where the
goal is to automatically retrieve a selection of documents that contain the relevant informa-
tion according to some query.

All of these applications have in common that they incorporate some knowledge about one
or more natural languages. The level of sophistication of the linguistic knowledge they in-
corporate, however, can differ considerably. Some applications are limited to identifying
word categories, often based on statistical methods. Most modern applications for informa-
tion retrieval, for example, use word stemming as the sole source of linguistic knowledge.
Other applications use more sophisticated models, which model the structure, or syntax, and
meaning, or semantics, of the language. Such information is often specified in a grammar
formalism that is specified within the context of some linguistic theory. These more sophis-
ticated approaches to processing of natural language can be very computationally expensive.
In addition, the development of a broad-coverage grammar that covers a significant number

2 1 Introduction

/ Recognizer Analyzer \
T a o -
Dialogue
Manager
\ i /
Speech Generator

Synthesizer

Figure 1.1 Outline of a common architecture for a speech-based natural language processor.

of aspects of a language is very time consuming. One approach to simplify the linguistic
analysis is to limit the coverage of such systems to a specific domain of discourse. Another
approach is to perform only a partial analysis of the syntax of sentences. Often, statistical
methods are used in determining the role of a certain word or constituent.

Sometimes a partial analysis of the syntax simply suffices to reach the level of semantic ac-
curacy that is required for the application (Cowie and Lehnert, 1996). Many applications for
information extraction, for example, follow this approach. For many applications, however,
it seems that full syntactic and semantical analysis is a necessity. In general, there seems
to be a trend to move towards more complex analysis as machines with more computing
power and more memory become available.

For applications that aim at full linguistic analysis, there seems to be a consensus on the
use of unification-based grammar formalisms. Unification-based grammars are basically
context-free grammars augmented with additional constraint checking in the form of unifi-
cation of feature structures. These grammars allow the structure of language to be specified
in a declarative way. The research in this thesis largely focuses on applications that are
based on this formalism.

Figure 1.1 shows an example of a possible architecture for a speech-based natural language
interface. The speech recognizer transforms utterances of the user to text. These words
are passed to the parser. The parser looks up all possible interpretations of the words in a
dictionary, after which it uses the grammar to derive all possible readings of the sentence.
The readings of the sentence are passed for further analysis to the semantic analyzer. At
the core of the system, the dialogue manager determines how to respond to the query by
generating a response meaning. Finally, the generator transforms this meaning to a sen-
tence, which is then fed to the speech synthesizer. There are many possible variations on
this architecture. For example, sometimes the semantical analysis is integrated in the syn-
tactic analysis. The architectures of text-based natural language interfaces, or even machine
translation applications, are typically very similar.

1.2 Focus of Research 3

1.2 Focus of Research

Parsing of natural language is often one of the most, if not the most, computationally ex-
pensive component of natural language processors. Over the past few years, considerable
advances in improving the performance of parsers have been made (Oepen and Callmeier,
2000). Nevertheless, the parsing of large sentences can still be computationally demand-
ing. Despite the recent improvements in parser performance, the parsing of a sentence can
in some cases still take up well over ten seconds. In applications that require direct user
interaction, for example, such processing times are intolerable. In addition, the past has
shown that increased performance of parsers has stimulated the development of more com-
plex grammars. The demand for more performance can therefore be expected to remain for
some time to come.

Most natural language applications are designed for single processor systems. The increas-
ing availability of multiprocessor systems therefore seems to provide the means to improve
the performance of such applications by several factors. For applications that require batch
processing of a large number of unrelated sentences or texts, multiprocessor capabilities can
trivially be exploited by distributing the sentences of texts amongst a number of indepen-
dent copies of the parser, running on different processors. However, for other applications,
such as applications that require a specific order of processing the sentences, or applica-
tions that require direct user interaction, this kind of parallelism is often not a solution.
Especially with applications that require direct user interactions, where the processing of a
single sentence can be a bottleneck, the capabilities of multiprocessors can only be exploited
by parallelizing the internal processes of the respective application.

A considerable amount of research has focussed on parallel natural language processing. An
extensive survey of this research was given in (Adriaens and Hahn, 1994). A straightforward
approach to parallel processing of natural language is to distribute the different components
of an application across processors. Examples of such an approach are the Pangloss system
(Nirenburg, 1995) and VERBMOBIL (Amtrup, 1997). With Pangloss multiple equivalent
parsing components can be executed in parallel. Obviously, the possibilities for parallelism
are limited in this case. Some alternative approaches to natural language processing seem to
be more naturally fit for parallel processing. An example of such an approach is memory-
based or example-based parsing. With this kind of parsing, a sentence is matched against an
existing, often large, corpus of example sentences (Stanfill and Waltz, 1986). These matches
can be processed in parallel without ado. Another approach to parsing that seems well-
suited for parallelism is actor parsing (Hahn, 1994, Neuhaus and Hahn, 1996). With this
approach to parsing, the parser and grammar are defined in terms of actors that communicate
through message parsing. An actor can be, for example, one of the lexical entries of a
typically highly lexicalized grammar. The often large number of actors can all be run as
concurrent processes.

Most of today’s large-scale applications for natural language processing, though, use an ap-
proach based on unification-based grammar parsing, or similar approach. Adopting another
approach to parsing is mostly not an option. In such a case, parallelizing the unification-
based grammar parser component is the most obvious approach to improve performance.

Past research on parallel unification-based grammar parsing has yielded moderate results.

4 1 Introduction

One of the difficulties in parallelizing parsers for unification-based grammars is that pars-
ing yields highly unstructured computations. As a result, there can be, for example, large
discrepancies in the execution times of tasks. Also, trivial distributions of work amongst
processors can easily lead to excess communication to the extent that it thwarts efficient
utilization of the computing power. Some researchers have suggested that these problems
are insurmountable and that it cannot be expected that effective parallel parsing can become
a reality. Recent advances in parallel parsing, however, give more hope in this respect (Ni-
nomiya et al., 2001). As of today, though, there is no consensus on a single best approach
to parallel parsing. In this thesis, we will explore the possibilities for a generic and effective
solution to parallel parsing of unification-based grammars.

1.3 Context

Since the choice of grammar can greatly influence the performance of a natural language
parser, it is important to base the research on a grammar that resembles the current state of
the art. Initially, the research was centered around the Deltra grammar, which was developed
at the Delft University of Technology. Deltra is a broad-coverage grammar for the Dutch
language, and comprises approximately 360 syntactic rules, 120 morphological rules, and a
dictionary of about 3000 entries. The grammar is specified in a DCG-like formalism, similar
to the DCG apparatus in Prolog. Deltra is a practical grammar that covers a significant part
of the Dutch language. Although DCG is used in many existing systems (cf. (Alshawi,
1992), (Briscoe et al., 1987), and (Dowding et al., 1994)), it differs considerably in concept
from the formalisms that are typically the focus of today’s research. This makes it hard to
compare the performance of a parser for Deltra with parsers based on the latter formalisms.

To broaden the scope of the research we later adopted the LinGO grammar in addition to
Deltra. The English LinGO grammar is a multi-purpose broad-coverage grammar devel-
oped at the Center for the Study of Language and information (CSLI) Stanford. The gram-
mar is based on the Head-driven Phrase Structure Grammar (HPSG) framework, a lexicalist
approach to linguistic theory that has become one of the dominant theories. The English
LinGO grammar specifies approximately 8000 types, 27 lexical rules, 37 syntactic rules,
and about 6000 lexical entries.

An advantage of the LinGO grammar is that it has been adopted by multiple research groups,
including CSLI Stanford, University of Saarbriicken, and the HPSG group at Tokyo Univer-
sity. Recently two research groups have adopted the LinGO formalism for the development
of, respectively, a Japanese and German grammar. Because these grammars are specified
in the same formalism, a parser capable of using the English LinGO grammar should re-
quire little or no change to use these grammars. This will give even more possibilities for
performance analysis and comparison down the road.

To evaluate the performance of a parser, usually a fixed set of sentences is used. Such a
collection of sentences is often called a test suite. To compare the performance of different
platforms, it is most convenient when the results are based on the same test suite. We have
selected three different test sets that we used for benchmarking with LinGO grammar: (i)
the often used ‘CSLI’ test suite with fairly short sentences (Flickinger et al., 1987), (ii) the

1.4 Organization of the Thesis 5

| suite [# sentences | avg. sen. len. |

csli 1348 58
aged 96 8.4
fuse 2363 11.6

Table 1.1 Characteristics of test suits used for benchmarking parsers for LinGO.

‘aged’ test suite, a small collection of sentences of medium length extracted from dialogue
utterances derived from a VerbMobil corpus, (iii) the ‘fuse’ test suite, a balanced extract
from four appointment scheduling (spoken) dialogue corpora. The latter suite contains 100
sentences for each input length below 20 words and a limited number of sentences for larger
input lengths. Table 1.1 shows the number of sentences and average sentence length for
each of the respective test suites. Since LinGO is a more modern and well-known grammar
than Deltra, most of the research presented in this thesis focuses on the LinGO grammar.
In addition, the availability of standardized test suites and reference platforms for LinGO
allows for a more thorough performance analysis.

The empirical results that are presented in this thesis are based on the implementation of two
parsers for, respectively, the Deltra and LinGO grammar. Both parsers were specifically
written for the research presented in this thesis. The parser for the Deltra grammar was
basically a reimplementation of another existing parser for Deltra. The reimplementation
was necessary, because the architecture of the old parser proved to be unsuitable for our
research goals. Our implementation of the parser was unimaginatively named Deltra.

The parser for the LinGO grammar was based on the parser of the PET platform: CHEAP
(Callmeier, 2000), and was baptized CaLi.! PET itself is a reimplementation in C++ of
the parser included in the LKB system, which is written in lisp (Copestake, 1999). CalLi
includes the same optimizations used by CHEAP and therefore yields comparable perfor-
mance. Basically, CaLi only implements the parser component of PET. The LinGO gram-
mar is provided as a binary file ready to be used for parsing. This means that the algorithms
for reading, transforming, and normalizing the grammar did not have to be reimplemented.

1.4 Organization of the Thesis

The next two chapters provide the reader the necessary background for reading this thesis.
Chapter 2 gives an introduction to the field of natural language processing. This chapter
is intended both as an introduction to natural language processing for those unacquainted
with the field and as a specification of the tools and techniques used for the purpose of our
research. Chapter 3 gives an introduction to the field of parallel processing and scheduling,
focusing on the issues that are relevant for our research. The topics addressed include
different models of parallel computation, scheduling, optimizing communication, and cache
optimizations.

1CaLi stands for A Chart parser for LinGO.

6 1 Introduction

Chapter 4 and 5 both aim at finding the fundamental limitations for parallel parsing by
analyzing the extent of the parallelism inherent of parsing and bounds on the amount of
communication, respectively. The possibilities and limitations that are derived in these
chapters are used as guidelines for the design and implementation of the parallel parser
that is presented in Chapter 7.

The remainder of the chapters focus on the implementation of a parallel parser. Chapter 6
presents a thread-safe unification algorithm. Unification is a common operation in natural
language parsers. The most commonly used unification algorithms are not well-suited for
parallel processing. The presented algorithm circumvents the problem, without making
compromises on performance.

Chapter 7 presents the design and implementation of a parallel parser. The design is largely
based on the findings of the presented in the preceding chapters. The chapter concludes with
speedup results for runs on a 64 processor shared-memory machine.

Chapter 8 presents several techniques for optimizing the cache performance of parallel and
sequential parsers. Improving cache performance reduces traffic on the memory bus. This
can be crucial in obtaining the desired performance for multiprocessor implementations.

Finally, Chapter 9 presents a final discussion of our research and suggestions for future
research.

Chapter 2

Natural Language Parsing

Unification-based frameworks have emerged as the dominant formalisms for linguistic the-
ory. With these frameworks, each parsing step includes a constraint check in the form of
unification of graphs. Although quite different, Deltra and LinGO are both unification-based
grammars. In this chapter, we will explain the concepts and basic algorithms relevant for
the sequential and parallel parsing of unification-based grammars.

2.1 Parsing Schemata

Unification-based grammars can be seen as context-free grammars augmented with con-
straints in the form of feature structures. Although in most modem grammars there is no
explicit context-free ‘backbone’, each parsing step can still be seen as a context-free opera-
tion with an additional constraint in the form of unification. In this section, we will present
context-free parsing without unification. The addition of feature structures will be discussed
in Section 2.2,

The purpose of a parser is to produce parse trees that specify the syntactic structure of a
given input string. The way in which a parser constructs its results is determined by both
the grammar and the parsing algorithm. A grammar specifies the domain of possible parse
trees. The parsing algorithm specifies how such trees can be computed.

There is a great variety of both grammars and parsing algorithms. This variety may make
it hard to compare specific characteristics of different parsers. Sikkel (1993b) introduced
parsing schemata as a convenient way to specify parsing methods at a high level of abstrac-
tion. Parsing schemata allow parsing methods to be specified independent of a particular
grammar or particular control, data, or communication structures, while still capturing the
essence of the underlying parsing method. The concise way in which parsing schemata al-
low the essence of parsing methods to be specified has allowed parsing schemata to be used
for the cross-fertilization of parsing methods. With this cross-fertilization, desirable char-
acteristics of multiple parsing schemata are combined to form an improved parsing method.

As Sikkel (1993b) showed, parsing schemata can easily be extended to parsing methods
that deal with grammars beyond the context-free category. In this section we will focus
on the context-free part. The extension to unification-based grammars will be discussed in
Section 2.2.

In Section 2.1.1, we will introduce parsing schemata in a more formal setting. In Sec-
tion 2.1.2, we will present mapping relations between parsing schemata, which are use-
ful for defining a taxonomy of parsing schemata. Finally, in Section 2.1.3 and 2.1.4, we

8 2 Natural Language Parsing

will respectively present some common parsing schemata and parsing schemata specifi-
cally designed for parallel processing. The contents of this section have largely been taken
from (Sikkel and Nijholt, 1997); for a full formal description of parsing schemata we refer
to (Sikkel, 1993b).

2.1.1 Parsing Schemata

Context-free grammars can be considered to be the foundation of parsing schemata. We
assume that the reader is familiar with context-free grammars. Nevertheless, for complete-
ness, we will give a brief definition.

Definition 2.1 A context-free grammar G € CFG is defined as a 4-tuple (N, %, P, S),
where N is the set of non-terminal symbols, T the set of terminal symbols, with NNX =
9, P the set of production rules of the form N — (N U X)*,and S € N the start symbol.
<

We will often write V for N U Z. In addition, we will use A, B, ... to denote any non-
terminal in N and we will use a,b, ... to denote any terminal in 3. An arbitrary string
in V* is denoted by v, 3, We denote an arbitrary string in £* of lengthn by ay, ... , a,.
Finally, the empty string is denoted by €.

A production (4,a) € P is also denoted as A — o. Productions of the form A — ¢ are
called epsilon rules. The relation = on V* x V* is defined as follows: @ =~ (3 holds if
there are a1, &2, A, v such that o = a1 Aas, 8 = ayyas, and A—y € P. The transitive
and reflexive closure of = is denoted as =>*.

We define an input string as a sequence of terminals ¥*. We say a grammar G recognizes
an input string a1, ... ,a, if S =* a1, ... ,a, holds. We use L(G) to denote the the set of
input strings, or language, that is recognized by G.

A recognizer for a grammar G can determine whether an input string is an element of the
language L(G) produced by that grammar. In addition to recognizing a string, a parser
also constructs a parse tree in the case a string is recognized. Obviously, parsing a string
is a more difficult task than merely recognizing a string. Nevertheless, we will often only
consider recognizers when referring to parsers, because it is often straightforward to convert
a recognizer into a parser or to obtain a parse tree from the data structures that were already
built by the recognizer.

An important subclass of context-free grammars is defined by the class of grammars that
can be written in Chomsky Normal Form, denoted CAVF. A grammar G is an element
of CNF iff all p € P are either of the foom A — a or A — BC. Every context-free
grammar G for which € ¢ L(G) can be rewritten into an equivalent grammar in CN'F.

An example of a context-free grammar is given in Figure 2.1. It contains two syntactic rules.
The first rule defines a sentence (s) to be composed of a noun phrase (np) followed by a verb
(v). The second rule defines a noun phrase to consist of a determiner (det) followed by a
noun (n). The grammar also specifies four lexical entries, one determiner, one noun, and two
different inflections of the same verb. Note that the grammar is in Chomsky normal form.
Obviously, this grammar is nowhere near being a usable grammar for English. It solely

2.1 Parsing Schemata 9

s—npv
np—detn np
det— ‘the’ /'\
n— ‘dog’ det n v
v— ‘sleeps’
v— ‘sleep’ T T T
the dog sleeps

Figure 2.1 Example of context-free grammar and parse tree for the input string “the dog sleeps”.

[s, 0, 3]
_4
D2
[np, 0, 2]
$ D2 ’
[det, 0, 1} [n1,2] [v.2,3)
TD1 T D1 TD1
T) |
[the’, 0, 1] [dog’, 1, 2] ['sleeps’, 2, 3)

Figure 2.2 Derivation tree for the sentence “the dog sleeps” for CYK.

inteded for illustrational purposes. Figure 2.1 also contains a possible parse tree for the
sentence “the dog sleeps”. Usually, the parsing of a sentence yields more than one complete
parse tree, or reading.! In this simplified example, there is only one possible parse tree.

Parsing schemata are inspired by the “item-based” approach to parsing. According to this
point of view, recognizing is a process of deducing a final set of items from an initial set
of items by means of a set of deduction rules. Different parsing methods use different item
domains, deduction rules, and sets of initial items. Most parsing methods, including Earley-
» LR-, and unification-style parsing methods, can effectively be interpreted as item-based
parsers.

The application of a parsing schema to a specific grammar and input string is called a parsing
system. Figure 2.2 exemplifies a parsing system for the CYK parsing method (Kasami,
1965, Younger, 1967), applied to the grammar given in Figure 2.1. CYK is defined for
grammars in Chomsky normal form, The set of initial items, or hypotheses, given an input
string ay, . . . , Gy, is constructed as follows

H = {la,i-1,4] l[a=a; A1 <i<n}.

1An often quoted example of an ambiguous sentence with multiple readings is “John saw the girl with the
telescope™.

10 2 Natural Language Parsing

In the example, the hypotheses are put below the horizontal line. The set of items recognized
by CYK, or item domain of CYK is denoted Zcyk. The items in the domain are of the
format [A, 3, j], where A € N and 0 < % < j < n. It holds that Zcyx = {[4,4,7] |4 ="
@41, - - ,a;}. The input string is recognized if S, 0, n] is in Zcyk.

The items in Zcyx are derived by recursively applying inference rules to the hypothesis and
the derived items until a fixed point is reached. The derivation process is specified as a set
of deduction steps. This approach allows certain restrictions on the inference rules to be
defined by simply defining restrictions on this set. For CYK, the set of deduction steps is
specified as follows

D® = {la,i-1,4q]F[4,i-1,i] |[A—a€ P}
D® = {[B,ii}[C,3, K]+ [4,4,K] | A—BC € P}
Dcyx = DO yYD®

In Figure 2.2 it is shown how these steps lead to the derivation of the item [s, 0, 3], which
represents a complete parse tree of the sentence “the dog sleeps”.

The triple (Zcyk, H, Dcyk) defines the parsing system Pcyk for G and ay, ... ,a,. The
parsing schema CYK for CYK is defined as a generalization of Pcyx for arbitrary strings
and grammars in CA/F. In general, we can define parsing systems as follows.

Definition 2.2 A parsing system P for some grammar G and input-string a; ... a, is a
triple P = (Z, H, D), in which

o T is the item domain or item set of P, which specifies the allowed items. (The details
of the syntax of items may be different per schema.)

o His a finite set of initial items, or hypotheses.

e D C pm(HUT) x 7 is a set of deduction rules, where g3,(H U T) represents all
finite elements in the power-set of (HU 7).

<

Note that H need not be a subset of Z.

An uninstantiated parsing system for a grammar G is a function that assigns a parsing sys-
tem to any a . ..a, € I*. A uninstantiated parsing system is defined by a triple (Z, H, D),
where 7 is a function that assigns a set of hypotheses to a string a; . . . a, € £*. The func-
tion 7 is usually defined as H(ai . ..a,) = {[a,i — 1,i] |a =a; Al < i < n}. A parsing
schema for some (sub)class of context-free grammars CG C CFG is a function that assigns
an uninstantiated parsing system to any grammar G € CG. We will denote a parsing schema
corresponding to a parsing algorithm P as P.

In (Sikkel and Nijholt, 1997), parsing schemata are always specified by means of a parsing
system, after which this parsing system is generalized for all grammars and input strings.
In the remainder of this section, we will adopt this approach and implicitly assume that the
definition of parsing systems hold for all G € CG, for some class of grammars CG, and all
input strings a; ...a, € X*. Next we will define the notions of an inference relation and
deduction sequence.

2.1 Parsing Schemata 11

Definition 2.3 For a given P = (Z, H, D), the inference relation - C Pim(HUT) x Tis
defined by

YFEif(Y,¢) e Dforsome Y’ CY. Q.1
A deduction sequence for a parsing system P = (Z,H,D) is a pair (Y;£1,...,6_,) €
Pm(HUT) x T, suchthat Y U {¢; .. i & forl <i <. <
We will use Y - & F ... I & as a convenient notation for a deduction sequence

(Y;&1,...,&;). The transitive and reflexive inference relation F* C pm(HUT) x Tis
definedas Y H* £ifé eYorY ... €

2.1.2 Mappings between Parsing Schemata

Once it is known how one parsing method transforms into another, it is sometimes possible
to apply similar transformations to other methods. This allows desirable characteristics of
one method to be transferred to another.

One type of mapping between parsing schemata is filtering. The goal of a filter is to reduce
the number of steps that is needed to complete the parsing. This can be accomplished by
both reducing the number of items and reducing the number of deduction steps. It is often
possible to discard items or deduction steps without weakening the generality of the parser.
Such optimization can lead to more efficient algorithms, but often also to more complicated
descriptions of the parsing schema.

Sikkel (1997) distinguishes three different classes of filtering: static filtering, dynamic fil-
tering, and step contraction. With static filtering redundant items or deduction steps of the
schema are simply discarded. Dynamic filtering allows taking context information into ac-
count. For example, if we know that a partial parse, represented by an item &, is only correct
if ¢ is a valid item, we can replace the reduction steps Ny, ... M EEby M, ..., CHEL
An example of dynamic filtering is look-ahead. Finally, the most powerful of the filtering
methods is step contraction. With step contraction, sequences of reduction steps are re-
placed by single reduction steps. It is the most powerful of the filtering methods. The filters
are defined as follows

Definition 2.4 We define the following filtering relations on any two parsing systems P,
and Pz.

o The static filtering relation P; > P, holdsif Z, D Z, and D; D D,.
o The dynamic filtering relation P; <5 P, holds if 7; D Z, and F; Db ».
* The step contraction relation P; = P, holds if Z; D Z and D3,

Given two parsing schemata Py and P for a class of grammars CG, then for any filter f,
the relation Py = Py holds if for all G € CG, and a; ...an, Py(G)(as ... ay) o
P:(G)(a;...ay,). q

Note that 2 c =N C =5 holds. In the following discussion, we will present several
examples of mappings between parsing schemata.

12 2 Natural Language Parsing

2.1.3 Common Parsing Schemata

In this section, we will discuss some of the most common parsing methods. We will focus
on the parsing methods that have been used for our research in particular. In Section 2.1.1,
we introduced CYK as an example of a parsing schema. The disadvantage of this schema is
that it can only be used for grammars in Chomsky normal form. The Earley parsing schema
does not suffer from this problem and is one of the best known parsing schemata for general
context-free grammars. The Earley parsing method is inherently uni-directional. Its items
include the entire production rule. In addition, a dot is inserted in the right-hand side of the
production to indicate the part of the right-hand side that has been recognized so far. A dot
indicates that the part on the left of the dot has been recognized, whereas the part on the
right of the dot still needs to be recognized. As more of the production is recognized, the
dot moves to the right.

An item of the form [A — a., 1, j] is called a passive item or passive edge. Because the
entire right hand side is recognized, the left hand side indicates a complete constituent of the
type A, where A =* a;,... ,a;. Anitem of the form [A — e X 3,1, j] is called an active
item, or active edge, meaning that the corresponding constituent on the left-hand side is
still in the process of being recognized. A simple bottom-up variant of Earley is given by
the following schema.

Parsing Schema 2.5 (buE)

TimE = {[A-a.p,i,j] | A—maB € PAOLiL G}

Hue = {fe,i—1,i la=a;A1<i<n}

plsit = {F[A—>,5,i]}

DS = {[A—-aeafB,i,]],]a,5,7+1]F [A—aa.B,%,5 + 1]}
DComplete — (14 s 0o BB, i, 5], [B—"e, J, k] F [A—aBeB, i, k]}
Dwe = Dmity DSeanypComplete

It is called bottom-up because parsing starts with constructing the leaves of the parse trees,
working its way up to the start symbol. In general, there is no need to initialize an item [A —
+7, 1, 3] for each production rule.

The original Earley algorithm limits the number of recognized items by only initializing
items of the form [A — «v,1,1] if there is a direct need for it, that is, if there is an active
item [B — e AB, i, j]. This technique is called top-down prediction. The original Earley
algorithm can be defined as follows.

Parsing Schema 2.6 (E)

it = {i— [S—N')’,0,0]}
DPedict = ([AauBB,i,j| F [B—ev,5, 7]}

2.1 Parsing Schemata 13

[the’, 0, 1] [dog’, 1, 2] [sleeps’, 2, 3]
L [1

[s>enpv,0,0] —

[np—>edetn 0,0] -

[det — e “the’, 0, 0] — [det — “the’ s, 0, 1]

[np— deten,0,1] -

[n— e dog, 1,1 —¥ [n—dog'e,1,2]

l: [np— detne, 0, 2]

— [s>npev,0,2)

[v— e slesps’, 2, 2] [v— “sleeps’ s, 2, 3]

[s>npve,0,3]
Figure 2.3 Derivation tree for the sentence “the dog sleeps” for E. The top left item is derived from D'nt,

All items with incoming arcs are derived by either DS%a" or DComplete Alf other items are the result of
DPredict and are placed below the item that was used to derive them.

DS® = {[A—0eaB,i,j),a,],5 + 1]+ [A—aasB,4,5 + 1]}
Dcmm = {[A—')QQBIB, i,j], [B—>’)’o,j, k] (o [A‘—)QBQB,'I:, k]}
DE —_ DIllit U Dhﬂdicl U DScan U DComplete

Figure 2.3 shows an example of an Earley parsing system, based on the example given in
Figure 2.1. As can be seen, items are derived from left to right, with respect to the input
sentence.

The D'™* of buE produces more items than the Di%* and DP®dkt of . As a result, E yields
the following set of recognized items:

{[A—as,i,j] | =" a,... ya4; AS =% ay,...,a;Ay for some v},
whereas the set of items recognized by buE is
{[A=ayi,j] |a =" a;... a5}

E can be obtained from buE by applying a static filter, i.c., buE 25 E.

Using prediction has the effect of allowing parsers to complete in near linear time, provided
that the grammar is “well-behaved”. Grammars for natural languages are often not “well-
behaved” in this sense, which limits the use of top-down parsing schemata. In addition, the

14 2 Natural Language Parsing

additional items that are generated by bottom-up parsing can provide useful information in
case the sentence is not grammatical. This is useful in case robust parsing is a requirement.
A popular optimization of Earley parsing is Left-Comer parsing. We will describe the
underlying parsing method for the generalized left-corner parsing algorithm (c.f. (Mat-
sumoto et al., 1983),(Nederhof, 1993)), as opposed to deterministic left-comer parsing (see
(Rosenkrantz and Lewis, 1970)). Generalized LC parsing is a step contraction of Earley:
E 2= LC (Sikkel and op den Akker, 1996). Consider an item [A — B3, i, j] in Ppyg. This
item can only be valid if we already had the valid items [B — ., %, j] and [A — «Bf, 1,1,
of which the latter is always valid by Dy So we can replace the steps

F [A— BB, i,]
[A—’.Bﬁ, Z., i], [B —Ye, 1:, j] l" [A-’Boﬂ, 7:,]]
by
[B—)’)’o,'l:,j} l" [A—)Boﬁ,i,j].

A similar step contraction can be applied to the scan step. As a result the item domain
shrinks considerably. We can transform E to a left-corner schema LC, using the same
transformation. We will consider bul.C instead of the more elaborate LC. buLC is defined
as follows.

Parsing Schema 2.7 (buL.C)

o = {[A—=XaBi,j] |A=-XaBe PAOL i< G}
I® = {[A—.j,j |A—e€ PAj>0}

Tac = IOUID

b = {F[A—«353}

D@ = {[a,j —1,j]F [B—a.B,5 —1,j]}

DA = {[A—as,i,j] F [B— AB, 1, 4]}

DS® = {[A—a.af,i,jl,[a,5, 7+ 1] F [A—>aadb,i, j+ 1]}
DComplete — {1 A 0o BB, 4, 7], [B— s, 4, k| F [A— aB.f, 4, k]}
Dpic = D¢UDL®@ YDA ypSean | plomplete

Note that the number of steps that is performed by the complete and scan deductions is
reduced, because the item domain is limited. The item set can only contain items with a
non-empty string left of the dot (except for epsilon rules).

The Deltra parser is based on the so called double dotted parsing schema. Its main charac-
teristic is that it allows parsing not only from left to right, but also from right to left. The
double dotted Parser was originally introduced by De Vreught and Honig (1989, 1991). The
corresponding parsing schema, DD, is defined as follows.

2.1 Parsing Schemata 15

Parsing Schema 2.8 (DD)

Zop = {[A—afer,ij] [A~aBy e PAOSi<jA(B#coroy=e}
DHnit = {la,j - Lj]F [A>aeaey, j - 1,5]}

Ds = {F[B—e, 3]}

Disclede — (B .8, i,j] F [A> aeBey, i, j]}

DExmenente = {[A—auB1eBav, 1,], [A— 0B1efaey, , K] F [A— oy fawy, i, K]}
Dpp = Dty De y Dleclude | pConcatenate

A valid item [A — asf+7, 1, 5] represents the fact that 3 =* @it1,--. ,a; has been rec-
ognized. An algorithm implementing this parsing method will perform many redundant
operations. In the worst case, a valid item of the form [4 — a.8+7, 4, j], with |3 | = m, can
be m — 1 times the result of a concatenation. Similarly, each of the items for the respective
productions may have been obtained in various ways as well. Sikkel (1993b) presents sev-
eral optimizations of DD that reduce the number of generated items. An enhancement of
this algorithm with look-back and look-ahead filters can be found in (de Vreught and Honig,
1989).

Cali, the parser for LinGO, uses a key-driven parsing schema (Oepen and Carroll, 2000b).
Basically, each production rule has one designated non-terminal on its right-hand side that
is marked as the key. Instead of recognizing a production from left to right, recognition
starts at the key. Since LinGO is a unification-based grammar, a match at the context-free
level does not automatically imply a valid item.? The idea is to reduce the number of items
by choosing the non-terminal as the key that is most-likely to yield a failed unification. The
key non-terminal is marked by underlining it in the production rule. The resulting parsing
schema is defined as follows.

Parsing Schema 2.9 (KD)
Imw = {[A—>0f1BB2ev,4,5] |A—af1BBry € PAO< i < j}
Dot = {[a’j - laj] F [A—>._a_.,j - l,j]}

Dde = {[B—.4,4,5] F [A— aeBe, 1,41}

DA = {[A— B14B2eBPs, 1,], [B— e0ne, j, k] F [A— B1oB2Bofs, i, K]}
DPrred = B .q.,4, 4], [A — B1Bef2e, j, k| - [A— BreBpas, i, k]}
Dgp = DRty piedude | pAppend | pPrepend

After the key has been instantiated, extending the item at the left dot is only allowed if the
right dot is at the end of the production. Allowing extension in only one direction prevents

Unification-based grammars are discussed in Section 2.2.

16 2 Natural Language Parsing

the generation of duplicate items. Obviously, this order of completing the active item is
arbitrary. However, as the right-hand sides of the rules of the English LinGO grammar
contain at most two non-terminals, there is only one way to complete an active item. For
this reason, the choice of such a scheme has no effect when used with the version of LinGO
we used. Because the formalism of LinGO does not allow epsilon rules, we had to include
the corresponding deduction rules. Note also that we assumed that terminals do not occur
in right-hand sides along with non-terminals, which holds for the English LinGO grammar
used for our research.

2.1.4 Parsing Schemata for Parallel Parsing

One of the factors that influences the time complexity of many parsers is the depth of the
parse tree. The depth of a parse tree can vary from log, n to n. Rytter’s parser has the
interesting property that it can parse in O(log, n) time using O(n®) processors, independent
of the depth of the parse tree (Rytter, 1986).

Rytter's parsing method is a step refinement® of CYK. The step refinement ensures the
existence of a balanced parse tree. This is accomplished by introducing many redundan-
cies. This explains the large number of processors that is required. Since Rytter is a step
refinement of CYK, it is only defined for CN'F grammars. It is possible, however, to apply
a similar step refinement to any item-based parser (Sikkel, 1993b). A new parallel algo-
rithm for the resulting parsing methods can parse in polylogarithmic time, provided that a
sufficient number of processors is available.

Rytter refines CYK by replacing D@ with

[B»":’j] F [A,i,k;C’,j,k]
['A,i’ k; C’j’ k]’ [C,j, k] }_ [A,i’k]

Items of the form [A, ¢, j] represent the recognition of a part of the input string a;, ... , a;
for a non-terminal A. Items of the form [A, h, k; B, ¢, j] represent the recognition of a
part of the input string as, ... ,ax for a non-terminal A, except for the part a;, ... ,a;,
which still needs to be filled with a substring recognized by B =* a;,... ,a;. These
partial specifications of recognized parse trees allow drawing early conclusions of facts yet
to be established. This prevents the depth of the parse trees to be of influence on the time
complexity.

Rytter’s schema is defined as follows.

Parsing Schema 2.10 (Rytter)
oozt = {[A,i,5] |[A€ NAO<i<j}
Teooditional — {[A, b, k; B, i,] |[A, h, k] € T8 A\ [B, 3, j] € Tr=wizd

MN<L<i<j<kAh#iVj#k)}
3Step refinement is the inverse of step contraction (Sikkel, 1993b)

2.2 Unification-Based Grammars 17

Tryuee = Zcosnized | Foondidonal

DAl — {[B,i,j]F [A,i,k;C, j,k] | A—BC € P}
DActivate2 - {IC, 4,k + [A,4,k; B, i,j] | A—BC € P}

DCombine — (A h,m; B,1,1],[B, 4, C, 5, k] [A, h,m; C, j, k]}

DP™e = {[A,h,k;B,i,j],[B,4, 5] F [A, h, K]}
DRy!ter — Dg{'x U DActivatel | | pActivate2 (U DCombine {J DPebble

| There is one interesting parsing method in between CYK and Rytter that is particularly
well-suited for parallel on-line parsing. With on-line parsing, the input string is presented
to the parser token by token, typically in a left to right order. This gives rise to the idea
of restricting Rytter items to allow only open parts on the right. This radically reduces the
number of possible items. The resulting parsing method, OCYK (Sikkel, 1993a), is given
in the following schema.

Parsing Schema 2.11 (OCYK)

Zrecogizd = {[4,4,5] |A€e NAO < i< j}
Ieondiional — {[A,h,k;B] |A,BENAO<i<j}
Tocyxk = Imocospized | Foonditional

DPepse = {[B,i,j] F [A,3,5;C) |A—AB € P}

DCembice - — {[A,4,; B], [B, j,k; C] [A, 1, k; C]}
DRecostize — {[A,4, j; B], [B, j, k] [A, 4, k]}
Docyk = Dy U DPropose | pCombine | j yRecognize

The relation Rytter = OCYK 22> CYK holds. A parser based on this parsing schema
can parse in O(1) per word of the input string, using O(n?) processors.

2.2 Unification-Based Grammars

In the previous section, we discussed approaches to the parsing of purely context-free lan-
guages. The dominant linguistic theories for natural language processing applications of to-
day, however, are based on unification-based grammar formalisms. Both LinGO and Deltra
are unification-based grammars. There are many small differences between the unification
formalisms on which the respective grammars are based, though. Since Deltra’s formal-
ism can easily be expressed in terms of the formalism used by LinGO, we will focus the
discussion on LinGO and explain the differences as appropriate.

18 2 Natural Language Parsing

.
Ab
F al’.|
De
D [0

[4

Figure 2.4 Example of a graph unification matrix or attribute matrix.

Unification-based grammar parsing can be seen as context free parsing where each deduc-
tion step is augmented with an additional constraint check. Each item and each grammar
rule is augmented with a typed feature structure. The constraint check consists of unifying
the feature structures of the items and grammar rules involved in a deduction step. If a
unification succeeds, the result graph is associated with the newly derived item. Examples
of these grammars are Lexical-Functional Grammar (LFG) (Bresnan and Kaplan, 1982)
and Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994).

2.2.1 Unification of Typed Feature Structures

The discussion in this section is based on the introduction of typed feature structures given
by Copestake et al. (1999). Later in this section we will explain how this approach differs
from the unification mechanism used by Deltra.

Definition 2.12 A typed feature structure is a directed acyclic graph with labeled arcs
and typed nodes that can be described by a tuple F' = (Q, go, 4, T) where,

e Q) is afinite set of nodes,
e g € Q is the root node,
e §: Feat X Q — @ is the partial feature value function, or the transition function,
o 7 : Q — Type is the total node typing function,
where Feat is a finite set of feature names and Type is a set of types. N

Figure 2.4 shows two different representations of the same typed feature structure. One is
a graph representation, the other is a so called attribute value matrix. An attribute value
matrix is a notation for feature structures that is often used for HPSG based grammar for-
malisms. Each pair of brackets represents a complex node: a node with at least one child
node. Each pair of brackets contains the type of the node and its features. Each feature
is followed by the value of the child node. If the child node is complex, it is followed by
a set of brackets, otherwise by the type definition. The numbered squares indicate that all
features with an equally numbered square share the same value.

A path in the graph can be defined as a sequence of features. The domain of possible
paths is defined as Path = Feat”. The empty path is denoted as €. An extended transition

2.2 Unification-Based Grammars 19

function 6 : Path x @ — Q can be defined as follows: 0(¢,q) = ¢, and 6(f - m,q) =
d(m,6(f,q)). In the example, the path F.D from the root leads to the node with type e. All
nodes should be reachable from the root node. Expressed in terms of the transition function,
for any typed feature structure F' = (Q, o, 6, 7) it should hold that for all q € Q there exists
apath w € Path such that ¢ = §(rr, o). When two different paths lead to the same node, we
call this a reentrancy. A feature structure that contains one or more reentrancies is called
reentrant.

We also define an alternative representation of a feature structure.

Definition 2.13 For any typed feature structure F = (@, q0,6,7), its abstract typed
feature structure is defined as a tuple (=F, Pr), where

e =pC Path x Path where # = 7/ if and only if 6(m,qo) = 6(n', go) (path equiva-
lence) and

® Pr(m) = tif and only if 7(6(, go)) = ¢ (path value).
R

Note that it is not strictly necessary to rule out cycles. Some formalisms allow cycles.
Ruling out cycles, though, often allows for simpler definitions and more efficient imple-
mentations. The formalisms of the LKB and Deltra systems specifically disallow cycles to
be specified in the grammar. With LinGO, cycles can still be formed during parsing. The
resulting feature structures are never created, however, as the occurance of a cycle is defined
to imply a unification failure.

Before we define the unification and subsumption relations on typed feature structures, we
need to elaborate on the type system. The advantages of incorporating a type system in-
cludes having the concept of inheritance and classification, and enabling error-checking.
The details of the type system are not relevant for the discussion in this thesis. We limit our
discussion to what is needed to understand the unification operation itself. The type system
of the LKB is similar to that presented by Carpenter (1992).

Definition 2.14 The type system is a tuple ((Type, C) , C), where (Type,C) is a type
hierarchy, and C a constraint function. The type hierarchy (Type, C) defines a partial
order . on the types in Type. Type includes an element T for which holds that for all
types ¢t € Type,t C T. The constraint function C associates feature structure with every
type. N

The type hierarchy (Type, C) is used to determine the consistency of types. Types are
consistent if they share a common subtype. More precisely, a set of types § C Type is
defined to be consistent if and only if there is a type ¢, € Type for which it is the case
that ¢, C ¢ forall t € S. The LKB type system specifies two types that are incomparable
in the hierarchy to be inconsistent, unless a common subtype is specified. This is often
refered to as the closed world assumption. As a result, whenever two types, say a and b, are
consistent, there exists a greatest lower bound, denoted a M b. Inconsistency between types
a and b is denoted 1.

20 2 Natural Language Parsing

The constraint function C associates a constraint feature structure with every type. This
feature structure specifies both which features are appropriate for such a node and which fea-
tures a node should have. The appropriate features for a type ¢ is defined as the set of all
features leaving the root note of the constraint C(t). More precisely, given a feature struc-
ture F' = (Q, go, 6, 7) with root go, the appropriate features are the features FEAT(C(t), go),
where FEAT(F, q) is defined as a set of features where f € FEAT(F, q) if 6(f, qo) is de-
fined. The constraints implicitly define when a feature structure is well-formed. A typed
feature structure F' = (Q, go,d, 7) is considered to be well-formed if and only if for all
g € @, it holds that F/ = (Q’,q,6,7) C C(r(g)) and the appropiate features of 7(g)
equals FEAT(F, q).

We have now all the necessary knowledge to define the subsumption and unification rela-
tions.

Definition 2.15 A typed feature structure F' subsumes a typed feature structure F’, writ-
ten F C F, if and only if

o if T =p n’ then 7 =p/ n’ and
o if Pp(n) =t then Pp/(7) where t' C ¢.

We say that F/ is an instance of F iff F/ C F. The unification relation M on two typed
feature structures can be defined in terms of the subsumption relation as follows. Consider
two typed feature structures F and F’ and a set F of feature structures for which holds
that F” € F if and only if F”” C F and F” C F’. The unification of two typed feature
structures F' and F’, denoted F M F' is defined as the greatest lower bound of F ordered
by subsumption, that is for all F*” € F it holds that F”" T F”. If the set F is empty,
unification fails. A failing unification is indicated with L. <

An example of a unification of two typed feature structures is given in Figure 2.5. Unifica-
tion of two feature structures, of respectively type a and b, can only succeed if aMb exists.
If aMb exists, and unification succeeds, the resulting feature structure is of type aMb. The
unification of two typed feature structures has the result of accumulating all paths of the re-
spective inputs in a single result feature structure. If both feature structures have a common
path where one or more of the equivalent nodes on the paths have inconsistent types, than
the typed feature structures are considered incompatible and the unification fails.

Unification as defined above does not ensure that the feature structure resulting from unify-
ing two well-formed feature structures is itself well-formed. Suppose we unify two graphs,
of respectively type a and b, with a M'b = c and the appropriate features for a, b, and
c are {F},{G}, and {F,G, H}, respectively. After unifying two well-formed graphs of
type a and b, the resulting graph F3 will be of type c, but FEAT(F3, go) will be {F, G}.
Obviously, F3 is not well-formed as it misses the feature H. To ensure feature structures
are well-formed after unification, all nodes ¢ in the resulting graph should be unified with
the constraint graph C(7(q)).

The dialect of unification used by Deltra differs considerably from that of LinGO. Whereas
LinGO uses graph unification, Deltra uses term unification. With term unification, each
node is associated with a fixed number of arguments, rather than features. Two nodes cannot

2.2 Unification-Based Grammars 21

c
u
u

a F Ja
edT™ | M [LT] = ! r[2 ra
6l “ Kb
[} LT

G 1T

L

Figure 2.5 A unification with attribute matrices. Note that a M b = ¢ holds.

unify when the number of arguments does not match. Term unification can be expressed in
terms of graph unification simply by defining each type ¢ € Typetobeachildof T. Asa
result, aMb exists if and only if a = b. The fact that appropriate features are fixed for each
type emulates a fixed number of arguments; the number of arguments cannot grow after
unification as there are no subtypes.

2.2.2 Unification-based Grammars

The LinGO formalism expresses almost every aspect of the grammar in terms of feature
structures, including the production rules, start symbols, and lexical entries. The type sys-
tem can be seen as the foundation on which all feature structures are build. For example,
all linguistic entities inherit from a single type. The categories corresponding to the non-
terminals of a possible context-free grammar (such as np and vp) have a corresponding
type in the type system as well.

All production rules, or grammar rules, are encoded as feature structures. The category,
or non-terminal, of the left-hand side is encoded in the feature CATEGORY. The elements
of the right-hand side of the production are put in the ARGS feature, which leads to a list of
arguments. The elements in the list are put in the same order as in the production rule.

Also lexical entries are represented as feature structures, The lexical entries that are associ-
ated with the words of the input string are treated by a parser as passive items.

Finally, LinGO allows the definition of multiple start symbols, or roots. Because a start
symbol specifies a type, each start symbol is associated with a constraint feature structure.
An item [F, 0, n] represents the recognition of a sentence of the grammar if it unifies with
at least one of the root feature structures.

The DCG formalism used for Deltra differs considerably from that of LinGO. The syntax in
which the grammar is described shows more likeness to the common notation for context-
free grammars. Figure 2.6 shows a simple example how the same rule can be represented
in the different formalisms. Note that the grammar rules in this example are based on
the grammar rules in Figure 2.1, augmented with additional constraints. In this specific
example, the constraints enforce noun verb agreement.

22 2 Natural Language Parsing

HPSG (LinGO)
CAT 8]
CAT np
CAT np
FIRST [] AGR 3
Ak [FIRST | CAT det]
ARGS CAT v
[T [] ARGS FIRST [CATn]
REST AGR 3] REST
REST null
| REST null]
DCG (Deltra)
s --> np(X) v(X) np(3) --> det() n()

Figure 2.6 Two grammar rules expressed in the HPSG (top) and DCG (bottom) formalisms.

Figure 2.7 Destructive graph unification. Representatives are marked gray.

2.2.3 Algorithms for Unification

A simple algorithm to unify two graphs is the UNION-FIND algorithm (Aho et al., 1974),
(Sikkel and Nijholt, 1997). We illustrate this algorithm by means of an example. The
example, taken from (Malouf et al., 2000), is shown in Figure 2.7. First, the root nodes are
combined into a single equivalence class, labeled {1, 6}. One node, in this case node 1, is
chosen to be the representative of the class {1, 6}. Then all arcs leaving any of the nodes in
the class are collected at the representative. If an arc has a unique label within the respective
collection of arcs (H in the example), it can simply be added to the representative. If there
are two arcs with the same label in the set, then the algorithm recursively descents into
the subgraphs pointed to by the respective arcs. In the example, processing the duplicate
arcs for F leads to unifying nodes 2 and 7, resulting in the new equivalence class {2, 7}.
Subsequently, unifying the nodes for the arcs labeled G (node 4 and {2, 7}) results in the
equivalence class {2, 4, 7}. If any incompatibilities are found, unification fails. If the graphs
are successfully traversed, the representative of the root equivalence class will have been

2.2 Unification-Based Grammars 23

UNIFY(dgl, dg2)
1. Dereference dgl and dg2.
2. if dgl = dg2 then
return dgl
new — COMPLEMENTARCS(dgl, dg2)
shared — INTERSECTARCS(dgl, dg2)
Set dg2 to be the representative of dgl.
for all (a, b) € shared do
6.1. if UNIFY(a, b) succeeds then
Replace arc b of dg2 with the result.
6.2. else
return failure
7. for all arc € new do
7.1. Add the arc to dg2

N AW

Figure 2.8 Destructive graph unification

transformed into the root of the result graph.

An example algorithm that implements this approach, taken from (Wroblewski, 1987), is
shown in Figure 2.8. Dereferencing a node will yield the representative of the equivalence
class a node belongs to or the node itself if the node does not yet belong to any equivalence
class. INTERSECTARCS returns the arc labels for features that are defined for both dgl and
dg2. COMPLEMENTARCS(dgl, dg2) gives the set of arc labels that are unique to dgl.

Obviously, UNION-FIND modifies at least one of the input graphs in the process of uni-
fication. This unification algorithm is therefore called destructive. As unification-based
grammar parsers typically retain items and their associated feature structures, additional
measures should be taken to prevent the input graphs from getting destroyed. A straight-
forward solution to this problem is to make a copy of each input graph before unification,
leaving the original intact. However, this results in a lot of redundant work. Copying the
input graphs means that all nodes of the input graphs need to be visited at least once, even
if this was not strictly necessary for unification. This especially holds when a unification
is bound to fail. Since failing unifications are common in natural language processing, this
solution is unacceptable.

A lot of research has focussed on designing efficient unification algorithms that eliminate
the need for excessive copying. One of the earliest attempts was made by Pereira (1985).
With his algorithm, the result of unification is a structure called the environment, which
specifies how to obtain the result graph in terms of the input graphs. The result graph can
be constructed from this data without destroying the input graphs. The disadvantage of this
algorithm is that creating the result graph incurs a O(log(n)) overhead for each node visited,
where 7 is the number of nodes. Karttunen (1986) solves the copying problem by storing
the destructive changes made to the graphs in an environment. If a unification succeeds, the

24 2 Natural Language Parsing

Node
type label
arc list vaiue

Figure 2.9 Node and arc structure for Tomabechi’s algorithm

new graph can be created by copying the graph from the temporarily modified input graphs.
After unification completes, the input graphs can be restored from the environment.
Wroblewski (1987) introduced a non-destructive algorithm that eliminates the need to main-
tain an environment. Basically, the result graph is created on the fly whenever a destructive
change to one of the input graphs is about to be made. Each node has an additional copy
field to link the nodes in the input graph to the new representative for the duration of the
unification. Each node also includes a generation ficld which indicates the validity of the
copy field iff it is equal to some global counter. This allows all copy ficlds to be invalidated
after unification simply by incrementing the counter. Wroblewski’s algorithm is considered
to be very effective. It is often referred to as incremental copying or lazy copying. Other
algorithms that follow this approach are presented in (Kogure, 1990), (Godden, 1990), and
(Emele, 1991). The problem with all of these algorithms, though, is that they inevitably
create copies unnecessarily in case unification fails.

Tomabechi’s quasi-destructive graph unification (1991) eliminates superfluous copying al-
together. It is often considered to be one of the most efficient algorithms for unification in
natural language applications. It is similar to Wroblewski’s algorithm, but instead of cre-
ating new nodes during unification, the structure of the new node is included in dedicated
fields of the original node, non-destructively. The only copying that takes place is copy-
ing of the result graph after unification succeeds. The resulting node and arc structures are
shown in Figure 2.9. As with Wroblewski’s algorithm, the changes are invalidated after
unification by incrementing a global generation counter.

Figure 2.10 shows a version of this algorithm adapted for the typed unification-based gram-
mar of LKB. The forward fields are used during unification to link a node to the represen-
tative of its equivalence class. In UNIFY1, dgl is chosen to be the representative (Step 7).
DEREFERENCE follows the forward fields of the nodes, as long as they are valid with respect
to the generation. MAKEWELLFORMED ensures that the right set of features is associated
with the unified node, given its new type. MAKEWELLFORMED accomplishes this by in-
terleaving a call to UNIFY1 with dgl and the constraint for the respective new type as its
arguments.* The function INTERSECTARCS determines the set of arcs with common labels

“4This was not part of Tomabechi’s original algorithm, but was noted by Malouf et al. (2000).

2.2 Unification-Based Grammars

25

UNIFY(dgl, dg2)

L

2.

if UNIFY1(dgl, dg2) then
L.1. copy «— CoPY(dgl)
1.2. Increase the generation counter.
1.3. return copy

else

2.1. Increase the generation counter.
2.2. return nil

UNIFY1(dgl, dg2)

L
2.
3.

b

o0

9.

dgl — DEREFERENCE(dgl)
dg2 — DEREFERENCE(dg?2)
if dgl =aa4 dg2 ¢ then
return true
dgl.newType — dgl.newTypen dg2.newType

. if dgl.newType = | then

return false
else
6.1. if not MAKEWELLFORMED(dg1) then
return false
6.2. dgl «— DEREFERENCE{dgl)
dg2.forward — dgl
if Any of the nodes has arcs then
8.1. shared « INTERSECTARCS(dgl, dg2)
8.2. for each (r1, r2) in shared do
if not UNIFY 1{r1, r2) then
return false
8.3. new «— COMPLEMENTARCS(dgl, dg2)
8.4. for each arc in new do
Push arc to dgl.comp_arcs

return true

DEREFERENCE(dg)

1.

2.

if dg.foward 3 nil A dg.generation = generation then
return DEREFERENCE(dg.forward)

else
return dg

“Quick equality check based on the nodes’ address.

Figure 2.10 The unification algorithm.

26 2 Natural Language Parsing

Cory(dg)
1. dg — DEREFERENCE(dg)
if dg.copy # nil then return dg.copy
newcopy +— new Node
newcopy.type «+ dg.newType
dg.copy +— newcopy
for each dgl in dg.arcs U dg.comp_arcs do
6.1. dg2 «— Copry(dgl)
6.2. Push (label, dg?2) into newcopy.arcs
7. return newcopy

AL h L

Figure 2.11 Copy algorithm

CoPY1g,(dg)
1. dg +— DEREFERENCE(dg)
if dg.copy # nil then return dg.copy
newcopy +— new Node
newcopy.type — dg.newType
dg.copy «— newcopy
share «— dg.type = dg.newType A dg.comp.arcs = § A ISSAFE(dg)
for each (label, dgl) in dg.arcs U dg.comp_arcs do
7.1. dg2 — CoPYu(dgl)
7.2. Push dg2 into newcopy.arcs
7.3. if dgl # dg?2 then
share — false
8. if share then return dg
else return newcopy

NS LA LN

Figure 2.12 Copy for Tomabechi’s algorithm with structure sharing.

for the input nodes. The function COMPLEMENTARCS returns the arcs with labels that exist
in dg2, but not in dgl.

When unification succeeds, UNIFY constructs the result graph from the information stored
in the input graphs by calling COPY. COPY is shown in figure 2.11. Because all equivalence
classes have been determined during unification, the DEREFERENCE in COPY is sufficient
to ensure that only one node is created for each node in the result graph. A more elaborate
discussion of this algorithm can be found in (Tomabechi, 1995).

Until now we have assumed that a complete copy of the result graph needs to be constructed
each time a unification succeeds. Under some circumstances, however, we can allow sub-
graphs of the input graphs identical to the result to be shared. This sharing of subgraphs is
called structure sharing. An example of a result graph with structure sharing, again taken
from (Malouf et al., 2000), is shown in Figure 2.13. Nodes 3, 5, and 9 are shared in the
result. Note that the result graph is equivalent to the result graph in Figure 2.7. Structure

2.2 Unification-Based Grammars 27

Figure 2.13 Example of structure sharing

sharing can result in a significant reduction of the number of nodes that are copied.

Tomabechi described a structure sharing variant of his algorithm in (Tomabechi, 1992).
Malouf et al. (2000) presented an improved version of this algorithm. Using Malouf et al.’s
algorithm, a node cannot be shared if any of the following holds:

1. the node has been forwarded to another node

2. the type of the node has changed

3. the node has one or more descendants that need to be copied
4. the node is part of the grammar.

The first three conditions indicate that the result subgraph will not be identical to the origi-
nal, and hence should be copied. As Malouf et al. (2000) point out, sharing of graphs that
are part of the grammar (e.g. lexical entries and rules) can lead to spurious cyclic structures
or structure sharing. A structure sharing algorithm based on Tomabechi’s approach should
implement a way to detect grammar nodes, and copy them accordingly.

The complexity of structure sharing can be hidden entirely in COPY. A version of COPY
adapted to allow structure sharing is shown in Figure 2.12. The conditions for structure
sharing are checked in Steps 6 and 7.3. ISSAFE returns whether a node is not part of the
grammar and hence can safely be shared. An implementation of this algorithm should take
care to release newcopy to the free pool before exiting when the node can be shared. This
can be done efficiently with a mark-release mechanism. Note that because the feature struc-
tures are well-formed, there is no need to check for the comp_arcs to be empty. However,
checking for the comp_arcs field allows for optimizations that leave feature structures tem-
porarily underspecified.

2.2.4 Parallel Unification

Most unification-based grammar parsers spend about 90% of their time performing unifi-
cations (Malouf et al., 2000), (Tomabechi, 1991). It therefore makes sense to focus on the
unification operation when parallelizing such parsers. Basically, we distinguish two levels
of parallelism. First, it is possible to parallelize a single graph unification. Given that we are

28 2 Natural Language Parsing

unifying graph F with graph G, we could allow multiple processors to work on the unifica-
tion of F and G simultaneously. We will call this parallel unification. Another approach is
to allow multiple graph unifications to run concurrently. Suppose we are unifying graph F’
and G in addition to unifying graph F' and H. By assigning a different processor to each
operation we obtain what we will call concurrent unification. Parallel unification exploits
parallelism inherent of graph unification itself, whereas concurrent unification exploits par-
allelism at the context-free grammar backbone. In the remainder of this section, we will
focus on parallel unification.

From a theoretical perspective, it seems that speedup gains that can be obtained from parallel
unification are limited. Yasuura (1984) and Dwork et al. (1984) showed that unification is
log-space complete for P. This means that there is no unification algorithm with a time
complexity that is polynomial in the logarithm of the input size, using a polynomial number
of processors. Such problems are often considered to be “unparallelizable”.

By relaxing the prerequisites for a parallelizable algorithm, Vitter and Simons (1986) give a
less pessimistic perspective of parallel unification. They introduce a new complexity class
PC that specifies the subclass of P of problems for which there is an algorithm where
a speedup of more than a constant factor, using a polynomial number of processors, is
possible. They also specify a subclass of PC, called PC*, that contains all problems for
which the speedup is proportional to the number of processors. Although the authors assert
it is unknown whether UNIFY is in PC, they do give a subproblem of unification which is
in PC*. The restriction for the subproblem is that all graphs should have more vertices than
edges.

There has also been some research on applying parallel unification for natural language
processing. Tomabechi (1991) mentions that his algorithm is well-suited for parallel uni-
fication. Parallelism can be introduced in Tomabechi’s algorithm at nodes with more than
one arc by letting each arc be processed by a different processor. An implementation of
a parallel version of Tomabechi’s algorithm is given by Fujioka et al. (1990). This paper
gives no concrete speedup results. There have been no successful approaches to parallel
unification to date.

2.3 Tabular Parsing

In the general case, a trivial implementation of a unification-based grammars parser could
yield an exponential running time. This is becanse such a parser can easily fall into the trap
of repeatedly traversing the same parts of the search space. To avoid repeating identical
work, a parser needs some kind of memory of the kind of tasks it has already completed.
The term that is often used for the collection of parsing techniques that utilize memory for
this purpose is tabular parsing. Examples of tabular parsing techniques are chart parsing,
dynamic programming for parsing, and recursive-descent parsers with memoization. Al-
though the specifics of these techniques can vary considerably, the basic concept is more or
less the same. We will focus on the most popular of these techniques: chart parsing. Both
Deltra and Cal.i are essentially chart parsers.

2.3 Tabular Parsing 29

23.1 Chart Parsing

Chart parsing methods were introduced by Kaplan (Kaplan, 1973) and Kay (Kay, 1980).
Kay (Kay, 1985) presented chart parsing for unification grammars in specific. A chart
parser saves the items it produces during parsing on a chart. For unification-based gram-
mar parsing, this means that the item is stored along with its feature structure. Recording
items in a chart has several advantages: it prevents the same derivations being repeated. it
allows multiple parse trees for the same string to be represented in a concise manner, and
it allows the analysis of partial results in case the parse fails. It is possible to store only
a selection of the items on the chart. For example, Oepen (2000b) suggest a hyper-active
chart parser where only passive items are stored on the chart. A chart that contains both
active items and passive items is also called an active chart. Basically, chart parsing can be
applied to any top-down or bottom-up parsing schema.

A chart parser can repeatedly apply the deduction rules of a certain parsing schema until a
fixed point is reached. We call this exhaustive parsing. Alternatively, a chart parser can
stop after finding a single parse tree, or in general, n parse trees. We call this n-first pars-
ing. Each application of a deduction rule actually consists of several steps: the context-free
match itself, the evaluation of the unification constraint, and the verification step to check
whether the new item is already contained on the chart. The latter involves executing an
equality check of the feature structures for each item on the chart that matches the newly
derived item based on context-free grounds. Since intelligent hashing can limit the number
of equality checks, we will often consider the entire verification phase as a single opera-
tion. Note that CaLi does not implement the verification step. The likelihood of duplicate
iters using the English LinGO grammar is very small. This is because the incorporation
of semantics will almost always render two items to be different. Omitting the constraint
check therefore eliminates a lot of unnecessary checks, and simplifies the implementation.
When the semantics is ignored, duplicate items are rather common, allowing for significant
optimizations (Oepen and Carroll, 2000a). For Deltra, the verification step is mandatory, as
the DD parsing scheme inevitably produces duplicate items.

It is common practice in chart parsing to use a work queue, called the agenda, to influence
the order of evaluation. When a new item is matched against items on the chart, this can
result in many matches. Instead of recursively descending on each alternative, the hypothe-
sized items are put on an agenda. After all matches have been put on the agenda, the parser
continues by selecting an entry on the agenda for further processing.

Using an agenda allows fine control over the order of evaluation. Using the agenda as a
stack implements a depth-first search strategy, which corresponds to a recursive-descent
chart parser. Using the agenda as a FIFO® queue implements a breath-first search strategy.
An agenda also allows entries on the agenda to be evaluated in order of priority, where the
entries have been assigned priorities according to some characteristic. Such schemes are
often used in combination with n-first parsing to ensure, or at least increase the likelihood,
that the first » parses are actually the n best candidates.

A typical control flow for a chart parser is shown in Figure 2.14. Basically, a chart parser
cycles between unify, verification, and match steps, by repeatedly getting and putting tasks

SFIFO stands for first in first out.

30 2 Natural Language Parsing

unify (A

agenda AL X [CiK

Figure 2.14 Control flow of chart parser.

on the agenda. We will call one iteration of such a cycle a unify—verify-match cycle. The
parser starts by obtaining a task from the agenda. In the example, the entries on the agenda
represent pending unification steps. If the corresponding unification succeeds, the resulting
item is passed to the verification step. Here the item is checked for equality with the item on
the chart. If the item turns out to be unequal to all of the items, it is stored on the chart and
the parser continues with the match step. At the match step, the item is matched against the
item based on context-free criteria. For each match, the resulting unification task is put on
the agenda. The cycle then starts over. When the cycle is terminated prematurely because
of failing unification, a successful equality check, or a failure to match an item with any of
the items on the chart, the parser will simply retrieve a new task from the agenda.

An agenda-based chart parser is typically initialized by filling the agenda with work cor-
responding to the lexical entries. After initialization, a chart parser then simply repeats
selecting and processing entries from the agenda until either the agenda is empty or—in
case of n-first parsing, sufficient parses have been found.

Note that the agenda can be inserted into different places in the unify—verify-match cycle.
With Deltra, for example, the agenda is put just before the match step. This typically reduces
the number of entries on the agenda when a breadth-first search strategy is chosen. It does
not allow an equally fine control over the order of evaluation though.

2.3.2 Optimizations

If a chart were to be presented as a single list of items, this list would have to be traversed
for each match or verification step. Charts are therefore sometimes represented as a upper-
triangular matrix, where each cell (%, j) contains items of the form [A, 7, j]. Such a structure
is often called a tabular chart.% It allows any subset {[4,%,b] |Vi-i < b},{[4,a,5] |Vj-
a < j}, and {[A, a, b]} to be traversed without visiting items outside these sets. In general,
it is appropriate to split a chart into more specific categories if the lists of items that have to
be traversed contain too many items outside the desired category.

Another effective optimization technique is filtering. As mentioned before, in a typical

6The CYK algorithm must be the best-known parsing algorithm to use this structure.

2.3 Tabular Parsing 31

unification-based parser over 90% of the unification operations may fail. With filtering the
goal is to detect failing unifications in an early stage. A simple example of such a filter is
the rule filter (Kiefer et al., 1999). This filter is based on the observation that if the feature
structure for a grammar rule cannot be unified with the argument of another grammar rule,
then any instances of the respective rules will not unify either. This allows the construction
of a lookup table that quickly identifies whether a unification between any rule and rule-
argument combination will fail.

Another important filtering technique is the quick check (Malouf et al., 2000). The quick
check is based on the observation that certain paths in the feature structures are responsible
for a large portion of the failed unifications. The idea is to associate each feature structure
with a vector, indicating the values for a set of paths for which is known that they cause the
majority of failures. If the path is non-existent in the respective graph, the type is set to T.
With the LinGO grammar, the rule filter and quick-check can filter over 90% of the failing
unifications. This increases the performance of a parser for LinGO considerably (Malouf
et al., 2000). The filters are typically applied before a candidate edge is put on the agenda.
This allows the size of the agenda to be reduced considerably.

2.3.3 Parallel Chart Parsing

From Figure 2.14 it is clear that the most important source of parallelism is at the match
step. At this step the parsing process may branch of into multiple independent paths of
execution. This parallelism can straightforwardly be exploited by using the agenda as a
work queue. A critical design decision in such an approach is whether to use a single
centralized agenda for all processors, or whether to use a distributed agenda, where each
processor has its own agenda. A distributed agenda can reduce synchronization overhead,
because it prevents processor from having to contend for a single structure. However, if the
agenda is used as a prioritized queue, a centralized agenda may be a necessity.

A similar design decision is whether to store the items derived by all processors in a single
centralized chart, or whether to use some kind of distributed chart, such that each pro-
cessor can store the items it derives locally. Many proposals to distribute a chart have been
presented. In most proposals, the chart is split on the basis of a classification of the items.
Each processor may be assigned one or more of the subcharts. A processor that owns the
subchart is typically responsible for executing the work that corresponds to the subchart.

Nijholt (1994) gives an overview of several techniques to split the chart. A well-known
approach is to base the distribution on a tabular chart, where a processor P, ; is created for
each cell (%, j) in the tabular matrix. P, ; is responsible for applying deduction rules of
the form [A, i, k], [B, k,] F [C,4, j]. We call this kind of parser a parallel tabular chart
parser. Similarly, a string chart parser can be obtained by assigning processors P, ; to
sets of items {[4,0,4]}. A completely different approach is to split the chart based on the
grammar rule, or part of the grammar rule, that is represented by the respective items. This
approach was taken, for example, by Yonezawa and Ohsawa (1994) for their data-flow like
on chip parser design.

When items are not evenly distributed amongst the charts this can lead to an unbalanced
work load leading to inefficient use of processor resources. By means of ad hoc load bal-

32 2 Natural Language Parsing

ancing techniques, though, it is still possible to balance load at the granularity of single
tasks Ad hoc load balancing techniques have been proposed by, for example, De Vreught
(1992) and Ibarra et al. (1991) (for context-free grammars).

2.4 Existing Parallel Natural Language Parsers

Parallel parsing for NLP has been researched extensively. Nevertheless, many of the pre-
sented solutions either did not yield acceptable speedup or were very specific to one ap-
plication, preventing it from being a practical solution for other parsers. Recent research,
however, seems to indicate that an efficient parallel parser is feasible. In this section we will
give an overview of past research on parallel parsing.

Initially, research on parallel parsing focussed on bounds on algorithms, rather than im-
plementations. For example, Lozinskii and Nirenburg (1986) presented a parallel tabular
parser for locally-sensitive context-free languages with a time complexity of O(log n)
using n processors, where n is the length of the input sentence. De Vreught (1993) pre-
sented an overview of fast and slow parsing with a focus on tabular chart parsing. Nijholt
(1991, 1994) gives an extensive overview of approaches to parallel chart parsing.

Tomita (1985) presented a parallel LR parser. His LR parser does not have an agenda that
can be used to distribute work. Parallelism is introduced whenever ambiguity arises in the
input sentence. Tomita’s work has mainly been concerned with the creation of an efficient
sequential implementation for full context-free parsing. As is argued in (Nijholt, 1991),
Tomita’s solution is not usable as a solution specifically designed for parallel machines.
The graph-structured stack requires a master process. Moreover, each input word needs to
be supplied to each process, which is inefficient.

Early research on parallel chart parsing was presented by Grishman and Chitrao (Grish-
man and Chitrao, 1988). Their algorithm was based on an extended version of the CYK
algorithm with top-down prediction for a context-free grammar augmented with procedural
constraints. Distribution of work is accomplished through a centralized agenda. The agenda
is inserted in the unify—verify—match cycle right before the match phase. This means that
one entry on the agenda can correspond to multiple constraint evaluation operations. To
avoid a too coarsely grained parallelism, they also provide an implementation that places
the finer grained tasks on the agenda. The experiments are based on 4 different grammars of
different size. The results are based on runs on the NYU Ultracomputer, an 8 node shared-
memory computer, and simulations for runs with up to 40 processors. The authors report
that the simulations and real speedups are comparable for up to 4 processors. For more
processors, considerably better results are obtained with simulations. Reasonable speedups
are obtained for the larger grammars, with a maximum of 15 with 40 processors. The finer-
grained parallelism proved to be crucial in obtaining the speedups.

De Vreught et al. (Hoogerbrugge and de Vreught, 1991, Olk and de Vreught, 1992) devel-
oped a parallel tabular chart parser for the DD parsing schema (see page 15), based on a
master slave approach with load balancing. Both describe an implementation for a Meiko
with 16 INMOS T800 transputers. They conclude that the number of processors that can
effectively be used is limited. Hoogerbrugge and De Vreught (1991) also describe a decen-

2.4 Existing Paraliel Natural Language Parsers 33

tralized approach for the Meiko which exhibited increasing speedup up until the maximum
number of possible processors (n + 1). Both papers also conclude that tabular chart parsers
do not seem to be appropriate for parallelization on the Meiko.

Thompson (1991) presents two implementations of a parallel parser for two different sys-
tems. The target architecture for the first implementation was the Connection Machine, a
large scale SIMD machine. To exploit the SIMD architecture, the context-free recognition
process is mapped on a matrix multiplication problem. The target architecture for the second
implementation was the Butterfly, a MIMD processor with a set of MC68000 processors.
The parser uses a centralized chart and centralized agenda.

Both access to the agenda and access to the chart is locked in order to avoid race conditions.
Prevention of duplicate work is enforced by additional synchronization. Each processor
is assigned to handle either a chart or an agenda. Typically one processor is assigned to
maintain an agenda and all other processors are assigned to maintain a chart. A maximum
speedup of 3.3 is obtained with 4 processors. Thompson also presented other, less success-
ful, implementations of parallel parsers for distributed systems (Thompson, 1991).

Nurkkala et al. (1994a) presented a parallel parser for the UPenn TAG grammar for the
KSR1 shared-memory machine, with 64 nodes.” The implementation is a parallel version
of an Earley chart parser for TAG, with a distributed agenda and centralized chart. To avoid
communication overhead, each processor has its own agenda. When processors become
idle, they are allowed to take work from other processor’s agendas. The authors give an
extensive performance analysis based on three grammars: a 256-tree English grammar and
two randomly generated grammars of 512 and 1024 trees. Their parser achieves almost near
linear speedup for the 1024 tree grammar. For the English grammar, however, speedup does
not exceed 10 in terms of wall-clock time or little over 30 with 64 processors in terms of
cpu time. The author’s note that the results may be somewhat biased, because the processor
speed on their experimental platform (20MHz) seemed artificially slow compared to the
speed of the interconnect.

Nurkkala et al. (1994b) also presented a TAG parser for a 256 node nCUBE/2. Because
the nCUBE/2 does not have shared-memory, they used a different parallelization technique.
Basically, the trees of the grammar are assigned to the nodes in a round robin fashion. Each
processor maintains its own chart and agenda. The processors maintain a list of derived
items, which is periodically broadcasted to other nodes. The results are similar as with
the implementation for the KSR1. However, because there is no dynamic load balancing,
speedup is somewhat restricted. The maximum speedup obtained with the grammar for
English and a 30 word sentence reaches about 12 with 64 or more Processors.

Gorz et al. (1996) present an implementation of the INTARC parser, a subproject of the
Verbmobil research effort. Their parser uses a type check filter that eliminates most unifi-
cations. The parser uses a centralized agenda with a priority ordering on the entries, and
a centralized chart. The authors mention communication costs as a reason for choosing a
centralized chart. The experiments were run on a SparcServer1000 with 6 processors, and
consisted of parsing 10 sentences with respectively 2, 3, and 4 processor setups. All 2 and
4 processor runs resulted in slowdown. Their best results indicate a speedup of 1.3 with 3

7More precisely, it has a non-uniform memory access (NUMA) architecture.

34 2 Natural Language Parsing

processors. The authors blame the high optimization level of the sequential parser as one of
the reasons for the poor performance. They claim that the type check causes large disparities
in the granularity of agenda tasks, which make load-balancing difficult.

Manousopoulou et al. (1997) discuss a parallel parser generator based on the Eu-PAGE
system. This system is built on top of Orchid and PVM, using a distributed shared-memory
model. This solution exploits coarse-grained parallelism. The authors note that this makes
the ability to achieve speedup greatly dependent on the grammar that is being used. As we
will see in Section 4, the LinGO and Deltra grammars require a much more fine-grained
approach to parallelism (see also Gorz et al. (1996)). The authors present speedup results
relative to a one processor version for two selected sentences. A maximum speedup of 5.99
on 7 processors is obtained.

Pontelli et al. (1998) show how two existing NLP applications (Ultra and ArtWork) were
successfully parallelized using the parallel Prolog environment ACE. ACE combines or-
parallelism and independent and-parallelism (Kacsuk, 1990). For the translation application
Ultra, speedups of up to 13 were obtained with 15 processors. An advantage of this approach
is that also non-parsing components of NLP systems can be parallelized. The disadvantage
of this approach, though, is that it can only be applied to parsers developed in Prolog.
Yoshida et al. (Yoshida et al., 1999) presented a 2-phase parallel FB-LTAG parser, where
the operations on feature structures are all performed in the second phase. Parallelism is
introduced by spawning a new thread for each task that would otherwise be added to an
agenda. Spawning of threads is implemented with StackThreads/MP (Taura and Yonezawa,
1999), a parallel programming library which enables the program to create threads with
little overhead. The system uses the PSTFS environment (Ninomiya et al., 1998) for the
processing of feature structures. The speedup ranged up to 8.8 for 20 processors. Parallelism
is mainly thwarted by a lack of parallelism in the first phase.

Ninomiya et al. (2001) developed an agent-based parallel parser based on the parallel tabular
chart parser concept of distribution. The cells of the chart are represented by threads and
are responsible for doing all the work at the context-free level. The unification operations
are performed by separate agents. Each processor is associated with one unification worker.
Whenever a unification operation needs to be performed, one of the processors is chosen at
random to execute it. The system is implemented in ABCL/f and Lil FeS. The maximum
speedup reached was 13.2 with 50 processors.

We would like to note that it is hard to compare the performance of parsers if different
grammars are being used. Different grammars can give a very different dynamics to the
problem. In addition, the continuous improvement to parsing techniques, such as the quick
check, developed over the past decade has changed the dynamics of the problem as well.

Chapter 3

Analysis and Optimization of Parallel
Computations

In this chapter, we will give a brief introduction to techniques for the modeling and anal-
ysis of parallel computations. The topics addressed include different models of parallel
computation, scheduling, optimizing communication, and cache optimizations.

3.1 Parallel Computing

A parallel computer can be seen as a collection of identical, closely interconnected proces-
sors to allow the exchange of data and coordination of activities. We distinguish these types
of computer from distributed systems, where processors are loosely coupled and possibly
spread over a large geographic area. Parallel computers are specifically designed to let their
processors jointly solve a single problem.

3.1.1 Parallel Models

We can analyze the possibilities for parallelism for a computation at an abstract level by
specifying the computation in a parallel model. There are several ways to model a com-
putation for a parallel computer. A model of parallel computations should have several
properties. It should be simple enough to allow an algorithm to be easily specified and an-
alyzed. It should also allow for a graceful transition between design and implementation.
Finally, a performance analysis carried out on the model should reflect the performance of
an actual implementation of the algorithm. There is no one model that satisfies all these re-
quirements for all applications. In this section, we will present a classification, as presented
by JaJ4 (1992), of the most prominent models.

The Network Model The network model closely relates to multiprocessor architectures
where different processors, or nodes, are connected through a network. In this model, each
node has its own memory. Communication between processors is established by means of
message passing. A processor has to send data to another processor by explicitly sending
it a message. The receiving processor has to explicitly call a receive in order to get the
message.

The network model is often not well-suited for modeling parallel natural language parsing.
With structure sharing, for example, each time two graphs get unified, the result graph may
have references to subgraphs of the respective input graphs. Because unification between

35

36 3 Analysis and Optimization of Paraliel Computations

graphs stored on different processors is inevitable, such references will extend beyond the
local memory. Analyzing the communication that results from such references can be com-
plicated. It can also be expected that an implementation of sharing of subgraphs across a
network incurs considerable overhead. A solution in this case could be to allow structure
sharing only within one node and to only send complete graphs between processors. Al-
though the network model provides the right level of abstraction in some situations, we will
generally prefer a model where we can incorporate constructs like structure sharing without
change.

The Shared-Memory Model The shared-memory model is a natural extension of the
basic model of sequential computation. Each processor has access to a single shared mem-
ory and has no memory of its own. All references to memory are therefore defined to have
the same access time. Obviously, as each processor shares the same memory, constructs like
structure sharing can be incorporated without change in the parallel model.

The shared-memory model closely relates to the architecture of todays shared-memory mul-
tiprocessors. One aspect that the shared-memory model does not model correctly is the fact
that the processors of these architectures incorporate caches. One of the effects of using
caches is that access to locally generated data often requires less cycles than access to data
generated by other processors, because the locally generated may still be cached. A correct
model of these machines would therefore be some hybrid of the network model and the
shared-memory model.

Task Graphs Computations can be modeled in a completely architecture independent
way by means of task graphs. A task graph is a directed acyclic graph (dag), where the
nodes represent some unit of execution, or tasks, and the arcs represent precedence con-
straints on the order of execution of the these tasks. Nodes without incoming arcs represent
the input of the computation.

An algorithm can typically not be represented by a unique task graph, as the specific tasks
that are performed by the algorithm will depend on the input size and, possibly, the specific
values of the input. An algorithm can be represented, however, by a set of dags, which
contains a representative for each possible input.

Task graphs are particularly suitable for parallel time complexity analysis, as the model
clearly specifies which operations can be performed in parallel. The dag model abstracts
away from communication costs between processors. Instead it is assumed that each pro-
cessor can access the memory of any other processor with zero cost. An implementation of
an algorithm can be obtained by scheduling each node of the graph on a processor at a spe-
cific time. More precisely, given P processors, each node i is associated with a pair (p;, ;).
where 1 < p; < P, indicating that processor p executes node 7 at time ¢;, such that

1. if t; = t;, for some i # j, then p; # p;, which means that no processor can execute
two nodes simultaneously, and

2. if (i, 7) is an arc in the graph, then t; > ¢;, ensuring that the precedence constraints
be respected.

3.2 Scheduling 37

Input nodes are typically assumed to take O time. We call the set {(p;,t;) |i € N }a
schedule for the parallel execution of a dag by P processors, where N is the set of nodes in
the graph.

The time required to execute a schedule is defined as maXx;en t;. The parallel complex-
ity Tp(n), or Tp, of a dag for P processors is defined as taking the minimum over all
schedules for the dags that use P processors.

3.1.2 Performance of Parallel Computations

Obviously, the ultimate goal of solving a problem with a parallel algorithm is to be faster
than its sequential counterpart. Let P be a problem for which is known that the sequential
complexity of P is Tieq(n), where n is the input size. In other words, there is provably no
other sequential algorithm than can solve P in less then Tyeq(n) time. In addition, let A be
a parallel algorithm that can solve P in Tp(n) time given P processors. The speedup that
is achieved by A is then defined as

Sp(n) = I;S:‘((n")). 3.1)

In the ideal case, we want Sp (n) to be P. It is common practice to use the time com-
plexity of the best known sequential algorithm for Tieq(n) in case there is no provably best
algorithm.

The nominal speedup is defined to be T3 (n)/Tp(n) and gives the speedup relative to the
parallel algorithm itself run on a single processor. The nominal speedup is useful to evaluate
the efficiency of the utilization of the processors by the algorithm. Dividing the nominal
speedup by the number of processors yields the efficiency of a parallel algorithm:

T1 (n)

Ep(n) = m

3.2)

In this thesis, we will usually use speedup in the sense of nominal speedup, unless indicated
otherwise.

In theory, the maximum possible speedup that can be achieved corresponds to the average
available parallelism, which is defined as P = T} /T, (Frigo et al., 1998). In practice,
factors like communication overhead, synchronization overhead, and a lack of parallelism
in the problem can thwart this goal.

3.2 Scheduling

To be able to parse an input in parallel, we need to segment it in small executable units. In
Section 2.3.3, we noted that the most common approach to parallelize chart parsers is to
exploit parallelism at the context-free backbone, yielding concurrent unification. Therefore,
we define each deduction step to be a unit of execution, or task. As the derivation of new

38 3 Analysis and Optimization of Parallel Computations

items during parsing can initiate new deduction steps, the number of tasks grows dynam-
ically. The purpose of a scheduling algorithm is to assign each of these tasks to one of
the available processors. To efficiently execute such a dynamically growing pool of tasks,
a scheduling algorithm should ensure that work is evenly distributed amongst all proces-
sors. To put bounds on the amount of memory required, a scheduling algorithm should
also limit the number of tasks that are spawned simultaneously. Finally, a scheduling algo-
rithm should attempt to schedule related tasks on the same processor so that communication
between processors can be reduced.

In this section, we will present the necessary tools to analyze the scheduling of parallel
computations. We will also discuss some scheduling algorithms.

3.2.1 Bounds for Optimal Schedulings

In Section 3.1.1, we presented task graphs as a possible model for parallel computations.
A task graph allows us to quantify the execution time for a P-processor system. For now,
we will assume that all tasks take the same time to complete. We define the dag depth of
a task to be the length of the longest path terminating at the task. Analogously, we define
the dag depth of a task graph, denoted T, to be the maximum dag depth of any task.
This is also referred to as the critical path of a computation. We use T, to denote the dag
depth because it indicates the minimum time necessary to complete the computation, given
an infinite number of processors. Finally the total work of a computation T is defined as
the time it takes to complete all tasks of a computation, using one processor. Obviously,
because a processor can only execute one task at a time, Tp > T1/P holds.

Brent (1974) and Graham (1969) have derived upper bounds for the execution times of
optimal schedules. It follows from their work that for all multithreaded computations, there
exists a P-processor execution schedule for which it is the case that

Tp < T1/P + Too. (3.3)

In (Blumofe and Leiserson, 1993) these results are extended to show that this upper bound
can be achieved with greedy schedules. With greedy schedules, at each step of the execu-
tion, if at least P tasks are ready, then P tasks execute, and if fewer than P tasks are ready,
then all execute. So for any multithreaded computation with work T; and dag depth T, and
for any number P of processors, any greedy schedule achieves Tp < T} /P + To.

3.2.2 Scheduling Algorithms

A scheduling algorithm specifies how a set of tasks is distributed amongst a set of proces-
sors, taking the dependencies between tasks into account. Since the set of tasks required to
parse an input is not known beforehand, we need to consider run-time or dynamic schedul-
ing techniques. Obviously, the design of the scheduling algorithm first of all depends on
whether the set of tasks are represented as, for example, a stack, a loop definition, or a work
queue. For chart parsers, the agenda provides a good point for distributing work.

3.2 Scheduling 39

A lot of research on scheduling has focussed on distributing loop iterations. Scheduling of
loop iterations is similar to the scheduling of tasks on a work queue. The major difference
is that with loop operations, the number of iterations is usually fixed, whereas with work
queues tasks are usually added during processing. Nevertheless, many of the scheduling
techniques designed for loop operations also apply to work queues.

One of the simplest scheduling algorithms is static scheduling. With static scheduling, the
decision about which processor a task should be executed by is based on off-line criteria.
Therefore, with this technique, the same tasks will always be assigned the same processor.
A parallel tabular chart parser, for example, implements a static scheduling technique. Static
scheduling can minimize the run-time synchronization overhead. On the other hand, it can
result in a poor distribution of the work load. To avoid this problem, a scheduling algorithm
for parallel chart parsing will have to implement some kind of dynamic load balancing, or
dynamic scheduling.

The major goal of most dynamic scheduling algorithms is to minimize synchronization
overhead, while optimizing load balancing. A very simple dynamic scheduling algorithm
that achieves near perfect load balancing is called self scheduling (Tang and Yew, 1986).
With this algorithm, each processor repeatedly executes one task from a centralized queue
until the queue is empty. Obviously, all processors will finish within one task from each
other. A major disadvantage of this scheme, however, is that the centralized queue needs
to be locked each time a task is removed from it. This can result in an unacceptably large
synchronization overhead.

The uniform-sized chunking algorithm (Kruskal and Weiss, 1985) reduces the synchro-
nization overhead of self-scheduling by letting each processor fetch K tasks at a time. This
means that the cost for locking the centralized queue is amortized over the execution of K
tasks. Instead of having a fixed chunk size, some scheduling approaches adapt the chunk
size to the size of the queue. For example, with guided self-scheduling (Polychronopoulos
and Kuck, 1987), each processor is assigned 1/ P of the remaining tasks of the queue. This
method will typically incur less synchronization overhead than uniform-sized chunking, but
will more likely yield an uneven distribution of work.

Markatos and LeBlanc show the importance of cache-awareness for scheduling tasks on
different processors. The time a parallel application spends moving data into its local
memory or cache can take up 30-60% of the total execution time, yielding a significant
source of overhead (Markatos and LeBlanc, 1992b). With affinity scheduling (Markatos
and LeBlanc, 1992a), the iterations of a loop are divided into [N/P] chunks. Each proces-
sor is assigned a fixed chunk. The idea is that a fixed sequence of iterations will typically
cause the same data to be accessed on successive visits of the loop. This increases the
chance that the memory is already loaded in the cache on each successive visit. To enable
load-balancing, work can be moved from one processor to another. The results, however,
will be moved back to the original processor, in order to restore affinity. In this way, the
overhead of loading data into cache is only incurred when load-balancing occurs.

A completely different approach to scheduling is to distribute the work queue itself. To
achieve load balancing, processors can donate work to other processors at given times (work
sharing) or take work from other processors if they become idle (work stealing). In (Blu-
mofe and Leiserson, 1994) it is shown that work stealing schedulers lead to less commu-

40 3 Analysis and Optimization of Parallel Computations

nication than work sharing schedulers. Work stealing has also proven to be a successful
way to implement a greedy scheduler. Just as with self-scheduling, all processors terminate
within one task of each other. The synchronization overhead only occurs when one thread
steals work from another thread’s queue. As stealing is typically infrequent and contention
is localized, the total amount of synchronization overhead is usually reduced considerably.

With work stealing, a thief thread selects a victim thread to steal from according to some
stealing policy. For example, it can select the thread which has the most work on its queue
(Markatos and LeBlanc, 1992a). Such a strategy is typically not well-suited when a lot
of processors are used. For large P, random selection of a thief has proven to be useful
(Blumofe and Leiserson, 1994), (Dandamudi, 1991).

A work-stealing algorithm for strict multithreaded computations is presented by Blumofe
and Leiserson (1994). Their algorithm unifies the approaches of other work-stealing sched-
ulers for, for example, backtrack search computations (Karp and Zhang, 1993) and divide-
and-conquer applications (Wu and Kung, 1991). This algorithm has been used in the Cilk
scheduler (Frigo et al., 1998). With Cilk, each thread has its own stack and threads are al-
lowed to “steal work” from the bottom of the stack of other threads whenever they become
idle. The strict multithreaded computations define the class of computations for which the
Cilk scheduler can run efficiently. Most importantly, as the authors note, Cilk is not well-
suited for applications that require constant synchronization through a shared data structure.
Shared data structures are common in chart parsing. In addition, the stack-based approach
seems to limit the freedom in order of evaluation, which is often required for parsing. It
seems, therefore, that Cilk is not well-suited for parallelizing chart parsers.

3.2.3 Work-first Principle

Frigo et al. (1998) present an important design criterion for their scheduler, called the
work-first principle. The work-first principle states that overhead borne by the work of a
computation should be minimized by moving it on the critical path. This can be explained
as follows. First, it is assumed that the scheduler is optimal (i.e. its running time is bound
by Inequality 3.3), that there is sufficient parallelism, and that there is a sequential algorithm
against which the parallel version can be evaluated. The critical path T, and the average
parallelism P="n /P both present a lower bound on the execution time for Tp. The
critical path overhead is defined as the smallest constant ¢, such that

Tp < TI/P+ CooToo- G4

The work overhead is defined as ¢; = T1/T'seq, where Tq is the running time of the
sequential processor. Under the assumption of sufficient parallelism, we can assume that
P/P >> coo. From this it follows that 73 /P > co.Too and, from Inequality 3.4, we obtain
the nominal speedup 7p = T/ P. In other words, provided there is enough parallelism, the
critical path overhead has little impact on the nominal speedup.

To compare the parallel implementation with the serial implementation, we include the
work overhead in Inequality 3.4, giving Tp < ¢1Teq/ P + oo Too. This simplifies to Tp =
¢1Teq/ P under the assumption of sufficient parallelism. We see that minimizing ¢, has a

3.3 Domain Decomposition 41

more direct impact on the speedup. For the work stealing scheduler presented by Frigo et
al. (1998), this principle means that the overhead is moved to thieves, rather than workers
as much as possible.

3.3 Domain Decomposition

In many applications, communication can be a bottleneck in obtaining sufficient speedup.
When there is too much communication between processors, the network, or the memory
bus in case of shared-memory systems, can become saturated. This can cause significant
overhead for all processors. In this section, we will present some of the available techniques
to optimize distribution of work such that communication between processors is minimized.

3.3.1 Introduction

The problem of domain decomposition, or partitioning, is to divide the tasks of a com-
putation across a given number of processors such that communication is minimized while,
simultaneously, keeping the work evenly distributed across the processors.

A common way to model the communication involved in a computation is to use a graph
where nodes are labeled with a certain amount of work and edges are labeled with the
amount of communication that is required between the nodes. Because the direction of the
communication is typically irrelevant for measuring the amount of communication, such
graphs are typically represented as undirected graphs,

In the following discussion we assume we are given a graph (V, E), a function W that
assigns a cost for processing each task in V, a function S that gives a measure for the
amount of communication associated with each edge in E, and a partitioning P that assigns
each v € V to one of P processors. There are two common ways to define communication:
the edge cut and the communication volume. The edge cut is defined as

5 {s«u,v» P(u) # P(v)

3.5
0 otherwise @5

(u,v)EE

The edge cut represents a scenario where the processors do not keep a record of messages
previously received from other processors. That is, all communication is counted, even
when the same data is sent more than once between the same pair of processors.

In scenarios where repeated transmission between two processors can be avoided, the edge
cut measure may incorrectly model the communication. In this case, it may be more appro-
priate to measure the communication volume, which is defined as

D S@) [{u- (u,9) € E |P(u) # P(v)}| (3.6)
vEV

where S now associates the size of the communicated data with the nodes. Most research
has focussed on optimizing the edge cut.

42 3 Analysis and Optimization of Parallel Computations

The balance of a partitioning P is typically defined as follows.

maxp=1,... P (Zve{uev |'P(u)=p} W(v)) : P
EveV W(‘U))

A perfectly balanced partition will have a balance of 1.

The problem of domain decomposition can now be defined as finding a partitioning P for
a given task graph that simultaneously minimizes the balance and either the edge cut or
communication volume. The weights to attach to respectively the measure for the commu-
nication and the measure for the balance is arbitrary. One common technique is to define
an upper bound for the balance, after which communication is minimized while keeping the
balance below this upper bound.

Finding the optimal partitioning can be a computationally expensive operation. Domain
decomposition is therefore of most use for application domains where a graph models a
repeated pattern of communication within one computation. This is often the case with, for
example, finite element analysis. Parsers typically fall outside the class of such applica-
tions. However, in Chapter 5, we will use domain decomposition as a tool to analyze the
possibilities for minimizing communication in natural language parsers.

3.7

3.3.2 Partitioning Algorithms

The presented partitioning problem is known to be NP-complete (Karypis and Kumar,
1998). Given that the number of nodes in graphs can be quite large, it is unreasonable
to expect to find optimal partitionings. A lot of research, however, has focussed on finding
high quality approximations.

Many approaches to the partitioning problem can only handle 2 processor partitionings
(Karypis and Kumar, 1998). An example of a popular bisection algorithms is Recursive
spectral bisection (RSB) (Barnard and Simon, 1994). The direct computation of a k-way
partitioning is typically much harder to compute than a good bisection. For this reason, the
bisection algorithms are often used to obtain k-way partitionings by recursively partitioning
the obtained partitions. To improve the quality of the resulting partitionings, the partitioning
phase is often followed by a refinement phase. The algorithm presented by Kemighan and
Lin (1970) is commonly used for this purpose.

As an alternative to recursive bisection, multilevel recursive bisection (MLRB) has been
proposed (Hendrickson and Leland, 1995). The idea behind MLRB is to first coarsen a
given graph to a graph with a few hundred nodes, compute the partitioning, and then gradu-
ally refine the graph to the original graph. Multilevel recursive bisection yields significantly
better partitionings than simple recursive bisections at much better efficiency (Karypis and
Kumar, 1998). One of the advantages of coarsening is that it becomes feasible to compute
a k-way partition directly, rather than computing it through recursive bisection. In (Karypis
and Kumar, 1998) a k-way refinement algorithm is presented that can be used in combina-
tion with this approach.

3.4 Caching Principles 43

3.4 Caching Principles

Improving cache performance of an application can considerably reduce the amount of data
a processor has to move to and from memory. Reducing traffic on the memory bus can
significantly improve the performance of a single processor system. Reducing traffic, how-
ever, can be of even more importance for multiprocessor shared-memory systems. With
shared-memory systems, all processors typically share the same memory bus. Obviously,
when all processors heavily utilize the bus, the bus can get easily congested. This, in turn,
can significantly slow down a computation and nullify the advantage of having multiple
Processors.

3.4.1 Terminology

Modern-day computers usually have a multiple level memory hierarchy. The memory clos-
est to the processor is called the level 1 cache. The next level is called level 2 cache, etc.
Typically, lower level memory is faster, but also smaller in size. At higher levels, there
usually is more storage capacity at the expense of higher access times. Typical modem-day
computers have 2 or 3 levels of cache between processor and main memory.

Most caches map locations in cache to memory locations at the granularity of a cache line.
The cache line size is typically 2F times the word size, where k = 1,2,.... To avoid
confusion, we will often refer to the cache line sized regions in main memory that map to
a single cache line as memory lines. When a reference to a location in memory is made,
the entire memory line is loaded in the cache, including the unreferenced data. This can be
seen as a kind of prefetching.

On shared-memory architectures, caches can be either shared or non-shared. Each proces-
sor usually has its own level 1 cache. Level 2 caches are sometimes shared between all
processors. In case each processor has its own level 2 cache, there may be a shared level 3
cache.

Because a cache at level n typically cannot hold all data of memory at level n 4 1, there
needs to be some administration of which data is actually stored in cache. In addition, there
needs to be some policy to determine which memory lines to flush when room should be
made for other memory lines. In the ideal case, a cache can map addresses of higher levels
to any position in its cache. This allows the full capacity of the cache to be utilized at any
point in time. This is called a fully associative cache. Usually, however, simpler schemes
are used to limit the overhead of finding elements in the cache.

A simple way to eliminate overhead is direct mapping. With direct mapping, an element of
a higher memory level is always mapped to the same location in cache. Using this scheme,
the position in the cache can be derived directly from the element’s memory address. Direct
mapping can result in very inefficient use of the cache, because several data elements may
map to the same location. Set-associative mapping is a compromise between direct map-
ping and fully associative mapping. It still maps a memory address to a fixed position in
cache, but allows multiple entries at every position. The number of slots at these positions
is fixed. A cache with a slots per position is called an a-way associative cache. 2-way and

44 3 Analysis and Optimization of Parallel Computations

4-way associative caches are common configurations. When a new entry is entered in the
set it needs to be determined which of the old elements is thrown out. Typical policies for
this are random selection or the least recently used (LRU) element.

The purpose of a cache is to improve memory access times by exploiting the reuse of data
in an application. Reuse of data occurs when the same data or cache line is accessed more
than once in the execution of the program. The reuse is exploited when the data is retained
in the cache between successive accesses. We can distinguish two different kinds of reuse:
temporal and spatial reuse. Temporal reuse occurs when multiple accesses to the same
physical address or data element use a buffered copy in the cache or registers. Spatial reuse
occurs when multiple accesses to data all refer to the same cache line. Obviously, temporal
reuse is a subclass of spatial reuse, because a repeated access of the same element implies a
repeated access of the same cache line.

A cache miss occurs when a data element being accessed cannot be found in the cache. A
piece of data may not be stored in the cache for several reasons. The most obvious reason is
the case where a memory line is referenced for the first time. We call these types of misses
compulsory misses. Interference misses are the counterpart of compulsory misses, and
include all misses that are caused by the fact that reusable cache lines have been flushed
from the cache. In other words, the first time a memory line is accessed, it will always
cause a compulsory cache miss. Each additional miss that results from accessing the same
memory line will be an interference miss.

Interference misses can be further grouped into several categories. Capacity misses occur
when the cache size is insufficient to store all data that can be reused. For example, suppose
one is looping over an array that is twice the cache size. After the entire array has been
accessed (in ascending order), the second half of the array will have flushed the first half
out of the cache. When the loop is repeated, the first half will flush the second half out of
the cache before it can ever be reused. Ultimately, cached data is never reused!

Conflict misses occur when data is flushed from the cache because a + 1 memory lines,
where a is the cache’s associativity, were mapped to the same cache line. In general, the
greater the associativity of a cache, the less prone it is to conflict misses.

There are also some effects that can cause interference misses on shared-memory multi-
processors in particular. Many of the shared-memory systems use some kind of coherency
protocol to keep the caches of the processors consistent. Whenever a processor writes to a
location in main memory, all cached copies of the respective data on other processors need
to be invalidated. This will result in a cache miss whenever these processors attempt to reuse
the respective data. We refer to these kind of cache misses as coherency misses. These ad-
ditional cache misses caused by coherency enforcement can be seen as the equivalent of
communication in distributed systems.

Unnecessary coherency misses can be caused by unintended spatial reuse. Consider two
variables, each of which is to be used locally by a different processor. Usually, such vari-
ables can simply be cached when a processor needs to access them repeatedly. However,
if the two variables happen to be on the same memory line, the coherency protocol will
continuously detect conflicts. The variables will need to be reloaded repeatedly. This effect
is known as false sharing. False sharing can be prevented by ensuring that each memory
line contains only non-related data.

3.4 Caching Principles 45

fork=1...mdo
fori=1...ndo
forj=(k—1)N...kN do
do something with A[i, j]

fori=1...ndo
forj=1...mNdo
do something with A[s, 5]

Figure 3.1 Blocking is applied to the left loop to eliminate capacity misses. Here, N is the number of
elements of array A that fit in the cache.

3.4.2 Techniques to Improve Cache Utilization

Numerous solutions have been proposed to improve cache utilization. Most of the research
focussed on optimizing loop-nests operating on non-sparse arrays and matrices. Neverthe-
less, in recent years, research interest has increased for more unstructured problems like
sparse matrix-vector multiplication and finite element analysis with irregular meshes. Op-
timizing cache behavior with respect to cache-coherent shared-memory architectures has
gained interest as well. In this section, we will highlight the techniques most important for
our research.

Blocking As we mentioned, capacity misses occur when the cache size is insufficient to
store all data that can be reused. In a worst case scenario, this phenomenon can eliminate
all possibilities for temporal reuse. One of the techniques to eliminate capacity misses
is blocking or tiling. Blocking promotes temporal reuse by limiting the active data set
to the size of the cache. The technique can best be explained by means of the following
simple example. Suppose we have a loop that iterates n times, in ascending order, over
cach clement in an array. The array occupies kC bytes, where C is the cache size and
k =2,3,.... As we explained, successive iterations over the complete array will cause all
cache lines to be flushed, disallowing any exploitation of temporal reuse. We can eliminate
this effect processing the array one block at a time. The transformed loop is shown in
figure 3.1. Basically, capacity misses are avoided by processing all operations on one block
before proceeding to the next.

Obviously, the n elements that were referenced in the original outer loop now have to be
reloaded k times. In general, it is often not possible to reduce capacity misses completely.
Nevertheless, blocking can still reduce the number of interference misses considerably. Ex-
amples of blocking can be found in (Wolf and Lam, 1991).

Locality Grouping Ding and Kennedy (1999) present several techniques to improve
temporal reuse for irregularly structured applications. With locality grouping temporal
reuse is increased by reordering computation. Consider the following example, taken from (Ding
and Kennedy, 1999), where a series of operations need to be executed on a machine with a
3-element fully associative cache with LRU replacement. We will assume there is no spatial
reuse. An unstructured version of the program executes the following series of operations
with two operands:

(be)eg)(e f)(ab)(f g)(ac)

46 3 Analysis and Optimization of Parallel Computations

On the given 3-element cache, this sequence will result in 10 misses, of which 4 are inter-
ference misses. Now, if we reorder the operations by grouping them, for example, on access
to the elements in increasing order, we get:

(ab)(@ac)(bo)(e 9)(e)(f 9)

This simple strategy reduces the number of misses to 6 by eliminating all interference
misses. In their experiments, the authors show that locality grouping can reduce the number
of interference misses by as much as 96%.!

The authors also present a similar run-time technique to improve spatial reuse by putting
data that is typically accessed simultaneously in a single cache line. In addition, the authors
suggest that data should be separated according to when and how it is used. That is, data
that is used in separate phases in computation should be stored in different cache lines. In
addition, read only and read/write data should be separated to prevent the redundant writing
back of read only data.

ITheir results are based on simulations on a fully associative caching architecture. Conflict misses cannot occur
in such an architecture.

Chapter 4

Parallelism in Parsing Computations

In this chapter, we will analyze different approaches to parallel parsing. The aim of the
analyses is to identify possible bottlenecks and fundamental limitations of parallel parsing.
We will show that to ensure there is sufficient parallelism, parsers should distribute work at
the granularity of individual unification steps.

4.1 Introduction

Rather than forming an understanding by means of a complexity analysis of the parsing
algorithm and grammar, we will base the analysis on actual parsing. Carroll (1994) showed
that the exponential complexities with respect to grammar size and input length often have
little impact on the performance of unification-based parsers. He argued that the study
and optimization of unification-based parsers should, therefore, rely on empirical data, at
least until complexity theory can more accurately predict the practical behavior of parsers.
Since we believe that recently no real advances have been made on this front, we follow
the approach of basing performance analysis on actual parser behavior. In other words,
rather than analyzing parsing schemata or uninstantiated parsing systems, we will base our
analyses on parsing systems.

Furthermore, we will investigate parallelism at the context-free level. As we argued in
Section 2.2.4, the possibilities for parallel unification are limited by both theoretical and
practical limitations. We therefore believe that parallel unification can be used at best in
addition to concurrent unification. At least, it is useful to first consider the possibilities of
parallelism at the context-free level.

In the next section, we will give an insight into the structure of a parsing computation.
In Section 4.3, we will investigate the possibilities for parallelism based on a critical path
analysis. This is accomplished by performing analyses on task-graphs constructed from
real-life parsing examples. In Section 4.4, we will perform a more abstract analysis to
analyze the effect of the choice of parsing schema on the amount of parallelism.

4.2 Parsing as Deduction

Parsing systems are a good starting point to investigate the dynamics of parsing. Basically,
all parsers that implement the same parsing schemata will typically yield the same set of
active and passive items. The derivation of an item corresponds to a certain task and the

47

48 4 Parallelism in Parsing Computations

derivation dependencies between items determine the paths of execution. In this section, we
will define a graph that captures this information.

4.2.1 Definitions

The justification graph, which we will define next, specifies the dependencies for the deriva-
tion of items corresponding to a given parsing system. It is defined in terms of the relation D
of a given parsing system.

Definition 4.1 A justification graph for an instantiated parsing system P = (Z,H, D)
(see Definition 2.2) is a hypergraph G = (V, D), where V is a set of nodes on the domain HU
Z. V is defined as

{IeY |(Y,m)e D} u {I |(Y,I)€ D}.

The set of deduction rules specifies the arcs of the hypergraph, where for each (Y, m) € D
the source nodes are given by Y and the destination node is given by m. <

For example, the justification graphs for CYK and E corresponding to the example of Fig-
ure 2.1, can be visualized by the derivation trees given in Figure 2.2 and 2.3, respectively.
Given a justification graph G = (V, D). Anitem I € V is said to precede anitem J € V,
denoted I < J, if and only if there exists a relation (Y, J) € D, where I € Y. A path from
node I to node J is defined as a sequence {no, ... ,ng), where I = ng,J =ng, I,J €V,
and for each successive pair of nodes n;, n;41, it holds that n; < n;y1. We will use the
notation I <* J to indicate that there exists a path from I to J. Two items I, I € V are
said to match, denoted I, ® I, if there exists arelation (Y, I;) € D, where I, I € Y.

We define three disjunct subsets of V': initialization items, hypotheses, and derived items.
Each represents a different phase of the parsing process. The set of initialization items Vipi
of G is defined as the smallest set such that:

Ve = {I | (Y,I) € D, where Y C Vimi}

The initialization items represent all items that can be derived independently of the input
string. This set will be empty if the grammar does not contain any epsilon rules. The
hypotheses are the items corresponding to the input string. The set of hypotheses Vy of
G is defined as V4 = H. The set of derived items of G is simply defined as Vp = V —
(Vi U VH).

A justification graph represents which items justify the deduction of another item, recur-
sively. The nodes of a justification graph only specify successfully derived items. That
is, it does not include any representation of the work required for attempted matches that
failed. The justification graph therefore indicates the work done for a parser with perfect
filtering. Since all parsers that use the same parsing schema will typically produce the same
set of items, the justification graph provides an appropriate level of abstraction to investigate
properties of parsing schemata independent of specific implementations.

4.2 Parsing as Deduction 49

4.2.2 Strict Parsing Systems

In this section, we will define a class of parsing systems for which it is straightforward to
determine worst-case distributions. We will use these findings to prove the validity of a
metric that we will present in the next section. We will prove that parsing systems based on
a grammar without epsilon rules and either the parsing schema DD or KD are members of
this class.

Definition 4.2 We will call an instantiated parsing system P = (Z,H, D), represented as
the justification graph G = (V, D), strict if for all I, J € V it holds that if I <* J. , then not
I®J. <

It is often useful to consider a slightly weaker variant where this property only holds for the
subset (Vp U V). If for all I, J € Vp U Vi it holds that if T <* J then not I ® J, then we
call P strict on Vp U Vj1. Note that these two properties are equivalent if the grammar on
which the parsing system is based has no epsilon rules. Finally, we call an uninstantiated
parsing system strict if, for all inputs, the resulting instantiated parsing system is strict.
Next we will prove that all uninstantiated parsing systems based on DD and KD and a
grammar without epsilon rules are strict.

Theorem 4.3 Given a grammar G without epsilon rules, then all uninstantiated parsing
systems for G based on the double dotted parsing schema DD are strict.

Proof. We need to prove that for all possible epsilon rule free grammars and for all input
sentences, there are no two nodes I and J in the justification graph G = (V, D) of the
corresponding parsing system, for which I <* J and I ® J hold simultaneously. We need
to consider which sequence of deduction steps can yield such a condition.

Because the grammar does not contain any epsilon rules, we do not have to consider D,
In addition, this means that each item a € V covers a non-empty range of the input string,
For the remaining deduction rules it holds that the result item spans a part of the input
string that at least includes the span of any of the left-hand side items. This means that if
[, %, 5] <* [B, k, m] then k < i and m > j will hold.

Now, the only deduction step that can produce a match between two items is DConcatenate
Consider the following match by concatenation: [a, i — a,3] ® [a, i, 4 + b]. Since each item
covers a non-empty part of the input string, we know that ¢ > 0 and b > 0. Obviously,
neither [a,¢ — a,i] <* [a,i,i +] nor [a,4,5 + B] <* [o,i — a, t] can hold, because
respectively i £ i —aandi ¥ i + b. O

Note that this proof only considers context-free matches and does not include the unification
constraint. In other words, if I <* J, I will fail to match .J on context-free grounds, without
considering the additional unification constraint. Assuming that a parser will never attempt
to unify the feature structures of two items if the items do not match on context-free grounds,
the feature structures of I and J will never be unified.

Theorem 4.4 Given a grammar G without epsilon rules, then all uninstantiated parsing
systems for G base on the key driven parsing schema KD are strict.

50 4 Parallelism in Parsing Computations

Proof. This proof is analogous to the proof for DD. We note that we did not make use of the
dot positions or the matching of grammar rules between the items in D% in the proof
for the double dotted schema. This means that the same arguments that hold for DConcaenate
will also hold for DComPlete, O

We note that in both cases it is possible to construct a grammar containing epsilon rules that
will result in non-strict parsing systems.

4.3 Task-Graph Analysis

Since a justification graph only indicates successful derivations, it gives a simplified picture
of what operations are performed during parsing, In reality, each implementation of a parser
is bound to do some extra work. For example, failed unifications and equality checking are
not included as specific tasks in the justification graph.

In this section, we will give a more refined representation of the work that is carried out
by a parser by means of task dependency graph. We will use this representation to derive
the average available parallelism that exists when parsing. This information can give us an
upper bound for the speedup that can be obtained using dynamic load balancing techniques
for shared-memory architectures. As we saw in Section 3.2.1, the average parallelism in
a computation can be derived by dividing the total amount of work T; by the critical path
length T, of its respective task graph.

4.3.1 Task Dependencies

To analyze parsing computations in more detail we use a task dependency graph. A task
dependency graph specifies all work that is done by a parser, including failing unifications
and match operations. Compared to a justification graph, a task dependency graph speci-
fies the computation carried out while parsing in more detail and removes the ambiguities
concerning the order of execution (think of cycles, items derived multiple times, etc.).

Definition 4.5 A task dependency graph T = (7, E, W) is a directed acyclic graph
(dag). Each node in 7 represents a task. A task is an atomic unit of computation. E is a
set of directed edges indicating dependencies between tasks: if (a,b) € E then a should
complete before b may be executed. Finally, W is a function defined as W : 7 — N that
assigns a cost to eachtask T € 7. <

Justification graphs specify a parsing computation at a more abstract level than task depen-
dency graphs. The details of a task dependency graph greatly depend on the specifics of the
implementation of the parser. For this reason, there can be many task dependency graphs
that correspond to the same justification graph. A task dependency graph T is said to corre-
spond to a justification graph G = (V, D) if it complies with the following requirements:

1. V C 7T holds. Each node a € V corresponds to anode @’ € 7,

4.3 Task-Graph Analysis 51

2. for each b € Vp, there should be one and only one (Y,b) € D for which it holds
that @ € Y iff there is a path (a’,n},. .., nj,b') in the task dependency graph where
Niyeun)Ny ¢V

3. for all paths (a’ Ty, n;-, b’) in the task dependency graph for which it holds that
Niy...,n; € Vanda,beV,a < bshould hold.

4. forall (a/,') € E,b & Vini.

The cost function W : 7 — N associates a cost with each task to indicate the amount of
work the task represents.

The cost or length of a path is be defined as the sum of the costs for each task on the path.
Similarly, we define the dag depth T, of a graph to be the highest cost for any path in the
graph.

Note that, unlike the justification graph, the task dependency graph is not a hypergraph.
Also, by definition, a task dependency graph cannot have any cycles, even if there are cycles
in the corresponding justification graph.

The requirements for correspondence serve several purposes. The first requirement states
that each node of the justification graph be represented by a separate tasks in the task depen-
dency graph. We will call these tasks match tasks. To allow a more precise specification
of the tasks carried out by a parser, we allow additional tasks with arbitrary dependencies to
be inserted between two successive match tasks. The second and third requirement ensure
correspondence between the task dependency graph and justification graph in this case.

In addition, the second requirement states that a match task may only depend on other items
in correspondence to one and only one dependency in D. We do not allow a match task
to depend on multiple derivations, because once an item is derived, it can already be used
for the derivation of other items. If the same item is derived again, a parser can detect
equality and terminate the execution of the corresponding thread. A parser based on the
double dotted schema DD will typically produce many identical items. This is because
the concatenation rules of DD allow the same item to be derived in multiple ways. For
example, the item @ = [A — -BCD-] can be derived from the items b = [A—-B.
CD,c=[A—A-B-C|,andd = [A— AB - C-], by concatenating in the order
((bc)d) and (b(cd)). Obviously, the number of possible identical derivations grows for
larger righthand sides. Equality checking is therefore a crucial tool to reduce the number
of items produced by Deltra. In the construction of a task dependency graph for Deltra,
we simply pick the first derivation that was used during a sequential run. This choice will
automatically eliminate any cycles that were present in the Jjustification graph. Things are a
little simpler for LinGO. A parsing system based on LinGO and KD will hardly ever yield
multiple identical items. KD does not produce identical items like DD, as described before.
In addition, the LinGO grammar has the property that different feature structures typically
do not lead to the derivation of identical items. CaLi therefore omits the equality check and
hence there will always be exactly one (Y, b) € D for each b € Vj,.

Finally, the fourth requirement disallows match tasks corresponding to initialization items
in the justification graph to be the target of dependencies. Typically, initialization items are

52 4 Paralielism in Parsing Computations

0
.
OO oA ¥ W6 W WO W W W
® 5 ®
O-+O~@ mo?rmm

T. AO@Q
O>@FO>O>+®

W W
0 0

(W@ @

Figure 4.1 Example task dependency graph and its abbreviated version. In both graphs, a box is drawn
around the critical path.

derived once and reused in each successive parse. Therefore, we do not want to include
their derivation in the critical path analysis.

To fill in the details of the graph we have to look at the specific implementation of a chart
parser. In Section 2.3, we introduced a general scheme for chart parsers called the unify—
verify—match cycle. We define separate tasks for each of these operations. The match tasks
correspond to the match step. We also introduce tasks corresponding to the unification and
verification steps, including the equality check. The presence of these tasks will depend on
the parser implementation. Each successful unification that results in a unique new item
will result in the spawning of a match task. The number of failing unifications that follow
a match task will partially depend on the filtering technique being used. We therefore need
to consider the actual parsing behavior to determine the makeup of the task dependency
graphs. An example of a task dependency graph is shown in Figure 4.1.

In the discussion below, we will represent the unification phase and the optional verification
phase as a single task. The abbreviated version is also shown in Figure 4.1. Equality checks
slightly complicate the analysis. In addition, equality checks can be accelerated consider-
ably by using, for example, the quick check. We will therefore not consider the possibility
of performing these tasks in parallel.!

We did not split match tasks into smaller units of execution, because they typically require
much less time to complete than unification and verification tasks. Therefore, there is no
real need to introduce fine-grained parallelism in this operation.

Although tasks are considered as atomic units of execution, the amount of work associated
with a task can vary considerably. This especially holds for the equality check and unifi-
cation tasks. A simple indicator of the cost involved in a unification task and the equality

INote that Call does not implement equality checks.

4.3 Task-Graph Analysis 53

Figure 4.2 Type 1 task graph. Each unification task starts in a new thread. Threads are represented by
the gray boxes.

Figure 4.3 Type 2 task graph. Each match phase starts in a new thread.

check is to count the number of nodes visited during the operation. This measure cannot be
used to indicate a cost for the match phase. However, since computing the matches takes up
only a few percent of the total work, we can simply assign a small constant cost (typically
zero) to each task.

4.3.2 Task Graphs

In most implementations of a parallel parser, tasks as presented above will not be the small-
est schedulable units. Scheduling each type of task independently might be cumbersome
and introduce unwanted inefficiencies. Therefore, a series of successive tasks will typically
be grouped into a thread. A single thread can, for example, perform one complete iteration
in the unify-verify—match cycle. Let us first define how we will allow tasks to be grouped
into threads.

Definition 4.6 Given a task dependency graph G = (T, E) we define a thread group-
ing for G to be a set of threads T, where each thread t € T represents a connected sub-
graph (T, E;) of the task dependency graph, and all tasks n € T belong to exactly one
thread. A task graph G’ = (T, E’) for G derived from a given thread grouping T is
defined as a directed graph for which it is the case that:

1. For each (T, E;) € T, it holds that for each a € 7; there is at most one edge (a,b) €
E' where b € T; and, if (a,b) € E, then there is apath (a,n;,...,n;,b) in G’ for
which holds that n;,... ,n; € 7;.

2. For each a,b € T, where a and b belong to different threads, (a,b) € E’ if and only
if (a,b) € E.

54 4 Parallelism in Parsing Computations

<

Requirement 1 states that there should be a single thread of execution within the thread that
preserves the dependencies as defined by the task dependency graph. Since the task depen-
dency graph is cycle free, this is always possible. Requirement 2 ensures that dependencies
between tasks belonging to different threads are preserved.

We will consider two different task graphs where each thread represents a single iteration
of the unify—verify—match cycle. The most obvious place to cut the cycle is at the matching
step. This scheme puts each unification task at the start of a different thread and, hence,
yields a very fine-grained distribution scheme. We will call these type 1 task graphs. Fig-
ure 4.2 shows a type 1 task graph derived from the task precedence graph of Figure 4.1. Past
research, however, has also focussed on schemes where a thread starts with a match step.
We will call these type 2 task graphs. Figure 4.3 shows the task graph that results from
applying this scheme to the example task precedence graph.

As unification tasks always have at most one outgoing edge in the task dependency graph,
a task precedence graph uniquely determines the corresponding type 1 task graph. This is
not the case, however, for type 2 task graphs. The completion of a match task may spawn
multiple unification tasks. Because of this, the order of execution of unification tasks in one
thread is arbitrary. In addition, a unification task may depend on multiple match tasks. It
can only be associated, however, with one thread. So the type 2 graph shown in Figure 4.3
shows only one of the possible instances of a type 2 task graph.

4.3.3 Metrics on the Task Graph

To derive the average available parallelism P from a task graph, we need to determine both
the total work 77 and the critical path length T.,. The total work can simply be determined
by summing the work of all tasks: Ty =), W (t). This value is the same for both type 1
and type 2 task graphs. Since there is only one type 1 task graph for each task precedence
graph, the critical path length T, of a type 1 graph is uniquely determined for each parse
attempt.

This is not the case for type 2 graphs. Different instances of type 2 graphs can have different
critical paths. A useful choice for T, given a task precedence graph in this case is to take
the worst case considering all possible instances of type 2 task graphs.

To find the worst case of all possible type 2 graphs, we will construct a graph of which the
dag depth is equal to this worst case. Consider a thread on the critical path that starts with
match task ¢,,. In a worst case scenario, the thread will include each unification task £,, for
which there is an edge (¢,,,t,) in the task precedence graph and the last unification task
executed leads to the next match task on the critical path. We can reflect this worst case in
the desired graph by letting each match task be represented as a single node where its cost
is the same as in the worst case scenario.

Definition 4.7 Given a simplified task precedence graph P = (T, E,W), it holds for
Twe(P) = (T',E',W') that:

e For each match task ¢,, € 7 there is a corresponding node ¢;, € T'.

4.3 Task-Graph Analysis 55

Figure 4.4 Utility graph used to compute the worst case critical path for type 2 graphs. The big circles
represent the nodes. Each node encircles the tasks for which the cost is counted in the respective node.

e Wi(th,) = W(tnm) + Z(tm.t)eE W (t).

® (tmystm,) € E'if there exists at € T for which it holds that (tm;,t) € E and
(tytm,) € E.

<

Figure 4.4 shows the constructed graph corresponding to the previous presented example.
Note that the cost for a unification task can be counted in more than one node. We therefore
need to prove that no task will be counted in more than one node that resides on the critical
path.

Theorem 4.8 Given a task dependency graph P = (T, E) that represents a strict parsing
system. The dag depth of graph T,,.(P) = (T', E', W'} is equal to the maximum of the dag
depths of all type 2 task graphs that can be derived from P.

Proof. Obviously, because each match node in Ty, (P) represents the maximum possible
cost for any instance, no single instance of a type 2 graph for P can yield a longer critical
path than the dag depth of T,,.(P). What is left to prove is that no cost for any unification
task is counted more than once.

From the definition of T,.(P), the cost for a unification task ty € T is counted more than
once if and only if there are two distinct tasks tmytm, € T’ onthe critical path, correspond-
ing to the tasks ty,,,t,, € 7, for which it holds that (tmystu) € E and (t,,t,) € E.
By definition, if two match tasks t,,, and t,,, lead to the same unification task, Iy, R ty,
holds. Also, if t;,, and #,, are both on the critical path, then there must be a path from ¢,
to t;,,. But, this means there should also be a path from ¢, to t,,,. Hence, considering
the correspondence between task precedence graphs and justification graphs, tm, < tm,
should hold. Given the requirement, though, that the parsing system corresponding to P be
Strict, £, ® tym, and t,,, < t,,, cannot hold simultaneously. Hence, no unification task is
counted twice in the critical path length. d

4.3.4 Results

The task graph experiments were conducted for the LinGO grammar. We considered both
type 1 and type 2 task graphs. For type 2 graphs we analyzed both an arbitrary graph, where

56 4 Parallelism in Parsing Computations

Typel | Type2 | WC Type 2
n T1 d P P }_3
1-5 21777 6 14 7 5
6-10 | 180838 | 13 57 22 12
1120 | 1533983 | 18 || 284 81 17
21-30 | 2789718 | 21 || 452 119 22
3140 | 3817997 | 23 || 560 156 24
41+ | 2594801 | 23 || 413 125 26
[all [1014247 [14] 188 [55 | 14 |

Table 4.1 Critical path analysis for type 1 and type 2 task graphs. For type 2 task graphs, both an
arbitrary case and the worst case are shown.

the dependencies were derived from the sequential execution, and the worst case graph. The
cost for the unification and copy operations were derived by counting the number of nodes
involved.

Table 4.1 shows the results for each type of task graph, averaged over all sentences in the
fuse test set. It shows the total amount of work 7 and the derivation tree depth, which
is equal to the number of match tasks on the critical path. This measure will be used for
the design of the parser in Chapter 7. Furthermore, for each type of task graph the average
parallelism is shown.

The results show that the average parallelism in type 1 graphs is considerably larger than in
type 2 graphs, even when the arbitrary case is considered. In general, the average parallelism
seems to become considerable for sentences of 8 or more words. Thus to maximize the
average parallelism one should allow each unification task to be scheduled independently.
The average amount of parallelism obtained with the type 2 approach is often too small to
allow this approach to be considered useful for the implementation of a parallel parser. The
same results are reflected in Figure 4.5. We can therefore conclude that a viable approach
to parallel parsing should be based on a type 1 approach to the distribution of work.

4.4 Parallelism and Parsing Schemata

The parsing schema that is used for parsing has an influence on the critical path length.
Intuitively, one might expect that a bottom-up parsing schema will yield a smaller critical
path than a top-down parsing schema. In this section, we will investigate the influence of
a parsing schema on the critical path length. To eliminate the need to implement different
parsers, we perform a more abstract analysis, as we will discuss next.

4.4 Parallelism and Parsing Schemata 57

g

g

g

g

8
1
N

g 8
z”

|
f
f

Average parallelism

<

: 8

o
o

10 20 30 40 50
Sentence length

[—e—type 1 —8—type 2 —a—WC type 2|

Derlvation tree depth

0 v v ' '
4] 10 20 30 40 50
Sentence length

Figure 4.5 Average parallelism and average derivation tree depth for the respective justification graphs.

58 4 Parallelism in Parsing Computations

4.4.1 Justification Graph as Task Graph

A justification graph for one parsing schema can be transformed to a justification graph of
another parsing schema by using the transformation steps discussed in Section 2.1. So using
the justification graph as a basis to predict results of other parsing schemata eliminates the
need to implement a parser for each schema that is subject of investigation. Although the
justification graph is not as detailed as a task dependency graph—for example, it does not
include failing unifications—it provides a good approximation, as we will argue next.
Profiling data on both CaLi and Deltra show that UNIFY is responsible for about 90% of
the computation time in a typical parsing. In addition, almost 80% of this time is spend
in the COPY function, which is called by UNIFY whenever a unification succeeds. This
implies that successful unifications must make up for at least 72% of the parsing time. We
can model this by assuming the parser uses a O(1) oracle that can determine in advance
whether a match will fail or succeed. In this case, the cost of parsing is mostly determined
by the succeeding unifications (and the successive copying), as there is no need to process
unifications if they are known to fail in advance. Using the filtering techniques, many recent
parsers more or less approximate such an oracle.

When all tasks corresponding to filtered out unifications are eliminated from the task depen-
dency graph, the resulting graph is already very similar to a justification graph. In fact, each
thread of the corresponding type 1 task graph includes exactly one unification and match
task? and corresponds to exactly one of the derived items in the justification graph. We can
therefore define the cost of processing a node in the justification graph as the cost of the
corresponding match tasks and its preceding unification task in the task dependency graph.

4.4.2 Base Parsing Schema

In order to conveniently transform a single justification graph to other graphs representing
different parsing schema, we need a parsing schema that can easily be expressed in other
parsing schemata by means of simple mappings. A useful taxonomy of parsing schemata is
given in (Sikkel, 1993b). At the top of the taxonomy is a single parsing schema from which
all parsing schemata we are interested in can be derived. It is a variant of the double dotted
parsing schema, with deduction steps showing close resemblance to Earley. It is defined as
follows.

Parsing Schema 4.9 (DD,)

Top, = {[A—afer,i,j] |A—afy e PAOL i< j}
plnit = {+[A—ae,5 5]}

DSea = {[A—aesay,i,i],|a,i,i+ 1) F [A—> e, i1+ 1]}

])Complete = {[A—“)a..B’)’, 1:, 7,], [B—‘) .ﬂo, 1:, j] + [A—)aoBo, i,j]}

Dcomm = {[A_'*a°ﬁ1‘,327a 'i, .7]1 [A_’aﬁl'&“y» js k] [A'_'a‘ﬂlﬂ?"y, i» k]}

2We still assume the use of a simplified task dependency graph. Alternatively, there are tasks to perform
equality or subsumption checks between the unification and match task.

4.4 Parallelism and Parsing Schemata 59

[| DD [buE [buLC | E |
[Length of derivation | 1] 0.84 | 0.84 [1.8]

Table 4.2 Derivation length of buE, buLC, and E relative to DD.

DDDO — Dlnit U DScan U DC- pl U DC.....

By using step contraction we can obtain, for example, a double dotted, a bottom-up Earley,

and a Earley schema. It holds that DDy £ buE and DDy 2% DD 2L, E. This parsing
scheme is quite inefficient. It results in a lot of redundant work. The only reason we use this
parsing schemata is that it allows us to derive all desired justification graphs.

4.4.3 Measurements

To investigate the effect of the choice of parsing schema on the critical path length we
transformed some of the justification graphs obtained from the Deltra parser. DDy shows
close resemblance to DD, which is used for Deltra. It was straightforward to generate output
that reflects each of the steps produced by DDy,

To transform the base justification graph to a graph representing a different parsing schema,
we use a set of transformation rules. First all deductions and items are transformed using
simple rules. During this process we eliminate all nodes that resemble items that are not
part of the new item domain. Finally, we eliminate all edges that do not connect valid items.
These graph-based transformation rules were encoded in Prolog.

Table 4.2 shows the average increase of the critical path length of the derivations relative to
the critical path lengths of the double dotted parser. The relative differences in length are
averaged over all test sentences.

As expected, the bottom-up parsing schemata DD, buE, and buL.C have a shorter critical
path. On average, E results in a critical path of almost twice the length of the critical path of
DD. Perhaps slightly surprising is that the single dotted parsing schemata buE and buL.C
yield a shorter critical path than DD. The double dotted schema DD allows multiple sections
of the right-hand side of a rule to be processed in parallel, supposedly allowing for a shorter
critical path length. However, DD is a more refined parsing schema than buE and buLC.
Consider, for example, DDy 25 bulC. By definition, D§,y C D, DLC® C Dt ang
Dﬁl%) C Dgfy**. However, for Di<¥%, an arbitrary deduction step

[A— aeaB,i, 5], [a, 5,7+ 1] F[A—aadB,i,5 + 1]

is emulated in DD by

(2,5, + 1]+ [A— easf, §, j +1]

60 4 Parallelism in Parsing Computations

[A—na.a,B, i,j], [A—>a.a.,3,j,j + 1] F [A—».aa.ﬁ, 'i,] -+ 1].

and similarly for D5op®“*, an arbitrary deduction step

[A—)aoBﬁ, ’I:,]], [B—VY., j, k] (e [A—-»aB.,B, i, k]

is emulated in DD by

[B —> oY e, j, k] F [A —»a.B.ﬁ, j, k]
[A"") .a.Bﬂ, 'l:,]], [A—) a.B.ﬁ, j, k] F [A—') .aB.ﬁ, 'l:, k].

Obviously, in these cases, DD requires twice as many deductions to come to the same re-
sults. The net effect is a 16% reduction on the critical path length for buE and buLC.

Until now we considered the effect of the parsing schema on the critical path length. To
determine the average parallelism, we should also consider total amount of work 73. DD
typically yields many more deductions and hence much more work than any of E, buE, or
buLC. Therefore, computations for DD will typically yield the highest degree of average
available parallelism. On the other hand, we do not want to increase the parallel slackness of
a computation simply by introducing more work. Analogous to the work-first principle, as
long as there is enough parallelism in the sequential version, the critical path has a minimal
impact on the speedup. In this case we should aim at minimizing work, that is, keep T
close to Tyeq. Introducing a parsing schema that yields a smaller critical path but more
work is counterproductive in this case. However, when an Earley based parser has limited
possibilities for parallelism, the results show that using a bottom-up parsing schema can
reduce the critical path by about a factor of 2. So we can conclude that DD is not very
useful for increasing the average available parallelism. Alternatively one could resort to the
OCYK or Rytter parsing schemata in these cases.

There is one last observation, though, that is worth mentioning. Figure 4.6 shows a rough
estimation of how the average amount of parallelism fluctuates during parsing for a E and
DD parser. The DD parser shows a course that is typical for all bottom up parsers. The
top-down parsing approach of E shows a much spikier course. This suggests that with E the
chances that some processors temporarily run out of work are increased. The indications are
not strong enough, though, to assume that this will actually be the case. It seems therefore
that both E and DD yield sufficient parallelism to be effectively used for parallel parsing.

4.4 Parallelism and Parsing Schemata 61

2500 v 4000 T T
“dd® -—
3000 | 3800 -
3000 |
2500 |
2500 |
2000
2000 |
1500 |
1500 |
1000 |
1000 |
500 s00 |
o N . N N °
° s 10 15 20 25 [

Figure 4.6 Two exemplary courses of the number of deductions per step during parsing. The left graph
displays a typical course of the number of deductions per step for a double dotted parser, the right graph
shows a typical course for an Earley type parser. The x-axis represents the number of processors in
use. The y-axis represents the number of outstanding tasks.

62

4 Parallelism in Parsing Computations

Chapter 5

Communication in Parallel Parsing

In the previous chapter, we explored the amount of parallelism in parsing computations. In
this chapter, we will investigate the amount of locality inherent in parsing. The amount of
locality determines to what extent communication can be minimized when distributing the
work involved with parsing amongst processors.

We show that a straightforward distribution of work amongst processors can easily lead to
intolerable amounts of communication. We also show that choosing the right method for
distributing work can reduce the total amount of communication to manageable quantities.

5.1 Introduction

Communication can be a bottleneck in obtaining sufficient speedup in parallel parsing.
When there is too much communication between processors, the network, or the memory
bus in case of shared-memory systems, can become saturated, causing significant delays for
all processors. As we will show, the total amount of communication involved in parsing can
exceed four times the total size of the unification-based structures. The unstructured nature
of parsing computations can make it hard to find a distribution that minimizes communi-
cation and still divides the work evenly amongst the processors. In this chapter, we will
investigate the bounds on the total and minimum communication for parsing and techniques
to minimize the communication. We will make use of the theory presented in Section 3.3
for this analysis.

In the next section, we will introduce a basic model for the communication involved in the
parsing process. In Section 5.3, we will present heuristics that can be used to minimize the
total communication in a dynamic setting. Finally, in Section 5.4, we will present an analy-
sis of the communication involved in parsing and an evaluation of the various heuristics.

5.2 Communication Model

The task dependency graph introduced in Section 4.3.1 provides a good starting point for the
definition of a communication model for parsing. The task dependency graph incorporates
the same tasks, and costs for executing the tasks, that are required for analyzing communi-
cation. In addition, the edges of the graph, indicating execution dependencies, also indicate
the flow of data and, hence, communication between tasks.

Definition 5.1 Given a task dependency graph T = (T,E,W) and a function St : T —
Z, where St assigns a measure of the size of an item associated with each match task

63

64 5 Communication in Parallel Parsing

in 7 and O for all other tasks in 7. The communication graph corresponding to T" and
function S7 is a quadruple (7, E', W, S) where

1. (a,b) € E' iff (a,b) € Eor (b,a) € E,

2. S is a function that assigns a communication cost to each edge (a,b) € E’ where
S((a, b)) = St(a) + Sr(b).

The maximum total communication of a communication graph is defined as the sum of
all data communicated, or 3. g S(e). <

Note that because there are no edges in E that connect two match tasks, for all edges (a, b) €
E either Sy(a) = 0 or S7(b) = 0. The message size associated with each edge of the
communication graph therefore corresponds to the size of exactly one item.

The match tasks are designated to be the owner of the items, whereas the unification tasks
execute the work. An advantage of this model is that it allows complete freedom in as-
signing data and computations to processors independently.! Consider an operation where
two items are successfully unified into a new item. The two input items and the result item
are all associated with a different match task, and can therefore all be assigned to different
processors. The corresponding unification task will typically be executed on one of the pro-
cessors assigned to any of the respective match tasks, but can also be assigned to yet another
Processor.

Note that in the transformation of a task dependency graph to a communication graph, all
task dependencies are lost. This means that in finding the optimal partitioning we disregard
these constraints. Experiments on graphs obtained from our parser, however, indicate that
this has minimal to no impact on the outcome of the analysis.

The fact that we associated the data size with the individual edges already indicates we aim
at using the edge cut for measuring communication. This corresponds to measuring the
amount of communication based on the network model, where the processors do not store
items received by other processors. That is, it takes into account that an item needs to be
transferred from one processor to the other each time it is required by this processor.

This model introduces some inaccuracies when used to analyze the communication on a
shared-memory architecture. With shared-memory architectures, communication between
processors takes place through shared memory. Once an item is “transferred” from one pro-
cessor to another, it may remain in cache until it is needed next time. In addition, structure
sharing can increase the chance that parts of the graph are already in cache. Finally, in case
of premature failure of a unification often only a part of the graph needs to be communi-
cated. To take all these aspects into account would require an analysis to be performed at
the level of individual nodes, or at least subgraphs, of the feature structures, rather than
complete graphs. As the analysis of the fuse test suite using complete graphs already pro-
duces communication graphs of over 100,000 nodes, enlarging the graphs even further is
not desirable.

Nevertheless, basing the analysis on the network model can still give a good indication of the
communication patterns involved in parallel parsing. When an itern needs to be transferred

1We assume that match tasks are assigned a zero cost for the amount of work; see the discussion in Section 4.3.1.

5.3 Grouping Heuristics 65

from one processor to the other for the first time, we know it cannot be in the cache of the
destination processor. An amount of communication, according to the network model, can
therefore give an indication of the number of coherency misses.

5.3 Grouping Heuristics

A random distribution of tasks amongst processors can be expected to yield considerably
more communication than strictly necessary. Since memory bandwidth is scarce, a parallel
parser should incorporate some mechanism to reduce communication between processors.
Because the communication graph of a parse attempt is not known beforehand, domain de-
composition tools are not useful in solving this problem, A practical solution to minimizing
communication is to group related tasks on one processor. This ensures that the exchange
of data between tasks belonging to the same group does not yield any communication.

5.3.1 Reducing the Upper bound of Communication

We define a grouping of tasks in a communication graph in a similar fashion as the grouping
of tasks in a task dependency graph, as presented in Definition 4.6.

Definition 5.2 Given a communication graph C = (T, E,W, S), we define a grouping
to be a set G of sets of tasks, such that each task in 7 is contained in exactly one of the
sets in §. The grouping G of a communication graph C' = (T,E,W,S), is said to yield a
communication graph (7", E', W', S’} for which it is the case that

1. For each 7, € G there is a corresponding t, € T".
2. Foreach t, € T' with corresponding 7, € G, W'(t,) = 2ier, W(2).

3. (ta,ts) € E' if and only if for the corresponding groups 7, € G and 7, € G there
existsaty € 7, and a to € T;, for which (t1,t2) € E.

4. For each (t,,t;) € E’ and corresponding 7, € G and T, € G, S'((tq,tp)) =
V8o €TaV8,ETy-(540,8)EE S((Sa, sb))'

A grouping heuristic is defined as a function that produces a grouping from a communica-
tion graph. <

From Condition 4 it follows that the maximum total communication of the communication
graph resulting from applying the grouping heuristic is smaller or equal to the maximum
total communication of the original graph. All communication between tasks belonging to
the same group is never counted. Grouping tasks such that the number of edges between
tasks within one group is increased therefore decreases the total communication.

As we saw in Chapter 4, however, too much grouping of tasks can make it impossible to
obtain a balanced partitioning for a larger number of processors. The trick is therefore to find

66 5 Communication in Parallel Parsing

a grouping heuristic that reduces the communication as much as possible, while allowing
sufficient room for obtaining a well-balanced partitioning.

The results of the analysis of grouping heuristics in this chapter are used in Chapter 7 for the
design of a parallel parser. In this design, grouping heuristics are used as scheduling guide-
lines, rather than a strict requirement. This changes the meaning of the well-balancedness
of a partitioning, because balance can always be restored by deviating from the guidelines.
However, it can be expected that deviating from the guidelines by moving data back and
forth between processors can incur additional communication overhead. In this scenario,
the balance can therefore be seen as the level of guarantee that a grouping heuristic can
accomplish the reduction in communication.

5.3.2 Grouping Heuristics

An important requirement of grouping heuristics is that they be fast and implementable.
By fast we mean that they should not incur significant overhead to compute. With im-
plementable we mean that the group in which a task is to be put should be determinable
at run-time. In this section, we present three different grouping heuristics that meet these
requirements.

Rule-based Distribution The rule-based grouping heuristic was inspired by Yonezawa
and Oshawa’s (1994) approach to distributing work based on the non-terminals of the pro-
duction rules. Instead of grouping tasks based on the non-terminal level, however, we took
the less fine-grained approach of grouping tasks per grammar rule.

The rule-based grouping heuristic states that all items which are associated with the same
grammar rule be stored and derived on the same processor. That is, given a parsing sys-
tem P for a grammar G = (N, X, P, S), we define each unification task and match task
corresponding to, respectively, the computation and storage of an item [A — a3+, 1, j] to
be a member of T4_,s,. Hence, each p € P is associated with a group 7,,. In addition, each
match task corresponding to a lexical entry is associated with its own group. The maximum
number of groups is limited by the number of rules of the grammar plus the total number of
lexical entries involved in a parse.

The idea of grouping items per grammar rule is that deduction rules of parsing schemata
often include items which are associated with the same rule. As a result, it is guaranteed
that all items involved in such a derivation are always on the same processor.

Obviously the effectiveness of this kind of grouping relies on the particular grammar and
parsing schema being used. For example, all items involved in a concatenation of the double
dotted parsing schema DD are associated with the same rule. So, in this case, the rule-based
heuristic will allow all concatenations to be executed without incurring any communication.
For the key-driven parsing schema KD, this grouping mainly has the effect of ensuring that
the result item is stored on the same processor that executes the corresponding unification
task. All other savings in this case are largely coincidental.

5.4 Evaluation 67

Tabular Chart Celi-based Distribution The tabular chart cell-based grouping heuris-
tic is based on the distribution that is used in parallel tabular chart parsers. With this heuris-
tic, all items that cover the same part of the input string are stored and derived on the same
processor. That is, given a parsing system P and corresponding task dependency graph,
we define each unification task and match task corresponding to respectively the computa-
tion and storage of an item [A — a4, 4, j] to be a member of 7; ;. Hence, we define a
group 7; ; foreach 0 < i < j < n, where n is the length of the input string. The maximum
number of groups is limited by %(n2 + n), which is the number of cells in the tabular chart.

The idea behind this approach is that many parsing schemata have the equivalent of an
inclusion rule. With this derivation rule, there is one item on each side of the production,
where the item on the left-hand side is combined with a grammar rule to produce the item
on the right-hand side. Since both items always cover the same part of the input string, they
are always associated with the same group. Assuming that all processors have access to
a private copy of the grammar, all inclusion rules can be completed without yielding any
communication. Both DD and KD have an inclusion rule and can be expected to benefit
from this approach.

Greedy The greedy heuristic is based on the idea of using a distributed chart for parallel
parsing. Basically, instead of distributing items according to some characteristic, the tasks
are executed on the processor that happens to store the data involved in the operation. Firstly,
each unification task is executed on the processor associated with any of the match tasks
providing the input items. The definition of the grouping heuristic explicitly requires a task
to be put in a single group, and not a collection of possible groups. We must therefore
choose in which group we put the unification task if it has more than one input match tasks.
In the remainder of this chapter we assume this selection is done at random. Secondly, a
match task resulting from an inclusion rule is associated with the same processor as the
corresponding unification operation. To have some degree of freedom for load balancing,
we allow all other match tasks to be associated with an arbitrary processor.

The greedy heuristic imposes less restrictions than the tabular chart cell-based approach. As
a consequence, the number of nodes of the resulting communication graph is still relatively
large, providing more opportunities for load balancing. The greedy heuristic still shares the
benefit with the tabular chart cell-based approach of ensuring that inclusion rules can be
applied free of communication.

5.4 Evaluation

For each of the grouping heuristics presented in the previous section, we measured the edge
cut for two different distribution techniques: an approximation of the optimal partitioning
and a random partitioning, We use the random distribution technique as an indication of the
average case where no effort is made to optimize a partitioning. The random partitioning is
computed by assigning each node in the communication graph to one of the given number
of partitions at random. The approximation of the optimal partitioning is obtained from
passing the communication graph to a partitioning algorithm. There are several libraries

5 Communication in Parallel Parsing

B

Edge Cut (GB)
8

-
w
.

XX (@

el
—3C
—3C
e ———
el
S

0 16 32 48 64 80 96 112 128 144
Partitions

[—a—Oplimal ——Rule-based —¥—Posiion-Based —8— Greedy |

Figure 5.1 Minimum and random edge cut and minimum balance for various distribution types.

5.4 Evaluation 69

| Distribution type | avg. # nodes | avg. # edges |
Full graph 6604 16225
Rule-based 56 203
Tabular chart cell-based 73 188
Greedy 1893 6804

Table 5.1 Statistics of graphs resulting various grouping heuristics.

with partitioning algorithms that can give reasonable to good approximations. We used
the METIS tool set, developed at the University of Minnesota (Karypis and Kumar, 1995).
METIS produces good quality partitionings, also in comparison with other available tools
(Karypis and Kumar, 1999).

The results were obtained using the first 1800 sentences of the fuse test set in combination
with the LinGO grammar. Computational constraints, especially when finding the optimal
partitionings for large sentences, made obtaining results for larger sentences impractical
or even impossible. In addition, we omitted failing match tasks from the communication
graph. A failing match task indicates a successful filtering of a unification task. As over
90% of the unification tasks can be filtered, this greatly reduces the number of nodes. We
can assume that the effect of this simplification on the measurements is minimal. Firstly,
in Section 4.3.1 we argued that the computational cost of the match tasks can be neglected.
Omitting these tasks therefore has a minimal influence on load balancing. Secondly, to filter
a unification task, it is not necessary to communicate the typed feature structures of the input
graphs. Since the space required for itemns alone is only a fraction of the space required for
feature structures, we can safely assume that omitting the respective match tasks also has a
minimal influence on the volume of the communicated data.

Figure 5.1 shows the edge cuts resulting from the optimal and random partitionings of the
communication graph and various grouping heuristics, summed over all sentences. The
graph also includes two lines indicating respectively the total size of the items used in
parsing—including feature structures—and the maximum total communication for the full
communication graph. The former is included to give an idea of how the total volume of
the communication relates to the volume of the data involved in the computation.

As can be seen, the use of the random partitioning for the communication graph quickly
leads to the maximal possible communication. As could be expected, the near optimal and
random partitionings of the communication graph delimit the edge cut size obtained with
any of the grouping heuristics.

The rule-based heuristic is outperformed by the tabular chart cell-based and greedy heuristic

on all counts. The rule based distribution produces the least balanced partitionings and
produces partitions yielding a relatively large communication volume.

The minimal edge cut of the greedy heuristic is considerably better than the minimal edge
cut produced by the other heuristics. The greedy heuristic only yields a slightly larger edge
cut for random partitionings compared to the tabular chart cell-based approach. The greedy
heuristic also yields more well-balanced distributions. From Table 5.1 it is evident that

70 5 Communication in Parallel Parsing

the small number of nodes in the communication graphs produced by the rule-based and
tabular chart cell-based heuristics prevent these heuristics from yielding a well-balanced
partitioning in case of a larger number of processors.

In conclusion, our experiments showed that the use of grouping heuristics can considerably
reduce the amount of communication. It seems that the greedy heuristic allows for par-
titionings that produce near-optimal edge cuts, while considerably limiting the worst-case
communication. In addition, the resulting partitionings are fairly well-balanced, compared
to the partitionings resulting from the other heuristics. We therefore can conclude that the
greedy heuristic is useful in effectively reducing communication for a parallel parser based
on the English LinGO grammar.

We note that for similar measurements on the Deltra grammar, the rule-based heuristic pro-
duced considerably better results. This can be explained by the use of the DD parsing
schema in combination with the Deltra grammar. All items involved in the concatenate de-
duction rule of DD are always associated with the same rule. As a result, there are many
deduction rule applications that can be completely processed with the information stored
within a single group. Measurements show that this heuristic can reduce the communica-
tion for Deltra by roughly 60%. In addition, since the Deltra grammar contains a large
number of grammar rules, the heuristic can produce reasonably well-balanced partitionings.

Chapter 6

Efficient Thread-safe Unification

Both in terms of speed and memory consumption, graph unification remains the most ex-
pensive component in unification-based grammar parsing. In this chapter, we will present
two techniques to reduce the memory usage of such unification algorithms, with a minimal
impact on execution times. In addition, the proposed algorithms are thread-safe. This al-
lows them to be used in a parallel parser setup that exploits concurrent unification. Most
of the discussion in this section will focus on the LinGO grammar. However, we will also
present results obtained for the Deltra grammar. Parts of this chapter have been published
in (van Lohuizen, 2001a) and (van Lohuizen, 2000).

6.1 Introduction

In Section 2.2.3, we presented Wroblewski’s and Tomabechi’s algorithms as efficient solu-
tions to unification for natural language parsing. Their good performance is mainly obtained
by reducing or eliminating the amount of superfluous copying. In order to avoid super-
fluous copying, these algorithms incorporate control data in the graphs. This has several
drawbacks, as we will discuss next.

Memory Consumption To achieve the goal of eliminating superfluous copying, the
aforementioned algorithms include administrative fields—which we will call scratch fields—
in the node structure. These fields do not contribute to the definition of the graph, but are
used to efficiently guide the unification and copying process. Before a graph is used in
unification, or after a result graph has been copied, these fields Just take up space. This is
undesirable, because memory usage is of great concemn in many unification-based gram-
mar parsers. This problem is especially of concern in Tomabechi’s algorithm, as for typical
applications the scratch fields can make up from 40% to over 80% of the total memory
required to store a node.

In the ideal case, scratch fields would be stored in a separate buffer allowing them to be
reused for each unification. The size of such a buffer would be proportional to the maxi-
mum number of nodes that are involved in a single unification. A straightforward approach
to separate the scratch fields from the nodes is to use a hash table to associate scratch struc-
tures with the addresses of nodes. However, this binding mechanism, as any other binding
mechanism, will inevitably incur some overhead.

Nevertheless, considering the difference in speed between processors and memory, reducing
the memory footprint may compensate for the loss of performance to some extent. Although
separating the scratch fields can reduce memory usage considerably, it does not reduce

71

72 6 Efficient Thread-safe Unification

the amount of data involved in a single unification. Nevertheless, because nodes without
scratch fields are smaller, storing and loading nodes to and from memory will be faster. In
addition, because scratch fields are reused, there is a high probability that they will remain
in cache. The total traffic between cache and memory is therefore most likely reduced. As
the difference in speed between processor and memory continues to grow, caching is an
important consideration (Ghosh et al., 1997).! In Sections 6.2 and 6.3, we will present two
different binding techniques, respectively.

Concurrent Unification In Section 2.2.4, we presented two possible setups to exploit
parallelism centered around the unification algorithm: parallel and concurrent unification.
We believe that as long as the number of unification operations in one parse is large, it is
preferable to choose concurrent unification. Especially when a large number of unifications
terminate quickly (e.g. due to failure), the overhead incurred by the fine-grained parallelism
obtained with parallel unification can be considerable.

With concurrent unification, a graph can be involved in multiple unifications simultaneously.
This suggests that in order for concurrent unification to work, the input graphs need to be
read only. However, including scratch fields in the node structure, as is done by Tomabechi’s
and Wroblewski’s algorithms, thwarts the implementation of concurrent unification. Differ-
ent processors will need to write different values in such scratch fields, inevitably causing
conflicts. One way to solve this problem is to disallow a single graph to be used in multiple
unification operations simultaneously. In Chapter 4, however, we saw that restricting the
order of evaluation can increase the critical path and can considerably reduce the average
available parallelism. Another solution is to duplicate the scratch fields in the nodes for
each processor. This, however, will enlarge the node size even further. In other words,
Tomabechi’s and Wroblewski’s algorithms are not well suited for concurrent unification.

6.2 Separating Scratch Fields

The key to the solution of all of the issues mentioned above is to separate the scratch fields
from the fields that actually make up the definition of the graph. We have taken the version
of Tomabechi’s quasi-destructive graph unification algorithm presented in Section 2.2.3 as
the starting point. With this algorithm, adapted for typed feature structures, a node structure
comprises a type field, an arc list, a forward pointer, a generation counter, a new type field,
and a comp arc list. Basically, the type and arc list fields suffice to describe the structure
of the graph. The other fields can be considered scratch fields. Instead of including the
scratch fields in the node structure, we put them in a structure we will call the scratch
buffer. Instead of having a scratch buffer for each node, we maintain a limited set of these
buffers. Each time we perform some operation on a set of graphs, we associate a buffer with
each of the nodes of each graph. After the operation completes, and a possible result graph
has been copied, all scratch buffers can be reclaimed and reused in successive operations.

10ne might argue that most scraich fields that arc written out need not be initialized, and hence do not take up
bandwidth. However, cache lines are typically larger than a field, meaning that a single change in the node can
cause the entire node (or more) to be written to memory.

6.2 Separating Scratch Fields 73

Permanent, read-only structures Reusable scratch butfer
scratch next
Node Arc Bucket dag
type label generation forward
arc list value first scratch new type
comp-arc list
copy
- J

Figure 6.1 Node and Arc structures and the reusable scratch buffer for the hashing technique.

Obviously, since typically only a limited number of graphs is involved in one operation, we
save a considerable amount of memory.

Having separated the scratch fields from the actual graph, we need a mechanism to associate
such scratch buffers to nodes during unification and copying. The most straightforward
method to accomplish this is to use a hash table. We can derive a hash value from the
node’s address. The hash value is used as an index in an array of buckets. Each bucket
may contain multiple scratch buffers. In order to identify the correct buffer, we include the
node’s reference as a field (called dag) in its associated buffer. We also include a next field
in the buffer to allow a linked list of buffers to be associated with a bucket. The resulting
data structures are shown in Figure 6.1.

The basic mechanism for binding the scratch buffers to the nodes is incorporated in the
DEREFERENCE,¢h, function, which is shown in Figure 6.2. Scratch buffers are associated
with nodes on demand. This avoids the overhead of traversing over all nodes involved
In an operation beforehand. If the scratch buffer is found, the forward links are followed.
Otherwise a new scratch buffer is initialized and added to the bucket. HASH derives a bucket
location from the node’s address.

All buckets can be invalidated by increasing a generation counter, analogous to the gener-
ation mechanism in Tomabechi’s algorithm. Because DEREFERENCEp,gn ensures that all
buffers in the list will be of the same generation, we only need to check for a valid gener-
ation once for every bucket. Scratch buffers can also be reclaimed efficiently. All scratch
buffers are stored in an array. We can reclaim all buffers simply by setting an index pointing
to the first free scratch buffer to the start of the array.

The added complexity of the hash table can almost entirely be hidden in DEREFERENCEpash.
The UNIFY and CoPY function mainly need to be adapted to deal with the fact that the in-
formation for a node is now stored in two structures: the scratch buffer and the node itself.
We let DEREFERENCEnqgh return a scratch buffer rather than just a scratch node. This pre-
vents UNIFY and COPY from having to perform additional lookups. Note that a reference
to the dereferenced node is included in the scratch buffer; hence, we do not have to return it
explicitly.

74 6 Efficient Thread-safe Unification

DEREFERENCEhash(dg)
1. bucket «— table[HASH(dg)]
2. if bucket.generation = generation then
for each scratch in bucket.buffers do
if scratch.dag = dg then
2.1. while scratch.forward do
scratch «— scratch.forward
2.2. return scratch
3. else
3.1. bucket.generation «— generation
3.2. bucket.buffers — nil
Allocate next free scratch buffer scratch and add to bucket.
scratch.dag « dg
scratch.newType +— dg.type
Reset all other fields of scratch.
return scratch

RN SR

Figure 6.2 Dereference with intermediate hashing table

Once a graph is created, it is never altered again. This means that it will be safe to share
such a graph using concurrent unification. The only requirement for thread-safe operation
is that each processor use its own set of scratch buffers.

6.3 The Indexing Technique

Using hashing to associate scratch buffers with nodes can incur a considerable overhead.
In this section, we will propose an alternative technique to associate scratch buffers with
nodes. With the presented technique we aim to eliminate the overhead incurred by hashing.
The technique also has some other advantages, as we will point out.

With the hashing technique introduced in the previous section, multiple nodes may map to
the same bucket. This means we potentially have to proceed over a large list of scratch
buffers before we find the one we actually need. We can avoid this overhead by assigning
all nodes involved in an operation with a unique index into an array of scratch buffers.
Basically, for each graph, we assign each node a unique index. We assign O to the root of
the graph. The other nodes we label with increasing values in a depth-first manner.

Different graphs typically share the same indexes. Since unification involves (at least) two
graphs, we need to ensure that two nodes will not be assigned to the same scratch buffer. We
solve this by assigning an additional offset to each graph involved in the operation. These
offsets can simply be computed by cumulatively adding the number of nodes, and hence the
number of reserved scratch buffers, of all graphs.?

2To efficiently determine the number of required scratch buffers for a graph, we simply associate this number
with each graph at the time of its creation. This information is available after copying without any additional cost.

6.3 The Indexing Technique 75

IOI 1] 2I3 I4I5|GI7|8|9I10|11|12|13|14l15],16K

Figure 6.3 The mechanism associating index numbers with nodes.

Figure 6.3 shows an example of how unique scratch buffers can be assigned to all nodes of
different graphs. The third graph is an example of how multiple copies of one graph can be
represented by simply assigning multiple blocks of scratch buffers. We will discuss the use
of this later in this section.

The offset that is associated with each node needs to be included in the graph. As can be
seen in Figure 6.3, this information can be included either in the arc or the node structure.
The nodes in this figure are associated with absolute offsets. The arcs are associated with
difference in offsets between parent and child node. Either way of incorporating the offset
data suffices to derive the appropriate index. Because it will slightly simplify the discussion
of structure sharing later in this chapter, we will assume the data is stored in the form of
relative offsets associated with arcs.

6.3.1 The Indexing Algorithm

The scratch buffers are similar to those used by the hashing technique. We do not need the
next and dag field. We add a field for the generation. In addition, the references to other
nodes (in forward, copy, and the comp_arc list) need to include the index of the respective
node. Obviously, we do not use a bucket.

The resulting unification algorithm is shown in Figure 6.4. It is very similar to the algo-
rithm presented in Section 2.2.3, but incorporates the necessary changes to implement the
indexing technique. The node references passed to UNIFY 1, are now a tuple, containing
a reference to the node itself and the node’s index. The index is used to locate the node’s
associated scratch buffer in the array sba. The indexes of the children of the node can be
derived by adding the offsets associated with the respective arcs.

Whenever a reference to a node is recorded in a field of the scratch buffer (forward, copy, or
in the comp_arc list), we need to record the index as well. When such a reference is needed

76 6 Efficient Thread-safe Unification

UNIFYiu(dgl, dg2)
1. Allocate offsets left_offset and right_offset in the scratch buffer for graphs dgl and dg2, respec-
tively.
2. if UNIFY 15 ((dgl, left_offset), (dg2, right_offset))” then
2.1. (copy,n) «— COPYiu((dgl, left_offset), 0)
2.2. Increase the generation counter.
2.3. return copy
3. else
3.1. Increase the generation counter.
3.2. return nil

UNIFY Ligx(ref_in1, ref_in2)
1. (dgl,idx1) « DEREFERENCE;gref_in1)
2. (dg2,idx2) « DEREFERENCE;g(ref_in2)
3. ifidx1 = idx2’ then
3.1. return true
4. sba[idx1].newType « sbalidx1].newType I' sba[idx2].newType
5. if sba[idx1].newType = T then
5.1. return false
6. else
6.1. if not MAKEWELLFORMED((dgl, idx1)) then
return false
6.2. (dgl,idx1) — DEREFERENCE4((dgl, idx1))
7. FORWARD((dg2, idx2), (dgl,idx1))
8. if Any of the nodes has arcs then
8.1. shared «— INTERSECTARCS((dgl,idx1), (dg2, idx2))
8.2. for each ((_,r1), (-, r2)) in shared do
UNIFY Ligk(rl, r2)
8.3. new «— COMPLEMENTARCS((dgl, idx1), (dg2,idx2))
8.4. for each arc in new do
Push arc to sba[idx1].comp_arcs

9. return true

FORWARD((dgl, idx1), (dg2, idx2))
sbalidx1].forward «— (dg2, idx2)

ABSARC((label, (dg, offset)), parent_idx)
return (label, (dg, parent_idx + offset))

%Note that if a node other than the root node is passed to UNIFY 1,4y, the offset needs to be adjusted accordingly.
b A node is uniquely identified by its index.

Figure 6.4 The unification algorithm.

6.3 The Indexing Technique 77

DEREFERENCE;4((dg, idx))
1. if shafidx].generation # generation then
L1. sbalidx].generation « generation
1.2. sba[idx].newType «— dg.type
1.3. Reset all other fields of sbafidx|
2. else
2.1. while sba[idx] # nil do
(dg, idx) «— sbalidx].forward
3. return (dg, idx)

Figure 6.5 Dereferece for the indexing technique

in a future reference, the link to the parent is lost. The index of this reference can in this
case no longer be determined by adding an offset to its parents index.

The function INTERSECTARCS determines the set of arcs with common labels for the in-
put nodes. The function COMPLEMENTARCS returns the arcs with labels that exist in
(dg2,idx2), but not in (dgl,idx1). Both functions use ABSARC to convert the relative
offsets stored in the arcs to absolute indexes. The arcs stored in the comp_arcs field of the
scratch buffer do not have to be converted, as these arcs already store an absolute index.

DEREFERENCE;qy and FORWARD also have to take the additional index into account. DEREFERENCE;q
uses a generation mechanism similar to that of Tomabechi to invalidate the contents of the

buffer. The functions DEREFERENCE;g,, and FORWARD and ABSARC are shown in Figure

6.5 and 6.4, respectively.

MAKEWELLFORMED is defined as in Section 2.2.3, with the following changes. Before
calling UNIFY lq, it allocates a block of scratch buffers for the nodes in the constraint,
starting at the first free scratch buffer in sda.

The changes to the copy function are slightly more complicated, because we need to com-
pute the offsets for the copied arcs. We keep track of free index numbers using a global
variable free_idx. Each time a node is copied, we assign it the number stored in free_idx and
increment free_idx accordingly. We do not need to reserve a new index position in case of
areentrancy (line 2.1). COPYyy, returns a reference to the copied node and its offset in the
result graph. At line 8.2, these indexes are converted to the offsets as we store them in arcs.
The offset is computed simply by subtracting the index of the patrent node from the index of
the child node. Note that, for clarity, we have omitted any cycle checks.

The indexing technique has an additional advantage over Tomabechi’s algorithm and the
hashing variant of this algorithm presented in the previous section. The index of a node
uniquely identifies this node during the course of a unification. This means we can repre-
sent multiple unique instances of this node simply by assigning each instance a different
index. This property can be exploited, for example, when interleaving the unification of
type constraints in MAKEWELLFORMED. It is possible that the same type constraint is
applied more than once during a single unification. Using Tomabechi’s algorithm, each in-
stance of a constraint should be represented by a different copy, because each instance will
typically hold different values in the scratch fields. Using the presented indexing technique,

78 6 Efficient Thread-safe Untification

CoPYi((dg, idx))
1. freeidx =0
2. return CopY1((dg, idx))

COPYlidx(ref_in)
1. (dg,idx) «— DEREFERENCEs(ref_in)
2. if sbhafidx].copy # nil then
2.1. return sbalidx].copy
new_idx «— free_idx; free_idx « free_idx + 1
newcopy — new Node
newcopy.type — sbalidx].type
sba[idx].copy «— (newcopy, new._idx)
arcs «— {ABSARC(a, idx) | a € dg.arcs} U sba[idx].comp_arcs
for each (label, ref) in arcs do
8.1. (dgl,ch.idx) « COPYlg(ref)
8.2. Push (label, (dgl, ch_idx — new.idx)) into newcopy.arcs

© N AW

9. return (newcopy, new_idx)

Figure 6.6 Copy algorithm

however, we can eliminate the need to maintain multiple copies of such a graph by simply
assigning each instance a new block of scratch buffers. This property also simplifies the
implementation of structure sharing, which we will discuss next.

6.3.2 Structure Sharing

The changes that are required to make the indexing algorithm capable of structure sharing
are analogous to the variant of Tomabechi’s algorithm presented by Malouf et al. (2000)
discussed in Section 2.2.3. The conditions under which structure sharing is possible are
slightly different, though. As we explained before, a node in a graph is uniquely identified
by its index. This property allows us to share grammar nodes without any of the problems
mentioned in Section 2.2.3. Nodes from different graphs will always be assigned different
scratch buffers. But even a single grammar node can appear as different copies within one
graph. After unifying multiple instances of the same graph, the same node may end up
representing multiple instances of this node in the result graph. As long as the different
instances acted as different nodes during unification, they will also obtain different indexes
in the result graph. Since multiple instances of a same graph are always assigned different
blocks of indexes® we do not need any additional logic to allow this kind of sharing.

A drawback of the indexing technique is that we need to introduce a different condition
for structure sharing instead. The offset data that is included in the graph is a part of the

3For example, MAKEWELLFORMED allocates new scratch buffers for each constraint each time it interleaves
a unification.

6.3 The Indexing Technique 79

Figure 6.7 Possible violation of condition 4. Node f cannot be shared, as this would cause the arc
labeled F to derive an index colliding with node q.

definition of the graph. This means that we can only share an input subgraph if this data is
identical to the result graph as well. Because we assumed the offset data was included as
relative offsets in the arcs, the condition is as follows:

4. all arcs in the shared subgraph must have the same offsets as the subgraph that would
have resulted from copying.

The first three conditions are identical to the first three conditions for Malouf et al’s algo-
rithm (see Page 27).

A possible violation of this constraint is shown in Figure 6.7. This condition can typically
only be violated in case of reentrancy. Basically, the condition can be violated when a
reentrancy points past a node that is bound to a larger subgraph.

Note that if, in the example of Figure 6.7, there was no arc from node f to node d, the
sharing results would be the same for the original and the indexing algorithm, Because new
nodes are introduced in the subgraph of a, node a cannot be shared (condition 3) with either
algorithm. Apart from that, none of the offsets associated with the arcs of respectively graph
b, j, and f would change, so condition 4 would not be violated.

Just as with Malouf et al.’s approach, the complexities of structure sharing are hidden in the
COPY 1jgx sh function. A version of COPYljgysn that implements structure sharing for the
indexing algorithm is shown in Figure 6.8. COPY;g, _sh is very similar to COPYigx. The only
difference is the inclusion of the checks for the four conditions. The conditions 1 through 3
are checked at line 7 and 9.3. Condition 4 is checked at line 9.4 by comparing the offsets of
the old arc and new arc.*

“#Note that for reasons of convenience we compute the offset of the source arc (idx1 — idx) rather than using

80 6 Efficient Thread-safe Unification

Coryl idx_sh(ref_in)
1. (dg,idx) «— DEREFERENCE;gsh(ref_in)
2. if sha[idx].copy # nil then
2.1. return sbal[idx].copy
new.idx « free_idx; free_idx «— free_idx + 1
newcopy « new Node
newcopy.type « sbalidx].newType
sba(idx].copy < (newcopy, new_idx)
share «— shaidx].comp_arcs = @ A dg.type = sbaidx].newType
arcs < {ABSARC(a, idx) | a € dg.arcs} U sha(idx].comp.arcs
for each (label, (dgl,idx1)) in arcs do
9.1. (ch_dg, ch.idx) — COPY ligx.sn((dgl, idx1))
9.2. Push (label, (ch_dg, ch_idx — new_idx)) into newcopy.arcs
9.3. if dgl # ch_dag then
share — false
94. if idx1 — idx # ch_idx — new_idx then
share « false

10. if share then return (dg, new_idx)
else return (newcopy, new_idx)

0 N R W

Figure 6.8 Copy algorithm with structure sharing.

6.3.3 Other Optimizations

Since Deltra is a DCG, it uses fixed arity unification. This means that each nodes has a
fixed set of features that can be laid out linearly in memory, not requiring arc structures.
This means that the reduction in memory usage can be even greater than with LinGO. In
addition, we introduced some additional optimizations the indexing technique for Deltra,
which we will present next.

Deferred Copying Just as we use an array of scratch buffers for unification and copying,
we can also use an array of scratch buffers for equality checking. Tomabechi’s algorithm
requires that the graph resulting from unification be copied before it can be used for further
processing. This can result in superfluous copying when the graph, and the corresponding
item, is already contained on the chart. Our technique allows equality checking to use the
bindings generated by UNIFY 1,4 in addition to its own buffers. This allows us to defer
copying until we completed subsumption checking.

Compressed Storage Rrepresentation of Nodes With a straightforward imple-
mentation of our algorithm for Deltra, we obtain a node size of 8 bytes.> By dropping the
concept of a fixed node size, we can reduce the size of atom and bottom nodes to 4 bytes.

the stored value.
5Deltra does not have a type hierarchy.

6.4 Performance Comparison 81

Type information can be stored in two bits. We use the two least significant bits of point-
ers (which otherwise are 0) to store this type information. Instead of using a pointer for
the value field, we store nodes in place. Only for reentrancies do we still need pointers.
Complex nodes require 8 bytes, as they include a pointer to the first node past its children
(necessary for unification). This scheme requires some extra logic to decode nodes, but
significantly reduces memory consumption.

6.4 Performance Comparison

In this section we will analyze the performance of the proposed algorithms. We will focus
in particular on the memory consumption and execution times. We show that our parser can
compete with other parsers for LinGO by comparing it to an implementation of CHEAP
(Callmeier, 2000).

6.4.1 Results for LinGO

The performance results were obtained using Cali in combination with three different ver-
sions of the unification algorithm: traditional Tomabechi with Malouf et al.’s structure shar-
ing approach, a hashed version of Tomabechi, and an algorithm implementing the indexing
technique. Tests were performed for the “csli’, ‘aged’, as well as the “fuse’ test suites. All
tests were run on a Red Hat Linux box with a dual 500MHz Pentium-II Katmai processor
with 512MB of main memory.

The implementations for both the indexing and hashing algorithms use 4 byte nodes and 8
byte arcs. Each non-leaf node is associated with an additional 4 bytes for a pointer to an arc
list. The offset fields required for the indexing algorithm were included in two pad bytes of
the arc structure. The implementation of Tomabechi’s algorithm also has an arc size of 8,
but uses a 24 byte node structure. All implementations use structure sharing.

Memory consumption was measured by counting the maximum number of nodes and arcs
simultaneously stored during a single parse, and multiplying these figures by the respective
structure sizes. This measure indicates the minimum size of the buffer required to store
the arcs and nodes for a single parse. We did not include the statically allocated buffers to
store, for example, the grammar and the scratch buffers. The size of the scratch buffers that
are needed for both the indexing and the hashing technique is negligible. In the case of the
indexing version, the total memory consumed by the buffers is less than 32K. The hashing
version requires slightly more memory, because it has an additional lookup buffer that needs
to have sufficient entries for hashing to be efficient. In both cases, though, the reduced size
of the grammar more than compensates for the extra memory needed for these buffers.

Table 6.1 shows the results of a comparison between a plain version of Tomabechi and one
with hashing. On average, the hashing technique reduces the memory requirements by over
50%. Execution times, on the other hand, are increased. The increase in execution time is
the highest for longer sentences. In these cases, the chance that more nodes will map to the
same bucket increases.

82 6 Efficient Thread-safe Unification

Tomabechi Hashed reduction
Suite | tasks | time | space | time | space | time | space
¢ p(s) [p(kb) | ¢ (5) | pkb) | % 7
aged | 39463 | 0.14 | 2391 | 0.16 | 1170 | -8.5 | 51.1
csli 9491 | 0.03 | 644 | 004 | 312 <79 [51.6
fuse | 160924 | 0.56 | 8849 | 0.61 | 4397 | -10.3 | 50.3

(generated by [incr tsdb(0)] at 13-ang-2000 (21:24 b))

Table 6.1 Performance results for hashing technique relative to an implementation of Tomabechi’s algo-
rithm.

Tomabechi Indexed reduction
Suite | tasks | time | space | time | space | time | space
¢ ()| okb) | ¢(s) [pkb) | % %
aged | 39463 | 0.14 | 2391 | 0.14 | 1203 | -1.3 | 49.7
csli 9491 | 0.03 | 644 | 0.04 | 303 -1.7 | 53.0
fuse | 160924 | 0.56 | 8849 | 0.57 | 4859 | -1.7 | 45.1

(generated by fincr tsdb()} at 13-aug-2000 (21:24 b))

Table 6.2 Performance results for indexing technique relative to an implementation of Tomabechi's al-
gorithm.

As can be seen in Table 6.2, using the indexing technique has less impact on the execu-
tion times. Moreover, the impact on the execution times is independent of the size of the
sentence. The reduction in memory usage that can be obtained with sharing of grammar
nodes gets less for sentences that require more tasks to complete. This explains the different
results for the different test suites.

In order to verify the overall performance of our parser, we compared our implementa-
tion of Tomabechi to a version of CHEAP. The latter version also uses the KD parsing
schema, uses the same filtering techniques, and uses Tomabechi’s algorithm for unifica-
tion. Altogether, CHEAP provides a good gold standard for the performance evaluation of
our implementation. Table 6.3 shows a comparison between the performance of CaLi and

CHEAP CalLi reduction
Suite | time | space | time | space | time | space
() | pkb) | #(s) | pkb) | % %
aged | 0.17 | 2294 | 0.14 | 2391 | 13.5 | 4.2
fuse | 0.62 | 7989 | 0.56 | 8849 | 10.8 | -10.8

{genezated by [incr tsdb()] at 14-sug-2000 (17:50)

Table 6.3 Comparison of performance between the sequential version of CaLi and CHEAP.

6.5 Comparison to other Algorithms 83

CHEAP. Differences in memory utilization between our Tomabechi-based implementation
and CHEAP can be attributed to the fact that CHEAP and CaLi use a different representa-
tion for arcs. Execution times are comparable, considering we are dealing with two different
implementations.

6.4.2 Results for Deltra

The experiments for the Deltra variant were run on a Pentium Il 600EB (256 KB L2 cache)
box, with 128 MB memory, running Linux. We used a test set of 22 sentences of varying
length. Usually, approximately 90% of the unifications failed.

We tested both memory usage and execution time for various configurations. The results
are shown in Figure 6.9. It includes a version of Tomabechi’s algorithm. The node size
for this implementation is 20 bytes. For the proposed algorithm we have included several
versions: a basic implementation, a version with compressed nodes, a version with deferred
copying, and a version with structure sharing. The basic implementation has a node size of
8 bytes, the others have a variable node size. Whenever applicable, we applied the same
optimizations to all algorithms. We also tested the speedup on a dual Pentium IT 266 MHz.5
Each processor was assigned its own scratch tables. Apart from that, no changes to the
algorithm were required.

The memory utilization results show significant improvements for our approach.” Packing
decreased memory utilization by almost 40%. Structure sharing roughly halved this once
more.® The fourth condition prohibited sharing in less than 2% of the cases where it would
be possible in Tomabechi’s approach.

Figure 6.9 shows that our algorithm does not increase execution times. Our algorithm even
scrapes off roughly 7% of the total parsing time. This speedup can be attributed to improved
cache utilization. We verified this by running the same tests with cache disabled. This made
our algorithm actually run slower than Tomabechi’s algorithm. Deferred copying did not
improve performance. The additional overhead of dereferencing during equality checking
was not compensated by the savings on copying. Structure sharing did not significantly
alter the performance as well. Although this version uses less memory, it has to perform
additional work. Details of the implementation for Deltra can be found in (van Lohuizen,
2000).

6.5 Comparison to other Algorithms

We reduced memory consumption of popular graph unification algorithms, as presented by
Tomabechi (1991) and Wroblewski (1987), by separating scratch fields from node struc-
tures. Pereira’s (1985) algorithm also stores changes to nodes separately from the graph.

S$These results are scaled to reflect the speedup relative to the tests run on the other machine.

"The results do not include the space consumed by the scratch tables. However, these tables do not consume
more than 10 KB in total, and hence have no significant impact on the results.

#Because the version with compressed nodes has a variable node size, structure sharing yielded less relative

improvements than when applied to the basic version. In terms of number of nodes, though, the two results were
identical.

84 6 Efficient Thread-safe Unification

6 T T T T T T T T T T T T
—+— “basic” s
--%--- “tomabechi® ey
-2~ *packed" y
—&— “pack+deferred_copy” e

§ | ——=— "pack+share” S F]
---e- "packed_on_dual_proc® X/

4t 1

Time (seconds)
©w
T
b (Y
\
I

1/ »'0’
2F l'l »,’.; B
\ ‘p,»’
1 R '," b
Fang’ Y

..... - ~]
o '-l L 1 L '} L 1 1 1 A L 1
4 5§ 6 7 8 9 10 11 12 13 14 15 16 17

Sentence length (no. words)

40

Heap size (MB)
3 b 8

-
o

10

4 5 6 7 8 9 10 11 12 13 14 15 16 17
Sentence length (no. words)

Figure 6.9 Results for Deltra. Top: execution time in seconds. Bottom: memory usage of the graph
heap in MB.

6.6 Conclusions and Future Directions 85

However, Pereira’s mechanism incurs a log(n) overhead for accessing the changes (where
n is the number of nodes in a graph), resulting in an O(n log n) time algorithm. The index-
ing algorithm runs in O(n) time.

With respect to over and early copying (as defined in (Tomabechi, 1991)), our algorithm
has the same characteristics as Tomabechi’s algorithm. In addition, our algorithm allows
the copying of graphs to be postponed until after the verification step is completed. This
would require additional fields in the node structure for Tomabechi’s algorithm.

Our algorithm allows sharing of grammar nodes, which is usually impossible in other im-
plementations (Malouf et al., 2000). A weak point of our structure sharing scheme is its
extra condition. For the Deltra grammar, this proved to be no limitation, as structure shar-
ing could be exploited as usual in most cases. For LinGO, the percentage of failed shares
due to condition 4 was considerably higher, although the ability to share grammar nodes
roughly compensated for this.

Finally, contrary to most other algorithms for unification, both the hashing and the indexing
algorithms are thread-safe. This makes them suitable for concurrent unification. As the
presented algorithms are based on Tomabechi’s algorithm, they are also suitable for parallel
unification (cf. (Fujioka et al., 1990)).

6.6 Conclusions and Future Directions

Memory consumption is a major concern with many of the current unification-based gram-
mar parsers. The presented algorithm provides a fast and memory-efficient alternative to
Tomabechi’s algorithm. We have shown how memory usage can be reduced by separating
scratch fields from nodes.

A fast alternative to Tomabechi is the indexing technique. Although this technique requires
extra computation, it still obtains roughly equivalent execution times. We showed that im-
proved cache utilization can work to the advantage of the indexing technique. As current
developments indicate that the difference between cache and memory speed will only get
larger, this effect is not just an artifact of current architectures.

With the hashing technique we obtained a slightly higher reduction in memory utilization
than with the indexing technique. However, measurements indicate that there is roughly a
25% possible reduction in memory utilization—using the indexing technique—if the fail-
ures of sharing that are caused solely by condition 4 can be eliminated. A possible technique
to accomplish this is to reserve index numbers at critical positions in a graph. These can
then be assigned to nodes in later unifications without introducing conflicts elsewhere. For
example, the failure to share node f in Figure 6.7 could have been prevented by allocat-
ing unused indexes at node e. The type hierarchy can be a useful source of information to
determine for which nodes to reserve indexes.

We showed that—without increasing execution times—an additional reduction in memory
utilization can be obtained by compressing the node and arc structures. Similar techniques
could be applied to the indexing algorithm for LinGO. A small reduction in memory can
be achieved by storing atom nodes in arc structures. The value field in arc is implemented

86 6 Efficient Thread-safe Unification

as a pointer to a node. Since a node structure is only 4 bytes, we could include it in this
field. This would save 4 bytes for each atom node. Another approach to reduce memory
utilization would be to reduce the arc size. As there are more arcs than nodes, and given that
the arc structure is twice the size of a node structure, arcs are responsible for the majority of
the memory consumption. The arc size could be reduced, for example, by eliminating the
label field, deriving the required information from the node’s type instead.

Chapter 7

Design and Implementation of a
Parallel Parser

In this chapter, we present the design and implementation of a parallel parser that is able to
achieve considerable speedup. The design is based on the analysis presented in Chapter 4
and Chapter 5. The implementation uses the thread-safe algorithm presented in the previ-
ous chapter to enable concurrent unification. An abridged version of this chapter has been
published in (van Lohuizen, 2001b). An approach to parallel parsing specifically for Deltra
can be found in (van Lohuizen, 1999).

7.1 Introduction

As was discussed in Section 2.3.3, there are many possible approaches to parallel chart pars-
ing. The results of the analyses presented in Chapter 4 and 5 give an indication of which ap-
proaches to parallel chart parsing can be fruitful. In Chapter 4, it was shown that—both for
the LinGO and Deltra grammars—to ensure sufficient parallelism is available, parallelism
should be exploited at the fine granularity of single unification operations. In Chapter 5, we
saw that, for the LinGO grammar, using a greedy grouping heuristic as a means to distribute
work amongst processors can greatly reduce the communication between processors. We
also mentioned that for the Deltra grammar, the same effect can be obtained by using the
rule-based heuristic.! Both the greedy and rule-based distribution technique require the use
of a distributed chart. As was mentioned in Section 2.3.3, a distributed chart as opposed to
a centralized chart can have the additional advantage of reducing synchronization overhead.

Besides focusing on the ability to achieve speedup, we need to consider the following. Over
the past years, improvements to existing parsing techniques have boosted the performance
of parsers by orders of magnitude (Oepen and Callmeier, 2000). It is very well possible
that this development will continue for some time to come. Tying the design of a parallel
parser too much to a particular approach to parsing may make it hard to incorporate such
improvements as they become available. To allow for such improvements without signif-
icantly changing the design of the parallel parser, a solution to parallel parsing should be
as generic as possible. The design of the parallel parser that is presented in this chapter is
greatly influenced by this design criterion.

In summary, the design of the parser presented in this chapter is based on three main design
principles:

!For Deltra, the rule-based grouping heuristic has the additional advantage that it will group all items that can
be involved in a single verification step.

87

88 7 Design and Implementation of a Parallel Parser

1. Work should be distributed at the granularity of single unification operations.

2. The design should be based on a distributed chart to allow the greedy and rule-based
grouping heuristics to be used in combination with, respectively, the LinGO and Del-
tra grammar.

3. The approach to parallel parsing should not be tied to a particular parsing schema
or grammar formalism, and should allow optimizations for sequential parsers to be
incorporated as much as possible.

In the following sections, we will present an approach to parallel parsing for both the Deltra
and LinGO grammars. As with the previous chapters, the focus will be on a solution for
the LinGO grammar. The difference with respect to the Deltra grammar will be explained
as appropriate. As suggested in Chapter 4, the parser will allow distribution of work at the
granularity of a single unification operation, corresponding to a type 1 task graph. Following
the suggestions of Chapter 5, the LinGO and Deltra parser will utilize the greedy and rule-
based grouping heuristics, respectively. To allow for concurrent unification, both parsers
will utilize the indexing technique for unification presented in the previous chapter. For
Deltra, we used compressed nodes, as presented in Section 6.3.3. Section 7.2 and 7.3 discuss
respectively the design and implementation of the parallel chart parser. In Section 7.4, a
theoretical analysis of the presented scheduling technique is given. Finally, Section 7.5
presents performance results based on the implementation of the system.

7.2 Scheduling

An obvious approach for increasing the likelihood that optimizations for sequential parsers
can be used in a parallel parser as well, is to let a parallel parser mimic a sequential parser
as much as possible. This can be accomplished by letting each processor run a conventional
sequential parser augmented with a mechanism to combine the individual results. In such
a scenario, each processor, or thread,? has its own agenda and chart. Taking this approach
therefore automatically satisfies the second requirement.

Let us first take a closer look at the proposed approach, assuming we use the LinGO gram-
mar. Initially, each thread is assigned a different set of work, for example, representing a
different part of the input string. Each thread first proceeds as it would in the sequential
case, that is, executing the unify—verify—match cycle until all entries on the agenda have
been processed. After completing the work on its agenda, a thread will enter the commu-
nication phase and match the edges on its chart with the edges derived so far by the other
threads. This may produce new unification tasks, which the thread puts on its agenda. After
the communication phase is completed, it returns to normal parsing mode to execute the
work on its agenda. This process continues until all edges of all threads have been matched
against each other and all work has been completed.

2As we will assign a single thread to cach processor, using the threading library of the host operating system,
we will use the two terms interchangeably.

7.2 Scheduling 89

Figure 7.1 Distribution of data structures in the MACAMBA system.

The presented scheme implicitly implements a variant of the greedy grouping heuristic pre-
sented in Section 5.3.2. 'We may expect that this variant is more capable of reducing the
maximum total communication than the greedy heuristic presented in Chapter 5. Just as
with the greedy heuristic, a unification task is always executed on a processor that owns at
least one of the input items. However, contrary to the specification of the greedy heuristic,
the result of a unification task will always be stored on the processor that computed the
unification. Despite these additional restrictions, we may still expect this approach to yield
a well-balanced distribution. The additional restrictions are compensated by allowing the
dynamic assignment of unification tasks to one of the corresponding input items, rather than
fixing them at random.?

For the Deltra grammar, we use the rule-based grouping heuristic. In this case, rather than
adding each newly derived item to its own chart, a thread will send it to the thread owning
the group associated with the item. This is the only change required to implement the rule-
based grouping heuristic. The changes required to implement this scheme, relative to an
implementation for LinGO, are minimal.

So far, we have completely ignored the first requirement. In Section 3.2.2, we showed that
work stealing can be a viable technique to accomplish a well balanced distribution of work
with a minimum of overhead. In the presented design, the fine-grained distribution of single
unification tasks can be enabled by allowing idle threads to steal work from other threads
that still have work in their work queues.

In the next sections, we will explain the details of the presented scheduling technique. First
we explain how the integrity of the data structures is enforced. We then focus on the schedul-
ing algorithm. We also discuss work stealing in more detail.

90 7 Design and Implementation of a Parallel Parser

7.2.1 Data Structures

Figure 7.1 shows an outline of the data structures involved in our approach and how they
are distributed amongst the threads. Each thread has its own chart and agenda. In addition,
each thread has an edge list, which is a linked lists of the items it derived. This list is used to
communicate the derived items to other processors. Such a list is often already present in the
chart structure. Nevertheless, since it is an integral part of the communication mechanism,
we mention it separately.

Each thread has read and write access to its own agenda, chart, and edge list, and has read-
only access to the respective structures of all other threads. Grammars are read-only and
can be read by all threads.*

In the communication phase, threads use the edge lists of other threads to figure out which
edges have been derived by those threads. These foreign edges are matched against the
edges on the local chart (local edges). All this can be done with read-only access to the edge
list structures. However, the next step can pose a problem. When a match succeeds, a thread
will put a task on the agenda corresponding to the unification of the feature structures of to
the local and foreign edges. Many unification algorithms make use of scratch fields in the
graph structures. Such algorithms can therefore not be used for concurrent unification. To
circumvent the problem, we use the thread-safe unification algorithm based on the indexing
technique presented in Section 6.3.

The distributed agendas that are used in this approach may make it hard to implement the
strict control over the order of evaluation of tasks that is required by some parsers. One
solution to the problem would be to use a centralized agenda. The disadvantage of such a
solution is that it might increase the synchronization overhead. In Section 3.2.2, we pre-
sented some scheduling algorithms that can mitigate the overhead in such a scenario.

- 7.2.2 Scheduling Algorithm

At startup, each thread calls the scheduling algorithm shown in Figure 7.2. This algorithm
can be seen as a wrapper around an existing sequential parser that takes care of combining
the results of the individual threads. The functionality of the sequential parser is embedded
in Step 1.2. After this step, the agenda will be empty. The communication between threads
takes place in Step 1.3. Each time a thread executes this step, it will inspect all the newly
derived foreign edges of other threads and match them with the edges on its own chart. To
avoid revisiting previously processed items, each thread records the last visited edge of the
edge list of each other thread. As a result of Step 1.3, the agenda may become non-empty.
In this case, newWork will be set and Step 1.2 is executed again. This cycle continues until
all work is completed.

The remaining steps serve several purposes: preventing double work, load balancing, and
detecting termination. We will explain each of these aspects in the following sections.

31t is not possible to define the presented distribution scheme in terms of a grouping heuristic, as the definition
of grouping heuristics does not allow for dynamic restrictions. The greedy grouping heuristic can be seen as an
approximation of this scheme.

4MACAMBA allows for multiple grammars to be used simultaneously. This feature is used by Deltra.

7.2 Scheduling 91

global shared Generation «— P + 1, Terminate — false

SCHED()
var threadGen « threadNumber, token
var newWork «— true, communicated «— false, victimized « false
if threadNumber = 1 then token «— 0

else token «— nil
while not Terminate do

! 1. while newWork do
‘ 1.1. newWork ~false
‘ 1.2. Process the agenda as in the sequential case. In addition, for each newly
derived edge I, stamp I by setting I.generation to the current value forthreadGen,
\ add I (o this thread’s edge list, and set communicated to true.
1.3. Examine all other threads for newly derived edges. For each new edge I and
for each edge J on the chart for which holds I.generation > J.generation, add the
corresponding task to the agenda if it passes the filter. If any edge was processed,
set newWork to true.
1.4. lock GlobalLock
L5. threadGen «— Generation «— Generation 4 1
1.6. unlock Globallock
2. newWork «STEAL()
3. if not newWork and token # nil then
3.1. if communicated or victimized then
Pass token with value 0 to next in ring and set token to nil,
communicated «— victimized — false
3.2. elseif token = P then
Terminate « true
3.3. else
Pass token with value token + 1 to next in ring and set token to nil,
4. if New items added to foreign edge lists then
newWork « true

Figure 7.2 Scheduling algorithm.

92 7 Design and Impiementation of a Parallel Parser

7.2.3 Preventing Duplicate Matches

When two matching edges are stored on the charts of two different threads, the scheduling
algorithm should prevent both threads performing the corresponding match. Failing to do
so can cause the derivation of duplicate edges and eventually a combinatorial explosion of
work. Our solution is based on a generation scheme. Each newly derived edge is stamped
with the current generation of the respective thread, threadGen (see Step 1.2). A thread will
only perform the match for two edges if the edge on its chart has a lower generation than
the foreign edge (see Step 1.3). Obviously, because the value of threadGen is unique for
each thread (see Step 1.5), this scheme prevents two edges from being matched twice.

SCHED also ensures that two matching edges will always be matched by at least one thread.
After a thread completes Step 1.3, it will always raise its generation. The new generation
will be greater than that of any foreign edge processed before. This ensures that when an
edge is put on the chart, no foreign edge with a higher generation has been matched against
the respective chart before.

Theorem 7.1 The scheduling algorithm SCHED ensures that any two items I and J, where
I ® J, will be matched by exactly one thread.

Proof. We first prove that SCHED matches any two items I and J on at most at one proces-
sor. This follows from the fact that a generation is unique for one processor. By Step 1.5, if
I and J are stored on different processors, they are guaranteed to have different generations.
By Step 1.3, the match cannot be performed by both the thread that derived I and the thread
that derived J. Given that the items in the edge lists are only matched against the chart once
(Step 1.3), I and J will also never be matched more than once.

SCHED also ensures that at least one thread processes the match for I and J. Without loss
of generality, assume that I was derived by thread T, while having a generation of g, and
that J was derived by thread T}, while having a generation of g3, where g, < gs. Because
ga < g», by Step 1.3, only T, can perform the match of I and J. We need to consider
two cases: one where T, adds I to its agenda before it finds and processes J on Tp’s edge
list, and one where T, adds I to its agenda affer it finds and processes J on T3’s edge
list. In the former case, T, will obviously find I on its chart as it processes J. The latter
case, however, cannot occur. After processing J, T, will always execute Step 1.5. This
causes the generation of 7, to become larger than g, the generation associated with J.
As the generation associated with 7,, can never decrease, I is guaranteed to have a higher
generation than J. O

In practice, we only need to increase threadGen when a thread is about to add an item to
its chart and when the highest generation encountered with any foreign edge processed so
far by the respective thread is higher than the current value of threadGen. This allows for
a more lazy update of the generation counter and allows the maximum number of times
Glocallock is locked to be bound by the number of items put on the chart.

This scheme will work for any parsing schema where at most two edges are involved in
the deduction of a new edge. This means this scheme will work for the majority of popular
parsing schemata and, hence, complies with our requirement of providing a solution not tied
to a particular parsing schema or grammar.

7.2 Scheduling 93

STEALFROMFOREIGNEDGELISTS (victim) STEALFROMAGENDA (victim)

1. if locking of Edgel.istsLock fails then
return false
2. Attempt to steal edges foreign to
victim, preferably from own edge list, for
matching with the victim’s chart and set
victim.victimized to true if successful,
3. unlock EdgelistsLock
4. if no work was stolen then
return false

5. lock ChartLock

6. Set the minimum generation for all suc-
cessive items the victim will add to the
chart to the maximum generation of any of

1. if locking of Agendal ock fails then
return false

2. Artempt to steal part of the work on the

agenda of victim and set victim.victimized

to true if successfull.

3. unlock Agendalock
4. if no work was stolen then
4.1. return false

5. Add all but one stolen task to thief’s
agenda.

6. Execute the stolen task not put on the
agenda.

7. return true

the stolen foreign items.

7. unlock Chartlock

8. Execute the stolen matches and put any
resulting tasks on own agenda.

9. return true

Figure 7.3 Stealing algorithms

7.2.4 Work Stealing

In the detailed design as presented so far, each thread exclusively executes the unification
tasks on its agenda. Obviously, this violates the requirement that each unification task be
scheduled dynamically. In Section 3.2.2, we presented work stealing as an effective mech-
anism to distribute work amongst processors at a fine granularity. With this technique, a
thread will first attempt to steal work from the queue of another thread before announcing
itself to be idle. If it succeeds, it will resume normal execution as if the stolen tasks were its
own.

A thread becomes a thief by calling STEAL, at Step 2 of SCHED. STEAL will first randomly
select a thread, which we refer to as the victim. It then atternpts to steal any work from the
victim such that the following rules are obeyed.

1. If some work is stolen, the thief should execute at least one task of the stolen work
itself,

2. Before the work should be visibly removed from the victim, the victimized variable
of the victim should be set to true.

The first rule ensures that no livelock can occur, that is, it prevents some task being stolen
repeatedly, without ever being executed. The second rule is necessary to allow the termi-
nation algorithm to detect the transfer of work properly. Termination is discussed in more
detail in Section 7.2.5.

94 7 Design and Implementation of a Parallel Parser

STEAL will attempt to steal work from two different sources: the agendas, which contain
outstanding unification tasks, and the unchecked foreign edges, which resemble outstanding
match tasks between threads. Figure 7.3 shows the stealing algorithms for both cases. With
STEALFROMFOREIGNEDGELISTS, an attempt is made to steal any of the outstanding match
tasks. A thread will first attempt to steal items originating from its own edge list. The idea
is that this can increase cache performance, as the thief might still have the respective items
in its cache. With STEALFROMAGENDA, a thief will steal half of the work on the agenda.
This balances the load between the two threads and minimizes the chance that either thread
will have to call the expensive steal operation soon thereafter.

Note that when match tasks are stolen and performed by another thread than the owner,
the prevention of double work mechanism presented in the previous section will break. To
solve this problem, a thief tells the victim the highest generation of any foreign item it has
stolen. Each thread should lock each addition of an item to the chart and raise its generation
within the lock if necessary. This ensures that by the time thread 7" adds an item I to the
chart, all foreign items of T that were ever processed had a smaller generation than I. This
mechanism can be implemented without much additional overhead if the optimization of
the prevention of double work scheme, proposed in the previous section, is implemented.
This optimization already required the generation to be checked at the time of adding an
item to the chart.

With Deltra, we allow an additional mode of stealing. The Deltra parser reduces the number
of tasks on the agenda by putting tasks on the agenda just before the match phase of the
unify-verify—match cycle. An entry on the agenda is therefore defined as a set of unification
operations. A thread that processes such a task loops over all operations in the set. In order
to allow stealing of single operations, threads should be allowed to steal single iterations of
this loop. To this extent, a signature is set at the start of each loop to tell potential thieves
how to obtain an iteration of the loop.

The stealing functions for the different sources are incorporated into STEAL as follows.
After selecting the victim, STEAL will first attempt to steal some of the victim’s match
tasks. If it succeeds, it will perform the matches and put any resulting unification tasks on
its own agenda. Otherwise, it will attempt to steal work from the victim’s agenda. If this
does not succeed, it will return failure. In case of Deltra, it will also attempt to steal single
iterations. Note that with SCHED, idle threads will keep calling STEAL until they either
obtain new work or all other threads become idle.

Obviously, stealing eliminates the exclusive ownership of the agenda and unchecked foreign
edge lists of the respective threads. As a consequence, a thread needs to lock its agenda and
edge lists each time it needs to access it. In addition, for the Deltra parser, each iteration
necessary to processes an agenda entry requires additional locking. According to the work-
first principle (see Section 3.2.3), we can improve performance by moving as much of the
overhead from victim to thief as possible. Therefore, synchronization between worker and
thief can be optimized by using a Dijkstra like asynchronous mutual exclusion protocol
(Dijkstra, 1965, Frigo et al., 1998). For completeness, the protocol we use is illustrated
in figure 7.4. As long as no stealing is taking place, workers will not have to resort to an
expensive lock. Most of the locking is done by workers or victims; only a small fraction is
done by thieves. Thus we reduce the total amount of work by moving some of the overhead

7.2 Scheduling 95

Worker/Victim Thief
1 isBusy=YES; 10 Determine victim
2 if (L == YES) 11 vietim.lock;
3 isBusy=NO; 12 victim->L = YES;
4 self.lock; 13 while (!victim->isBusy) {}
5 Protected block 14 Protected block
6 self.unlock; 15 victim~->L = NO;
7 else 16 victim.unlock;
8 Protected block
9 isBusy=NO;

Figure 7.4 Pseudocode of Victim/Thief protocol. L is set by the thief to indicate a lock request.
A memory fence is needed between line 1 and 2 to ensure that both parties see changes to
main memory in the right order.

on to the critical path,

7.2.5 Termination

It is crucial that no idle thread terminate while any other thread is still processing tasks. The
processing of a single task can result in considerable amounts of new work. The premature
termination of a thread can therefore lead to a waste of computing resources. A thread may
terminate when all work is completed, that is, if and only if all of the following conditions
hold simultaneously:

e all agendas of all threads are empty,
o all possible matches between edges have been processed, and

¢ no thread is executing Step 1.2 or 1.3.

To detect termination we use a token passing scheme similar to the scheme proposed by
Dijkstra et al. (1983). Such a scheme ensures both that all threads terminate when all work
is completed and that no thread terminates when there is still work being done at any thread.

With Dijkstra’s algorithm, termination is detected by a designated thread. We allow any
thread to detect termination. In addition to the communication by message sending in Dijk-
stra’s protocol we also allow work stealing. To enable the victims to keep track of the fact
that work was stolen, thieves must set the victimized variable.

Theorem 7.2 SCHED terminates for any parsing system that yields a finite amount of
items.

Proof. Given there is a finite amount of work, a thread is guaranteed to leave the loop at
Step 1 at some point. By requiring that a thread calling STEAL will process at least one
of the tasks it steals itself, we ensure that there can be no livelock between threads stealing

96 7 Design and Implementation of a Parallel Parser

work. What remains to be proven is that Terminate will eventually be set to true so that
threads will leave the outer loop.

Assume all threads have completed all work and have left the loop at Step 1. Because,
under these conditions, no thread will add new items to its edge list and because it is not
possible to steal work from any thread, newWork is guaranteed to remain false. For each
thread, the value of communicated V victimized can be either true or false. Since there is no
more work being processed, it is guaranteed that communicated and victimized can never
be set from false to true. Since a thread will set communicated and victimized to false at
Step 3.1 when it gets the token, it is guaranteed that after at most P passings of the token
communicated V victimized is false for all threads. In this state, each successive passing of
the token will result in raising the token value at Step 3.3. This continues until the token is
P, in which case the thread owning the token will set Terminate to true at Step 3.2. O

The proof that Terminate will not be set to true before all work is finished is analogous to
the proof presented by Dijkstra (1983).

7.3 Implementation

The implementation of the system consists of three parts: MACAMBA, Cali, and Deltra.
MACAMBA stands for Multi-threading Architecture for Chart And Memoization-Based
Applications. The MACAMBA framework provides a set of objects that implement the
presented scheduling technique. It also includes a set of support objects like charts and a
thread-safe unification algorithm. CalLi is an instance of a MACAMBA application that
implements a Chart parser for the LinGO grammar. The design of CaLi was based on PET
(Callmeier, 2000), one of the fastest parsers for LinGO. It implements the quick check and
the rule filter, which together take care of filtering over 90% of the failing unification tasks
before they are put on the agenda. Deltra is an instance of a MACAMBA application that
implements a chart parser for the Deltra grammar. It uses the DD parsing schema and uses
equality checks to verify the uniqueness of items.

MACAMBA allows the results of parsing runs to be recorded in several ways. Firstly,
MACAMBA allows results to be printed to the console. Secondly, it provides an interface
to [incr tsdb()] (Oepen, 2001), an application interface to grammar processing components
that can collect results from different parsers and provides various tools for analysis of the
results. Thirdly, MACAMBA provides an Enterprise Objects relational database interface,
which is currently set up to interface with Microsoft Access. To support compatibility with
platforms that do not support the Enterprise Object libraries, MACAMBA allows the results
to be recorded in an intermediate file that can later be loaded into the database using a special
tool. MACAMBA, CaLli, and Deltra were all implemented in Objective-C and currently run
on Windows NT, Linux, and Solaris.

7.3 Implementation 97

interface to MACAMBA Instance

Centralized

Per Thread

Figure 7.5 Components of a MACAMBA application.

7.3.1 Overall architecture

Figure 7.5 shows a diagram of the most important components in the MACAMBA system.
It shows the objects that are provided by the MACAMBA system and objects that should
be implemented for each parser instance. MACAMBA specifies protocols to which these
objects should conform.®

The tokenizer class allows a raw input string to be split into separate tokens. The lexicalizer
basically provides a lookup functionality to map tokens to dictionary entries. The abstract
lexicalizer class defines a fixed interface for converting tokens to dictionary entries. Con-
crete subclasses of the lexicalizer can, for example, provide generic constructs for storing
entries in memory or provide a generic database interface. Note that the format of dictionary
entries typically differs for different grammar formalisms. The abstract lexicalizer class is
specified such that the dictionary entries can be of any format.

In order for a parser instance to make use of MACAMBA's multi-threading capabilities, the
unification algorithm should be thread safe. By using the unification algorithms provided by
MACAMBA, a parser instance automatically complies to this requirement. Nevertheless,
it is also possible for a parser instance to provide its own implementation of a unification
algorithm,

The parser interface object provides the interface to the rest of the objects embedded in
a parser instance. It incorporates the necessary control to setup and manage both the
MACAMBA objects and objects specific to the parser instances. It also allows any re-
sult or statistic to be accessed through a common interface. A value for a certain statistic
can simply be obtained by passing its name to the parser interface. The parser object will
use the Objective-C runtime to find the object that implements the respective method for
the statistic and return its value. This allows both the user and the designer of a parser in-

5The Enterprise Objects libraries are part of the Apple WebObjects development environment.
6The protocol construct in Objective-C corresponds to the interface construct in Java.

98 7 Design and Implementation of a Parallel Parser

stance to respectively retrieve and provide statistics without having to know the details of
the MACAMBA architecture.

The parser definition file represents the glue for a MACAMBA application. It allows the
specification of, for example, which controller, agenda, chart, tokenizer, lexicalizer, gram-
mar, and parsing schema classes should be used. In addition, each object in the system,
including user defined objects, can define parameters that can be set in the definition file.
MACAMBA will take care that the parameters will be passed to the respective objects.

7.3.2 Parsing Process

Both the agenda and chart classes are part of MACAMBA. We therefore need to explain the
interaction between the the agenda and chart objects and the parsing schema object, which
is the part of a parser instance. Firstly, a chart in MACAMBA is defined as a repository
for items where items are allowed to be grouped per category ¢ € T. An item can belong
to multiple categories. As discussed in Section 2.3.2, the categories of an item should be
chosen such that the set of items traversed in the matching phase is as small as possible.

In MACAMBA, the agenda is a part of the scheduler. Each thread is assigned a scheduling
object. When an item is about to be added to the chart, the scheduler will first query the
parsing schema class for the categories of the item, using a method CAT : 7 — T+, This
tells the scheduler to which categories in the chart the item should be added. For each of
the categories, it will call a method MATCHCAT : T — (T x O)% of the parsing schema
class to find out against which sets of items in the chart the item should be matched. The
operation type o € O specifies which corresponding methods of the parsing schema to use
for the match. The scheduler will enumerate over each set,” match each item with the newly
derived item, and put any resulting task on the agenda. A task will only be added to the
agenda if the filter method corresponding to the operation type succeeds.

The methods for the filters, derivation rules, and categorizing of items are all defined in a
protocol for parsing schema objects. To allow full flexibility, all details of how the grammar
is used in the deduction rules is incorporated in the parsing schema object. An instance of a
MACAMBA application is free to define its own subclasses of the agenda, chart, tokenizer,
lexicalizer, or any other of the objects.

7.4 Theoretical Analysis

In this section, we will show that the proposed scheduling technique is optimal with respect
to the Tunning time, that is, we will show that the running time satisfies equation 3.3. We
will also argue that the amount of space that is used by a parallel chart parser roughly equals
that of the sequential version.

To prove that the running time of our scheduler is bounded by O(T1/P) + T, we will
show our scheduler is an instance of a greedy scheduler. This basically, means we will
show that all threads will always process work as long as work is available at any of the

TFor Deltra the item and set pair are put on the agenda, and the expansion is postponed.

7.4 Theoretical Analysis 99

threads. To this extent, we need to consider the delay that can be caused by the randomized
stealing algorithm. There are two factors that determine the success of a steal attempt. First,
a thread should select a non-idle thread to steal from. Because a thief is not allowed to
select itself, the probability of selecting a victim with work is 1 in case there is only one
thief. Therefore, as long as sufficient work is available, it is unlikely that there will be many
thieves. Second, the locking attempts should be successful. Because thieves do not wait
for locks of victims to be released, it is possible for the victim to thwart a stealing attempt
of the thief. Nevertheless, considering that a thief attempts to steal work from more than
one queue, the probability of a thief being continually thwarted is very small. In the further
discussion, we will assume that work can be stolen in O(1) time.

Theorem 7.3 On a computer with P processors, algorithm SCHED will run any parse
represented by a task dependency graph (T, E,W) in O(T1/ P) + T time, assuming that
STEAL will steal work in O(1) time.

Proof. We show that SCHED falls into the class of greedy schedulers, and that the schedul-
ing algorithm itself does not incur more than a constant overhead. To prove SCHED is a
greedy scheduler, we need to show that no thread can be idle as long as there is any thread
that still has queued work. If a thread ¢ becomes idle while there are still other threads with
work, STEAL is given to steal at least some of this work in constant time. In this case, t
will resume processing the innermost loop within one iteration of the outermost loop. Since
STEAL itself steals in constant time, the total time cg for stealing work after becoming idle
is constant.

Now, STEAL will ensure that the thief will execute at least one of the stolen tasks. This
means that the total number of successful steals is bounded by the number of tasks. The
total amount of overhead from stealing is therefore bounded by ¢s|7|. In addition, each
iteration of the innermost loop incurs an additional overhead of ¢ 1. Each iteration, at least
one task is executed. Therefore, the total overhead of this loop is bounded by ¢f|T|.

The total running time is now bounded by the running time for greedy schedulers plus the
overhead: 3,1 (c1+cs)W (8)/P+Too = (c1+¢5) Yyeqr W(t)/P+Ts = O(T1/P)+
T]

For the analysis of the space requirements, we consider both the size of the chart and the
size of the agenda. The space complexity is typically expressed in relative terms compared
to the one processor case. We denote the total space used in the one processor case as S
and the combined size in the P processor case as Sp. In both cases, we denote the size of
the chart or agenda alone as respectively S§ and S#, where P is the number of Pprocessors.
Finally, we use Sp,; to denote the space required by processor ¢ in the P processor case,
where Sp =3, . pSpa

Lemma 7.4 The toral size of the chart SS for a parsing run using SCHED, where P is the
number of processors, is equal to S .

Proof. With SCHED, a derived item is only stored by one thread. Since all items are
recorded, it trivially follows that the total space required to store all items is independent of
the number of processors. O

100 7 Design and Implementation of a Parallel Parser

The minimum space required for the agenda is determined by the maximum number of tasks
that are on the agenda at any point in time during parsing. This number greatly depends on
the order of evaluation of the agenda entries. Since the order of evaluation typically varies
for differing number of processors—or even between different P processor runs—it is hard
to make precise claims about the total space required in such scenarios. We can, however,
make such claims if we put restriction on the order of evaluation. Consider an agenda with
a depth-first, or stack-based, evaluation strategy.

Lemma 7.5 When SCHED is used for a P processor run in combination with a parser
using an agenda with a stack-based order of evaluation policy, the total space Sﬁ required
for the agenda is bounded by P - S{t, where S is the space required in the one processor
case.

Proof. Because the search space will be traversed in a depth-first order, the size of the stack
in the one processor case will be bound by the derivation tree depth d (which was defined
as the number of match tasks on the critical path). Obviously, in a multiprocessor setup, no
processor can exceed this bound. In the worst case, however, each processor may reach this
bound. O

Theorem 7.6 When SCHED is used for a P processor run in combination with a parser
using an agenda with a stack-based order of evaluation policy, the total space Sp is bounded
by PS1, where S is the space required in the one processor case.

Proof. Follows trivially from Lemma 7.4 and 7.5. ()

As the size of the chart typically dominates the space requirements, however, the space
requirements will typically be closer to O(S}).

7.5 Empirical Analysis

As we saw in Chapter 6, the performance of the sequential version of Cali is comparable
to that of PET. In addition, measurements show that the single-processor parallel version of
Cali incurs an overhead of less than 1% relative to the sequential version of CaLi.

The first set of experiments consisted of running the fuse test suite on a SUN Ultra Enterprise
with 8 nodes, each with a 400 MHz UltraSparc processor with 8 MB cache, for a varying
number of processors. Table 7.1 shows the results of these experiments.® The execution
times for each parse are measured in wall clock time. The time measurement of a parse is
started before the first thread starts working and ends only when all threads have stopped.
A disadvantage of using wall clock time is that it also measures the time when a thread
was not running, for example, when it was swapped out by the operating system. It is not
possible, however, to measure cpu cycles in a similar fashion. In addition, measuring cpu
cycles on a per thread basis yields unreliable results, as measuring on a per thread basis does
not guarantee that the recorded work was actually executed simultaneously.

8Because the system was shared with other users, only 6 processors could be utilized.

7.5 Empirical Analysis 101

[P] Tp(s) [speedup |

1{1599.8 1
2| 8175 1.96
3| 5782 2.77
4| 4559 3.51
5| 3903 4.10
6| 3380 4.73

Table 7.1 Execution times for the fuse test suite for various number of processors.

The fuse test suite contains sentences of various complexity, including a lot of small sen-
tences that are hard to parallelize. Table 7.1 shows that even under these conditions it is still
possible to obtain a considerable overall speedup.

The second set of experiments were run on a SUN Ultra Enterprise 10000 with 64 200 MHz
UltraSparc processors and 10GB of main memory. To limit the amount of data generated by
the experiments, and to increase the accuracy of the measurements, we selected a subset of
the sentences in the fuse suite. The parser is able to parse many sentences in the fuse suite in
not much more than a couple of milliseconds. Measuring speedup on a per sentence basis is
inaccurate in these cases. We therefore eliminated such sentences from the test suite. From
the remaining sentences we made a selection of 500 sentences of various lengths.

The results are shown in Figure 7.6. The figure includes a graph for the maximum, mini-
mum, and average speedup obtained over all sentences. The maximum speedup of 31.4 is
obtained at 48 processors. The overall peak is reached at 32 processors where the average
speedup is 17.3. Analysis of the measurements indicate that the drop in speedup after 32
processors is caused by overhead in the scheduling algorithm. The minimum speedups of
around 1 are obtained for sentences (often short ones) that contain too little inherent paral-
lelism to be parallelized effectively. Table 7.2 shows the average execution times grouped
by input length.

Figure 7.6 also shows a graph of the parallel efficiency, which is defined as speedup divided
by the number of processors. The average efficiency remains close to 80% up until 16
processors. Note that super linear speedup is achieved with up to 12 processors, repeatedly
for the same set of sentences. Super linear speedup can occur because increasing the number
of processors can also improve cache behavior. As more processors are used, the amount of
data handled by each node reduces. This reduces the chance of cache misses.

In conclusion, we showed that there is sufficient parallelism in parsing computations and
presented a parallel chart parser for LinGO that can effectively exploit this parallelism and
so achieve considerable speedups. Also, the presented techniques do not rely on a partic-
ular parsing schema or grammar formalism, and can therefore be useful for other parsing
applications. We therefore believe that the presented techniques provide a good solution to
improve the performance of applications where responsiveness is crucial.

102 7 Design and implementation of a Parallel Parser

40
35 p
30 .t .ctqi_‘
g 25 A -
3 20 ‘/",
2 15 .
10
5 |
0
0 8 16 24 32 40 48 56 64
processors
[—0— average ——maximum - - - - - - ideal ——&— minimum]
14
- 1.2

‘k::::':k

0.8

06 & \1\%\
0.4 ~_ -
0.2 ~—&t . ;

0 1 1 T

0 8 16 24 32 40 48 56 64
processors

parallel efficienc

Figure 7.6 Average, maximum, and minimum speedup and parallel efficiency based on a test set of 500
sentences.

e e — L

7.5 Empirical Analysis 103
sentence lengths
1-10 11-20 21-30 30+ all

P || Tp(s) | S | Tr(s) | S | Te(s) | S | Te(s) | S | Te(s) | S

1 348 [1.0 | 14654 | 1.0 704.0 1.0 | 107.3 1.0 | 2311.5 1.0
2 169 | 2.1 7292 1 2.0 | 3486 20 549 (20] 11496 | 2.0
4 94 | 3.7 383.8 | 3.8 1833 | 3.8 29.3 37| 6058 38
6 66 | 5.3 2618 | 56| 1224 | 5.8 199 | 54| 4107 | 5.6
8 52167 2037 7.2 9771 1.2 175 1 6.1 3242 | 7.1
12 55|64 1496 | 9.8 699 | 10.1 13.5 80| 2384 | 9.7
16 36197 1133 | 129 63.7 | 11.1 12.5 8.6 | 193.0 | 120
24 35199 89.6 | 16.3 385 | 18.3 6.6 | 16.2 138.2 | 16.7
32 5.7 1 6.1 8371 17.5 43.8 | 16.1 561190 1389 | 16.6
40 109 [32| 2594 | 5.6 499 | 14.1 59 183 3260 | 7.1
48 109 | 32| 2074 | 7.1 806 | 8.7 9.5 | 11.3 | 308.5 7.5
56 117 { 3.0 { 308.1) 4.8 | 1252 | 5.6 9.7 | 11.1 | 4546 | 5.1
64 196 | 1.8 [4040 3.6 1588 | 44 12.7 84 | 595.1 3.9

Table 7.2 Execution times for the 64 processor experiments, grouped by input length.

104

7 Design and Implementation of a Parallel Parser

Chapter 8

Optimizing Cache Performance

In this chapter, we explore the possibilities for optimizing cache performance of parsers.
Improving the cache performance reduces the stress on the memory bus. This can be crucial
in obtaining the desired performance for multiprocessor implementations. In Chapter 6,
we already showed how to reduce the memory requirements for unification algorithms, and
showed how this lead to improved cache utilization for the Deltra parser. In this chapter, we
will show that optimizing cache performance can reduce the number of interference misses
further by 50%.

8.1 Introduction

For many sequential applications, improving cache utilization can considerably increase
performance. However, efficient use of the cache can even be a more important issue for
applications for shared-memory multi processors. The memory bus typically has a limited
bandwidth, independent of the number of processors. When too many processors want to
communicate with the shared memory simultaneously, the bus can become congested and
the processors will be stalled. Improving the cache utilization of processors can mitigate
this problem, as processors will be able to perform computations locally in cache more
frequently.

We will focus on improving the cache behavior of the Deltra parser. Initial experiments
showed that CaLi already achieved low cache miss rates. One of the reasons for this could
be the high percentage of structure sharing that is obtained. With the Deltra parser, on the
other hand, cache utilization leaves sufficient room for improvement. We will present two
approaches to improving cache behavior of Deltra, each of which we will briefly discuss
next.

Unification Algorithms The choice of unification algorithm can have a significant im-
pact on the memory bus utilization. In Chapter 6, we introduced two unification algorithms
that considerably reduced memory utilization of feature graphs by separating the scratch
fields from the graph structures. Obviously, a reduction of the graph size immediately re-
duces the bus traffic required to read a graph from memory. In addition, separating the
scratch fields from the feature structures makes graphs read-only. Temporary changes are
recorded in a dedicated buffer. This has the effect of reducing write back traffic.

To improve the spatial reuse of parsers, we also need to look at the feature structure TEp-
resentation. The size of a node of the feature structure used in the unification algorithms
presented in Chapter 6 is typically much smaller than the size of a cache line, while the

105

106 8 Optimizing Cache Performance

size of a complete feature structure typically exceeds this size. Spatial reuse could typi-
cally be improved by storing the data of a feature graph in the order in which it is typically
referenced by the unification algorithm. In this chapter, we will investigate this possibility.

Order of Evaluation Parsing of natural language typically requires vast amounts of
memory. In addition, it often occurs that the same set of items is visited repeatedly and in
the same order. The combination of these two facts makes parsing applications a candidate
for suffering from capacity misses.

Consider the following simplified example. Suppose we are matching each item in a set
of newly derived items with the same set of existing items. The newly derived items are
stored in a contiguous chunk of memory of size mC/a, where C is the cache size, a the
associativity of the cache, and m a positive number. In addition, the set of existing items are
stored in a contiguous chunk of memory of size nC/a, where n > a. We assume that each
chunk of memory of size C/a stores (3 items. Finally, we assume that when iterating over
a set, all items in the set will be processed in increasing order of memory address and that
each reference of an item requires the entire item to be loaded. Consequently, the number
of compulsory misses is equal to the number of cache lines in both chunks of memory:
(m + n)C/aLl, where L is the cache line size.

In the presented scenario, a straightforward control structure can easily lead to capacity
misses. Suppose we process all matches for each newly derived item at once. This means we

will iterate m/3 times over the set of existing items. Since the set of existing items is accessed -

in increasing order and given that the referenced memory is at least (a + 1)C/a bytes, the
first items of the set will have been completely flushed out of the cache by the time the entire
set has been referenced. In other words, the entire set has to be reloaded into the cache on
each iteration. Hence, the total number of capacity misses will be (mg3 — 1)nC/aL.!

As we discussed in Section 3.4.2, blocking is an effective technique to reduce capacity
misses. In the presented example, a possible blocking strategy would be to iterate over the
existing items per block of b3 items at a time, where b < a. Obviously, in this scenario, we
eliminate all capacity misses resulting from iterating over the set of existing items. On the
other hand, we will need to iterate over the set of newly derived items [] times. Assuming
that m > (a — b)—guaranteeing that the newly derived items are flushed after processing
each block—the number of interference misses is now m([%] — 1)C/aL. In this particular
example, blocking can reduce the total number of misses with approximately a factor of 3b.
Suppose m = n = 6, § = 20, and a = 4. In this case, choosing b = 3 leads to a 119 times
reduction in the interference misses.

Obviously, the example sketches a highly idealized example and merely serves the purpose
of clarifying the problem. Although items belonging to the same set are often stored in
increasing order of memory address, they are typically not stored in a contiguous chunk of
memory. In addition, feature structures are often not required to be completely loaded into
memory. In Section 8.2, we will present a more realistic model.

1'We do not count the misses that were already counted as compulsory misses.

8.2 Model 107

8.2 Model

In the blocking example we assumed that all items belonging to the same set are stored con-
tiguously. In practice, this is not the case. As we discussed in Section 2.3.2 and 7.3.2, items
can belong to multiple sets, or categories. In addition, it is simply often more convenient to
store all items in the same memory region. It is, however, safe to assume that all items of
a set can be accessed in increasing order of memory. For now, we will also assume that all
data associated with an item will be loaded into cache each time it is referenced.

In this section, we will present a model that helps in the understanding of how the non-
contiguous storage of items affects a possible blocking strategy. The approach to modeling
cache performance was influenced by the research of Harper et. al. (1998, 1999), which
presented a convenient way of counting cache misses for loop nests over structured arrays.

8.2.1 Memory Layout

In the example of blocking presented in the previous section, we expressed the size of a set
of items in multiples of C/a, where C was the size and a the associativity of the cache. A
block of size C/a is the largest possible contiguous block of memory such that all memory
lines map to a different cache line set in the cache. This characteristic makes it a convenient
measure for analyzing cache performance. Note that each block of size C /a contains C/al
memory lines, where L is the cache line size.

To model the memory reference patterns that result from iterating over a specific set of
items, we still assume the set is stored in a number of blocks of size C/a. However, we
associate each block with a footprint vy € {0,1}¢/2, which indicates, for each cache
line in the respective block, whether it will be referenced (1) or not (0). We write 1(z) to
reference the i cache line of a footprint 1. In addition, we write W,, as a shorthand for a
sequence ¥, ..., of footprints. A subsequence ¥/, ... of a sequence of footprints ¥,
is denoted ¥(a, b).

Using this model, the memory that is referenced by a set of items can be represented by a
sequence of footprints. By counting the number of referenced cache lines, we can easily
derive the number of compulsory misses that result from iterating over the set. Given a
sequence of footprints ¥,,, the total number of compulsory misses S (¥,,) is defined as
S S)

A sequence of footprints can also be used to determine the number of interference misses af-
ter each repeated iteration by counting the number of cache lines that map to sets in the cache
with more than g elements. To this extent, we define the function & : ({0, 1}€/2£)+ — N
as follows

ClaL n . n .
-3 D) X (i) > a
(D(‘Iln) N = {0 ! otl:erwise. @D

® takes as an argument a sequence of footprints and returns the number of interference
misses that would result after each repeated iteration over the set represented by the foot-
prints. Obviously, ®(¥,) < S(¥,) holds. Note that this model counts both capacity and

108 8 Optimizing Cache Performance

conflict misses. In the following discussion we will often not differentiate between these
types of misses and simply refer to them as interference misses.

In parsing, a loop over a set of items typically involves another source of data, e.g. an-
other item against which the items in the set are matched. Because this will be loaded
into the cache as well, looping over a set of items can yield more interference misses
than are given by Equation 8.1. The additional interference misses are given by a func-
tion ® : ({0,1}€/2£)* x ({0,1}€/2£)* — N, which is defined as follows.

crac [X1 %i(@) Yj—1¥;(i) <aand
(U, W)= > S i)+ S @) >a 6

=1 10 otherwise

Since the purpose of the analysis is only to derive the number of interference misses when
loading ¥, we do not count any possible misses resulting from loading the data represented
by ¥’; we require cache misses resulting from loading ¥’ to be counted separately. In
addition, we do not count any of the misses that were already counted in Equation 8.1. This
strict separation gives us a more precise idea of which effects cause interference misses.
More importantly, it allows us to eliminate terms if certain constants, such as the block size
in a blocking strategy, are chosen properly.

In the remainder of the discussion we will assume that the associativity a of a cache is
greater or equal to 2. In addition, we will assume that all items fall within the boundaries
of a footprint and that no item consumes more space than C /a These assumptions greatly
simplify the model.

8.2.2 Cache Miss Equations

Given the representations of sets of items in memory, we can investigate the effect of apply-
ing a blocking strategy. Suppose we have two sequences of items, Z and .7, each containing
respectively |Z| and | 7| items. The items in each of the sequences are sorted in increas-
ing order of memory address. All items of sequence 7 need to be matched with the items
of sequence Z. Both sequences are associated with a sequence of footprints, respectively
WZ and U7, to represent the storage pattern of the items in memory. In addmon we use
the notation ¥Z(® to indicate the sequence of footprints corresponding to the i item of
sequence 7.

Analogous to the example given in the introduction, we will consider a simple loop nest
and a loop nest with blocking. Both strategies are shown in Figure 8.1. In the conventional
approach, the outermost loop iterates over the items of 7 and the innermost loop iterates
over the items of Z. In the blocking approach, we process the items of sequence Z per b
blocks of size C/a. Obviously, in both cases the total number of compulsory misses for
performing all matches is simply given by S(¥Z) + S(¥Z).

To count interference misses we should evaluate for each reference of a cache line whether
it will cause a hit or a miss. We do not need to count any misses for the items of .7, because
we can safely assume that each item in set J will remain in cache until all operations on the

8.2 Model 109

| Conventional | Blocking |
forj=1...|7]do fork=1...[%]do
fori=1...|7| do forj=1...|7|do
Priy.70)- fori=08(k—1)+1...b8k do
Priy,70)-

Figure 8.1 Conventional loop nest and equivalent loop nest with blocking, assuming that each block
contains 3 items.

item have completed.? The misses resulting from referencing the items in 7 is given by

|71-1
(T -1)@(T7) + > (VL w70y, 8.3)

=1

The first term corresponds to the result of the simplified blocking example given in the
introduction. Because we now allow for non-contiguous storage of items it is possible that
items from 7 remain in cache even when n > a. We therefore need a second term to count
the cases where interference misses are caused by loading items other than those of Z. For
large n we may suspect that (¥Z) ~ S(¥Z). In this case, the second term does not
contribute to the total number interference misses.

The interference misses for the blocking strategy can be obtained analogously. Assuming
that b < a the total number of interference misses caused by the presented blocking strategy
is given by

[g1-1
([%1 —1)3(¥7) + FZ (W7, W (b(i — 1) + 1, bi)). 8.9)
=1

The first term corresponds to number of interference misses obtained with the blocking
strategy of the example given in the introduction. Also in this case the second term can be
neglected when (V) ~ S(¥7).

If we reverse the two loops of the conventional loop nest, the first term of the cache miss
equation becomes (|Z|—1)®(¥). Comparing this to the first term obtained with the block-
ing strategy, we can easily see that blocking can yield a |Z] — 1 : % — 1 improvement over
a conventional strategy, and that the blocking argument s still valid for iterating over non-
contiguous chunks of data, provided that m and n are sufficiently large. The effectiveness
of blocking is mainly reduced by the fact that non-contiguous storage of items reduces the
number of items per block.

2Under the assumption that a > 2.

110 8 Optimizing Cache Performance

8.2.3 Choosing the Right Value for b

One possible way to reduce the term ([%] —1)®(¥7,) is to increase b beyond a. If there are
relatively large gaps between the successively stored items, then choosing b < a can yield
a waste of cache capacity. In such a case, choosing b to be slightly larger than a will hardly
yield additional interference misses.

Consider the blocking strategy presented in the previous section. If we allow b to be greater
or equal to a, we need to introduce the following additional terms.

[£1 [71-1
> ((|j|—1)<I>(\I!I(b(z'—1)+1,bi))+ 3 (Wb — 1) + 1,b0), ¥ D))

i=1 j=1
(8.5)

These terms correspond to the interference misses incurred by the innermost loop of the
blocking strategy. Obviously, if b = a the first term will be zero. Note that if b is chosen to
be n, the sum of Equation 8.4 and 8.5 reduces to Equation 8.3.

To give an idea of how choosing b > a influences the number of interference misses, we give
the following example. Consider a sequence of footprints ¥,,, where where the probability
that a cache line will be referenced is uniformly distributed with a probability of p. We
assume that all events of referencing cache lines are independent of each other. We want
to know the expected value for (¥,), assuming that n > a. We define X to be the
variable indicating the number of memory lines mapping to some cache line set. Since all
probabilities are independent, we are performing a Bernoulli trial. The probability Pr{X =

k} is therefore given by n p*(1 — p)™*. For each cache line set, the expectation is
k

equal to the expectation for the Bernoulli trial, minus the a + 1 terms for the cases where
the number of cache lines that map to the respective set is smaller or equal to a.

Z k('Z)pk(l_p)n—kznp_Zk(:)pk(l—p)n—k (8.6)
k—atl k=1

It holds that,

;k (1,:)p’“(l -p)"F< a’g (Z)p"(l —p)"k =aPr{X <a}. 8.7

We can therefore give np — aPr{X < a} as a lower bound for the expectation value for
X. Since we defined all probabilities to be independent, we can obtain the expectation for
&(¥,,) by multiplying it with the number of cache line sets in the cache. The bounds for
&(,,) are given by the following inequality.

®(¥,) > (np —aPr{X < a})C/aL. 8.8

Now, compare the first terms of respectively Equation 8.4 and Equation 8.5. As we men-
tioned, these are typically the most dominant terms. From Equation 8.5 it is clear that

8.3 Optimizing Spatial Reuse 111

Figure 8.2 Alternative ordering of arcs and nodes of feature structures to improve spatial reuse.

all additional interference misses caused by increasing b are heavily penalized by a factor
of | 7| — 1. It should be carefully weighed whether these additional misses are compensated
by the reduction of the factor [#] — 1 Obviously, the total benefits can vary considerably
from case to case. It should be clear, though, that the possibilities for choosing b > a,
without increasing the interference misses, are limited.

8.3 Optimizing Spatial Reuse

Because feature structures typically occupy more than one cache line, possibilities for opti-
mizing spatial reuse can best be investigated at the level of the representation of such feature
structures.

With Deltra, feature structures are defined to be of a fixed arity, that is, a fixed number of
features. A common way to store such feature structures in memory is to store the references
of all its arcs right after the node. Most operations on feature structures, however, typically
process a graph in a depth first order. The equality check, for example, that is used in Deltra,
always processes graphs in a depth first manner. The unification operation largely processes
graphs in depth first order unless a subgraph of one graph can be skipped because it can be
unified with a variable of the other graph. In a fixed-arity representation, the data of a graph
is therefore stored in a different order than typically accessed. In case of a failing unification
or equality check, this can lead to redundant loading of arcs.

Suppose for example that a unification fails on the first leaf node of a graph and that four
nodes, each with five features, were visited before this leaf node was reached. For each of
these four nodes, only one arc was used to reach the leaf node. This means that, in this
particular case, sixteen arcs were loaded unnecessarily.

To prevent the redundant loading of arcs, we define an alternative representation where all
nodes and arcs are stored in the same order as they are referenced in a depth first traversal.
Figure 8.2 shows an example of a graph and both its conventional and alternative represen-
tation. With the alternative representation, a depth first traversal will cause nodes and arcs
to be referenced in increasing order of memory location. The obvious exception to this rule
is when a graph contains reentrancies.

The alternative representation is especially effective in optimizing spatial reuse of an equal-

112 8 Optimizing Cache Performance

ity check. As mentioned before, with the unification operation, parts of the graph may be
skipped. With equality checks, however, the graphs are guaranteed to be referenced in a
depth first manner. Since the equality check is a frequently occurring operation in a typical
Deltra parse, we can expect that the alternative ordering can improve spatial reuse.
According to the model presented in the previous section, increasing the spatial reuse can
have the additional benefit of increasing temporal reuse. Assuming that a feature structure
occupies the same amount of memory regardless of the representation, increasing the spatial
reuse typically also reduces the number of cache lines that need be loaded if only part of the
graph is referenced. Increasing spatial reuse can therefore lower p and reduce the probability
of interference misses occurring.

8.4 Blocking Strategies

In this section, we will present two different blocking strategies. Both strategies exploit the
freedom in the order of evaluation of parsing steps to improve cache utilization. The design
of both strategies has been kept simple lest the overhead of the implementation defeats the
benefits of the improved cache utilization.

8.4.1 Simple Blocking

Deltra uses a single contiguous buffer to store all items. The chart is organized such that
items belonging to the same category are linked by a linked list. Because new items are
always added to the end of the buffer, items in the linked list are sorted in increasing order
of memory address.

A straightforward approach to blocking is to divide the item buffer into fixed size blocks and
group operations defined on these blocks. We will call this strategy simple blocking. With
simple blocking, each block is associated with its own agenda. Obviously, the resulting
number of agendas can become large. To keep track of which agendas contain work, a
list of non-empty agendas, or an agenda of agendas, needs to be maintained. The order
in which non-empty agendas are processed can be of importance. To promote reuse one
can, for example, process the agenda with the most queued operations. Note that it is
straightforward to define a block size such that the block in which an item is stored can be
derived from the item’s address.

Obviously, a unification operation is defined on two input graphs. When the input graphs are
stored in two different blocks, we need to make a choice which block to associate the work
with. As we discussed in Section 2.3.1, the Deltra parser defines an entry on the agenda as
a set of operations where one newly derived item is to be matched and unified with a list of
existing items. To avoid having to expand the operations, such an agenda entry can best be
associated with the block that contains the first item of the list of existing items. The first
items in the list of existing items are likely to be in the same block. When iterating over
the list leads to an item outside the block, processing of the rest of the list can be postponed
by putting an agenda entry for the remaining work on the agenda of the block in which the
respective item is stored.

8.5 Results 113

| cache | Clal

a 8K | 4
b 16K | 2
c 32K | 4
d 256K | 4

Table 8.1 The four different cache configurations used in our experiments.

8.4.2 Categorized Blocking

A disadvantage of the previous approach is that by grouping operations per block, it is not
possible to exploit the empty space between items in one set by using block sizes larger than
the cache. Since with simple blocking the operations are not strictly ordered per category
of items, it is likely that a large proportion of the items in a block is loaded into cache.

With categorized blocking we hope to increase reuse by grouping operations defined on
the same set of items. In essence, categorized blocking is very similar to simple blocking.
Instead, though, of grouping work per region of the buffer of items, we associate work with
a predefined category, such as tabular chart cell or a grammar rule.? Similarly to simple
blocking, the agenda entries are kept sorted per block.

By grouping operations defined on the same category of items, we automatically exploit the
small footprints of each list of items. We still apply blocking in a similar fashion to simple
blocking. This prevents capacity misses in case the items in a list follow each other closely
in memory. However, whenever new work is assigned to a previously processed block of
the same category, we process this work first before processing any other block. Because
the blocks are processed per category and can be expected to leave a small footprint on
the cache, it is likely that data loaded in previous blocks is still in the cache. Categorized
blocking can be said to combine locality grouping with blocking.

Categorized blocking can also have the effect of grouping related items in memory when we
use, for example, per rule categories. With Deltra, a considerable amount of the deduction
steps involve solely items defined on the same rule. This means that grouping items defined
on the same rule also has the effect that items of the same group are stored in memory
successively. In turn, this can improve the benefits of blocking.

8.5 Results

The cache performance of different algorithms can be effectively compared by counting
the number of interference misses. The interference misses directly correspond to traffic
between memory and cache. In addition, by not counting compulsory misses, we ignore the
traffic that is irrelevant to cache optimizations.

3Categories can be defined analogously with the rule-based and tabular chart cell-based grouping heuristic
presented in Section 5.3,

114 8 Optimizing Cache Performance

=~ 14000

g 1200 |

x
10000 1

-g 8000 1 M Conventional
6000 1 01 Spatial optimization
4000 1
™ u

LI

cachea cacheb cachec cached
Cache configurstions

Figure 8.3 Number of interference misses for different feature structure representations and cache
configurations.

To measure the interference misses of an algorithm we implemented a configurable cache
simulator. The cache simulator simulates a set associative cache with a LRU replacement
policy. It can be set to an arbitrary cache size and associativity. Table 8.1 shows the differ-
ent cache configurations that we have simulated in our experiments. To make the simulation
work, the simulator should be told the size and address of the data referenced during pro-
cessing.

We are only interested in traffic resulting from loading and storing of items and associated
feature structures. We therefore only simulate references to the nodes and arcs of the feature
structures and other structures used to represent items. Because we ignore the use of other
data, such as control structures, the simulation cannot derive all interference misses. How-
ever, by doing so, we ensure that the interference misses are a result of the chosen strategy
and not an artifact of a specific implementation.

Figure 8.3 shows a comparison between the cache performance resulting from using a con-
ventional feature structure representation and a feature structure representation optimized
for spatial reuse. The optimized representation produces slightly larger feature structures.
Nevertheless, as can be seen from the figure, the optimized representation can reduce the
number of interference misses by over 10%. The best results are obtained with smaller
cache sizes. With the larger cache size, the benefits of the optimized representation are
diminished. In this case, the slightly increased feature structure size causes it to perform
slightly worse. When comparing the execution times for the two algorithms, using an iden-
tical setup as with the measurements presented in Section 6.4.2, the spatial optimization
resulted in a speedup of several percent. The reduced interference misses could be an ex-
planation for this speedup.

Figure 8.4 shows the results of measuring the interference misses of different evaluation
strategies. The results include measurements of an implementation of the simple block-
ing, categorized blocking, and two conventional approaches, using a FIFO and stack-based
agenda. The FIFO and stack-based approach represent, respectively, a breadth-first and
depth-first order of evaluation. We also included a version of categorized blocking, where
we omitted the blocking by setting the block size to infinite. This allows us to inspect the
effect of the locality grouping in isolation.

8.5 Results 115

,g 12000
& 1o BFIFO
F

8000
g M Depth first
£ 6000 O Simple blocking
8] B Categorized w/o blocking
§ £3 Categorized blocking
§ 2000 -
® 0

cachea cacheb cachec cached
Cache configurations

Figure 8.4 Number of interference misses for different evaluation strategies and cache configurations.

The stack-based agenda consistently yields fewer interference misses than the FIFO agenda.
A task is typically created as the resuit of the derivation of a new item. Therefore, at the
time of creation of an agenda entry, at least one of the items referenced by the entry typically
indicates a recently used item. With the stack-based approach the entries on the agenda are
sorted in the order of most recently generated task to least recently generated task. With a
FIFO strategy, this order is exactly the reverse. With the stack-based approach, it is therefore
more likely that the items involved in a task are still in cache at the time of execution.

With the stack-based approach, capacity misses are still possible. With the simple blocking
approach, these effects can be eliminated. On the other hand, the simple blocking strategy
may cause a task to be considerably postponed when the task is queued in another block
than the block that is being processed at the time of creation. The simple blocking strategy
may therefore also cause some reuse to be missed compared to the stack-based strategy. In
Figure 8.4, we can sec that the simple blocking strategy yields less interference misses than
the stack-based strategy for the smaller caches, whereas for larger cache sizes, it performs
worse. Obviously, the problem of capacity misses is less urgent for larger cache sizes. This
causes the balance to shift for larger cache sizes.

Another problem with the simple blocking strategy is that often no more than two items per
block were processed at a time. The memory requirements of Deltra are fairly moderate. In
addition, Deltra uses a very fine-grained indexing structure. Consequently, the number of
items in a set of items, and the amount of data required to store such a set, is often limited.
Obviously, blocking can not be very effective when the number of iterations and the amount
of data involved in a loop is limited, because no capacity misses can occur. We expect that
simple blocking can still be effective for parsers with a bigger memory footprint.

The categorized blocking strategy proved to be the most effective. Considering differences
between the blocked and non-blocked versions, the locality grouping effect has the most
influence on the reduction of interference misses. Grouping per category guarantees a cer-
tain amount of reuse that is not guaranteed by the stack-based evaluation strategy; sorting
tasks in the order of their creation does not guarantee that they will be sorted per item cat-
egory. Categorized blocking yields over a 50% reduction in interference misses relative to
the FIFO strategy. From Figure 8.4 it can be seen that categorized blocking outperformed
an identical approach without blocking. The grouping of related operations also promoted a

116 8 Optimizing Cache Performance

grouping of related items in memory. This increased the number of items of a set contained
per block, which in turn had a positive effect on the effectiveness of the blocking strategy.

Chapter 9

Conclusions and Suggestions for
Future Research

In this thesis, we have shown it is possible to considerably speed up the parsing of natu-
ral language, with the use of shared-memory multiprocessing capabilities. By a thorough
analysis of the parsing process, we were able to identify several limitations for parallel
processing. Firstly, we showed that parallelism needs to be exploited at the level of individ-
ual unification operations, if unification is taken to be an atomic operation. Secondly, we
showed that the total amount of communication can be reduced considerably by applying
the right grouping heuristics. We used these results as guidelines for the the design of the
parallel parser.

The resulting parallel parser based on LinGO was able to achieve speedups of a factor of
over 30 with 48 processors. On average, the maximum speedup was 17 reached at 32
processors. The overall efficiency remains over 80% for up to 16 processors. Overall,
compared to the other approaches mentioned in Section 2.4, it seems that the strength of
our approach lies in the high efficiency for smaller numbers of processors, high maximum
speedups, and ease and flexibility of implementation.

A drawback of our parser is that after the maximum speedup is reached, the speedup drops
for an increasing number of processors. In the ideal case, the speedup should remain con-
stant after a maximum speedup is reached. The reason for the drop is an increase in the
overhead of the scheduling algorithm for an increased number of processors. One of the
problems is that both the number of iterations of the outer loop of our scheduling algorithm
(Figure 7.2) and the total number of steal attempts increase for larger numbers of processors.
This is especially the case when the total amount of work is limited relative to the number of
processors. Obviously, this increases the total work for larger number of processors causing
the speedup to decline. Another factor is the fact that each derived item is traversed by each
processor, causing an order O(P) overhead per item. Although this overhead is very small,
it does contribute to the decrease in speedup for increasing numbers of processors after the
maximum speedup is reached.

An interesting topic for future research is to find ways to reduce this decline in speedup
for large numbers of processors. One possible approach for limiting the overhead is to
reduce the O(P) overhead for checking each item. One possibility is to let each thread
handle a particular subset of items such that always only a subset of foreign items need to
be checked. An example of such a distribution is to let each thread handle one or more
cells of a tabular chart. In this case, a thread would only have to check items in neighboring
cells. From the experiments presented in Chapter 5, though, we know that using such a
distribution will likely result in more communication. The parallel parser presented by

117

118 9 Conclusions and Suggestions for Future Research

Ninomiya et al. (2001) provides an example of how a tabular chart can be used to reduce
communication. In their approach, the overhead of processing an item is independent of the
number of processors. However, it appears as if the overall overhead is larger than with our
approach, especially for smaller numbers of processors. For smaller numbers of processors,
their parser does not achieve the same levels of efficiency.

Another possible approach is to use a stack-based work stealing approach, such as pro-
vided by the Cilk framework (Frigo et al., 1998), in combination with a depth-first search
strategy. With the stack-based work stealing approach taken by Cilk, the overhead seems
to be less dependent on the number of processors. However, Cilk only guarantees mini-
mal overhead for strict multithreaded computations, as described in Section 3.2.2. Because
synchronization of multiple threads through a centralized chart cannot be modeled within a
strict multithreaded computation, chart parsers fall outside this class. Consequently, a rather
expensive synchronization mechanism is required for the implementation of a shared data
structure such as a chart. Another drawback of the stack-based approach is that one does
not have the same flexibility in the order of evaluation of tasks as with an agenda-based
approach.

Considering the disadvantages of stack-based work stealing approaches for applications
like chart parsing, an interesting research topic would be to investigate the usefulness of the
scheduling approach presented in Chapter 7 for other applications that are like chart parsing
and fall outside of class of strict multithreaded computations. One can think of, for example,
applications using a blackboard or memoization techniques. As long as the majority of the
tasks can be made thread safe, we suspect that our technique can be useful for exploiting
parallelism in such applications.

Another possibility for further improvements of the parser is to further reduce the commu-
nication, or bus traffic, required for parsing. One topic of interest is to incorporate the cache
optimization, introduced in Chapter 8, into the parallel parser. Another possible research
topic is to further optimize the unification algorithm. Suggestions for further improvements
on the unification algorithm can be found in Section 6.6.

The results that we have obtained for our parallel parser were solely based on the use of the
LinGO and Deltra grammars. Typically, the possibilities for parallelism strongly depend on
the specific grammar being used. Although we have limited our research to the LinGO and
Deltra grammar, one may expect that the approach may be useful for exhaustive parsing
with other grammars. For instance, it is reasonable to suspect that the same approach may
work for other HPSG grammars,! especially if the size of grammar and dictionary are of
the same order of magnitude as those of LinGO. One might also expect, however, that our
approach will be useful to parallelize parsers that use other kinds of grammars. Another
popular grammar formalism, for example, is LFG. One difference is that typically far fewer
unifications fail when a LFG grammar is used. However, we saw that early detection and
preventing the execution of failing unifications with the quick check did not thwart the abil-
ity to obtain considerable speedups. Really, the only prerequisite for obtaining speedup is
that the average parallelism in parsings resulting from using any kind of grammar is suffi-
ciently large. If the average available parallelism is too small, it will not be possible to speed
up parsing by means of parallel processing, without resorting to parallel unification. If, on

IRemember that LinGO is a HPSG grammar.

119

the other hand, there is a sufficient amount of parallelism, our scheduling algorithm pro-
vides a way of exploiting this parallelism, because the work-stealing algorithm ultimately
allows each single unification task to be distributed independently. We hope that the step
by step approach from analysis to implementation, as we have presented in this thesis, will
prove to be useful as a guideline in accomplishing similar results for other parsers.

Besides researching the applicability of our parallel parsing technique in combination with
other grammars, it is also useful to investigate its usefulness for variations of chart parsing.
Many of the extensions to sequential chart parsing can be expected to work with our ap-
proach without much modification, as long as the added functionality can be processed in a
thread-safe manner. For example, the introduction of probabilistic parsing should typically
not pose a problem, because the computation of the probabilities is typically a thread safe
operation.

One possible complication arises if our technique is to be used for n-first parsing. With
n-first parsing, the tasks on the agenda are processed in the order of some assigned priority,
e.g. derived from the predicted probability. All our research focussed on exhaustive pars-
ing, where one aims at finding all possible parse trees. With exhaustive parsing, the use
of a distributed agenda is a convenient and efficient way of reducing synchronization and
communication. With n-first parsing, however, the use of a distributed agenda might pose a
problem, because it may cause the tasks to be processed in the incorrect order. This may ul-
timately lead to the processing of redundant tasks or even the derivation of less likely or less
preferable parse trees. In other words, n-first parsing might require the use of a centralized
agenda. Parallel n-first parsing remains an interesting topic for future research. Possible
research could focus on finding a way to use distributed agendas exploiting the remaining
freedom in the order of evaluation. The major goal of such an approach is how to prevent
executing tasks that would otherwise never be executed in a sequential setup. Another ap-
proach could be the implementation of an efficient centralized chart. Techniques to reduce
synchronization overhead in the case of a centralized agenda are discussed in Section 3.2.2.

120 9 Conclusions and Suggestions for Future Research

References

[Adriaens and Hahn1994] Geert Adriaens and Udo Hahn, editors. 1994. Parallel Natural
Language Processing. Ablex Publishing Corporation, Norwood, New Jersey.

[Aho et al.1974] Alfred V. Aho, John E. Hopcroft, and J. D. Ullman. 1974. The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading.

[Alshawil992] Hiyan Alshawi, editor. 1992. The Core Language Engine. ACL-MIT press,
Cambridge, Mass.

[Amtrup1997] Jan W. Amtrup. 1997. ICE: A communication environment for natural lan-
guage processing. In International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’97), Las Vegas, Nevada, USA., June. IEEE. Uni-
versity of Hamburg, Germany.

[Barnard and Simon1994] Stephen T. Barnard and Horst D. Simon. 1994. Fast multilevel
implementation of recursive spectral bisection for partitioning unstructured problems.
Concurrency: Practice and Experience, 6(2):101-117.

[Blumofe and Leiserson1993] Robert D. Blumofe and Charles E. Leiserson. 1993. Space-
efficient scheduling of multithreaded computations. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on the Theory of Computing (STOC *93), pages 362-371, San
Diego, CA, USA, May. Also in SIAM Journal on Computing.

[Blumofe and Leiserson1994] Robert D. Blumofe and Charles E. Leiserson. 1994,
Scheduling multithreaded computations by work stealing. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science (FOCS’94), pages 356368,
November.

[Brent1974] Richard P. Brent. 1974. The parallel evaluation of general arithmetic expres-
sions. Journal of the ACM, 21(2):201-206, April.

[Bresnan and Kaplan1982] Joan Bresnan and Ronald Kaplan. 1982. Lexical-functional
grammar: A formal system for grammatical representation. In Joan Bresnan, editor,
The Mental Representation of Grammatical Relations, pages 173-281. The MIT Press,
Cambridge, MA.

[Briscoe et al.1987] Ted Briscoe, Claire Grover, Bran Boguraev, and John Carrol. 1987. A
formalism and environment for the development of a large grammar of english. In John
McDermott, editor, Proceedings of the 10th International Joint Conference on Artificial
Intelligence, pages 703-708, Milan, Italy, August. Morgan Kaufmann.

[Callmeier2000] Ulrich Callmeier. 2000. PET — A platform for experimentation with effi-
cient HPSG. Natural Language Engineering, 6(1):1-18.

121

122 References

[Carpenter1992] Bob Carpenter. 1992. The Logic of Typed Feature Structures. Cambridge
University Press, Cambridge, England.

[Carroll1994] John Carroll. 1994. Relating complexity to practical performance in parsing
with wide-coverage unification grammars. In Proc. of the 32™¢ Annual Meeting of the
Association for Computational Linguistics, pages 287-294, Las Cruces, NM, June27-30.

[Copestake1999] Ann Copestake, 1999. The (new) LKB system, version 5.2. CSLI, Stan-
ford University.

[Cowie and Lehnert1996] Jim Cowie and Wendy Lehnert. 1996. Information extraction.
Communications of the ACM, 39(1):80-91, January.

[Dandamudil991] S. Dandamudi. 1991. A comparison of task scheduling strategies for
multiprocessor systems. In Proceedings of the Third IEEE Symposium on Parallel and
Distributed Processing, pages 423-426, December.

[de Vreught and Honig1989] J.P.M. de Vreught and H.J. Honig. 1989. A tabular bottom-
up recognizer. Technical Report 90-31, Delft University of Technology, dept. Computer
Science, Delft, Netherlands.

[de Vreught and Honig1991] J.P.M. de Vreught and H.J. Honig. 1991. Slow and fast par-
allel recognition. In 2nd International Workshop on Parsing Technologies (TWLT), Can-
cun, Mexico.

[de Vreught1993] J.P.M. de Vreught. 1993. Parallel Parsing. Ph.D. thesis, Delft University
of Technology, Delft.

[Dijkstra et al.1983] Edsger W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren. 1983.
Derivation of a termination detection algorithm for distributed computations. Informa-
tion Processing Letters, 16(5):217-219, June.

[Dijkstra1965] E. W. Dijkstra. 1965. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, September.

[Ding and Kennedy1999] Chen Ding and Ken Kennedy. 1999. Improving cache perfor-
mance in dynamic applications through data and computation reorganization at run time.
In Proceedings of the ACM SIGPLAN ’99 Conference on Programming Language De-
sign and Implementation, pages 229-241.

[Dowding et al.1994] J. Dowding, J. M. Gawron, D. Appelt, and J. Bear. 1994. Gemini:
A natural language system for spoken-language understanding. In Proc. ARPA Human
Language Technology Workshop ’93, pages 43—48, Princeton, NJ.

[Dwork et al.1984] Cynthia Dwork, Paris Kanellakis, and John Mitchell. 1984. On the
sequential nature of unification. Journal of Logic Programming, 1(1):35-50.

[edi1995] 1995. Editorial in natural language engineering 1(1). Cambridge University
Press.

References 123

[Emele1991] Martin C. Emele. 1991. Unification using lazy nonredundent copying. In
29th. Annual Meeting of the Association for Computational Linguistics, Berkeley, Cali-
fornia. Also available as: Project Polygloss Paper, Institut fiir Maschinelle Sprachverar-
beitung, University of Stuttgart, Germany.

[Flickinger et al.1987] D. Flickinger, J. Nerbonne, LA. Sag, and T. Wasow. 1987. Toward
evaluation of NLP systems. Technical report, Hewlett-Packard Laboratories.

[Frigo et al.1998] Matteo Frigo, Charles E. Leiserson, and Keigh H. Randall. 1998. The im-
plementation of the Cilk-5 multithreaded language. ACM SIGPLAN Notices, 33(5):212-
223, May.

[Fujioka et al.1990] T. Fujioka, H. Tomabechi, O. Furuse, and H. Iida. 1990. Parallelization
technique for quasi-destructive graph unification algorithm. In Information Processing
Society of Japan SIG Notes 90-NL-80. In japanese.

[Ghosh et al.1997] S. Ghosh, M. Martonosi, and S. Malik. 1997. Cache miss equations:
An analytical representation of cache misses. In Proceedings of the 11th International
Conference on Supercomputing (ICS-97), pages 317-324, New York, July 7-11. ACM
Press.

[Godden1990] Kurt Godden. 1990. Lazy unification. In 28t Annual Meeting of Associa-
tion for Computational Linguistics, pages 180-187, Pittsburgh.

[Gorz et al.1996] Giinther Gérz, Marcus Kesseler, Jorg Spilker, and Hans Weber. 1996.
Research on architectures for integrated speech/language systems in Verbmobil. In The
16th International Conference on Computational Linguistics, volume 1, pages 484489,
Copenhagen, Danmark, August5-9.

[Graham1969] R.L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM
J. Appl. Marh., 17(2):416-429.

[Grishman and Chitrao1988] R. Grishman and M. Chitrao. 1988. Evaluation of a parallel
chart parser. In Second Conf. on Applied Natural Language Processing, pages 71-76.
Association for Computational Linguistics, 9—12 February.

[Hahn1994] Udo Hahn. 1994. An actor model of distributed natural language parsing. In
Geert Adriaens and Udo Hahn, editors, Parallel Natural Language Processing. Ablex
Publishing Corporation, Norwood, New Jersey.

[Harper et al.1998] John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. 1998. Ana-
lytical modeling of set-associative cache behaviour. Technical Report CS-RR-349, Uni-
versity of Warwick, October 15,

[Harper et al.1999] J. S. Harper, D. J. Kerbyson, and G. R. Nudd. 1999, Efficient analytical
modelling of multi-level set-associative caches. Lecture Notes in Computer Science,
1593:473.

124 References

[Hendrickson and Leland1995] Bruce Hendrickson and Robert Leland. 1995. A multi-
level algorithm for partitioning graphs. In Sidney Karin, editor, Proceedings of the 1995
ACMIIEEE Supercomputing Conference, December 3-8, 1995, San Diego Convention
Center, San Diego, CA, USA, New York, NY 10036, USA and 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA. ACM Press and IEEE Computer Society Press.

[Hoogerbrugge and de Vreught1991] J. Hoogerbrugge and J.P.M. de Vreught. 1991. Par-
allel recognizing in practice. Technical Report 91-26, Delft University of Technology,
dept. Computer Science, Delft, Netherlands.

[Ibarra et al.1991] Ibarra, Pong, and Sohn. 1991. Parallel recognition and parsing on the
hypercube. IEEE Transactions on Computers, 40(6):764-770.

[J4J41992] Joseph JAJA. 1992. An introduction to Parallel Algorithms. Addison-Wesley.

[Kacsuk1990] Péter Kacsuk. 1990. Execution Models of Prolog for Parallel Computers.
Research monographs in parallel and dustributed computing. MIT Press, Cambridge,
Ma.

[Kaplan1973] R.Kaplan. 1973. A general syntactic processor. In E. Rustin, editor, Natural
Language Processing. Prentice-Hall, Englewood Cliffs, NJ.

[Karp and Zhang1993] Richard M. Karp and Yanjun Zhang. 1993. Randomized parallel al-
gorithms for backtrack search and branch-and-bound computation. Journal of the ACM,
40(3):765-789, July.

[Karttunen1986] L. Karttunen. 1986. D-PATR: A development environment for
unification-based grammars. Technical Report CSLI-86-61, SRI International and Center
for the Study of Language and Information.

[Karypis and Kumar1995] George Karypis and Vipin Kumar, 1995. METIS, Unstructured
Graph Partitioning and Sparse Matrix Ordering System, Version 2.0. Minneapolis, MN
55455, August.

[Karypis and Kumar1998] George Karypis and Vipin Kumar. 1998. Multilevel k-way par-
titioning scheme for irregular graphs. Journal of Parallel and Distributed Computing,
48(1):96-129, 10 January.

[Karypis and Kumar1999] George Karypis and Vipin Kumar. 1999. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Comput-
ing, 20(1):359-392, January.

[Kasamil965] T. Kasami. 1965. An efficient recognition and syntax algorithm for context-
free languages. Scientific Report AFCRL-65-758, Air Force Cambridge Research Labo-
ratory, Bedford MA.

[Kay1980] Martin Kay. 1980. Algorithm schemata and data structures in syntactic process-
ing. In Karen Sparck-Jones Barbara J. Grosz and Bonnie Lynn Webber, editors, Readings
in Natural Language Processing, pages 35-70. Morgan Kaufmann, Los Altos.

References 125

[Kay1985] Martin Kay. 1985. Parsing in functional unification grammar. In Lauri Kart-
tunen David R. Dowty and Amold M. Zwicky, editors, Natural Language Parsing, pages
251-278. Cambridge University Press, Cambridge.

[Kemnighan and Lin1970] B. W. Kemighan and S. Lin. 1970. An efficient heuristic for
partitioning graphs. Bell Systems Technical J., 49:291-307.

[Kiefer et al.1999] Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and Rob Malouf.
1999. A bag of useful techniques for efficient and robust parsing. In Proceedings of
the 37th Annual Meeting of the Association for Computational Linguistics (ACL-99),
pages 473-480, University of Maryland, USA.

[Kogure1990] Kiyoshi Kogure. 1990. Strategic lazy incremental copy graph unifica-
tion. In Proceedings of the 13th International Conference on C omputational Linguistics
COLING-90, volume 2, pages 223228, Helsinki, Finland.

[Kruskal and Weiss1985] Clyde P. Kruskal and Alan Weiss. 1985. Allocating indepen-
dent subtasks on parallel processors. IEEE Transactions on Software Engineering,
11(10):1001-1016, October.

[Lozinskii and Nirenburg1986] Eliezer L. Lozinskii and Sergei Nirenburg. 1986. Parsing
in parallel. Computer Languages, 11(1):39-51.

[Malouf et al.2000] Robert Malouf, John Carroll, and Ann Copestake. 2000. Efficient fea-
ture structure operations without compilation. Natural Language Engineering, 6(1):1-
18.

[Manousopoulou et al.1997] A.G. Manousopoulou, G. Manis, P. Tsanakas, and G. Pa-
pakonstantinou. 1997. Automatic generation of portable parallel natural language
parsers. In Proceedings of the 9th Conference on Tools with Artificial Intelligence (ICTAI
"97), pages 174-1717. IEEE Computer Society Press.

[Markatos and LeBlanc1992a) E. P. Markatos and T. J. LeBlanc. 1992a. Using proces-
sor affinity in loop scheduling on shared-memory multiprocessors. In IEEE Computer
Society. Technical Committee on Computer Architecture, editor, Proceedings, Super-
computing '92: Minneapolis, Minnesota, November 16-20, 1992, pages 104-113, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA. IEEE Computer Society Press.

[Markatos and LeBlanc1992b] Evangelos P. Markatos and Thomas J. LeBlanc. 1992b,
Load balancing vs. locality management in shared-memory multiprocessor. In Proceed-
ings of the 1992 International Conference on Parallel Processing, volume 1, Architec-
ture, pages I-258-1-267, Boca Raton, FL, August. CRC Press. Shared-Memory Mul-
tiprocessor Trends and the Implications for Parallel Program Performance TR 420 May
1992 $2.00; 28 pages; in pub/papers/systems.

[Matsumoto et al.1983] Y. Matsumoto, H. Tanaka, H. Hirakawa, H. Miyoshi, and H. Ya-
sukawa. 1983. Bup: A bottom-up parser embedded in prolog. In New Generation
Computing, volume 1, pages 145-158.

126 References

[Nederhof1993] Mark-Jan Nederhof. 1993. Generalized left-corner parsing. In 6th Meet-
ing of the European Association of Computational Linguistics (ACL), pages 305-314,
Utrecht, Netherlands.

[Neuhaus and Hahn1996] Peter Neuhaus and Udo Hahn. 1996. Restricted parallelism in
object-oriented lexical parsing. In Proc. of the 16th Int. Conf. on Computational Linguis-
tics, Copenhagen, DK, 5-9 Aug.

[Nijholt1991] A. Nijholt. 1991. Overview of parallel parsing strategies. In M. Tomita,
editor, Current Issues in Parsing Technology, chapter 14. Kluwer Academic Publishers,
Norwell, MA.

[Nijholt1994] Anton Nijholt. 1994. Parallel approaches to context-free language parsing.
In Geert Adriaens and Udo Hahn, editors, Parallel Natural Language Processing. Ablex
Publishing Corporation, Norwood, New Jersey.

[Ninomiya et al.1998] Takashi Ninomiya, Kentaro Torisawa, and Jun’ichi Tsujii. 1998.
An efficient parallel substrate for typed feature structures on shared memory parallel
machines. In Proceedings of the 17th International Conference on Computational Lin-
guistics and the 36th Annual Meeting of the Association for Computational Linguistics,
pages 968-974, Montreal, Canada, August.

[Ninomiya et al.2001] Takashi Ninomiya, Kentaro Torisawa, and Jun’ichi Tsujii. 2001.
An agent-based parallel HPSG parser for shared-memory parallel machines. Journal of
Natural Language Processing, 8(1), January.

[Nirenburg1995] Sergie Nirenburg. 1995. The Pangloss Mark IIl machine translation sys-
tem. Technical Report CMU-CMT-95-145, CMU, CMT.

[Nurkkala and Kumar1994a] T. Nurkkala and V. Kumar. 1994a. The performance of a
highly unstructured parallel algorithm on the KSR1. In IEEE, editor, Proceedings of
the Scalable High-Performance Computing Conference, May 23-25, 1994, Knoxville,
Tennessee, pages 215-220, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA. IEEE Computer Society Press.

[Nurkkala and Kumar1994b] Tom Nurkkala and Vipin Kumar. 1994b. A parallel parsing
algorithm for natural language using tree adjoining grammar. In Howard Jay Siegel,
editor, Proceedings of the 8th International Symposium on Parallel Processing, pages
820-829, Los Alamitos, CA, USA, April. IEEE Computer Society Press.

[Oepen and Callmeier2000] Stephan Oepen and Ulrich Callmeier. 2000. Measure for mea-
sure: Parser cross-fertilization. In Proceedings sixth International Workshop on Parsing
Technologies (IWPT 2000), pages 183-194, Trento, Italy.

[Oepen and Carrol12000a] Stepan Oepen and John Carroll. 2000a. Ambiguity packing in
constraint-based parsing - practical results. In Proceedings of the 1st Conference of the
North American Chapter of the Association for Computational Linguistics, pages 162—
169, Seattle, WA.

References 127

[Oepen and Carroll2000b] Stephan Oepen and John Carroll. 2000b. Parser engineering
and performance profiling. Natural Language Engineering, 6(1):81-97.

[Oepen2001] Stephan Oepen. 2001. [incr tsdb()] — competence and performance labo-
ratory. User manual. Technical report, Computational Linguistics, Saarland University,
Saarbriicken, Germany. in preparation.

[Olk and de Vreught1992] J.G.E. Olk and J.PM. de Vreught. 1992. Evaluating master-
slave implementation of double-dot parsing for massive parallel mimd systems. Techni-
cal Report 92-78, Delft University of Technology, dept. Computer Science, Delft, Nether-
lands.

[Pereiral985] Fernando C. N. Pereira. 1985. A structure-sharing representation for
unification-based grammar formalisms. In Proc. of the 23" Annual Meeting of the As-
sociation for Computational Linguistics. Chicago, IL, 8-12 Jul 1985, pages 137-144.

[Pollard and Sag1994] Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase Structure
Grammar. University of Chicago Press, Chicago. Draft distributed at the Third European
Summer School in Language, Logic and Information, Saarbriicken, 1991.

[Polychronopoulos and Kuck1987] Constantine D. Polychronopoulos and David J. Kuck.
1987. Guided self-scheduling: A practical scheduling scheme for parallel supercomput-
ers. IEEE Transactions on Computers, C-36(12): 1425-1439, December. CSRD TR #641
January 1987.

[Pontelli et al.1998] Enrico Pontelli, Gopal Gupta, Janyce Wiebe, and David Farwell. 1998,
Natural language multiprocessing: A case study. In Proceedings of the 15th National
Conference on Artifical Intelligence (AAAI ’98), July.

[Rosenkrantz and Lewis1970] D.J. Rosenkrantz and PM. Lewis. 1970. Deterministic left
comner parsing. In 11th Annual Symposium on Switching and Automata Theory, pages
139-152.

[Rytter1986] W. Rytter. 1986. On the complexity of parallel parsing of general context-free
languages. Theoretical Computer Science, 47(3):315-321.

[Sikkel and Nijholt1997] Klaas Sikkel and Anton Nijholt. 1997. Parsing of context-free
languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages
(Vol 2) Linear Modeling: Background and Application. Springer Verlag, Berlin.

[Sikkel and op den Akker1996] Klaas Sikkel and Rieks op den Akker. 1996. Predictive
head-corner chart parsing. In Harry Bunt and Masaru Tomita, editors, Recent Advances
in Parsing Technology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

[Sikkel1993a] K. Sikkel. 1993a. On-line parsing in constant time per word. Theoretical
Computer Science, 120:303-310.

[Sikkel1993b) Klaas Sikkel. 1993b. Parsing Schemata. Ph.D. thesis, Dept. of Computer
Science, University of Twente, Enschede, The Netherlands.

-

128 References

[Stanfill and Waltz1986] Craig Stanfill and David L Waltz. 1986. Toward memory-based
reasoning. Communications of the ACM, 29(12):1213-1228.

[Tang and Yew1986] Peiyi Tang and Pen-Chung Yew. 1986. Processor self-scheduling for
multiple nested parallel loops. In Proceedings 1986 International Conference Parallel
Processing, pages 528-535, August.

[Taura and Yonezawal999] K. Taura and A. Yonezawa. 1999. StackThreads/MP: Integrat-
ing futures into calling standards. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP).

[Thompson1991] Henry S. Thompson. 1991. Chart parsing for loosely coupled parallel
systems. In M. Tomita, editor, Current Issues in Parsing Technology, chapter 15. Kluwer
Academic Publishers, Norwell, MA.

[Tomabechi1l991] H. Tomabechi. 1991. Quasi-destructive graph unifications. In Proceed-
ings of the 29th Annual Meeting of the ACL, Berkeley, CA.

[Tomabechi1992] Hideto Tomabechi. 1992. Quasi-destructive graph unifications with
structure-sharing. In Proceedings of the 15th International Conference on Computa-
tional Linguistics (COLING-92), Nantes, France.

[Tomabechil995] Hideto Tomabechi. 1995. Design of efficient unification for natural
language. Journal of Natural Language Processing, 2(2):23-58.

[Tomita1985] M. Tomita. 1985. Efficient parsing for natural language. Kluwer Academic
Publishers, Boston, MA.

[van Lohuizen1999] Marcel van Lohuizen. 1999. Parallel processing of natural language
parsers. In Proceedings of the International Conference ParCo99, pages 168-175, Delft,
The Netherlands.

[van Lohuizen2000] Marcel P. van Lohuizen. 2000. Memory-efficient and thread-safe
quasi-destructive graph unification. In Proceedings of the 38th Meeting of the Association
for Computational Linguistics, Hong Kong, China.

[van Lohuizen2001a] Marcel P. van Lohuizen. 2001a. Efficient and thread-safe unification
with LinGO. In Stephan Oepen, Daniel Flickinger, Jun-Ichi Tsujii, and Hans Uszkoreit,
editors, Efficiency in Unification-Based Processing. Center for the Study of Language
and Information, Stanford, CA. Forthcomming,

[van Lohuizen2001b] Marcel P. van Lohuizen. 2001b. A generic approach to parallel chart
parsing with an application to LinGO. In Proceedings of the 39th Meeting of the Associ-
ation for Computational Linguistics, Toulouse, France.

[Vitter and Simons1986] Jeffrey Scott Vitter and Roger A. Simons. 1986. New classes for
parallel complexity: A study of unification and other complete problems for P. IEEE
Transactions on Computers, C-35(5):403—418, May.

References 129

[Wilks1996] Yorick Wilks. 1996. Natural language processing. Communications of the
ACM, 39(1):60-62, January.

[Wolf and Lam1991] Michael E. Wolf and Monica S. Lam. 1991. A data locality optimiz-
ing algorithm. In Proceedings of the ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation, pages 30-44, Toronto, June 26-28.

[Wroblewskil987] David A. Wroblewski. 1987. Nondestructive graph unification. In
Howard Forbus, Kenneth; Shrobe, editor, Proceedings of the 6th National Conference on
Artificial Intelligence (AAAI-87), pages 582-589, Seattle, WA, July. Morgan Kaufmann.

[Wu and Kung1991] J.-C. Wu and H. T. Kung. 1991. Communication complexity for
parallel divide-and-conquer. In IEEE, editor, Proceedings of the 32nd Annual Symposium
on Foundations of Computer Science, pages 151-162, San Juan, Porto Rico, October.
IEEE Computer Society Press.

[Yasuural984] Hiroto Yasuura. 1984. On parallel computational complexity of unification.
In Proceedings of the International Conference on Fifth Generation C omputer Systems
(FGCS’84), pages 235-243, Amsterdam. Institute for New Generation Computer Tech-
nology [ICOT].

[Yonezawa and Ohsawal994] Akinori Yonezawa and Ichiro Ohsawa. 1994. Object-
oriented parallel parsing for context-free grammers. In Geert Adriaens and Udo Hahn,
editors, Parallel Natural Language Processing. Ablex Publishing Corporation, Norwood,
New Jersey.

[Yoshida et al.1999] Minoru Yoshida, Takashi Ninomiya, Kentaro Torisawa, Takaki
Makino, and Jun’ichi Tsujii. 1999. Efficient FB-LTAG parser and its parallelization.
In Proceedings of Pacific Association for Computational Linguistics *99, pages 90-103,
Waterloo, Canada, August.

[Younger1967] Daniel H. Younger. 1967. Recognition and parsing of context-free lan-
guages in time n°. Information and Control, 10(2):189—208, February.

130 References

Summary

Parallel Natural Language Parsing: From Analysis to
Speedup

Focus of Research

The field of natural language processing aims at giving computers the ability to process or
understand human language, be it spoken or written. Applications include machine transla-
tion, natural language interfaces, information extraction, and information retrieval. Appli-
cations that aim at coming to a full understanding of a given sentence often use unification-
based grammar parsing to analyze the input. Such parsers can be seen as context-free parsers
augmented with additional constraint checking in the form of unification of features struc-
tures.! For such applications, parsing is often the most computationally extensive operation.
In turn, over 90% of the parsing time is spent performing unifications.

Most natural language applications are designed for single processor systems. The increas-
ing availability of multiprocessor shared-memory systems therefore seems to provide the
means to improve the performance of such applications by several factors. In applications
where multiple sentences can be processed independently of each other, parallelism can be
trivially exploited. We focus on parallelizing the parsing process itself. For application
where the processing of a single sentence forms a bottleneck, this is the only way to exploit
multi-processor capabilities. Applications that require direct user interaction typically fall
into this category.

Chart parsing is one of the most popular techniques for the parsing of natural language.
The chart of a chart parser records intermediate results. These results are used both as an
efficient way to store multiple parse trees and to prevent duplicating work. Chart parsers
often also have an agenda, which holds a list of tasks to be performed by the parser. The
parallel parser we will present is based on the chart parsing paradigm.

Initially, our research focussed on developing a parallel parser for the Deltra grammar, de-
veloped at the Delft University of Technology. Later we also implemented a parser for the
LinGO grammar, from CSLI Stanford. Since the ability to achieve speedup is greatly influ-
enced by the grammar, it is desirable to test the developed techniques in multiple contexts.
In addition, the LinGO framework comes with extensive test suites and standardized testing
tools that allow for easy performance comparison with other platforms.

Exploring the Feasibility of Parallel Parsing

Implementing a multi-threaded application can be a cumbersome task. It is often possi-
ble to derive useful information from its sequential counterpart that can aid in making the

11t should be noted though that with modern grammar design there is often no explicit context-free backbone.

131

132 Summary

right design decisions in an early stage of development. Firstly, we investigated the possi-
bilities for parallelism in parsing. It is known that the running time of any multithreaded
application T'p on a P processor system can be bound by the inequality

Tp <T1/P + T,

where T} is the running time on one processor and T, the critical path, or minimum running
time, of an application. Also the maximum speedup that can be obtained for an application
can never exceed the average available parallelism T; /Tp. We derived the values of T and
T, for each sentence in the fuse test suite by representing individual parses as a task graph.
In such a graph, tasks are represented as nodes, annotated with the time needed to execute
the task. The arcs of the graph represent the dependencies. The largest path in such graph
equals T..

We investigated two different ways to define the type of work a single tasks executes. For
the first type of task graph we defined a task to perform a single unification operation.
Since unification is known to be hard to parallelize, it is reasonable to take unification as an
atomic operation. For the second type of task graph, we defined a task to perform a number
of related unification operations.

The results showed that the average available parallelism was only sufficient in the case
where each unification operation was taken as a single task. This implies that a parallel
parser can only obtain speedup when it allows each unification operation to be distributed
independently.

Another important aspect that determines the feasibility of parallel parsing is the commu-
nication that is required between the different processors. Even though all processors of a
shared-memory system have direct access to all data, communication still plays a role in
the form of cache misses. To limit the complexity of the simulations, however, we used the
network model to approximate the communication patterns. Based on the results from the
previous experiments, we defined each unification operation to be a different task.

Preliminary experiments showed that arbitrarily assigning tasks to processors can yield ex-
cess communication. A solution to this is to group operations using the same data on the
same processor. Since determining an optimal distribution of work at run-time is infeasible,
we must base such groupings on heuristics. In addition, since we still need to be able to
distribute individual unification tasks, such heuristic can only serve as a guideline. A good
heuristic will reduce communication while keeping a well-balanced work load.

We tested three different grouping heuristics, which formed groups based on respectively,
the range of the input sentence represented by a task, the rule represented by the result of a
task, and a greedy approach where operations are performed on the processor that happens
to store the required data.

Again, the measurements were based on individual parsings of sentences from the fuse test
suite. For each heuristic we computed an arbitrary distribution of work (after grouping the
tasks) and an approximation of the best case. The greedy heuristic yielded the best results
for the LinGO grammar. It resulted in the most balanced distributions, was effective in
reducing the worst-case communication, and allowed for a minimal communication close
to the best case without grouping. For Deltra the rule-based approach proved to be useful.

Summary 133

Deltra has more grammar rules than LinGO and uses a different parsing technique for which
grouping per rule is very suitable.

Efficient and Effective Parallel Parsing

The first step in developing a parallel parser is finding a thread-safe unification algorithm.
Without such an algorithm, it is not possible for one feature structures to be involved in mul-
tiple unification operations simultaneously. Such a restriction can make the distribution of
unification tasks amongst processors hard, especially when structure sharing is used (which
is usually the case).

We present an efficient thread-safe unification algorithm that is based on Tomabechi’s al-
gorithm. Tomabechi’s algorithm is frequently used, because it is known to be one of the
fastest unification algorithms for natural language parsing. A key to the performance ob-
tained with Tomabechi’s algorithm is the use of control fields, or scratch fields, incorporated
in the nodes of the feature structures. Besides causing the algorithm to be not thread-safe,
these scratch fields also have the drawback of unnecessarily occupying memory space when
the associated nodes are not involved in a unification operation. Also other popular unifica-
tion algorithms use scratch fields.

Our main approach to making unification thread-safe is to move scratch fields into separate
buffers and associate them with nodes at run time. This way, different threads can associate
different scratch fields to the same node. The same feature structure can therefore occur
in unification operations performed by different threads simultaneously without any harm.
Since scratch fields are only associated with nodes for the duration of a unification operation,
they can be reused in successive operations. This approach therefore also eliminates the
superfluous memory consumption of the original approach.

We investigated two different strategies for associating scratch buffers with nodes. The most
straightforward approach is to use hashing, where the node’s physical address is used to as-
sociate it with a scratch buffer. The more complicated approach is to associate a unique
index into an array of scratch buffers with each node. For each feature structure, the nodes
are numbered in a depth-first manner, starting from the root. Because different feature struc-
tures typically have common index numbers, each feature structure involved in a unification
is associated with an additional offset into the array.

Even though the indexing technique requires additional computations to associate scratch
buffers, it proved to be about equally efficient as Tomabechi’s algorithm. The reason for
this is that our approach results in better cache utilization due to the reusing of the scratch
buffers. The indexing technique also proved to be about 10% more efficient than the hashing
algorithm. Overall memory consumption for both the hashing and indexing techniques was
reduced by roughly 50% for LinGO and roughly 75% for Deltra.

Having a thread-safe unification algorithm, we can proceed with the design of a parallel
parser. We showed that a parallel parser should allow each unification operation to be dis-
tributed independently and that it should implement a greedy or rule-based grouping heuris-
tic. In addition, to allow the parser to make use of further developments and improvements
on sequential parsers, we aim at keeping the design of the parallel parser as close to that of
a sequential parser as possible.

134 Summary

The design of the parallel parser can best be explained by a step by step description of the
parsing process. Each processor runs a thread that closely resembles a sequential parser.
Each has its own agenda and chart. Initially, work associated with the input sentence is
distributed amongst the agendas of the threads. Each thread continues processing the work
on its agenda like a sequential parser, only inspecting its own chart and agenda. To allow
two items owned by different threads to match, each thread inspects the items derived by
other threads putting possible matches on its agenda. If the agenda contains work after
this communication phase, it will continue processing as a sequential parser. Basically,
all threads alter between sequential and communication mode until the entire parse has
completed.

The threads incorporate synchronization mechanisms to detect overall termination and pre-
vent duplicate matches of items. To allow each unification task to be distributed indepen-
dently, threads are allowed to steal work from another thread by taking it from its agenda.
The greedy heuristic for LinGO is implicitly implemented by using the distributed chart.
The implementation for Deltra uses the rule-based heuristic.

The performance of the resulting parallel parser was evaluated by letting it run on a subset of
the fuse test suite of sufficiently complex sentences to get accurate measurements. Running
the parser on a SUN Ultra Enterprise 10000 with 64 200MHz UltraSparc processors yielded
a maximum speedup of 31.4 at 48 processors. An overall peak was reached at 32 processors
with an average speedup of 17.3. A drop in speedup for larger numbers of processors was
caused by overhead in the scheduling algorithm. Running the full test suite on a SUN Ultra
Enterprise with 8 400MHz processors yielded a speedup of 4.73 at 6 processors.

The memory bus often forms a performance bottleneck for multiprocessing. Efficient us-
age of cache can therefore be an important factor in obtaining speedup. One technique to
improve cache utilization is to improve the spatial reuse of the unification algorithm. Mem-
ory is typically loaded in larger chunks. Feature structures typically span several of such
chunks, whereas the chunks themselves can contain multiple nodes. When unification fails,
usually only a fraction of the nodes is referenced. The idea is to store nodes of the feature
structures in a depth-first order, the order in which they are typically accessed, in the hope
to prevent loading as many chunks as possible in case of failure. The resulting algorithm
was able to reduce the number of interference misses by 10%.

Cache utilization can also be improved by exploiting the freedom in order of evaluation of
tasks on the agenda. We compared a FIFO and stack-based strategy against two blocking
strategies. With blocking, operations are grouped on referencing a consecutive block of
memory that just fits in the cache. This prevents cache from being repeatedly flushed when
repeatedly iterating over a large set of data. The first blocking strategy, simple blocking,
simply divides the chart in cache sized blocks. The second blocking strategy, categorized
blocking, also groupes operations based on grammar rules. Experiments with Deltra showed
that all blocking strategies performed better than a FIFO strategy. A stack-based strategy
often performed better than simple blocking, though. One problem with simple blocking is
that it often occurred that there were only two operations per block. Categorized blocking
performed considerably better, with over 50% reductions of the number of interference
misses compared to a FIFO strategy. The grouping of related operations also resulted in
related items being stored in the same block. Using categorizing without blocking proved

Summary 135

to be less effective.

Conclusions

We have shown it is possible to considerably speed up the parsing of natural language with
the use of shared-memory multiprocessing capabilities. By a thorough analysis of the pars-
ing process, we were able to identify several limitations for parallel processing. The pre-
sented technique is likely to be useful for other natural language parsers, using different
grammar formalisms, as well. Since the presented technique distributes work at the finest
possible grain of distribution (apart from parallel unification), it is likely to achieve speedup
as long as the average available parallelism is large enough. Investigating the possibilities
of parallelism for such grammars can be done analogous to the techniques presented above.

136

Summary

Summary in Dutch

Parallel Ontleden van Natuurlijke Taal: Van Analyse
tot Versnelling

Doel van Onderzoek

Onderzoek naar natuurlijke taalverwerking richt zich er op om computers de mogelijkheid te
geven geschreven of gesproken natuurlijke taal te verwerken of te begrijpen. Voorbeelden
van toepassingen zijn automatisch vertalen, natuurlijke taal interfaces, informatiewinning
en het automatisch vinden van informatie. Toepassingen die proberen tot een volledig be-
grip van een gegeven tekst te komen gebruiken vaak ontleders die gebaseerd zijn op unifi-
catiegrammatica’s. Kortweg kunnen dit soort ontleders beschouwd worden als contextvrije
ontleders waaraan extra restricties worden toegevoegd in de vorm van unificatie van grafen.!
Dit soort ontleders nemen vaak het grootste deel van de verwerkingstijd van een zin voor
hun rekening. Daarvan is vaak meer dan 90% nodig voor het uitrekenen van de unificaties.

De meeste applicaties voor natuurlijke taalverwerking zijn ontworpen voor verwerking met
slechts één processor. De steeds populairder wordende shared-memory multiprocessoren
lijken een goede mogelijkheid te bieden om taalverwerking met enkele factoren te ver-
snellen. In gevallen waar een applicatic meerdere zinnen onafhankelijk van elkaar kan ver-
werken, is het effectief benutten van meerdere processoren triviaal. Bij ons onderzoek gaat
het er dan ook voornamelijk om het ontledingsproces zelf te parallelliseren. Dit is vaak de
enige oplossing voor toepassingen waar het verwerken van een enkele zin bepalend is voor
de verwerkingstijd. Voorbeelden van dit soort toepassingen zijn toepassingen die directe
interactie met de gebruiker vereisen.

Een van de meest populaire ontledingstechnieken voor natuurlijke taalverwerking is chart
ontleding. Bij deze techniek wordt een chart gebruikt om tussentijdse resultaten op te slaan.
Deze tussentijdse resultaten worden gebruikt om uviteindelijke resultaten op een efficiénte
manier op te slaan en om het dupliceren van werk te voorkomen. Chart ontleders hebben
vaak ook een agenda die een lijst bijhoudt van taken die nog door de ontleder moeten worden
uitgevoerd. In ons onderzoek hebben wij chart ontleders als uitgangspunt gebruikt voor
parallellisering.

Het onderzoek richtte zich in eerste instantie op het ontwikkelen van een parallelle ontleder
voor de Deltra grammatica (ontwikkeld op de TU Delft). Later werd er ook een ontleder
ontwikkeld voor de LinGO grammatica van CSLI Stanford. Aangezien de mogelijkheid
om versnelling te behalen voor een groot deel wordt bepaald door de grammatica, is het
wenselijk om de ontwikkelde technieken voor meerdere grammatica’s te verifiéren. Een an-
der voordeel van het betrekken van LinGO bij het onderzoek is dat LinGO geleverd wordt

'Het moet echter opgemerkt worden dat er tegenwoordig aan het ontwerp van grammatica’s vaak niet een
expliciete contextvrije “backbone” ten grondslag ligt.

137

138 Summary in Dutch

met een uitgebreide set van test bestanden en gereedschappen om de prestaties van verschil-
lende ontleders met elkaar te vergelijken.

De Haalbaarheid van Paraliel Ontleden

Het implementeren van een multi-threaded toepassing kan erg moeizaam zijn. Gelukkig is
het mogelijk om uit de oorspronkelijke sequentiéle ontleders nuttige informatie af te leiden
die het maken van ontwerpkeuzes kunnen vergemakkelijken. Als eerste hebben we gekeken
naar de hoeveelheid parallellisme die in het ontleedproces aanwezig is. Het is bekend dat de
verwerkingstijd Tp van elke multi-threaded toepassing bij een gebruik van P processoren
beperkt kan worden tot

Tp <T/P+ Tw,

waar T de verwerkingstijd is op één processor en T, het kritieke pad, of de minimale ver-
werkingstijd. Tevens wordt de maximale versnelling die behaald kan worden beperkt door
het gemiddeld beschikbare parallellisme T} /Tp. De waarde T¢,, konden we afleiden door
de verwerking van iedere zin als een taakgraaf te representeren. In deze graaf worden taken
als knopen gerepresenteerd. Voor iedere taak wordt tevens de benodigde uitvoeringstijd
vastgelegd. Takken geven de afhankelijkheden tussen de knopen aan. Het langste pad in
een taakgraaf komt overeen met 7.

We hebben in ons onderzoek twee verschillende definities voor taakgrafen bekeken. Voor
het eerste type taakgraaf hebben we een taak gelijkgesteld aan &€n unificatie operatie.
Aangezien het bekend is dat unificatie moeilijk te parallelliseren is, is het gebruikelijk om
unificatie als een ondeelbare operatie te zien. Voor het tweede type taakgraaf hebben we
een taak gelijkgesteld aan een aantal gerelateerde operaties.

Uit de experimenten bleek dat alleen als jedere unificatie als een aparte taak werd uitge-
voerd, het gemiddeld beschikbare parallellisme voldoende was om versnelling te kunnen
verwachten. Dit impliceert dat een parallelle ontleder alleen versnelling kan halen als het
toelaat iedere unificatie afzonderlijk te verdelen tussen de processoren.

Een ander belangrijk aspect dat de mogelijkheden van parallel ontleden bepaalt, is de be-
nodigde communicatie tussen de processoren. Ondanks dat alle processoren van een shared-
memory systeem direct toegang tot al het geheugen hebben, speelt communicatie een be-
langrijke rol in de gedaante van cache misses. Om de complexiteit van de simulaties te
beperken hebben we echter een netwerk model gebruikt om communicatie te analyseren.
Uitgaande van de vorige resultaten, zijn we ervan uitgegaan dat iedere unificatie als een
aparte taak moet worden beschouwd.

Als eerste resultaat vonden we dat het willekeurig distribueren van taken meestal tot zeer
grote hoeveelheden communicatie leidt. Een oplossing voor dit probleem is om taken die
dezelfde data gebruiken op dezelfde processor te groeperen. Het is niet haalbaar om tijdens
het ontleden een optimale verdeling van taken te vinden. Daarom zijn we aangewezen
op het gebruik van heuristieken. Ook mogen de heuristieken het verdelen van individuele
unificaties niet belemmeren. Een goede heuristiek zal de communicatie beperken terwijl het
gelijktijdig een goed gebalanceerde verdeling van werk toelaat.

Summary in Dutch 139

We hebben drie verschillende groeperingsheuristieken geévalueerd. De heuristieken groepe-
ren op respectievelijk het deel van de zin die door een taak wordt bestreken, de grammati-
caregel die een taak toepast en een greedy aanpak waarbij een taak wordt uitgevoerd op de
processor die de benodigde data heeft opgeslagen.

Opnieuw werden de metingen per zin uit de fuse test set uitgevoerd. Voor iedere heuristiek
bepaalde we vervolgens een willekeurige distributie van de taken (na groepering) en een
benadering van het beste geval. De greedy aanpak leverde de beste resultaten voor de LinGO
grammatica. Het leverde de meest gebalanceerde distributie, wist de bovenste limiet van de
communicatie goed te beperken en liet bovendien de mogelijkheid open om dicht bij het
absolute minimum aan communicatie te komen. Voor Deltra bleek de per regel groepering
goede resultaten te leveren. Deltra heeft meer grammatica regels dan LinGO en gebruikt
bovendien een andere ontledingsstrategie waarvoor de per regel groepering zeer geschikt is.

De Implementatie van een Parallelle Ontleder

De eerste stap in de ontwikkeling van een parallelle ontleder is het vinden van een thread-
safe unificatiealgoritme. Zonder zo’n algoritme is het niet mogelijk om dezelfde graaf in
verschillende unificaties tegelijk te gebruiken. Deze beperking kan de ontwikkeling van een
parallelle ontleder aanzienlijk bemoeilijken, vooral als “structure sharing” wordt gebruikt
(wat meestal het geval is).

Ons thread-safe unificatiealgoritme is gebaseerd op Tomabechi’s algoritme. Tomabechi’s
algoritme wordt vaak gebruikt omdat het bekend staat als een van de snelste unificatieal-
goritmes voor natuurlijke taalverwerking. Deze snelheid wordt behaald door het gebruik
van administratieve velden, of kladvelden, die zijn opgenomen in de knopen van de grafen.
Afgezien dat het gebruik van deze velden ervoor zorgdragen dat het algoritme niet thread-
safe is, nemen deze velden ook nog eens onnodig geheugen in beslag als de gerelateerde
knoop niet in een unificatic betrokken is. Ook andere populaire unificatiealgoritmes ge-
bruiken vaak kladvelden.

Het idee achter het thread-safe maken van deze unificatiealgoritmes is om de kladvelden
uit de knopen te halen en deze tijdens uitvoering van de unificatic met de knopen te as-
soci€ren. Op deze manier kunnen verschillende threads tegelijk ieder een aparte buffer met
kladvelden met dezelfde knoop associéren. Grafen kunnen dan ongestraft in meerdere uni-
ficaties tegelijk voorkomen. Bovendien hoeven kladvelden alleen maar tijdens de unificatie
aan een knoop te worden toegekend. De kladvelden kunnen dus na iedere unificatie opnicuw
worden gebruikt, waardoor het totale geheugengebruik afneemt.

We hebben twee verschillende manieren onderzocht om klad buffers met knopen te as-
soci€ren. Bij de eerste aanpak wordt hashing gebruikt om het fysicke adres van een knoop
te koppelen aan een buffer. Bij de andere aanpak worden knopen een unieke index in een
array van kladbuffers toegekend. Bij iedere graaf worden knopen in een “depth-first” volg-
orde genummerd. Aangezien grafen indexen gemeen zullen hebben, wordt tijdens unificatie
aan iedere graaf bovendien een offset toegekend die bij deze index moet worden opgeteld.

Ook al vergt het indexeren van knopen extra werk, is het laatstgenoemde algoritme toch
ongeveer even snel dan Tomabechi’s algoritme. Dit kan verklaard worden door het feit dat

140 Summary in Dutch

de indexeringsmethode beter gebruik maakt van de cache doordat de kladvelden worden
hergebruikt. Het indexeren bleek ook ongeveer 10% sneller te zijn dan hashing. Zowel
indexeren en hashing leverde een reductie in geheugengebruik op van ongeveer 50% voor
LinGO en 75% voor Deltra.

Nu we een thread-safe unificatiealgoritme hebben, kunnen we verder met het ontwerpen
van een parallelle ontleder. We hebben laten zien dat een parallelle ontleder moet toestaan
dat de unificaties onafhankelijk van elkaar gedistribueerd moeten kunnen worden en dat
het een greedy of regel georiénteerde groeperingsheuristiek moet gebruiken. Om verdere
ontwikkelingen aan sequenti€le ontleders makkelijk op te kunnen nemen in ons ontwerp, is
het wenselijk dat het ontwerp zoveel mogelijk aansluit bij dat van een sequenti€le ontleder.

Het ontwerp van de parallelle ontleder kan het best worden uitgelegd aan de hand van een
stap voor stap beschrijving van het ontledingsproces. Op elke processor wordt een thread
gestart die in grote lijnen dezelfde werking heeft als een sequenti€le ontleder. Jedere thread
heeft zijn eigen chart en agenda. Bij het opstarten wordt het initi€le werk dat overeenkomt
met de gegeven zin verdeelt over de agenda’s van de threads. Vervolgens verwerkt iedere
thread zijn agenda als ware het een sequenti€le ontleder. Om toch de tussentijdse resultaten
van de verschillende threads te kunnen combineren, inspecteert vervolgens iedere thread de
resultaten van de andere threads. Nieuw werk wordt op de agenda geplaatst. Als een thread
inderdaad nieuw werk heeft gevonden hervat het zijn rol als sequenti€le ontleder. Threads
blijven wisselen tussen de sequenti€le en communicatie mode totdat al het werk gedaan is.

Het algoritme dat iedere thread draait bevat synchronisatiemechanismes om terminatie te
detecteren en het dubbel afleiden van dezelfde resultaten te voorkomen. Om het mogelijk te
maken iedere unificatie afzonderlijk te verdelen, is het een thread mogelijk gemaakt werk
van de agenda’s van andere threads te stelen zodra de thread in kwestie zonder werk komt te
zitten. De greedy groeperingsheuristiek is impliciet geimplementeerd door het gebruik van
de gedistribueerde chart.

Om de prestaties van de resulterende parallelle ontleder te testen is een subset van de fuse
test set genomen van alle zinnen die complex genoeg zijn om accurate metingen te verkrij-
gen. Op een SUN Ultra Enterprise 10000 met 64 200MHz UltraSparc processoren leverde
de ontleder een maximale versnelling van 31.4 bij 48 processoren. Een gemiddelde top
werd bereikt bij 32 processoren met een gemiddelde van 17.3. Door overhead in het ver-
delingsalgoritme werd voor hogere aantallen processoren een lagere versnelling gehaald.
Het uitvoeren van de volledige fuse test suite op een SUN Ultra Enterprise met 8 400MHz
processoren leverde een versnelling van 4.73 bij 6 processoren.

De geheugenbus is vaak een zwakke schakel bij multiprocessing. Goed gebruik van de
cache kan daarom van groot belang zijn om de gewenste versnelling te halen. Een manier
om het cachegebruik te verbeteren is om het spatiéle hergebruik van het unificatiealgoritme
te verbeteren. Geheugen wordt normaliter in grotere blokken tegelijk in de cache geladen.
Grafen nemen vaak meerdere van deze blokken in beslag, terwijl er juist meerdere knopen in
een blok passen. Als unificatie faalt hoeft er vaak maar een fractie van de knopen te worden
ingeladen. Het idee is om knopen in dezelfde volgorde op te slaan als ze doorgaans worden
ingeladen, zodat de in te laden knopen zoveel mogelijk in dezelfde blokken gegroepeerd
zijn. Het resulterende algoritme leverde een 10% reductie van het aantal interference misses

op.

Summary in Dutch 141

Het cache gebruik kan ook verbeterd worden door gebruik te maken van de vrijheid in
de volgorde van evaluatie van de taken op de agenda. We vergeleken een FIFO en LIFO
strategie met twee blockingstrategién. Bij blocking, worden operaties gegroepeerd die het-
zelfde aaneensluitende in cache passende blok geheugen aanspreken. Dit voorkomt dat de
cache steeds wordt gewist als er herhaaldelijk wordt geitereerd over hetzelfde grote stuk
geheugen. Bij de eerste blockingstrategie, simpele blocking, wordt de chart simpelweg
in blokken verdeeld ten grootte van de cache. Bij de tweede strategie, gecategoriseerde
blocking, worden operaties daarbovenop ook nog per grammaticaregel gegroepeerd. Bij
experimenten met Deltra bleek blocking het altijd beter te doen dan een FIFO strategie. Een
LIFO strategie deed het echter vaak beter dan simpele blocking. Een van de problemen die
voorkwam bij simpele blocking is dat er vaak maar twee operaties per block per keer wer-
den witgevoerd. Voor gecategoriseerde blocking waren de resultaten aanzienlijk beter. Deze
leverde een meer dan 50% reductie van het aantal interference misses op ten opzichte van
de FIFO strategie. Het groeperen van gerelateerde operaties had tot gevolg dat gerelateerde
data ook in dezelfde blokken werd opgeslagen. Het gebruik van enkel categorisering zonder
blocking leverde minder goede resultaten op.

Conclusies

We hebben laten zien dat het mogelijk is om met behulp van shared-memory systemen
aanzienlijke versnellingen te behalen bij het ontleden van natuurlijke taal. Door eerst het
ontledingsproces grondig te analyseren, konden we in een vroegtijdig stadium de beperking-
en van parallel ontleden identificeren en daar het ontwerp op afstemmen. De resulterende
techniek voor parallellisatie is zeer waarschijnlijk ook goed te gebruiken voor andere on-
tleders van natuurlijke taal, zelfs als die andere grammatica’s gebruiken. Aangezien onze
ontleder werk op de meest fijnkorrelige manier distribueert (afgezien van parallelle unifi-
catie), is het waarschijnlijk dat het mogelijk is met deze techniek versnelling te halen als
inderdaad de hoeveelheid parallellisme toereikend is. Een voortijdige analyse, analoog aan
degene waar wij onze ontleders aan hebben onderworpen, kan uitmaken of het behalen van
versnelling in deze gevallen tot de mogelijkheden behoort.

142

Summary in Dutch

About the Author

The author of this thesis was born on October 28, 1973, in Alphen aan den Rijn, The Nether-
lands. In 1992, after receiving his high-school diploma at the atheneum level from the
“Ashram College”, he stared a study in Computer Science at the “Delft University of Tech-
nology”. In 1997 he received his M.Sc. degree cum laude, after which he continued at
this university as a Ph.D. student. The topic of his Ph.D. research was “Parallel Natural
Lanaguage Interfaces”. Obviously, this thesis is a result of this research. He is currently
employed at “YY Technologies”, in Mountain View, California.

143

144

About the Author

Index

a

a-way associative, 43, 107

abstract typed feature structure, 19

active chart, 29

active edge, 12

active item, 12, 29,47

affinity scheduling, 39

agenda, 29, 38, 90, 100, 114

appropriate features, 20

attribute value matrix, 18

average available parallelism, 37, 50, 54,
60, 72, 118, 132

b

balance, 42, 65

blocking, 45, 112, 113, 134
bottom-up, 12, 29, 56, 59

Cc

cache line, 43, 72, 105

cache miss, 44, 105

Cali, 5

capacity misses, 44, 45, 106, 107, 113,
115

categorized blocking, 113, 135

centralized agenda, 31, 32, 33,90, 119

centralized chart, 31, 33, 87

chart parser, 29

chart, 29, 80, 90

Chomsky Normal Form, 8, 12

coherency misses, 44, 65

communication graph, 64, 65, 69

communication volume, 41

complex node, 18

compulsory misses, 44, 106-108, 113

concurrent unification, 28, 37, 47, 71, 72,
74, 85, 87, 88, 90

conflict misses, 44, 108

consistent, 19

constraint function, 19

constraint, 20, 24, 77

context-free grammar, 8
critical path overhead, 40
critical path, 38, 47, 50

d

dag depth, 38, 51

deduction rules, 10, 48, 66
deduction sequence, 11

Deitra, 4, 5

derivation tree depth, 56, 100
derived items, 48, 58

destructive, 23

direct mapping, 43

distributed agenda, 31, 33, 90, 119
distributed chart, 31, 67, 87, 88, 134
domain decomposition, 41
dynamic filtering, 11

dynamic scheduling, 39

e

edge cut, 41, 64

edge list, 90, 94

efficiency, 37

epsilon rules, 8, 14, 16, 48, 49
exhaustive parsing, 29, 118, 119

f

false sharing, 44

filtering, 31, 33, 48, 58, 69
footprint, 107

foreign edges, 90, 92, 117
fully associative cache, 43, 45

g

generation, 24

grammar rules, 21, 31, 133

greedy, 67, 87-89

greedy schedules, 38, 40, 98, 99

grouping heuristic, 65, 87, 89, 113, 132,
134

grouping, 65

145

146

guided self-scheduling, 39

h

Head-Driven Phrase Structure Grammar,
see HPSG 18

HPSG, 18, 118

hypotheses, 10, 48

i

incremental copying, 24

inference relation, 11

initialization items, 48, 51

input string, 8, 48, 67

instance, 20, 31

interference misses, 44, 46, 107, 113, 134

item domain, 10, 14

|

justification graph, 48, 50

k

key-driven, 15

I

language, 8

lazy copying, 24

least recently used, see LRU 44
look-ahead, 11

length, 51

level, 43

Lexical-Functional Grammar, see LFG 18
LFG, 18,118

LinGO, 4, 118

LKB,5

local edges, 90

locality grouping, 45, 113, 114
LRU, 44,45,114

m

match tasks, 51, 63, 69

match, 29, 48, 52, 90, 92, 94

maximum total communication, 64, 65,
69, 89

memory line, 43, 107

n
n-first parsing, 29, 119

nominal speedup, 37, 40
non-terminal, 8, 66

parallel complexity, 37

parallel tabular chart parser, 31, 32, 34,
39, 67

parallel unification, 28, 47, 72, 85, 118

parser, 8

parsing schema, 10, 11, 47, 66, 67, 88

parsing system, 10, 47, 95

partitioning, 41

passive edge, 12

passive item, 12, 21, 29, 47, 80

path, 18, 31, 48

path equivalence, 19

path value, 19

precede, 48

production rules, 8, 66

q
quick check, 31, 34, 52, 96, 118

r

reading, 9

recognizer, 8

recognizes, 8, 10
recursive spectral bisection, see RSB 42
reentrancy, 19, 77, 79, 111
reentrant, 19
representative, 22

reuse, 44, 72, 112

roots, 21

RSB, 42

rule filter, 31, 96
rule-based, 66, 87-89, 113

S

schedule, 37, 38

scheduling, 36

scratch buffer, 72, 133

scratch fields, 71, 72, 83, 85, 90, 105, 133
self scheduling, 39

sequential complexity, 37

set-associative mapping, 43, 114

shared, 43

Index

147

simple blocking, 112, 135 work overhead, 40

spatial reuse, 44, 45, 105, 111 work sharing, 39

speedup, 37, 41 work stealing, 39, 89, 93

start symbol, 8, 21 work-first principle, 40, 60, 94

static filtering, 11

static scheduling, 39

stealing policy, 40

step contraction, 11, 16

strict, 49

string chart parser, 31

structure sharing, 26, 35, 64, 133
subsumes, 20

t

tabular chart cell-based, 67, 113

tabular chart, 30, 31, 117

tabular parsing, 28

task, 50

task dependency graph, 50, 53, 55, 58,
63, 99

task graph, 36, 53

temporal reuse, 44, 45, 112

terminal, 8

thread grouping, 53

tiling, 45

top-down prediction, 12, 29, 32, 56

transition function, 18

type 1, 54, 58

type 2, 54, 55

type hierarchy, 19, 80, 85

type system, 19

typed feature structure, 18

u

unification, 20

uniform-sized chunking, 39

unify—verify—match cycle, 30, 32, 52-54,
88, 94

uninstantiated parsing system, 10, 47

Vv
verification, 29, 85, 87

w
well-formed, 20, 27
work, 38, 50

