
Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

Pricing Barrier Options in Discrete Time

Verslag ten behoeve van het
Delft Institute for Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

TINA SOL

Delft, Nederland
August 2009

Copyright© 2009 door Tina Sol. Alle rechten voorbehouden.

Pricing Barrier Options
in Discrete Time

Bachelor Thesis

M.K. Sol (1217933)

Supervisor: Dr. J.A.M. van der Weide

August 21, 2009

Contents

Introduction 1

1 Options 4
1.1 Introduction . 4
1.2 Standard options . 4
1.3 Barrier options . 7

2 Binomial No-Arbitrage Pricing Model 10
2.1 Introduction . 10
2.2 One-period binomial model . 10
2.3 Multi-period binomial model . 14
2.4 Binomial trees . 17
2.5 Formula for the option price . 19

3 Counting problems 21
3.1 Introduction . 21
3.2 Counting problems and price formulae 21
3.3 Reflection principle . 22
3.4 Counting paths of barrier options . 23
3.5 Counting paths of Parisian options . 24

4 Regular barrier option prices 28
4.1 Method I: counting paths . 28
4.2 Method II: recursively backwards . 29
4.3 Matlab implementation . 30
4.4 Results . 33

5 Parisian option prices 35
5.1 Counting paths . 35
5.2 Matlab implementation . 36
5.3 A relation with regular barrier prices? 36
5.4 Results . 37

6 Conclusion 40

A Matlab code 41

Bibliography 46

1

Introduction

During the past year, financial markets have been a topic of discussion more than ever
before. A great variety of products is traded on these markets of which stocks and bonds
are probably most commonly known. Options belong to a class of derivative products:
products whose value is derived from another asset, called the underlying. There are
many types of non-standard options for which the label ‘exotic options’ is used. One of
these types is called ‘barrier-options’ which - briefly stated - means that an option can
become worthless when the price of the underlying hits a barrier.

Many mathematicians have worked on pricing options. In continuous time this has
led to the famous formula of Black & Scholes. Finding prices however can also be done
in discrete time. This bachelor thesis deals with pricing options and specifically barrier
options in discrete time. A special form of barrier options called ‘Parisian options’ will
be treated in detail as well. In discrete time, a binomial tree is used to model possible
developments of the price of the underlying. By using so-called risk-neutral probabilities
it will turn out to be possible to view the option price as an expectation.

To calculate this expectation for standard options it is possible to work backwards
through the binomial tree or to calculate expected values at expiration time directly. In
the latter case we need to know the probability of occurence and the option value at
final time for every possible final node in the tree. In this context the binomial coeffi-
cient is used to calculate the amount of different paths ending in the same node. In the
case of barrier options this becomes more complicated but a relatively easy formula that
replaces the binomial coefficient can be found. For Parisian options it is not possible to
find a direct formula and instead we must use a recursive algorithm.

Besides using combinatorics, the price of a regular barrier option can also be found
by working backwards through the binomial tree as long as all value from paths that hit
the barrier is set to zero and thereby excluded from the expected value. This has led to
an algorithm that is new to both the supervisor and author of this thesis.

The thesis is organized as follows. Chapter 1 gives a general introduction to options.
Chapter 2 treats the Binomial No-Arbitrage Pricing model, applies the model to an
example in a 1- and multiperiod situation and shows how the option price can either be
calculated backwards through the tree or directly. Chapter 3 treats counting problems
in the binomial tree and finds expressions needed to formulate the prices of regular bar-
rier and Parisian options as expectations of their value at expiration time. Chapter 4
specifically discusses pricing regular barrier options and disucces numerical results that
were obtained. In Chapter 5 the price formula for Parisian options and numerical results
of its implementation are discussed.

3

Chapter 1

Options

1.1 Introduction

Financial options have been traded on the market since 1973 when the Chicago Board
Options Exchange (CBOE) was opened. The amount of trade in options has grown
enormously during the past few decades. This chapter will introduce basic terminology
surrounding options. After that we will move on to a certain type of exotic options.
Exotic options are labeled ‘exotic’ because they are more complex and less commonly
traded than normal (or so-called ‘vanilla’) options. The type of options that we are
interested in are regular barrier options and ‘Parisian options’, a special form of barrier
options. Throughout this thesis the term ‘option’ will always refer to a financial option.
Non-financial options are called real options; they are often based upon physical assets
and form a way to represent possible investments.

Before explaining what options are, here is some finance terminology:

� A derivative is a financial instrument that is derived from a certain asset. This
means that the value of a derivative is dependent on the price of an underlying
asset.

� An asset is a property or object of value that can be possesed. In this thesis ‘asset’
and ‘underlying’ are synonymously used.

� Options are one of the most important types of derivatives. Other types of deriva-
tives are futures, forwards and swaps.

� Some possible underlying assets of derivatives are commodities, equities (stocks),
bonds, interest rates and indices.

1.2 Standard options

Options are a common type of derivatives. They are financial instruments that give
the buyer a right, but not an obligation, to engage in a future transaction on some
underlying asset.

1.2.1 Basic terminology

The following definitions are important to be familiar with:

4

� Holder : the person buying the option.

� Writer : the person selling the option.

� Exercising : when the holder enforces the agreement and actually buys from or
sells to the option writer.

� Expiration date: after this date, the option can no longer be exercised.

� Call option: gives its holder a right to buy (and when exercised, gives its writer
an obligation to sell).

� Put option: gives its holder a right to sell (and when exercised, gives its writer an
obligation to buy).

� American option: option that can be exercised on any date up to and including
the expiration date.

� European option: option that can be exercised only on the expiration date.

� Strike price (also called exercise price): the price at which the transaction takes
place when the option is exercised.

� At-the-money : an option is at-the-money when the strike price equals the current
price of the underlying asset.

� In-the-money : an option is in-the-money when the holder’s payoff (see below) is
positive if he were to exercise immediately.

� Out-of-the-money : when exercised immediately, the option’s payoff to its holder
would be negative.

� Volatility : a measure that puts a number on the tendency of a financial security
(the underlying) to fluctuate in value. A high volatility corresponds to a value
that tends to fluctuate heavily.

1.2.2 Option payoffs

Associated with owning an option is a certain payoff. Let’s take a look at payoffs on the
expiration date. When you are the holder of a call option (see Figure 1.1-A) and the
market price of the underyling is far above the strike price, exercising your option means
you can buy the underlying for the strike price and immideately sell it on the market
and receive the current market price. Then your payoff is the difference between these
two prices and is positive. On the other hand, a strike price below the market price
means that by exercising you pay the strike price and would receive less on the market
when you immediately sell the underlying. That means your profit would be negative.
Since you are not obliged to exercise, you will not do anything in that case and your
payoff will be zero. The last possible scenario is that the strike price and asset price are
equal: exercising or not, you payoff will be zero so you are indifferent when it comes to
exercising. This is all illustrated in Figure 1.1-A.

5

Figure 1.1: Option payoffs at expiration

6

The other graphs in Figure 1.1 show option payoffs for the holder of a put option (B)
and also from the perspective of the option writer instead of the holder (C and D). Take
for example graph D. Someone who sells a put option has the obligation to buy the
underlying asset when the holder of the option decides to exercise. When the asset price
is lower than the strike price, the holder will receive a positive payoff from selling his
asset for a higher price than the current market price. In that case, the holder exercises
and the writer is obliged to pay him the strike price. Since the asset is worth less on
the market, his payoff is negative. On the other hand, when the market price is higher
than the strike price, the holder will not exercise the option but rather sell his asset on
the market for a higher price. The payoff to the writer is zero in that case.

1.2.3 Option prices

Options are traded before the expiration date, at a time when the payoffs as discussed
above are unknown. The holder has to pay a price to obtain an option, received by the
writer. (To see profit and loss of the total deal for the holder and writer we would have
to shift the payoffs in Figure 1.1 to the holder and writer respectively down and up by
the price that the holder paid to the writer.) Now what determines the price at which
the option is sold? First of all, the possible payoffs. As we have seen, the payoff is based
on the price of the underlying asset and the strike price so these two factors affect the
option price. Also the expiration date (time period) has an influence on the price: the
further away it is, the more uncertainty there is about where the asset price will end up.
Finally, the volatility of the underlying asset price influences the optin price. In case
of a call option, a high asset price volatility means a significant chance that it ends up
very high and similarly a chance that it ends up very low. When it ends up low, you do
not loose anything because you do not exercise. When it ends up very high, you make
a very large profit. This is called an asymmetric payoff and it causes call options prices
to rise if volatility of the underlying rises.

Option pricing is based on several assumptions about the market and about move-
ment of the asset price. Two approaches to calculate prices that are treated in many
finance-textbooks are the Binomial Option Pricing Model and the Black-Scholes model.
These are mathematically essentially the same but the Binomial Option Pricing Model
uses discrete time whereas the Black-Scholes model uses continous time. In this thesis
all pricing will take place in the discrete-time framework. The binomial method is the
topic of the next chapter.

1.3 Barrier options

Barrier options are a type of exotic options. The option to exercise depends on the under-
lying asset price crossing a certain barrier. This makes barrier options path-dependent,
since their payoff depends on the path that is travelled by the price of the underlying
asset. A barrier can be hit from above or from below. The consequense of hitting the
barrier can be that the option starts to exist or that it stops existing. We call the latter
case ‘early expiration’ because the same happens as on the expiration date: the contract
ceases to exist. That means there are four types of barrier options:

� Up-and-out: an option that expires early if the underlying asset price hits a barrier

7

from below.

� Up-and-in: an option that comes into existence if the underlying asset price hits
a barrier from below.

� Down-and-out: an option that expires early if the underlying asset price hits a
barrier from above.

� Down-and-in: an option that comes into existence if the underlying asset price
hits a barrier from above.

1.3.1 Parisian options

Parisian options are the same as barrier options but instead of hitting the barrier, the
asset price must remain on the ‘other’ side of the barrier for a certain amount of time
specified in a contract. This means that an asset price can cross a barrier, stay on the
other side for some time and move back across the barrier without any consequences.

Just as with the regular barrier options, there are four different types. All four defini-
tions change in the same way. For example, the definition for the up-and-out becomes
the follwoing.

� Up-and-out Parisian: an option that expires if the underlying asset remains con-
stantly above a given barrier for a specified amount of time.

Note that ‘constantly’ means that the time on the other side of the barrier must be
consecutive. This is illustrated for the up-and-out case in Figure 1.2, where the price
moves around the barrier but does not expire until a consecutive period on the other side
occurs. Parisian option contracts where the time-interval on the other side of the bar-
rier does not necessarilly have to be consecutive do exist but are not treated in this thesis.

To conclude this chapter, some remarks concerning this thesis. First of all, the only
options that will be considered are call options. Furthermore, we will only reason from
the perspective of the option holder, never from that of the writer. Finally in the case
of regular barrier and Parisian options, the only type we consider is ‘up-and-out’. Un-
derstanding this case suffices to understand the other cases as well. Also, due to a
relationship between call and put prices the calculation of a put price is very easy when
the call price is known.

8

Figure 1.2: Early expiration of barrier options

9

Chapter 2

Binomial No-Arbitrage Pricing
Model

2.1 Introduction

This chapter will treat the so called Binomial No-Arbitrage Pricing Model. Sections 2.2
and 2.3 are based upon [10]. The model leads to a powerful pricing method and is based
on the assumption that there are no arbitrage opportunities. The result of this method
will turn out to be very useful and is also needed to price methods for exotic options.

The method’s approach is to replicate an option by trading in stock and in money
markets. We will illustrate this by explaining and applying the method for a one-period
binomial tree. Then we will use our results to treat an example. After that, the gen-
eralized method for an N -period model will be stated. To illustrate this we extend our
1-period example to 3 periods. In addition we insert a barrier in this 3-period model and
calculate a barrier option price. Finally we will construct a non-recursive price formula
based on what we have found.

Arbitrage means making a riskless profit. In theoretically perfect and efficient mar-
kets there are no arbitrage opportunities. If in reality they do occur, market movements
cause them to disappear quickly. Important in this context is the following: two finan-
cial instruments that pay off exactly the same (on the expiration date) in any scenario
should trade for the same price. It turns out to be possible to construct a portfolio that
pays off exactly the same as an option. We know at what prices the elements of the
portfolio so we can calculate the price of the portfolio and by the no-arbitrage assump-
tion it equals the price of the option.

Another economical concept that is used in this model and is assumed prior knowl-
edge is the time-value of money. The interest rate quantifies this and is used to so-called
‘discount’ an amount of money in the future to make it equivalent with an amount of
money right now. For more explanation on this and on arbitrage, see [3].

2.2 One-period binomial model

We use the following notations:

10

Figure 2.1: Multiplicative simple random walk

Sn asset price at time n
H, T heads = asset price goes up, tails = asset price goes doen
p = P (H) probability of heads
q = 1− p = P (T) probability of tails
u = S1(H)

S0
up factor

d = S1(T)
S0

down factor
r interest rate
K strike price
Xn wealth at time n
∆n position in the asset during [n, n + 1)
Vn value of option at time n

Furthermore, we have the following:

� d = 1
u . This is not necessary for the method to work, but a convenient and common

choice for implementation. Making one up-step and one down-step (u·d = u· 1u = 1)
gets you back at the same level you started. This means that the tree that models
the asset price is a multiplicative simple random walk. Figure 2.1 illustrates this.

� 0 < d < 1+r < u. This condition is needed to rule out arbitrage. The interest rate
r is the risk-less return you can get on money: when you have a savings account
you will receive this interest without incurring any risk. It is also the interest
rate that you have to pay when you borrow money from the bank. Now imagine
d > 1 + r. In that case you could borrow money, buy stock, later on sell your
stock and pay of your loan. This way one would make a profit, without enduring
any risk. That situation is impossible so it is ruled out by this condition. Similar
reasoning the other way around (selling stock instead of buying it) leads to the
other part of the inequality, 1 + r < u. All elements are greater than zero since
stock prices must remain positive.

� S1(T) < K < S1(H). We consider this case since it is the only interesting case. It

11

means the option will be worth zero in the case of S1(T) and will be worth S1−K
in the case of S1(H).

� V1 = (S1 −K)+ = max {0;S1 −K}. This is the option payoff at time n.

The following can happen in a one-period situation:

S1(H) = uS0

↗
S0

↘
S1(T) = dS0

To replicate an option, use initial wealth X0 to buy ∆0 stock. This will cost ∆0S0. You
will need to borrow ∆0S0 −X0 in case X0 < ∆0S0 or you will have some savings left in
case X0 > ∆0S0. In either case, your cash position can be denoted by X0 −∆0S0. At
time t = 1, the interest rate comes into the picture and your cash position will be given
by (1 + r)(X0−∆0S0). The stock you own will then be worth ∆0S1. So your wealth at
t = 1 is given by:

X1 = ∆0S1 + (1 + r)(X0 −∆0S0)
= (1 + r)X0 + ∆0(S1 − (1 + r)S0)

In the case of no-arbitrage and to make sure that this portfolio is equivalent to the
option, it must be so that X1(H) = V1(H) and X1(T) = V1(T). Since we know S1 and
K we know V1(H) and V1(T). (Note that we do not know V1 since we do not know
whether H or T occurs.) Using V1(H) and V1(T), we get:

X1(H) = V1(H) = (1 + r)X0 + ∆0(S1(H)− (1 + r)S0)

1
1 + r

V1(H) = X0 + ∆0

(
S1(H)
1 + r

− S0

)
(2.1)

Similarly,
1

1 + r
V1(T) = X0 + ∆0

(
S1(T)
1 + r

− S0

)
(2.2)

To solve these equations an uncommon method is chosen. Two variables are introduced:
p̃ and q̃ = 1 − p̃. We can regard them as synthetic probabilities and we will see that
they turn out to be very useful. Multiplying the equation for H by p̃, the equation for
T by q̃ = 1− p̃ and adding gives:

1
1 + r

(p̃V1(H) + q̃V1(T)) = p̃X0 + p̃∆0
S1(H)
1 + r

− p̃∆0S0

+ q̃X0 + q̃∆0
S1(T)
1 + r

− p̃∆0S0

= X0 −∆0S0 +
∆0

1 + r
[p̃S1(H) + q̃S1(T)]

If we choose p̃ such that

S0 =
1

1 + r
[p̃S1(H) + (1− p̃)S1(T)] (2.3)

12

we have
X0 =

1
1 + r

(p̃V1(H) + q̃V1(T)) (2.4)

which means that
V0 =

1
1 + r

(p̃V1(H) + q̃V1(T))

since there are no arbitrage opportunities. We have now used wealth at time zero to
replicate a call option. Looking at (2.3), we see that our choice for p̃ results in a formula
for V0 that is just the expectation - under artificial probabilities p̃ and q̃ - of the option
value at t = 1, discounted back to t = 0. It is important to realize that these are not
the actual probabilities p and q but it is useful that this expectation form arises due to
the choice for p̃ and q̃. Also 2.3 has the form of a discounted expected value and can be
solved for p̃:

(1 + r)S0 = p̃uS0 + (1− p̃)dS0

1 + r = p̃u + (1− p̃)d

So

p̃ =
1 + r − d

u− d
(2.5)

q̃ = 1− p̃ =
u− 1− r

u− d
(2.6)

Finally, we can calculate ∆0, the amount of stock we need to buy at time zero to replicate
the option. Subtract 2.2 from 2.1 to get:

1
1 + r

V1(H)− 1
1 + r

V1(T) = X0 + ∆0

(
S1(H)
1 + r

− S0

)
− X0 −∆0

(
S1(T)
1 + r

− S0

)
1

1 + r
(V1(H)− V1(T)) =

∆0

1 + r
(S1(H)− S1(T))

So
∆0 =

V1(H)− V1(T)
S1(H)− S1(T)

. (2.7)

Example

Now, let’s apply these results to an example. We take u = 1.25, d = 1/u = 0.8.
Interest rate r = 0.05, initial asset price S0 = 10 and strike price K = 11. So V1(H) =
1.25× 10− 11 = 1.5 and V1(T) = 0 (since 0.8× 10 = 8 < 11).

S1(H) = 12.5
↗

S0

↘
S1(T) = 8

13

We started off with a formula for X1 of which we can only fill in r and S0 at this moment:

X1 = (1 + r)X0 + ∆0(S1 − (1 + r)S0)
= 1.05 ·X0 + ∆0(S1 − 10.5)

The condition we imposed on p̃ led to formulas 2.5 and 2.6 for p̃ and q̃ that we can fill
in.

p̃ =
1 + 0.05− 0.8

1.25− 0.8
=

5
9
, q̃ =

1.25− 1− 0.05
1.25− 0.8

=
4
9

The next step is filling in 2.4 to obtain V0 and thereby X0:

X0 = V0 =
1

1.05

(
5
9
· 1.5 +

4
9
· 0

)
=

20
21
· 15
18

=
300
378

= 0.794

We also found a formula 2.7 for ∆0 that we can fill in.

∆0 =
1.5− 0
12.5− 8

=
1
3
.

Now, let’s fill in the formula we started off with, to check that X1 equals V1.

X1(H) = 1.05 · 300
378

+
1
3

(12.5− 10.5)

=
5
6

+
2
3

= 1.5

X1(T) = 1.05 · 300
378

+
1
3

(8− 10.5)

=
5
6
− 5

6
= 0

So indeed, V1(H) and V1(T) equal X1(H) and X1(T). This illustrates that we can
calculate an option price by discounting the expected option value at a future time,
when we use artificial probabilities. We call these probabilities ‘risk-neutral’ and denote
probability and expectation in the risk-neutral world by P̃ and Ẽ. To see why, note that
the formula for V0 can be written as:

V0 =
1

1 + r
Ẽ[V1]→ Ẽ[V1] = (1 + r)V0

This shows that expected return is the interest rate, which is the risk-free return. There-
fore ˜ is called the risk-neutral world.

2.3 Multi-period binomial model

The idea of the one-period binomial model can be extended to multiple periods. As we
have seen in the example, replicating the option has led to formulas for the risk neutral
probabilities p̃ and q̃ that can be filled in straight away. Using these, we can find the
value of the option backwards in time by taking the discounted expected value of the
possible outcomes.

14

We can fill in the formula for ∆ and calculate our wealth to check the replication.
Doing this shows that the value of the portfolio is indeed equal to the value of the op-
tion that we calculated by discounting the expected value. The general theorem is as
follows (see [10]).

Theorem 2.1: Multi-period binomial model Consider an n-period binomial asset-
pricing model, with 0 < d < 1 + r < u, and with

p̃ =
1 + r − d

u− d
, (2.8)

q̃ = 1− p̃ =
u− 1− r

u− d
. (2.9)

Let Vn be a random variable (a derivative that pays off at n) that depends on the coin
tosses ω1, ω2, ..., ωn. Define recursively backward in time the sequence Vn−1, Vn−2, ..., V0

by

Vk(ω1ω2...ωn) =
1

1 + r
[p̃Vk+1(ω1ω2...ωkH) + q̃Vk+1(ω1ω2...ωkT)]. (2.10)

This way, every Vk (exept Vn) depends on the coin tosses that have occured before k.
Now, define

∆k(ω1ω2...ωk) =
Vk+1(ω1ω2...ωkH)− Vk+1(ω1ω2...ωkT)
Sk+1(ω1ω2...ωkH)− Sk+1(ω1ω2...ωkT)

, (2.11)

where 0 < k < n − 1. Now set X0 = V0 and define recursively forward the portfolio
values X1, X2, ..., Xn by

Xk+1 = ∆kSk+1 + (1 + r)(Xk −∆kSk), (2.12)

where the Xk’s, Sk’s and ∆k are dependent on ω1ω2...ωn, then it can be proven by
induction that the following holds:

Vn(ω1ω2...ωn) = Xn(ω1ω2...ωn) for all ω1ω2...ωn (2.13)

So for k = 1, 2, ..., n we define, given ω1...ωk, the price of the derivative security at time
k to be Vk(ω1...ωk) as given in 2.10. At t = 0, the price of the derivative is defined to
be V0.

Example

We will now extend the 1-period example to 3 periods to illustrate the method for
multiple periods. We change the strike price K to K = 7. According to the general
multiperiod method, we should first calculate p̃ and q̃. They are independent of K so
they remain p̃ = 5

9 and q̃ = 4
9 .

The following picture shows the asset-price developments that can occur during these
three steps. Note that these are just multiples of u and d with S0. So for example
S3(HHT) = u2 ·d ·S0 = 1.252 ·0.8 ·10 = 12.5. Also ud = 1 so after one up and one down
step, we are back at the original price level. Thus, the order in which the toss-sequence
is stated does not matter, i.e. S3(HHT) = S3(HTH) = S3(THH), S2(HT) = S2(TH),
etc.

15

S3(HHH) = 19.53
↗

S2(HH) = 15.63
↗ ↘

S1(H) = 12.5 S3(HHT) = 12.5
↗ ↘ ↗

S0 = 10 S2(HT) = 10
↘ ↗ ↘

S1(T) = 8 S3(HTT) = 8
↘ ↗

S2(TT) = 6.4
↘

S3(TTT) = 5.12

The next step is to define recursively backward in time V2, V1 and V0. For this, we need
all possible values of V3. These are calculated simply by

V3(HHH) = (S3(HHH)−K)+ = 19.53− 7 = 12.53
V3(HHT) = V3(HTH) = V3(THH) = (S3(HHT)−K)+ = 12.5− 7 = 5.5
V3(HTT) = V3(THT) = V3(TTH) = (S3(HTT)−K)+ = 8− 7 = 1
V3(TTT) = (S3(TTT)−K)+ = 0

Now, we fill in the formula’s for V :

V2(HH) =
1

1.05
·
[
5
9
· V3(HHH) +

4
9
· V3(HHT)

]
= 8.96

Analogous for the other V2’s gives: V2(HT) = 3.33 and V2(TT) = 0.53. Going one step
further back, using these V2’s we get V1(H) = 1

1.05 ·
[

5
9 · 8.96 + 4

9 · 3.33
]

= 6.15 and in
the same way V1(T) = 1.99. Finally, for V0 we obtain V0 = 4.09. This is the option price
that we are interested in. Just as in the 1-period example, by calculating ∆k’s and Xk’s
it can be verified that Vk = Xk holds for every k.

Now we know that the option value is an expected value, we could also calculate it
directly instead of working backwards step by step. It would look like this:

V0 =
1

(1 + r)3
Ẽ[V3]

=
1

(1 + r)3
[
P̃(HHH)V3(HHH) + P̃(HHT)V3(HHT)

+ P̃(HTH)V3(HTH) + P̃(THH)V3(THH) + P̃(HTT)V3(HTT)

+ P̃(THT)V3(THT) + P̃(TTH)V3(TTH) + P̃(TTT)V3(TTT)
]

(2.14)

=
1

1.053

[
p̃3 · 12.53 + p̃2q̃ · 5.5 + p̃2q̃ · 5.5 + p̃2q̃ · 5.5 + p̃q̃2 + p̃q̃2 + p̃q̃2

]
= 4.09

Observe that, for example, V3(HHT) = V3(HTH) = V3(THH) and also P̃3(TTH) =
P̃3(THT) = P̃3(HTT). Grouping these terms can simplify calculations. Recall the bino-
mial distribution where the probability of j succeses in k trials, with p being the chance

16

of succes, is given by
(
k
j

)
pjqk−j . If we regard every step as a trial where an up-step is

succes, we can denote the probability of making 2 up-steps and 1 down-step by
(
3
2

)
p2q1.

The binomial coefficient
()

groups P̃3(TTH), P̃3(THT) and P̃3(HTT) together because(
3
2

)
= 3 is the number of different paths that lead to S3 = 12.5. This idea will be

generalized in Section 2.5 after we have introduced the binomial tree in more detail.

To conclude this section we will look at what happens when we insert a barrier in
the above example. This will serve as an introduction to the counting problems that
Chapter 3 deals with.

S3(HHH) = 19.53
↗

S2(HH) = 15.63
H = 13 ↗ ↘

S1(H) = 12.5 S3(HHT) = 12.5
↗ ↘ ↗

S0 = 10 S2(HT) = 10
↘ ↗ ↘

S1(T) = 8 S3(HTT) = 8
↘ ↗

S2(TT) = 6.4
↘

S3(TTT) = 5.12

We insert a barrier at height H = 13 so for every path that reaches height HH the
option expires early and has zero value. That means we have (superscript B denoting
the barrier case)

V B
3 (HHH) = 0, V B

3 (HHT) = 0, V B
3 (HTH) = V B

3 (THH) = 5.5
V B

3 (HTT) = V B
3 (THT) = V B

3 (TTH) = 1, V B
3 (TTT) = 0.

so when we repeat the calculation in 2.14 we can no longer group all V3’s that have
ended in the same node. Filling in 2.14 we get

V B
0 =

1
(1.05)3

[
p̃3 · 0 + p̃2q̃ · 0 + p̃2q̃ · 5.5 + p̃2q̃ · 5.5 + p̃q̃2 + p̃q̃2 + p̃q̃2 + 0

]
= 1.59

2.4 Binomial trees

The binomial tree serves to model the underlying asset price. As we have seen, at every
time-step the price can either go up or down. Since the up- and down factors u and d
are related by d = 1/u, we are looking at a simple random walk. Up until now we have
worked with sequences of outcomes of coin tosses such as HHT . From now on we will
use a different way to express in which node we are, a way that does not tell us the
exact path that has been travelled. We introduce the following notations:

17

(k, i) position of a node in the tree
k total number of steps from (0, 0) to a node (k, i)
n total number of time steps to expiration of the option (from t = 0 to t = T)
i height of a node (k, i), we have that −k < i < k
N(k, i) total no. of paths from (0, 0) to (k, i)

Recall from the 3-period example that in order to calculate the expectation, we needed
to know every possible payoff at T and for every possible payoff the probability that it
occurs. Since (in the regular option case) two paths ending up at the same final value
have the same probability to occur, we want to know how many different paths lead to
every final value so that we can group these in the summation. Therefore we want to
work with N(k, i).

2.4.1 The binomial coefficient

The binomial coefficient is given by:(
k

j

)
=

k!
k!(k − j)!

for 0 ≤ j ≤ k

In combinatorics, this is often called the ‘choose function’ because it is the number of
ways in which you can choose j out of k objects, regardless of the order. Note that it is
the same as

(
k

k−j

)
: (

k

k − j

)
=

k!
(k − j)!(k − (k − j))!

=
k!

(k − j)!j!
=

(
k

j

)
We are looking at paths from (0, 0) to (k, i) and in the case of paths, ‘choosing regardless
of order’ means that it does not matter how you get from one node to the other, as long
as you get there. Where a path ends only depends on the number of up- and down steps.
When you have to end at a certain height you can either choose when all the up-steps
occur or when the down steps occur and then the rest of the steps must automatically
be of the other type. So to fill in the binomial coefficient we need to know how many
up- and down steps we make on the way from one node to another.

2.4.2 Number of paths from (0, 0) to (k, i)

Consider a path from (0, 0) to (k, i). There are k steps and you end up i points higher
than where you started. This means there must be at least i up-steps. That leaves k− i
other steps to be taken. Now because we end exactly i nodes higher than we started,
there must be as many up- as down-steps among those k− i steps. Of only half of those
you may choose freely: 1

2(k − i).

18

So, the number of paths from the origin to a node (k, i) is given by

N(k, i) =
(

total number of steps
steps that can be chosen freely

)
=

(
total number of steps
number of up-steps

)
=

(
k

i + 1
2(k − i)

)
=

(
k

1
2(k + i)

)
=

(
total number of steps
number of down-steps

)
=

(
k

1
2(k − i)

)
Instead of expressing height as i, we can also express it as 2j − k. This notation reveals
j as the total number of up-steps that have been taken. To see this, fill in i = 2j − k in
the two formulas above to get

N(k, 2j − k) =
(

k

j

)
=

(
k

k − j

)
Throughout the remaining chapters we will use (k, 2j − k) as well as (k, i), depending
on which is more convenient in a situation.

2.4.3 Number of paths from (k1, i1) to (n2, i2)

When dealing with combinatorial problems for barrier options, we sometimes need to
know the number of paths between two arbitrary nodes. The above can easily be gen-
eralized for starting in a different node than the origin. We have seen the trick: you
need to know the total number of steps and the height difference. The number to choose
freely is the height difference + half of the steps that are left.

So in general the number of paths from a point (k1, i1) to (k2, i2) is given by(
k2 − k1

(i2 − i1) + 1
2((k2 − k1)− (i2 − i1))

)
=

(
k2 − k1

1
2((k2 − k1) + (i2 − i1))

)

2.5 Formula for the option price

In the multi-period exampe we saw that we can calculate the expectation for VT directly
and discount it back from t = T to t = 0 instead of working backwards through the tree
step by step. From now on we use another expression for the discount factor, as if we
were in continous time. It is called the compounded discount factor and given by e−r∆t

(see [3] for more explanation).

Let VT (n, 2j−n) denote the option value at time T when the asset price is at (n, 2j−n)
and let P(n, 2j − n) denote the probability that the asset price ends up in that node.
Being in node (n, 2j−n) means the asset price has made j up-steps and n−j down-steps.
Note that the possible heights of the final asset price are n, n− 2, n− 4, ...,−n + 2,−n.
Then we have

V0 = e−r∆tẼ [VT]

= e−rT
n∑

j=0

P̃(n, 2j − n)VT (n, 2j − n) (2.15)

19

where

P̃(n, 2j − n) = N(n, 2j − n)p̃j q̃n−j =
(

n

j

)
p̃j q̃n−j (2.16)

and

VT (n, 2j − n) = (ST (n, 2j − n)−K)+

=
(
S0u

jdn−j −K
)+

. (2.17)

Finally, combining this into one formula results in

V0 = e−rT
n∑

j=0

(
n

j

)
p̃j q̃n−j

(
S0u

jdn−j −K
)+ (2.18)

From now on, we will denote the risk-neutral probabilities no longer by p̃ and q̃ and
expectation under these probabilities no longer by Ẽ. Rather we assume that we are
always in the risk-neutral worldso when p and q are used they actually denote risk-
neutral probabilities.

20

Chapter 3

Counting problems

3.1 Introduction

As we have seen in Section 2.3 , we want to count the number of paths of the asset price
from (0, 0) to certain nodes at final time T . This chapter deals with counting problems
that arise when pricing barrier and Parisian options. In the context of binomial trees
we add the following notations:

m the height for which i ≥ m lies upon or above the barrier
l no. of consecutive steps above the barrier before a Parisian option goes out
F (k, i) total no. of paths from (0, 0) to (k, i), not touching or crossing i = m
G(k, i) total no. of paths from (0, 0) to (k, i), less than l steps on or above m

Recall that the formula for N(k, i), the number of paths from (0, 0) to (k, i) is just the
binomial coefficient and is given by

N(k, i) =
(

k
1
2(k + i)

)
=

(
k

1
2(k − i)

)
(3.1)

or when we call i = 2j − k,

N(k, 2j − k) =
(

k

j

)
=

(
k

k − j

)
. (3.2)

Finding expressions for F (k, i) and G(k, i) is more difficult and needs the ‘reflection
principle’, topic of Section 3.3. Section 3.4 is based upon [4] and deals with finding
F (k, i). Section 3.5 finds G(k, i) and is based on [5]. But before we go there, we will
first take a look at how counting F (k, i) and G(k, i) is related to the option price formula.

3.2 Counting problems and price formulae

Recall from section 2.4 that the price of a regular call option is given by:

V0 = e−rT
n∑

j=0

P(n, 2j − n)VT (n, 2j − n) (3.3)

21

In the case of a barrier option, working this out gives the same expression for P(n, 2j−n)
but a different expression for VT (n, 2j−n). (From now on the superscript B will denote
the case of a regular barrier option and P a Parisian option.)

V B
T (n, 2j − n) = 1{St 6=m∀t}VT (n, 2j − n) + 1{St=m for some t} · 0

= P(S stays below barrier) (ST (n, 2j − n)−K)+

Every path from (0, 0) to (n, 2j−n) has the same probability to occur. So the probability
that a path from (0, 0) to (n, 2j − n) does not touch or cross the barrier is simply

number of paths from (0, 0) to (n, 2j − n) that stay below the barrier
total number of paths from (0, 0) to (n, 2j − n)

which means that
P(S stays below barrier) =

F (k, i)
N(k, i)

So the option value results in:

V B
T (n, 2j − n) =

F (k, i)
N(k, i)

(ST (n, 2j − n)−K)+ (3.4)

Putting this into the formula for V B
0 gives

V B
0 = e−rT

n∑
j=0

P(n, 2j − n)V B
T (n, 2j − n)

= e−rT
n∑

j=0

(
n

j

)
pjqn−j F (n, 2j − n)

N(n, 2j − n)
(ST (n, 2j − n)−K)+

= e−rT
n∑

j=0

N(n, 2j − n)
F (n, 2j − n)
N(n, 2j − n)

pjqn−j (ST (n, 2j − n)−K)+

= e−rT
n∑

j=0

F (n, 2j − n)pjqn−j (ST (n, 2j − n)−K)+ . (3.5)

Doing the same for a Parisian option results in:

V P
0 = e−rT

n∑
j=0

G(n, 2j − n)pjqn−j (ST (n, 2j − n)−K)+ (3.6)

3.3 Reflection principle

To find expressions for F (n, 2j − n) and G(n, 2j − n) in subsequent sections, the reflec-
tion principle is needed. It is illustrated in Figure 3.1.

According to the reflection principle [9], there are as many paths from A to B as there
are paths from A′ to B. To see this, call T the point at which some path from A to B
first crosses or touches the x-axis. Since A′ and A are each others reflections in the line
L, this path from A to T has a reflection in the L-axis: a path from A′ to T that has a
one-to-one correspondence with the path from A to T . For every path from A to B that

22

Figure 3.1: Illustration of the reflection principle

Figure 3.2: Barrier option tree: application of the reflection principle

touches or crosses the barrier, we can find a T as well as a reflected path from A′ to T .

That means every path from A to B touching or crossing the barrier corresponds to
a path from A′ to B. The first part of this corresponding path is the reflection in L
from A′ to T and the second part is the same for both: T to B. A′ lies above and B
lies below the barrier, so every path from A′ to B must cross the barrier. Combine this
with the fact that every path from A′ to B corresponds to a path from A to B that
touches or crosses the barrier and we have our desired result: the total number of paths
from A′ to B equals the number of paths from A to B that touch or cross barrier L.

3.4 Counting paths of barrier options

This section will apply the reflection principle to count paths in the case of regular bar-
rier options. We are looking for a formula for F (k, i), as defined in 3.1, that we express
in the form F (k, 2j − k) here.

From Section 3.3, we know that the number of paths from (0, 0) to (k, 2j − k) that

23

touches or crosses the barrier equals the total number of paths from (0, 2m) to (k, 2j−k).
The total number of paths from one node to another is given by the binomial coeffi-
cient. The total number of steps taken is k− 0 = k and the total number of down-steps
that is taken is the height difference 2m − (2j − k) plus half of the remaining steps
1
2(k − (2m− (2j − k)):

2m− (2j − k) +
1
2
(k − (2m− (2j − k)) = 2m− 2j + k −m + j = k + m− j.

That means the number of paths we are interested in is given by:(
n

k + m− j

)
=

(
k

k − (k + m− j)

)
=

(
k

j −m)

)
Since this is the number of paths that do touch and/or cross the barrier, we substract
it from the total number of paths to get an expression for F (k, 2j − k):

F (k, 2j − k) =
(

k

j

)
−

(
k

j −m

)
(3.7)

3.5 Counting paths of Parisian options

Obtaining an expression for G(k, i) is more complicated. It is not possible to find a
direct formula for the number of allowed paths to a final node. By dividing the binomial
tree into four different areas, we will be able to find a recursive formula. Figure 3.3
shows the different areas.

Area I

First, consider area I. In this area, k < l + m so i < l + m. Only after m steps, the
price can be at height m and only after another l steps it is possible that the price has
stayed above barrier m for a period of length l. So for every node in this area, it is
simply impossible for the option to expire or have expired. Therefore, the number of
paths from the origin to any point in area I that have not led to expiration is simply
the total number of paths: G(k, i) = N(k, i) if k < l + m.

Area II

Next is area II, where i ≥ l + m and thus k ≥ l + m. To get there the price must not
only have reached m but it must have stayed above m for at least l consecutive steps.
So for i ≥ l + m, the option must have already expired. The number of ‘allowed’ paths
to nodes in this area is therefore zero: G(k, i) = 0 if i ≥ l + m.

Area III

Area III consists of points below the barrier that have possibly spent a longer time
period than l above the barrier H. Since every trajectory ending in area III makes its
last step below the barrier, the final step does not influence what we are looking at: time
spent above the barrier. Therefore we may use a recursive relation, using the fact that
the last step was either an up- or down-step: the number of steps to a point (k, i) in III
is given by the number of steps to (k−1, i+1) plus the number of steps to (k−1, i−1).
So G(k, i) = G(k − 1, i− 1) + G(k − 1, i + 1) if i < H, k > m + l.

24

Figure 3.3: Binomial tree - four areas needed to construct G(k, i)

25

Area IV

Now we arrive at area IV. This is the most difficult one. To every node in this area
lead paths that have already led to expiration as well as paths that have not caused
expiration yet. Since it is possible that expiration occurs at the final step prior to the
node, we cannot just use the simple recursive relation that we have used for area III.
So in order to calculate G(k, i), we need to exclude paths that have already expired or
expire in the last step.

The area we were looking at is nodes (k, i) with m ≤ i < l + m, k ≥ l + m. The
following formula provides us with an expression for G(k, i): The number of paths from
the origin to a node in area IV that have stayed above the barrier less than l steps, is
given by

G(k, i) =
0.5(l−(i−m))∑

h=0

G(k − 2h− (i−m)− 1,m− 1) ·[(
2h + i−m

h + i−m

)
−

(
2h + i−m

h + 1 + i−m

)]
. (3.8)

To explain this, start by noting that all paths to a node in this area that have not expired
can be split up into two parts. Part one is a path from the origin that arrives at a node
at height m − 1 after let’s say k − x − 1 steps and then makes an up-step. Hence, this
is a path from the origin to the barrier: (0, 0) → (k − x,m). Part two starts on the
barrier and - using less than l steps - ends in the node we are looking at. This means it
does (k − x,m) → (k, i) (for which we have m ≤ i < l + m). Multiplying the number
of possible ‘part one’s with the number of possible ‘part two’s gives us the number of
non-expired paths from (0, 0) to (k, i) in area 4 that have remained above the barrier
since they were in node (k − x,m).

Part I - (0, 0) → (k − x,m) with the conditions: the path has not caused
expiration and the last step is an up-step.

The total number of non-expired paths from (0, 0) to (k−x,m) is the sum of the number
of non-expired paths from (0, 0) to (k − x − 1,m − 1) and the number of non-expired
paths from (0, 0) to (k − x− 1,m + 1): G(k − x− 1,m− 1) + G(k − x− 1,m + 1). But
remember the condition that the last step is an up-step, we may not include the paths
coming through G(k − x− 1,m + 1). Therefore the number we are looking for is given
by G(k − x− 1,m− 1).

Part II - (k − x, m) → (k, i) with the condition: the path has consecutively
stayed above the barrier.

(Later on we restrict possible values for x to assure that the path has not yet expired.)
The number of possible paths from one node to another not crossing the barrier, is given
by the total number of paths minus the number of paths that do cross the barrier. The
total number of paths, (k − x, m)→ (k, i), is given by the usual binomial coefficient:(

k − (k − x)
i−m + 1

2(k − (k − x)− (i−m))

)
=

(
x

1
2(x + (i−m))

)

26

The number of paths that cross barrier m is the number of paths that touch or cross the
line m− 1 and can be found using the reflection principle. The reflection of (k − x,m)
in the line m− 1 is (k−x, m− 2), so the number of paths crossing barrier m is the total
number of paths from (k − x,m− 2) to (k, i) and is given by the binomial coefficient:(

k − (k − x)
i− (m− 2) + 1

2(k − (k − x)− (i− (m− 2)))

)
=

(
x

1
2(x + i−m + 2)

)
So finally, the number of Part II paths we are looking for is given by:(

x
1
2(x + (i−m))

)
−

(
x

1
2(x + i−m + 1)

)
(3.9)

Multiplying the number of possible paths for part I and part II, we get the following
expression:

G(k − x− 1,m + 1)
[(

x
1
2(x + (i−m))

)
−

(
x

1
2(x + i−m + 1)

)]
(3.10)

To obtain this equation we have - out of the blue - said that we are on the barrier after
k − x steps and that we stay on and/or above the barrier after k − x. But there are
multiple possibilities for x that should all be taken into account. The number of paths
we are looking for is a sum of the above expression over a certain range of values for x.
Now let’s look at the possible values for x. At (k, i), we are i−m nodes above m. That
means the last possible node to reach the barrier and stay above it is (k − (i−m),m),
which leads to x ≥ i − m. On the other hand, we have been above the barrier for
less than l steps so the first possible node to reach and stay above or on the barrier
is (k − l + 1,m), leading to the condition x ≤ l − 1 ⇔ x < l. That means we have
i−m ≤ x < l.

Furthermore we have to take into account that height m is either even or uneven and
can only be reached after an amount of steps that is also even or uneven. That means
we cannot let x run over all values between i −m and l; we have to skip every other
number. To avoid this, we can use an alternative expression involving some number
2h so that it is possible to sum for a range of values for h. We make the replacement
x = 2h + i−m. Filling this into the constraints for x gives:

i−m ≤ 2h + i−m < l⇔ 0 ≤ 2h < l − (i−m)⇔ 0 ≤ l − (i−m

2
)

Making the replacement for x in 3.10 and summing over all possible values for h results
in the expression:

G(k, i) =

l−(i−m)
2∑

h=0

G(k − 2h− (i−m)− 1,m− 1)
[(

2h + i−m

h + i−m

)
−

(
2h + i−m

h + 1 + i−m

)]
which equals 3.8. This means we have found an expression - albeit recursive - for G(k, i),
the number of paths from (0, 0) to (k, i) for which a Parisian option has not yet expired.

27

Chapter 4

Regular barrier option prices

This chapter will discuss two methods to calculate prices of regular barrier options. The
first method is based upon counting paths. The price formula can be given right away,
based upon results from Chapter 3. The second method, topic of Section 4.2, uses a
different approach and requires explanation in this chapter. Section 4.3 discusses the
implementation of both methods in Matlab and section 4.4 will discuss the numerical
results that were obtained using both methods.

4.1 Method I: counting paths

In Section 3.2 we found a formula for the value of a regular barrier option, depending
on F (n, 2j − n), denoting the number of paths from (0, 0)← (k, i) for which the option
has not yet expired:

V B
0 = e−rT

n∑
j=0

F (n, 2j − n)pjqn−j (ST (n, 2j − n)−K)+ . (4.1)

Later in Section 3.4 we found an expression for F (k, 2j − k):

F (k, 2j − k) =
(

k

j

)
−

(
k

j −m

)
(4.2)

Again, this expression is a discounted expectation of the final option payoffs. For every
final option payoff the probability of finishing in that node is the probability to take
exactly enough up- and downsteps to end up there times the number of ways in which
you can do that.

To reduce computations we can specify this formula a little bit further. We currently
sum over all possible final nodes but we know that in certain nodes the option payoff
will be zero. These are on the upper end nodes that lie above the barrier and on the
lower end nodes for which the asset price is lower than the strike price. On the upper
end this means we only need to sum up to j = m− 1 since the option is out at j = m.
On the lower end, we need to find for which j we have that Sujdn−j > K. Rewriting

28

this inequality gives:

ujdn−j >
K

S

(u/d)j >
K

Sdn

j log(u/d) > log(K/Sdn)

j >
log(K/Sdn)

log(u/d)

Any value for j must be an integer so if we call a :=
⌈

log(K/Sdn)
log(u/d)

⌉
then we have VN (n, 2j−

n) = 0 for all j < a. Now we may write the price formula as

V B
0 = e−rT

m−1∑
j=a

F (n, 2j − n)pjqn−j (ST (n, 2j − n)−K) . (4.3)

4.2 Method II: recursively backwards

This method uses different calculations to do essentially the same as the counting
method. Calculating the option price is all about the expected value and when it comes
to the barrier case, it is all about making sure that paths that hit the barrier do not
contribute any value to the option price. In case of Method I, value from expiring paths
that expire early is eliminated by looking at the number of paths to a certain node
that are allowed. But we can also eliminate value from expiring paths while working
backwards in the tree. As long as we make sure that every path that touches or crosses
the barrier adds zero to the expected option value.

Recall from Section 2.3 that the value of an option after k steps is the discounted
expectation of the option value after k + 1 steps. There we said the following: Vn is a
random variable that pays off at n and depends on the coin tosses ω1, ω2, ..., ωn. The
value of Vk is defined recursively backward in time for k = n− 1, n− 2, ..., 0 as follows:

Vk(ω1ω2...ωk) =
1

1 + r
[p̃Vk+1(ω1ω2...ωkH) + q̃Vk+1(ω1ω2...ωkT)].

This way, every Vk (exept Vn) depends on the coin tosses that have occured before k.
Since we know every possible Vn we can calculate backwards to find V0. Basically this
is also a way of covering every path through the tree. Now how do we make sure that
paths that hit the barrier at some point do not contribute to the expactation?

The essential observation we need to make is that every path that causes the option
to expire must do so by making one of the following steps:

(m− 1,m− 1) → (m,m)
(m− 1 + 2,m− 1) = (m + 1,m− 1) → (m + 2,m)

(m + 3,m− 1) → (m + 4,m),
(m + 5,m− 1) → (m + 6,m), etc.

This is illustrated in Figure 4.1. The red arrows represent all steps that cause expiration.
The expected value of the option when the asset price is at the end of any of those red

29

Figure 4.1: Possible expiration-steps for a regular barrier option

arrows must be zero. When we define in our recursive scheme Vk(k,m) = 0 for every k
on the barrier then this causes all value arising from expired paths to be removed from
the expectation.

In Section 2.3 we calculated backwards point by point but we can also work back-
wards using vectors. At every iteration, we set the option value in nodes on or above
the barrier to zero. Figure 4.2 gives an algoritmic description of this. Vector Vt gets
shorter and eventually V0 is a single number. We use h = T

n and let k steps correspond
time t, so t = h · k.

4.3 Matlab implementation

The example that I have implemented in Matlab uses values taken from Costabile [5].
The following constants are used:

US interest rate r = 0.056
Japan interest rate γ = 0.007
volatility σ = 0.13
initial asset price S0 = 1/120.5
strike price K = 1/125
barrier height H = 1/110
lifetime in years T = 0.5

Based on Black Scholes are expressions for u and d taken from [6]. The same goes for p
and q but these are modified by [5] for the underlying involving also γ. The formula for
n as used by [5] is based on Boyle and Lau [2] who have showed this to be a convenient
choice to avoid ‘bumping up against the barrier’. We have the following expressions:

30

1. Define the following vectors:

St =

St(k, k)

St(k, k − 2)
...

St(k,−k + 2)
St(k,−k)

 =

S0u

kd0

S0u
k−2d2

...
S0u

2dk−2

S0u
0dk

 and (4.4)

Vt =

Vt(k, k)

Vt(k, k − 2)
...

Vt(k,−k + 2)
Vt(k,−k)

 = (St −K)+ .× (St < H). (4.5)

The vector (St < H) is a vector with logicals consisting of zeros and ones. This
vector sets the option value in final nodes on or above the barrier to zero. The
expression .× denotes a pointwise vector multiplication.

2. Set T = t.

3. For every t ≥ 0:

4. Take two vectors out of Vt:

Vup
t =

Vt(k, k)

Vt(k, k − 2)
...

Vt(k,−k + 2)

 ,Vdown
t =

Vt(k, k − 2)

...
Vt(k,−k + 2)

Vt(k,−k)

 . (4.6)

5. Set St−h:

St−h = d ·

St(k, k)

St(k, k − 2)
...

St(k,−k + 2)

 = u ·

St(k, k − 2)

...
St(k,−k + 2)

St(k,−k)

 . (4.7)

6. Calculate Vt−h:

Vt−h = e−rh ·
(
pVup

t + qVdown
t

)
.× (St−h < H) (4.8)

where (St−h < H) is again a vector with logicals and .× denotes pointwise
multiplication.

7. Set t = t− h.

8. The option price at t = 0 is now given by V0 = V0.

Figure 4.2: Algorithmic description of Method II

31

number of time steps n =
⌊

m2σ2T
log2(H/S)

⌋
length of one time step h = T

n

up factor u = eσ
√

h

down factor d = e−σ
√

h

probability of up-step p = e(r−γ)h−d
u−d

probability of down-step d = 1− p = u−e(r−γ)h

u−d

After setting the constants and calculating these variables we need to implement a
calculation of the actual price. Both ways to do this, as discussed in Section 4.1 and
Section 4.2, have been implemented.

4.3.1 Implementation of Method I

This method requires some carefull programming, especially if one wants to make it as
quick as possible. Remember the formula for F (n, 2j − n). We are going to rewrite this
expression:

F (n, 2j − n) =
(

n

j

)
−

(
n

j −m

)
=

n!
(n− j)!j!

− n!
(j + m)!(n− (j + m))!

=
n!

∏m
i=1(j + i)

(n− j)!(j + m)!
−

n!
∏m

i=1(n− j −m + i)
(j + m)!(n− j)!

=
n!

(n− j)!(j + m)!

[
m∏

i=1

(j + i)−
m∏

i=1

(n− j −m + i)

]

=
n!

(n− j)!j!
· 1∏m

i=1(j + i)

[
m∏

i=1

(j + i)−
m∏

i=1

(n− j −m + i)

]

= N(n, 2j − n) ·

[
1−

m∏
i=1

(n− j −m + i)
(j + i)

]
(4.9)

Filling this into V B
0 gives the following formula:

V B
0 = e−rT

n∑
j=0

N(n, 2j − n) ·

[
1−

m∏
i=1

(n− j −m + i)
(j + i)

]
pjqn−j (ST (n, 2j − n)−K)+ .

Matlab cannot evaluate N(k, i) for the numbers we are working with because the value
for N simply gets too large for large n. Naturally the formula also includes a term that
is going to get very small for large n: pjqn−j (since p < 1 and q < 1). We program
evaluation of these two terms multiplied by eachother in order to keep working with
reasonable numbers. The formula below shows which three vectors we construct so that
the final value can easily be calculated. The Matlab code can be found in Appendix
A.1.

V B
0 = e−rT

n∑
j=0

n!
(n− j)!j!

pjqn−j︸ ︷︷ ︸
Pf

[
1−

m∏
i=1

(n− j −m + i)
(j + i)

]
︸ ︷︷ ︸

Cf

(ST (n, 2j − n)−K)︸ ︷︷ ︸
Vf

32

Method I Method II
m n a

⌊
1
2(n + m)

⌋
V B

0 tI V B
0 tII

10 101 49 55 1.4241e-004 0.0007 1.4241e-004 0.0098
20 406 199 213 1.4003e-004 0.0015 1.4003e-004 0.0163
32 1041 515 536 1.4060e-004 0.0018 1.4060e-004 0.0384
40 1626 805 833 1.4046e-004 0.0034 1.4046e-004 0.0686
50 2541 1261 1295 1.4067e-004 0.0046 1.4067e-004 0.1386

Table 4.1: Prices and computation times for Method I & II

4.3.2 Implementation of Method II

Implementation of this method is extremely easy in terms of the amount of code that
is needed. Matlab code for this method can also be found in Appendix A.1. Before
starting the recursion, 2 vectors are calculated. One contains all possible asset prices
after n steps (Sf) and the other contains all possible option payoffs after n steps (Vf,
the same as above in Method I) . During the recursion we can keep working with these
2 vectors without needing to store any other vectors. At every time-step, two vectors
are drawn out of Vk, multiplied by p and q, discounted and compared to barrier H to
obtain a vector for Vk−1. The vector gets shorter and shorter and eventually results in
a single value: V B

0 .

4.4 Results

This section will present a table with prices that were found for different values of m. All
the values in Table 4.4 are equal to the values that Lerouge [7] found based on Costabile
[5], using a window period of 0 days. We are interested in whether Method I or Method
II performs faster so the table presents calculation times for both methods. From these
results we can conclude that Method I performs significantly faster than Method II.

Looking at the code, it is the for-loop that causes Method II to be slower. Method I
however also contains for-loops but apparently these do not take a lot of time to work
through. After a closer look at why this is the case, we find that it is caused by the
fact that Method II must always loop over n and Method I calculates Pf and Cf only
for values between a and

⌊
1
2(n + m)

⌋
. Looking at Table 4.4, we see that they lie closely

together compared to the total number of steps n.

These two values lie close together when a is relatively high and
⌊

1
2(n + m)

⌋
is relatively

low. Remember that a is the number of up-steps that need to be taken to be in-the-
money at maturity. In this case we are working with S0 = 0.0083 and K = 0.0080 so
in order to end in-the-money we are not allowed to take many down-steps. This means
a is quite high. And then there is

⌊
1
2(n + m)

⌋
: making more up-steps than this will

surely cause you to end up on or above the barrier. This number of steps will depend
on the height of the barrier compared to the initial price, in our case H = 0.0091 and
S0 = 0.0083. S0 and H lie quite close together and indeed

⌊
1
2(n + m)

⌋
is relatively small.

So the amount of work done by Method II is constant relative to n but the amount
of work that Method I needs to do depends on the values a and 1

2(n + m). We can try
to put in some other numbers that give Method I a hard time and compare methods

33

m 100 150 200
n 621 1397 2485
a 0 223 609⌊

1
2(n + m)

⌋
360 773 1342

V B
0,I 0.0075 0.0075 0.0075
tI 0.0089 0.0197 0.0383

V B
0,II 0.0075 0.0075 0.0075
tII 0.0233 0.0578 0.1323

Table 4.2: Results for K = 0.0008, H = 0.0120.

m 100 150 200
n 2429 5467 9719
a 588 1793 3606⌊

1
2(n + m)

⌋
1264 2808 4959

V B
0,I 0.0069 NaN NaN
tI 0.0397

V B
0,II 0.0069 0.0069 0.0069
tII 0.1259 0.8430 1.9974

Table 4.3: Results for K = 0.0008, H = 0.0100.

again. First of all we set the strike price very low at K = 0.0008, so that a will be low.
S0 = 0.0083 stays the same. Now for H = 0.0100 and H = 0.0120 we will vary m and
look at the results.

Table 4.3 shows what happens when we set H = 0.0120 and take m = 100, 150, 200. This
indeed causes Method II to perform relatively better compared to Table 4.1: Method I
is now 3-4 times faster instead of 10-30 times faster. However, the values for K and H
that we are using to make this point are not very realistic. Using the values from [5]
values shows that Method I is simply better. Besides, the fact that a and

⌊
1
2(n + m)

⌋
lie not too far apart is no coincidence; it is due to the choice for n based on m, S and
H.

In Table 4.4 we see that for very large n, Method I is no longer able to find a price.
This is due to a part of the calculation that Matlab cannot handle when n gets too big.
Method II still does the job. Basically this means that only when it comes to large n and
m - leading to many elements between a and

⌊
1
2(n + m)

⌋
- Method II performs better.

34

Chapter 5

Parisian option prices

Parisian option were introduced in Section 1.3.1. Section 5.1 will state the pricing
formula for these options using the counting paths-approach and Section 5.2 will discuss
the way I implemented the algorithm in Matlab. Section 5.3 introduces the problem
of finding a relation between regular barrier and Parisian option prices, based on the
height of the barrier and the required time above the barrier. Section 5.4 will present
results that were obtained with Matlab.

5.1 Counting paths

In Section 3.5 we have found the following algorithm to count the number of paths from
(0, 0) to (n, i) that do not cause the option to expire early:

� Area I: G(k, i) = N(k, i) if k < l + m

� Area II: G(k, i) = 0 if i ≥ l + m

� Area III: G(k, i) = G(k − 1, i− 1) + G(k − 1, i + 1) if i < H, k > m + l

� Area IV: if m ≤ i < l + m and k ≥ l + m,G(k, i) =

1
2
(l−(i−m))∑

h=0

G(k − 2h− (i−m)− 1,m− 1)
[(

2h + i−m

h + i−m

)
−

(
2h + i−m

h + 1 + i−m

)]

This is input for the price formula we found in Section 3.2:

V P
0 = e−rT

n∑
j=0

G(n, 2j − n)pjqn−j (ST (n, 2j − n)−K)+ (5.1)

As we did in the case of barrier options, we also define a as the minimum number of
up-steps needed to be in-the-money at maturity:

a =
⌈

log(K/Sdn)
log(u/d)

⌉
In this case we could let the sum run up to

⌊
1
2(n + l + m)

⌋
since any path that makes

more than this many up-steps ends in node higher than m+ l, which means it has surely

35

expired. The formula may be written as:

V P
0 = e−rT

b 1
2
(n+l+m)c∑

j=a

G(n, 2j − n)pjqn−j (ST (n, 2j − n)−K) (5.2)

5.2 Matlab implementation

Unlike F (n, i) in the regular barrier option case, the formula for G(n, i) is recursive.
Programming G(n, i) as the algorithm above results in a function that frequently calls
upon itself and is unable to handle large n. Therefore I wrote a function that constructs
a large matrix with a tree in it that contains values for G(n, i) for each node in the tree.
Again, this function could not deal with large n, simply because the number G(n, i)
became too large to handle. Eventually the following was done:

V P
0 = e−rT

n∑
j=0

G(n, 2j − n)
N(n, 2j − n)︸ ︷︷ ︸

A

N(n, 2j − n)pjqn−j︸ ︷︷ ︸
Pf

(ST (n, 2j − n)−K)︸ ︷︷ ︸
Vf

Again, the letters below the formula show the variable names used in Matlab. The code
that calculates V P

0 can be found in Appendix A.2. Note that Vf and Pf are identical
to the Vf and Pf calculated in the case of a regular barrier. The values for G(n,2j−n)

N(n,2j−n)
are found by constructing a large matrix and finally taking out the bottom row. The
numbers in the matrix represent for every node the probability that the option still
exists when the asset price is in that node. Values range from 0 to 1 so the problem of
values that are too large or too small is avoided.

5.3 A relation with regular barrier prices?

We will see below how much time it takes to compute a Parisian price compared to a reg-
ular barrier price. This raises the question of whether we could somehow find a Parisian
price in a less complicated way, by doing regular barrier price calculations. Parisian
options are worth more than regular barrier options when they have the same barrier
height because the barrier option has a higher chance of expiring early and ending up
worthless. Because of the window period, a Parisian option expires less often on the
same underlying. Just as the window period leads to less early expiration and a higher
option value, so does a higher barrier. That means a regular barrier option with a higher
barrier is more expensive than the ‘same’ option with a lower barrier.

This leads to the idea that we could try to find a barrier height Himpl related to H,
for which a regular barrier option has the same price as the Parisian option. We would
mainly expect this implied barrier height Himpl to depend on the window period because
the longer the window period, the lower the chance of early expiration. In [1] the implied
barrier concept is introduced for option pricing in continous time, based on window pe-
riods. Besides window periods the authors also look at different expiration times. When
T increases we would expect a lower Parisian price due to a higher probability of early
expiration. This also leads to a lower implied barrier.

36

5.4 Results

Table 5.1 shows prices that were found with the code from Appendix A.2. By ‘wp’ the
window period is denoted in days. Using 360 days a year, l is determined by l = wp/360

h
where h denotes the step size and the value for l that is found is rounded off. The values
that I found equal those found by Lerouge [7] based upon Costabile [5].

wp = 0 days wp = 5 days wp = 10 days wp = 15 days
m n l V P

0 l V P
0 l V P

0 l V P
0

10 101 0 1.4241e-004 3 1.9738e-004 6 2.2668e-004 8 2.4648e-004
20 406 0 1.4003e-004 11 2.0135e-004 23 2.3739e-004 34 2.6236e-004
32 1041 0 1.4060e-004 29 2.0569e-004 58 2.4019e-004 87 2.6907e-004
40 1626 0 1.4046e-004 45 2.0737e-004 90 2.4162e-004 135 2.7084e-004
50 2541 0 1.4067e-004 71 2.0897e-004 141 2.4381e-004 212 2.7258e-004

Table 5.1: Parisian option: prices for different m and l

Table 5.2 shows computational times with this code for the three window periods other
than zero. Table 5.3 shows the computational times for a window period of 0 days,
the situation of a regular barrier option. Therefore it also shows the times we found in
Chapter 4 with Method I. Clearly this motivates the question of whether a relation can
be found so that the Parisian price can be calculated by calculating some regular barrier
price.

wp = 5 days wp = 10 days wp = 15 days
m n l time l time l time
10 101 3 0.0632 6 0.0186 8 0.0157
20 406 11 0.1356 23 0.2045 34 0.2692
32 1041 29 0.9408 58 1.3970 87 1.8790
40 1626 45 2.3103 90 3.5675 135 4.8488
50 2541 71 5.8620 141 9.0907 212 12.8555

Table 5.2: Parisian option: computational times

Parisian method Chapter 4 - Method I
m n l time l time
10 101 0 0.0054 0 0.0012
20 406 0 0.0778 0 0.0031
32 1041 0 0.5051 0 0.0076
40 1626 0 1.2207 0 0.0125
50 2541 0 2.9718 0 0.0198

Table 5.3: Computational times compared for l = 0

Now let’s look at some results from trying to find a relation between regular barrier
and Parisian prices as explained in Section 5.3. Figure 5.1 shows the implied barrier for

37

Figure 5.1: Relation between window period and implied barrier

different window periods. S and the barrier height of the Parisian option Hpar were kept
constant. This shows a linear relationship between the window period and the implied
barrier height. The line is bumpy because of the way the while-loop is constructed to
find Himpl and because we are working in discrete time.

Figure 5.2 is a surface plot of implied barriers. Himpl was calculated for a range
of window periods as well as a range of different values for the expiration time T . As in
the previous figure, we see that the implied barrier is positively related to the window
period but we are unable to observe the expected negative relationship between the
T -axis and the implied barrier.

One of the reasons we might not be able to observe such a relationship is that the
interval for T we are looking at is [0, 2]. The program that is used does not work for
large T (which leads to a large n) unless the tree grid is made coarse by setting m
small. Doing this reduces the illustration of the linear relationship along the ‘window
period’-axis and also does not show a negative relationship with the expiration time
when T = [0, 5]. Besides the programming constraint on n and the resulting tradeoff
between m and T we are using different numerical values than the numerical example
in [1] so specific results cannot be compared. Therefore we cannot draw any conclusions
about the relation between the implied barrier and the expiration time. Only Figure
5.1 serves as a clear illustration of the implied barrier concept in discrete time when it
comes to the window period.

38

Figure 5.2: Implied barrier as function of window period and T

39

Chapter 6

Conclusion

This thesis has worked towards pricing methods for regular barrier and Parisian options
in discrete time. With the Binomial No-Arbitrage Pricing Method as starting point,
we found a direct price formula for standard options in at the end of Chapter 2. Af-
ter looking into combinatorical formulas in Chapter 3 we eventually arrived at general
pricing formulae for regular barrier and Parisian options. Both formulas have been
implemented in Matlab and their results have been discussed in Chapters 4 & 5. Refer-
ence values from other literature indicates that the methods were implemented correctly.

In Chapter 4, an alternative recursive method to calculate regular barrier option prices
was developed. Supervisor and author of this thesis do not know whether this method
is new but neither of them has encountered the method in existing literature. Imple-
mentation of the method is very easy and results in a program that can handle a very
large number of time-steps. Numerical results show that clever implementation of the
‘counting paths’-method results in a faster program than the recursive method. Both
methods use loops which slow down calculations but due to certain choices for parame-
ters, the combinatorical method loops over a relatively small amount of values whereas
the recursive method must always loop over the total number of time-steps.

Further research on the recursive method that has been found was beyond the time-
scope of this thesis. It would be interesting to work out the computational cost of the
method in more detail and optimize it in terms of the number of multiplications that is
needed and the amount of memory that is used. Also its concept could be applied to
trinomial trees, which form a way of discrete asset price modelling that has not been
discussed in this thesis.

Finally, in Section 5.4 we have shown that in discrete time, the relation between the
window period and implied barrier height as discussed in [1] can be found by numerical
experiment. The proposed relation between expiration time and implied barrier height
could not be illustrated with the program available. Further research could look at both
relations in discrete-time compared to continous time in more detail.

40

Appendix A

Matlab code

A.1 Regular barrier option

%This file calculates the option price of a regular barrier option using
%two different methods.

%Set Constants
m=100 %height of barrier
r=0.056; %US interest rate
gamma=0.007; %Japan interest rate
sigma=0.13; %volatility
S=1/120.5; %initial asset price
K=1/125; %strike price
H=1/110; %height of barrier
T=0.5; %lifetime

%Calculate variables
n=floor(T*(m*sigma/log(H/S))^2) %number of time-steps
h=T/n; %size of each step
u=exp(sigma*sqrt(h)); %up factor
d=1/u; %down factor
p=(exp((r-gamma)*h)-d)/(u-d); %probability of up-step
q=1-p; %probability of down-step

% van=max(ceil(log(K/(S*d^n))/log(u/d)),0)
% tot=floor(0.5*(n+m))

%%%
%Method I: Counting paths

tic;
%Construct vectors with final asset prices and option payoffs
Sf=S*u.^(n:-2:-n);
Vf1=(Sf-K).*((Sf<H).*(Sf>K));
%Calculate the min. no of up-steps to be in the money at maturity
a=max(ceil(log(K/(S*d^n))/log(u/d)),0);

41

%Construct vector with probabilities for asset price to end at points that
%are in the money and below the barrier
Pf=zeros(n+1,1);
for k = a:floor(0.5*n)

N=(n-k+1):1:n;
D=1:1:k;
Pf(k+1)=prod(p*q*N./D)*q^(n-2*k);

end
for k = ceil(0.5*n):floor(0.5*(n+m))

N=(k+1):1:n;
D=1:1:n-k;
Pf(k+1)=prod(p*q*N./D)*p^(2*k-n);

end
Pf=flipud(Pf);

%Construct a ’correction’ vector that eliminates value from expired paths.
Cf=zeros(n+1,1);
for j = n-floor(0.5*(n+m)):n-a

N=n-j-m+1:1:n-j;
D=j+1:1:j+m;
Cf(j+1)=1-prod(N./D);
XX2(j+1)=Cf(j+1);

end

%Multiply the 3 vectors pointwise, sum and discount to get V_0
Vfe=exp(-r*T)*sum(Vf1’.*Pf.*Cf)
t1=toc

%%%
%Method II: recursively backwards

tic;
%Construct vectors with final asset prices and option payoffs
Sf=S*u.^(n:-2:-n);
Vf2=(Sf-K).*((Sf<H).*(Sf>K));
%Calculate backwards to find V_0
for i=1:1:n

Sf=d*Sf(1:end-1);
Vf2=exp(-r*h)*(p*Vf2(1:end-1)+q*Vf2(2:end)).*(Sf<H);

end
Vf2
t2=toc
%%%

A.2 Parisian option

function price = paris(m,wp)

42

%Constants
r=0.056; %US interest rate
gamma=0.007; %Japan interest rate
sigma=0.13; %volatility
S=1/120.5; %initial asset price
K=1/125; %strike price
H=1/110; %height of barrier
T=0.5; %lifetime

%Calculate values that are needed later on
n=floor(T*(m*sigma/log(H/S))^2); %number of time-steps
h=T/n; %size of each step
u=exp(sigma*sqrt(h)); %up factor
d=1/u; %down factor
p=(exp((r-gamma)*h)-d)/(u-d); %probability of up-step
q=1-p; %probability of down-step

diy=360; %number of days per year
wpd=wp/diy; %window period (in years)
l=round(wpd/h); %number of steps in window period

%Number of up-steps needed to be in the money at maturity.
min_itmam = max(ceil(log(K/(S*d^n))/log(u/d)),0);

%Generate ’still-existing’-probability-matrix
GNIf = zeros(n,2*n+1);
%Two outer branches
for N=1:n

GNIf(N,n+1-N)=1;
GNIf(N,n+1+N)=1;
end
%AREA 2
GNIf(:,(n+l+m+1:n+n+1))=0;
%AREA 1
for N=1:(l+m-1)

for i=-n:(l+m-1)
if (floor((N+i)/2)==((N+i)/2))&&(N>abs(i))&&(i+n~=0)

GNIf(N,i+n+1)=1;
end

end
end
for N=(l+m):n

for i=-n:(l+m-1)
%AREA 3
if (i<m)&&(mod(N+i,2)==0)&&(N>abs(i))

GNIf(N,i+n+1)=(.5*(N-i)/N)*GNIf(N-1,i+n+2)+(.5*(N+i)/N)*GNIf(N-1,i+n);
%AREA 4
elseif (i>=m)&&(mod(N+i,2)==0)&&(N>=abs(i))

43

t1=0.5*(N-i);t2=i-m+1;
k=1:ceil((l-i+m)/2-1);
KV=cumprod([prod([t1+m:0.5*(N+i)]./[N-i+m:N]),(t1-k+1)./(N-2*k-t2+1).*
...(t1-k+m)./(N-2*k+2-t2).*(2*k-2+t2)./k.*(2*k+t2-1)./(k+t2)]);
GNIf(N,i+n+1)=KV*GNIf(N-2*[0,k]-t2,n+m);

end
end

end
%Take out ’final’ probabilities
Ef=fliplr(GNIf(n,1:2:end))’;
clear GNIf;

%Calculate final asset prices and option values
Sf=fliplr(S*u.^(-n:2:m+l-1));
Sf=[zeros(1,n+1-length(Sf)),Sf]; %vector with final underlying asset prices
Vf=(Sf-K).*(Sf>K); %vector with final values of option, given existence

A.3 Finding a relation

%This m-file runs "bar_imp_wp" as function of T. This means its result
%is a matrix with implied barrier values for different T’s and different
%window periods.

%Vector with T’s
T=0.2:0.2:2;
no_of_wp=20;

%Matrix to put in results
RM=zeros(no_of_wp+1,2*length(T));

%Evaluate for every T
for i=1:length(T)

RM(:,2*i-1:2*i)=bar_imp_wp(T(i),no_of_wp);
end

%Take out implied barrier vectors
A=RM(:,2:2:2*length(T));

%Make surfaceplot of results
surf(T,0.5*RM(:,1),A)
xlabel(’T’)
ylabel(’Window Period (days)’)
zlabel(’Implied Barrier Height’)
saveas(gca,’surf.png’);

function rangewp = bar_imp_wp(T,no_of_wp)
%Calculate replicating barrier height for 41 different window periods.

44

results=zeros(no_of_wp+1,3);

%Set constants for Parisian option
H=1/110;
m=10;
%Set other constants
r=0.056; %US interest rate
gamma=0.007; %Japan interest rate
sigma=0.13; %volatility
K=1/125; %strike price
S=1/120.5; %initial asset price
diy=360; %no of days in a year

for wp=0:no_of_wp
%Determine n,l,u,d,p,q,a
n=floor(T*(m*sigma/log(H/S))^2)
h=T/n;
wpd=0.5*wp/diy;
l=round(wpd/h);
u=exp(sigma*sqrt(h));
d=1/u;
p=(exp((r-gamma)*h)-d)/(u-d);
q=1-p;
min_itmam = max(ceil(log(K/(S*d^n))/log(u/d)),0);

%Calculate price of Parisian option
p_paris = paris(n,T,u,d,p,q,K,S,r,l,m,min_itmam);
%Calculate price of regular barrier option
p_barrier = barrier(n,h,u,d,p,q,K,S,H,r,m);

%Run barrier.m for different m’s to see which barrier gives a price
%that lies closest to the price of the parisian option.
p_bar=[]; Hbar=[]; i=1; p_bar(i)=p_barrier; Hbar(i)=H;
while p_bar(i)<=p_paris

i=i+1;
Hbar(i)=S*u^(m+i-1);
p_bar(i)= barrier(n,h,u,d,p,q,K,S,Hbar(i),r,m+i-1);

end

%Set implied barrier in results-vector
results(wp+1,:)=[wp,H,Hbar(end)];

end

rangewp = [results(:,1),results(:,3)];

45

Bibliography

[1] Anderluh, J.H.M. & Weide, J.A.M. van der (2004): The Implied Barrier Concept.
Lecture Notes in Computer Science, Springer-Verlag.

[2] Boyle, P.P.& Lau, S.H. (1994):Bumping up against the barrier with the binomial
method. The Journal of Derivatives.

[3] Brealey, R.A., Myers, S.C. & Allen, F. (2005): Principles of Corporate Finance.
McGraw-Hill.

[4] Costabile, M. (2000): A discrete algorithm for pricing double barrier options. De-
cisions in Economics and Finance, Springer-Verlag.

[5] Costabile, M. (2002): A combinatorial approach for pricing Parisian options. De-
cisions in Economics and Finance, Springer-Verlag.

[6] Cox, J.C., Ross, S.A. & Rubinstein, M. (1979): Option Pricing: A Simplified Ap-
proach. Journal of Financial Economics.

[7] Lerouge, S. (2009): Une approche combinatoire pour le pricing des options Parisi-
ennes. ENSTA ParisTech.

[8] Lyuu, Y.D. (1998): Very fast algorithms for barrier option pricing and the Ballot
problem. The Journal of Derivatives.

[9] Feller, W. (1950): An introdution to probability theory and its applications - Volume
I. John Wiley & Sons

[10] Shreve, S.E. (2005): Stochastic Calculus for Finance I: The Binomial Asset Pricing
Model. Springer Finance.

46

