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Wood is highly anisotropic and shows ductile behaviour in compression and brittle 

behaviour in tension and shear where both failure modes can occur simultaneously. A 3D 

material model for wood based on the concepts of continuum damage mechanics was 

developed. A material subroutine containing the developed model was implemented into a 

standard FE framework. Eight stress-based failure criteria were derived in order to formulate 

piecewise defined failure surfaces. The damage development of wood was controlled by nine 

damage variables. Embedment tests using three different wood species (spruce, beech, azobé) 

were carried out whose results were compared to modelling outcomes. The failure modes 

could be identified and the general shape of the load-displacement curves agreed with the 

experimental outcomes up to a numerical limit. 
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1 Introduction 

Wood and timber joints are difficult to model. Apart from their heterogeneity, material-

specific issues lead to numerical problems: strong anisotropy with different strengths in 

tension and compression and ductile and brittle failure modes occurring simultaneously.  

Existing approaches are mostly based on specific approaches for different problem classes. 

Brittle problems can be modelled with fracture mechanics approaches within a continuum 

framework (e.g. Schmid [2002], Ballerini and Rizzi [2005]) or discrete lattice models (e.g. 

Wittel et al. [2005], Reichert [2009], Nagy [2010]). For ductile problems, classical flow 

theory of plasticity in combination with the Hill criterion (e.g. Dias et al. [2010]), the 



 180 

Hoffman criterion (e.g. Xu et al. [2009]) or even the Tsai-Wu criterion (e.g. Bouchaïr et al. 

[1995], Dorn [2012]) is generally used. To overcome the need of separate approaches for 

different problem classes, multi-surface plasticity models have been developed 

(Fleischmann [2005], Grosse [2005], Schmidt and Kaliske [2006]). Recent approaches use 

multiscale modelling techniques where representative volume elements are derived 

starting at chemical level and scaling up the hierarchical levels of wood [Hofstetter et al., 

2005]. Also hybrid approaches assigning different constitutive laws to describe the 

mechanical behaviour of wood in parallel resp. perpendicular direction (e.g. Bocquet 

[1997], Toussaint [2010]. Toussaint uses crushable foam laws to model behaviour 

perpendicular-to-grain) or models combining cohesive zone interface elements that 

represent splitting failures in combination with flow theory of plasticity for compression 

failures  exist (e.g. Franke [2008]). 

However, multi-surface plasticity models and multiscale models are not readily available 

for timber engineers nor are they easy to handle as often, no clearly defined material 

properties are implemented. Furthermore, multiscale models are limited to elastic 

problems at the current state-of-the-art and are hence not suitable. The last mentioned 

hybrid approaches represent practical solution strategies, but for instance, models using 

cohesive zone interfaces need pre-defined splitting planes and are no integral approaches 

to model the 3D mechanical behaviour of wood. 

Therefore, in this paper, a general approach combining the above mentioned issues in one 

single 3D material model was developed, within the framework of continuum damage 

mechanics (CDM). The developed constitutive model was used to predict the results of 

embedment tests which are important tests to assess the load carrying capacity and 

mechanical behaviour of timber joints. 

2 Definitions 

Material directions and arrays must be defined before introducing the material model. 

Both are given in Equation (1) and Figure 1. The common indices in timber engineering are 

used, e.g. index 90 = direction perpendicular-to-grain, index v = longitudinal shear, index 

roll = rolling shear (σ23), index L = longitudinal direction (Figure 1). 
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As already stated, wood is an anisotropic material. As shown in Figure 1, three material 

directions can be distinguished in order to reduce the complexity of the material model: 

longitudinal (L), radial (R) and tangential (T). The developed material model is thus 

orthotropic with nine elastic constants. However, the same elastic properties were used for 

the radial and the tangential direction resulting in a smeared direction perpendicular-to-

grain, i.e. E22 = E33 and G12 = G13. The logical choice of a transverse isotropic model cannot 

be used as five elastic constants are not enough to describe wood (would lead to a highly 

wrong rolling shear modulus G23). The longitudinal direction corresponds to the direction 

parallel-to-grain. This is a similar build-up to fibre composites with a matrix (= ‘perpendi-

cular-to-grain’) and main fibre direction (= ‘parallel-to-grain’) where e.g. fibre rupture in 

tension is a brittle failure mode and matrix failure in compression is ductile. These 

analogies motivated among others the choice of the CDM framework for wood material 

modelling as CDM methods are widespread approaches in composites modelling (e.g. 

Maimí [2006], Matzenmiller [1995]). 

3 Continuum damage mechanics (CDM) 

CDM is a nonlinear elastic approach where the nonlinear behaviour is obtained by 

modifying the stiffness matrix D or its inverse, the compliance matrix C. CDM can be 

implemented in an incremental-iterative FE framework. The stress increments are 

calculated from strain increments via a variable stiffness matrix. Therefore and as opposed 

to classical plasticity, the unloading in damage mechanics is following the secant stiffness 

and not following the elastic stiffness, see Figure 2. This approach can hence not model 

permanent plastic deformations.  
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Figure 1. Definition of stress components and material directions 



 182 

The basic principle of CDM is visualised in Figure 2. A damage variable d, 0 ≤ d < 1, is 

determined and inserted into the fundamental Hooke equation for linear elastic material as 

follows: 

σ = − ε(1 )ij ijkl kld D  (2) 

 

If d = 0, no damage is present; if d = 1, the material has failed. In Equation (1), the scalar d 

describes isotropic damage. If anisotropic damage is observed, several damage variables d 

must be defined. Therefore, in order to develop a 3D material model for wood, three major 

mathematical definitions need to be established: 

• Failure surfaces to identify damage initiation; 

• Post-elastic behaviour when 0 < d < 1; 

• A constitutive model linking the stresses to the strains. 

4 Damage initiation 

Classical theory of plasticity is generally based on single-surface failure criteria that are not 

able to identify single failure modes. An example used in timber research is the already 

mentioned Tsai-Wu criterion [Tsai and Wu, 1971]. Therefore, in order to recognise failure 

modes, the single-surface has been subdivided; different failure criteria or damage 

initiation functions have been assigned to single stress components. This method is a well-

known approach used in fibre composites (e.g. Maimí [2006], Matzenmiller et al. [1995], 

Hashin [1980]). For a complete 3D description of wood as an orthotropic material, eight 

stress-based failure criteria or damage initiation functions have been defined with fx being 

 
Figure 2. Basic idea of Continuum Damage Mechanics (CDM) 

ε

σ
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material strengths in tension (index t), compression (index c) and shear (indices v and roll) 

in parallel (index 0) and perpendicular (index 90) directions: 

• σL ≥ 0 - Criterion I: Failure in tension parallel-to-grain is a brittle failure mode of 

wood which is caused by tensile stresses σL parallel-to-grain. It is assumed that other 

stress components do not influence the tension strength parallel-to-grain. Maximum 

stress criterion: 

   
σσ = ≤,0

,0
( ) 1L

t
t

F
f

 (3) 

• σL  < 0 - Criterion II: Failure in compression parallel-to-grain is a ductile failure 

mode of wood which is caused by compression stresses σL parallel-to-grain without 

interaction with other stress components. Maximum stress criterion: 

   
−σσ = ≤,0

,0
( ) 1L

c
c

F
f

 (4) 

 

The transverse tension modes and shear modes have to be combined as for instance 

splitting parallel to the LR-plane can be caused by tension perpendicular-to-grain (mode I), 

shear (mode II) or a combination of both (mixed mode). It is not possible to define separate 

failure modes for each stress component as degradation of one component also leads to 

degradation of the other components. This means that damage due to longitudinal shear 

also leads to damage in tension perpendicular-to-grain even though the actual tension 

stress component perpendicular-to-grain may still be lower than the tension strength 

perpendicular-to-grain.  

 

• σ /R T ≥ 0 - Criteria III / IV: Failure in tension perpendicular-to-grain with splitting in 

LT-plane resp. in LR-plane is a brittle failure mode of wood which is caused by 

tensile stresses σ /R T perpendicular-to-grain, longitudinal shear 

stresses σ /LR LT and/or rolling shear stresses σRT . Quadratic criterion: 

   
σ σ σσ = + + ≤

2 2 2
/ /

,90 / 2 2 2
,90

( ) 1R T LT LR RT
t R T

t v roll
F

f f f
 (5) 

• σ /R T < 0 - Criteria V-VIII: Two failure modes “pure transverse compression” and 

“shear”, both occurring under compression perpendicular-to-grain, are 

distinguished. Failure in compression perpendicular-to-grain is a ductile failure 

mode of wood which is caused only by compression stresses σ /R T perpendicular-to-
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grain. However, brittle shear failure can also occur if for instance the compression 

load is applied with an angle to the grain creating thus high shear stress components. 

Therefore, a failure criterion for shear stresses under simultaneous compression 

perpendicular-to-grain must be defined as well: 

   
−σ

σ = ≤/
,90 /

,90
( ) 1R T

c R T
c

F
f

 (6) 

   
σ σσ = + ≤

2 2
/

/ 2 2
( ) 1LT LR RT

vR T
v roll

F
f f

 (7) 

5 Damage evolution 

After having identified damage initiation by means of Equations (3) to (7), the post-elastic 

mechanical behaviour and necessary damage variables need to be defined. After an 

extensive literature study on available experimental results [Sandhaas, 2012], two main 

post-elastic behaviour types were identified: 

• ductile behaviour in compression parallel and perpendicular to the grain, Figure 3a.; 

• softening behaviour in tension and shear where the shear is independent of the sign, 

Figure 3b. 

 

As can be seen in Figure 3, simplified post-elastic laws were chosen as experimental 

evidence gives scattered and ambiguous results [Sandhaas, 2012]. Furthermore, in the 

author’s opinion these two simplified laws are sufficient to model the main features of the 

mechanical behaviour of timber joints. 

 

 
a.                                                                   b. 

Figure 3. Stress-strain relationship; a. Elastic perfectly plastic behaviour, b. Softening behaviour 
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Exceeding the compression strength ( ,0cf and ,90cf ) triggers ductile stress-strain behaviour 

where the damage variable follows an elastic perfectly plastic law, Figure 3a.: 

= − 1
( ) 1d κ

κ
 (8) 

 

The failure criteria for tension and shear instead lead to a linear softening stress-strain 

relationship as illustrated in Figure 3b.: 

 
= − −  −  

2
max2
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21
( ) 1

2

f

f

G E
f

f G E
d κ

κ
 (9) 

where maxf = maximum strength, E = modulus of elasticity, fG = fracture energy. 

 

As can be seen in Equations (8) and (9), the development of the damage variables is not 

depending on the strains ε, but on state variables κ instead that keep track of the loading 

history [Maimí, 2006]. The damage variables cannot be a function of the strains ε. For 

instance, once criterion III (= ,90t RF , splitting parallel to LT-plane) is activated due to high 

longitudinal shear stresses, the stiffnesses of all other contributing stress components 

( 22E and 23E ) must degrade as well although the resp. uniaxial stresses σ22 and σ23 may 

still be below the uniaxial strengths ,90tf and rollf . In such a case, a dependency of the 

damage parameters ,90t Rd and rolld on the strains ε22 and ε23 may not trigger the evolution 

of damage in these secondary directions. 

 
The failure criteria F (Equations (3) to (7)) can be reformulated introducing these history 

parameters κ: 

= − ≤( , ) 0Θ F Fκ κ  (10) 

 

This principle is analogous to the flow theory of plasticity. The “yield” surfaces F are the 

damage initiation functions or failure criteria. As in classical plasticity and following 

Maimí [2006], the Kuhn-Tucker conditions must hold: 

≤ ≥ = 0 0 0Θ Θκ κ  (11) 

 

Furthermore, it is required that the damage variables can only grow which follows also 

from the second Kuhn-Tucker condition. 

≥ 0d  (12) 
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The final implementation of the history parameters as state variables is carried out as 

shown in Equation (13) where the superscript incr means that this update must be done at 

every increment up to the last increment t: 

{ }
=

 =  
 0,

max 1, maxt incr

incr t
Fκ  (13) 

 

As the next step, the number of damage variables that control the post-elastic behaviour is 

established to nine: 

• ,0td  = damage in tension parallel-to-grain; 

• ,0cd  = damage in compression parallel-to-grain; 

• ,90t Rd  = damage in tension perpendicular-to-grain, radial direction (LT-plane); 

• ,90c Rd  = damage in compression perpendicular-to-grain, radial direction; 

• ,90t Td  = damage in tension perpendicular-to-grain, tangential direction (LR-plane); 

• ,90c Td  = damage in compression perpendicular-to-grain, tangential direction; 

• vRd  = damage in longitudinal shear, LT-plane; 

• vTd  = damage in longitudinal shear, LR-plane; 

• rolld  = damage in rolling shear, RT-plane. 
 

A transgression of the damage initiation functions I to VIII (Equations (3) to (7)) activates 

the conjugated damage variables d where the shear damage variables can develop under 

transverse tension and transverse compression and have to be superposed. 

The Macaulay operator as defined in Equation (14) is used to differentiate between damage 

variables that are activated by the same stress component, but are sensitive to the sign of 

the stress component, i.e. tension or compression stresses. Equation (15) shows an example 

how damage variables ,0td and ,0cd can thus be expressed as damage variable 0d . 

( )+
=:

2

a a
a  (14) 

σ −σ
= +

σ σ0 ,0 ,0
L L

t c
L L

d d d  (15) 

6 Constitutive model 

CDM describes nonlinear material behaviour, especially softening behaviour, as caused by 

voids, defects or microcracks which reduce the area or volume of the material that can 
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transmit forces. The effective stress efσ is the stress acting on the non-damaged material. A 

simple relationship between effective stresses efσ and nominal stressesσ via the so-called 

damage operator M is shown in Equation (16). The damage operator M is composed by the 

nine damage variables d where the stress sign-dependent damage variables are combined 

as shown in Equation (15) for the damage variable parallel-to-grain 0d . 

[ ]
=

=

 
= = − − − − − − 
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1 1 1 1 1 1
1 1 1 1 1 1

0

ef

T
R T vR vT roll

ij R T vR vT roll

d d d d d d

if i j
M d d d d d d

if i j

σ Mσ

d  (16) 

As the effective stress efσ is the stress acting on the (remaining) undamaged material, the 

constitutive relationship can also be formulated as shown in Equation (17) for a Hookean 

material with elD the elastic stiffness matrix. Or, in the inverse formulation with the elastic 

compliance matrix elC : 

= =ef efel elorσ D ε ε C σ  (17) 

Applying Equation (16), Equation (17) can then be reformulated for a damaged elastic 

compliance matrix damC (see also Matzenmiller et al. [1995]): 

= = =efel el damε C σ C Mσ C σ  (18) 

with damC according to Equation (19): 

 υυ
− − − 

 υυ − −
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 
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 
 

− 
 
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E E d Edam T
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In finite element programmes, the inverse of the compliance matrix, the stiffness matrix D 

is needed in order to update the stresses: 
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( )−
=  =

1dam dam damD C σ D ε  (20) 

If the compliance matrix is positive definite and d < 1, this inverse exists. 

In the damaged compliance matrix, damage effects and interactions have to be 

represented. For instance, damage in compression parallel-to-grain could be assumed to 

lead to a decrease of the stiffness in tension parallel-to-grain during a subsequent loading 

cycle. Furthermore, assumptions need to be made on the effects of damage parallel-to-

grain on the strength perpendicular-to-grain. 

In the developed material model, no damage interactions were modelled. For instance, it is 

assumed that damage in tension perpendicular-to-grain does not lead to a degradation of 

the properties parallel-to-grain. 

Furthermore, when calculating the inverse of the damaged compliance matrix as given in 

Equation (19), non-diagonal, non-zero entries of the form ν ( )ij d containing Poisson’s ratios 

and damage variables will be obtained in the damaged stiffness matrix. By means of the 

Poisson’s ratios, the relationship between the normal stresses resp. strains is defined. 

Subsequently, these non-diagonal entries must also be adjusted taking damage into 

account: νij = ν ( )ij d [Matzenmiller et al., 1995]. 

It is safe to assume that with increasing damage also the Poisson’s ratios will degrade. 

However, except for Franke [2008], no literature is known to the author where the 

evolution of the Poisson’s ratios during a test was measured. Linear degradation as shown 

in Figure 4 or exponential degradation could be implemented. Here, the chosen Poisson’s 

ratios have the value of the damaged Poisson’s ratios already at the beginning of the 

modelling, see Figure 4. Therefore, the normal damage variables 0d and 90 /R Td are 

considered to be decoupled.  

 
Figure 4.   Degradation of Poisson’s ratios 
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7 Mesh regularisation 

Every continuum mechanics approach with softening could suffer from mesh dependency 

problems. The source of mesh dependency is of mathematical nature as with the onset of 

softening, the previously well-posed problem has turned into an ill-posed problem. In 

computations, this results in a stiffness matrix which is no longer positive definite. The 

mathematical solution is a localisation zone of zero width without energy dissipation. The 

numerical solution tries to capture this physically inadmissible mathematical solution 

which yields a localised zone of smallest possible width, i.e. a single element in most cases.  

In literature, many different regularisation methods are available (e.g. Sluys [1992]). Here, 

the crack band method as described in Bažant and Oh [1983] was chosen to regularise the 

mesh. With the crack band method, the fracture energy is expressed in terms of 

characteristic finite element length h, where h is a geometrical value in [length] containing 

information on the element’s aspect ratio: 

= f
f

G
g

h
 (21) 

In Equation (21), the fracture energy fG needs to be replaced by the characteristic fracture 

energy fg if the crack band model is activated. The introduction of a characteristic fracture 

energy fg that is correlated to the element size provides the transformation of the fracture 

energy fG into a ‘mesh-dependent’ value. For instance, in a coarse mesh, h will be large 

and leads hence to a small characteristic fracture energy fg in comparison to the large fg of 

a fine mesh with a small characteristic element length h. This adjustment of the fracture 

energy considering the mesh size compensates for the trend of continuum softening 

models to dissipate as little energy as possible. However, the crack band model only works 

if one failure mode is dominating and if a localised solution occurs. It is valid if damage 

develops only in a band of elements and not in all elements homogeneously.  

8 Viscous stabilisation 

Viscous stabilisation similarly to Maimí [2006] is used in order to improve the convergence 

characteristics of the developed material model. A fictitious viscous parameter η is 

introduced in the model. Due to the additional viscous component, the stiffness matrix is 

generally positive definite. Therefore, viscous stabilisation leads to a more robust solution 

process with less convergence problems.  
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As viscosity is a time-dependent material parameter, viscous stabilisation must be a 

function of the rate of damage. The rate of the damage variable or of the damage threshold 

(= failure criteria) may be used. Equation (22) shows the stabilisation as a function of rate 

of damage variables: 

( )−
=

η
 Vd d
d  (22) 

In Equation (22), the viscous parameter η defines the rate at which the true damage d and 

the stabilised damage Vd as defined in Equation (23) approach each other. Equation (22) 

can now be discretised in time. Equation (23) shows the discretised equation based on the 

backward Euler algorithm to insert an artificial viscosity η that is acting on the damage 

variables. 

− − η= + η + η + 
1 1max 0, ,t t t t

V V V
dt

d d d d
dt dt

 (23) 

 

As viscous stabilisation is applied to improve convergence, the energy output must be 

controlled in order to judge the model performance and reliability, i.e. to control that 

fictitious viscosity is not influencing modelling results. To this scope, the total dissipated 

energy and the dissipated energy associated with viscous regularisation are calculated as 

internal state variables. Both variables do not have any influence on the solution. They are 

merely used for energy output, control and post processing. 

9 Material properties 

A major issue of all material models is the need of mechanical input parameters such as 

stiffness and strength values which usually derive from tests. The developed wood model 

needs seventeen properties as listed in . 

 

Table 1 for three different wood species. 

Generally, stiffness and strength values can be procured only with difficulty. This is due to 

two main issues. Firstly, the inherent large scatter of mechanical properties for wood and 

secondly, difficulties connected with testing and measuring. For instance, the uniaxial 

shear strength can hardly be assessed without triggering stress peaks or secondary stresses 

[Moses and Prion, 2004]. Furthermore, not always all parameters are measured, e.g. due to 

Poisson effect, or the positioning of the measuring instruments is not clear.  
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As for stiffness values given in material standards such as EN 338 for instance, they 

usually derive from large-scale four-point bending tests and not necessarily provide 

significant values for material models. 

Also the fracture energies suffer from a large scatter and the fact that they are usually 

measured on small clear wood specimens whereas for a heterogeneous material, it can be 

safely assumed that fracture energies are not constant. Moreover, the needed material 

values are rather easily procurable for softwoods, but not for hardwoods. 

In Sandhaas [2012], a thorough literature study has been carried out where the issues 

around reliable material parameters are discussed and the chosen values from Table 1 are 

motivated. 

 

Table 1.   Material properties for spruce, beech and azobé (variation A beech needed later) 

Parameters Units Spruce 

(Picea abies) 

Beech 

(Fagus silvatica) 

Azobé 

(Lophira alata) 

Variation A 

Beech 

11E  MPa 11000 13000 20000 13000 

=22 33E E  MPa 370 860 1330 860 

=12 13G G  MPa 690 810 1250 810 

23G  MPa 50 59 91 59 

,0tf  MPa 24 41 72 41 

,0cf  MPa 36 45 58 45 

,90tf  MPa 0.7 1.0 1.0 10 

,90cf  MPa 4.3 14.2 23.2 14.2 

vf  MPa 6.9 6.9 8.6 10 

rollf  MPa 0.5 0.5 0.6 10 

,0fG  N/mm 60 100 180 100 

,90fG  N/mm 0.5 0.71 0.71 50 

,f vG  N/mm 1.2 1.2 1.5 50 

,f rollG  N/mm 0.6 0.6 0.7 10 

η - 0.0001 0.0001 0.0001 0.0001 
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10 Modelling 

The developed material model was programmed in a user subroutine UMAT and inserted 

into the commercial FE software ABAQUS. The subroutine is given in Sandhaas [2011]. All 

validations that are necessary when developing a constitutive model can be found in 

Sandhaas [2012]. Different models were run ranging from modelling compression or 

tension tests on wood over embedment models to joint models. In this paper, some 

embedment models are chosen in order to show the capabilities of the developed 

constitutive model. 

Embedment models were thus developed whose outcomes could be verified with tests 

taken from literature [Sandhaas et al., 2010]. Three different wood species were chosen, 

spruce, beech and azobé. The material properties are given in . 

 

Table 1. The FE model is shown in Figure 5, only a quarter of an embedment specimen with 

a 24 mm dowel was modelled. As no localised damage is expected, the crack band model 

was deactivated. 3D solids with linear interpolation between the eight integration points 

were chosen. Friction between dowel and wood was simulated with the stick-slip model 

and a friction coefficient of μ = 0.5. This is a simplified assumption for contact modelling, 

other novel approaches can e.g. be found in Dorn [2012]. 
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Figure 5. Quarter of embedment model with boundary conditions, materials and default mesh 
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As an example, Figure 6 shows the modelling outcomes of an embedment model in 

comparison with a typical embedment test result on spruce. In Figure 6a., damage due to 

compression parallel-to-grain directly underneath the dowel of a spruce specimen can be 

clearly seen. Also brittle damage due to tension perpendicular-to-grain is identified, Figure 

6c. The damage variable ,90td in Figure 6c. shows the damage development due to shear as 

both failure modes are coupled as defined in Equation (5).  

In Figure 6c, two elements are indicated whose integration point results in terms of tension 

perpendicular-to-grain and longitudinal shear are given in Figure 7. It can be seen that 

damage in element a initiated due to high shear stresses σ12 ( vf = 6.9 MPa, Figure 7a.) and 

in element b, damage was triggered by high tension stresses perpendicular-to-grain σ22  

( ,90tf = 0.7 MPa, Figure 7b.). Both predictions are correct if the position of the elements in 

the model is considered. 

Figure 9 shows load-slip graphs of azobé specimens in overlap with the modelling result. 

The stiffness prediction is good. The reached displacement was too low. However, the 

source of the brittle failure observed in Figure 9 at a displacement of less than 1 mm is 

purely numerical and is not expressing the global splitting of the embedment model. The 

load drop of the simulated load-slip graph represents a numerical failure with no physical 

meaning other than that the wood underneath the dowel is collapsed completely being 

thus an artificial softening. Once the row of elements directly underneath the dowel fails, 

spurious energy modes develop in the used elements. The load cannot be transferred to 

neighbouring elements as they are already unloading although they may not have reached 

 

 
a.                                   b.                                   c. 

Figure 6. Embedment of spruce with 24 mm dowel; a. Damage variable ,0cd in compression parallel-

to-grain, b. Test result, c. Variable ,90td in tension perpendicular-to-grain (A colour figure is 

available at www.heronjournal.nl) 

element b

element a
Steel 
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Figure 7a. Stress components σ22 and σ12 of element a 

 

          
 

Figure 8b. Stress components σ22 and σ12 of element b (Figure 6) 

 

          
 

Figure 9. FE result versus test results of embedment tests on azobé with 24 mm dowels 
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their ultimate load carrying capacity yet. Basically, the model fails completely on a local 

level of collapsed elements whereas the neighbouring elements still can carry load. 

 

Accordingly, there are three main options to improve the model performance and to avoid 

local early brittle failures due to spurious energy modes: 

• Introduction of a threshold value for the damage variables in order to avoid complete 

damage and to keep a residual stiffness. This however is not thought to be a good 

solution as an uncontrollable fictitious parameter would be introduced. 

• Change resp. increase mechanical properties in order to avoid early complete 

damage of elements. Again, this is not thought to be a good solution as the material 

properties should be comprehensible and not arbitrarily changed with the scope to 

make a model work. 

• Use different element formulations or e.g. arbitrary Lagrangian-Eulerian (ALE) 

approaches (e.g. Rodríguez-Ferran et al. [2002]) to control excessive mesh distortion.  

 

Point three is part of future research as then, the material subroutine will be optimised and 

solutions will be developed to control excessive element distortion. 

The second option however was carried out in order to understand the influence of the 

material parameters. Also considering the rather difficult determination of certain material 

properties such as the fracture energies or the fact that the chosen strength values 

(especially perpendicular-to-grain and shear values) as given in . 

 

Table 1 are based on mean values for structural wood and are thus low in comparison with 

defect-free wood, it is thought to be admissible to modify these parameters. Around the 

dowel, usually no knots are present and the local material properties can safely be 

assumed to be higher than the properties for structural wood. . 

 

Table 1 gives modified material parameters for beech wood nominated “variation A” 

where the properties controlling the 3D brittle behaviour are increased. Figure 10 shows 

the modelling results for an embedment test specimen with the default properties for 

beech and variation A superposed with test results. The load-slip behaviour applying the 

default properties shows again too brittle behaviour due to numerical softening. However, 

“variation A” reaches higher deformations before failure. The higher values for strength 

and fracture energies as defined for “variation A” lead to numerical softening at higher 

deformations which is more realistic. 
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As the resulting curve for “variation A” still yields too high strength values, also the 

compression strength parallel-to-grain is reduced as indicated in Figure 10. Such a 

reduction is thought to reduce the load carrying capacity and should therefore lead to a 

lower plateau.  

Modelling outcomes confirmed this. A better agreement between tests and model can thus 

be obtained by modifying certain mechanical properties. However, this is arbitrary and 

highlights the difficulties associated with a correct identification of material input 

parameters. 

Another important outcome of modelling can also be deduced from Figure 10. The earlier 

initiation of damage in the default model with a decrease in stiffness in comparison to 

“variation A” is clearly observable in the detail (lower stiffness of the red line of default 

model in comparison to the blue line of “variation A”). The global stiffness is thus 

decreasing due to damage in tension perpendicular-to-grain and shear (properties that 

have been changed according to . 

 

Table 1) although the model still shows a very clear load increase. This is a realistic 

prediction. 

11 Conclusions 

A promising constitutive 3D model for the material wood was developed that can identify 

failure modes and combine simultaneous ductile and brittle failures within one model. The 

mechanical material parameters needed for the constitutive relationship are clearly 

defined. The material model runs in a complex FE environment in combination with other 

material models and contact formulations. 

Modelling results were satisfying in terms of stiffness and load carrying capacity. Artificial 

softening caused by spurious energy modes of completely collapsed elements however led 

to early brittle failure of models that did not represent physical failure. Furthermore, once 

unloading has started in the most stressed elements, the load is not transferred to 

neighbouring elements. These numerical problems need to be solved in order to optimise 

the subroutine. 

As for any other modelling approach, a major issue lies in the determination of the 

necessary mechanical properties. As the model performance and prediction capacity is 

highly dependent on these properties, methods to derive reliable values must be 

developed. 
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Figure 10. FE result versus test results of embedment tests on beech with 24 mm dowels, material 
parameters modified – variation A 
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