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Interpretation of run-of-mine comminution and recovery parameters using 
multi-element geochemical data clustering 
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A B S T R A C T   

Multi-element (ME) datasets provide comprehensive geochemical signatures of an orebody and are commonly 
used to gain insight into the mineralogy, lithology, alteration patterns and to identify target-pathfinders. 
However, little effort is made in using these data to explain comminution or recovery characteristics. This 
paper describes an agglomerative hierarchical clustering approach applied to ME data from the Tropicana Gold 
Mine, Australia, and investigates the relationship between the resultant classes and run-of-mine comminution 
and recovery parameters. First, it is demonstrated how an industry scale ME dataset is prepared for clustering. 
The preparation consists of verifying the absence of interlaboratory and intralaboratory bias between mea-
surements, centred log-ratio transformation (clr), normalisation and principal component analysis (PCA). Af-
terwards, the first case study indicate that the clustering separation is primarily driven by geochemical 
differences caused by major rock-forming mineral signatures (felsic vs mafic, alteration vs no alteration, chert or 
quartz lithologies, unmineralised vs mineralised material). This case study separates the ME dataset into five 
unmineralised and two Au-mineralised material classes. The second case study continues with the two identified 
mineralised material classes and further separates these samples into five new classes. These classes are explored 
geochemically and by using the spatial context (within domains) better matched with metallurgical test results. It 
is found that domain-related material class proportions assist in interpreting different processing proxies such as 
the Equotip hardness (Leeb), Bond Work index (BWi), Axb, and processing recovery and reagent consumption. 
Knowledge of the processing parameters per domain and class composition can be used to infer such charac-
teristics in the absence of standard metallurgical tests. This new approach of gaining insights into comminution 
and recovery parameters through geochemical analysis demonstrates the benefit of the conceptualised material 
fingerprinting concept.   

1. Introduction 

Multi-element (ME) geochemical datasets (four-acid digestion) are 
among the most quantitative and informative information a mining 
company can collect. Together with the geological, mineralogical, and 
geophysical data, it forms the core datasets that describe different ma-
terial attributes. Geochemical or ME data provide quantitative results 
that are chiefly used to identify mineralisation and gage exploration 
potential. For example, various studies have used this proxy relationship 
for mineral exploration potential (CSA Global Canada Geoscience Ltd, 
2018; Gazley et al., 2015; Grunsky and de Caritat, 2019; Zhou et al., 
2017), automated geological logging (Hill et al., 2020), or mapping 
mineralisation signatures and magmatic and hydrothermal processes 

(Brauhart, 2019; Escolme et al., 2019; Gaillard et al., 2018; Halley, 
2020; Motoki et al., 2015). 

A common outcome from the studies mentioned above is that the 
mineralisation and alteration processes result in zones or domains with 
distinct geochemical characteristics. These geochemical domains then 
reflect the mineralogy, which sometimes may be difficult to recognise 
using geological mapping or logging practises, e.g., in domains with 
overprinting alteration events or metasomatism (Caciagli, 2016). 
Sequentially, the geochemical and mineralogical domains can support a 
more concrete link with metallurgical variables such as comminution 
properties (hardness, grindability), metal recoveries or reagent con-
sumption (Caciagli, 2016). Commonly, these relationships are only 
inferred from extensive small-scale metallurgical tests, such as breakage, 
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liberation, and abrasiveness, as described by Wikedzi et al. (2018) and 
Lynch (2015), modelled using simulation (Madenova and Madani, 
2021), or focus only on the Bond Work Index (Bhuiyan et al., 2019). 
However, published studies that consider the relationships of ME-based 
material classes with both comminution (processing) characteristics and 
recovery potential are lacking. The purpose of this paper is to address 
this gap. The following paragraphs discuss practices in merging mining 
related datasets to prepare the ME and metallurgical datasets for 
analysis. 

Geochemical datasets are typically challenging to interpret because 
they are collected across multiple years and using different laboratories, 
analytical tools and methods. Therefore, careful analysis needs to be 
done to interpret the multi-dimensional data effectively (Grunsky and de 
Caritat, 2019). The current study shows the efforts undertaken to ensure 
a reliable dataset could be used for further analysis. Such efforts include 
adequate levelling of multiple datasets and detection of missing values. 
Furthermore, ME data are compositional and require transformation to 
log-ratio coordinates to account for closure (Aitchison, 1999; Grunsky 
and de Caritat, 2019; Pereira et al., 2016). 

There is a second problem in using existing datasets from mining 
companies. Historical data collection typically does not conform to an 
ideal tiered geometallurgical data structure, as presented in Fig. 1 
(Dominy et al., 2018; Keeney, 2010). The problem is that Level 1, or 
geometallurgical proxy data, typically does not provide a direct measure 
of metallurgical response. However, via correlations, it can be used to 
infer metallurgical characteristics. In contrast, historical Level 3 and 4 
data (representing most metallurgical tests) are commonly not co- 
located to lower-order data types, and insufficient effort is made to 
establish direct correlations to Level 1 or Level 2 data types. The 
establishment of these correlations is desired because more densely 
spaced proxy or support data provides a more representative view of ore 
variability, observed across and within domains, which in turn drives 
inherent metallurgical characteristics that may ultimately manifest as 
process response variability. A further, often underappreciated, benefit 
of employing the ideal tiered geometallurgical data structure is that it 
allows one to proactively domain the deposit of interest and align sub-
sequent metallurgical sampling to the resulting domains, thereby 
ensuring more effective coverage, which is especially important when 
dealing with the allocation of sparse higher-order tests. 

This research will propose a way to retrospectively stitch ME proxy 
data and metallurgical test data together using geochemical data clus-
tering, mineralogical interpretations, and considerations of spatial do-
mains, addressing the existing lack of co-located datasets. Co-location is 
typically limited due to the infrequency of metallurgical test campaigns 
relative to gold assays and ME analysis, which is typically collected on 
every meter of drill core or chips. In metallurgical testing, the entire core 
length spanning the zone is typically used as a single composite, which 
effectively smooths the result and may underrepresent the overall 

variability of the response. Typically, the issue of non-collocation can 
still be overcome by ME analysis of sample splits from the larger 
metallurgical sample. These can then be used, in conjunction, to infer 
processing properties. 

Despite these limitations, combinations of these data with more 
widely available proxy datasets such as drilling penetration rates and 
Equotip hardness data provide a broader view of the material classes. 
Then, even a small dataset becomes very useful and can be used to 
determine the processing attributes of different material types. Addi-
tionally, it is advisable to utilise basic (proxy) datasets to drive metal-
lurgical sample selection rather than blindly compositing and sampling 
to fulfil test mass requirements, see for example, the sampling dilemma 
described by Lamberg (2011). For these reasons, a better interpretation 
approach of the comminution and recovery characteristics is needed 
based primarily upon the ME (and other proxy) data. 

To interpret varying comminution or recovery characteristics, one 
should successfully fingerprint material from different geological do-
mains that reflect changes in mineralogy, rock texture and rock com-
petency. In this context, a fingerprint is a material classification based on 
the similarity of the measured and constitutive material attributes (van 
Duijvenbode et al., 2020). As a first step to construct fingerprints, one 
could consider clustering elemental concentrations. Clustering is a 
method to partition samples with similar characteristics (Romary et al., 
2015). In the case of ME data clustering, this results in a geochemical 
signature and may correlate to a specific suite of minerals, but also with 
physical properties such as grain size, texture, hardness, or brittleness of 
the related material. For example, Hunt and Berry (2017) show the 
correlation between Point load index and Equotip across different de-
posit styles. Although the current study focuses on using geochemical 
data, material fingerprints should ideally also be constructed using a 
multivariate combination of mineralogical, geophysical and geo-
mechanical data as these constitutive attributes can easily be added to 
the fingerprints during clustering. In general, this process can be 
considered an addition, refinement or validation of the clustering clas-
ses. The remainder of this section discusses the structure of the paper. 

This paper presents an unsupervised clustering approach of ME data 
and investigates the relationship between the resulting classes and 
comminution and recovery parameters. Clustering is done for two case 
studies from the Tropicana Gold Mine, Western Australia, which show 
one clustering exercise each. Case Study I is focused on finding 
geochemical signatures related to (predominantly) gold mineralisation. 
In comparison, Case Study II focuses on unravelling the root cause of 
observed processing behaviour for the different mineralisation styles. 
This is done based upon re-clustering the Au-mineralised classes defined 
in Case Study I. This relationship between mineralisation and commi-
nution behaviour is explained by exploring each class’s geochemical 
signature and then linking them with legacy metallurgical test results 
across the different classes and spatial domains. The contribution is to 
provide tools to extract value from industrial-scale geochemical datasets 
and quantify material classes in terms of processing parameters. First, 
the data pre-processing steps are explained. This may help other re-
searchers to extract similar values out of raw datasets. Second, we show 
the dimension reduction and clustering approach. Third, the geochem-
ical signatures of the clustering classes are explored and illustrated how 
these relate to typical comminution and recovery parameters. 

2. Geology of the Tropicana Gold Mine 

Samples for this study were obtained from the Tropicana Gold Mine 
(TGM), which is located along the south-eastern margin of the Yilgarn 
craton in the Albany-Fraser Orogen, Western Australia (Fig. 2). The 
deposit is hosted in Archaean amphibolite-granulite facies metamorphic 
rocks. The banded, gneissic host rocks range from mafic to felsic, 
although most are broadly intermediate compositions (Crawford and 
Doyle, 2016). The mineralised zones are hosted within a sequence of 
high grade quartzofeldspathic and garnet-bearing gneisses, with 

Fig. 1. Tiered geometallurgical data types (modified after Dominy et al. (2018) 
and Keeney (2010)). 
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Fig. 2. Regional geological map of the Albany-Fraser Orogen with respect to the eastern margin of the Yilgarn Craton, Western Australia, showing the location of the 
Tropicana gold deposit. Modified after Spaggiari et al. (2011). 

Fig. 3. Schematic EW cross-section of the Havana South domain showing the deposit geology (100 m thick at 649753 mE, 6761137 mN, azimuth 37◦, GDA/UTM 
grid). The superimposed ME class labels from Case Study I samples are discussed in Section 5.1. 
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amphibolites, granulites, metasedimentary cherts, and pegmatites 
(Fig. 3). This figure is an illustrative cross-section of the Havana South 
domain showing the geometry and style of mineralisation. Similar ge-
ometries are exhibited in the other deposits. Post mineralisation faulting 
resulted in four main distinct structural domains, which are from north 
to south, including the sample proportions from each: Boston Shaker 
(23.9%), Tropicana (39.3%), Havana (including Havana Deeps, 10.2%) 
and Havana South (26.6%). The mine’s historic cut-off grade was at ≥
0.3 ppm Au. 

The mineralised zones occur as one or two laterally extensive planar 
lenses with a moderate dip. The favourable host to mineralisation is a 
deformed feldspathic gneiss dominated by perthitic K-feldspar. Within 
the mineralised zone, biotite, sericite, and pyrite alteration replaced the 
metamorphic mafic minerals and feldspar (Blenkinsop and Doyle, 2014; 
Crawford and Doyle, 2016; Hardwick, 2021). Perthitic K-feldspar rich 
end-members have a higher K/Al (molar) ratio than the plagioclase-rich 
end-members. Hardwick (2021) discriminated that these higher K/Al 
molar ratios of the feldspathic gneiss units are more controlled by higher 
modal proportions of perthitic K-feldspar with partial melting textures 
rather than by enrichment in biotite (since higher K/Al (molar) trends 
towards the K-feldspar node on an Al-K-Mg molar ternary plot). Relative 
to the unmineralised host rocks, the mineralised rock exhibits significant 
enrichment in S and the ore elements (Mo, Te, Tl, Ag, Au, W) and K- 
group elements (K, Rb, Hf, Zr, U) (Crawford and Doyle, 2016). 

3. Methods 

3.1. Data acquisition and pre-processing 

This study focuses on 30,687 ME samples from the Tropicana Gold 
Mine area collected until June 2019. These samples have been routinely 
collected during exploration and were predominantly taken over one- 
meter intervals from NQ2 diamond core (core approx. 75.7 mm in 
diameter) across the orebody and adjacent unmineralised envelope (up 
to 18 m) in the hanging wall and footwall of the deposit. The samples 
were analysed in four different laboratories by four-acid digestion, 
which is a technique that effectively decomposes almost all rock- 
forming minerals (Grunsky and de Caritat, 2019). The resulting acid 
solution was then analysed by inductively coupled plasma optical 
emission spectrometry (ICP-OES) or inductively coupled plasma mass 
spectrometry (ICP-MS). The final results contain elemental concentra-
tions for 48 elements. In addition, the samples were also assayed for gold 
(Au) concentration using (primarily) a 50 g charge fire-assay analysed 
by solvent extraction Atomic Absorption Spectroscopy (AAS) or MS. This 
dataset with samples and elemental concentrations was further filtered 
and prepared by the following three steps: 

1. Element availability: The objective was to indicate for all sam-
ples whether the measured element must be considered for further 
clustering or not. Only elements that were measured in>95% of the 
samples were considered. This mostly represents the suite of common 
elements analysed in commercial four acid digest packages. Any addi-
tional element (Re, Ge, Eu) added would reduce the potential number of 
samples by at least 15%. The analysed (44) elements are Ag, Al, As, Ba, 
Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hf, In, K, Li, Mg, Mn, Mo, Na, Nb, 
Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. 
The Au concentration is also known for most samples but not further 
considered during clustering. Excluding Au from clustering guarantees 
that the resulting class signatures focus on major and other trace ele-
ments, describing the geochemical environment where Au may be 
found. 

If, for a specific element, the proportion of values less than the 
analytical detection limit is too high, then an element value becomes a 
boolean indicator addressing whether an element is present or absent in 
a sample. There are two issues with these elemental concentrations in 
preparing them for clr representation. Firstly, if they are considered for 
closure, they will most likely distort the actual values of other elements 

since the real elemental concentration is unknown. Secondly, if this 
element is ignored in its entirety, we also neglect the important infor-
mation that the element is present in some samples. 

Various imputation techniques for below detection or missing data 
exist, including a simple substitution, lognormal replacement or multi-
variate expectation maximisation algorithms (Palarea-Albaladejo et al., 
2014). In the dataset, As, Bi, Sb and Te were censored in about 60% of 
the samples and Se was censored in 93.5% of the samples. Martín- 
Fernández et al. (2012) recommend excluding elements with > 30% of 
values below detection limit, which was done for Se, but not for As, Bi, 
Sb, and Te. After testing with the inclusion or removal of these elements, 
it was found that limited differences were found in the clustering results. 
Therefore, it was preferred to keep these elements, as especially As and 
Te are important trace elements in an orogenic Au deposit. Note that 
during Case Study II, this percentage of values below detection limit 
dropped below 30%. All elemental values below detection limit were 
simply substituted with values half of the detection limit (Carranza, 
2011; Grunsky and Smee, 1999). 

2. Dataset quality: The data are acquired across multiple years 
(2003–2019), four different laboratories, and with different analysis 
methods. Therefore, the quality of the geochemical data was checked 
and confirmed using 1,053 certified reference material (CRM) mea-
surements representing the two largest laboratories. The other two 
laboratories are used infrequently and, due to the small sample repre-
sentation (accountable for 1% of the samples), assumed to have no 
major influence on the precision or bias of the dataset. In 95% of the 
batches, at least one of the following seven CRMs were used consistently: 
AMIS0167, OREAS 24b, OREAS 25a, OREAS 45d, OREAS 45e, OREAS 
502b or OREAS 520. The expected concentration of each element and its 
variation range (at two standard deviations) are known for these stan-
dards. Based on these known values, the interlaboratory (reproduc-
ibility) and intralaboratory (repeatability) data quality is checked. If all 
conditions are satisfied, then the data are considered high enough 
quality, and no additional data filtering is required. When differences in 
the precision of samples or elements are noticed, individual batch 
samples or elements can be discarded. 

The three quality metrics used are precision, bias and Horwitz Ratio 
(HorRat). The precision indicates the deviation from the best value (BV) 
expressed as the percent relative standard deviation (RSD%) of the CRM 
values. The accuracy is reported as bias which is calculated as the 
percent difference between the average CRM value obtained from the 
laboratory measurements and the best value (BV) recommended by the 
CRM certificate (Ordóñez-Calderón et al., 2017). The HorRat is a metric 
that quantifies the measurement performance with respect to precision 
(Horwitz and Albert, 2006) and is calculated (for single-laboratory 
validation) as follows: 

HorRatr =
observedrelativeSD
predictedrelativeSD

=
RSDr

PRSDR
, (1)  

where PRSDR the predicted reproducibility obtained from the Horwitz 
equation and calculated as PRSDR = 2*

(
certified valueCRM*10− 6 

(ppm to concentration)
)− 0.15, and subscript r and R indicating the 

repeatability (intralaboratory) and reproducibility (interlaboratory) 
conditions, respectively. This equation transforms the RSD% found to a 
fraction of the RSD% expected and equals to 1 for exact correspondence. 
The precision is better than expected if the HorRat is <1, and poorer if 
>1. Under reproducibility conditions, the empirically acceptable range 
is from 0.5 to 2.0 and under repeatability conditions between 0.3 and 
1.3 (Horwitz and Albert, 2006; Rivera et al., 2011). 

3. Transformation and normalisation: The ME data used are 
compositional in nature and have associated problems of closure 
(Aitchison, 1999). Before samples can be compared, the sample 
composition will require transformation to log-ratio coordinates with 
respect to the identified elements. This study uses a centred log-ratio 
(clr) transformation, which transforms the data coordinates from the 
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simplex, an n-dimensional composition within the positive real number 
space, to the Euclidean real space, which is more suitable for statistical 
analysis (Aitchison, 1986; Bhuiyan et al., 2019). 

3.2. Clustering 

This study used agglomerative hierarchical clustering to partition the 
samples into clusters (Wierzchoń and Kłopotek, 2018). The clustering 
method is iterative and starts with each sample in its own cluster. Then, 
the algorithm calculates the distance for each cluster pair (Euclidean 
distance matrix) and finds the closest pair. The metric to calculate the 
distance can differ, and the present study uses Ward’s method. This 
minimises the sum of squares of distances between samples and the 
cluster centres to which the samples belong. The two selected clusters 
are merged into a new cluster. Afterwards, the distance matrix is 
updated by calculating the new distance from the new cluster to all other 
clusters. These merge and update steps are repeated until only one single 
cluster is formed (Wierzchoń and Kłopotek, 2018). The final number of 
clusters is selected based upon the silhouette score, Calinski-Harabasz 
index and Davies-Bouldin index. All these metrics are internal clus-
tering validation measures and are used to determine the optimal 
number of clusters (Aggarwal and Reddy, 2014). The final number 
agreed upon across the methods is used for the final clustering exercise. 
The number of clusters is dependent on the set of input samples. 

4. Quality assurance and quality control 

4.1. Precision, bias and HorRat 

Table 1 summarises the analytical results for OREAS 45d and a few 
selected elements described in this study. The results for all other CRMs 
and elements are provided in Supplementary Materials Table A.1. The 
CRM analysis indicates precision better than 10% for most major and 
trace elements, and 10 to 15% for Ag, In and Zn. The bias is better than 
± 10% for most elements in both laboratories. Laboratory 2 has a bias of 
35% for Ag and − 11.7% for Cr. The same precision and bias conclusions 
are generally valid for all other CRMs and elements (Supplementary 
Materials Table A.1). The intralaboratory HorRatr ratios obtained for 
most elements were within the acceptable range of 0.3–1.3 under 
repeatability conditions (Table 1). However, laboratory 2 has suspect 
HorRatr values for various oxide bearing elements (e.g., Al, Ca, Fe) 
measured with OES, while the precision and bias are within 10%. 
Several possible causes emerge from the analysis of HorRat values 

displayed in Fig. 4. 
Fig. 4a and Fig. 4b contain the intralaboratory HorRatr values for 

laboratories 1 and 2, respectively. A darker red square indicates higher 
HorRat values (>1.3) than expected and can be explained by three 
causes. First, a few outliers cause the RSD% to increase too much (out-
liers above BV: Ca, Mn, Na, Pb, Zn, Zr; outliers below BV: Cr, Fe, K, S, Ti). 
Removing these outliers would decrease the HorRat value within the 
acceptable ranges. Second, there is a relatively larger bias in the mea-
surements either below (As) or above (Sb) the BV. This is often in 
conjunction with the BV being close to the LDL (Pb, Sc), resulting in less 
precise measurements. However, this is not indicated as a problem 
because other CRMs are better to assure the precision and bias of these 
elements in the dataset. Third, a large group of the elements (Al, Ca, Fe, 
P, S, Ti, Zn) measured with ICP-OES in laboratory 2 have precision and 
bias better than ± 10% (Supplementary Material Table 1), but HorRatr 
close to or above 1.3. For most of these elements, the SD is smaller than 
expected from this CRM, indicating that the laboratory measurements 
are better than anticipated. A dark blue square indicates lower HorRat 
values (<0.3) than expected and links to the following cause. There is a 
large group of elemental concentrations (Bi, Cs, Th, Tl, U) within ± 1 SD. 
This means that there is a higher RSD% as anticipated from the CRM. 
Finally, a white square indicates that no proper data were available 
because the measurement technique cannot measure the specific 
element or the CRMs elemental concentration is in>50% of the mea-
surements below the detection limit. This, for example, is the case with 
Cd and Te of OREAS 45d. 

The interlaboratory HorRatR values are represented in Fig. 4c and 
indicate how laboratories 1 and 2 perform compared. The shown 
HorRatR values are the mean of the HorRatr values presented in Fig. 4a 
and Fig. 4b. In laboratory 1, there are a few elements (Co, Cs, Ga, Mo, Tl) 
with HorRatR values much lower than the acceptable lower limit of 0.5. 
Laboratory 2 has slightly higher HorRat values for most oxide elements. 
As indicated above, the precision and bias for these elements are still 
good. 

Additionally, there are a few large outlier measurements that were 
not removed prior to analysis, for example, Al. Also, note that an 
elevated Al concentration can indicate that the digestion was not taken 
to incipient dryness and causes the Al to remain in the test tube as an 
insoluble fluoride complex. Outliers were not removed because the large 
dataset and applied transformations would reduce their effect. Overall, 
the Al (and the other oxides) HorRat values for laboratory 2 are 
impropriate, but its precision (7.2%) and bias (2.3%) are good. Since the 
HorRatR values of most of the elements are within the acceptable ranges 

Table 1 
Analytical data for intralaboratory measurements of OREAS 45d for laboratories 1 and 2. Precision is expressed as percent relative standard deviation (RSD%). Bias is 
calculated as the percent difference between the average and the best value (BV) of the OREAS 45d certificate. The lower detection limits (LDL) are reported for the 
analytes and analysis method used by the laboratory. The entire table, including the remaining elements and CRMs, can be found in Supplementary Material Table A.1.  

Elem. Analysis Unit BV Laboratory 1  Laboratory 2  

method   LDL Avg. SD RSD(%) Bias(%) HorRatr  LDL Avg. SD RSD(%) Bias(%) HorRatr 

Ag MS ppm 0.2 0.1 BV is too close to the LDL value  0.05 0.27 0.04  14.8 35 0.7 
As MS ppm 13.8 2 13.9 0.52 3.7 0.5 0.3  1 13.4 1.17  8.7 − 2.7 0.8 
Bi MS ppm 0.31 0.05 0.32 0.02 6.2 3.2 0.3  0.1 0.3 0.02  6.7 − 3.2 0.4 
In MS ppm 0.1 0.05 0.09 0.01 11.1 − 10 0.5  0.02 0.09 0.01  11.1 − 10 0.5 
Mo MS ppm 2.5 0.1 2.49 0.1 4 − 0.4 0.3  0.1 2.65 0.15  5.7 6 0.4 
Rb MS ppm 42.1 0.1 42.3 1.32 3.1 0.5 0.3  0.05 43.7 2.22  5.1 3.8 0.6 
Sr MS ppm 31.3 0.5 32.1 1.39 4.3 2.6 0.5  0.1 32.7 1.83  5.6 4.2 0.6 
Th MS ppm 14.5 0.05 14.4 0.34 2.4 − 0.6 0.2  0.05 14.8 0.96  6.5 2.1 0.6 
U MS ppm 2.63 0.05 2.62 0.11 4.2 − 0.4 0.3  0.05 2.67 0.18  6.7 1.5 0.5 
Al OES % 8.15 0.005 8.09 0.19 2.3 − 0.7 0.8  0.01 7.91 0.6  7.9 − 3 2.7 
Ca OES ppm 1854 50 1918 110 5.8 3.5 1.1  50 1924 136  7.0 3.8 1.4 
Cr OES ppm 549 1 549 29.3 5.3 0.1 0.9  10 484 26.6  5.5 − 11.7 0.9 
Fe OES % 14.51 0.01 14.5 0.32 2.2 − 0.3 0.8  0.01 14.12 0.61  4.3 − 2.7 1.6 
K OES ppm 4123 20 4227 129 3.1 2.5 0.7  100 4072 184  4.5 − 1.2 1.0 
Mg OES ppm 2447 20 2404 83.9 3.5 − 1.7 0.7  20 2378 110  4.6 − 2.8 0.9 
Na OES ppm 1006 20 1003 46.5 4.6 − 0.3 0.8  50 980 48.4  4.9 − 2.6 0.9 
S OES ppm 486 50 486 20.7 4.3 − 0.1 0.7  20 482 31.4  6.5 − 0.8 1 
Zn OES ppm 45.7 1 44.1 4.13 9.4 − 3.6 1  5 45.8 4.93  10.8 0.2 1.2  
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(0.5–2.0), it can be concluded that the four-acid digestion measurements 
of the different laboratories can be compared. 

4.2. Summary of data reduction constraints 

In summary, it is observed that there is a difference in precision for 
certain elements. For most oxide bearing elements, such as Al, Ca, K, Mn, 
Na, S and Ti, there is a small overestimation of the concentration 
(average RSD% is 5.5%, bias is + 2.3%). The majority of the other ele-
ments are of good quality and may experience underestimation rather 
than overestimation. As a result, this reduces the tendency for over- 
optimistic conclusions. Most of the values can be improved by simply 
removing a single outlier. This means that the batch measurements are 
reliable and that the different instrumentation methods can be 
compared. The results from blanks indicate no significant contamination 
with elements of interest in this study. In addition, the mine’s standard 
quality assurance and quality control procedure for every batch would 
have highlighted measurement deviations, and the corresponding 
batches would be re-assayed prior to uploading them to the database. 
Accordingly, the ME geochemical dataset is deemed of good quality. 

Indium, Cd and Se were removed from the original list of elements 
resulting in 41 elements being considered for clr transformation: Ag, Al, 
As, Ba, Be, Bi, Ca, Co, Cr, Cs, Cu, Fe, Ga, Hf, K, Li, Mg, Mn, Mo, Na, Nb, 
Ni, P, Pb, Rb, S, Sb, Sc, Sn, Sr, Te, Ta, Th, Ti, Tl, U, V, W, Y, Zn and Zr. 
The values of these elements underwent clr transformation and, after-
wards, were normalised by a z-score normalisation. The feature 
dimension of this dataset was reduced using Principal Component 
Analysis. The number of principal components (PCs) was automatically 
set to the amount that can describe 95% of the data variance. The lower- 
dimensional dataset, i.e., the output of the PCA, functioned as the input 
for clustering. 

Several data reduction measures are considered before clustering 
based upon the precision, bias and HorRat values. These constraints are 
primarily taken to produce discrete clustering classes not affected by any 
of the observed elemental concentration deviations. Any following 
conclusions may consider the excluded elements again, but while taking 
their flaws into account. The following data constraints are taken:  

• Although not obvious from the quality metrics, indium was 
measured outside the 2 SD range in 31% (average RSD% of 9%) of 
the CRM measurements and was also in 65% of the samples below 
the detection limit. Therefore, indium will not be considered during 
clustering.  

• Determining the precision and accuracy of Cd was difficult as it was 
only possible with two CRMs. The corresponding HorRat was suffi-
cient (~0.6); however, its precision (11.3%) and bias (60%) were 
considered to be too high and, therefore, Cd will be ignored.  

• Most HorRat and z-score acceptable range breaches could be linked 
to one CRM element outlier. This does not mean that the entire batch 
was wrong. There was one batch with significant outliers (>4 SD) in 
31 elements. The samples corresponding to this batch were not 
further considered.  

• The effect of outliers, in general, is also reduced by the performed clr 
transformation (this is especially useful for the oxide bearing 
elements). 

4.3. Communition and recovery proxies 

A few material hardness proxies were collected at TGM and were 
selected for review in this study based on availability. These include: the 
Bond Ball Mill Work index (BWi in kWh/t), the JK rock breakage pa-
rameters and expressed as comminution index Axb and Equotip rebound 
hardness measurements. The BWi determines the relative energy re-
quirements to deliver a specified target particle size (typically either 
106 μm or 75 μm) given a certain feed particle size, and and are rock- 
specific dimensionless parameters determined by fitting a model to the 
experimental data generated from a drop weight test (Lynch, 2015). 
Higher values of Axb indicate softer rocks, whereas higher values of BWi 
indicate harder rocks. The BWi and Axb values are infrequently 
collected during metallurgical testing campaigns. However, they are 
direct proxies for processing attributes such as throughput and resulting 
grind size (Lynch, 2015). Equotip measurements are taken on diamond 
drill core, aligned to the standard Au assay intervals of one meter. 
Generally, ten measurements were taken per sample, and for this study, 
simply the median value was chosen to give one data point per meter. 
The measurements are frequently collocated with samples used for ME 
analysis but also include larger portions of the immediate hanging and 
footwall. The Equotip hardness-testing tool yields Leeb (Ls) values, 
where a higher Leeb corresponds with a harder sample. 

Fig. 5a-c show summary statistics of Equotip, BWi and Axb mea-
surements taken on primarily mineralised material across all deposits. 
The Leeb values (Fig. 5a) are at the high end of the value range (between 
0 and 1000 Leeb), indicating relatively hard rock properties. The min-
eralised material itself has an expected Leeb value between 750 and 850. 
Higher values probably relate to increased proportions of quartz, 
amphibolite and garnet content in the samples. Fig. 5b displays the BWi 
histogram with a bimodal distribution where one mode is around 16 
kWh/t, and the other one is closer to 20 kWh/t. In contrast, the Axb 
(Fig. 5c) shows a right-skewed distribution with the mode around 38.6. 
The lower BWi typically resembles samples closer to the surface and is 
related to either the lower saprolite or transitional ore. The absence of a 
bimodal signature in the Axb most likely resembles the different test 
responses on these rock types. 

The recovery proxies used in this study are the 48-hour leach 

Fig. 4. Intralaboratory (a and b) and interlaboratory (c) Horwitz ratio overview of certified reference material (CRM) – element pairs measured in two laboratories. 
The empirical accepted intralaboratory Horwitz ratio range is between 0.3 and 1.3, and the interlaboratory Horwitz ratio range is between 0.5 and 2.0. 
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recovery (in %), lime consumption (kg/t) and cyanide consumption (kg/ 
t). Fig. 5d shows summary statistics of the recovery values. Among these 
composites, there is an average recovery of 90.75%. The recovery 
typically decreases with the depth of the mined material and due to 
increasing S and Te content (Baker, 2020). 

5. Results 

5.1. Case Study I: Geochemical mineralised and unmineralised rock 
separation 

5.1.1. Elemental patterns derived from PCA 
The 30,687 samples with 41 input features (clr-transformed element 

values) were reduced to 24 PCs accounting for 95% data variability. 
Element eigenvectors are plotted in PC1-PC2 and PC2-PC3 space in 
Fig. 6. A few generalised features are evident from these biplots, which 
account for 59% of the data variability. Five groups of elements are 
defined by similar vector orientation and magnitude: (1) with positive 
PC1 loadings, there are elements generally indicating mafic/ultramafic 

units, e.g., Ca, Co, Cr, Fe, Mg, Mn, Ni, and Zn; (2) a negative PC1 and 
positive PC2 relates to elements which are commonly associated with 
gold mineralisation at TGM (Crawford and Doyle, 2016), e.g., Ag, As, Bi, 
Mo, S, Te, U, and W; (3) the negative loadings of PC2 identifies elements 
related to sodic alteration (Be, Na, Sr), and (4) in combination with 
negative PC3 loading also with elements related to potassic alteration: K, 
Rb, Ba, Tl, and Cs; (5) elements with a positive PC3 loading relate to the 
group of relatively immobile elements, e.g., Ta, Nb, Hf, Zr, and Th. These 
element groupings show similarities to the PCA analysis of the Hamlet 
orogenic Au deposit in Western Australia (Hood et al., 2019). 

The PC features were partitioned into seven clusters (classes) as that 
number was determined to be optimal based on the mean silhouette 
score, Calinski-Harabasz index and Davies-Bouldin index (see Supple-
mentary Material Fig. A.1). The Case Study I clustering aims to find a 
geochemical signature related to mineralisation, where mineralised 
(≥0.3 ppm Au) and unmineralised (waste) material will be separated. 
This is the first step in relating processing parameter proxies, as after-
wards the primary focus is on mineralised material (Section 5.2). 

The PC biplots were further used to investigate early relationships 

Fig. 5. Summary statistics. Histograms of the Equotip rebound hardness, BWi, Axb and 48-hour leach recovery taken across all geological domains.  

Fig. 6. Principal component biplot of clr-transformed elements plotted on a) PC1-PC2 space and b) PC2-PC3 space.  
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between the element groupings, geological features and the obtained 
classes. Fig. 7 shows a biplot of PC1-PC2 for the clr-transformed 
geochemical data coloured by the dominant lithology and the result-
ing clustering class. The element patterns of Fig. 6 match well with the 
logged lithology groups dominated by variably deformed gneissic rock 
types. The orientation of mafic rock indicating elements correspond well 
with garnet-bearing amphibolitic gneiss, and the mineralisation indi-
cating elements match with the dominant feldspathic gneiss. Whereas a 
low PC2 indicate feldspar associations with more sodic or potassic 
alteration commonly seen in the quartzo-feldspathic gneiss units. Some 
clusters capture geochemical signatures related to lithological units 
quite well (Fig. 7b), however overlapping classes and lithological do-
mains are also observed. The lithogeochemical identification resulting 
from the PCA and clustering is effective enough to separate commonly 
mineralised from unmineralised rock types. A further lithogeochemical 
separation of the dominant feldspathic gneiss clusters (MIN1 and MIN2) 
will be done in Case Study II (Section 5.2). 

5.1.2. Geochemical discrimination 
The easiest way to discriminate mineralised vs unmineralised classes 

(based on Au grade) is to look at the Au content of each sample within 
the classes. The Au data was attributed according to the clustering 
classes and viewed as statistical boxplots in Fig. 8. Three classes (W1, 

W2, W3) only contained samples with Au < 0.3 ppm and were denoted 
barren/unmineralised, and two classes (W4, W5) had >85% of the 
samples below 0.1 ppm Au (and only 2–5% was above the mine’s cut-off 
grade of 0.3 ppm Au). The remaining two classes (MIN1, MIN2) relate 
more to the mineralisation signatures and will be clustered again in 
Section 5.2. The clustering itself did not consider the Au concentration 
as a variable, which means that the geochemical signatures of the 
resulting classes are distinct enough for mineralised and unmineralised 
signature separation, as will be discussed in Sections 5.1.3 and 5.1.4. 
Fig. 3 shows how the clustering classes spatially align with different 
geological units in a 100 m width Havana South cross-section. This 
demonstrates great spatial contiguity and validates that the obtained 
classes are also coherent with the geological interpretation. 

To further assess the variability of the framework silicate mineralogy 
in the classes, the bulk rock ME data are plotted in an alkali-alumina 
molar ratio diagram (Fig. 9). This diagram shows the variations in 
bulk rock chemistry related to changes in mineral modal proportions per 
class (Davies and Whitehead, 2006). This diagram plots proportions of 
the mobile alkalies (Na and K) divided by the relatively immobile Al 
against each other. Various ideal mineralogical compositions of typical 
rock-forming minerals are also indicated, including the position of the 
least altered feldspathic gneiss and mafic garnet gneiss based upon 
logging. The position of samples plotting above the albite-K-feldspar tie 

Fig. 7. Principal component biplot of clr-transformed geochemical data attributed by a) dominant lithology logged for each sample, and b) the clustering classes of 
Case Study I. Abbreviations: Gnt – garnet, Amp – amphibole, Qtz-Fld – quartzofeldspathic. 

Fig. 8. Box and whisker plot of Au grade (ppm) for the clustering classes of Case Study I.  
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line likely reflects analytical measurement issues since one would not 
expect a natural sample to fall beyond this line. 

The identified classes show a typical igneous and meta-igneous rock 
classification. The most felsic classes (MIN1/MIN2) are mineralised, 
showing a relative K enrichment and trend towards the K-feldspar ±
biotite node in Fig. 9. The relatively unaltered feldspathic gneisses (class 
W5) are between 0.18 ≤ K/Al ≤ 0.3 and 0.3 ≤ Na/Al ≤ 0.4. Still felsic, 
but the more quartzofeldspathic gneisses (class W1), which are less sodic 
and a little more potassic, follow the albite-muscovite tie line indicating 
more sericite alteration. The more felsic/intermediate (class W3) and 
mafic (class W2) classes trend towards the origin. The highest point 
density of the garnet-bearing gneisses logged samples (mafic rocks) is 
between 0.02 ≤ K/Al ≤ 0.13 and 0.15 ≤ Na/Al ≤ 0.27. Finally, class W4 
is closely related to a meta-ferruginous chert. 

The following sections discuss the geochemical signature of each 
class and association with the alkali-alumina molar ratio diagram in 
more detail. The lithological descriptions of the classes are supported by 
the logged geology corresponding to the sample intervals (Fig. 7) and 
the observed plotting location in Fig. 9. Box and whisker plots of the 
elemental concentrations of samples found within each class for Case 
Study I can be found in Supplementary Material Fig. A.2. 

5.1.3. Unmineralised material related classes (W1, W2, W3, W4 and W5) 
Relative to the mineralised classes, the unmineralised classes show 

lower elemental concentrations of the mineralisation indicating ele-
ments, e.g., Au, S, Te, Tl, W, Mo, Bi, and Sb (Supplementary Material 
Fig. A.2). Therefore, the geochemical signature of W1, W2 and W3 
represent non-gold bearing materials.  

• Waste class 1 (W1, n = 7,908) is dominated by an unmineralised 
quartzofeldspathic gneiss signature (Fig. 7a) and relates to meta-
morphosed felsic volcaniclastics or intrusive units. The PC2 compo-
nent is very low, indicating the feldspar association. Fig. 9 shows 
moderate Na/Al (molar) ratio values (0.2 to 0.5Na/Al) trending to-
wards increasing modal proportions of plagioclase and albite, indi-
cating a more sodic feldspar. Minor amounts of quartz-feldspar- 
bearing pegmatites also characterise this class. Geochemically, this 
class is characterised by a relative Na and K concentration almost 
equal to MIN1 and MIN2 but lacking the trace elements associated 
with mineralisation (Ag, As, Bi, Sb, Te).  

• Waste class 2 (W2, n = 3,123) has a geochemical signature related to 
(mafic) garnet-bearing amphibolitic gneiss. It is the most mafic rock 
type demonstrated by a positive loading of PC1. This lithology is 

unmineralised (typically < 0.01 ppm Au) and does generally have 
chlorite +/- calcite alteration. This class also captured chlorite 
dominated schists and a few unsheared basalts and Proterozoic 
dolerites. The mafic rock signature is observed in the relatively 
higher concentrations of most major elements (Ca, Fe, Mn, Mg) and 
lower concentrations of K. This can also be seen in Fig. 9 since most 
W2 samples are trending towards the origin and are located near the 
mafic garnet gneiss node.  

• Waste class 3 (W3, n = 5,214) has a geochemical signature that is a 
mixture of class W1 and W2. All samples fall between the mafic 
garnet gneiss and the least feldspathic gneiss node in Fig. 9. It mostly 
represents garnet-bearing amphibolitic and quartzofeldspathic 
gneiss rock types but also captures some biotite/chlorite dominated 
schists and saprolitic clays close to the surface (visibly distinct at Na/ 
Al (molar) ≈ 0). Generally, these samples are less mafic, indicated by 
less chlorite alteration. 

The geochemical signature of class W4 and W5 primarily represents 
unmineralised material with some trace Au mineralisation (2–5% of the 
class samples are above 0.3 ppm Au).  

• Waste class 4 (W4, n = 1,391) samples all fall below the albite to 
muscovite tie line. This class has relatively higher Ag, As, Bi, Mo, Pb, 
Sb and Zn concentrations (high PC2) compared to the other 
unmineralised classes. Almost 54% of this material is logged as a 
meta-ferruginous chert (relatively high Fe and low Al), reflecting 
high modal proportions of pyrrhotite and (lesser) pyrite and 
magnetite (Hardwick, 2021).  

• Waste class 5 (W5, n = 4,375) has a high point density directly at the 
least altered feldspathic gneiss node, similar to W1 (Fig. 9), repre-
senting samples with the least altered alkali signature. Compared to 
W1, this class has less quartz and is less sodic and more potassic, 
hence the trace mineralisation. Relative to MIN1/MIN2 and the 
mineralisation-related elements, this class lacks the higher Zr, Hf, Th, 
indicating a more distal spatial correlation with the gold system. 
Spatial contiguity indicates that these samples form part of the im-
mediate hanging wall (Fig. 3). 

5.1.4. Mineralisation associated classes (MIN1 and MIN2) 
Mineralised class 1 (MIN1, n = 5,531) and class 2 (MIN2, n = 3,096) 

both have an Au-mineralised related geochemical signature, where 
MIN2 represents the high Au grade material (Fig. 8). The geochemical 
signature of both classes relates to a feldspathic gneiss, where MIN1 has 

Fig. 9. Multi-element samples from Case Study I plotted to the alkali-alumina ratio plot to assess alteration phases, after Davies and Whitehead (2006), thematically 
attributed by clustering classes. 
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a more distinct quartz character (typically found in logging). These 
classes have similar Fe and K concentrations as the quartzofeldspathic 
gneiss classes (W1 and W5) but lower concentrations of Ca and Na. This 
higher relative proportion of Fe and K is accounted for by higher modal 
proportions of pyrite and K-feldspar (less biotite) and lower plagioclase 
proportions (Hardwick, 2021). Both classes are characterised by an 
enriched K/Al (molar) ratio, where MIN1 is generally a bit lower. Fig. 9 
shows that the samples predominantly fall along the tie line between the 
ideal mineral composition of Ca-Na plagioclase and K-feldspar/biotite. 
This suggests that these classes reflect increasing potassic alteration 
from a relatively unaltered with primary Ca-Na feldspar to a highly 
altered and mineralised K-feldspar rich rock. The same is true for the 
increasing Au grade towards the K-feldspar node. The low-grade samples 
are more linked to lower K/Al (molar) ratios and are relatively plagio-
clase rich. 

5.1.5. Summary of Case Study I 
Geochemical data clustering from 30,687 samples revealed that two 

classes (n = 8,627) were predominantly related to the gold mineralisa-
tion signature found at TGM. The clustering did not take Au concen-
tration into account as a variable, demonstrating that geochemical data 
is distinct enough for mineralised and unmineralised material to be 
discriminated. Furthermore, the approach is data-driven and automated 
hence repeatable classification can be done. Another approach to split 
mineralised and unmineralised material would be to use the logged li-
thology and Au grades. However, this may be complicated by the 
subjectivity of geological logging and the nuggety nature of Au assay 
data. Despite these limitations, the results showed that significant 
overlap was found between the defined classes and logged lithology, 
hence the classes can be used as a first pass lithogeochemical classifi-
cation of mineralised and unmineralised material. In the next section, 
the two mineralised material classes are re-clustered to find geochemical 
signatures typically associated with comminution and recovery char-
acteristics of mineralised material at TGM. 

5.2. Case Study II: Interpretation of comminution and recovery 
parameters 

The first case study showed the effectiveness of clustering 
geochemical data and how it could discriminate mineralised material 
from unmineralised material (waste). The second case study is a sequel 
to the previous case study and has the aim to find geochemical signa-
tures typically associated with comminution and recovery characteris-
tics of mineralised material at TGM. This part continues only with the 
indicated mineralised related material classes (MIN1 and MIN2) only 

since these are expected to dominate the processing stream. The samples 
(n=8,627) corresponding with these classes are selected and the original 
sample elemental concentrations are again clr-transformed and nor-
malised. 

5.2.1. Elemental patterns derived from PCA 
PCA reduced the 41 element features to 26 PC features, and a new 

clustering was performed. Two more PCs are required to describe the 
95% data variation compared to Case Study I. This is as expected 
because the samples are geochemically more similar and, therefore, 
more components are needed to explain the data variation. A visual-
isation of the scaled and ordered eigenvalues of PC1 and PC2 for all 
elements can be seen in Fig. 10. Note that a biplot similar to Fig. 7 would 
not have shown a separation based upon lithology since 82% of the 
samples were logged either as feldspathic gneiss (n = 5,726) or 
quartzofeldspathic gneiss (n = 1,344). See Supplementary Material 
Fig. A.3 for biplots of PC1-PC2 and PC1-PC3. 

Fig. 10 shows that a positive PC1 is mostly related to elements that 
are indicative of mineralisation and dominated by positive loadings on 
U, Bi, Te, Sb, W, Mo, As, and S. The oxide bearing elements found (Ca, Ti, 
Mg, Al) are found at a lower PC1. A positive PC2 loading has a larger 
association with the mafic indicating elements (Ni, Cr, Co, Cu, Fe, Ag). 
However, this would in the felsic gneiss logged samples be more 
considered as metal associations. At a low PC2 are the relative immobile 
high field strength element (HFSE) pairs Hf and Zr, Nb and Ta, and low 
field strength elements Sr and Rb. 

It is observed that this PC analysis is more focused on grouping 
samples with similar degrees of positive and negative relationships with 
given element eigenvectors together rather than separating major rock 
units from each other, as was found in Case Study I. This is the desired 
effect because most of the samples are mineralised and, therefore, 
clustering partitions will indicate geochemical differences due to the 
alteration and mineralisation. Ultimately resulting in different metal-
lurgical responses. It is found that the mineralised material can best be 
partitioned in five clusters indicated by the peak and trough in the 
Silhouette score and Davies-Bouldin index score, respectively (Supple-
mentary Material Figure A.1). 

5.2.2. Geochemical signatures 
To discuss the geochemical signatures of the classes, it is helpful to 

first look at the gold grade of the classes to find out which material 
classes have the highest chance of being processed. Analysing the classes 
for their gold content indicates that all classes have an average Au grade 
above the 0.3 ppm cut-off grade and have a high likelihood to be 
considered as run-of-mine material. Fig. 11 shows boxplots of the Au 

Fig. 10. Case Study II related scaled and ordered eigenvalues of PC1 and PC2 for all elements.  
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grade per class. The median Au grade of the mineralised waste or low 
grade (LG) class is 0.15 ppm; the marginal grade (MG) class is 0.54 ppm; 
high grade 1 (HG3) is 0.86 ppm; high grade 2 (HG2) is 1.33 ppm, and 
high grade 3 (HG1) is 2.63 ppm. Note that the average Au grade per class 
is higher than the median. 

Medium and Lower-Grade mineralisation classes (MG, LG): Due 
to a large number of samples (n = 30,687) and the constraint of having 
only seven classes in Case Study I, there are still unmineralised samples 
not separated yet from the mineralised material since they have fairly 
similar geochemical characteristics as the mineralised feldspathic 
gneiss. These classes have notably minor or absent K-feldspar compared 
to the high-grade classes. Their composition is more plagioclase-bearing 

± quartz with amphibole-biotite. These samples are commonly found in 
the immediate (un-mineralised) hanging wall and footwall lithologies. 

Fig. 12a shows that the MG (n = 1,882) and LG (n = 2,464) samples 
plot the closest to the least altered feldspathic gneiss node, are mostly 
below the plagioclase-K-feldspar tie line, and slightly disperse towards 
the muscovite (LG) or K-feldspar (MG) node. These class signatures are 
more associated with increasing sericite-biotite-chlorite alteration. 
Fig. 13 shows that relative to the high-grade classes, MG and LG typi-
cally have lower concentrations in the ore elements associated with the 
sulphide and telluride minerals. Within the K-group elements (K, Ba, Rb, 
Cs, including Al) and oxide minerals (P, Th, U, Zr, Hf), it is evident that 
MG is more similar to HG2, whereas LG is similar to HG3. 

High-grade classes (HG1, HG2, HG3): The three high-grade Au- 
mineralised classes all fall along the plagioclase – K-feldspar trend line 
(Fig. 12b), and these samples are predominantly logged as feldspathic 
gneiss or feldspathic pegmatites. HG3 (n = 1,837) has the lowest K/Al 
and highest Na/Al molar ratios and is partially still characterised by 
some sericite-chlorite alteration. HG2 (n = 1,225) and HG1 (n = 1,219) 
have increasing K/Al and decreasing Na/Al molar ratios and have a 
more abundant biotite-sericite or biotite-pyrite alteration. Hardwick 
(2021) discriminated that these higher K/Al molar ratios of the feld-
spathic gneiss units are more controlled by higher modal proportions of 
perthitic K-feldspar rather than by enrichment in biotite (since higher K/ 
Al (molar) trends towards the K-feldspar node on an Al-K-Mg molar 
ternary plot). The mineral classification also ranges from phengite ±
biotite with the highest gold grade (HG1) to increasingly chlorite-rich, 
muscovite-bearing domains associated with the lowest gold grade 
(HG3, but also still in MG and LG). 

HG1 is the richest in K and S of the three classes. The main difference 
between these classes is their relative degree of enrichment in ore metals 
(Bi, Te, Tl, Ag, Sb, Mo, Th, U, W), where HG3 has the lowest relative 
proportions (Fig. 13). In terms of geochemistry, HG1 and HG3 are more 
alike. They both have higher concentrations in the transition metals (Co, 
Cr, Cu, Ni), whereas HG2 (and MG) has higher concentrations in the 
high field strength elements (Zr, Hf, Nb and Ta). Interestingly, 77% of 
HG1 samples are spatially located within the Boston Shaker domain. 

This class demonstrates the known high-grade ore shoot characteristics 
(including biotite/pyrite alteration). 

5.2.3. Spatial domains 
The composites analysed for Equotip, BWi, Axb or recovery are 

typically gold grade and geologically-constrained metallurgical samples 
and thus incompletely reflect in-situ geochemical (and mineralogical) 
variability. In addition, not all available composites have complemen-
tary ME data. This makes it challenging to match the ME classes directly 
with the hardness proxies and explore their potential relationships. To 
increase collocated samples, all ME and hardness samples have been 
grouped according to their spatial location, i.e., per orebody and con-
structed domains. It is assumed that the geochemical class signatures 
would be fairly similar within such a domain, and there should be a 
relationship with the metallurgical test results. Traditionally, these do-
mains came from Au grade resource modelling (≥0.3 ppm Au), but some 
have been split by the modelled faults to represent coherent geochem-
ical domains better. Fig. 14 shows the spatially and geochemically 
constrained orebody estimation domains for the Tropicana Gold Mine. 
For example, between domain TP_3 and TP_4, there is a shear zone 
obliquely intersecting the line of mineralisation in E to SE direction 
(Blenkinsop and Doyle, 2014). This shear zone is associated with an 
alteration event and increased schistosity which affects the material 
hardness. 

The proportion of each ME class within the domains is defined and 
shown in Fig. 15. This shows a spatial zonation of the ME class signa-
tures, but also that the hanging wall and footwall of the different do-
mains are geochemically distinct. In general, the clustering is effectively 
separating various geochemical and mineralogical associations from 
each other, characterising the different alteration and deformation 
events taking place with varying intensities, mineralogy and timings 
(Blenkinsop and Doyle, 2014). For example, at Boston Shaker, there is 
high Au grade material clustered in HG1, and then only lower grade 
samples in HG3 and relatively unmineralised material in LG. This in-
dicates that the classes identify unique geochemical signatures associ-
ated with various mineralised fluid source compositions, alteration and 
resulting mineralogy. 

Fig. 15 shows that the HG1 geochemical signature accounts for 
36–58% of the Boston Shaker domains (green shaded), whereas HG1 is 
almost absent in the other domains. This characterises the biotite and 
pyrite dominated assemblages with an increased abundance of white 
mica in the K-feldspar (higher grade). Another large group of domains 
(HS_2, HS_3, HA_3, HA_4, TP_1-3, orange shaded) have on average 5% 
HG1, 22% HG2, 17% HG3, 31% MG and 25% LG. However, there is a 
switch in the proportion of MG and LG between the Havana and Havana 
South, and Tropicana domains. This fairly similar geochemical signature 
typically observed in the footwall lodes demonstrates the more plagio-
clase rich domains (typically lower grade and with chlorite being 
dominant over muscovite) with intermediate composition phengitic 
rock. 

The hanging wall mineralisation lodes at Havana and Havana South 
(HS_1, HA_1 and HA_2, blue shaded) all have high HG3 (26–56%) with 
variable MG and LG, but absence of HG1 and HG2, indicating a high 
degree of geochemical similarities. These lodes are more phengite 
dominant with biotite ± quartz but also indicate more muscovite +
chlorite in the alteration (larger proportion of MG and LG). These three 
domains are the shallowest mineralisation lenses (see Fig. 3, top feld-
spathic gneiss ore zone, Fig. 14b-c) found in the Havana and Havana 
South regions. Note that the number of samples (n = 7,746) in Fig. 15 is 
not equal to the Case Study II samples (n = 8,627) as the remaining 
samples were found outside the considered domains and ME samples or 
metallurgical test results were not sufficiently available for all domains. 

5.2.4. Hardness and recovery attributes 
During (pre-)feasibility studies, these domains have been adequately 

sampled to determine the hardness and recovery parameters. Fig. 16 
Fig. 11. Box and whisker plot of Au grade (ppm) for the clustering classes of 
Case Study II. HG: high grade, MG: marginal grade, LG: low grade. 
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shows the average ± 1 SD BWi (kWh/t), Axb, Equotip hardness (Leeb), 
and 48-hour leach recovery composite data for the considered domains. 
This analysis indicates that domains with similar geochemical signatures 
also frequently have similar material hardness and 48-hour leach re-
covery behaviour. In addition, it is now possible to propose an expla-
nation for the variations (if any) in the metallurgical proxies. 

The following results are derived from the combined domain-based 
ME class proportion and Equotip hardness, BWi and Axb metallurgical 
test results split per domain (Fig. 16): 

• HS_1, HA_1 and HA_2 (blue shaded) have similar geochemical sig-
natures (high HG3 + variable MG/LG). The BWi (18.4 kWh/t) and 
Axb (41.7) of HS_1 is lower and higher, respectively, compared to 
HA_1 (BWi: 20.1 kWh/t, Axb: 30.5) and HA_2 (BWi: 20.3 kWh/t, 
Axb: 33.1). These domains are rich in the transition metals (Cr, Ni) 
and poor in Hf, Zr, Nb and Ta, concentrations demonstrating the 
expected geochemical signature of HG2 (and LG). These domain 
samples have a low K/Al and a high Na/Al ratio, indicating less clay 
and thus harder characteristics (trending more towards the albite 
node instead of K-feldspar). HS_1 may have a lower hardness due to 
the shear zone separating Havana South and Havana having changed 
the feldspathic gneiss textures. This domain also has an increasing 
proportion of white mica with chlorite alteration.  

• Domain HS_2, HS_3, HA_3, HA_4 and TP_1-3 (orange shaded) are 
generally quite hard due to larger proportions of plagioclase rather 
than K-feldspars. This, in conjunction with the presence of quartz 
(and minor garnets), make these relatively hard domains. The HS_2 
and HS_3 composite samples are closer to the surface and affected by 
weathering resulting in softer material (<18 kWh/t). The other 
domain composites have a fairly consistent BWi of 19.8 ± 1.2 kWh/t. 
A gradational trend of slightly increasing (reduced hardness) Axb 
from 34 to 39 and decreasing (reduced hardness) Leeb from 800 to 
760 is observed as one transition towards domain TP_3, where it 
abruptly changes due large “Jigger” shear zone (right-hand side of 
Fig. 14a) separating zone TP_3 and TP_4. TP_4 returns a much lower 
BWi (16.6 kWh/t), higher Axb (45.5) and lower Leeb values (742), 
indicating much softer rock. This domain (TP_4) is associated with a 
strongly (sheared) phengitic white mica-affiliated rock type, exhib-
iting significantly softer hardness and elevated recovery. There is 
also a change of class proportion for this domain, where an increased 
HG1 (20%, high molar K/Al) and slightly higher HG2 (34.1%) pro-
portion present relative to its neighbouring domain TP_3.  

• The Boston Shaker domains (green shaded) have an elevated (HG1) 
proportion related to a more perthitic K-feldspar rich (increased K/ 
Al) rock. The increased proportion of white mica and biotite tend to 

soften (BWi: 18.5 ± 1.0 kWh/t) these domains compared to plagio-
clase feldspar dominated domains (more HG3). Within Boston 
Shaker, the most notable difference is in the hanging wall domain 
BS_1, which has increased HG2 (16%) and decreased LG (18.5%) 
class proportions. This is a more sheared and phengitic white mica- 
affiliated domain exhibiting similar characteristics as TP_4 (high 
Axb). 

The following results are derived from the combined domain-based 
ME class proportion and 48-hour leach recovery metallurgical test re-
sults split per domain (Fig. 14):  

• The 48-hour leach recovery results from domains HA_3, HA_4 and 
TP_1-4 (orange shaded) are quite variable. TP_2 and TP_4 have a 
relatively high recovery, around 93%, whereas the recovery of the 
others is between 88.2 and 89.9%. A possible explanation for the 
lower recovery in these domains is the evidence of preg-robbing 
eluded to by Baker (2020). The cause is unknown as there is usu-
ally very little organic carbon in the ore to explain the effects by 
adsorption into carbonaceous material. The effects may be caused by 
the reduction of gold onto arsenopyrite or possible chalcopyrite 
surfaces, but this is unlikely due to the low As concentration (~3.5 
ppm) (Baker, 2020).  

• Unfortunately, the increased 48-hour leach recovery for HS_1 (93%), 
HA_5 (94%), TP_2 (93.4%) and TP_4 (93.1%) cannot be explained by 
similarity of the geochemical class proportions (Fig. 15). HS_1 has a 
larger HG3 proportion, and these samples are trending towards the 
albite node on the alkali-alumina plot and have lower S and Fe. 
Whereas TP_4 has significantly higher K/Al (molar) ratios (and 
HG1), higher S and Fe, and these samples are more trending towards 
the perthite K-feldspar node. Especially HS_1, HA_5 and TP_2 have in 
common that they are quite shallow and that the tested material 
types are predominantly lower saprolite and transitional saprolite 
rock compared to the fresh rock parts of, for example, the Boston 
Shaker domains (green shaded). 

• The recovery data associated with higher proportions of HG1 do-
mains (Boston Shaker) reflect observations seen at the mine site; 
elevated As, Te and S material (HG1, Fig. 13) leaches poorly (89.3 – 
92.5%) under standard conditions and will most likely increase the 
cyanide consumption. These elevated elemental concentrations 
would suggest increasing amounts of gold associated with tellurides 
and arsenopyrite, affecting the recovery. The increased sulphur (a 
known cyanocide) may cause higher cyanide demand. This is typi-
cally combated by increased oxygen and lead nitrate demand. The 
NaCN consumption for the Boston Shaker domains (high HG1 and 

Fig. 12. Multi-element samples from Case Study II plotted to the alkali-alumina ratio plot, after Davies and Whitehead (2006), thematically attributed by clus-
tering classes. 
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sulphur) is almost double (0.48 ± 0.15 kg/t) compared to the other 
domains (0.25 ± 0.23 kg/t). The lime consumption is much lower 
(0.67 ± 0.19 kg/t) than the other domains (2.53 ± 1.10 kg/t). 

5.2.5. Summary of Case Study II 
This case study showed that clustering of mineralised material is 

possible and generated classes with distinct geochemical, mineralogical 
and physical attributes. Including the spatial context of the ME data 
proved to give valuable insight into the coexistence of various classes 
and resulting metallurgical properties. For instance, similar geochemical 
class signatures were found across multiple orebodies. Additionally, 
there are various effects of known structural control events (with 

Fig. 13. Box and whisker plots of elemental concentrations of Case Study II samples. See Fig. 8 for an explanation of the box and whisker parameters and Fig. 11 for 
the number of samples per class. 
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alteration stages) observed within the domain signature, such as 
changes in the geology, alteration assemblage and mineralisation. The 
resulting material hardness can typically be explained by the class 
compositions found within domains, whereas the recovery tends to be 
explanatory with elevated or depleted elemental concentrations. 

6. Discussion 

The shear zone-controlled alteration of the protolith towards the 
mineralised assemblages was previously described by Crawford and 
Doyle (2016). Geochemically, these processes relate quite well with the 
observed HG1/HG3 and HG2/MG class properties. Crawford and Doyle 
(2016) described a decrease in SiO2, major elements (Fe, Mg, Ca, and Ti) 
and transition metals (V, Ni, Cr, Co, and Zn) accompanied by a strong 
increase in K-group elements in the shear zone assemblages. This char-
acter is more prevalent in HG2/MG than in HG1/HG3 (Fig. 13). 
Mineralogically, this increase in K-group elements is reflected by the 
stabilisation of abundant K-feldspar, biotite and white mica. Then, the 
decrease in abundance of the major elements and transition metals is 
reflected by the destruction of hornblende, augite, and Fe-Ti oxides in 
the protolith gneisses as the new alteration assemblage quartz-K- 

feldspar-biotite-pyrite stabilised in the shear zones (Crawford and 
Doyle, 2016). The formation of the alteration assemblage was also 
accompanied by the breakdown of mafic minerals in the protolith 
gneisses. Some of the Fe, Mg, and Ti released were trapped in the pyrite 
and lower-Ti biotite, however, the mass balance of Ti is not fully 
resolved and not completely reported by Crawford and Doyle (2016). 

The shear zone assemblage of the TGM deposit also has implications 
for the physical properties of the rocks. For example, there is an abrupt 
change in hardness of TP_4 (BWi: 16.6 ± 1.2 kWh/t, Axb: 45.4 ± 7.5) 
compared to TP_3 (BWi: 20.1 ± 1.5 kWh/t, Axb: 37.7 ± 5.1) caused by 
the “Jigger” shear zone crosscutting the deposit (as shown in Fig. 16). At 
TP_4, the decrease in hardness is accompanied by an increase in HG1 
and HG2, reflected mineralogically by a strongly (sheared, schist-like) 
phengitic white mica-affiliated rock type. This suggests that the prox-
imal distance from a shear zone has additional influence on the material 
hardness and probably the particle size and recovery. This hypothesis is 
tested by analysing the dilatancy around the shear zones, which 
commonly reflect the degree to which fluid-dominated or rock-buffered 
processes acted (Hodkiewicz et al., 2008). The dilatancy implies that 
during the feldspar-to-mica reactions occurring in these fault zones, the 
released silica may have precipitated in these dilatant sites. This 

Fig. 14. a) Overview of the selected orebody domains (≥0.3 ppm Au) for the Tropicana Gold Mine (mineralisation over 5 km strike length), b) side view of Havana 
South, and c) side view of Havana domains. GDA/UTM grid. 

Fig. 15. ME class proportions (Case Study II) typically found in selected Tropicana Gold Mine orebody domains (x-axis). The shaded domains have roughly similar 
geochemical signatures. Also, see Fig. 14 for the spatial configuration, SZ = shear zone, HW = hanging wall, FW = footwall. 
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increased the fault rock strength by cement hardening and reduced its 
permeability (Wibberley, 1999). 

This process has a significant impact on the material hardness and is 
observed across various domains. For example, a related and noticeable 
geochemical difference can be found within Tropicana. TP_4 has a 
higher average molar K/Al (0.47 ± 0.14) ratio and thus implies a more 
perthitic K-feldspar feldspathic gneiss than the more plagioclase rich 
feldspathic gneiss at TP_3 (K/Al ratio: 0.37 ± 0.12). Another shear zone 
that can be considered to test this hypothesis is the Boston Shaker shear 
zone. BS_1 has a similar high molar K/Al ratio and equally soft rock 
characteristics (BWi: 17.7 ± 0.8 kWh/t, Axb: 48.8 ± 3.4) as TP_4. In this 
domain, the perthite-rich feldspathic gneiss progressed from a clast 
supported breccia to matrix-supported breccia (Hardwick, 2021). It is 
evident that similar strength-controlling mechanisms occurred at other 
high-intensity strain domains and that each had specific implications on 
the resulting geochemistry and mineralogy, hence variations in the class 
proportions of the domains. 

Given the geochemical differences between the classes, it is expected 
that the resulting rock hardness is a combination of various rock prop-
erties. It must be mentioned that the authors are aware of the non- 
additive properties of material hardness. The individual or cumulative 
effect of the following three proposed hardness relationships is 
unknown. 

• The HG2 and MG classes are characterised by elevated HFSE con-
centrations (Zr, Hf, Nb, Ta). These elements are usually found in 
accessory minerals of high density (apatite, zircon) and can indicate 
fractional crystallisation of felsic alkaline magmas (Motoki et al., 
2015). Therefore, these elevated proportions are expected to 
contribute to the hardness observed in, for example, HS_2, HA_3, 
HA_4 and TP_1-3.  

• There is a large difference between the BWi and Axb of the blue 
shaded domains (HA_1, HA_2 and HS_1) and green shaded domains 

(Boston Shaker). This transition from dominance in HG3 (blue do-
mains) to HG1 (green domains) is related to an increase in the modal 
proportion of perthitic K-feldspar (higher K/Al molar ratio). As a 
result, there is less energy required to grind the rocks at Boston 
Shaker. However, the Leeb hardness indicates almost similar rock 
characteristics. The contradiction of soft/hard indications of the 
BWi, Axb and Equotip rebound hardness (Leeb) tests may represent 
the nature of the tests and their relation to hard or brittle material. 
For example, BWi and Axb are destructive tests, whereas Equotip is a 
non-destructive test. Equotip hardness generally reflects the miner-
alogical rebound hardness based on the observed matrix crystal 
structure, whereas the BWi reflects the combined resistance to 
abrasion and impact, and Axb the compression resistance. Typically, 
the Leeb value becomes lower as the rocks are more sheared (such as 
in TP_4 or HA_5) because of the development of a more dominant 
fabric and the conversion of feldspar to sericite (mica). Hence, the 
chances of hitting a hard mineral grain (feldspar, quartz, garnet) 
diminishes and hitting a fine, softer matrix material increases. Thus, 
the class composition of Boston Shaker results in an easier to grind 
rock type, however, within the crystal matrix, there are equally hard 
grains observed with Equotip hardness testing as in the blue shaded 
domains.  

• At Tropicana, coarse-grained feldspathic pegmatite is similar to the 
feldspathic gneiss in terms of major element concentration and is 
therefore not discriminated in this study. However, the main dif-
ferences between the two lithologies are in the grain size (>4 mm) of 
framework silicates rather than changes in modal mineralogy 
(Hardwick, 2021). Pegmatites tend to be composed of relatively hard 
minerals, so contributing to the observed and measured hardness of 
the composites. Pegmatites are more frequently logged in MG (n =
249) and LG (n = 125) samples compared to HG1 (n = 107), HG2 (n 
= 37), and HG3 (n = 56) and therefore expected to contribute more 
to the hardness observed in the high MG and LG domains. 

Fig. 16. Average BWi, Axb, Equotip and 48-hour leach recovery composite data for the considered spatial domains. The shaded regions indicate domains with shared 
geochemical signatures (Fig. 15). Vertical lines indicate displacements of the orebodies by minor or major faults (also see Fig. 14). SZ = shear zone, HW = hanging 
wall, FW = footwall. 
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Understanding the deleterious characteristics of the ore, such as 
oxygen or cyanide consumers, preg-robbers/borrowers, or passivation 
due to tellurides is a complex undertaking and requires extensive testing 
(Coetzee et al., 2011). The following examples are observed at the mine 
and could be linked with the ME class or domain characteristics. For 
instance, there is an inverse relationship between cyanide and lime 
especially observed in the blue and green shaded domains. The blue 
shaded domains (HA_1, HA_2 and HS_1) have a high HG3 with variable 
MG and LG, but absence of HG1 and HG2, characterising a high lime 
consumption (>2.2 kg/t) and low cyanide need (<0.31 kg/t). The 
following two observations may explain this high lime need. Firstly, 
these classes have proportionally more Mg and clays in the representing 
material, which tend to decrease the pH resulting in an increased lime 
consumption (du Plessis et al., 2021). Secondly, HG3 typically has 
higher concentrations in metal grades (Ni, Zn, Pb, Cu) and lower or 
equal concentrations of ore elements (Ag, Bi, Mo, Sb) than HG1. These 
metal-bearing minerals tend to reduce leach kinetics and lower the pH 
and must be combated by adding lime but less NaCN. 

7. Conclusions 

This paper presented an agglomerative hierarchical clustering 
approach with multi-element (ME) geochemical data from the Tropi-
cana Gold Mine, Australia. This approach was very effective in classi-
fying the logged lithology, alteration or mineralisation and could, for 
example, discriminate unmineralised, marginal-grade and high-grade 
gold classes. The work involved exploring classes for their unique 
geochemical signature, relating classes with their typical comminution 
and recovery parameters, and explaining the observed processing at-
tributes and their cause. 

The paper started with an extensive data quality assurance and 
successfully demonstrated how an industry scale four-acid digestion 
dataset could be cleaned to ensure no significant bias between inter-
laboratory and intralaboratory measurements. Case Study I presented 
the separation of 30,687 ME samples in seven classes through clustering. 
The clustering was primarily driven by the dominant mafic, felsic, 
garnet-bearing, garnet-absent, chert or quartz containing geochemical 
signatures of the gneissic rock found in each class. This demonstrated 
that the classes picked up different original host rocks and alteration 
assemblages seen across domains. The two gold-bearing classes were 
easily separated from the others (not based upon Au). Case Study II (n =
8,627 samples) continued with the two mineralised classes and 
demonstrated further partitioning in five classes: three high-grade 
classes, one marginal-grade class and one low-grade class. This clus-
tering placed a greater emphasis on grouping assemblages with relative 
increased or decreased elemental concentrations rather than separating 
major rock units. 

The geochemical data were spatially combined with metallurgical 
test results by considering all results within a constrained ≥ 0.3 ppm Au 
grade resource domain. This bridged the gap between these two 
different datasets. The geochemical signatures of the classes and do-
mains were then used to explain the differences in observed breakage 
properties (Leeb, BWi, Axb) and recoveries. This new approach of 
interpreting comminution and recovery related parameters demon-
strated the benefits of material fingerprinting and suggests including 
mineralogical data in future to enhance results. Additionally, it would be 
beneficial if an adequate metallurgical test for each combination of 
geochemical composition and spatial (sub)domain was undertaken to 
improve understanding of the hardness and recovery characteristics. 
Future research will focus on increasing the sample representativity and 
include additional spatial context. 
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