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Abstract

This thesis presents the development of an open-source electronic design automation (EDA) toolchain
for mixed-signal integrated circuit (IC) design using the Skywater 130nm PDK. The toolchain integrates
digital, analog, and mixed-signal flows using OpenLane, Xschem, Ngspice, and ALIGN, among others.
It automates key steps such as schematic simulation, layout generation, and verification while remain-
ing accessible and modular. A major contribution is the demonstration of cryogenic simulation support
using extracted parameters from transistor measurements at 4K, showcasing the potential for space
and quantum applications. The work also includes Docker-based deployment to ensure reproducibility
and ease of use across platforms.
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Preface

This thesis was written as part of our bachelor’s degree in Electrical Engineering at Delft University
of Technology (TU Delft). It reflects our joint work on developing an open-source electronic design
automation (EDA) toolchain for mixed-signal integrated circuit (IC) design. The toolchain integrates
both digital and analog design flows and explores cryogenic simulation capabilities for use in extreme
environments.

This project is part of a larger initiative, An Open-Source Platform to Develop Wireless Nodes for Lunar
Exploration, with our subgroup specifically focused on the development of an open-source mixed-signal
EDA toolchain. Our work contributes to the overall effort to create accessible and flexible design tools
for use in the challenging environments of space exploration.

The motivation for this project arose from the limitations of commercial EDA tools, which are often in-
accessible due to high costs and restrictive licensing. Our aim was to create an open, modular, and
partially automated toolchain that supports innovation, education, and rapid prototyping. Throughout
the project, we worked with tools such as OpenLane, Magic, Xschem, Ngspice, and ALIGN, and imple-
mented cryogenic transistor modeling using Python-based parameter extraction.

We would like to thank our supervisor, Fabio Sebastiano, for the valuable guidance and support during
this project.

Olaf de Jong
Ruben Wösten

Delft, June 2025
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1
Introduction

1.1. Motivation and context
Space agencies, such as NASA and ESA, along with private companies, are focused on achieving
permanent human presence on the Moon[1]. While the current longest lunar mission lasts 74 hours,
key challenges must be addressed before extending human stays, such as safety, optimal landing
locations, and resource availability.

The Moon’s harsh environment—extreme temperature variations, lunar dust, unfiltered cosmic radia-
tion, and long nights (about 14 Earth days) poses significant risks. Of these, radiation remains the
least understood yet one of the most dangerous threat. Without an atmosphere or magnetic field, the
Moon’s surface is directly exposed to solar particle events and galactic cosmic rays, which can harm
both equipment and astronauts[2]. Mapping radiation and gathering more data is crucial to ensure
safety.

The lunar south pole, especially locations like Shackleton crater, is considered the most optimal site for
long-term human survival. Certain peaks and crater rims receive almost constant sunlight (up to 80-90
%)[3], while some craters remain permanently shadowed, potentially holding frozen water. This water
could be converted into essentials like water, oxygen, fuel, and life support for astronauts.

Integrated circuit (IC) design plays a crucial role in enabling the sensor nodes to operate reliably under
extreme lunar conditions. Custom ICs allow for ultra-low power consumption, high integration den-
sity, and radiation tolerance—essential for long-term deployment in space with strict size and energy
constraints.

1.2. Purpose of project
Rapid innovation in integrated circuit (IC) design has led to an increasing demand for accessible, flex-
ible and cost-effective design tools [4]. In recent history, the semiconductor design tool market has
been dominated by proprietary electronic design automation (EDA) software. These tools often require
expensive licenses and typically involve signing non-disclosure agreements (NDAs) [5]. While this
may be manageable on a small scale, it becomes problematic when collaboration involves hundreds
of individuals across different organizations, as legal restrictions can significantly hinder coordination.
Additionally, licenses usually grant access only to the executable software, not the source code, which
limits flexibility and can stifle innovation.

In response, the development of open-source EDA tools has accelerated. These tools are free to use
and provide opportunities for researchers, educators, and start-ups to collaborate on IC design projects,
encouraging further innovation. Currently, only a few open-source EDA tools support a complete flow
for digital IC design. For analog and mixed-signal design, the situation is more complex. Although
tools exist for individual stages, the design process still requires significant manual effort, making it
less accessible and more prone to errors. This research aims to bridge that gap by developing an EDA
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1.3. Background Knowledge 2

toolchain that enables automated design for digital, analog, and mixed-signal ICs.

1.3. Background Knowledge
IC design has different stages. There are different stages for analog, digital, and mixed signal circuits.
Mixed signal designs require both the digital and analog signal process flow. Figure 1.1 (on the next
page) shows the complete flows for analog, digital, and mixed signal designs.

The design process starts by designing the individual blocks. These are analog, digital, or mixed-signal
components. For the analog input, either a schematic or both the flattened and hierarchical netlists of
the block are required. For a digital component, a Verilog file is needed. For a mixed signal block for
simulations on the functionality of the design a python file is needed and for the layout a schematic is
needed.

For the layout of digital components, the Verilog file can be put in the toolchain Openlane. This runs
the complete digital design flow. In this flow is, the verilog file needs to be compiled in a compiler. After
the code is compiled, it needs to be synthesized into gate-level netlist. The netlist is then placed and
routed using a place-and-route tool. Lastly there is the timing analysis to check whether the design
doesn’t violate any timing constraints.

The analog flow starts with creating a schematic for the analog blocks. Then, this schematic is sim-
ulated to check the functionality. If the simulation results are correct, the schematic is converted into
a transistor-level layout. This layout is then put through DRC, PEX, and LVS checks. PEX (Parasitic
Extraction) extracts parasitic resistances and capacitances from the layout, which are then used in
post-layout simulation to verify if the circuit still meets its functional requirements.

When all the individual blocks are designed then the complete layout can be made. This is a difficult
objective to achieve automatically. Therefore IC designer usually do this by hand. With time in consid-
eration this is left manual. When this step is finished the layout can be simulated and the last checks
can be performed. After the layout simulation is complete and shows the functionality of the chip work-
ing then the layout is ready for sign off.
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1.4. State-of-the-art analysis
According to a Reuters report, Synopsys, Cadence[6], and Siemens EDA[7] dominate the electronic
design automation (EDA) market, controlling over 70 percent of the market share in China, particularly
in the design of integrated circuits (ICs) [8]. These tools support the full design process for analog,
digital, and mixed-signal circuits. However, they are very expensive and often not available to students
and researchers because they require paid licenses and strict legal agreements [9].

1.4.1. Open-source EDA Tools
In recent years, more and more open-source EDA tools have been developed to try to replace parts of
the expensive commercial tools[9]. Some well-known examples are:

• OpenLane: A digital design toolchain based on the Sky130 PDK. It provides a full RTL-to-GDSII
digital flow, including synthesis (Yosys), placement (RePlAce), and routing (TritonRoute)[10].

• Magic: A tool for layout design and DRC checks, widely used in both academic and open-source
contexts[11].

• Xschem and Ngspice: Used for schematic entry and simulation in analog design flows[12][13].
• Netgen: For layout vs. schematic (LVS) verification[14].
• ALIGN: A more recent tool that attempts to automate analog layout generation using constraint-
based templates.

Despite these developments, few tools support a complete mixed-signal design flow. While digital tools
are becoming robust and more automated, analog and especially mixed-signal designs still lack inte-
gration and automation. Analog design still requires a lot of manual work and depends on experience
and guesswork[15].

1.4.2. Limitations in Mixed-Signal Flows
Mixed-signal design presents unique challenges:

• Interface Management: Digital and analog parts work in different ways and use different design
methods, which makes connecting them together correctly more difficult[16].

• Simulation Complexity: Co-simulation of digital and analog blocks typically requires dedicated
mixed-signal simulators (e.g., Cadence AMS Designer), which have no viable open-source coun-
terpart that supports complex designs.

• Lack of Unified Tools: No single open-source framework currently manages schematic capture,
simulation, layout, and verification across digital and analog in an integrated way[16].

1.4.3. Need for Integration
Right now, the open-source EDA tools are improving, but they are still separate pieces and don’t work
well together for mixed-signal design[17]. Because of this, the design process is less efficient, more
likely to have mistakes, and harder for beginners to use. This thesis aims to solve this problem by
creating a modular, open-source EDA toolchain for mixed-signal IC design that brings together digital,
analog, and mixed-signal steps into one easy-to-use and semi-automated flow.

1.4.4. Mixed-signal simulations
Verilog-AMS (Analog and Mixed-Signal) is a hardware description language that extends Verilog to
include analog behavior and is widely used in commercial EDA tools such as Cadence Spectre and
Synopsys VCS AMS. These platforms support co-simulation of analog and digital blocks within a single
simulation kernel, offering tight integration, accurate signal synchronization, and robust convergence
algorithms [18], [19]. However, in the open-source domain, support for Verilog-AMS remains limited.
Tools like Ngspice and Icarus Verilog lack a shared simulation kernel for mixed-signal operation and
cannot natively interpret Verilog-AMS constructs. This gap exists primarily because Verilog-AMS is
a complex standard that is difficult to implement without significant development resources, and its
widespread use is often entangled with proprietary models and licensing restrictions [20]. As a result,
most open-source workflows rely on a modular or co-simulation approach that connects separate digital
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and analog simulators using external scripts or intermediate data formats.

1.5. Problem Analysis
1.5.1. Scoping analysis
Needs: There is a growing need for an open, accessible, and automated mixed-signal IC design flow.
Researchers and students lack the resources to use commercial tools, yet require robust design plat-
forms to prototype and verify their ideas. This need is especially pressing in emerging fields like cryo-
genic electronics, where standard EDA tools and models are not readily available or validated at low
temperatures.

Objectives:

• To develop an open-source toolchain that supports the complete mixed-signal design flow.
• To simplify the co-design and co-simulation of analog and digital components.
• To lower the entry barrier for new designers and educational institutions.
• To enable integration of cryogenic models into the open-source PDK (sky130).

Success Criteria:

• Integration of digital (OpenLane), analog (Xschem, Ngspice), and mixed-signal simulation steps.
• Usability: The toolchain must be usable by someone with only basic knowledge of EDA tools.
• Automation: Significant reduction in manual design steps, especially for layout integration and
simulation.

1.5.2. Bounding Analysis
Constraints:

• Dependence on the maturity and limitations of existing open-source tools (e.g., ALIGN is still
under development).

• Lack of validated SPICE models for cryogenic operation. Only primitive behavioral models are
available.

• Tool compatibility and data exchange formats across different stages.

Parameters:

• Design size and complexity (small to medium-scale mixed-signal blocks).
• Target PDK (Sky130).
• Performance trade-offs between automation and flexibility.

Variables:

• Design time.
• Accuracy of simulation results.
• Number of manual interventions required.

This project is focused on improving the design situation by creating a more unified workflow rather
than reinventing existing tools. It builds on and connects current capabilities in digital and analog flows,
aiming to reduce user errors and design time while broadening accessibility.

1.6. Thesis Synopsis
This thesis presents the development of an open-source toolchain for the design and simulation of
digital, analog, and mixed-signal integrated circuits (ICs), with an emphasis on automation, modularity,
and accessibility. Aimed at supporting the Sky130 process design kit (PDK), the toolchain integrates a
range of open-source tools including Xschem, Ngspice, Magic, Netgen, and OpenLane—into a unified,
flexible workflow that spans schematic capture, simulation, layout, and verification.



1.6. Thesis Synopsis 6

The project focuses on four main objectives. The first is to automate the analog design flow, enabling
users to transition from schematics to verified layouts with minimal manual intervention. The second
objective is to implement a co-simulation environment that verifies the functionality of complete chips,
bridging the gap between analog and digital domains. Third, a device-level simulation using a cryogenic
model from the PDK was performed to explore the feasibility of supporting low-temperature circuit de-
sign. Lastly, the entire environment is encapsulated in a Docker container to ensure ease of installation,
portability, and reproducibility across systems.

Overall, the thesis contributes a practical framework that lowers the barrier to entry for IC design using
open-source tools, supporting the growth of the open hardware ecosystem.



2
Programme of Requirements

The goal of this project is to develop an open-source, modular toolchain that supports the complete
design flow of mixed-signal integrated circuits (ICs). The system should integrate existing open-source
tools for digital, analog, and mixed-signal design, while automating key steps to improve usability, re-
duce manual intervention, and lower the learning curve. Additionally, the project explores the integra-
tion of cryogenic PDK models and ensures system portability through Docker-based deployment. The
requirements are categorized as follows:

2.0.1. Functional Requirements
These requirements define the essential operations that the toolchain must perform to support mixed-
signal IC design.

[A.1] The system must support schematic-based analog design and simulate it using Ngspice.
[A.2] The system must support the digital RTL-to-GDSII flow using OpenLane and allow digital simula-

tion using Icarus Verilog.
[A.3] The system must support co-simulation of analog and digital blocks for functional verification.
[A.4] The toolchain must allow for layout-versus-schematic (LVS) and design rule checking (DRC).
[A.5] The toolchain must support netlist extraction (PEX) and post-layout simulation of analog blocks.
[A.6] The entire toolchain must be containerized using Docker, enabling consistent execution across

different operating systems (Linux, Windows, macOS) with minimal setup.
[A.7] The toolchain must support integrated placement and routing of analog and digital blocks, en-

abling mixed-signal physical design.

2.0.2. System Requirements
These requirements address usability, extensibility, and technical design decisions to ensure the toolchain
works effectively in practical settings.

[B.1] The toolchain must work entirely with open-source software.
[B.4] The workflow should minimize manual intervention, particularly in layout generation and simula-

tion.
[B.5] The toolchain must be compatible with the Sky130 process design kit (PDK).
[B.6] The systemmust include a Dockerfile that encapsulates all dependencies and enables consistent

deployment across systems.
[B.7] The SkyWater130 PDK must be modified to support cryogenic operation.

7



3
Docker

To simplify the installation and setup process of the various EDA tools used in this project, a Docker-
based environment was created using Docker Compose. In recent years, the use of Docker containers
has become increasingly common in electronic design automation (EDA) environments, allowing for
easier deployment and consistent toolchain setups across different platforms [21]. This approach en-
ables a consistent and portable setup that can be easily deployed on any system supporting Docker.
The goal was to implement each part of the toolchain analog design, digital design using OpenLane, lay-
out generation using ALIGN, and Verilog simulation using Icarus into separate containers while sharing
a common working directory and PDK installation to allow data exchange between tools.

The Docker Compose configuration defines four main services: align, analog, openlane, and icarus.
Each service runs in its own container using a purpose-built Docker image. These containers share
a mounted volume named shared, which includes both the design workspace and the local PDK files.
This structure ensures that all tools operate on the same set of data, eliminating the need to copy files
between containers.

3.1. Analog Container
The analog container is designed for analog IC development and includes tools such as Ngspice, Magic,
and Xschem. These tools are built from source within the container to ensure compatibility and access
to the latest features. The container is configured with GUI support through X11 forwarding, allowing
tools like Magic and Xschem to be launched with their graphical interfaces from within the container. All
commands can also be executed through the terminal, supporting automation workflows. The DISPLAY
environment variable is set to enable GUI access on the host system. The specific Docker file for
creating the analog container can be see in Appendix A.1.2.

3.2. Digital Design Container
The openlane container is based on the official OpenLane image but is extended to include Python,
Volare, and a configured Sky130A PDK environment. Volare is used to manage PDK versions. The
container mounts the shared volume, allowing digital design files to be placed and processed with
minimal manual setup. OpenLane runs entirely from the command line, making it suitable for scripting
and automated workflows. The specific Docker file for creating the openlane container can be see in
Appendix A.1.3.

3.3. Layout Generation Container
The align container is responsible for automated layout generation of analog blocks using the ALIGN
framework. It uses a custom-built image that includes ALIGN pre-installed and configured to work with
the Sky130 PDK. ALIGN requires a flattened netlist, which is generated earlier using Xschem. The
results are stored in the shared workspace, and the align container mounts the shared volume and

8
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operates from the ‘/workspace‘ directory. The specific Docker file for creating the openlane container
can be see in Appendix A.1.4.

3.4. Verilog Simulation Container
The icarus container is used for Verilog simulation and is based on the Icarus Verilog image. It shares
the same workspace as the other containers, ensuring that simulation files are easily accessible and
processed within the same directory structure. Icarus Verilog is an open-source simulator, and this
container allows simulation of digital designs in the toolchain. For the icarus container we have taken
a publicly available Docker image.

3.5. Conclusion
By structuring the environment in this way, each part of the toolchain can run independently, while
still contributing to the same overall design process. The use of Docker Compose allows the entire
setup to be launched with a single command, dramatically reducing installation time and the potential
for configuration errors. This is especially useful in collaborative environments or for onboarding new
users, as the setup is fully encapsulated and version-controlled.

In summary, the Docker Compose-based setup enables reproducible, isolated, and automated IC de-
sign workflows for analog, digital, and mixed-signal circuits. Each container is tailored to a specific
stage of the design process but shares a unified file structure and PDK environment, providing both
flexibility and consistency across the toolchain.



4
Digital design

The digital design flow is fully automated with OpenLane, an open-source toolchain that handles the
entire process from RTL (Register Transfer Level) to GDS (Graphic Data System) layout. OpenLane
integrates tools for synthesis, placement, routing, and timing closure, providing a complete solution for
digital chip design.

Although OpenLane uses Verilator for digital simulation, we opted to include Icarus Verilog (or Iverilog)
for mixed-signal simulation. This was primarily because our mixed-signal testbenches are written in
Verilog, and Icarus Verilog integrates more seamlessly with the analog simulation tools, facilitating
easier co-simulation of digital and analog blocks.

To validate OpenLane’s effectiveness, we tested it by running a design from the hardware subgroup
through the entire flow [22]. We decided to put the radio component they designed in verilog trough
the design flow[23]. The processed design was successfully synthesized, placed, routed, and laid out.
The result can be seen in the layout image below.

Figure 4.1: Layout of the design processed through the OpenLane flow.

This test confirmed the efficiency of OpenLane in real-world applications, demonstrating its value in
streamlining the digital design process.

10



5
Analog design

5.1. Tool Selection Criteria and Rationale
To automate the analog design flow, open-source tools need to be identified for each stage. These are
documented in table 5.1

Table 5.1: Selected open-source tools for analog design flow

Design Stage Tool 1 Tool 2 Tool 3
Schematic Entry Xschem Electric VLSI -
Netlist Generation Xschem Electric VLSI -
Analog Simulation Ngspice Xyce Gnucap
Layout Design (Manual) Magic Electric VLSI KLayout
Layout Design (Auto-
matic)

ALIGN Laygo KLayout + Python

DRC, LVS, and PEX
Checks

Magic Netgen -

Post-Layout Simulation Ngspice Electric VLSI Gnucap

The following criteria are considered to choose the best tool:

• Is the tool controllable via terminal commands?
• Does the tool integrate easily with the next stage?
• Does the tool offer good user support and have a user-friendly interface?

With these criteria in mind, the following tools are chosen:

Schematic Entry: Xschem is selected because it provides a user-friendly GUI for schematic design
while also supporting batch mode for command-line control, enabling easy automation. Unlike Elec-
tric VLSI, Xschem offers better integration with downstream tools through its ability to generate both
hierarchical and flattened netlists, which are essential for simulation and layout generation.

Netlist Generation: Xschem again is preferred because it can generate the netlist formats required
by both simulation tools and layout engines. Electric VLSI offers netlist generation as well, but with less
flexibility in netlist formatting, making Xschem more suitable for integration with ALIGN and Ngspice.

Analog Simulation: Ngspice is chosen for its seamless integration with Xschem and its command-
line controllability, which is crucial for automated workflows and co-simulation scenarios. While tools
like Xyce and Gnucap are capable simulators, Ngspice’s wider community support and straightforward
compatibility with Xschem make it the preferred choice.

11
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Layout Design (Manual): Magic is selected due to its mature set of features for manual layout editing
and its command-line driven DRC and LVS checks. Electric VLSI provides manual layout capabilities
but lacks some of the automation and verification features offered by Magic. KLayout is also a strong
contender, particularly for layout visualization, but Magic’s integrated environment and scripting capa-
bilities make it more suitable for manual layout work in this flow.

Layout Design (Automatic): ALIGN is chosen for automatic layout generation of analog blocks be-
cause it is specifically designed for this purpose and works best with flattened netlists from Xschem.
Laygo and KLayout combined with Python scripts are alternatives, but ALIGN’s ongoing development
and focus on analog layout automation give it a clear edge for this flow.

DRC, LVS, and PEX Checks: Magic and Netgen are selected because both can be controlled via
terminal commands and integrate well with Magic layouts. These tools are widely used in open-source
flows and offer reliable verification of layout correctness. No viable alternatives in the list combine ease
of integration and command-line control as effectively.

Post-Layout Simulation: Ngspice is again preferred for post-layout simulation due to its compatibil-
ity with the netlists generated by Xschem and its command-line interface, allowing easy automation.
Electric VLSI and Gnucap also provide simulation capabilities but with less seamless integration in this
workflow.

5.2. Validation: Ring Oscillator
To demonstrate the complete functionality of the open-source analog design flow, a simple ring oscillator
was designed and implemented. The initial schematic was created using Xschem, as shown in Fig.5.1a.
To verify the correctness of the circuit, a simulation was performed in NGspice. The resulting waveform
can be seen in Fig.5.1c.

Next, a flattened netlist was generated from Xschem. However, this netlist cannot be used directly
in ALIGN, as ALIGN requires a more abstracted or simplified netlist. Therefore, the netlist must first
be manually simplified. After simplification, ALIGN is used to generate the layout, ensuring that it is
DRC-clean. The resulting layout can be visualized using Magic, as shown in Fig. 5.1b.

Once the layout is complete, a Layout vs. Schematic (LVS) check is performed using NETGEN to
verify that the layout matches the original schematic. Following LVS verification, parasitic extraction
is carried out in Magic. The extracted parasitic information is then used for post-layout simulation in
NGspice. The results of this simulation are shown in Fig. 5.1d.

As illustrated by the close agreement between the pre-layout and post-layout simulation results, the de-
sign flow has been successfully executed, validating the correctness and reliability of the open-source
analog design process.
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(a) Schematic in Xschem (b) Layout in Magic
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(c) Simulation before layout

time

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ns

-0.5

0.0

0.5

1.0

1.5

2.0

V v(out)

(d) Post-layout simulation

Figure 5.1: Overview of the analog design flow using a ring oscillator: schematic and layout (top), and simulation results
before and after layout (bottom).



6
Mixed-Signal Simulation

6.1. Methodology
Our mixed-signal co-simulator is built as an event-driven, modular approach. This design choice plays
to the strengths of each specialized simulation tool. The simulator simulates digital blocks using a ded-
icated digital logic simulator (like Verilator or Icarus Verilog) and analog blocks with an analog circuit
simulator (such as Ngspice). This ensures each part of the design gets the most accurate and effi-
cient simulation possible, avoiding the trade-offs often found in single, all encompassing mixed-signal
environments.

6.1.1. Mixed-signal components
One of the biggest hurdles in mixed-signal simulation is properly modeling mixed-signal components
that sit at the boundary between the digital and analog worlds. Traditionally, commercial tools use
Verilog-AMS for this. It’s a standard language that lets you describe both analog and digital behaviors
within a single model. However, finding open-source Verilog-AMS compilers and simulators that are
powerful and fully featured is quite difficult. This limitation meant that this standard approach couldn’t
be used, so a different approach was needed to handle these mixed-signal components.

Our solution was to model these mixed-signal components using Python. This choice gives us incredi-
ble flexibility within an open-source framework:

• Quick Development: Python lets us build and change conversion algorithms very quickly without
having to redesign the complete circuit.

• Tailored Behavior: We can easily implement specific, even non-standard, behaviors or highly
detailed models without being constrained by a hardware description language.

• The ”Glue” Logic: Python acts as the central ”glue” that processes and translates signals be-
tween the discrete digital domain and the continuous analog domain.

The advantage about this Python modeling approach is that it gives the user fine-grained control over
how abstract (or detailed) they want these mixed-signal components to be simulated:

• High-Fidelity Simulation (Timing is Key): If you need super precise timing and analog char-
acteristics (like an Analog-to-Digital Converter’s (ADC) settling time or a Digital-to-Analog Con-
verter’s (DAC) output impedance), you can create a detailed analog schematic of themixed-signal
component and simulate it directly in Ngspice. In this case, the Python code is mostly just a wrap-
per. It takes the analog voltage data, applies a comparator-like function or an ADC model to
determine the digital state (0 or 1), or it takes digital bits and converts them into an analog voltage
(like generating a piecewise linear (PWL) voltage source for Ngspice).

• Behavioral/Idealized Simulation (Speed is Key): When timing details aren’t critical for overall
system testing, you can model the mixed-signal component as an ideal, simplified component
directly in Python. For instance, an ideal ADC might instantly convert a voltage to a digital code,

14
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or an ideal DAC might produce a perfect stair-step voltage from a digital input without any delays
or non-idealities. This drastically cuts down simulation time, speeding up design iterations.

Simulation preparation
The co-simulator begins with individual Verilog files for digital blocks and SPICE source files for analog
blocks. Additionally, there’s a top-level Xschem schematic where each block is represented by a symbol
with input and output pins. A separate parameter file specifies global input signals and overall simulation
time settings. The simulator starts by parsing the top-level netlist generated by Xschem. This netlist
is broken down, and all the details about each individual block are stored in a Python block dictionary.
This dictionary is like a detailed dossier for every component, containing:

• Instance Name: The unique ID for the block (e.g., X1 or X2).
• Block Type: Whether it’s ’analog’, ’digital’, or ’mixed-signal’, determining which simulator handles
it.

• Source File: The actual .spice, .v, or .py file that defines the block’s behavior.
• Input/Output Signals: A list of all pins connecting in and out of the block.
• Nets: A list of top-level wires (nets) connected to the block.
• Pin-to-Net Mapping: A precise map showing which internal pin connects to which top-level net.

At the same time, a separate net dictionary is built to manage the web of connections (signals) between
blocks. It tracks signal flow and enables efficient data transfer between simulation steps. For each top-
level net, it tracks:

• Driver Block: The block sending the signal onto this net.
• Driver Signal: The specific internal pin in the driver block connected to this net.
• Receiver Blocks: All blocks listening to this net.
• Receiver Signals: The specific internal pins in those receiver blocks connected to this net.
• Current Value(s): The latest simulated value(s) of the signal on the net crucial for setting initial
conditions for the next simulation.

Using both a block-centric and a net-centric dictionary was a conscious design choice. The block
dictionary gives an ”inside-out” view, showing a component’s internals helpful when generating its sub-
circuit. The net dictionary gives an ”outside-in” view, focusing on signal connectivity across the system
essential for managing data between simulation steps.

After parsing, the simulation files are prepared. Analog blocks need continuous input signals. A deci-
sion was made: all analog blocks that are interconnected (where one’s output feeds another’s input)
are combined into a single Ngspice .spice file. This preserves analog integration and continuous be-
havior over time. Digital blocks get separate Verilog testbenches, as their event-driven nature allows
independent simulation. The generated simulation files include placeholders for parameters like step
size, total simulation time, and initial conditions. This blueprint-style setup allows file reuse across
many simulation iterations. Before each simulation run, the parameter file is read, and all placeholders
are populated with the correct values for the current iteration.

6.1.2. Simulation Iteration and the Event Manager
Each simulation iteration begins with both the digital and analog simulations running concurrently:

• Analog Simulation: The combined Ngspice .spice file for analog blocks is executed. Output
data for each net (e.g., V(net1), V(net2)) is saved to a plain text file using the wrdata command.
This produces a clean, tabular, space-separated text file that’s easy for Python to parse using
standard libraries like numpy or pandas.

• Digital Simulation: The separate Verilog testbenches for digital blocks are run (using tools like
Icarus Verilog). These testbenches use Verilog’s $fdisplay or $fwrite commands to output
digital signal data (0, 1, X, Z states) to a single text file. This file is easily parsed by Python and
split into separate structures for each output signal. Again, simplicity and Python integration are
prioritized over traditional waveform formats like VCD.
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Once these simulations finish and output data is available, the waveforms are fed into the Python
models of the mixed-signal components. This is where domain bridging happens. For digital-to-analog,
signals are stored as strings for Ngspice’s PWL function, allowing new voltage values to be inserted.
For analog-to-digital, value changes are stored as pairs of timestamps and new values.

After each iteration, once mixed-signal components are updated, the event manager analyzes all sig-
nals(analog, digital, and mixed). In this co-simulation framework, event detection is applied exclusively
to signals originating from digital andmixed-signal blocks. This is because they produce discrete events
(e.g., logic-level changes), making them suitable for event-driven processing. Analog blocks, which gen-
erate continuous-time signals, do not produce discrete events. Since analog blocks are simulated as
cascaded subsystems that eventually connect to mixed-signal interfaces (e.g., comparators or DACs),
transitions are captured at the boundary. This avoids unnecessary checks within analog paths, simpli-
fying simulation and preserving synchronization across domains.

Finally, the simulation files (both Ngspice and Verilog) are dynamically updated with the new net val-
ues. This iterative process, driven by the event manager, continues until the full simulation dura-
tion is complete or no further events are detected. This adaptive, event-driven method focuses re-
sources on active parts of the circuit, stitching together many short simulations into one complete
waveform for analysis and plotting. The final code of the simulator is found in this github repository:
https://github.com/Rubenwosten/Project_OPEN_SOURCE_LUNAR

6.2. Testing with a Mixed-Signal Circuit
To test the simulator’s functionality, a mixed-signal circuit was designed. The circuit is shown in Fig-
ure 6.1.

Figure 6.1: Top-level design of the mixed-signal IC with: X1 = V source, X2 = low-pass filter, X3 = ADC, X5 = inverter, X6 =
DAC, X7 = voltage divider

The circuit begins with X1, a sine-wave voltage source. This passes through a low-pass filter (X2), which
smooths the waveform. These blocks shows simultaneous simulation of two analog blocks. Because
the analog signal is directly connected to X2, no signal integrity is lost.

The filtered signal reaches X3, an ADC that converts the waveform into a 3-bit digital signal. The LSB
from the ADC passes through an inverter (X5), demonstrating digital block interaction (X3 to X5).

Meanwhile, the MSB and another bit from the ADC are routed directly to the DAC (X6). This demon-
strates interaction between two mixed-signal components. Python is required to specify the signal type
at output. The X5 output also acts as the LSB input for the DAC. The DAC converts the digital signal
into a quantized, inverted, and delayed sine wave.

Finally, the analog output goes through a voltage divider (X7), producing Vout, half the DAC’s output.

6.3. Simulation results
The circuit was simulated for 50 ns, using both 1 ns and 50 ps step times. Figure 6.2 and Figure 6.3
show the voltage divider output for 1 ns and 50 ps steps, respectively. Additional net signal plots are
in Appendix B for both step sizes. The results show that a smaller step size provides higher accuracy.
Both simulations were completed in 15 minutes.

https://github.com/Rubenwosten/Project_OPEN_SOURCE_LUNAR
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Figure 6.2: Vout after the voltage divider with a step of 1 ns.

Figure 6.3: Vout after the voltage divider with a step of 50 ps.
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Cryogenic PDK

To simulate analog circuits in extreme environments like the Moon, where temperatures can drop to
around 20K, standard room-temperature CMOS models are not accurate enough [24]. Cryogenic
simulation is required to ensure that circuits still function reliably under these conditions. The goal of
this part of the research was to prove that cryogenic simulation is possible using open-source tools.

As demonstrated by Akturk et al. [25], CMOS circuits fabricated using the Skywater 130nm process
can operate at cryogenic temperatures (4K). However, full SPICE-compatible transistor models for
cryogenic simulation have not been released. Instead, Akturk et al. provided a set of simulation prim-
itives. These are Verilog-A behavioral models for NMOS and PMOS transistors, based on cryogenic
measurements. These included measured gate voltage (VG) sweep curves for the NFET 01V8 device
under various combinations of source (VS), drain (VD), and body (VB) voltages[26]. These curves are
the basis of this work.

In this work, we manually extracted key electrical parameters from these primitives using a custom
Python script (detailed in Appendix A.2) for a specific transistor geometry: width = 0.42µm and length =
0.15µm. The extracted parameters include threshold voltage (Vth), subthreshold slope, carrier mobility,
and leakage current (Ioff). Six different bias configurations were analyzed, each with distinct values of
VS, VD, and VB. The corresponding transfer characteristics are shown in Figure 7.1, and the extracted
parameters are summarized in Table 7.1.

Compared to the standard 300K Skywater PDKmodels, the extracted 4K data show significant changes
in key characteristics, particularly shifts in Vth, the nfactor and mobility. These values were then used
to modify the NFET 01V8 model within the Skywater PDK to better reflect cryogenic behavior for the
given device size.

Table 7.1: NFET 01V8 parameters at 4.0K for different drain, source, and base voltages

Block Vth (V) Voff (V) Slope (mV/dec) n Ioff (A) Mobility (cm2/Vs) VS (V) VD (V) VB (V)

0 0.740 –0.141 18.52 23.33 1.33× 10−12 264.7 0.0 0.1 0.0
1 0.670 –0.140 12.80 16.12 1.30× 10−12 37.9 0.0 1.8 0.0
2 0.840 –0.142 18.27 23.01 6.85× 10−13 257.0 0.0 0.1 –0.75
3 0.750 –0.141 13.33 16.79 2.05× 10−12 36.2 0.0 1.8 –0.75
4 0.900 –0.142 18.37 23.13 1.34× 10−12 250.6 0.0 0.1 –1.5
5 0.790 –0.143 13.67 17.21 1.16× 10−12 34.8 0.0 1.8 –1.5

7.1. Results
To evaluate the impact of temperature on device behavior, we simulated the NFET in Xschem using
NGspice with both the 4K cryogenic parameters and the standard room temperature parameters. As
Bohuslavskyi et al. demonstrate [[27]], the BSIM4 model becomes unreliable below roughly 77 K. Con-
sequently, our NGspice simulations were performed at 77 K instead of 4 K to avoid the inaccuracies
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(a) Block 0 (b) Block 1 (c) Block 2

(d) Block 3 (e) Block 4 (f) Block 5

Figure 7.1: Transfer Characteristics for All Blocks

associated with the model’s breakdown at deeper cryogenic temperatures. The results of these sim-
ulations are shown in Figure 7.2, where the transfer characteristics for both conditions are compared.
The gate voltage (VG) was swept from 0 to 1.8V with VS = 0, VS = 0.1, and VB = 0 for both cases.
As seen in the comparison, the NFET behaves very differently at 4K compared to room temperature.
At cryogenic temperatures, the threshold voltage (Vth) shifts, the subthreshold slope becomes steeper,
and the mobility decreases, which all contribute to a marked change in the transistor’s behavior. These
differences highlight the significant impact that temperature has on device performance and reinforce
the need for cryogenic-specific modeling when designing for low-temperature environments. Although
the 4 K curve resembles the initial dataset seen in 7.1 as block 0, the slope in the rising region is no-
ticeably different. This discrepancy likely arises because the simulation was run at 77 K rather than 4
K and may also reflect that not all of the NFET’s characterization parameters were fully incorporated.

The goal of this experiment was to prove that a full cryogenic PDK is possible by simulating a single
device under cryogenic conditions. Akturk et al.[25] are aiming to implement their cryogenic models for
CMOS devices into the open-source Skywater PDK. Once this integration is complete, these models
can also be incorporated into our own EDA environment, enabling cryogenic simulation capabilities.
This will make it easier to design and validate analog circuits for deep-space applications, such as
lunar missions.
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Figure 7.2: Comparison of NFET with VS = 0, VD = 0.1, and VB = 0 at Room Temperature and 4K, where VG is swept from 0
to 1.8 V.
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Discussion

8.1. Cryogenic PDK
This work only scratches the surface of cryogenic simulation by focusing on a single device at low
temperatures. Only a few of the characteristics of this device were found so true cryogenic integration
was not achieved, but the results do show that this integration is possible. Ongoing research aims to
extend this capability by integrating cryogenic compact models for CMOS devices into the Skywater
PDK [25]. Once implemented, this will enable cryogenic simulation support within open-source EDA
tools. This will make it easier to design and validate analog circuits for deep-space applications, such
as lunar missions, and also aligns with broader research efforts in cryogenic CMOS technology for
quantum computing and space electronics [28].

8.2. Docker
Docker enabled a portable and reproducible design environment, simplifying tool setup across plat-
forms. However, performance issues can arise when running multiple containers in parallel, especially
on systems with limited resources. As shown by Đorđević et al. [29], resource contention increases
with the number of active containers, potentially leading to slowdowns. This was occasionally observed
during intensive tasks in our setup. Applying resource limits and staggered startup can help mitigate
these effects while retaining the benefits of containerization.

8.3. Automatic IC design flow
: In this thesis, an automatic analog IC design flow was developed by integrating several open-source
tools. Each tool plays a specific role in the design process: Xschem for schematic capture, Ngspice for
simulation, Magic for layout editing, ALIGN for analog layout generation, and Netgen for layout-versus-
schematic (LVS) verification. Python scripts coordinate the flow between these tools, automating much
of the design, simulation, and verification process.

Despite these advancements, the current flow stops short of being a fully automatic IC design system.
A critical missing component is an intelligent placement and routing engine that can take individual
block layouts and arrange them into a complete chip-level layout. While ALIGN can automate the
layout of analog blocks and OpenLane can do the same for digital blocks, placing and routing those
individual blocks while managing spacing and routing constraints still requires significant manual effort.
Furthermore, the transition from schematic capture in tools like xschem to layout generation with ALIGN
is not fully automated, as it typically requires manual modification of the netlist to make it compatible
with ALIGN’s input format. It’s also important to note that ALIGN itself is still under active development,
with ongoing efforts to improve its capabilities and extend automation.

To close this gap, the integration of machine learning or AI-based algorithms is proposed for future
research[30]. Such a system would learn optimal layout strategies from existing designs and generate
placement and routing solutions that respect design rules, minimize area, and optimize signal quality.
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Once a complete layout is assembled, final checks such as Design Rule Check (DRC) and LVS can be
performed using Magic and Netgen, respectively. The final simulation of the complete transistor-level
layout can then be conducted using Ngspice to validate the entire design.

8.4. Mixed-signal simulator
This mixed-signal co-simulator, while open-source, shares some fundamental ideas with powerful com-
mercial tools like Cadence Spectre-AMS. However, it also has some key differences that lead to its
main limitations and define areas for future research.

Common ideas:

• Co-Simulation Core: Both our simulator and Spectre-AMS share the basic idea of ”co-simulation.”
This means they’re both designed to simulate digital parts with one engine and analog parts with
another, then link them up. It’s all about using the best tool for each job.

• Event-Driven Approach: Just like our simulator, Spectre-AMS is also event-driven. It focuses
on when significant things happen (like signal changes or clock edges) rather than just plodding
through every tiny time step. This helps manage complex simulations efficiently.

• Domain Interfacing: Both systems need a way to pass information between the digital and ana-
log worlds. They both translate digital logic states into analog voltages and vice-versa at the
boundaries between mixed-signal components.

Key Differences:

• Mixed-Signal Component Modeling: Spectre uses Verilog-AMS,We use python for ideal behevior
or spice+python to model the analog schematic with the conversion done by python.

• Integration Level: Offers a much tighter, often native, integration between its analog and digital
solvers. The entire simulation often feels like one seamless process. Our Simulator: Achieves
integration through file-based communication and Python glue code. This is a looser coupling.

• Spectre-AMS: Being a highly optimized commercial tool, it boasts advanced algorithms for conver-
gence, error handling, and speed. It can handle very large and complexmixed-signal designs with
high efficiency. Our Simulator: Relies on simpler, sequential execution of separate open-source
tools. While the individual simulators (Ngspice, Verilator) are optimized, the overall ”stitching”
process in Python adds overhead. This impacts performance of very large or complex designs.

Based on these differences, the primary limitations of our proposed simulator become clear:

• Overhead of File-Based Communication: The continuous writing and reading of text files, along
with Python parsing and data manipulation, introduces significant overhead. This can slow down
simulations.

• Less Robust Convergence: Commercial simulators have sophisticated algorithms to ensure con-
vergence in tricky analog circuits and handle rapid digital-analog interactions. Our simpler, itera-
tive approach might be more prone to convergence issues or require careful tuning of simulation
segment lengths and initial conditions.

• No Native Verilog-AMS Support: The reliance on Python models for mixed-signal components,
while flexible, means we can’t directly leverage existing Verilog-AMS models or the benefits of its
integrated language. This adds a translation layer and might limit the direct reusability of models
from other platforms.

• Manual Integration and Debugging: The ”glue code” approach requires more manual effort in
tracing a problem through multiple simulation outputs and Python scripts can be more challenging

Looking ahead, there are several exciting directions for future research and development to enhance
this co-simulator:

• Improved Communication Interface: Explore more efficient inter-process communication (IPC)
methods (e.g., pipes, sockets, shared memory) between Ngspice, the Verilog simulator, and
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Python, to reduce the overhead of file I/O. This would make the ”stitching” process much faster
and smoother.

• Advanced Event Management: Develop more sophisticated event detection algorithms in the
event manager. This could include predictive event detection, more complex thresholding logic,
and a hierarchical event processing system to better manage large designs.

• Graphical User Interface (GUI): Develop a basic GUI to simplify setup, visualization of simulation
results (perhaps integrating with an open-source waveform viewer), and debugging. This would
make the simulator much more user-friendly.

• Distributed Simulation: For very large designs, investigate the possibility of running analog and
digital simulations on different processor cores, leveraging parallel computing to speed up the
overall simulation time.

• Integration of Machine Learning/AI: Explore how Machine Learning (ML) or Artificial Intelligence
(AI) techniques could be integrated. This could involve using ML for predictive timestepping in
analog simulations, optimizing initial conditions for convergence, or even creating behavioral mod-
els of complex analog blocks from observed data to accelerate simulation runtime.

• Exploring Alternative Simulators and Languages: Investigate the feasibility of integrating other
open-source analog (e.g., Xyce) or digital (e.g., GHDL for VHDL) simulators. Additionally, explore
using different hardware description languages (like VHDL) and their associated open-source
tools to broaden the simulator’s applicability and flexibility.

This project, while currently a robust functional demonstration, has potential for growth and further
development within the open-source EDA space.
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Conclusion

The implementation status of the project’s initial requirements is summarized in Table 9.1. These re-
quirements were defined at the outset of the project as functional and non-functional goals for the
toolchain. Most of them were successfully implemented, confirming the technical feasibility and effec-
tiveness of the open-source mixed-signal design flow. However, three requirements were only partially
fulfilled:

• [A.7] Integrated analog and digital placement and routing: While the flow supports placement
and routing of analog and digital blocks individually, full automation of their integration in a unified
layout proved to be beyond the scope of this project. Currently, mixed-signal layout integration
must be performed manually using Magic.

• [B.4] Minimizing manual intervention: The digital flow is fully automated through OpenLane.
For the analog side, most steps can be automated; however, some manual effort is required
to adapt Xschem-generated netlists, as ALIGN expects simplified netlist formats. Despite this
limitation, the workflow achieves a high degree of automation.

• [B.7] Cryogenic PDK adaptation: Although full support for cryogenic operation in the SkyWa-
ter130 PDK is not yet available, initial work has been completed. Due to the limited availability
of open-source cryogenic models, only one device model was implemented to demonstrate the
viability of cryogenic integration within the toolchain.

This thesis presented the development of an open-source EDA toolchain for mixed-signal IC design,
combining digital and analog workflows while also enabling preliminary support for cryogenic simulation.
By integrating tools such as OpenLane, Magic, Xschem, Ngspice, and ALIGN, a modular and partially
automated design flow was demonstrated. This approach significantly lowers the barrier to entry for
researchers, educators, and students interested in IC design.

In addition, the thesis showed that cryogenic transistor behavior can be extracted and modeled using
Python-based methods. This lays a foundation for future integration of cryogenic device models into
the SkyWater PDK.

The tools and methodologies developed in this thesis will also contribute to chip design for space explo-
ration, particularly for lunar missions. The extreme conditions on the Moon, including low temperatures
and high radiation exposure, require specialized electronics. The ability to simulate and model cryo-
genic behavior in transistors and integrate these models into open-source EDA tools is a critical step
toward developing robust, reliable chips for use in lunar environments. This could directly support
the creation of the next generation of electronics needed for long-term human presence on the Moon,
ensuring that systems can operate under the harsh conditions of space.

In general, the results confirm that open source tools can serve as a viable and practical alternative to
commercial EDA’s, especially in research and academic environments where transparency, accessi-
bility, and customization are crucial.
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ID Requirement Description Implemented?
A.1 The system must support schematic-based analog design and

simulate it using Ngspice.
Yes

A.2 The system must support digital RTL-to-GDSII flow using Open-
Lane and allow digital simulation using Iverilog.

Yes

A.3 The system must support co-simulation of analog and digital
blocks for functional verification.

Yes

A.4 The toolchain must allow for layout-versus-schematic (LVS) and
design rule checking (DRC).

Yes

A.5 The toolchain must support netlist extraction (PEX) and post-
layout simulation of analog blocks.

Yes

A.6 The entire toolchain must be containerized using Docker, en-
abling consistent execution across different operating systems
(Linux, Windows, macOS) with minimal setup.

Yes

A.7 The toolchain must support integrated placement and routing of
analog and digital blocks, enabling mixed-signal physical design.

Partly

B.1 The toolchain must work entirely with open-source software. Yes
B.4 The workflow should minimize manual intervention, particularly in

layout generation and simulation.
Partly

B.5 The toolchain must be compatible with the Sky130 process de-
sign kit (PDK).

Yes

B.6 The system must include a Dockerfile that encapsulates all de-
pendencies and enables consistent deployment across systems.

Yes

B.7 The SkyWater130 PDK must be changed to support cryogenic
operation.

Partly

Table 9.1: Programme of Requirements (PoR) Implementation Status
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Appendix A

A.1. Docker images
A.1.1. Docker compose configuration

1 version: "3.8"
2

3 services:
4 align:
5 image: ohdejong/my-align-with-pdk:latest
6 container_name: align
7 volumes:
8 - ./shared:/workspace
9 - ./shared/pdks:/opt/pdk
10 working_dir: /workspace
11 tty: true
12

13 analog:
14 image: ohdejong/analog-docker:latest
15 container_name: analog
16 volumes:
17 - ./shared:/workspace
18 - ./shared/pdks:/opt/pdk
19 environment:
20 - DISPLAY=host.docker.internal:0.0
21 working_dir: /workspace
22 tty: true
23

24 openlane:
25 image: ohdejong/my-openlane -with-pdk:latest
26 container_name: openlane
27 volumes:
28 - ./shared:/workspace
29 - ./shared/pdks:/opt/pdk
30 working_dir: /workspace
31 tty: true
32

33 icarus:
34 image: nchandra75/iverilog:latest
35 container_name: icarus
36 volumes:
37 - ./shared:/workspace
38 working_dir: /workspace
39 tty: true

28
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Listing A.1: Docker Compose Configuration

A.1.2. Custom Analog Dockerfile
1 FROM ubuntu:22.04
2

3 ENV DEBIAN_FRONTEND=noninteractive
4

5 # ------------------------------
6 # Install system dependencies
7 # ------------------------------
8 RUN apt-get update && apt-get install -y \
9 build-essential \
10 gcc \
11 g++ \
12 python3 \
13 python3-dev \
14 python3-venv \
15 python3-pip \
16 cmake \
17 ninja-build \
18 libboost-all-dev \
19 libx11-dev \
20 libxext-dev \
21 libxpm-dev \
22 libxmu-dev \
23 libmotif-dev \
24 libfftw3-dev \
25 bison \
26 flex \
27 pkg-config \
28 libgtk2.0-dev \
29 netgen \
30 tcl-dev \
31 tk-dev \
32 libcairo2 -dev \
33 libxcb1-dev \
34 libxrender -dev \
35 libboost-python-dev \
36 autoconf \
37 automake \
38 libtool \
39 git \
40 curl \
41 wget \
42 xterm \
43 libxaw7-dev \
44 && apt-get clean && rm -rf /var/lib/apt/lists/*
45

46 # ------------------------------
47 # Build and install ngspice with GUI support
48 # ------------------------------
49 RUN git clone https://github.com/ngspice/ngspice.git /opt/ngspice && \
50 cd /opt/ngspice && \
51 ./autogen.sh && \
52 mkdir release && cd release && \
53 ../configure --with-x --enable-xspice --disable-debug && \
54 make -j$(nproc) && \
55 make install
56
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57 # ------------------------------
58 # Build and install Magic from source
59 # ------------------------------
60 RUN git clone https://github.com/RTimothyEdwards/magic.git /opt/magic && \
61 cd /opt/magic && \
62 ./configure && \
63 make -j$(nproc) && \
64 make install
65

66 # ------------------------------
67 # Build and install Xschem from source
68 # ------------------------------
69 RUN git clone https://github.com/StefanSchippers/xschem.git /opt/xschem && \
70 cd /opt/xschem && \
71 ./configure && \
72 make -j$(nproc) && \
73 make install
74

75 # ------------------------------
76 # Set environment variables
77 # ------------------------------
78 ENV PATH="/opt/xschem/bin:${PATH}"
79

80 # ------------------------------
81 # Set working directory
82 # ------------------------------
83 WORKDIR /work
84

85 CMD ["/bin/bash"]

Listing A.2: Dockerfile for Analog Container with Ngspice, Magic, and Xschem

A.1.3. Custom Openlane Dockerfile
1 # Use OpenLane 's base Docker image
2 FROM efabless/openlane:latest
3

4 # Set the working directory to OpenLane
5 WORKDIR /openlane
6

7 # Set environment variable for PDK_ROOT
8 ENV PDK_ROOT=/openlane/pdks
9

10 # Set the PDK variant as Sky130A
11 ENV PDK=sky130A
12

13 # Install Python and Pip (Python is needed for OpenLane dependencies)
14 RUN python3 -m ensurepip --upgrade && \
15 pip3 install --no-cache-dir -U pip setuptools
16

17 # Install Volare (for handling PDK builds)
18 RUN pip3 install volare
19

20 # Enable the specific Sky130 PDK version using its commit hash
21 RUN volare enable --pdk sky130 bdc9412b3e468c102d01b7cf6337be06ec6e9c9a
22

23 # Configure OpenLane to use Sky130A PDK
24 RUN ln -sf $PDK_ROOT/sky130/libs.tech/sky130_fd_sc_hd/openlane/config.tcl /

openlane/config.pdk
25

26 # Expose OpenLane 's working directory for design files
27 VOLUME ["/openlane/designs"]



A.2. NFET 01v8 Characterization Script 31

28

29 # Set the default command to bash to interact with the container
30 CMD ["bash"]

Listing A.3: Dockerfile based on the OpenLane base image with Sky130A PDK and Volare

A.1.4. Custom ALIGN Dockerfile
1 # Start from the official Align Docker image
2 FROM darpaalign/align-public:latest AS env
3

4 # Set build arguments for UID and GID
5 ARG UID=0
6 ARG GID=0
7

8 # Create a group and user based on the UID and GID arguments
9 RUN if [ "$GID" -ne "0" ] ; then echo $GID && groupadd -g $GID -o align; else

echo 1000 && groupadd -g 1000 -o align; fi
10 RUN if [ "$UID" -ne "0" ] ; then useradd -m -u $UID -g $GID -p align -o -s /bin/

bash align; else useradd -m -u 1000 -g 1000 -p align -o -s /bin/bash align; fi
11

12 # Install wget (and any other dependencies like git or curl)
13 USER root
14 RUN apt-get update && apt-get install -y \
15 git \
16 make \
17 && rm -rf /var/lib/apt/lists/*
18

19 # Change ownership of /work directory to the user
20 RUN chown -R align /work
21

22 # Set the working directory
23 USER align
24 WORKDIR /work
25

26 # Set the PDK root directory environment variable to /home/align/pdk
27 ENV PDK_ROOT=/home/align/pdk
28

29 # Create the /home/align/pdk directory and clone the ALIGN-pdk-sky130 repository
30 RUN mkdir -p $PDK_ROOT && \
31 git clone https://github.com/ALIGN-analoglayout/ALIGN-pdk-sky130.git $PDK_ROOT
32

33 # Switch back to the align user
34 USER align

Listing A.4: Dockerfile for ALIGN container based on darpaalign image with user setup and PDK installation

A.2. NFET 01v8 Characterization Script
1 import matplotlib.pyplot as plt
2 import numpy as np
3 import os
4 from scipy.ndimage import gaussian_filter1d
5

6 # MDM parser
7

8 def parse_mdm(file_path):
9 with open(file_path , "r") as f:
10 lines = f.readlines()
11

12 db_blocks = []
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13 current_vars , data = {}, []
14 in_db = False
15

16 for line in lines:
17 line = line.strip()
18

19 if line.startswith("BEGIN_DB"):
20 in_db = True
21 current_vars , data = {}, []
22 continue
23

24 if line.startswith("END_DB"):
25 if data:
26 headers = [h.upper() for h in data[0]]
27 df = pd.DataFrame(data[1:], columns=headers)
28 for k, v in current_vars.items():
29 df[k.upper()] = float(v)
30 db_blocks.append(df)
31 in_db = False
32 continue
33

34 if not in_db:
35 continue
36

37 if line.startswith("ICCAP_VAR"):
38 _, var, val = line.split()
39 current_vars[var.upper()] = val
40 elif line.startswith("#"):
41 headers = line.replace("#", "").split()
42 data.append(headers)
43 elif line:
44 values = line.split()
45 data.append(values)
46

47 return db_blocks
48

49 # Parameter extraction
50

51 def extract_parameters(df, temperature=4.0):
52 df = df.copy()
53 df[["VG", "ID"]] = df[["VG", "ID"]].apply(
54 pd.to_numeric , errors="coerce"
55 )
56 df = df.dropna().sort_values("VG")
57

58 vg = df["VG"].values
59 id_abs = np.abs(df["ID"].values)
60 id_abs = gaussian_filter1d(id_abs, sigma=2) # light smoothing
61 log_id = np.log10(id_abs + 1e-30) # avoid log(0)
62

63 # Threshold voltage: max gm/ID criterion
64 gm = np.gradient(id_abs, vg)
65 gm_over_id = gm / id_abs
66 idx_vth = np.argmax(gm_over_id)
67 vth = vg[idx_vth]
68

69 # Subthreshold slope (SS) in a 50 mV window above VTH
70 slope_region = (vg >= vth) & (vg <= vth + 0.05)
71 ss = np.nan
72 if slope_region.sum() >= 3:
73 m_ss, _ = np.polyfit(vg[slope_region], log_id[slope_region], 1)
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74 ss = 1.0 / abs(m_ss) * 1000.0 # mV/dec
75

76 # Device physics constants
77 q = 1.602e-19 # C
78 k = 1.381e-23 # J/K
79 T = temperature # K
80 Vt = k * T / q # thermal voltage
81

82 if not np.isnan(ss):
83 n = (ss/1000.0) / (2.303 * Vt)
84 else:
85 n = np.nan
86

87 # VOFF from linear fit of ln(ID) vs VG 150 mV below VTH
88 fit_window = (vg < vth) & (vg > vth - 0.15)
89 if fit_window.sum() >= 3:
90 ln_id = np.log(id_abs[fit_window])
91 m_fit, c_fit = np.polyfit(vg[fit_window], ln_id, 1)
92 nVt = Vt * n
93

94 vg0 = vg[fit_window][0]
95 id0 = id_abs[fit_window][0]
96 voff = vg0 - vth - nVt * (np.log(id0) - (m_fit * vg0 + c_fit))
97 else:
98 voff = np.nan
99

100 # Ioff: current at VGS = 0 V (if present)
101 idx_ioff = np.where(vg == min(vg))[0]
102 ioff = id_abs[idx_ioff[0]] if idx_ioff.size else np.nan
103

104 # Mobility estimate in linear region (VD != 0)
105 vd = pd.to_numeric(df["VD"]).values[0] if "VD" in df.columns else 0
106 mu = np.nan
107 if vd != 0 and not np.isnan(vth):
108 cox = 8.32e-3 # F/m^2
109 l = 0.15e-6 # m
110 w = 0.42e-6 # m
111 vg_eff = vg - vth
112 linear = vg_eff > 0
113 id_lin = id_abs[linear]
114 vg_eff_lin = vg_eff[linear]
115 if id_lin.size:
116 mu = np.mean(id_lin / (cox * vg_eff_lin * vd)) * l / w
117 mu *= 1e4 # convert to cm^2/Vs
118

119 return {
120 "Vth (V)": vth,
121 "Voff (V)": voff,
122 "Subthreshold Slope (mV/dec)": ss,
123 "Subthreshold Factor n": n,
124 "Ioff (A)": ioff,
125 "Mobility (cm^2/Vs)": mu,
126 }
127

128 # Plot & report
129

130 def plot_transfer_characteristics(db_blocks , output_dir="plots", temperature=4.0):
131 os.makedirs(output_dir , exist_ok=True)
132

133 for i, df in enumerate(db_blocks):
134 if not {"VG", "ID", "VD"}.issubset(df.columns):
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135 print(f"[Warning] Skipping block {i} (missing columns)")
136 continue
137

138 df[["VG", "ID", "VD"]] = df[["VG", "ID", "VD"]].apply(
139 pd.to_numeric , errors="coerce"
140 )
141 df = df.dropna()
142 params = extract_parameters(df, temperature=temperature)
143

144 vs = df.get("VS", pd.Series(["?"])).iloc[0]
145 vd = df.get("VD", pd.Series(["?"])).iloc[0]
146 vb = df.get("VB", pd.Series(["?"])).iloc[0]
147

148 plt.semilogy(df["VG"], df["ID"].abs(), "bo-", label="|ID| vs VG")
149 plt.xlabel("VG (V)")
150 plt.ylabel("|ID| (A)")
151

152 title = (
153 f"Block {i}: Vth={params['Vth (V)']:.3f} V, Voff={params['Voff (V)

']:.3f} V,"
154 f" SS={params['Subthreshold Slope (mV/dec)']:.1f} mV/dec, n={params['

Subthreshold Factor n']:.2f},"
155 f" Ioff={params['Ioff (A)']:.1e} A, µ={params['Mobility (cm^2/Vs)']:.1

f} cm^2/Vs,"
156 f" VS={vs}, VD={vd}, VB={vb}"
157 )
158 plt.title(title)
159 plt.grid(True, which="both", linestyle="--")
160 plt.legend()
161 plt.tight_layout()
162 plt.show()
163 plt.close()
164

165 print(f"Block {i} Parameters:")
166 print(f" VS: {vs}, VD: {vd}, VB: {vb}")
167 for k, v in params.items():
168 print(f" {k}: {v:.3e}" if isinstance(v, float) else f" {k}: {v}")
169

170 # Main
171

172 def main():
173 file_path = (
174 r"C:\Users\olafd\Documents\Studie\BAP\cryo\sky130_fd_pr__nfet_01v8"
175 r"_w0p42u_l0p15u_m1(8392_11_12_IDVG)_4K.mdm"
176 )
177 db_blocks = parse_mdm(file_path)
178 print(f"Parsed {len(db_blocks)} data blocks.")
179 plot_transfer_characteristics(db_blocks , temperature=4.0)
180

181 if __name__ == "__main__":
182 main()
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A.1. Design rules for mixed signal simulator
The design conventions needed for run the co-simulator are:

• Every block instance should start with X.
• No IO-pin must be used. Make an output and input pin which is connected to it-self.
• Mixed signal conversion needs a python code to be attached to the symbol file using SYMATTR
File .py.

• Same point as above but the with .v file
• Only squarewave functions can be used as an inputsignal or the user has to give an array with
timestamp and value pairs.

A.2. Simulation results timestep 1 ns

Figure A.1: Net 1 signal between voltage source and lowpass filter
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Figure A.2: Net 2 signal between lowpass filter and ADC

Figure A.3: Net 3 signal between ADC and inverter

Figure A.4: Net 4 signal between inverter and DAC as LSB
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Figure A.5: Net 5 signal between ADC and DAC as middle bit

Figure A.6: Net 6 signal between ADC and DAC as middle bit

Figure A.7: Net 7 signal between DAC and voltage divider
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A.3. Simulation results timestep 50 ps

Figure A.8: Net 1 signal between voltage source and lowpass filte

Figure A.9: Net 2 signal between lowpass filter and ADC
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Figure A.10: Net 3 signal between ADC and inverter

Figure A.11: Net 4 signal between inverter and DAC as LSB

Figure A.12: Net 5 signal between ADC and DAC as middle bit



A.3. Simulation results timestep 50 ps 40

Figure A.13: Net 6 signal between ADC and DAC as middle bit

Figure A.14: Net 7 signal between DAC and voltage divider
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