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Abstract

Reinforcement Learning from Human Feedback (RLHF) offers a powerful approach
to training agents in environments where defining an explicit reward function is chal-
lenging by learning from human feedback provided in various forms. This research
evaluates three common feedback types within RLHF: Scalar Feedback, Binary Com-
parison Feedback, and Binary Comparison with a preference strength margin. Synthetic
feedback is used to replace real human feedback to address cost and time constraints.
Simplified RLHF setups using Q-learning are initially implemented in a grid environ-
ment to ensure the robustness of the methods. Subsequent experiments are conducted
in more complex environments using the Imitation library and PPO from Stable Base-
lines3. Our findings demonstrate the efficacy of various feedback types, highlighting
the trade-offs between ease of use for human feedback providers and the amount of
information conveyed. This comparative analysis provides insights into optimizing
RLHF systems for improved agent performance. Full code is available online in the
supplementary material https://github.com/navimakarov/rlhf-feedback-variety.

1 Introduction

In reinforcement learning (RL), an agent is directed through an environment where it learns
to make decisions based on a process of trial and error. The effectiveness of these decisions
is evaluated through a reward function. Properly defining a reward function is crucial for
the agent to learn desired behaviours. Creating the reward functions manually can be quite
challenging, especially since many tasks involve goals that are difficult to define precisely.
For example, getting a robot to perform a backflip is easy to evaluate but challenging to
specify a reward function for [1].

In response to this problem, reinforcement learning from human feedback (RLHF) [1]
has been proposed as a powerful tool to train agents when the reward function is hard to
specify or human judgment can improve training efficiency. In RLHF, human feedback on
the agent’s actions is used to train a reward model to translate human preference into learned
reward signals. While a human could, in theory, directly assign rewards to each of the agent’s
actions, taking on the role of the reward function, this may be effective only in environments
with a limited number of states and actions (e.g., simple grid environments). However, this
approach becomes impractical in more complex environments due to the substantial effort
required to consistently assign rewards and the absence of generalization. Consequently, it is
more feasible to employ a trainable reward model. RLHF has a wide range of applications,
including the refinement of large language models (LLMs) based on human preferences [2],
[3], continuous control systems [1], and games [4].

In RLHF, various types of human feedback are utilized to convey information about
preferences. Feedback in RLHF can vary in granularity, such as state preference, action
preference, or multiple state-actions preference (trajectory) [5]. It can be given on one
instance or many, comparing multiple trajectories. Feedback may be explicit or implicit and
can be in different forms, such as a binary preference, a scalar, or natural language [6]. For
example, RLHF on LLM chatbots is sometimes performed using conversation pairs, with
feedback given in the form of preferences indicating which generated text is more preferred.
As outlined in [7], "RLHF suffers from a tradeoff between the richness and efficiency of
feedback types."

Building on the existing literature, a notable gap is that no studies have specifically fo-
cused on the comparative evaluation of different types of feedback in RLHF. Surveys such as
[6] provide a broad overview of RLHF components but do not focus specifically on feedback
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types comparison. Research focusing on specific types of feedback [1], [8] investigates indi-
vidual feedback mechanisms but lacks a comprehensive review. Research on RLHF systems,
such as those by [9] and [10], primarily focuses on designing and developing the platforms,
including various components like annotation systems, usability design, dataset collection,
and testing with actual human experts. While these platforms incorporate different feed-
back types, they do not prioritize comparing the effectiveness of these feedback types. In
[10], comparing different feedback performances is included as a potential future research
direction.

Given the variety of feedback types and their respective tradeoffs, it is essential to thor-
oughly explore both their methodologies and comparative advantages. This research aims to
investigate how different feedback types can be integrated into RLHF systems and provide
an extensive comparison between these feedback types to identify tradeoffs and guide prac-
titioners in designing better RLHF systems. By comparing the respective advantages and
disadvantages of different feedback types in multiple environments, we aim to offer valuable
insights for improving RLHF implementations and selecting the most appropriate feedback
type for specific scenarios.

2 Background
2.1 Foundations of RLHF

As formulated in [6], in the RLHF setting, the learning agent must solve a task without
a predefined reward function. To do this, the agent usually learns an approximation of
the reward function from human feedback alongside an RL policy. Consequently, a typical
RLHF algorithm repeats two phases: (1) reward learning and (2) RL training. The reward
learning phase can be further divided into two steps: (i) generating queries for the oracle
and (ii) training a reward function approximator based on the oracle’s responses. The RL
training phase is more conventional and typically involves running an RL algorithm using
the currently trained reward function approximator. We outline a generic RLHF Algorithm
seen in the literature [1], [6], [7] and implemented in [11]:

Algorithm 1 Generic RLHF Algorithm

Initialize reinforcement learning (RL) model g and reward model 7y
fori=1,...,N do

Rollout trajectories using the current RL model 7y

Generate a query from the collected trajectories

Collect human feedback for the generated query

Update the reward model 7y by minimizing the loss function on the queries and
human feedback

Train the RL model 7y using the updated reward model 7y
8: end for
9: Train a new RL model using the final learned reward model 7y

]

As the reward model learns from human feedback, it is crucial to first understand the var-
ious types of human feedback in the RLHF setting, how these different types are integrated
into RLHF systems, and the loss functions used to train reward models.



2.2 Dimensions of Human Feedback

As summarized in [6], feedback types vary across multiple dimensions, including the method
of feedback delivery (arity, involvement), the form of the query instance (granularity, ab-
straction), and features of human interaction (intent, explicitness). In this subsection, we
outline the structuring of human feedback, inspired by the taxonomies proposed in [6], [9],
which helps to understand and categorize the different ways feedback can be provided and
processed.

Arity This attribute indicates if an instance is evaluated in isolation (unary) or rela-
tive to others (binary, n-ary). Unary feedback allows for detailed descriptions, but giving
consistent feedback is challenging for humans. Non-unary feedback is less demanding but
requires comparable instances. N-ary feedback, like rankings, offers more information than
binary feedback but increases the cognitive load on the labeller.

Involvement The labeller may either passively observe an instance, actively generate
it, or coactively participate in its generation (co-generation). Passive involvement poses the
smallest challenge to the labellers as it does not require the ability to demonstrate the task.

Granularity There are three different types of feedback granularity commonly found
in the literature [5]: action, state, and trajectory feedback. Each type presents unique
challenges for both the expert providing the feedback and the algorithm processing it.

e Action Feedback: Involves giving feedback on actions in the same state, indicating
which action should be preferred. This is demanding for the expert, who needs to un-
derstand the long-term outcomes, but it is computationally simpler for the algorithm.

e State Feedback: Compares states, suggesting that one state is preferable over the other
based on available actions. This offers more information than action feedback but still
requires the expert to estimate future outcomes, making it less demanding but still
complex.

e Trajectory Feedback: This is the most informative and least demanding for the expert,
as it involves evaluating the overall outcomes of full sequences of states and actions.
This is the most widely used form of feedback but presents a challenge for the algo-
rithm in determining which parts of the trajectory are responsible for the preference,
especially when starting from different initial states.

Abstraction This describes whether feedback is given directly on raw instances (e.g.
trajectories) or on abstract features of the instances.

Intent Human feedback can be evaluative, instructive, or descriptive, aiming to teach a
reward function (pedagogical), or literal, a byproduct of direct reward optimization. Evalu-
ative, instructive, and literal feedback typically address specific queries, whereas descriptive
feedback can provide a broader overview of the task, such as through a partial reward
function.

Explicitness Humans may communicate explicitly for the purposes of feedback or im-
plicitly as a side-effect of actions directed at other purposes.

2.3 Feedback Types

A variety of feedback types can be found in the literature. We focus on the most common
classes of feedback for RLHF as detailed in [9], [7], [6], [10].



2.3.1 Evaluative Feedback

As outlined in [6], the key characteristics of evaluative feedback are that the human passively
observes the behaviour (involvement), provides feedback on a single instance (arity), and
does so explicitly (explicitness) with an evaluative intent. This feedback can be given at any
level of granularity and abstraction. A teacher assigns a scalar value y to a segment o°, and
as feedback is collected, it is stored as tuples (o, y) in the reward model data set D. We
then apply standard regression and update 7y by minimizing the mean squared error:

LMSE(e,m:ﬁ S (y-oloh)’ (1)
(ot,y)eD

This type of feedback is relatively easy to utilize for reward models because it can serve
as a prediction target [9].

2.3.2 Comparative Feedback

Comparative Feedback is the most common type of feedback used with RLHF, as stated in
[7]. As outlined in [0], the key characteristics of comparisons are that the human passively
observes the behaviour (involvement), provides relative feedback on multiple instances (ar-
ity), and does so explicitly (explicitness) with an evaluative intent. This feedback is most
commonly given on a segment (granularity) and is often requested at an instance level
(abstraction).

The most common setting relies on pairwise comparisons of trajectory segments [1]. To
define a preference predictor using the reward function 7y the Bradley-Terry model [12] is
used in [1].

exp (32, 7o (st ai))
ZiE{O,l} exp (Zt Fo(sy, a%))

Some papers, such as [3], use an alternative notation of a preference predictor that is
mathematically equivalent, using a sigmoid function:

Pg(O’l > O'O) =

(2)

Py(c* > ) = sigmoid (Z fo(st,a;) — ng(s?, a?)) (3)

t

We update 7y by minimizing the standard binary cross-entropy objective:

1
LBCE(Q,D) = _ﬁ Z ((1 — 1) log Py(c® > o') + ylog Py(c! > UO)) (4)
(69,01, y)ED

Another method that exists is the ranking of multiple targets, as described in [13].

Comparative feedback is widely used because it is often easier for humans to give compar-
ative judgment compared to absolute scores [5]. However, the above-mentioned comparative
feedback methods do not offer precise information on the intensity of preferences [7]. To
bridge this gap, an adjustment to pairwise comparisons feedback was made in [2] for the
training of LLama2. The idea is to include a margin to utilize additional information on the



intensity of preferences to explicitly train the reward model to assign more distinct scores
to segments with greater differences. The loss function is not modified, but the preference
predictor is updated to include the margin:

Py(o" > o) = sigmoid (Z Fo(st,ar) — Zf@(s?,a?) - m(r)) (5)
t t
where the margin m(r) is a discrete function of the preference rating. A larger margin is
used for pairs with higher preference intensity and a smaller margin for those with smaller
preference intensity.

2.3.3 Corrective Feedback

As detailed in [6], corrective feedback is a form of feedback in which a human refines the
agent’s behaviour, either by intervening while the agent acts or by providing a corrected
behaviour after the agent has acted. To improve an episode, it is usually necessary to
observe the entire episode (granularity) at the instance level (abstraction). In this type of
feedback, the human both observes and demonstrates behaviour, resulting in co-generative
involvement. Comparative feedback usually involves improving a single trajectory (unary
arity).

3 Methodology
3.1 Feedback Types

Among the common classes of feedback types specified in Section 2, we focused on Evaluative
Feedback and Comparative Feedback. These classes are prevalent in the literature [7], [0],
[9] and require passive involvement from the teacher, unlike Corrective Feedback, which
necessitates making corrections to given trajectories. Additionally, it is relatively simple to
gather synthetic feedback for these classes compared to natural language feedback, which is
more nuanced and cannot be easily generated. Within these two feedback classes, we select
the following feedback types:

Scalar Feedback is considered to be the most direct type of feedback [6]. In this type
of feedback, the human teacher assigns numerical ratings to segments of trajectories. The
precision of Scalar Feedback comes at the cost of being challenging for humans to indicate
rewards accurately. Human annotators often find it challenging to quantify the success of
an example, and this task demands more cognitive effort compared to simply comparing
examples [7].

Preference Feedback, as introduced in [l], is the most popular feedback type for
RLHF |[7]. This type of feedback is much easier for humans than Scalar Feedback, as it only
requires indicating which trajectory is preferred. However, this simplicity comes at the cost
of reduced information conveyed, as the only information provided is the preference between
trajectories [7].

Marginal Preference Feedback takes an intermediate position between Scalar Feed-
back and Preference Feedback. It conveys more information than binary trajectory pref-
erence by quantifying the extent of preference for one trajectory over another. Although
this type of feedback requires more effort from humans than Preference Feedback, it is less
demanding than providing precise Scalar Feedback.



In this research, we opted for trajectories as our feedback granularity, as this method is
the most widely used and conveys the most information [5].

3.2 Synthetic Feedback

In this study, we use synthetic feedback instead of real human feedback for our RLHF mod-
els. This approach is adopted because obtaining real human feedback is more expensive
and time-consuming. To achieve this, we collect real rewards from the environment and use
them as scalar values for evaluative feedback or as a means to compare trajectory segments
for comparative feedback. We also simulate the inaccuracy of user-provided rewards for
evaluative feedback by applying a random error within a specified range to mimic human
mistakes. For marginal preference feedback, we use a margin to speed up learning for tra-
jectories with significant differences in true rewards, as shown in Section 2.3.2. Trajectories
with minimal differences are assigned a margin of 0, while those with large differences receive
the maximum margin, with intermediate values for others. This quantifies the significance of
differences between trajectories (e.g., slightly better, significantly better). As shown in [2],
the margin value is a hyperparameter. For synthetic feedback, we define intervals to specify
the significance of differences. For example, differences less than 10 may be insignificant, 10
to 20 slightly important, 20 to 30 important, and over 30 significantly important. Margins
are assigned based on these intervals to simulate human feedback. If it were real feedback,
human evaluators would directly quantify the significance of the differences. Therefore,
we consider intervals as heuristics and choose them based on the information about the
ground-truth reward function for a given environment.

3.3 Implementation of RLHF

The Imitation library [11] provides a framework for training reward models using RLHF
with synthetic feedback by following the standard RLHF procedure described in Section
2.1. Tt implements only one type of feedback: Preference Feedback (pairwise comparisons
of trajectory segments). Instead of human feedback, it uses synthetic feedback, which is
obtained by directly comparing ground-truth rewards from the environments for the pair
of trajectories. The trajectory with a higher reward is preferred. The preferred trajectory
receives a score of 1, and the other trajectory receives a score of 0. In case the trajectories
get equal ground-truth rewards, they both receive 0.5 as scores.

As shown in Algorithm 1, the loss function alongside functions for query creation from
the trajectories are the backbone of different feedback types. To add support for a new
feedback type, we need to make modifications to these functions. These changes correspond
to steps 4-6 of Algorithm 1. We extended the synthetic feedback gatherer by adding a field
with a numeric indicator of preference strength for Marginal Preference Feedback. We also
added an option for Scalar Feedback, which consists of a single trajectory with a ground-
truth reward. For this type of feedback, we implement a feature to add noise by introducing
random deviations from the ground-truth reward, thereby simulating less accurate responses.
Noise is disabled by default but is used in one of our experiments, further detailed in Section
4.2. As the trajectories with synthetic feedback are collected and fed into the reward model,
we also define loss functions corresponding to each feedback type as detailed in Section 2.3.

Our adjustments can be summarized by the following steps:

1. We create an appropriate query for the selected feedback type from rolled-out tra-
jectories. This consists of a single trajectory for Evaluative Feedback and a pair of



trajectories for Comparison Feedback.

2. We define rules to give synthetic feedback on queries (emulating human feedback)
based on trajectories and their ground-truth rewards. For Comparison Feedback, we
prefer a trajectory with a higher true reward. For Evaluative Feedback, we use the
true reward as our scalar.

3. We implement an appropriate loss function for each feedback type.

A simplified RLHF setup is implemented to validate our feedback types and implemen-
tation methods as proof of concept. We reuse parts of the Imitation library with Q-learning
to avoid the instability associated with deep learning models used with it. After com-
pleting this feasibility evaluation, experiments are conducted with the Imitation library in
more complex environments. We use Proximal Policy Optimization (PPO) [14] from sta-
ble baselines3 [15] as our deep learning model alongside the Imitation library. We chose
PPO because it is widely used for RLHF tasks [6] and achieves expert-level performance in
selected environments with a known reward function (standard Reinforcement Learning).

4 Experimental Setup

4.1 Environments

In the literature, MuJoCo [16] and the Arcade Learning Environment [17], interfaced through
the Gymnasium [18] are often used to evaluate RLHF methods [1], [1], [8], [L0]. These en-
vironments are complex and require extensive training to reach an expert level. Therefore,
sometimes simpler environments are also used. An example of such an environment is a
simple cartpole task, "Pendulum", which is used alongside the above-mentioned complex
environments for evaluation of RLHF with comparative feedback in [1]. Simple grid envi-
ronments are less frequently used with RLHF, however, they can also be included as shown
in [10].

In the scope of this paper, three environments were selected for evaluation. We chose
Pendulum-v1 and seals/CartPole-v0 from Gymnasium’s [18] "Classic Control Environments,"
as such tasks have been used in the literature [1] and serve to demonstrate and evaluate
RLHF methods effectively. Pendulum does not require any additional adjustments to work
with the Imitation library. CartPole has early episode termination, which is discouraged in
RLHF, as it might leak information about rewards through side channels (early termination).
Therefore, seals library [19] is used to make CartPole suitable for RLHF.

While "Classic Control Environments" are suitable for showcasing differences between
RLHF methods, they suffer from instability due to the use of deep reinforcement learning
in model training. Therefore, the first environment we use to evaluate our RLHF models is
a simple grid environment to demonstrate the effectiveness of our methods and show that
models can achieve expert-level performance with selected RLHF feedback types.

Simple Grid Environment is inspired by the MiniGrid-Empty environment [20]. The goal
of this environment is to demonstrate the convergence of different RLHF feedback types at
the expert level. It is simpler to identify implementation mistakes using basic reinforcement
learning methods such as Q-learning rather than deep reinforcement learning. This is a 4x4
grid environment with 16 observation states and 4 possible actions in each state: left, right,
up, and down. The agent starts in the top left corner, and the goal is located in the bottom
right corner. In each state, the reward is the negative Manhattan distance to the goal. The



environment is depicted in Figure 1a, and the rewards are visualized in Figure 1b. In Figure
la, the blue ball represents the agent in the starting state, and the green tile represents
the goal state. As RLHF requires a fixed episode length to prevent the agent from learning
through side channels, the episode length is set to 10 steps with no early termination. This
is achieved by transitioning the agent into an absorbing state upon reaching a reward state.
In the absorbing state, the reward is fixed at 0, and actions are disregarded, meaning the
state does not change.

(a) Environment (b) Rewards

Figure 1: Simple Grid Environment

4.2 FEvaluations

We evaluate all feedback types on the Simple Grid Environment first. For each feedback
type, we used 200 queries and trained our Q-Learning model for 25 steps after each query.
For Evaluative Feedback, we roll out one trajectory, gather its true reward and feed it to
the reward network. We roll out a pair of trajectories for Preference Feedback, decide which
trajectory is preferred based on their ground-truth rewards, and feed this pair comparison to
the reward network. For Marginal Preference Feedback, we do the same with a margin of 10
and reward difference significance intervals of [10, 20, 30, 40, 50| chosen heuristically based
on the environment rewards. As our Q-Learning balances exploration with exploitation, by
sometimes selecting random action, we average our results over 5 runs with different seeds
for consistency and reproducibility. We also include a randomly initialized network, which
is not trained on any feedback, to contrast with the expert performance we are achieving
with our feedback methods.

For "Classic-Control Environments", we use the Imitation library, which handles tra-
jectory gathering with true rewards for us. We run 5 evaluations with different seeds for
each environment and feedback type and average the results. We constantly measure mean
rewards throughout the training process, which we later use to analyse the training progress.
We also include error bars in our plots, which consist of standard error over 5 runs. Standard
error was preferred over standard deviation, as we want to show how far from the mean the
results are. We also report the mean reward and standard error of the models after training
is finished and include them in tables to compare different feedback types.

For Marginal Preference Feedback on Pendulum, we use an interval of [200, 400, 600,
800, 1000] and a margin of 100. For CartPole, we use an interval of [20, 40, 60, 80, 100] and
a margin of 100. We believe that these intervals and margins are good heuristics for the
given environments according to their reward ranges.

For Pendulum environment, we also want to show that if human gives approximately
accurate evaluations, the model is still capable of achieving good performance. Given that



the true rewards of Pendulum were observed in the range of [-1200, -180], we consider it
reasonable to model a human-simulated scalar by the following formula:

I€Wtrue

e | 13,0) (6)

reWmodified = 1TMN( L

5 Results

In this section, we present the comparative results of using RLHF with selected feedback
types across three different environments.

5.1 Evaluation 0: Proof of Concept Simple Grid Environment

Figure 2 shows that all feedback types - Evaluative, Binary Preference, and Marginal Bi-
nary Preference - reach an expert-level reward, indicating the maximum possible reward
achievable in this environment. In contrast, the use of a randomly initialized neural net-
work for estimating human preferences, without any feedback, fails to perform the task, as
demonstrated by the consistently low reward. This environment demonstrates the efficacy of
the feedback methods, however, it does not highlight their differences, which become more
apparent in the more complex environments discussed further.

Evaluative

Binary Preference
Marginal Binary Preference
Random

Total Reward

0 2500 5000 7500 10000 12500 15000 17500 20000
Step

Figure 2: RLHF Grid Environment Training

5.2 Evaluation 1: Pendulum

We use Evaluative Feedback with a ground-truth scalar to demonstrate how quickly our
reward model can learn when the evaluator provides very precise scalar feedback, as depicted
in Figure 3a. Even with a small number of queries, the reward model learns efficiently, and
the agent’s performance converges to an expert level with a very small variance. Given the
complexity of the task of providing precise scalar evaluations, Figure 3b shows the results
when the human evaluator simplifies the task and provides less accurate scalars, as described
in Section 4. This significantly degrades performance in experiments with a small number
of queries, but the agent still achieves an expert-level performance with 100 and 200 queries.
This approach also leads to high variance for runs with a small amount of queries. As
outlined in Table 1, the ground truth scalar consistently outperforms the human-simulated
scalar on this task, with even a small number of queries being sufficient to achieve favourable
results.
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Figure 3: Pendulum Evaluative Feedback

We confirm that Preference Feedback while being easier for humans to give, conveys less
information and requires more queries to achieve good performance, as shown in Figure 4a.
We found that a higher number of queries does not necessarily lead to better performance.
As shown in Table 1, 50 queries yield the best result, 200 queries are second best, and 100
queries are even worse than 25 queries. We also report high overall variance, as was the
case with human-simulated scalar feedback. However, while in Human-Simulated Scalar
feedback, more queries led to lower variance, this is not the case for Preference Feedback.
This might be due to many reasons, such as possible overfitting with more queries, quality
of gathered trajectories or instability of deep reinforcement learning models. This behaviour
is not unusual and was also found in [1].

-200

-400

-600

Reward

-800

-1000

-1200

—— 10 synthetic queries
—— 25 synthetic queries
—— 50 synthetic queries
—— 100 synthetic queries
—— 200 synthetic queries

100000 200000

Timestep

300000 400000

(a) Preference Feedback

500000

Reward

-200

—400

-600

-800

-1000

-1200

—— 10 synthetic queries
—— 25 synthetic queries
—— 50 synthetic queries
—— 100 synthetic queries
—— 200 synthetic queries

100000 200000
Timeste

300000 400000 500000

(b) Marginal Preference Feedback

Figure 4: Pendulum Comparative Feedback

We observe in Figure 4b that Marginal Preference Feedback leads to better performance
and lower variance. Moreover, this method outperforms Human-Simulated Scalar on queries
10, 25 and 50 but underperforms on queries 100 and 200.

10



Queries

Ground-Truth Scalar | Human-Simulated Scalar Preference Marginal Preference
10 -288.100 + 36.223 -845.035 + 231.174 -1030.344 + 205.156 -506.565 + 238.392
25 -289.180 + 27.869 -816.269 + 216.278 -369.323 + 103.125 -252.978 + 43.340
50 -252.654 + 40.896 -349.816 + 84.352 -239.005 + 37.527 -334.968 + 40.784
100 -211.503 + 26.023 -229.678 £ 16.206 -432.061 + 149.745 -268.170 £ 35.450
200 -182.012 + 14.294 -210.494 + 9.569 -308.693 + 80.716 -269.397 + 53.279

Table 1: Comparison of Feedback Types (Pendulum)

5.3 Evaluation 2: CartPole

As CartPole has sparse rewards, ground-truth scalar feedback does not converge to near-
perfect evaluation scores as quickly as with the Pendulum. However, with 300 and 500
queries, it achieves a perfect score, as shown in Figure 5a and Table 2. Higher variance can
also be explained by sparse rewards in the environment. As in the Pendulum evaluation,
with more queries, we achieve better performance.

500{ —— 10 synthetic queries ——

—— 25 synthetic queries

—— 50 synthetic queries

—— 100 synthetic queries

400{ —— 200 synthetic queries

—— 300 synthetic queries
500 synthetic queries

Reward

100

0 100000 200000

Timestep

300000 400000 500000

(a) Ground-Truth Scalar

Figure 5: CartPole Evaluative Feedback

With Preference Feedback, we need 500 queries to achieve good performance, as shown
in Figure 6a and Table 2. The results, however, are still significantly worse than those of
the Ground-Truth Scalar. We also observe increasing queries does not necessarily lead to
better performance.

Marginal Preference Feedback outperforms Preference Feedback when the number of
queries is higher than 50, improving average reward and reducing variance. This behaviour

is not observed on a lower number of queries, likely because it is not enough to learn any
meaningful reward estimation.
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Figure 6: CartPole Comparative Feedback

400000

Queries | Ground-Truth Scalar Preference Marginal Preference

10 14.226 £ 2.633 112.738 + 86.649 106.143 £ 85.204
25 129.764 + 82.392 49.858 + 32.009 13.024 £+ 2.674

50 179.652 £+ 95.518 108.666 + 87.508 201.362 + 97.820
100 321.432 + 96.420 42.052 £ 7.507 210.562 £ 105.655
200 370.910 + 82.547 144.426 + 84.794 160.81 £ 79.040

300 500.000 £ 0.000 287.856 = 91.605 432.054 £ 60.773
500 494.816 + 4.634 402.04 + 87.618 450.048 + 44.678

500000

Table 2: Comparison of Feedback Types (CartPole)

6 Discussion

6.1 Results Analysis

We implemented RLHF using selected feedback types and demonstrated their effectiveness in
a proof-of-concept environment, where all methods achieved the maximum possible reward.
We compared the performance of RLHF with different feedback types in the CartPole and
Pendulum environments. Our research empirically shows the trade-off between the richness
and efficiency of feedback types [7].

We achieved fast convergence and low variance using Evaluative Feedback with a ground-
truth reward, which conveys the most information among our feedback types but is very
challenging for a human to provide. In our research, we used the actual reward, known
beforehand, for ground-truth feedback. One might question the need for RLHF if the reward
function is already known. This approach, however, can be applied to scalars not derived
from a single formula, such as heuristics or approximate evaluations. We demonstrate this
with our Pendulum example using human-simulated scalars, where, despite higher variance,
we achieve expert level with a sufficient number of queries.

Preference Feedback, being less demanding from humans, requires more queries, gives
lower mean rewards, and has higher variance than Evaluative Feedback. Nonetheless, given
enough queries, it also achieves good performance. We noticed that the relationship between
the number of queries and performance is not straightforward for preference feedback. How-
ever, this is already known in the literature [1]. We were able to achieve superior results
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compared to Preference Feedback with Marginal Preference Feedback.

While our study used only synthetic feedback, it is important to note that RLHF can
help agents perform tasks more aligned with human preferences and potentially achieve
superior results, as shown in [I]. Our research did not observe these benefits due to the
limitations of synthetic feedback.

6.2 Limitations

One limitation of our study is the time constraint, which prevented us from testing more com-
plex environments, particularly MuJoCo environments that are frequently used for RLHF
research. These environments require significantly more training time. For example, RLHF
on MuJoCo environments in [1] required 20 million training timesteps, whereas Classic Con-
trol Environments only require 500,000 timesteps in our research.

Another limitation is the use of synthetic feedback. Real human feedback would provide
a more accurate assessment of the agent’s performance and might be able to identify over-
looked aspects that synthetic feedback cannot capture. Humans may not be able to fully
articulate their internal (user-optimal) reward function through feedback. Consequently,
the feedback can be subject to noise or uncertainty due to inherent human irrationality [21].
While Evaluative Feedback is straightforward to specify, the inter-annotator agreement is
often low due to the subjective nature of the task [22]. Collecting pairwise feedback can
be challenging for nearly similar responses and may lead to significant time being spent by
labellers on a single input [23]. Moreover, Preference feedback does not offer any improve-
ment in inter-annotator agreement compared to Evaluative feedback [22]. It is problematic
to select representative humans and obtain quality feedback, as some evaluators may have
harmful biases and opinions, and individual evaluators can potentially poison data [7].

7 Responsible Research

A major limitation is the use of synthetic feedback rather than real data from human experts.
While this approach avoids ethical concerns, it may compromise the representativeness and
reliability of the results. Synthetic feedback might not fully capture the inconsistent be-
haviours and decision-making processes of real human experts, reducing the generalizability
and practical applicability of the findings. Additionally, the choice of environments poses
another constraint. Increasing the complexity of the environments could reveal behavioural
issues that synthetic expert feedback may not address. Therefore, it is important to interpret
the findings within the context of the chosen environments and synthetic feedback.

To mitigate confirmation bias, we used multiple environments and averaged results from
several runs with different seeds. Synthetic queries also help reduce personal bias. To
the best of our knowledge, the findings described in this research paper do not create an
opportunity for exploitation by malicious parties.

Our experiments are fully reproducible, with the complete codebase, seeds, hyperparam-
eters, and pre-saved models provided.

8 Conclusions and Future Work

The aim of this empirical exploration was to investigate how different feedback types can
be integrated into RLHF and to evaluate their effectiveness. Our findings highlight the
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tradeoff between the ease of providing feedback and the amount of information conveyed.
Our insights can assist in the development of RLHF systems, offering evidence that different
feedback types can be used based on specific application needs.

Our approach provides a detailed methodology building on existing literature for cre-
ating RLHF models by utilizing and extending the Imitation library. This can serve as a
valuable resource for researchers aiming to implement RLHF in their work. Additionally,
our exploration into less common feedback types, such as marginal preference and evaluative
scalar feedback, can guide future studies looking to refine these methods.

By outlining these processes and demonstrating their effectiveness in various environ-
ments, our research contributes to the broader understanding of RLHF and its practical
applications.

Future work could address the current limitations by incorporating real human feedback
and running experiments on more complex environments to further validate and expand
upon these findings. Additionally, exploring a wider variety of feedback types would be a
valuable direction for future research. An especially intriguing avenue is the integration of
multiple feedback types in the training of a single agent. This could be achieved by using
an ensemble of neural networks, each trained with a specific loss function corresponding to
a chosen feedback type, or by training the same reward network with different loss functions
in sequence, such as using evaluative feedback for 50% of the training time and comparative
feedback for the remaining 50%.
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