
Comparing planners for rail planning in PDDL
How multiple shunting yards can be created in PDDL to replicate real-world scenarios

Tim Tian1

Supervisor(s): Sebastijan Dumančić1, Issa Hanou1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Tim Tian
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Issa Hanou, Rihan Hai

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
This paper explored the usage of the Planning Do-
main Definition Language in the Train Unit Shunt-
ing Problem or TUSP, an NP-hard problem that oc-
curs in train storage. This paper focuses on the
evaluation and improvement of existing planners to
solve TUSP with multiple shunting yard layouts,
as well as an appropriate domain with it. Start-
ing with the implementation of multiple shunting
yards in the domain, by connecting train tracks
in problem instances. Followed by the evaluation
of the planners, where planners are evaluated on
speed, plan cost and solvability. Among the eval-
uated planners, the Team4 planner from the Inter-
national Planning Competition 2018 demonstrates
exceptional performance by successfully solving
all problem instances and having the highest speed
overall. Finally, the Team4 planner was optimised,
specifically by improving the domain for Last In
First Out, LIFO, tracks, since it encountered diffi-
culties when solving problems that contained these
tracks. The tracks were given new predicates and
actions, resulting in much higher speeds for prob-
lems that consisted of LIFO tracks. Results sug-
gest that a suitable planner has been improved for
solving TUSP with multiple shunting yard layouts
and that planners are indeed capable of handling the
complexities that come along with multiple shunt-
ing yard layouts.

1 Introduction
The Dutch Railways is a very complex system with many
trains that need to be operated during the day and stored at
night. The planning and managing for this storing is done
on shunting yards and is proven to be an NP-hard problem,
also known as the Train Unit Shunting Problem or TUSP
[1]. TUSP is a problem that focuses on matching arriving
and departing trains and parking these on the correct shunting
tracks, such that the costs for moving and parking are mini-
mal. While the TUSP consists of many sub-problems such as
servicing, matching and parking, the focus of this research is
on the parking, routing and matching sub-problems.

To help human planners create a suitable plan for each
night, a planning language called Planning Domain Defini-
tion Language or, PDDL, will be used for this research [2;
3]. PDDL consists of two main parts, the domain and the
problem instance. The first describes the rules and compo-
nents of a problem and the latter gives details on what the
problem is.

While existing works that attempt to solve TUSP already
exist, various assumptions about the shunting yards are made
[1; 4]. Most existing works currently focus on the TUSP with
one type of shunting yard rather than including all types in
the problem. These analyses assume that the shunting yard
is either a carousel, which consists of mostly free tracks, a
shuffleboard, which consists of mostly Last In First Out, or
LIFO, tracks, or a station, which is a hybrid layout without

clear characteristics containing both free and LIFO tracks [5].
Additionally, no existing work tackles TUSP using PDDL,
even though a specialized language for planning can provide
great results when attempting to solve TUSP problems.

While LIFO tracks sound more restrictive compared to free
tracks when considering the arrival and departure times of
trains, as LIFO tracks can only be entered and left from one
side whilst free tracks can be entered and left from both sides.
Free tracks have a similar restriction when 3 or more trains
are involved, limiting the trains in the middle [6]. Examples
of these shunting yards are found below.

(a)
shuffleboard

(b) carousel (c) station

Figure 1: example tracks

To address the current research gap of lesser consideration
of multiple shunting yard layouts in the TUSP and the solv-
ing of TUSP in PDDL, PDDL will be used to solve a basic
version of the TUSP which includes carousels, stations and
shuffleboards. Thus, this research aims to answer the research
question: Can a planner in PDDL be optimized, which han-
dles domains that contain commonly encountered types of
shunting yard layouts?

To answer the research question, the following sub-
questions are defined:

1. What are the similarities and differences between differ-
ent shunting yard layouts for PDDL?

2. Why should planners be able to generalize for domains
with different shunting yard layouts?

3. How can current planners be used to solve domains with
different shunting yard layouts?

4. How can the planner that is able to solve for different
shunting yard layouts be optimised?

As including all types of shunting yard layouts would re-
semble real-life scenarios even more than current research,
the main contributions of this paper are:

• development of a domain with appropriate predicates,
actions and constraints for TUSP with multiple shunting
yard layouts in PDDL,

• evaluation of planners’ performance and effectiveness
on the specified domain and problem instances,

• improvement of a chosen planner which can handle the
specified domain,

• possible integration into real-world scenarios
The main insights of this research consist of the following:

PDDL can be used to represent sub-problems of the TUSP
and possibly TUSP as a whole. Suitable planners for solving
sub-problems of the TUSP using PDDL might already exist,
but need to be further analyzed and improved for better per-
formances. Finally, real-world integration of using planners

and PDDL is possible, but the current domain needs to be fur-
ther adapted to represent real-world scenarios since we would
consider many more problems.

2 Background
In this section, background information will be provided for
PDDL and planners, as well as a discussion of relevant litera-
ture on TUSP. In the following sub-sections, firstly relevant
literature will be discussed. Second, basic information on
PDDL will be given and finally, planners will be explained.

2.1 Relevant Literature
TUSP consists of multiple sub-problems which all need to be
solved. These sub-problems are defined by Trepat [5] and are
the following:

• Matching; arriving and departing train units need to be
matched

• Servicing; tasks such as cleaning need to be performed
at specific locations

• Parking; trains need to be parked, with an unobstructed
route when departing

• Splitting and combining; splits and combinations are
necessary to change train units

• Routing; trains need to be routed from stations to shunt-
ing yards

• Crew scheduling; crews are necessary to perform all
tasks

Along with that, authors that have researched solutions
for TUSP have already proven that TUSP is NP-hard [1;
7], which proves that TUSP is an extremely complex prob-
lem.

Authors have considered many approaches to solving the
TUSP, one of which was exact solution approaches. Authors
such as Lentink et al. [8], try to solve a decomposed version
of TUSP in four steps. But exact solution approaches struggle
with computation time, making them unsuitable to solve the
TUSP.

Apart from exact solution approaches, heuristic approaches
were explored by many. They were first introduced by Haei-
jema et al. [9], who were inspired by dynamic programming.
Their solution created smaller sub-problems that were solved,
to finalize solutions. Others have improved upon the solution
from Haeijima et al., for example by adding a greedy heuristic
along with the dynamic programming [10]. The most promis-
ing approach is currently provided by van den Broek et al.
[11], with a local search approach that is successful in pro-
viding solutions for real-world scenarios.

However, almost none of the authors have tried to solve
the TUSP using PDDL. Except for a few such as Cardellini
[12], who attempted to solve a problem called the In-Station
Train Dispatching Problem, which is similar to TUSP, using
PDDL+ [13].

2.2 PDDL
The Planning Domain Definition Language [2], [3] is de-
signed for task planning and can be used to solve and define

a variety of planning problems. PDDL consists of two main
components, namely the domain and the problem.

The domain defines the components and rules of a plan-
ning problem. This domain consists mainly of types, which
define the class of an object. Predicates, which are properties
of objects that are either true or false. Actions with a precon-
dition and an effect, which are the allowed steps to solve the
planning problem, and functions, which are used to define nu-
meric quantities in the domain. Thus, the domain serves as a
blueprint for formal planning problems. As an example, a do-
main with a robotic arm with an action to pick up a cupcake
is provided.

Figure 2: Example robotic arm domain

Problem instances are created from the domain by speci-
fying objects, initial conditions and goals. These objects are
specific instances of the types defined in the domain and rep-
resent the relevant entities in this problem. The initial condi-
tions describe the initial state and goal defined by the pred-
icates. For example, where a train is arriving from initially.
And finally, the goal represents the desired state for a prob-
lem. in our case, the departing sequence. When the goal state
is reached, the problem would be considered solved.

2.3 Planners
Planners can be seen as solvers and are commonly problem-
independent. They tackle problem instances based on the do-
main description. This allows domains to change and evolve,
whilst the planners are still usable. Different planners might
use different algorithms to solve problems, which results in
different speeds and costs for found solutions. Along with
that, planners might have different goals for a solution. Some
planners only attempt to find any solution, these are called
satisficing planners. Others, search for an optimal solution
with the lowest cost for a problem and are known as optimal
planners [14].

3 Problem Description
In this section, the formal problem description of the Train
Unit Shunting Problem for this thesis will be explained along
with the definition of the domain that will be used. Although
TUSP contains many problems that were defined in section
2, this paper only considers parts of the parking and rout-
ing problem with possible elements of the matching problem.
In the next sub-sections, firstly the TUSP will be explained
for this research. Afterwards, the problem will be defined
in PDDL. And finally, the relevant TUSP sub-problems will

be explained and an example of a problem instance will be
given.

3.1 TUSP Problem Definition
The Train Unit Shunting Problem for this research is defined
as the following: Given a set of trains T with their arriving
order A on train tracks v, is there a sequence of steps that
allows all trains T to be in their departing order D after being
parked ∀t ∈ T ; parked(t) on shunting yards S with shunting
tracks u ∈ S, thus parkedOn(t, u)? These shunting yards
are the shuffleboard ST , the carousel SC and the station SS .
This is the TUSP problem to solve for this research and even
though the aim is not to mathematically solve this problem, it
is helpful to understand the formal definition of this problem
which helps explain certain concepts.

3.2 TUSP in PDDL
Now that TUSP has been formally defined, it needs to be
translated to PDDL. Thus, the set {T,A,D, S, u, v} needs
to be defined in PDDL. As mentioned in Section 2, all com-
ponents and rules in the domain will be based on this set.
Therefore, the domain and problem instances need to be able
to define the set {T,A,D, S, u, v}. All trains T , tracks u and
v can be defined as types in the domain. The arrival A and
departing order D can be given in the initial state and goal
state defined by the problem. Shunting yards do not have
to be defined explicitly in the domain, since no specific ac-
tions are needed for different shunting yards. Finally, having
a train parked parked(t) as well as where a train is parked
parkedOn(t, u) can be created in the predicates of the do-
main so that if a train is parked it will be set as true and where
a train is parked is true for that specific train and track. The
intricacies of this problem will be further analyzed in section
4, along with the created domain in section 5.

3.3 TUSP Sub-problems
TUSP contains many sub-problems as mentioned in section
2.1. However, not all sub-problems are relevant for this re-
search, since we only focus on multiple shunting yard lay-
outs. Thus, for example, the servicing sub-problem would not
be helpful to solve for this research as it does not provide any
help with multiple shunting yard layouts. The following sub-
problems are relevant to this research and are the following:
the parking problem, the routing problem and the matching
problem.

Parking Problem
The parking problem consists of trains parking on train tracks
so that all trains have been parked in the shunting yard, whilst
allowing all trains to have an unobstructed path to their desti-
nation when leaving. The parking problem is the main prob-
lem that this research attempts to solve since this problem is
most relevant when using different shunting yard layouts. For
example, free tracks need to take into account the side of ar-
rival, as well as the time of arrival. While LIFO tracks only
consider the time of arrival. To allow more complex plans to
be solved, it is allowed to switch train units between tracks as
long as they will be parked on a track in the final plan. This

makes it possible to shuffle train units onto other tracks to free
up space for other trains to arrive or leave.

Routing Problem
The routing problem is similar to the parking problem, where
the goal is to find an unobstructed path to their destination
while attempting to minimize the time taken. Although find-
ing the optimal solution with the minimum time taken for
problems is unnecessary for this research, it is a metric on
which the planners will be evaluated on. Planners that are
closer to the optimal solution will be evaluated higher than
planners that create solutions with higher costs.

Matching Problem
For the matching problem, a set of arriving trains is given
as well as a set of departing trains, with arriving and depart-
ing times respectively. The matching problem also matches
different train units from arriving trains to certain train units
from departing trains. This latter is, however, not relevant for
the specified domain, since the domain only contains trains
with one train unit and thus each arriving train would result
in the same departing train.

3.4 Example Problem Instance
In this section, an example of a problem instance with both
LIFO and free tracks is given, to clarify the TUSP in PDDL
that this research attempts to solve. This problem instance is
also used for the evaluation of the planners.

Figure 3: Example Problem of TUSP

As seen in Figure 3, Each train track vi is a black node
along with the trains Ti inside to depict the starting order.
Additionally, the trains Tk under the nodes would provide the
departing sequence of the trains, which dictates the position
all trains should be in for the goal state. Further left from that,
a switch can be observed, a special track t0 that connects the
starting train tracks and shunting tracks, as well as connecting
more than two tracks, connecting shunting yards SC and ST

by their shunting tracks ti.
An optimal solution in terms of the cost would cost 46

steps. Note that more than one optimal solution is possible
since other solutions can have the same cost. An example op-
timal solution with the total steps on the right is provided in
Figure 4.

1. T1 moves to t1 (2)
2. T2 moves to t2 (6)
3. T3 moves to t3 (10)
4. T4 moves to t5 (16)
5. T5 moves to t4 (22)
6. T1 moves to v5 (28)

7. T3 moves to v4 (33)

8. T2 moves to v3 (38)

9. T5 moves to t1 (40)

10. T4 moves to v2 (44)

11. T5 moves to v1 (46)

Figure 4: Example optimal solution

4 Methodology
This section provides the steps used for this research along
with our contributions, which will be further described in de-
tail in the Results section hereafter. We have first created
a suitable domain to represent the TUSP with problem in-
stances for this research. After that, we evaluated the planners
on certain problem instances. Finally, we made optimisations
of the planner by altering the domain. An overview of the
steps taken and contributions made for this research will be
given in these three separate sub-sections.

4.1 Creating the Domain and the Problems
Having a correct domain is necessary to create effective prob-
lem instances and to evaluate planners properly. The domain
has drastic consequences for this research, as it can influence
the solvability of a problem and the speed at which planners
can solve a problem. As defined in section 3.2, the domain
should contain trains, train tracks and support for different
shunting tracks, as well as predicates such as parked for trains
and actions that allow trains to move and park on tracks.

The domain
Our contributions to the finalized domain were the addition
of LIFO and free tracks in the types and the action to switch
between shunting yards. As for this research, a domain was
given by the responsible professor, on which the final domain
and problem instances are built. The given domain already
satisfied all the necessary attributes and only needed to be
extended to solve specific issues regarding different shunting
yards.

Although the finalized domain is quite basic, there were
other extendable possibilities considered that were complex.
One such, was the idea of creating LIFO tracks and free
tracks within the domain, by creating single-ended queues
and double-ended queues in the domain with the use of de-
rived predicates.

This option, however, was not chosen since we believed
it to be too time-consuming and out of the scope of this re-
search. Having such tracks in the domain had the possibil-
ity of simplifying problem instances since individual tracks
would not be needed to be defined, but this was not the goal
of this research. We have, however, chosen to keep LIFO
and free track types in the domain to clarify what tracks are
within the problem instances. But actions for different track
types were not in the domain and LIFO and free tracks were
represented in the problem instances.

Finally, switches were used in the domain, which allows
trains to go from one train track to multiple others. Due

to the limitations of the original actions used for switches,
we have created an additional action to allow trains to shuf-
fle between LIFO and free tracks. And even though allow-
ing trains to move between switches that were connected or
tracks in between switches was a possibility that was consid-
ered, they were deemed redundant since both situations could
be avoided by merging both incoming and outgoing tracks
from switches into one switch in the problem instances.

Creating the Problems
In addition to the domain, problem instances were needed
to compare, evaluate and optimise planners. Our contribu-
tions to the problem instances were nine different problems,
in three different categories: simple, medium and complex.
These were also created in the three different shunting yard
layouts that we have found, namely the Shuffleboard layout,
the Carousel layout and the Station layout. They were cho-
sen to determine how well planners can solve the different
problem instances and differentiate between shunting yard
layouts. These problem instances were categorized by how
many trains were present in the problems and which tracks
were used. For these problems three trains were considered
simple, five trains were medium and ten trains were a com-
plex problem. These numbers are fairly arbitrary since the
number of trains is not the only determining factor of com-
plexity for these problems. But as these problems are all cre-
ated by hand with only a few possible optimal solutions, we
deemed them suitable for this research.

4.2 Evaluating Planners
The development of a planner which supports multiple shunt-
ing yard layouts is the goal of this research. To find a suit-
able planner for this research, planners need to be evaluated
based on certain metrics. For this research, planners in the
satisficing track from the International Planning Competi-
tion from 2018 were chosen [14]. These planners were cho-
sen due to their availability on the mapfw server, to speed
up the research process by avoiding the time to set up new
planners, even though other planners online could have been
more suitable for this problem. Finally, the chosen planners
that were going to be evaluated were the Baseline-explicit-
planner, Team2, Team4 and Team35. These planners can
all be found in the International Planning Competition from
2018.

The planners would finally only be evaluated on complex
problem instances since simple and medium problems did not
provide enough information on the performance of many of
the planners. One such planner would always take a mini-
mum of two minutes to finish, no matter how simple the prob-
lem was.

The planners would be evaluated and compared based on
three metrics. These were solvability, speed and plan cost.
The solvability metric would provide information on how
many problem instances the planner was able to solve. Speed
would be measured by how long it takes for the planner to fin-
ish running in seconds. And plan cost is the cost of the plan
found. Even though solvability is the main concern for this
research, other metrics could provide better insights into how
a planner is performing with multiple shunting yard layouts.

Do note that we have a timeout of 20 minutes for speed.
We wanted planners to solve problems within 10 minutes but
allowed some opportunities for planners that could not fin-
ish within this time frame. Additionally, this speed is only
an estimate since it is determined by the speed on the server
which could be influenced by the amount of users. The speed
measured is the average over three attempts, to minimise the
error.

4.3 Optimising Planners
Based on the metrics that are found when evaluating the plan-
ners, one planner would be chosen to be further optimised.
This optimisation could be made in many different ways,
some possibilities are the modification of code within the
planner or changing the domain to get better scores in one
or more of the three metrics.

Our contribution to the optimisation of the planner was
mainly done by optimising the domain. Due to the chosen
planner being extremely hard to modify with no guarantee of
optimisations being possible, the domain was updated in an
attempt to create better performances for the chosen planner,
either by speeding up the plan or reducing cost. The contri-
butions to the updated domain include differentiating LIFO
tracks and free tracks, by having new predicates and differ-
ent actions for both. Free tracks would behave the same, but
LIFO tracks would have more information such as the last
shunting track where a train can park. The change to only
update LIFO tracks was made, due to the results found from
the evaluation of planners, where the chosen planner behaved
much worse in certain problems with LIFO tracks.

Finally, we have created an extra problem with only LIFO
tracks to confirm the improvements that were made with
LIFO tracks. This problem is created similarly to the orig-
inal Shuffleboard problem instance and is evaluated the same
as the other problems.

5 Results
In this section, the results of the finalized domain, the eval-
uation of planners and the optimisation for the planner will
be given. Firstly, the finalized domain will be provided. Sec-
ondly, the results of the evaluation of the planners will be pre-
sented along with which planner was chosen to be optimised.
Finally, the result of the optimisation can be found, with the
optimisation itself.

5.1 The Finalized Domain
The result of the finalized domain is not that different from
the original domain that was provided. The key differences
are mainly found in the problem instances, where both LIFO
and free tracks would be created. The full domain can be
found in Appendix A.

In the domain, first, the types were defined. In the do-
main types, Trackpart refers to individual trackparts, track
are the tracks in the domain and LIFO and free are the types
of tracks. Additionally, track is meant to mean a shunting
track and trainunits are individual trains.

After that, the predicates are defined. These predicates
were not modified from the provided domain and should be

self-explanatory. The most important predicate that was used
was the nextTo predicate. This was the predicate that was the
core of creating LIFO tracks and free tracks in PDDL. LIFO
tracks can be defined in the problem, by connecting tracks to
create a line, with the last track having only one track con-
nected. By connecting tracks using nextTo, free tracks can
also be defined. With no last track and circling back to the
starting track, all tracks have two tracks next to them. An ex-
ample of a free track can be found below, where the PDDL
plugin for Visual Studio Code provides a visualisation of the
problem instance in Figure 5.

Figure 5: Visualisation of a free track using Visual Studio Code

Finally, actions were defined. These actions allowed trains
to move from one track to another track and made sure that
trains were parked. As an example in Figure 6, actions such
as move-along-track moved trains between shunting tracks
after being parked.

; a c t i o n t o move a t r a i n u n i t a l o n g a t r a c k
(: a c t i o n move− along − t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t ? t − t r a c k)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(nextTo ? from ? t o) (onTrack ? from ? t)
(onTrack ? t o ? t))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o)))

)

Figure 6: Move-along-track action used in the domain

Do note, however, that the actions differentiate between
different types of train tracks. These are namely the shunt-
ing tracks, where trains can be parked, the arrival or depar-
ture tracks, where trains start from and depart and the switch
tracks, which connect more than two train tracks next to them.
Thus different actions were necessary to distinguish what
track is used.

Additionally, there is one action called switch-track in Fig-
ure 7, which allowed trains to pass over a switch to park on
a different shunting track. This was created to differentiate
between trains leaving the shunting yard and trains simply
going to the switch to change tracks.

; a c t i o n t o move a t r a i n u n i t t o o u t o f a t r a c k
; and r e s e t t h e parkedOn p r e d i c a t e
; used f o r s h u f f l i n g t r a i n s t o d i f f e r e n t t r a c k s
(: a c t i o n swi t ch − t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? s w i t c h ? t o − t r a c k p a r t
? t 1 ? t 2 − t r a c k)

: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o) (f r e e ? s w i t c h)
(nextTo ? from ? s w i t c h) (onTrack ? from ? t 1)
(s w i t c h ? s w i t c h) (nextTo ? s w i t c h ? t o)
(onTrack ? t o ? t 2) (n o t (f o r a l l (? u n i t − t r a i n u n i t)
(hasBeenParked ? u n i t))))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o))
(n o t (parkedOn ? t r a i n ? t 1))
(parkedOn ? t r a i n ? t 2))

)

Figure 7: Switch-track action used in the domain

Finally, the problem instances that were created in three
categories, all had the same type of problem that needed to
be solved. For each category, one problem would contain a
shuffleboard layout, with only LIFO tracks. Another problem
would contain a carousel layout, with only free tracks. And
finally, the last problem would have the station layout, having
a mix of LIFO and free tracks. For illustration purposes, the
complex problem instances are shown below in Figures 8-10.

Figure 8: Complex Shuffleboard problem

Figure 9: Complex Carousel problem

Figure 10: Complex Station problem

5.2 Evaluation of the Planners
The evaluation of these planners was based on three metrics,
as mentioned in section 4. It was decided to use only the
complex problems that were found in Figure 8-10 as a final
metric, as this would replicate real-world scenarios the most.
The final results of the complex problems are found in the
following Table 1 with speed in time, cost in steps and solv-
ability as a boolean.

Shuffleboard Carousel Station

Baseline
1200s 1200s 1200s
N/A N/A N/A
False False False

Team2
1200s 1200s 1200s
N/A N/A 73
False False True

Team4
182s 2.6s 3.2s
213 199 185
True True True

Team35
336s 323s 296s
N/A N/A 173
False False True

Table 1: Results of complex problems based on speed, cost and solv-
ability

Some interesting findings from the results in Table 1 are
that the speed for the Baseline and Team2 is always 1200 sec-
onds. This is due to the 20-minute timeout that was chosen.
Apart from that, even though Team2 times out for the Station
problem, it can find a plan within the time limit but does not
finish running. Finally, the only planner that was able to solve
all problems was Team4, with extremely high speeds for both
the Carousel problem and the Station problem.

From this, it can be determined that Team4 was the most
suitable planner for different shunting yard layouts and it was
chosen to be further improved for optimisation.

5.3 Optimisation for the Team4 Planner
The strategy that Team4 uses to solve problem instances, is
to translate them into boolean satisfiability problems [15].
Team4 is known as an SAT solver and would be very hard
to optimise itself by changing either the translation process
from PDDL to SAT or the SAT encoding of Team4. Thus
the domain was updated for optimisation and to create better
performances.

As seen in Table 1, Team4 struggled with finding a plan in
a short amount of time for the Shuffleboard problem. Thus,
the focus for this optimisation would be on LIFO tracks in the
domain.

Although a difference between LIFO and free tracks was
already made in the types, it would still need to be differen-
tiated in the actions. Thus a simple predicate free-track was
created to determine if a track was a free track. As an opti-
misation, trains on LIFO tracks would only move to the last
possible track and needed separate actions for this. To make
sure that the last track was correct, the original nextTo pred-
icate was changed to two predicates, namely next and prev
found in Figure 11.

Naturally, the problem instances were also changed to use
the newly optimised predicates and actions. The fully opti-
mised domain can be found in Appendix B.

(: p r e d i c a t e s
(n e x t ? x ? y − t r a c k p a r t) ; t r a c k p a r t x n e x t t o t r a c k p a r t y
(p rev ? x ? y − t r a c k p a r t) ; t r a c k p a r t x p r e v i o u s from t r a c k p a r t y
(onTrack ? x − t r a c k P a r t ? y − t r a c k) ; t r a c k p a r t x on t r a c k y
(a t ? x − t r a i n u n i t ? y − t r a c k p a r t) ; t r a i n u n i t x on t r a c k p a r t y
(hasBeenParked ? x − t r a i n u n i t) ; t r u e i f x i s p a rk ed on some t r a c k
(f r e e ? x − t r a c k p a r t) ; t r a c k p a r t x has n o t h i n g p a rk ed t h e r e
(parkedOn ? x − t r a i n u n i t ? y − t r a c k) ; i n d i c a t e s x p a rk ed on t r a c k y
(onPa th ? x) ; t r a c k p a r t x i s on t h e a r r i v a l / d e p a r t u r e p a t h L
(s w i t c h ? x) ; t r a c k p a r t x i s a s w i t c h
(f r e e − t r a c k ? x − t r a c k)
(l a s t − t r a c k ? x − t r a c k p a r t)

)

Figure 11: Predicates of the optimised domain

The improved actions that were used, moved trains from
the switch to the last-track or moved the train that was parked
before the last-track back to the switch. Other actions in-
cluded the switching of LIFO tracks and separate actions for
when the last-track was next to the switch. Additionally,
the original actions for the shunting yard in the domain yard
would only be applicable for free tracks due to the usage of
the new predicate free-track. Free tracks are thus unable to
use the LIFO actions, since the last-track predicate would not
be defined for free tracks.

To analyze the effectiveness of the LIFO track changes
even further, a new problem named Shuffle2 was created. This
problem was created similarly to the complex Shuffleboard
problem, to confirm the improvement of LIFO tracks in the
domain. This new problem can be seen in Figure 12.

Figure 12: Additional created Shuffleboard problem

Shuffleboard Carousel Station Shuffle2

Team4
182s 2.6s 3.2s 47.5s
213 199 185 170
True True True True

Improved Improved Improved Improved

Team4
6.4s 3s 10s 5.4s
145 193 176 151
True True True True

Table 2: Results of Team4 before and after improvements, of com-
plex problems based on speed, cost and solvability

As a result of the optimisation by differentiating LIFO
tracks and free tracks in the domain, Team4 would have sig-
nificant speed-ups in the Shuffleboard problems and some mi-
nor plan costs would be improved.

For all problems, the cost of the plan had been reduced
and all problems remained solvable. However, the speed for

both the Carousel and Station problem decreased slightly. In-
terestingly, the cost for the Carousel problem decreased even
though it contained free tracks exclusively, whilst only LIFO
tracks were changed. we believe this would be due to how
Team4 translates the SAT problem and how different propo-
sitions are now created which could influence the translation
time.

All in all, as can be seen in Table 2, a decent improvement
was made for Team4 by improving the speed for shuffleboard
layouts significantly and reducing plan costs for all problem
instances.

6 Responsible Research
The research conducted in this thesis is centered around cre-
ating planners in PDDL to utilize different shunting yard lay-
outs. While the primary objective is to enhance the effi-
ciency and effectiveness of planners, we have to acknowledge
and address the ethical aspects and responsible considerations
with this research.

During this research, no contact with humans and sensitive
data was made. Thus there are no relevant ethical aspects for
this research. For reproducibility, the domain can be found
in Appendix A and the improved domain can be found in Ap-
pendix B. Problem instances have illustrations throughout the
thesis, namely Figures 3, 8, 9, 10 and 12. Even though not all
readers would have access to the mapfw server of TU Delft,
the planners are still available online [14] and can be used to
yield the same or similar results as the ones found in section
5.

7 Conclusions and Future Work
In this research, we addressed the use of planners in PDDL
to handle different shunting yard layouts in the TUSP. The
objective was to develop a planner that can create suitable
plans for created problem instances with different shunting
yards.

To fill the research gap of solving TUSP using primarily
one shunting yard type, we developed a domain in PDDL that
contains the commonly encountered types of shunting yard
layouts, including carousels, shuffleboards, and stations. We
evaluated planners capable of handling this domain, by as-
sessing its performance and effectiveness on different prob-
lem instances. The chosen Team4 planner was further opti-
mised, by changing the domain accordingly to promote better
performances for shuffleboards.

Our contributions in this paper include the development of
appropriate predicates, actions and constraints for the TUSP
with multiple shunting yard layouts in PDDL. Along with the
improvement of a planner for this domain from the IPC2018,
and the evaluation of its performance.

The results obtained from our experiments provide insights
into the planner’s effectiveness and its potential integration
into real-world scenarios.

Additionally, this research expands the scope of shunting
yard layouts used in the TUSP. By addressing the limitations
of existing works and utilizing PDDL, we have demonstrated
that planners can handle the complexities associated with dif-
ferent shunting yard layouts.

In conclusion, we have successfully answered the research
question posed in this study: Can a planner in PDDL be
improved which handles domains that contain commonly
encountered types of shunting yard layouts?. The findings
from this research provide a foundation for further advance-
ments in the optimization of the TUSP for PDDL, ultimately
integrating the use of PDDL with real-world scenarios.

7.1 Future Work
While this research has made progress in addressing the op-
timization of planners for different shunting yard layouts,
many improvements can still be made.

Improvements such as implementing queues to represent
LIFO and free tracks can still be implemented within the do-
main, which could result in even more speedups and lower
plan costs.

Furthermore, evaluations can be expanded by incorporat-
ing larger problem instances with 20-30 trains that represent
real-world scenarios. On top of that, the chosen Team4 plan-
ner might still allow for more improvements if further ana-
lyzed.

And finally, alternative planners that were not part of the
International Planning Competition could be explored, which
may result in an even better planner optimised for different
shunting yard layouts.

A The Modified Domain used for this
research

(d e f i n e (domain domain1)
(: r e q u i r e m e n t s : a d l)
(: t y p e s

t r a c k p a r t t r a c k t r a i n u n i t − o b j e c t
; t h e s e a r e t h e d i f f e r e n t t y p e s o f t r a i n u n i t s
icm virm sng s l t − t r a i n u n i t
LIFO f r e e − t r a c k

)
(: p r e d i c a t e s

(nextTo ? x ? y − t r a c k p a r t) ; t r a c k p a r t x n e x t t o o t h e r t r a c k p a r t y
(onTrack ? x − t r a c k P a r t ? y − t r a c k) ; t r a c k p a r t x on t r a c k y
(a t ? x − t r a i n u n i t ? y − t r a c k p a r t) ; t r a i n u n i t x on t r a c k p a r t y
(hasBeenParked ? x − t r a i n u n i t) ; t r u e i f x i s p a rk ed on some t r a c k
(f r e e ? x − t r a c k p a r t) ; t r a c k p a r t x has n o t h i n g p a rk ed t h e r e
(parkedOn ? x − t r a i n u n i t ? y − t r a c k) ; i n d i c a t e s x p a rk ed on t r a c k y
(onPa th ? x) ; t r a c k p a r t x i s on t h e a r r i v a l / d e p a r t u r e p a t h L
(s w i t c h ? x) ; t r a c k p a r t x i s a s w i t c h

)
; a c t i o n t o move a t r a i n u n i t t o a n e i g h b o u r i n g t r a c k p a r t
; on a t r a c k , t o pa rk i t
(: a c t i o n move− to − t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t ? t − t r a c k)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(nextTo ? from ? t o) (onTrack ? t o ? t)
(s w i t c h ? from))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o))
(hasBeenParked ? t r a i n) (parkedOn ? t r a i n ? t))

)
; a c t i o n t o move a t r a i n u n i t t o o u t o f a t r a c k
; and r e s e t t h e parkedOn p r e d i c a t e
; used f o r s h u f f l i n g t r a i n s t o d i f f e r e n t t r a c k s
(: a c t i o n swi t ch − t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? s w i t c h ? t o − t r a c k p a r t
? t 1 ? t 2 − t r a c k)

: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o) (f r e e ? s w i t c h)
(nextTo ? from ? s w i t c h) (onTrack ? from ? t 1)
(s w i t c h ? s w i t c h)
(nextTo ? s w i t c h ? t o) (onTrack ? t o ? t 2)
(n o t (f o r a l l (? u n i t − t r a i n u n i t)
(hasBeenParked ? u n i t))))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o))
(n o t (parkedOn ? t r a i n ? t 1))
(parkedOn ? t r a i n ? t 2))

)

; a c t i o n t o move a t r a i n u n i t a l o n g a t r a c k
(: a c t i o n move− along − t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t ? t − t r a c k)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(nextTo ? from ? t o) (onTrack ? from ? t)
(onTrack ? t o ? t))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o)))

)
; Can on ly move back t o d e p a r t u r e i f a l l t r a i n s have been p a r ke d .
(: a c t i o n move− to − d e p a r t u r e

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(nextTo ? from ? t o) (onPa th ? t o)
(f o r a l l (? u n i t − t r a i n u n i t) (hasBeenParked ? u n i t)))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o)))

)
; A c t i o n t o move t r a i n u n i t ove r t h e a r r i v a l p a t h
; t o w a r d s t h e s h u n t i n g ya rd
(: a c t i o n move−on− a r r i v a l

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(nextTo ? from ? t o) (n o t (hasBeenParked ? t r a i n))
(onPa th ? from))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o)))

)
; D i s t i n g u i s h from swi t ch − t r a c k
(: a c t i o n move−from − t r a c k − to − d e p a r t u r e

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t ? t − t r a c k)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(nextTo ? from ? t o) (onTrack ? from ? t)
(s w i t c h ? t o)
(f o r a l l (? u n i t − t r a i n u n i t) (hasBeenParked ? u n i t)))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o))
(n o t (parkedOn ? t r a i n ? t)))

)
)

B The Improved Domain
(d e f i n e (domain imprDomain)

(: r e q u i r e m e n t s : a d l)

(: t y p e s
t r a c k p a r t t r a c k t r a i n u n i t − o b j e c t
icm virm sng s l t − t r a i n u n i t

; t h e s e a r e t h e d i f f e r e n t t y p e s o f t r a i n u n i t s
LIFO f r e e − t r a c k

)

(: p r e d i c a t e s
(n e x t ? x ? y − t r a c k p a r t) ; t r a c k p a r t x n e x t t o t r a c k p a r t y
(p rev ? x ? y − t r a c k p a r t) ; t r a c k p a r t x p r e v i o u s from t r a c k p a r t y
(onTrack ? x − t r a c k P a r t ? y − t r a c k) ; t r a c k p a r t x on t r a c k y
(a t ? x − t r a i n u n i t ? y − t r a c k p a r t) ; t r a i n u n i t x on t r a c k p a r t y
(hasBeenParked ? x − t r a i n u n i t) ; t r u e i f x i s p a rk ed on some t r a c k
(f r e e ? x − t r a c k p a r t) ; t r a c k p a r t x has n o t h i n g p a rk ed t h e r e
(parkedOn ? x − t r a i n u n i t ? y − t r a c k) ; i n d i c a t e s x p a rk ed on t r a c k y
(onPa th ? x) ; t r a c k p a r t x i s on t h e a r r i v a l / d e p a r t u r e p a t h L
(s w i t c h ? x) ; t r a c k p a r t x i s a s w i t c h
(f r e e − t r a c k ? x − t r a c k)
(l a s t − t r a c k ? x − t r a c k p a r t)

)

; a c t i o n t o move a t r a i n u n i t t o a n e i g h b o u r i n g
; t r a c k p a r t on a t r a c k t o pa rk i t
(: a c t i o n move− to − t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t ? t − t r a c k)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(o r (n e x t ? from ? t o) (p r ev ? from ? t o))
(onTrack ? t o ? t) (onTrack ? t o ? t)
(f r e e − t r a c k ? t) (s w i t c h ? from))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o))
(hasBeenParked ? t r a i n) (parkedOn ? t r a i n ? t))

)

; a c t i o n t o move a t r a i n u n i t t o o u t o f a t r a c k ,
; and r e s e t t h e parkedOn p r e d i c a t e
; used f o r s h u f f l i n g t r a i n s t o d i f f e r e n t t r a c k s
(: a c t i o n swi t ch − t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? s w i t c h ? t o − t r a c k p a r t
? t 1 ? t 2 − t r a c k)

: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o) (f r e e ? s w i t c h)
(o r (n e x t ? from ? s w i t c h) (p r ev ? from ? s w i t c h))
(onTrack ? from ? t 1) (s w i t c h ? s w i t c h)
(f r e e − t r a c k ? t 1) (f r e e − t r a c k ? t 2)
(o r (n e x t ? s w i t c h ? t o) (p r ev ? s w i t c h ? t o))
(onTrack ? t o ? t 2) (n o t (f o r a l l (? u n i t − t r a i n u n i t)
(hasBeenParked ? u n i t))))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o))
(n o t (parkedOn ? t r a i n ? t 1))
(parkedOn ? t r a i n ? t 2))

)

; ; a c t i o n t o move a t r a i n u n i t a l o n g a t r a c k
(: a c t i o n move− along − t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t ? t − t r a c k)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(o r (n e x t ? from ? t o) (p r ev ? from ? t o))
(onTrack ? from ? t) (onTrack ? t o ? t)
(f r e e − t r a c k ? t))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o)))

)
; Can on ly move t o t r a c k i f a l l t r a i n s have been p a r ke d
; t o d i s t i n g u i s h from swi t ch − t r a c k
(: a c t i o n move−from − t r a c k − to − d e p a r t u r e

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t ? t − t r a c k)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(o r (n e x t ? from ? t o) (p r ev ? from ? t o))
(onTrack ? from ? t) (s w i t c h ? t o) (f r e e − t r a c k ? t)
(f o r a l l (? u n i t − t r a i n u n i t) (hasBeenParked ? u n i t)))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o))
(n o t (parkedOn ? t r a i n ? t)))

)
; s w i t c h e s between LIFO t r a c k s
(: a c t i o n swi t ch −LIFO− t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t
? from ? prev ? s w i t c h ? newLast ? l a s t − t r a c k p a r t ? t 1 ? t 2 − t r a c k)

: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (onTrack ? from ? t 1)
(onTrack ? l a s t ? t 2) (p r ev ? from ? prev)
(p rev ? l a s t ? newLast) (f r e e ? s w i t c h)
(s w i t c h ? s w i t c h) (l a s t − t r a c k ? p rev)
(l a s t − t r a c k ? l a s t)

)
: e f f e c t (and (a t ? t r a i n ? l a s t) (n o t (a t ? t r a i n ? from))

(f r e e ? from) (l a s t − t r a c k ? from) (n o t (l a s t − t r a c k ? p rev))
(n o t (l a s t − t r a c k ? l a s t)) (l a s t − t r a c k ? newLast)
(n o t (parkedOn ? t r a i n ? t 1)) (parkedOn ? t r a i n ? t 2)
(n o t (f r e e ? l a s t))

)
)
; a c t i o n t o move t o s w i t c h from a LIFO t r a c k
(: a c t i o n move− to − swi t ch −LIFO− t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? prev ? con ? s w i t c h − t r a c k p a r t
? t − t r a c k)

: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (onTrack ? from ? t)
(onTrack ? con ? t) (p r ev ? from ? prev)
(onTrack ? p rev ? t) (l a s t − t r a c k ? p rev)
(p rev ? con ? s w i t c h) (f r e e ? s w i t c h) (s w i t c h ? s w i t c h))

: e f f e c t (and (a t ? t r a i n ? s w i t c h) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? s w i t c h))
(n o t (l a s t − t r a c k ? p rev)) (l a s t − t r a c k ? from)
(n o t (parkedOn ? t r a i n ? t)))

)
; a c t i o n t o move a t r a i n t o t h e s w i t c h
; when l a s t − t r a c k i s n e x t t o t h e s w i t c h
(: a c t i o n move− to − swi t ch −LIFO− t r a c k − l a s t

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from
? s w i t c h − t r a c k p a r t ? t − t r a c k)

: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (onTrack ? from ? t)
(p r ev ? from ? s w i t c h) (s w i t c h ? s w i t c h)
(f r e e ? s w i t c h) (n o t (f r e e − t r a c k ? t)))

: e f f e c t (and (a t ? t r a i n ? s w i t c h) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? s w i t c h))
(l a s t − t r a c k ? from)
(n o t (parkedOn ? t r a i n ? t)))

)

; a c t i o n t o move a t r a i n u n i t t o t h e l a s t − t r a c k o f a LIFO t r a c k
(: a c t i o n move− to −LIFO− t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o ? p rev ? l a s t − t r a c k p a r t
? t − t r a c k)

: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)
(n o t (l a s t − t r a c k ? t o)) (o r (n e x t ? from ? t o)
(p r ev ? from ? t o)) (onTrack ? t o ? t)
(s w i t c h ? from) (l a s t − t r a c k ? l a s t)
(p r ev ? l a s t ? p rev) (onTrack ? l a s t ? t))

: e f f e c t (and (a t ? t r a i n ? l a s t) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? l a s t))
(n o t (l a s t − t r a c k ? l a s t)) (l a s t − t r a c k ? p rev)
(hasBeenParked ? t r a i n) (parkedOn ? t r a i n ? t))

)

; a c t i o n t o move a t r a i n u n i t t o t h e l a s t − t r a c k
; t h a t i s n e x t t o t h e s w i t c h
(: a c t i o n move− to −LIFO− t r a c k − o n e t r a c k

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? l a s t − t r a c k p a r t ? t − t r a c k)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from)

(o r (n e x t ? from ? l a s t) (p r ev ? from ? l a s t))
(onTrack ? l a s t ? t) (s w i t c h ? from)
(l a s t − t r a c k ? l a s t))

: e f f e c t (and (a t ? t r a i n ? l a s t) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? l a s t))
(n o t (l a s t − t r a c k ? l a s t))
(hasBeenParked ? t r a i n) (parkedOn ? t r a i n ? t))

)
; Can on ly move back t o d e p a r t u r e i f a l l t r a i n s have been pa r ke d .
(: a c t i o n move− to − d e p a r t u r e

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(o r (n e x t ? from ? t o) (p r ev ? from ? t o)) (onPa th ? t o)
(f o r a l l (? u n i t − t r a i n u n i t) (hasBeenParked ? u n i t)))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o)))

)

; A c t i o n t o move t r a i n u n i t ove r t h e a r r i v a l p a t h
; t o w a r d s t h e s h u n t i n g ya rd
(: a c t i o n move−on− a r r i v a l

: p a r a m e t e r s (? t r a i n − t r a i n u n i t ? from ? t o − t r a c k p a r t)
: p r e c o n d i t i o n (and (a t ? t r a i n ? from) (f r e e ? t o)

(o r (n e x t ? from ? t o) (p r ev ? from ? t o))
(n o t (hasBeenParked ? t r a i n)) (onPa th ? from))

: e f f e c t (and (a t ? t r a i n ? t o) (n o t (a t ? t r a i n ? from))
(f r e e ? from) (n o t (f r e e ? t o)))

)

)

References
[1] R. Freling, R. M. Lentink, L. G. Kroon, and

D. Huisman, “Shunting of passenger train units
in a railway station,” Transportation Science 39.2,
p. 261–272, 5 2005. [Online]. Available: https:
//doi.org/10.1287/trsc.1030.0076

[2] A. Green, B. J. Reji, ChrisE2018, and C. Muise,
“Planning.wiki - the ai planning & pddl wiki,”
accessed on 2023-04-25. [Online]. Available: https:
//planning.wiki

[3] D. V. McDermott, “Pddl - planning domain definition
language,” accessed on 2023-5-26. [Online]. Available:
http://www.cs.yale.edu/homes/dvm/

[4] I. Hanou, M. M. de Weerdt, and J. Mulderij, “Moving
trains like pebbles: A feasibility study on tree yards,”
Proceedings of the International Conference on Auto-
mated Planning and Scheduling, to be published 2023.

[5] J. Trepat Borecka, “Routing optimization for the train
unit shunting problem in a multi-agent deep reinforce-
ment learning framework,” 2021.

[6] N. C. L. van Bavel, “The application of a hybrid evolu-
tionary algorithm to the train unit shunting problem.”

[7] R. M. Lentink, “Algorithmic decision support for shunt
planning,” Erasmus Research Institute of Management,
2006.

[8] R. M. Lentink, P.-J. Fioole, L. G. Kroon, and C. van’t
Woudt, “Applying operations research techniques to
planning of train shunting,” Planning in Intelligent
Systems: Aspects, Motivations, and Methods, p.
415–436, 2006. [Online]. Available: https://doi.org/10.
1002/0471781266.ch15

[9] R. Haijema, C. W. Duin, and N. van Dijk, “Train shunt-
ing: A practical heuristic inspired by dynamic program-
ming,” Planning in Intelligent Systems: Aspects, Mo-
tivations, and Methods, pp. 437–475, 2006. [Online].
Available: https://doi.org/10.1002/0471781266.ch165

[10] M. van den Akker, H. Baarsma, J. Hurink, M. Mod-
elski, J. Jan Paulus, I. Reijnen, D. Roozemond, and
J. Schreuder, “Shunting passenger trains: getting ready
for departure,” Proceedings of European Study Group
Mathematics with Industry, 2008.

[11] R. van den Broek, H. Hoogeveen, M. van den Akker,
and B. Huisman, “A local search algorithm for train unit
shunting with service scheduling,” pp. 1–42, 2021.

[12] M. Cardellini, “Artificial intelligence techniques for
solving the in-station train dispatching problem,” Uni-
versity of Genoa, 2021.

[13] M. Fox and D. Long, “Modelling mixed discrete-
continuous domains for planning,” University of Strath-
clyde, 2006.

[14] F. Pommerening, A. Torralba, and T. Balyo, “Ipc2018,”
accessed on 2023-5-21. [Online]. Available: https:
//ipc2018-classical.bitbucket.io

[15] M. L.Littman, J. Goldsmith, and M. Mundhenk, “The
computational complexity of probabilistic planning,”
Journal of Artificial Intelligence Research 9, pp. 1–36,
1998. [Online]. Available: https://doi.org/10.1613/jair.
505

https://doi.org/10.1287/trsc.1030.0076
https://doi.org/10.1287/trsc.1030.0076
https://planning.wiki
https://planning.wiki
http://www.cs.yale.edu/homes/dvm/
https://doi.org/10.1002/0471781266.ch15
https://doi.org/10.1002/0471781266.ch15
https://doi.org/10.1002/0471781266.ch165
https://ipc2018-classical.bitbucket.io
https://ipc2018-classical.bitbucket.io
https://doi.org/10.1613/jair.505
https://doi.org/10.1613/jair.505

	Introduction
	Background
	Relevant Literature
	PDDL
	Planners

	Problem Description
	TUSP Problem Definition
	TUSP in PDDL
	TUSP Sub-problems
	Example Problem Instance

	Methodology
	Creating the Domain and the Problems
	The domain
	Creating the Problems

	Evaluating Planners
	Optimising Planners

	Results
	The Finalized Domain
	Evaluation of the Planners
	Optimisation for the Team4 Planner

	Responsible Research
	Conclusions and Future Work
	Future Work

	The Modified Domain used for this research
	The Improved Domain

