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Summary

Shared bicycle systems have become an important element of sustainable urban mobility, helping to
reduce emissions and congestion while improving first- and last-mile connectivity. However, these
systems often suffer from imbalances between bicycle supply and demand, especially during peak
hours, reducing user satisfaction and system reliability.

This thesis addresses these challenges by proposing a dynamic, time-adaptive repositioning strategy
for continuously operating shared bicycle systems. The strategy integrates station selection, bicycle
quantity decisions, and routing. It adapts the planning horizon based on the time of day using shorter
routes during peak periods and longer routes during off-peak hours and at night. User satisfaction is
captured through a no-service penalty, while operational efficiency is ensured through time-dependent
constraints on route duration. The model is further extended to account for mixed bicycle fleets and
applies vehicle-aware repositioning to improve coordination and reduce computational complexity.

Real-world case studies in Zaragoza and Valladolid show that the dynamic strategy significantly
outperforms both static and no-repositioning methods. In Zaragoza, it enabled approximately 400
additional satisfied trips per day, while in Valladolid it achieved exceeding a satisfaction level of 95%
despite a high demand for electric bicycles. The dynamic approach also proved robust to a 50% increase
in demand for both systems, with only minimal reductions in satisfaction levels.

In summary, this thesis demonstrates that a time-adaptive and integrated repositioning strategy can
greatly enhance service levels and user satisfaction in shared bicycle systems. The approach supports
broader adoption and strengthens the role of shared bicycles in sustainable urban transportation. Future
research could build on these findings by targeting bottlenecks with customized strategies, managing
broken bicycles, which reduce dock availability, and accounting for solar-powered stations, without a
recharge option, where low battery bicycles occupy dock space.
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1
Introduction

Shared bicycle systems have become a key element of sustainable urban transportation by reducing
greenhouse gas emissions, travel time, and traffic congestion, while improving connectivity to other
modes of transit by addressing the first-mile/last-mile challenge (DeMaio, 2009). Over the last two
decades, the number of shared bicycle systems has expanded rapidly, with more than 2000 systems and
nearly 10 million bicycles operating worldwide (O’Brien, 2025).

However, the rapid expansion of shared bicycle systems has also introduced new challenges. With
an increasing number of stations and users, maintaining a balance between supply and demand has
become increasingly complex. A major issue is the imbalance in bicycle availability between different
areas throughout the day. During the morning peak, a large flow of bicycles moves from residential
areas to business districts, while the opposite flow occurs in the evening. This natural movement
causes some stations to become empty, leaving users unable to pick up a bicycle, while others become
overcrowded, making it impossible to return one. This imbalance reduces the system’s efficiency and
user satisfaction, ultimately limiting the growth of users and the overall impact of the system.

To maintain system stability, operators use repositioning vehicles to redistribute bicycles across stations.
Traditionally, repositioning has been reactive, with operators responding to imbalances only after
stations become empty or full. This strategy often leads to delays, inefficient routing, and higher costs.
As a result, imbalances persist longer, making the service less reliable to users. To overcome these
challenges, there is a growing shift toward proactive repositioning, where operators anticipate future
imbalances using demand predictions. By taking proactive action, they can mitigate potential shortages
or surpluses before they disrupt the system, improving service reliability and operational efficiency.

The most common strategy to address the bicycle repositioning problem is a static approach, where
bicycles are redistributed during off-peak hours, mainly at night (Alvarez-Valdes et al., 2016; Chemla
et al., 2013). In this approach, repositioning routes are planned to prepare the system for the expected
demand of the following day. However, this method struggles to respond to real-time system dynamics
and heavily relies on demand predictions, which are often uncertain. Furthermore, solving the resulting
Mixed Integer Programming (MIP) formulation is computationally too complex for large-scale systems,
requiring the use of heuristics and approximations. Additionally, preventing shortages during the
day would require an excessively large fleet of bicycles and number of docks, making this approach
inefficient for dynamic environments.

An alternative strategy is the dynamic approach, in which repositioning occurs during operation,
based on the real-time state of the system and short-term demand forecasts. Repositioning vehicles
are deployed on short routes that serve only the most critical stations. This method offers several
advantages: It can respond to fluctuations in demand, depends less on demand forecasts, and has a low
computational cost, as typically only one vehicle is optimized at a time, specifically the one that has just
completed its previous route.

The dynamic approach to bicycle repositioning can take several forms, each varying in how decisions

1
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are made and actions are planned. One variant involves assigning the next repositioning action, such as
picking up or delivering bicycles, to a vehicle immediately after it completes its previous task. Although
this method enables fast and real-time decision-making, it falls short in terms of routing efficiency, as
each action is treated independently without the possibility of clustering multiple actions within a short
time frame. Another variant follows a two-step structure, where the system first determines either the
optimal number of bicycles to reposition or the route to follow, and subsequently solves the remaining
part of the problem based on that initial decision. Although this method offers a structured framework,
it often lacks flexibility, as the quality of the final outcome strongly depends on the first-stage choices. A
more comprehensive variant integrates repositioning and routing decisions into a single model. This
integrated approach simultaneously determines which stations to visit, how many bicycles to move, and
the optimal sequence of actions. By addressing all subproblems together, it allows vehicles to receive
optimized routes as soon as they become available for reassignment.

Dynamic bicycle repositioning can be planned and updated over different time horizons. The rolling-
horizon method splits the dynamic problem into a series of smaller static subproblems by optimizing
decisions within fixed time steps. In contrast, time-space network flow models represent the problem in
continuous time, enabling the capture of temporal dynamics and coordination among multiple vehicles,
but at the cost of increased computational complexity. To support continuous operation, a time-adaptive
framework, considered a variant of the rolling-horizon approach, generates repositioning routes in
real time while dynamically adjusting the planning horizon based on the time of day. This introduces
temporal flexibility: longer routes during off-peak or overnight periods improve operational efficiency,
while shorter routes during peak hours respond quickly to rapid demand fluctuations, enhancing
service quality.

An extension of the dynamic approach addresses the growing prevalence of mixed bicycle fleets,
particularly with the increasing integration of electric bicycles (Ghamami & Shojaei, 2018). Incorporating
electric bicycles into the repositioning strategy enhances system accessibility, enables longer trips, and
reduces physical effort, making the service more appealing and practical to a wider range of users
(Galatoulas et al., 2020).

To manage computational complexity, especially in large-scale systems, various strategies have been
proposed. A straightforward and commonly used approach is to focus solely on rebalancing imbalanced
stations, thereby limiting the number of stations considered. In addition to this, two location-based
strategies have been suggested. The first involves clustering stations into fixed service zones, reducing
the problem size by allowing vehicles to operate within specific areas or enabling the problem to be
solved in multiple stages. However, this comes at the cost of reduced vehicle flexibility. An alternative
and more adaptive approach, known as vehicle-aware repositioning, accounts for vehicle end locations
to guide potential future assignments. This forward-looking method narrows the solution space without
imposing rigid spatial boundaries, thereby improving fleet coordination and scalability.

1.1. Methodology
This thesis proposes an integrated dynamic repositioning model that simultaneously optimizes station
selection, bicycle movements, and routing in real time. The model incorporates a flexible planning
horizon, which is shorter during peak hours and longer during off-peak periods, to balance service
quality and operational efficiency. The model will be extended to include a mixed bicycle fleet. This
extension increases the complexity of the problem, since repositioning decisions must account for
both bicycle types. To ensure scalability and coordination in multi-vehicle operations, the model uses
vehicle-aware repositioning, taking into account the expected end location of all vehicle to guide future
task assignments.

Building on these elements, this thesis makes four main contributions. First, it defines operational
efficiency and user satisfaction measures specifically for continuously operating shared bicycle systems,
where repositioning vehicles are in constant operation and therefore minimizing operating time is
not a relevant objective. Second, it introduces a time-adaptive dynamic repositioning strategy that
accounts for the changing conditions throughout the day. This strategy integrates station selection,
bicycle quantity decisions, and efficient route planning within a time-dependent planning horizon, with
the primary objective of maximizing user satisfaction while using a flexible maximum route duration.
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Third, the model is extended to address practical complexities, including the presence of a mixed bicycle
fleet and the need for more coordination between operating vehicles. To address this, we introduce
vehicle-aware repositioning, a forward-looking approach that takes into account the expected end
locations of other vehicles into the decision-making process. This reduces computational complexity and
improves operational efficiency, without creating fixed service areas. Finally, based on a realistic case
study, the results offer valuable insights into the growing importance of dynamic bicycle repositioning
for sustaining service quality and ensuring system scalability.

1.2. Structure
This thesis is structured as follows. Chapter 2 reviews the existing literature, while Chapter 3 outlines
the research questions. Chapter 4 introduces the problem and Chapter 5 presents the model. The
model extensions are discussed in Chapter 6. Chapter 7 explains the simulation method and Chapter 8
discusses the case studies. Chapter 9 presents the results. Finally, Chapter 10 and Chapter 11 summarize
the main conclusions and propose directions for future research.



2
Literature review

This literature review begins with an explanation of the static approach to bicycle repositioning,
which was the original method but has notable limitations. We then turn to the dynamic approach,
which addresses many of these shortcomings and forms the main focus of our review. Within this
dynamic framework, we examine various methodological variants, followed by a discussion of possible
extensions aimed at further improving model performance. An overview of the main characteristics of
the literature reviewed in this chapter is provided in Table 2.1. The table classifies studies according
to their repositioning strategy, optimization method, planning horizon, demand prediction type, fleet
composition, coordination level, and primary objective. Only papers explicitly addressing the bicycle
repositioning problem are included; studies focusing exclusively on the station inventory problem,
without routing or relocation considerations are excluded due to their fundamentally different scope
and modeling assumptions.

Table 2.1: Classification of literature on bicycle repositioning approaches

Reference Strategy Optimization method Time horizon Demand predictions Fleet type Coordination Main objective
Static approaches
Chemla et al. (2013) Integrated Exact/Heuristic Fixed - Single Clustering Cost optimization
Rainer-Harbach et al. (2013) Two-step Heuristic Fixed - Single No coordination User satisfaction
Alvarez-Valdes et al. (2016) Two-step Exact Fixed Long-term Single No coordination User satisfaction
Li et al. (2016) Integrated Heuristic Fixed Long-term Mixed No coordination Hybrid
Schuĳbroek et al. (2017) Integrated Heuristic Fixed Long-term Single Clustering Cost optimization
Zhu (2021) Two-step Heuristic Fixed - Mixed No coordination Cost optimization
Dynamic approaches
Caggiani and Ottomanelli (2013) Integrated Simulation-based Rolling horizon Short-term Single No coordination Hybrid
Kloimüllner et al. (2014) Integrated Heuristic Rolling horizon Short- & Long-term Single No coordination User satisfaction
Pfrommer et al. (2014) Two-step Heuristic Rolling horizon Short-term Single Vehicle-aware User satisfaction
Regue and Recker (2014) Two-step Exact Rolling horizon Short-term Single No coordination Hybrid
O’Mahony and Shmoys (2015) Integrated Exact/Heuristic Time-adaptive Short- & Long-term Single Clustering User satisfaction
Brinkmann et al. (2015) Action-based Simulation-based Rolling horizon - Single No coordination User satisfaction
Zhang et al. (2017) Two-step Exact/Heuristic Time-space Short-term Single No coordination Hybrid
Shui and Szeto (2018) Two-step Heuristic Rolling horizon Short-term Single No coordination Hybrid
Caggiani et al. (2018) Integrated Simulation-based Rolling horizon Short-term Single Clustering User satisfaction
Brinkmann et al. (2019) Action-based Simulation-based Time-adaptive Short- & Long-term Single No coordination User satisfaction
Legros (2019) Action-based Exact Rolling horizon Short-term Single Clustering User satisfaction
Jiménez-Meroño and Soriguera (2024) Action-based Heuristic Rolling horizon Short-term Single Vehicle-aware User satisfaction
This study Integrated Exact Time-adaptive Short-term Mixed Vehicle-aware User satisfaction

2.1. Static approach
The static repositioning approach treats the system as "closed" for the purpose of repositioning, which
means that bicycle movements are not considered during operation (Alvarez-Valdes et al., 2016; Rainer-
Harbach et al., 2013). Repositioning typically occurs at night when bicycle use is minimal and demand
is predictable.

The aim is to optimize the distribution of bicycles at the start of each day by predicting future demand
at each station. Raviv and Kolka (2013) propose a method that uses an inventory model to track bicycle
availability over time, accounting for varying demand patterns between stations. By incorporating
expected rental and return patterns, the model helps to maintain inventory balance throughout the day.

4
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As a result, repositioning efforts during the day are minimized, leading to significant cost savings, as
repositioning during the day is more expensive. This approach is further improved by Schuĳbroek et al.
(2017), who enhances the model by using Markov processes to establish lower and upper bounds for the
optimal station inventory, allowing more flexibility.

To achieve these optimal inventory levels, bicycles need to be relocated between stations. This problem
can be viewed as a one-commodity pickup and delivery problem (Hernández-Pérez & Salazar-González,
2004; Salazar-González & Santos-Hernández, 2015), where bicycles are the commodity being transported
between stations, similar to a vehicle routing problem (VRP). In this approach, all routes are planned
simultaneously, typically visiting all stations to achieve the desired bicycle distribution while minimizing
routing costs (Alvarez-Valdes et al., 2016). This problem is often formulated as a mixed integer
programming (MIP) optimization model (Chemla et al., 2013; Salazar-González & Santos-Hernández,
2015), which is an exact method for finding a solution. However, since the problem has been proven to
be NP-hard (Chemla et al., 2013), which means that its complexity increases non-polynomially with the
size of the system, solving it exactly for real-world problems becomes computationally expensive. As a
result, heuristics and approximations are often employed to find feasible solutions (Jiménez-Meroño &
Soriguera, 2024).

Despite its advantages, the static repositioning approach has significant limitations. It cannot respond
to real-time changes in bicycle demand or availability during operational hours. Since the number of
available bicycles is most relevant for prediction horizons of only a few hours, the model is less effective
for longer periods of time (Gast et al., 2015). Furthermore, to prevent imbalances throughout the day, an
unreasonably large bicycle fleet would be required, making this static approach inefficient for dynamic
systems (Jiménez-Meroño & Soriguera, 2024). Therefore, while static models offer an initial solution,
they struggle to accommodate the dynamic nature of shared bicycle systems.

2.2. Dynamic approach
The goal of the dynamic approach to bicycle repositioning is to maintain balanced bicycle availability
across stations in real time, ensuring high user satisfaction by minimizing empty and full stations
during operational hours. Unlike static repositioning, which is heavily dependent on long-term demand
forecasts and preplanned routes, the dynamic approach leverages real-time station data and short-term
demand predictions to make adaptive and responsive decisions throughout the day. A key feature of this
method is that new repositioning routes are generated only after the previous route is completed. This
sequential decision-making process significantly reduces computational complexity, as only one route is
constructed at a time, rather than solving an entire network of repositioning actions simultaneously
(Jiménez-Meroño & Soriguera, 2024). The primary objective of dynamic repositioning is to minimize
unsatisfied demand by proactively adjusting station inventories before they become empty or full.
While factors such as minimizing travel time or aligning station inventories with target fill levels are
still considered, they are generally secondary to service quality (Jiménez-Meroño & Soriguera, 2024).
Studies have shown that even minimal repositioning efforts can lead to substantial improvements in
service levels (Legros, 2019). Interestingly, the optimal inventory level for each station often varies
throughout the day based on demand fluctuations but tends to be independent of vehicle capacity
(Legros, 2019). To support these decisions, various prioritization policies have been developed to select
which stations to visit. These include targeting stations with high current or future unmet demand,
large deviations from desired inventory levels, high movement frequency, or strategic proximity to other
stations (Legros, 2019). In contrast, stations with consistently low demand are deprioritized to avoid
inefficient repositioning operations (Jiménez-Meroño & Soriguera, 2024).

There are different strategies within the dynamic approach to bicycle repositioning, each varying in how
decisions are made and how repositioning actions are planned and executed. One strategy focuses on
assigning the next repositioning task, typically a single pickup or delivery action, to a vehicle immediately
after it completes its previous task. This action-based strategy significantly reduces computational
complexity by avoiding full route planning and instead focuses on individual high-priority actions
based on real-time station data and short-term demand forecasts (Jiménez-Meroño & Soriguera, 2024;
Legros, 2019). This allows for quick responsiveness to demand fluctuations and ensures that the most
critical stations are served in a timely manner. For example, Jiménez-Meroño and Soriguera (2024)
and Legros (2019) model the problem as a pairwise task assignment, where a repositioning vehicle is
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continuously assigned to a single action. Likewise, Brinkmann et al. (2015) introduce a framework that
distinguishes between short- and long-term strategies. Their short-term approach prioritizes nearby
stations with immediate violation risks, while the long-term approach targets the most imbalanced
stations overall. Notably, their model shifts the objective from the quantity of unmet demand to the
duration of due date violations, penalizing the time that stations remain full or empty after user requests.
However, a common limitation of these action-based strategies is that decisions are made sequentially,
considering only one step at a time. This can lead to inefficiencies as opportunities to combine actions
or optimize across multiple stations are missed. For example, visiting two nearby unbalanced stations
together or allowing simultaneous pickups and deliveries might produce better results than handling
each action in isolation (Legros, 2019).

Another strategy is the two-step method, which separates decision-making into sequential optimization
phases. In the version proposed by Pfrommer et al. (2014), the first step involves identifying promising
repositioning routes based on their expected utility. In the second step, the optimal number of bicycles
to relocate along each route is determined, after which the route with the highest overall utility is
selected for execution. A slightly different two-step approach is described by Regue and Recker (2014),
where the process begins by determining the optimal inventory levels at the stations. Based on these
targets, a route is constructed for a single repositioning vehicle. To ensure computational feasibility,
only stations with significant inventory imbalances and within a threshold distance from the vehicle’s
current location are considered. This restriction bounds the size of the problem and enables the use
of traditional solvers. The method also allows pickups or drop-offs at balanced "buffer" stations to
avoid situations where the vehicle becomes empty or overfull, thereby increasing operational flexibility.
A common limitation of two-step approaches lies in the strong influence that the first-stage decision
has on the overall outcome. Although fixing part of the solution early can improve computational
efficiency and structure the problem, it also reduces flexibility in the second stage, potentially leading to
suboptimal results.

The integrated approach to dynamic bicycle repositioning combines the decisions of determining which
stations to visit, the optimal number of bicycles to relocate, and the most efficient routing (Kloimüllner
et al., 2014). By addressing all of these subproblems together in a single model, the integrated approach
enables vehicles to receive optimized repositioning routes. This approach ensures that the repositioning
process is highly responsive to real-time demand fluctuations, ultimately improving both operational
efficiency and user satisfaction.

An important dimension in dynamic bicycle repositioning is the time horizon over which decisions
are planned and updated. Two common formulations are the rolling-horizon and the time–space
network approaches, which can be applied to different repositioning strategies regardless of whether
they are integrated, two-step, or action-based. The rolling-horizon method divides the operational
period into a sequence of fixed-duration intervals, each treated as a static subproblem (Shui & Szeto,
2018). Within each stage, real-time station statuses and short-term demand forecasts are assumed to
be known in advance, effectively making the problem static for that interval. Once the repositioning
routes are executed, the system is updated with new inventory levels and demand estimates, and the
next stage begins. This approach maintains adaptability to changing conditions while simplifying the
optimization process at each step. A common implementation of this method is to divide the day into
five-minute intervals (Caggiani & Ottomanelli, 2013; Caggiani et al., 2018; Shui & Szeto, 2020). This short
interval lengths provides sufficient opportunities to react to fluctuations in demand while keeping the
computational effort manageable. However, assumptions about how repositioning actions align with
these time steps vary. In the work of Caggiani et al. (2018), a single task must be completed in a single
five-minute step, ensuring a clear separation between consecutive tasks. In contrast, Shui and Szeto
(2018) allow repositioning operations to span multiple time steps, offering greater flexibility and realism,
particularly for longer travel distances or more complex routes. The time–space network approach
instead models operations on a continuous-time basis, providing a more detailed representation of
system dynamics. This method, as explored by Zhang et al. (2017), facilitates real-time decision-making
by capturing the evolving nature of both the repositioning process and station demand. A key advantage
of this approach is its ability to take into account the actual station status when the repositioning vehicle
arrives, resulting in more accurate repositioning actions. However, flexibility in modeling comes with
a significant increase in computational complexity. To manage this, Zhang et al. (2017) proposed a
decomposition into a two-stage optimization model, reformulating the original nonlinear problem into
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a mixed-integer problem. Although this makes the problem more tractable, such a staged approach
inherently leads to suboptimal solutions, as decisions in the first stage do not fully anticipate outcomes
of the second. As a result, this approach has seen limited application in the literature and remains
impractical for large-scale, real-world systems.

The dynamic approach can be extended in several ways to further enhance system performance. One
extension is the time-adaptive approach, considered as a variant of the rolling-horizon method, which
accounts for the heterogeneous demand patterns throughout the day, recognizing that the operator’s
priorities typically align with these varying demand levels. O’Mahony and Shmoys (2015) propose
using a clustering model during the day and a routing model overnight, acknowledging that different
periods require tailored strategies. Brinkmann et al. (2019) propose a policy that simulates future
demand over a predefined horizon, with decision-making horizons that vary throughout the day to
capture heterogeneous demand patterns. These time-dependent look-ahead horizons are autonomously
set using value function approximation, enabling the system to anticipate peak-hour commuter demand
without extending simulations unnecessarily. From an operational perspective, their model assumes
that repositioning vehicles operate continuously throughout the day and that costs related to routing
and drivers are already incurred. As a result, transportation costs are excluded from the optimization,
allowing the model to focus primarily on maintaining high service levels.

Another valuable extension is the consideration of a mixed fleet, involving multiple types of bicycles.
Shui and Szeto (2020) point out that most existing dynamic repositioning models assume homogeneous
fleets, which limits their applicability to real-world systems that often offer a variety of bicycle types, such
as electric and mechanical bicycles. The model proposed by Li et al. (2016) introduces this heterogeneity
by considering bicycles with varying characteristics, such as multi-seat configurations. Zhu (2021)
studies how the integration of electric bicycles into a mechanical fleet impacts system performance. This
introduces new operational challenges: A surplus of one type of bicycle cannot necessarily compensate
for a shortage of another, and different types of bicycles may occupy varying amounts of space in
both repositioning vehicles and docking stations. To address this, Martins Silva et al. (2023) determine
target inventory levels for each bicycle type and examine how the willingness of users to substitute
their preferred bicycle type influences system performance. These complexities highlight the need for
more refined loading and unloading strategies, as well as more advanced decision-making processes to
ensure that the correct type of bicycle is delivered to meet the specific user demand.

A final extension aimed at reducing computational complexity involves considering vehicle locations in
the decision-making process. Traditionally, many studies address complexity by clustering stations
into distinct service areas, each assigned to a repositioning vehicle. For example, Chemla et al. (2013),
Schuĳbroek et al. (2017) and Legros (2019) divide the city into exclusive zones to avoid coordination
issues and allow independent vehicle routing. Similarly, O’Mahony and Shmoys (2015) propose
clustering stations during peak hours to manage high demand and system fluctuations. Clustering helps
reduce the problem size and avoids long truck routes, which are unreliable due to extensive traffic and
fast-changing demand. Stations with similar rush-hour behavior are grouped into clusters (Caggiani
et al., 2018), each assigned a target service level based on typical usage patterns. Although clustering
offers clear computational advantages, it can limit flexibility, particularly in dynamic environments. To
address this, a more adaptive strategy, vehicle-aware repositioning, directly incorporates the locations of
other repositioning vehicles into the model. Pfrommer et al. (2014) and Jiménez-Meroño and Soriguera
(2024), for example, explicitly consider the end locations of all other repositioning vehicles in the
system when assigning a new task. This approach preserves some of the efficiency of clustering,
while enhancing flexibility by enabling decisions that account for both current and anticipated vehicle
positions.

2.3. Our contributions
An analysis of the current literature reveals that most studies on bicycle repositioning focus on static
repositioning during the night or dynamic repositioning during the day, often overlooking the changing
conditions throughout the day. In contrast, we consider systems that operate continuously using
time-dependent planning horizons. Unlike traditional approaches that prioritize cost minimization,
our model focuses exclusively on maximizing user satisfaction and incorporates a flexible maximum
route duration. We propose an integrated model that simultaneously determines which stations to visit,
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how many bicycles to relocate, and the most efficient route to follow. Although most existing research
assumes a homogeneous bicycle fleet, the introduction of electric bicycles adds complexity that requires
additional operational constraints. To address this, we extend our model to accommodate a mixed
fleet. Finally, to reduce computational complexity and enhance coordination among vehicles, we apply
vehicle-aware repositioning, which introduces restrictions based on the end locations of other vehicles.
This method excludes locations near the end locations of other vehicles when assigning the next task.



3
Research Questions

The objective of this research is to enhance the repositioning of shared bicycles by means of a dynamic,
flexible time-horizon approach that optimizes user satisfaction while ensuring operational efficiency.
By doing so, the system can attract more users and increase the overall impact of shared bicycles. To
achieve this, the following main research questions need to be answered:

How can operational efficiency and user satisfaction be measured in continuously operating
shared bicycle systems?

How can a time-adaptive dynamic bicycle repositioning model, integrating real-time station
data and demand forecasts, optimize operational efficiency and user satisfaction?

How can a dynamic bicycle repositioning model be extended for a mixed bicycle fleet?

The main research questions are jointly answered by the following sub-questions:

1. How can a repositioning strategy be used for continuously operating shared bicycle systems?
2. How can vehicle-aware repositioning enhance operational efficiency and reduce computational

complexity?

Chapter 4 addresses the first sub-question. It explains how a continuously operating shared bicycle
system can be repositioned and identifies the inputs required for a repositioning strategy. The first
research question is tackled at the beginning of Chapter 5, where operational efficiency and user
satisfaction are defined for continuously operating systems. In the remainder of that chapter the second
research question is answered with a description of the development of the time-adaptive dynamic
repositioning model and an explanation of how real-time station data and demand forecasts are used.
The third research question is addressed in Chapter 6, where it is explained how the model is extended
to manage a mixed fleet of mechanical and electric bicycles. This chapter also addresses the second
sub-question by introducing vehicle-aware repositioning, a method that incorporates the expected end
locations of other vehicles to improve coordination and reduce computational complexity.

Finally, Chapter 7 presents the simulation tool used to evaluate the proposed strategies, while in Chapter
8 the application to realistic case studies is discussed. The resulting analysis in Chapter 9 shows the
impact of these choices on operational efficiency and user satisfaction, highlighting the key trade-offs.

9



4
Problem definition

To evaluate the trade-off between operational efficiency and user satisfaction, we consider a daily
operation of a shared bicycle system. The system must function across different time periods, overnight,
peak, and off-peak hours, each characterized by different demand patterns. Throughout the day,
multiple repositioning vehicles continuously relocate bicycles to maintain a balanced inventory across
stations, based on the current number of bicycles at each station and the expected demand in the
upcoming period. Each driver completes one task at a time, usually involving multiple actions, such as
picking up or delivering bicycles. After completion of a task, the driver requests a new one. Therefore,
for each vehicle, a route must be created by assigning the next task to be performed, unaware of which
tasks will follow. We begin by presenting the dynamic framework, which outlines the steps involved in
creating the next route, starting with the driver’s request for the next task and ending with the execution
of that task. Thereafter, we explain briefly the real-time station status, the demand predictions, and the
no-service penalties.

4.1. Dynamic framework
The steps of creating the next route are presented in the dynamic framework (Figure 4.1). The process
begins in the upper-left corner, where a driver requests a new task after completing the previous one.
This request enters the platform, which analyzes the real-time status of all stations defined as the number
of bicycles available and free docking spots. Additionally, demand predictions are generated for the
upcoming period. The system status and demand predictions are used as inputs to the no-service level
function. This value is computed for each station using the function 𝑓 (𝑆, 𝐷), where 𝑆 represents the
current inventory level and 𝐷 denotes the predicted demand. Together, these values represent the
expected inventory at each station if no-repositioning actions are performed. The resulting no-service
penalties are then used as inputs for the Dynamic Bicycle Repositioning Problem with Flexible Time
Horizon (DBRPFTH). This model determines which stations to visit, how many bicycles to relocate, and
the most efficient route to follow. A detailed description of the model is provided in Chapter 5. Once
the next route is determined, the task is assigned to the driver for execution. Upon completion, the
driver submits a new task request, and the cycle repeats.

10
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Figure 4.1: Schematic overview of the dynamic framework

4.2. Real-time station status
The real-time station status describes the current state at each station. It contains the number of available
bicycles and the number of free docking spots. The data will be collected from open-access data
sources in the standard General Bikeshare Feed Specification (GBFS) format, which contains real-time
information on shared bicycle systems. This includes data on vehicle and station locations, dock
availability, bicycle characteristics, service pricing, and rental conditions. It is updated every 30 seconds.

4.3. Demand predictions
The demand predictions estimate fluctuations in bicycle levels at each station for the next time interval.
Hence, the expected inventory level strongly depends on the demand predictions. To ensure flexibility,
the prediction horizon adapts to the planning of each repositioning route. During peak hours, shorter
forecasts of 30 minutes are preferred due to rapid changes in station inventory levels. In contrast,
longer prediction windows of 40 to 45 minutes are more suitable for overnight and off-peak periods
when fluctuations are less frequent. Additionally, predictions align dynamically with route schedules.
For example, if a route ends at 10:40 with half-hour forecast horizon, predictions are generated for
10:40–11:10 instead of using a fixed 10:30–11:00 window. This is achieved by partitioning predictions
into five-minute intervals, allowing flexible adaptation to different start times and planning horizons.

The prediction model relies solely on unconstrained historical demand data, which means that changes
in bicycle inventory are unaffected by station capacity limits. If a station has no bicycles and is still empty
in the next period, the actual demand might be nonzero, but any demand is unobservable. Similarly,
when a station reaches full capacity, the number of users who wanted to return a bicycle, but were
unable to do so remains unknown. To ensure accuracy, we only used historical data where the station
inventory remained within capacity limits during the next interval.

The demand prediction model consists of several steps. The first step involves clustering past dates
based on their demand patterns, without considering calendar characteristics. The number of trips for
all stations will be aggregated to an overall demand for a day, so it will be clustered to a total demand.
Note that if the demand pattern for several stations differs significantly from the usual pattern, the
day will be in a different cluster. Importantly, rainy days are excluded from clustering because rain
negatively affects demand, potentially leading to misclassifications.

In the second step, a machine learning (ML) classification model predicts the cluster to which a future
date belongs based on its calendar characteristics, such as the day of the week, month, holidays, and
special events.

In the third step, an ML regression model forecasts demand for the next time interval using multiple
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inputs:

• The assigned cluster for the date
• Lagged variables from previous periods
• Demand fluctuations at similar past dates within the same cluster
• Calendar variables
• The latest meteorological forecasts, including rain, temperature, wind speed, and humidity

To improve reliability, three separate models are trained: one to predict the mean demand, and two
quantile regressors to estimate the lower and upper demand bounds. These quantile models are trained
with loss functions that emphasize penalties on either negative demand (more bicycles taken than
returned) or positive demand (more bicycles returned than taken), which allow an estimation of the
20th and 80th percentiles, respectively. To improve robustness against demand uncertainty, the system
adopts a worst-case scenario approach based on the estimated demand bounds. When the lower and
upper quantiles indicate that two additional bicycles might be picked up or dropped off and the station
is currently empty, the scenario with more pickups is considered the worst case. In contrast, if the
station is full, the scenario with more deliveries is considered worse. This conservative approach helps
mitigate the risk of demand fluctuations, ensuring a more reliable and stable system.

4.4. No-service penalties
The no-service penalties will be determined using real-time station status and demand predictions, as
these two factors allow us to determine the expected inventory level for each station in the upcoming
period, assuming no repositioning actions are taken. The ideal scenario for each station is a balance
between the number of bicycles and free docks, ensuring that the station is neither empty nor full,
and is capable of accommodating future demand. Since future demand is uncertain, stations that are
near-empty or near-full are considered suboptimal. A no-service penalty will be imposed if the station
occupancy becomes nearly empty or nearly full. Operators often apply priority rules, where certain
stations, such as those in city centers, near key buildings, or at major transit hubs, are given higher
priority. To reflect this, priority stations will have a higher penalty factor.

The problem definition outlined in this chapter forms the basis for the mathematical formulation
presented in the next chapter.



5
Model formulation

In this chapter, we introduce the Dynamic Bicycle Repositioning Problem with Flexible Time Horizon
(DBRPFTH), which focuses on determining the stations to visit, the optimal number of bicycles to
relocate, and creating an efficient route with a flexible time horizon. We formulate the DBRPFTH as a
standard Mixed Integer Linear Program (MILP) to optimize user satisfaction, while ensuring operational
efficiency. This model is based on the Static Bicycle Repositioning Problem (SBRP) introduced by Raviv
et al. (2013). We begin by introducing the measures for operational efficiency and user satisfaction
before we delve deeper into the model.

5.1. Measures
In bicycle repositioning problems, the goal is typically to find a balance between operational efficiency,
often expressed in terms of duration, distance, or 𝐶𝑂2 emissions, and user satisfaction, which is
commonly measured by the level of service. In this thesis, we introduce specific measures for both
operational efficiency and user satisfaction in the context of a continuously operating bicycle system
with changing conditions throughout the day.

5.1.1. Operational efficiency
Operational efficiency is important in evaluating repositioning strategies with the primary goal of
creating efficient routes that respond effectively to fluctuations in station inventory levels. In our
context, where the number of drivers is predetermined and vehicles operate continuously, traditional
cost-minimization objectives, such as reducing driver wages and vehicle operations, are less relevant.
Since drivers request new routes immediately after completing the previous one, minimizing routing
costs does not significantly impact efficiency. Instead, we focus on creating efficient routes to maximize
user satisfaction.

We introduce a maximum route duration 𝑇, which determines how long a vehicle can operate before
requesting a new route. The route duration is influenced by the travel time between stations, which
varies throughout the day, and the stop time, which includes both a fixed time to pick up or deliver
bicycles and an additional component based on the number of bicycles being moved. To account for
variations in travel time and system conditions throughout the day, we divide the day into three distinct
time intervals: peak hours, off-peak hours, and overnight. Each time period falls within one of these
intervals, allowing parameters to be defined at the interval level rather than for each individual time
period. To further adapt to these variations, we use different duration matrices for travel times in each
interval, ensuring that travel times accurately reflect the conditions during repositioning routes.

In order to address variations in demand and station inventory fluctuations throughout the day, we
introduce the time-dependent maximum route duration, 𝑇𝑡 , where 𝑡 represents the specific time
period. During peak hours, when demand is high and station inventory fluctuates significantly, it
becomes crucial to respond quickly to these fluctuations by planning shorter routes. To achieve this,
we reduce the maximum route duration 𝑇𝑡 during peak hours, ensuring that repositioning routes can

13
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adapt faster to rapid changes in inventory levels. On the other hand, during overnight and off-peak
hours, when demand is lower and station inventory levels are more stable, the model shifts its focus
towards optimizing operational efficiency. In these periods, longer routes can be planned because the
station inventory fluctuates less, allowing more actions to be efficiently included in a single route. To
accommodate this, the maximum route duration 𝑇𝑡 is extended, which allows the system to optimize for
fewer, but longer, repositioning tasks.

5.1.2. User satisfaction
User satisfaction is assessed by no-service penalties, as described in Section 4.4. A penalty is imposed if
the expected station occupancy, determined by the current inventory level and the demand forecast
for the upcoming period, falls below a lower threshold (nearly empty) or exceeds an upper threshold
(nearly full). These penalties are calculated based on the squared deviation from the thresholds, which
places greater emphasis on larger deviations. This reflects the fact that extreme imbalances can result in
unmet demand. Moreover, the impact of repositioning a single bicycle can go beyond the benefit of a
single user, as it may enable a chain of successful rentals and returns (Chemla et al., 2013). Additionally,
a fixed penalty is applied if a station becomes completely empty or full. Together, these mechanisms
discourage extreme inventory levels and promote more balanced stations, ultimately aiming to improve
service levels and reduce the risk of long-term negative consequences.

To determine the optimal inventory level for each station in the upcoming periods, demand forecasts are
incorporated for both the upcoming period and the period after. The demand in the upcoming period
reflects the demand during which repositioning takes place, while the forecast for the two periods ahead
represents the expected demand after repositioning has occurred. For example, if a station is expected
to become (nearly) full in the coming period, we know that a pickup is needed, but it remains unclear
whether this should involve removing 25%, 50%, or 75% of the bicycles. The forecast for the period
after repositioning helps refine this decision: If demand is expected to be positive (more returns than
withdrawals), it is preferable to leave fewer bicycles in the station; if demand is expected to be negative
(more withdrawals than returns), having more bicycles available is advantageous. This component is
integrated into a quadratic penalty function, where the penalty is lowest at the target inventory level
that best aligns with anticipated demand. A relatively small weight is assigned to this term to ensure
that inventory levels outside the acceptable range are still penalized more heavily than those within
it. This structure prioritizes meeting immediate demand predictions while using future forecasts to
fine-tune inventory within the preferred bounds.

Lastly, higher weights are applied to the penalties of priority stations to ensure that they receive more
attention in optimization.

5.2. Notation
The dynamic repositioning problem is described by the following set and parameters:

𝑁 Set of nodes, including the depot, indexed by 𝑖 = 0, . . . , |𝑁|.
𝑖𝑜 Origin node, where the repositioning operation starts.
𝑠0
𝑖

Number of bicycles at node 𝑖 before the repositioning operation starts.
𝑑1
𝑖

Predicted demand at node 𝑖 for the next period.
𝑑2
𝑖

Predicted demand at node 𝑖 for two periods ahead.
𝑐𝑖 Number of docks installed at node 𝑖, referred to as the node’s capacity.
𝑐𝑚𝑎𝑥 Maximum number of docks.
𝑙 Initial load in the vehicle.
𝑘 Capacity (number of bicycles) of the vehicle.
𝑓𝑖(𝑠𝑖) Penalty function reflecting user satisfaction for node 𝑖.
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𝑟𝑖 𝑗 Traveling time from node 𝑖 to node 𝑗.
𝑇𝑡 Repositioning time, i.e., maximum duration of a repositioning route in period 𝑡.
𝑉 Constant time required for visiting a node.
𝑃 Time required to pick up a bicycle from a node.
𝐷 Time required to deliver a bicycle to a node.
𝑀 Upper bound on number of arcs, default is |𝑁|

Note that only imbalanced stations are considered to reduce computational complexity (Regue & Recker,
2014). The depot is assumed to have no demand and capacity, because the vehicle cannot drop-off or
pick up bicycles at the depot. Since the driver requests a new route after completing the previous one,
the vehicle does not necessarily start its route from the depot. Instead, the starting location is referred to
as the origin node, denoted by 𝑖𝑜 . Station capacity is defined as the total number of usable bicycles and
docks, excluding any that are broken or unavailable.

The following decision variables will be used:

𝑥𝑖 𝑗 Binary variable which equals one if the vehicle travels directly from node 𝑖 to node 𝑗,
and zero otherwise.

𝑦𝑖 𝑗 Number of bicycles carried on the vehicle when it travels directly from node 𝑖 to node 𝑗.
If the vehicle does not travel directly from 𝑖 to 𝑗, 𝑦𝑖 𝑗 is zero.

𝑦𝑃
𝑖

Number of bicycles picked up at node 𝑖.
𝑦𝐷
𝑖

Number of bicycles delivered at node 𝑖.
𝑧𝑃
𝑖

Binary variable which equals one if bicycles are picked up from node 𝑖, and zero otherwise.
𝑧𝐷
𝑖

Binary variable which equals one if bicycles are delivered to node 𝑖, and zero otherwise.
𝑧𝑖 Binary variable which equals one if action is performed at node 𝑖, and zero otherwise.
𝑞𝑖 Auxiliary variable used for sub-tour elimination constraints.
𝑠𝑖 Expected inventory level at node 𝑖 at the end of the repositioning operation.

5.3. Objective function
Our objective is to maximize user satisfaction by minimizing no-service penalties, using the satisfaction
measures defined in Subsection 5.1.2. This approach is supported by Caggiani and Ottomanelli (2013),
who model utility as a plateau function, where utility increases from an empty station to a sufficient
lower bound, remains high within an optimal range, and decreases as the station nears full capacity.
However, in contrast to their approach, we aim to determine the optimal inventory level within the
acceptable range (the plateau) based on the demand predictions for the period after repositioning,
which corresponds to two periods ahead.

We introduce the penalty function to evaluate the expected inventory levels. This function combines
a convex component and a piecewise-linear component to reflect the penalties related to imbalanced
stations, based on the research of Raviv et al. (2013). To incorporate this function into an optimization
model, we reformulate both components into linear terms using auxiliary variables and constraints.
This transformation enables the complete model to be expressed as a Mixed-Integer Linear Program
(MILP), following the approach of Raviv et al. (2013). It is important to note that the values of 𝑓𝑖(𝑠𝑖) can
be calculated from the input variables.
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The function contains the following parameters:

𝐿 Percentage of station capacity considered as almost empty
𝐻 Percentage of station capacity considered as almost full
𝑝𝐿 Penalty (almost) empty station
𝑝𝐻 Penalty (almost) full station
𝑝𝑐𝐿 Constant penalty empty station
𝑝𝑐𝐻 Constant penalty full station
𝛼𝑖 Weight/scaling factor for priority stations, set to 1 if station 𝑖 is not a priority
𝛽 Weight/scaling factor for optimal inventory level

The penalty function for station 𝑖 ∈ 𝑁 given station inventory level 𝑠𝑖 is as follows:

𝑓𝑖(𝑠𝑖) = 𝛼𝑖

(
𝑝𝐿

(
max(𝑐𝑖 · 𝐿 − 𝑠𝑖 , 0)

)2 + 𝑝𝐻
(
max(𝑠𝑖 − 𝑐𝑖 · 𝐻, 0)

)2

+ 𝛽

(
𝑠𝑖 −

(
𝐿 + 𝐻

2 · 𝑐𝑖 − 𝑑2
𝑖

))2

+ 𝑝𝑐𝐿 1𝑠𝑖≤0 + 𝑝𝑐𝐻 1𝑠𝑖≥𝑐𝑖

)
∀𝑖 ∈ 𝑁

(5.1)

In the repositioning model, scalar factors 𝛼𝑖 are introduced to assign greater importance to penalties at
priority stations. The penalty function consists of five components that can be divided into two types:
convex components and piecewise linear components. The first three components form the convex part
of the function, while the last two components introduce piecewise linear penalties. Consequently, the
penalty function 𝑓𝑖(𝑠𝑖) can be separated into a convex penalty function 𝑓 𝐶

𝑖
(𝑠𝑖) and a piecewise linear

penalty function 𝑓 𝐿
𝑖
(𝑠𝑖).

𝑓 𝐶𝑖 (𝑠𝑖) = 𝛼𝑖

(
𝑝𝐿

(
max(𝑐𝑖 · 𝐿 − 𝑠𝑖 , 0)

)2 + 𝑝𝐻
(
max(𝑠𝑖 − 𝑐𝑖 · 𝐻, 0)

)2

+ 𝛽

(
𝑠𝑖 −

(
𝐿 + 𝐻

2 · 𝑐𝑖 − 𝑑2
𝑖

))2
)

∀𝑖 ∈ 𝑁

𝑓 𝐿𝑖 (𝑠𝑖) = 𝛼𝑖

(
𝑝𝑐𝐿 1𝑠𝑖≤0 + 𝑝𝑐𝐻 1𝑠𝑖≥𝑐𝑖

)
∀𝑖 ∈ 𝑁

The first component of the convex penalty function addresses situations where the inventory level of
a station 𝑠𝑖 drops below a low threshold, indicating that the station is nearly empty. This penalty is
squared and weighted by the scalar 𝑝𝐿, increasing the penalty as the inventory level is further from the
threshold. The second component focuses on stations that are (nearly) full, applying a similar squared
penalty with a scalar 𝑝𝐻 as 𝑠𝑖 approaches the station’s full capacity.

The third component is always active, but is specifically used in determining the optimal inventory
level within the acceptable range. It distinguishes between inventory levels that are still balanced,
between the lower and upper bounds, by using the demand forecast for two periods ahead, which is the
demand in the period after repositioning. If the post-repositioning forecast is positive (indicating more
returns than withdrawals), it is better to leave fewer bicycles at the station to prevent overflow. As a
result, the penalty function then favors lower inventory levels. In contrast, if the forecast is negative
(more withdrawals than returns), the system benefits from higher bicycle availability, and the penalty is
minimized at higher inventory levels. The minimum penalty corresponds to the inventory level that
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best matches the expected post-repositioning demand. A small scalar weight 𝛽 is applied to this term to
ensure that inventory levels outside the boundaries are always worse than inventory levels within the
boundaries. This ensures that the model prioritizes meeting immediate demand (during repositioning).
Future forecasts are used to fine-tune inventory levels within the bounds. This results in more balanced
and forward-looking repositioning decisions.

The piecewise linear components introduce additional penalties when a station becomes either completely
empty or completely full. These components are captured by an indicator function that equals 1 if 𝑠𝑖 is
non-positive (station is empty) or greater than or equal to the station’s capacity 𝑐𝑖 (station is full). A
negative inventory level is possible when the station expects a large demand deficit, i.e. significantly
more bicycles are taken than returned. Similarly, an inventory level exceeding the station’s capacity can
occur when the station expects a large demand surplus, i.e. significantly more bicycles are returned
than taken.

Together, the above mentioned five components ensure that the repositioning strategy not only addresses
immediate demand and balances stations within acceptable inventory levels, but also accounts for
future demand fluctuations, minimizes the likelihood of stations becoming entirely empty or full, and
prioritizes critical stations that directly impact service levels.

To transform the convex penalty function 𝑓 𝐶
𝑖

into linear terms, we must first determine the domain
of the expected inventory level 𝑠𝑖 . This level depends on the initial inventory before repositioning 𝑠0

𝑖
,

the predicted demand 𝑑1
𝑖
, and the repositioning actions 𝑦𝑃

𝑖
(pickups) and 𝑦𝐷

𝑖
(drop-offs). The initial

inventory 𝑠0
𝑖

ranges from 0 to the station capacity 𝑐𝑖 , while 𝑑1
𝑖

can take any integer value. Repositioning
actions 𝑦𝑃

𝑖
and 𝑦𝐷

𝑖
are limited by the number of bicycles at the station or the free docks available before

repositioning. If 𝑑1
𝑖

is zero, the inventory 𝑠𝑖 will remain within the range [0, 𝑐𝑖]. However, if 𝑑1
𝑖

is
negative, which means that more bicycles are taken than returned, 𝑠𝑖 can drop below zero, extending
the lower bound of the domain to 𝑑1

𝑖
. Conversely, if 𝑑1

𝑖
is positive, which means that more bicycles are

returned than taken, 𝑠𝑖 can exceed the station’s capacity, extending the upper bound to 𝑑1
𝑖
+ 𝑐𝑖 . Thus,

the overall domain of 𝑠𝑖 is given by:

[𝑚𝑖𝑛(0, 𝑑1
𝑖 ), 𝑚𝑎𝑥(𝑐𝑖 , 𝑐𝑖 + 𝑑1

𝑖 )]

To replace the convex penalty functions 𝑓 𝐶
𝑖

with a linear term and linear constraints, we introduce the
following set and equations:

𝑈 = [𝑚𝑖𝑛(0, 𝑑1
𝑖 ), 𝑚𝑎𝑥(𝑐𝑖 − 1, 𝑐𝑖 − 1 + 𝑑1

𝑖 )]
𝑏𝑖𝑢 ≡ 𝑓 𝐶𝑖 (𝑢 + 1) − 𝑓 𝐶𝑖 (𝑢) ∀𝑖 ∈ 𝑁, 𝑢 ∈ 𝑈

𝑎𝑖𝑢 ≡ 𝑓 𝐶𝑖 (𝑢) − 𝑏𝑖𝑢 · 𝑢 ∀𝑖 ∈ 𝑁, 𝑢 ∈ 𝑈

The set 𝑈 represents the indices over which 𝑠𝑖 is defined. The term 𝑏𝑖𝑢 captures the marginal penalty
associated with adding the (𝑢 + 1)𝑡ℎ bicycle to station 𝑖. Together, 𝑎𝑖𝑢 and 𝑏𝑖𝑢 represent the intercept
and slope, respectively, of the linear function that approximates the convex penalty function 𝑓 𝐶

𝑖
at the

𝑢𝑡ℎ level. These linear approximations are included as constraints in the MILP to ensure that the correct
value of the convex part is considered in the objective function, depending on the expected inventory
level 𝑠𝑖 . The resulting value of the convex penalty function for each station is captured by the variable
𝑔𝑖 , which is included in the objective function.

To linearize the piecewise penalty function 𝑓 𝐿
𝑖

, we replace the indicator functions in 𝑓 𝐿(·) with binary
decision variables. Specifically, we define the binary variables 𝑤𝑖 and 𝑜𝑖 , which indicate whether station
𝑖 is empty or full, respectively. That is, 𝑤𝑖 = 1 if the inventory level 𝑠𝑖 ≤ 0, and 𝑜𝑖 = 1 if the inventory
level 𝑠𝑖 ≥ 𝑐𝑖 . To enforce this behavior, we introduce two linear constraints using a sufficiently large
constant 𝐶.



5.4. Mathematical model 18

5.4. Mathematical model
The mathematical model for the dynamic bicycle repositioning problem is as follows:

min
∑
𝑖∈𝑁

𝑔𝑖 + 𝛼𝑖(𝑝𝑐𝐿 · 𝑤𝑖 + 𝑝𝑐𝐻 · 𝑜𝑖) (5.2)

s.t. 𝑔𝑖 ≥ 𝑎𝑖𝑢 + 𝑏𝑖𝑢 · 𝑠𝑖 ∀𝑖 ∈ 𝑁, 𝑢 ∈ 𝑈 (5.3)
𝑠𝑖 > −𝐶 · 𝑤𝑖 ∀𝑖 ∈ 𝑁 (5.4)
𝑠𝑖 < 𝑐𝑖 + 𝐶 · 𝑜𝑖 ∀𝑖 ∈ 𝑁 (5.5)
𝑠𝑖 = 𝑠0

𝑖 + 𝑑1
𝑖 − (𝑦𝑃𝑖 − 𝑦𝐷𝑖 ) ∀𝑖 ∈ 𝑁 (5.6)

𝑦𝑃𝑖 − 𝑦𝐷𝑖 =

∑
𝑗∈𝑁,𝑗≠𝑖

𝑦𝑖 𝑗 −
∑

𝑗∈𝑁,𝑗≠𝑖

𝑦 𝑗𝑖 ∀𝑖 ∈ 𝑁 \ 𝑖𝑜 (5.7)

𝑙 + 𝑦𝑃𝑖𝑜 − 𝑦𝐷𝑖𝑜 =

∑
𝑗∈𝑁,𝑗≠𝑖𝑜

𝑦𝑖𝑜 𝑗 (5.8)

𝑦𝑖 𝑗 ≤ 𝑘 · 𝑥𝑖 𝑗 ∀𝑖 , 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (5.9)∑
𝑗∈𝑁,𝑗≠𝑖

𝑥𝑖 𝑗 =
∑

𝑗∈𝑁,𝑗≠𝑖

𝑥 𝑗𝑖 ∀𝑖 ∈ 𝑁 (5.10)

𝑦𝑃𝑖 ≤ 𝑠0
𝑖 ∀𝑖 ∈ 𝑁 (5.11)

𝑦𝐷𝑖 ≤ 𝑐𝑖 − 𝑠0
𝑖 ∀𝑖 ∈ 𝑁 (5.12)∑

𝑖∈𝑁
(
∑
𝑗∈𝑁

𝑟𝑖 𝑗 · 𝑥𝑖 𝑗 + 𝑃 · 𝑦𝑃𝑖 + 𝐷 · 𝑦𝐷𝑖 +𝑉 · 𝑧𝑖) ≤ 𝑇𝑡 (5.13)

𝑞 𝑗 ≥ 𝑞𝑖 + 1 − 𝑀(1 − 𝑥𝑖 𝑗) ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 \ 𝑖𝑜 , 𝑖 ≠ 𝑗 (5.14)
𝑦𝑃
𝑖

𝑐𝑚𝑎𝑥
≤ 𝑧𝑃𝑖 ≤ 𝑦𝑃𝑖 ∀𝑖 ∈ 𝑁 (5.15)

𝑦𝐷
𝑖

𝑐𝑚𝑎𝑥
≤ 𝑧𝐷𝑖 ≤ 𝑦𝐷𝑖 ∀𝑖 ∈ 𝑁 (5.16)

𝑧𝑃𝑖 + 𝑧𝐷𝑖 <= 1 ∀𝑖 ∈ 𝑁 (5.17)
𝑧𝑃
𝑖
+ 𝑧𝐷

𝑖

2 ≤ 𝑧𝑖 ≤ 𝑧𝑃𝑖 + 𝑧𝐷𝑖 ∀𝑖 ∈ 𝑁 (5.18)

𝑥𝑖 𝑗 ∈ B ∀𝑖 , 𝑗 ∈ 𝑁 (5.19)
𝑧𝑃𝑖 , 𝑧

𝐷
𝑖 , 𝑧𝑖 ∈ B ∀𝑖 ∈ 𝑁 (5.20)

𝑦𝑃𝑖 , 𝑦
𝐷
𝑖 ∈ Z≥0 ∀𝑖 ∈ 𝑁 (5.21)

𝑦𝑖 𝑗 ≥ 0 ∀𝑖 , 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (5.22)
𝑞𝑖 ≥ 0 ∀𝑖 ∈ 𝑁 (5.23)

The objective function (5.2) minimizes the no-service penalties, as described by (5.1). Constraints
(5.3) determine the convex no-service penalties based on the linearization intercept and slope, while
constraints (5.4) and (5.5) set the piecewise-linear no-service penalties. The inventory balance is enforced
by constraints (5.6), which set the expected inventory levels after repositioning. Additionally, bicycle
flow is conserved by the constraints (5.7), while the constraint (5.8) ensures that the flow leaving the
origin node equals the initial vehicle load plus any actions taken at the origin. The constraints (5.9) limit
the number of bicycles carried by a vehicle to its capacity and ensure that no bicycles are transported
along an arc if the vehicle does not use that arc.

The vehicle flow is preserved by the constraints (5.10), while the number of bicycles picked up or
delivered to a station is restricted by the constraints (5.11) and (5.12), ensuring that the pickups do
not exceed the available inventory and the deliveries do not exceed the remaining dock capacity. The
constraints (5.11) inherently enforce the non-negativity of the inventory variables, while the constraints
(5.12) ensure that the inventory at each station and the depot remains within capacity limits. As a result,
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explicit constraints for inventory non-negativity and capacity limits are not required.

The maximum route duration is constrained by (5.13). Note that the return to the origin node is set to
zero to enforce a round-trip structure in the model, while the actual route will not return. The sub-tour
elimination is enforced through constraints (5.14), which prevent small loops in the route. Constraints
(5.15) and (5.16) ensure that an action is only performed if bicycles are picked up or delivered. The
constraints (5.17) enforce that vehicles pick up or deliver bicycles at a station, but not both. Furthermore,
constraints (5.18) ensure that stations are only visited when an action is performed.

Binary and integer constraints on decision variables are imposed by (5.19)-(5.21), while non-negativity
conditions are enforced by constraints (5.22) and (5.23). Non-negativity constraints on 𝑠𝑖 cannot be
enforced, as the expected inventory level can be negative after repositioning when the demand deficit
(𝑑1

𝑖
) is highly negative. Similarly, 𝑠𝑖 may exceed the station capacity 𝑐𝑖 when demand is exceptionally

high. In such cases, it is assumed that unmet demand is lost, but it is still taken into account in the
objective function to quantify its impact. Finally, the integrality of 𝑦𝑖 𝑗 and 𝑠𝑖 is implicitly ensured by the
integer nature of 𝑦𝑃

𝑖
, 𝑦𝐷

𝑖
and 𝑠0

𝑖
.

Similar to Raviv et al. (2013) we introduce valid inequalities to reduce computation time.∑
𝑗∈𝑁

𝑥𝑖𝑜 𝑗 ≥ 1 (5.24)∑
𝑗∈𝑁,𝑗≠𝑖

𝑥𝑖 𝑗 ≤ 1 ∀𝑖 ∈ 𝑁 (5.25)

𝑦𝑃𝑖 ≤ 𝑚𝑖𝑛(𝑠0
𝑖 , 𝑘)

∑
𝑗∈𝑁

𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑁 (5.26)

𝑦𝐷𝑖 ≤ 𝑚𝑖𝑛(𝑐𝑖 − 𝑠0
𝑖 , 𝑘)

∑
𝑗∈𝑁

𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑁 (5.27)

𝑦𝑃𝑖 + 𝑦𝐷𝑖 ≥
∑
𝑗∈𝑁

𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑁 \ {𝑖𝑜 , 0} (5.28)

The constraint (5.24) ensures that the vehicle leaves the origin at least once. In the LP relaxation, this
departure count can take fractional values. By enforcing the departure of a complete vehicle, the
vehicle flow conservation constraints (5.10) guarantee that this condition holds for all visited nodes.
The constraints (5.25) ensure that each station is visited at most once. In addition, constraints (5.26) and
(5.27) impose a stricter form of constraints (5.11) and (5.12), which limit the number of bicycles picked
up or delivered based on vehicle capacity and apply only when the vehicle visits the station. Finally,
constraints (5.28) ensure that vehicles visit a station only if bicycles are picked up or delivered.



6
Model extensions

In this chapter, we present multiple extensions to the model we previously introduced. First, we expand
the model to optimize a system with a mixed bicycle fleet. In addition, we explore the inclusion of
vehicle locations in the model. These extensions introduce both complexity and flexibility, enabling
more precise optimization of bicycle repositioning strategies.

6.1. Mixed bicycle fleet
As electric bicycles become more prevalent and mixed bicycle-sharing systems emerge, the model is
extended to accommodate both mechanical and electric bicycles. The integration of electric bicycles
into bicycle sharing systems enhances accessibility, reduces physical effort, and enables longer trips,
making cycling a more attractive option (Ghamami & Shojaei, 2018). Electric bicycles also improve
the competitiveness of bicycle sharing systems with private cars, as they offer greater speed and
convenience, particularly on hilly routes (Bieliński et al., 2021). User preferences further highlight
the benefits of electric bicycles, as they are more resilient to long distances, high temperatures, and
poor air quality, although precipitation remains a limiting factor (Campbell et al., 2016). Given these
advantages, hybridization of mechanical and electric bicycles is expected to become a global trend,
allowing operators to balance affordability with enhanced service quality (Shui & Szeto, 2020). Existing
dynamic bicycle relocation problems (DBRPs) primarily address multi-vehicle scenarios but do not
consider the complexities introduced by a mixed bicycle fleet (Shui & Szeto, 2020). When dealing with
DBRPs that incorporate a mixed bicycle fleet, additional operational constraints must be considered.
Specifically, loading and unloading strategies become more complex, as an excess of one bicycle type
may not effectively resolve shortages of another (Shui & Szeto, 2020).

We present an extended model designed to accommodate a system with both mechanical and electric
bicycles. We assume that all docks are available for both types of bicycles, that each bicycle type occupies
the same amount of space in the repositioning vehicle, and that the time required to pick up or deliver a
mechanical or electric bicycle is identical. To incorporate a mixed bicycle fleet, we extend the model by
introducing new decision variables. The pickup and delivery variables, originally denoted as 𝑦𝑃

𝑖
and

𝑦𝐷
𝑖

, are now replaced by 𝑦
𝑃𝑚

𝑖
, 𝑦𝑃𝑒

𝑖
, 𝑦𝐷𝑚

𝑖
and 𝑦

𝐷𝑒

𝑖
, where 𝑚 refers to mechanical bicycles and 𝑒 to electric

bicycles. Similarly, the routing variable 𝑦𝑖 𝑗 is expanded to 𝑦𝑚
𝑖𝑗

and 𝑦𝑒
𝑖𝑗
. The station inventory variable

𝑠𝑖 is now represented separately as 𝑠𝑚
𝑖

and 𝑠𝑒
𝑖
, while the predicted demands 𝑑1

𝑖
and 𝑑2

𝑖
are split into

𝑑
1𝑚
𝑖

, 𝑑1𝑒
𝑖

, 𝑑2𝑚
𝑖

and 𝑑
2𝑒
𝑖

. Additionally, the initial inventory level 𝑠0
𝑖

is replaced by 𝑠
0𝑚
𝑖

and 𝑠
0𝑒
𝑖

. The initial
vehicle load, previously denoted as 𝑙, is now differentiated as 𝑙𝑚 and 𝑙𝑒 . Finally, the pickup and delivery
indicators 𝑧𝑃

𝑖
and 𝑧𝐷

𝑖
are expanded into 𝑧

𝑃𝑚

𝑖
, 𝑧𝑃𝑒

𝑖
, 𝑧𝐷𝑚

𝑖
and 𝑧

𝐷𝑒

𝑖
, ensuring that the model accounts for both

bicycle types separately.

The convex penalty function 𝑓 𝐶
𝑖
(·) consists of five components: a penalty for almost no mechanical

bicycles, a penalty for almost no electric bicycles, a penalty for almost full station, and two quadratic

20
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penalties for future demand forecasts. Furthermore, the parameter 𝐿 is replaced by 𝐿𝑚 and 𝐿𝑒 .

𝑓
𝐿𝑚
𝑖

(𝑠𝑚𝑖 ) = 𝛼𝑖(𝑝𝐿(𝑚𝑎𝑥(𝑐𝑖 · 𝐿𝑚 − 𝑠𝑚𝑖 , 0))2) ∀𝑖 ∈ 𝑁 (6.1)

𝑓
𝐿𝑒
𝑖
(𝑠𝑒𝑖 ) = 𝛼𝑖(𝑝𝐿(𝑚𝑎𝑥(𝑐𝑖 · 𝐿𝑒 − 𝑠𝑒𝑖 , 0))2) ∀𝑖 ∈ 𝑁 (6.2)

𝑓 𝐻𝑖 (𝑠𝑚𝑖 + 𝑠𝑒𝑖 ) = 𝛼𝑖(𝑝𝐻(𝑚𝑎𝑥((𝑠𝑚𝑖 + 𝑠𝑒𝑖 ) − 𝑐𝑖 · 𝐻, 0))2) ∀𝑖 ∈ 𝑁 (6.3)

𝑓
𝐼𝐵𝑚

𝑖
(𝑠𝑚𝑖 ) = 𝛼𝑖(𝛽 · (𝑠𝑚𝑖 − (𝐿𝑚 + 0.5 · 𝐻

2 · 𝑐𝑖 − 𝑑
2𝑚
𝑖
))2) ∀𝑖 ∈ 𝑁 (6.4)

𝑓
𝐼𝐵𝑒

𝑖
(𝑠𝑒𝑖 ) = 𝛼𝑖(𝛽 · (𝑠𝑒𝑖 − (𝐿𝑒 + 0.5 · 𝐻

2 · 𝑐𝑖 − 𝑑
2𝑒
𝑖
))2) ∀𝑖 ∈ 𝑁 (6.5)

The convex penalty components can be linearized similar to the original model. The domains for 𝑓
𝐿𝑚
𝑖

,
𝑓
𝐿𝑒
𝑖

and 𝑓 𝐻
𝑖

vary because the functions have different inputs. To address these differences, we define the
sets 𝑈1, 𝑈2 and 𝑈3 as the respective domains for 𝑓

𝐿𝑚
𝑖

and 𝑓
𝐼𝐵𝑚

𝑖
, 𝑓 𝐿𝑒

𝑖
and 𝑓

𝐼𝐵𝑒

𝑖
(𝑠𝑒

𝑖
), and 𝑓 𝐻

𝑖
. Note that the

optimal inventory level has been modified such that the optimal inventory level for 𝑠𝑚
𝑖

and 𝑠𝑒
𝑖

together
is equal to the original optimal inventory level.

𝑈1 = [𝑚𝑖𝑛(0, 𝑑1𝑚
𝑖
), 𝑚𝑎𝑥(𝑐𝑖 − 1, 𝑐𝑖 − 1 + 𝑑

1𝑚
𝑖
)]

𝑈2 = [𝑚𝑖𝑛(0, 𝑑1𝑒
𝑖
), 𝑚𝑎𝑥(𝑐𝑖 − 1, 𝑐𝑖 − 1 + 𝑑

1𝑒
𝑖
]

𝑈3 = [𝑚𝑖𝑛(0, 𝑑1𝑚
𝑖

+ 𝑑
1𝑒
𝑖
), 𝑚𝑎𝑥(𝑐𝑖 − 1, 𝑐𝑖 − 1 + 𝑑

1𝑚
𝑖

+ 𝑑
1𝑒
𝑖
)]

With the sets defined above, the constraints (5.3) will be replaced by:

𝑔
𝐿𝑚
𝑖

≥ 𝑎
𝐿𝑚
𝑖𝑢1

+ 𝑏
𝐿𝑚
𝑖𝑢1

· 𝑠𝑚𝑖 ∀𝑖 ∈ 𝑁, 𝑢1 ∈ 𝑈1 (6.6)

𝑔
𝐿𝑒
𝑖

≥ 𝑎
𝐿𝑒
𝑖𝑢2

+ 𝑏
𝐿𝑒
𝑖𝑢2

· 𝑠𝑒𝑖 ∀𝑖 ∈ 𝑁, 𝑢2 ∈ 𝑈2 (6.7)

𝑔𝐻𝑖 ≥ 𝑎𝐻𝑖𝑢3
+ 𝑏𝐻𝑖𝑢3

· (𝑠𝑚𝑖 + 𝑠𝑒𝑖 ) ∀𝑖 ∈ 𝑁, 𝑢3 ∈ 𝑈3 (6.8)

𝑔
𝐼𝐵𝑚

𝑖
≥ 𝑎

𝐼𝐵𝑚

𝑖𝑢1
+ 𝑏

𝐼𝐵𝑚

𝑖𝑢1
· 𝑠𝑚𝑖 ∀𝑖 ∈ 𝑁, 𝑢1 ∈ 𝑈1 (6.9)

𝑔
𝐼𝐵𝑒

𝑖
≥ 𝑎

𝐼𝐵𝑒

𝑖𝑢2
+ 𝑏

𝐼𝐵𝑒

𝑖𝑢2
· 𝑠𝑒𝑖 ∀𝑖 ∈ 𝑁, 𝑢2 ∈ 𝑈2 (6.10)

The piecewise line penalty function 𝑓 𝐿
𝑖
(·) consists of three components: a penalty for the absence of

mechanical bicycles, a penalty for the absence of electric bicycles and a penalty for full stations.

𝑓 𝐿𝑖 (𝑠𝑚𝑖 , 𝑠𝑒𝑖 ) = 𝛼𝑖

(
𝑝𝑐𝐿 1𝑠𝑚

𝑖
≤0 + 𝑝𝑐𝐿 1𝑠𝑒

𝑖
≤0 + 𝑝𝑐𝐻 1𝑠𝑚

𝑖
+𝑠𝑒

𝑖
≥𝑐𝑖

)
∀𝑖 ∈ 𝑁 (6.11)

These components can be linearized in a similar way to those in the original formulation. The decision
variables 𝑤𝑖 are replaced by 𝑤𝑚

𝑖
and 𝑤𝑒

𝑖
respectively. As a result, the original constraints (5.4) and (5.5)

are modified and replaced by the following updated constraints:

𝑠𝑚𝑖 > −𝐶 · 𝑤𝑚
𝑖 ∀𝑖 ∈ 𝑁 (6.12)

𝑠𝑒𝑖 > −𝐶 · 𝑤𝑒
𝑖 ∀𝑖 ∈ 𝑁 (6.13)

𝑠𝑚𝑖 + 𝑠𝑒𝑖 < 𝑐𝑖 + 𝐶 · 𝑜𝑖 ∀𝑖 ∈ 𝑁 (6.14)

The objective function (5.2), which now incorporates the modified decision variables, must be updated
accordingly. In addition, all constraints involving these variables or related parameters require
adjustments. This includes constraints (5.6)-(5.9), (5.11)-(5.13), and (5.15)-(5.18), as well as (5.20)-(5.22).

min
∑
𝑖∈𝑁

𝑔
𝐿𝑚
𝑖

+ 𝑔
𝐿𝑒
𝑖

+ 𝑔𝐻𝑖 + 𝑔
𝐼𝐵𝑚

𝑖
+ 𝑔

𝐼𝐵𝑒

𝑖
+ 𝛼𝑖(𝑝𝑐𝐿 · (𝑤𝑚

𝑖 + 𝑤𝑒
𝑖 ) + 𝑝𝑐𝐻 · 𝑜𝑖) (6.15)
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𝑠𝑚𝑖 = 𝑠
0𝑚
𝑖

+ 𝑑
1𝑚
𝑖

− (𝑦𝑃𝑚

𝑖
− 𝑦

𝐷𝑚

𝑖
) ∀𝑖 ∈ 𝑁 (6.16)

𝑠𝑒𝑖 = 𝑠
0𝑒
𝑖
+ 𝑑

1𝑒
𝑖
− (𝑦𝑃𝑒

𝑖
− 𝑦

𝐷𝑒

𝑖
) ∀𝑖 ∈ 𝑁 (6.17)

𝑦
𝑃𝑚

𝑖
− 𝑦

𝐷𝑚

𝑖
=

∑
𝑗∈𝑁,𝑗≠𝑖

𝑦𝑚𝑖𝑗 −
∑

𝑗∈𝑁,𝑗≠𝑖

𝑦𝑚𝑗𝑖 ∀𝑖 ∈ 𝑁 \ 𝑖𝑜 (6.18)

𝑦
𝑃𝑒

𝑖
− 𝑦

𝐷𝑒

𝑖
=

∑
𝑗∈𝑁,𝑗≠𝑖

𝑦𝑒𝑖𝑗 −
∑

𝑗∈𝑁,𝑗≠𝑖

𝑦𝑒𝑗𝑖 ∀𝑖 ∈ 𝑁 \ 𝑖𝑜 (6.19)

𝑙𝑚 + 𝑦
𝑃𝑚

𝑖𝑜
− 𝑦

𝐷𝑚

𝑖𝑜
=

∑
𝑗∈𝑁,𝑗≠𝑖𝑜

𝑦𝑚𝑖𝑜 𝑗 (6.20)

𝑙𝑒 + 𝑦
𝑃𝑒

𝑖𝑜
− 𝑦

𝐷𝑒

𝑖𝑜
=

∑
𝑗∈𝑁,𝑗≠𝑖𝑜

𝑦𝑒𝑖𝑜 𝑗 (6.21)

𝑦𝑚𝑖𝑗 + 𝑦𝑒𝑖𝑗 ≤ 𝑘 · 𝑥𝑖 𝑗 ∀𝑖 , 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (6.22)
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𝑦𝑚𝑖𝑗 , 𝑦
𝑒
𝑖𝑗 ≥ 0 ∀𝑖 , 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (6.36)

Furthermore, the valid inequalities (5.26)-(5.28) can be updated.

𝑦
𝑃𝑚

𝑖
≤ 𝑚𝑖𝑛(𝑠0𝑚

𝑖
, 𝑘)

∑
𝑗∈𝑁

𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑁 (6.37)

𝑦
𝑃𝑒

𝑖
≤ 𝑚𝑖𝑛(𝑠0𝑒

𝑖
, 𝑘)

∑
𝑗∈𝑁

𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑁 (6.38)

𝑦
𝐷𝑚

𝑖
+ 𝑦

𝐷𝑒

𝑖
≤ 𝑚𝑖𝑛(𝑐𝑖 − (𝑠0𝑚

𝑖
+ 𝑠

0𝑒
𝑖
), 𝑘)

∑
𝑗∈𝑁

𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑁 (6.39)

𝑦
𝑃𝑚

𝑖
+ 𝑦

𝑃𝑒

𝑖
+ 𝑦

𝐷𝑚

𝑖
+ 𝑦

𝐷𝑒

𝑖
≥

∑
𝑗∈𝑁

𝑥𝑖 𝑗 ∀𝑖 ∈ 𝑁 \ {𝑖𝑜 , 0} (6.40)

Note that in constraints (6.37) and (6.38), 𝑥𝑖 𝑗 is 1 as well if bicycles of the other type are picked up.
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6.2. Vehicle-aware repositioning
To enhance operational efficiency and reduce computational complexity, various strategies have been
proposed. A widely used method involves clustering stations into fixed service areas (Jiménez-Meroño
& Soriguera, 2024). For example, O’Mahony and Shmoys (2015) apply clustering during peak hours to
direct vehicles to stations with similar behavior, while Wang et al. (2022) propose a demand-driven
clustering approach. Although clustering helps reduce problem size, it limits vehicle flexibility by
imposing fixed spatial boundaries. As an alternative, vehicle-aware repositioning incorporates the
expected end locations of all repositioning vehicles directly into the decision-making process. This
look-ahead approach enables the model to assign tasks in a way that anticipates future opportunities
(Jiménez-Meroño & Soriguera, 2024; Pfrommer et al., 2014).

In our approach, when a driver requests a new task, we explicitly consider the ongoing tasks of currently
busy vehicles. If a busy vehicle is expected to finish its current task in a location close to a particular
demand, that location is not assigned to the requesting driver. We limit potential task assignments
by excluding a fixed number of locations near the expected end locations of busy vehicles. This
vehicle-aware coordination improves fleet efficiency and scalability by flexibly limiting certain locations,
without setting fixed area boundaries. Importantly, no such restrictions are applied to locations near the
current position of the vehicle requesting the task.

Figure 6.1 shows how vehicle-aware repositioning affects the set of stations considered for assignment in
Zaragoza. In this example, four repositioning vehicles operate simultaneously. The green vehicle marks
the position of the driver currently requesting a task. The three red vehicles represent the expected
end locations of currently busy vehicles. Stations shown as green dots are the closest locations to the
requesting vehicle, while red dots indicate stations located near the expected end points of busy vehicles.
These stations are temporarily restricted for the requesting vehicle. Blue dots represent all other stations
that remain available. The visual representation shows how certain areas of the network are effectively
“reserved” for other vehicles that are better positioned to serve them in the near future.

In the scenario with ten restricted locations, some overlap occurs between green and red dots, meaning
certain stations are both close to the requesting vehicle and within a restricted area. Proximity is
calculated using travel time rather than straight-line (Euclidean) distance, so stations that appear
geographically close on the map may still be farther away in practice. The model also excludes stations
already assigned to other vehicles, stations previously visited by the requesting vehicle, and stations
that are currently balanced. Consequently, the number of restricted locations directly influences the set
of stations considered in the optimization.

(a) 3 restricted locations (b) 5 restricted locations (c) 10 restricted locations

Figure 6.1: Vehicle-aware repositioning

• = Depot • = Current vehicle • = Stations near current vehicle • = End locations of busy vehicles
• = Stations near end locations of busy vehicles • = Other stations
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Simulation

To evaluate the performance of bicycle repositioning strategies, we will perform a series of simulation
experiments comparing four operational approaches: (1) no repositioning, (2) a static repositioning
strategy, (3) the proposed state-of-the-art dynamic repositioning strategy developed in this study and (4)
a perfect information approach. In the static repositioning strategy, bicycles are redistributed only during
the night shift, when demand is relatively low. The purpose of this strategy is to prepare the system
for the following day. This can be seen as a simplified variant of the proposed dynamic repositioning
approach, restricted to nighttime operations with a larger number of repositioning vehicles. As a result,
the expected demand during the day is not explicitly considered, only the demand that occurs during
the repositioning period itself is taken into account.

The perfect information approach serves as a benchmark by assuming that the dynamic repositioning
strategy is executed with full knowledge of future demand. Instead of relying on forecasts, the actual
demand for the upcoming planning horizon is provided to the strategy. This allows us to determine the
maximum achievable satisfied demand under the proposed dynamic approach if the forecasts were
perfectly accurate. Any remaining unsatisfied demand can then be attributed to resource limitations,
such as the number or capacity of repositioning vehicles, available bicycles, or dock space, rather than
to the repositioning strategy itself. This highlights the performance limits of the dynamic strategy and
clarifies the extent to which lost demand is caused by factors other than forecast accuracy.

7.1. Demand
To replicate real-world system dynamics, user demand is simulated on the basis of historical station
status data. Origin–destination (OD) trips are generated by Poisson sampling, which models discrete
trip events and ensures system stability. This approach avoids the imbalances that can occur when
modeling arrivals and departures separately or when applying the Skellam distribution to represent
net demand, since any positive net demand at one station must be exactly offset by a negative value at
another station.

The expected demand for each OD pair in a given hour is calculated as the average demand from
historical data. Similar to demand predictions, periods with constrained data must be excluded
from historical data. Such constrained periods occur when the stations are empty or full, making
the actual demand unobservable during these times. For each OD pair-hour combination, we count
the five-minute periods during which the departure or arrival station is constrained. A departure
station is only considered constrained when it is empty (as a full station does not restrict departures),
while an arrival station is constrained only when it is full. Demand for these constrained periods is
determined based on the level of available unconstrained data. If more than half of an hour consists of
unconstrained periods, the constrained demand is estimated proportionally, assuming that demand
would have been linear relative to the observed unconstrained periods. However, if more than half of
the hour is constrained, the remaining unconstrained data is considered unreliable. In such cases, the
demand is replaced by the average hourly demand for that specific OD pair.

24
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Since many OD pair combinations are rare events, either because stops are located very close to each
other or too far apart, there are many OD pairs for which no demand was observed in the historical
data. As a result, the OD matrix of the expected demand contains many zeros. This would imply that
the Poisson-distributed demand for these OD pairs is always zero, preventing the simulation of any
trips along these pairs. However, such rare trips do occasionally occur and therefore a small probability
should be assigned. To address this issue, Laplace smoothing is applied. This technique assigns a small
positive value to all OD pairs to prevent zero probabilities. To ensure that the total expected demand
remains unchanged, the probabilities are subsequently rescaled. Specifically, for each OD pair (𝑖 , 𝑗), the
smoothed probability is calculated as:

𝑃𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑
𝑖𝑗 =

𝜆𝑖 𝑗 + 𝛾

𝜆𝑡𝑜𝑡𝑎𝑙 + 𝛾𝑉

where:

• 𝜆𝑖 𝑗 is the original expected demand for OD pair (𝑖 , 𝑗)
• 𝜆𝑡𝑜𝑡𝑎𝑙 is the total expected demand over all OD pairs
• 𝑉 is the total number of OD pairs
• 𝛾 is the smoothing parameter

The smoothed expected demand for OD pair (𝑖 , 𝑗) is then scaled back to ensure that the total demand
remains unchanged:

𝜆̂𝑖 𝑗 = 𝜆𝑡𝑜𝑡𝑎𝑙 · 𝑃𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑
𝑖𝑗 = 𝜆𝑡𝑜𝑡𝑎𝑙 ·

𝜆𝑖 𝑗 + 𝛾

𝜆𝑡𝑜𝑡𝑎𝑙 + 𝛾𝑉

This approach guarantees that the sum of all smoothed demands remains equal to the original total
demand, while allowing all OD pairs to remain possible in simulations.

7.2. Experiment
The system dynamics of the shared bicycle service will be simulated over a complete day to capture
realistic variations in user demand throughout different time periods, including peak hours, off-peak
periods, and overnight times. Each simulation day will begin at night to minimize the influence of
the initial system state. We perform 10 simulation runs for each scenario to obtain stable results.
The simulation incorporates three repositioning shifts per day, each lasting eight hours: a night shift
(22:00–06:00), a morning shift (06:00–14:00), and an afternoon shift (14:00–22:00). To ensure smoother
operations, the start and end times of some vehicles within a shift may be slightly adjusted. For example,
the start of a shift for part of the fleet may be delayed by an hour to avoid all vehicles being at the depot
simultaneously. Each vehicle starts its shift by leaving the depot and returns there at the end of the
shift. During operations, drivers request a new task after completing their previous one. The next task
can only include stations that are unbalanced, not visited by other vehicles or visited in the previous
route of the vehicle. The repositioning algorithm then determines the next assignment. If no feasible
route is found at that moment, the driver will wait for five minutes before requesting a new task. Note
that the route duration can be lower than the maximum route duration, consequently the driver will
request a new task sooner. The system is updated every minute, taking into account both user trips
and repositioning movements. When a bicycle trip and a repositioning action occur at the same station
within the same minute, the repositioning trip is prioritized. If no bicycles of the requested type are
available at the departure station, the user cannot start the trip, and the request is recorded as unsatisfied
demand. An important assumption is that users do not switch bicycle types if their preferred type is
unavailable. This implies that a shortage of one bicycle type cannot be compensated by a surplus of
another. If no available docks are found at the intended destination station, the user parks the bicycle at
the nearest station with available docks. However, this is still counted as unsatisfied demand at the
intended destination station. Note that when the simulation day begins, there may already be bicycles
moving, trips that started before the simulation’s start time but arrive after it has begun. To account for
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these trips, historical trip data is used to represent bicycles that were actually moving at the time the
system status is retrieved. These are not simulated movements but real trips that started before the
simulation period and are scheduled to arrive after its start, ensuring the initial system status reflects the
true state of bicycles on the network. When a vehicle arrives at a station to pick up or deliver bicycles,
but the required number of bicycles (for pickup) or free docks (for delivery) is not available, the vehicle
adjusts by picking up or delivering as many as possible. This limitation may affect the feasibility of
subsequent planned actions, as the number of bicycles on the vehicle may differ from what was initially
intended. In such cases, the algorithm first checks whether the remaining bicycle stock on the vehicle
allows the original plan to continue. If not, the planned quantities for the following stations are adjusted
accordingly or the remaining actions are canceled.

The standard analysis will focus on a typical weekday under normal conditions. Both single-type
and mixed bicycle fleets will be evaluated to assess how different fleet types influence repositioning
performance. Additionally, the simulation will investigate the effects of several factors, including day
types (weekdays, weekends, and holidays), restrictions on vehicle end locations, initial system states,
fleet size, vehicle capacity, and varying levels of demand levels. Each simulation scenario will be assessed
using the validation metrics introduced in Section 9.1, with particular emphasis on user satisfaction
and operational efficiency. This comprehensive approach will provide insights in the performance of
different repositioning strategies under various operating conditions.



8
Case Study

We evaluate the performance of our models through simulation experiments using data from two
station-based bicycle-sharing systems in Zaragoza and Valladolid. The data is collected from open-access
data sources with standard General Bikeshare Feed Specification (GBFS) formatted data, which contain
real-time information on shared bicycle operations. This includes details on vehicle and station locations,
dock availability, bicycle types, service pricing, and rental conditions. The predictions and simulated
demand used in our models are generated as described in Section 4.3 and Chapter 7, based on historical
GBFS data from both systems.

8.1. System characteristics
Table 8.1 provides an overview of the key characteristics of the bicycle-sharing systems in Zaragoza
and Valladolid for daily operation. The most notable difference between the two systems is the number
of users, with Zaragoza having approximately seven times more users than Valladolid. Additionally,
Zaragoza’s system exclusively operates electric bicycles, while Valladolid’s system includes both
mechanical and electric bicycles. Although the number of stations is similar in both cities, there is
a significant difference in the total number of docks. However, the difference in docks per station
between the two systems is quite small. The total bicycle fleet is comparable across both systems,
with Valladolid’s fleet being nearly evenly divided between mechanical and electric bicycles, whereas
Zaragoza’s fleet consists entirely of electric bicycles.

The daily trips-to-bicycle ratio is considerably higher in Zaragoza, indicating that bicycles are used more
frequently. Moreover, in Valladolid, electric bicycles are preferred to mechanical ones. Both systems
have similar docks-to-bicycles ratio, which reflects the likelihood that users find an available dock when
returning a bicycle. According to the literature, an ideal docks-to-bicycles ratio for efficient bicycle
repositioning is approximately 2 (Soriguera & Jiménez-Meroño, 2020). For example, Brescia has a ratio
of 1.9 (Angelelli et al., 2022), while Barcelona has a ratio of 2.7. Higher ratios are often recommended in
less optimized systems (Soriguera & Jiménez-Meroño, 2020).
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Table 8.1: System characteristics

Zaragoza Valladolid
Number of daily users 13430 1815
Number of bicycle types 1 2
Number of stations 108 100
Number of docks 2137 1846
Docks/Station ratio 19.8 18.5
Number of mechanical bicycles - 420
Number of electric bicycles 960 415
Total number of bicycles 960 835
Trips/bicycle ratio 14.0 2.2
Docks/Bicycles ratio 2.2 2.2

8.2. System parameters
Table 8.2 summarizes the main parameter settings used in the simulation. While some settings are shared
across both systems, others are system-specific. Both Zaragoza and Valladolid operate continuously
throughout the day, with demand varying over time periods. During the night (22:00–06:00) the demand
is minimal, while during peak periods (07:00–09:00, 13:00–15:00, 17:00–19:00) there is high demand.
The maximum route duration is adjusted accordingly: 45 minutes during the night, 40 minutes during
off-peak hours, and 30 minutes during peak periods. The first task of each shift has a maximum route
duration of 45 minutes to allow the vehicle to depart from the depot. If the remaining shift time is
less than the maximum route duration plus the time needed to return to the depot, the vehicle must
return to the depot to ensure it finishes its shift on time. A fixed stop-time of 5 minutes is applied for
each repositioning task, with an additional 0.5 minutes per bicycle moved. The penalty parameters are
mostly consistent across both systems. The scalar 𝑝𝐿 for (near) empty stations is higher than 𝑝𝐻 for
(near) full stations, as empty stations are considered more problematic. Denied departures often mean
users leave the system, while in the case of full stations, users continue their trip by diverging to nearby
stations. The inventory bounds between both systems differ slightly: Zaragoza uses fixed bounds of
0.2 (lower) and 0.8 (upper), while Valladolid applies bounds of 0.15 and 0.7, defined per vehicle type.
This results in a higher combined lower bound but a lower upper bound in Valladolid, providing more
flexibility to adjust station inventories in line with its lower system activity. The smoothing parameter 𝛾
used for demand estimation is set higher for Zaragoza to reflect its larger volume of trips.

Table 8.2 also shows the differences in vehicle operations. In Zaragoza two vehicles are used at night,
four during the morning and three during the afternoon. In Valladolid one vehicle is deployed at night
and four during the day. In the static approach, four vehicles are used in both systems during the night
to prepare the system for the upcoming day. Vehicle capacities differ as well: Vehicles in Zaragoza carry
up to 22 bicycles, while in Valladolid the capacity is between 11 and 14.
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Table 8.2: System parameter settings

Category Parameter Zaragoza Valladolid

Number of vehicles
Number of vehicles (night) 2 1
Number of vehicles (morning) 4 4
Number of vehicles (afternoon) 3 4

Vehicle restrictions
Vehicle capacity 22 11-14
Restricted locations 0 0

Duration (min)
Maximum duration (night) 45 45
Maximum duration (off-peak) 40 40
Maximum duration (peak) 30 30

Stop-time (min) Constant stop-time 5 5
Stop-time per bicycle 0.5 0.5

Penalties

𝛼 5 5
𝛽 0.001 0.001
Lower bound 0.2 0.15
Upper bound 0.8 0.7
𝑝𝐿 1 1
𝑝𝐻 0.5 0.5
𝑝𝑐𝐿 20 20
𝑝𝑐𝐻 20 20

Simulation 𝛾 0.001 0.0002
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Results

Results are obtained by applying the simulation methods explained in Chapter 7 to the different models
explained in Chapter 5 and Chapter 6 to the case studies introduced in Chapter 8. All optimization
problems are solved using Gurobi 12.0.1, with an average computation time of 5 seconds per task for
both systems. For each scenario, 10 simulation runs are performed to obtain stable results, and the
results are presented as the average values along with their standard deviations. First, we provide an
overview of the validation measures, followed by an analysis of the simulation results for the different
repositioning strategies applied to both the single-type system (Zaragoza) and the mixed-fleet system
(Valladolid). Finally, we analyze the effects of different factors on the results.

9.1. Validation
The main Key Performance Indicator (KPI) for assessing the effectiveness of a bicycle repositioning
strategy is the satisfied demand during the day, which reflects the number of users who can find an
available bicycle at their origin and a free dock at their destination. This metric directly captures user
satisfaction, which serves as the main objective in repositioning shared bicycles. Similarly, the amount
of unsatisfied demand can be determined, both at the origin (empty station) and at the destination (full
station), possibly indicating a shortage of bicycles or docks. Note that no-service penalty is not a good
KPI to compare different repositioning strategies, since the no-repositioning approach has no routes,
and the static repositioning strategy repositioning only takes place during the night, when the penalties
are generally lower.

In addition to satisfied demand, several operational KPIs are essential for evaluating the efficiency of
the repositioning process. They can be grouped into two main categories. The first category relates to
station performance and includes: the number of empty and full stations, and the number of bicycles
present at stations. The second category concerns repositioning operations and includes: the number
of tasks, the number of stations visited, the number of bicycles repositioned, and the average route
duration (measured in seconds).

The definition of service level can vary depending on how a bicycle sharing system is managed. Some
systems focus on immediate availability. These systems aim to prevent stations from becoming empty
or full in real time or minimize the time a station is empty or full (Brinkmann et al., 2015). These
systems react to real-time conditions with minimal use of demand predictions. Others take a more
forward-looking approach, planning repositioning based on anticipated demand to ensure a consistent
user experience over time. Because of these different strategies, the same situation, such as a temporarily
empty station, might be seen as a big problem in one system but acceptable in another if more bicycles
are expected to arrive soon. Although the relocation model remains the same, the definition of service
level must be adapted to align with the specific operational goals of each system, either focusing on
current imbalances or future inventory.
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9.2. Single-type system
The average results for the single-type system in Zaragoza are presented in Table 9.1. As expected, the
scenario without repositioning results in the lowest level of satisfied demand, although the system is
still able to meet more than 80% of the total demand. While implementing a static repositioning strategy
results in a modest improvement in demand satisfaction, the dynamic strategy leads to a substantial
increase, serving around 430 additional users over the day. With perfect information of future demand,
the system’s performance could improve even further, potentially satisfying 300 more users (2.4%)
beyond what the regular dynamic strategy achieves.

Across all strategies, unsatisfied demand is considerably higher at trip origins than at destinations. Even
the perfect information scenario results in almost 10% of trips being denied due to a lack of available
bicycles. This suggests that the main limitation of the system is the unavailability of bicycles at the
origin stations, rather than the lack of docking space at destinations. This observation is supported by
the higher average number of empty stations compared to full stations throughout the day. Even with
perfect information, an average of 7.5 stations remain empty, highlighting the challenge of maintaining
sufficient bicycle availability throughout the network. Interestingly, although the dynamic approach
results in more full stations than the static approach, it leads to lower unsatisfied demand at destinations.
This suggests that by repositioning bicycles based on demand predictions, more trips can be fulfilled
despite the higher number of full stations. The number of bicycles at stations reflects their overall
availability. During operation, bicycles are constantly moving, either because users are making trips
or because drivers are repositioning them. In the dynamic approach (with perfect information), the
availability of bicycles at stations is 20–30 bicycles lower than in the no-repositioning scenario. This
means that, on average, 20-30 more bicycles are moving in the system. This increase is partly due to
more users finding a bicycle at their trip origin and partly due to repositioning actions.

In terms of repositioning effort, the static strategy results in a relatively high number of stations visited
per task compared to the dynamic strategy. A possible explanation for this is the longer maximum
route duration during the night, which allows for longer repositioning routes. Meanwhile, the dynamic
strategy moves more bicycles per task on average, as fluctuations in station inventory levels during
the day require larger repositioning movements. Interestingly, the total number of tasks, stations
visited, and bicycles moved when deploying the regular dynamic strategy is very similar to those in the
dynamic repositioning with perfect information. This highlights that, without additional operational
effort, improvements in demand prediction accuracy enable higher demand satisfaction through better
decisions. Finally, the average route duration for the static strategy is substantially higher, since all
repositioning occurs during nighttime hours when longer routes are allowed. In contrast, dynamic and
perfect information strategies yield similar and shorter average route durations, indicating that route
length is not a distinguishing factor between these two approaches.

Table 9.1: Average results for single-type system

Type No repositioning Static Dynamic Perfect information
Demand satisfaction
Satisfied demand 11086.9 (105.1) 11283.3 (115.3) 11691.8 (110.9) 12008.9 (112)
Unsatisfied demand origin 1691.4 (106.3) 1624 (86.4) 1351.4 (71.2) 1162.7 (93.8)
Unsatisfied demand destination 696.4 (57.6) 567.3 (55.6) 428.2 (50.9) 295.7 (52)
Satisfaction rate (%) 82.3 83.7 86.8 89.1
Station status
Empty stations 12.8 (0.4) 9.5 (0.3) 8.8 (0.4) 7.5 (0.4)
Full stations 9.1 (0.5) 4.4 (0.4) 4.8 (0.8) 3.9 (0.6)
Number of bicycles at stations 862 (0.9) 842 (3.3) 840.4 (2.1) 835.3 (4.1)
Repositioning
Number of tasks 0 43.8 (0.4) 114.3 (1.2) 113.8 (1.3)
Number of stations visited 0 132.9 (3.6) 278.7 (4) 274.4 (5.2)
Number of bicycles repositioned 0 233.8 (12.3) 698.2 (24.8) 701 (30.4)
Route duration (s) - 2599 (6) 2248.5 (24.7) 2257.9 (21.2)

In order to analyze the repositioning strategies in more detail, we first look at the demand pattern and
the number of bicycles at stations throughout the day (Figure 9.1). Since these patterns are generally



9.3. Mixed-fleet system 32

similar across all strategies and the differences are subtle, we show them only for the dynamic approach.
Demand is almost zero overnight and starts to increase around 6:00 AM. The morning peak occurs
between 7:00 AM and 9:00 AM, followed by a sharp drop until about 1:00 PM. A second, larger peak
appears between 2:00 PM and 3:00 PM, after which demand stays high until around 8:00 PM before
falling again. The highest levels of unsatisfied demand occur during these peak hours. Throughout the
day, unsatisfied demand remains consistently higher at origin stations compared to destination stations.
Furthermore, we observe that the confidence interval, represented by the shaded area around the mean,
is narrow, indicating a high consistency and low variability in the results. The number of bicycles at
stations follows the opposite trend of demand, fewer bicycles are at stations when demand is high, as
more trips are being made. This effect is amplified during the day when more repositioning vehicles are
active, meaning more bicycles are repositioned. This partly explains why unsatisfied demand at origin
stations is particularly high during peak hours.

(a) Demand (b) Number of Bicycles at Stations

Figure 9.1: Analysis over the Day

Figure 9.2 shows station status over the day for each repositioning strategy. A clear difference is visible
at night: without repositioning, the number of empty and full stations stays high, since minimal trip
activity means the system state does not change. We also observe that there are more full stations
than empty ones at the start of the night, and that the static approach reduces the number of critical
stations more quickly, which is expected given the use of four vehicles. During peak hours, however,
the no-repositioning and static strategies perform similarly to the dynamic approach in terms of empty
stations. This is likely because there are already few bicycles available, and demand fluctuations during
these hours are too large for the repositioning vehicles to handle, causing major imbalances in a short
time. After the morning peak, especially between 11:00 AM and 2:00 PM, the benefits of the dynamic
approach become clearer, as it helps reduce the number of critical stations more effectively. Finally, even
with perfect information, the reduction in empty and full stations is limited, highlighting the difficulty
of fully balancing the system under real-world conditions.

(a) No repositioning (b) Static repositioning (c) Dynamic repositioning (d) Perfect information

Figure 9.2: Station Status over the Day

9.3. Mixed-fleet system
The average results for mixed-fleet system in Valladolid are presented in Table 9.2. As expected, the
scenario without repositioning results in the lowest level of satisfied demand, with the system serving
around 1540 trips. The static repositioning strategy already improves this by approximately 80 additional
trips, while the dynamic strategy achieves a substantial further increase, satisfying 120 more users and
covering over 95% of total demand. With perfect information about future demand, the system could
only serve about 40 additional trips (2%) compared to the regular dynamic strategy, suggesting that the
dynamic approach already comes close to the maximum achievable performance.
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Similar to the single-type system, the unsatisfied demand at the trip origins is notably higher than at
the destinations for all strategies. This again indicates that the primary reason for unsatisfied demand
is the lack of bicycles available rather than the lack of dock space. Notably, for the dynamic strategy
and perfect information scenarios the unsatisfied demand at the destinations is reduced to almost
zero. The distinction between mechanical and electric bicycles further reveals that stations experience
electric empty states more frequently than mechanical empty states, highlighting the greater challenge
of maintaining the availability of electric bicycles. With the dynamic approach, an average of 3.9 stations
are empty with regard to electric bicycles compared to only 0.7 stations lacking mechanical bicycles.
This disparity aligns with the considerably higher demand for electric bicycles, which is more than 4
times higher than the demand for mechanical bicycles. The number of mechanical and electric bicycles
at stations is similar across the different strategies, which is expected given that the number of trip
is much lower than in single-type system in Zaragoza. However, the difference between strategies is
slightly larger for electric bicycles (around 10) than for mechanical bicycles (around 5). This is consistent
with the higher usage of electric bicycles, which probably also increases the need for their repositioning.

With regard to repositioning movements, the static strategy leads to more visited stations per task
compared to the dynamic strategy, probably because the allowed route duration is longer during the
night period. The number of bicycles moved per station is relatively low for all strategies, indicating
many small-scale repositioning moves. The total number of tasks, stations visited, and bicycles moved
in the regular dynamic approach and the dynamic approach with perfect information is very similar,
implying that further improvements in demand prediction could increase satisfied demand without
additional operational effort. Finally, the average route duration for the static strategy is considerably
higher than for the dynamic and perfect information strategies, as expected, since it takes place only
during the night. The dynamic and perfect information strategies yield nearly identical route durations,
indicating that route length is not a differentiating factor between these approaches.

Table 9.2: Average results for mixed-fleet system

Type No repositioning Static Dynamic Perfect information
Demand satisfaction
Satisfied demand 1542.6 (61.3) 1622.8 (53.5) 1743.5 (47.7) 1782.7 (45.1)
Unsatisfied demand origin 250.2 (21.8) 178 (18.6) 79.6 (9.1) 42.7 (9.8)
Unsatisfied demand destination 36.2 (16) 27.5 (11.2) 3.3 (2.3) 0.6 (0.8)
Satisfaction rate (%) 84.3 88.8 95.5 97.6
Station status
Empty stations mechanical bicycles 5.6 (0.8) 2.6 (0.8) 0.7 (0.2) 0.3 (0.2)
Empty stations electric bicycles 13.1 (1.2) 9 (0.7) 3.9 (0.5) 2.4 (0.7)
Full stations 1.8 (0.3) 0.7 (0.3) 0.1 (0.1) 0 (0)
Mechanical bicycles at stations 415.1 (0.2) 412.5 (1.3) 411.6 (0.9) 410.8 (1.2)
Electric bicycles at stations 400.2 (0.4) 396.8 (1) 391.1 (3) 391.5 (3)
Repositioning
Number of tasks 0 44 (0) 115.1 (1) 116 (1.1)
Number of stations visited 0 136.6 (2.3) 296.4 (3.8) 299.8 (4.2)
Number of bicycles repositioned 0 180.9 (8.8) 451.4 (17.2) 474.3 (10)
Route duration (s) - 2570.2 (17.8) 2197.2 (24.1) 2180 (19.1)

To analyze the repositioning strategies in more detail, we first look at the demand pattern and the
number of bicycles at stations throughout the day (Figure 9.3). As in the single-type system, these
patterns are very similar across all strategies, with only subtle differences. Therefore, we present them
only for the dynamic approach. Demand stays relatively high until midnight, after which it drops
sharply to nearly zero. Around 6:00 AM, demand begins to rise again, reaching a morning peak between
7:00 and 9:00 AM, then declining significantly until about 1:00 PM. The highest demand peak occurs
between 2:00 and 3:00 PM, after which demand remains elevated until midnight. The results show that
almost all unsatisfied demand is avoided, and repositioning helps stabilize the system following peak
periods. Notably, unsatisfied demand at destination stations is barely visible. Similar to the single-type
case, the narrow confidence interval indicates high consistency and low variability in the outcomes.
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(a) Demand (b) Number of Bicycles at Stations

Figure 9.3: Analysis over the Day

Figure 9.4 shows how station status changes over the day for each repositioning strategy. There is a
significant difference between the no-repositioning and static strategies on one side, and the dynamic
approach (with perfect information) on the other. In the no-repositioning and static cases, where no
repositioning is carried out during the day, the number of empty stations steadily rises, with particularly
many stations lacking electric bicycles. Full stations are also present throughout the day. In contrast,
the dynamic strategies keep the number of empty stations low during the day, with further reductions
after peak periods and overnight. Full stations are almost negligible under these approaches. Although
perfect information allows for slightly better handling after peak hours, its advantage over regular
dynamic repositioning is relatively small.

(a) No repositioning (b) Static repositioning (c) Dynamic repositioning (d) Perfect information

Figure 9.4: Station Status over the Day

9.4. Sensitivity analysis of system parameters
To gain a deeper understanding of how various model parameters affect system performance, an
additional sensitivity analysis was performed on the dynamic repositioning strategy. First, the initial
system status was found to have a negligible effect on satisfied demand, indicating that the main findings
are robust to variations in starting conditions. The results for a single-type system are presented in
Figure 9.5. The light blue bars represent the absolute number of satisfied demand, while the dark blue
line indicates the satisfaction rate. It is worth noting that the absolute satisfied demand may increase
even when the satisfaction rate decreases, and vice versa.

First of all, we observe that adjusting the number of vehicles by one, either by removing or adding,
leads to a change of about 1% in satisfaction rate, with a decrease when removing a vehicle and an
increase when adding one. Changing vehicle capacity has a negligible effect on satisfied demand. The
impact of station prioritization was also evaluated. In practice, 13 priority stations are designated by
the operator and assigned higher penalties when unbalanced. Removing these priorities offers more
flexibility to balance the network, but the effect on the satisfaction rate is negligible. Incorporating
demand predictions has a small impact, only slightly bringing the results closer to those obtained under
perfect information. Satisfaction rates remain similar with vehicle-aware repositioning regardless of the
number of restricted locations. However, the computation time decreases from 2.7 to 1.3 seconds, and
this effect is likely to be more significant in larger systems. Weekend operations were analyzed, during
which the fleet size is reduced to two vehicles during the day and one at night. Weekend and festive days
have similar demand patterns that are significantly lower than weekdays. This lower demand makes
repositioning easier, which results in a higher percentage of satisfied demand. Finally, as the system
demand increases, the absolute number of satisfied trips increases significantly, while the satisfaction
rate drops only by 1% to 4%, remaining above 80%. This suggests that the system can accommodate
substantial demand growth with limited loss in service quality.
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(a) Number of vehicles (b) Vehicle size (c) Priority stations (d) Predicted demand

(e) Vehicle-aware repositioning (f) Day of the week (g) Increased demand

Figure 9.5: Sensitivity Analysis of a Single-Type System

In Valladolid, there are no priority stations. Therefore, prioritization is not further investigated. First, we
find that the initial system status has minimal impact on satisfied demand, confirming the robustness
of the results to variations in starting conditions, consistent with the findings for the single-type fleet.
Figure 9.6 presents the sensitivity analysis for the mixed-fleet system. Increasing the number of vehicles
improves the satisfaction rate from 94% to 96%, with the largest gain observed when increasing from
fewer vehicles to the current number. Varying vehicle size has a small effect on performance; even when
decreasing vehicle capacity to just 9 bicycles, the satisfaction rate remains considerably high. The small
differences observed are mainly due to randomness of demand. Incorporating demand predictions
improves model performance, increasing the satisfaction rate by almost 1% and bringing it within 2% of
the perfect information benchmark. Vehicle-aware repositioning lowers satisfaction slightly but reduces
the computation time from 5 to 3 seconds. Its lower performance is likely due to the relatively small
number of unbalanced stations, meaning that restricting the set of candidate stations greatly limits the
solution space. As in Zaragoza’s single-type system, weekend demand is much lower than during the
week. However, unlike Zaragoza, satisfaction rates drop during weekends, suggesting that the number
of repositioning vehicles may be insufficient to maintain similar service levels. Finally, when the system
demand increases, the number of trips increases substantially, while the satisfaction rate decreases only
moderately (by 1%–4%), remaining above 90%. This indicates that the system can handle significant
demand growth with minimal loss in service quality.

(a) Number of vehicles (b) Vehicle size (c) Predicted demand

(d) Vehicle-aware repositioning (e) Day of the week (f) Increased demand

Figure 9.6: Sensitivity Analysis of a Mixed-Fleet System
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9.5. Analysis of empty stations
In the results, we observed significantly more unsatisfied demand at trip origins, more empty stations
than full ones, and that even with perfect information it was difficult to avoid empty stations during the
day. To investigate the root of this issue, we consider two options: increasing the penalties for empty
stations to prioritize them, or adding bicycles to test whether a shortage of bicycles is the underlying
cause. Figure 9.7 shows the analysis of empty stations in the single-type system. Adjusting the scalar
for nearly empty stations, increasing the constant for empty stations, or applying both changes does not
improve satisfaction rates. In contrast, adding 200 extra bicycles increases satisfaction by 1%. However
adding more bicycles does not lead to further improvement, and adding 300 or 400 bicycles actually
reduces satisfaction because it increase the number of full stations. The optimal level is an addition of
200 bicycles, which leads to an improvement of 1%. Nevertheless, the number of critical stations (empty
+ full) decreases only marginally, suggesting that simply adding bicycles cannot resolve unsatisfied
demand.

(a) Penalties (b) Satisfaction with extra bicycles (c) Empty and full stations with extra
bicycles

Figure 9.7: Analysis of Empty Stations for Single-Type System

Figure 9.8 shows the analysis of empty stations for the mixed-fleet system. The additional bicycles
considered here are electric, since earlier results showed that stations were short of electric bicycles
more frequently. Electric bicycles also have higher usage rates. Increasing the scalar for nearly empty
stations, raising the constant for empty stations, or doing both does not improve the satisfaction rate.
In contrast, adding extra bicycles can increase satisfaction to over 98%, satisfying almost all demand.
However, adding more than 200 bicycles does not lead to further improvement, and adding 300 or
400 bicycles actually reduces satisfaction because it increases the number of full stations. The optimal
addition is 200 electric bicycles, which increases satisfaction above 98% and reduces the number of
critical stations (empty + full) by more than half. This confirms that the availability of electric bicycles is
a key bottleneck in mixed-fleet system of Valladolid.

(a) Penalties (b) Satisfaction with extra bicycles (c) Empty and full stations with extra
bicycles

Figure 9.8: Analysis of Empty Stations for Mixed-Fleet System
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Conclusion

This thesis presented a dynamic repositioning strategy for continuously operating shared bicycle
systems, applicable to single-type and mixed-fleet bicycle configurations. The primary objective was to
improve user satisfaction while maintaining operational efficiency through flexible, time-dependent
planning horizons. User satisfaction was quantified as a no-service penalty, reflecting (near) empty and
full station states and deviations from optimal inventory levels. Operational efficiency was enforced
through a maximum route duration constraint, which adapted to the time of day with shorter durations
during peak hours, and longer durations during off-peak and nighttime periods.

For the single-type system in Zaragoza, the no-repositioning strategy had the lowest performance,
meeting just over 80% of the demand. Static repositioning offered modest improvements, while the
dynamic strategy substantially increased satisfied demand by approximately 400 additional trips daily.
Even with perfect knowledge of future demand, more than 10% of the trips remained unserved and
an average of 7.5 stations remained empty. For the mixed-fleet system in Valladolid, similar trends
were observed. The static strategy added around 80 trips on top of the no-repositioning strategy. The
dynamic strategy further improved performance, satisfying more than 95% of total demand. In line with
the single-type system, demand shortages were concentrated at the trip origins, particularly for electric
bicycles, reflecting the imbalance between the high demand for electric bicycles and limited availability.
Further analysis revealed that adding 200 extra bicycles improves satisfaction in both systems, and in
Valladolid it allows nearly all demand to be satisfied. Adjusting key parameters showed that the number
of vehicles affects satisfaction levels, while vehicle size has little to no impact. Similarly, vehicle-aware
repositioning has little effect on performance, though it can help reduce computation time. Lastly, both
systems are capable of handling an increase in demand of 50% while experiencing only a decrease of 4%
in satisfaction level.

In summary, this thesis demonstrates the successful development of a dynamic repositioning strategy
with flexible, time-dependent planning horizon that substantially increases satisfied demand, and
consequently, user satisfaction. This strategy makes shared bicycle systems more attractive as a
sustainable alternative to the use of cars and public transport. The results show that the approach
is effective even in systems with high usage, such as in Zaragoza, where four million trips are made
annually, highlighting its potential to support widespread adoption and long-term impact.
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Discussion

The solution strategy presented in this thesis is able to obtain desirable outcomes, but also have some
limitations. To improve the suggested methods, these limitations can be further analyzed and the
method can be extended. In this thesis, travel and stop times are treated as deterministic, whereas in
practice they are uncertain. Incorporating stochasticity would make the model more robust to variability
in these durations. In the simulations, users are assumed neither to switch to another bicycle type
when their preferred one is unavailable nor to go to a different station to start their trip. Incorporating
probabilities for these behaviors would make the simulation tool more realistic. Future research could
focus on developing targeted strategies for specific bottlenecks in the system. When critical stations and
time periods are identified, it would be possible to apply specific solutions, such as more frequent visits
or adjusted prioritization rules, to enhance overall system performance. Another valuable extension
would be to incorporate broken bicycles into the repositioning model. These bicycles take up docking
space without contributing to availability, thereby reducing service levels. The efficient return of broken
bicycles to the depot not only frees up space but also allows repairs, ultimately increasing the number
of functional bicycles in the system (Wang & Szeto, 2018). In addition to charging stations, a bicycle
sharing system may also contain solar-powered stations. These solar-powered stations present unique
operational challenges. Solar-powered stations do not charge bicycles. Solar energy is used exclusively
to provide availability data. As a result, bicycles with low battery levels parked at these stations cannot
be used by riders and occupy dock space, similar to broken bicycles. Managing the relocation of these
low-charge bicycles to charging stations adds another layer of complexity, requiring strategic decisions
that impact both bicycle availability and dock space utilization.

38



References

Alvarez-Valdes, R., Belenguer, J. M., Benavent, E., Bermudez, J. D., Muñoz, F., Vercher, E., & Verdejo, F.
(2016). Optimizing the level of service quality of a bike-sharing system. Omega, 62, 163–175.

Angelelli, E., Chiari, M., Mor, A., & Speranza, M. G. (2022). A simulation framework for a station-based
bike-sharing system. Computers & Industrial Engineering, 171, 108489.

Bieliński, T., Kwapisz, A., & Ważna, A. (2021). Electric bike-sharing services mode substitution for
driving, public transit, and cycling. Transportation research part D: transport and environment, 96,
102883.

Brinkmann, J., Ulmer, M. W., & Mattfeld, D. C. (2015). Short-term strategies for stochastic inventory
routing in bike sharing systems. Transportation Research Procedia, 10, 364–373.

Brinkmann, J., Ulmer, M. W., & Mattfeld, D. C. (2019). Dynamic lookahead policies for stochastic-dynamic
inventory routing in bike sharing systems. Computers & Operations Research, 106, 260–279.

Caggiani, L., Camporeale, R., Ottomanelli, M., & Szeto, W. Y. (2018). A modeling framework for the
dynamic management of free-floating bike-sharing systems. Transportation Research Part C:
Emerging Technologies, 87, 159–182.

Caggiani, L., & Ottomanelli, M. (2013). A dynamic simulation based model for optimal fleet repositioning
in bike-sharing systems. Procedia-Social and Behavioral Sciences, 87, 203–210.

Campbell, A. A., Cherry, C. R., Ryerson, M. S., & Yang, X. (2016). Factors influencing the choice of shared
bicycles and shared electric bikes in beĳing. Transportation research part C: emerging technologies,
67, 399–414.

Chemla, D., Meunier, F., & Calvo, R. W. (2013). Bike sharing systems: Solving the static rebalancing
problem. Discrete Optimization, 10(2), 120–146.

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of public
transportation, 12(4), 41–56.

Galatoulas, N.-F., Genikomsakis, K. N., & Ioakimidis, C. S. (2020). Spatio-temporal trends of e-bike
sharing system deployment: A review in europe, north america and asia. Sustainability, 12(11),
4611.

Gast, N., Massonnet, G., Reĳsbergen, D., & Tribastone, M. (2015). Probabilistic forecasts of bike-sharing
systems for journey planning. Proceedings of the 24th ACM international on conference on information
and knowledge management, 703–712.

Ghamami, M., & Shojaei, M. (2018). Introducing a design framework for a multi-modal public trans-
portation system, focusing on mixed-fleet bike-sharing systems. Transportation Research Record,
2672(36), 103–115.

Hernández-Pérez, H., & Salazar-González, J.-J. (2004). A branch-and-cut algorithm for a traveling
salesman problem with pickup and delivery. Discrete Applied Mathematics, 145(1), 126–139.

Jiménez-Meroño, E., & Soriguera, F. (2024). Optimization of bike-sharing repositioning operations: A
reactive real-time approach. EURO Journal on Transportation and Logistics, 13, 100138.

Kloimüllner, C., Papazek, P., Hu, B., & Raidl, G. R. (2014). Balancing bicycle sharing systems: An
approach for the dynamic case. European conference on evolutionary computation in combinatorial
optimization, 73–84.

Legros, B. (2019). Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to
rebalance a bike station. European Journal of Operational Research, 272(2), 740–753.

Li, Y., Szeto, W. Y., Long, J., & Shui, C. S. (2016). A multiple type bike repositioning problem. Transportation
Research Part B: Methodological, 90, 263–278.

Martins Silva, M. C., Aloise, D., & Jena, S. D. (2023). Towards effective rebalancing of bike-sharing
systems with regular and electric bikes.

O’Brien, O. (2025). Bike sharing world map. Retrieved March 13, 2025, from https://bikesharingworldmap.
com

O’Mahony, E., & Shmoys, D. (2015). Data analysis and optimization for (citi) bike sharing. Proceedings of
the AAAI conference on artificial intelligence, 29(1).

39

https://bikesharingworldmap.com
https://bikesharingworldmap.com


References 40

Pfrommer, J., Warrington, J., Schildbach, G., & Morari, M. (2014). Dynamic vehicle redistribution and
online price incentives in shared mobility systems. IEEE Transactions on Intelligent Transportation
Systems, 15(4), 1567–1578.

Rainer-Harbach, M., Papazek, P., Hu, B., & Raidl, G. R. (2013). Balancing bicycle sharing systems: A
variable neighborhood search approach. Evolutionary Computation in Combinatorial Optimization:
13th European Conference, EvoCOP 2013, Vienna, Austria, April 3-5, 2013. Proceedings 13, 121–132.

Raviv, T., & Kolka, O. (2013). Optimal inventory management of a bike-sharing station. Iie Transactions,
45(10), 1077–1093.

Raviv, T., Tzur, M., & Forma, I. A. (2013). Static repositioning in a bike-sharing system: Models and
solution approaches. EURO Journal on Transportation and Logistics, 2(3), 187–229.

Regue, R., & Recker, W. (2014). Proactive vehicle routing with inferred demand to solve the bikesharing
rebalancing problem. Transportation Research Part E: Logistics and Transportation Review, 72,
192–209.

Salazar-González, J.-J., & Santos-Hernández, B. (2015). The split-demand one-commodity pickup-
and-delivery travelling salesman problem. Transportation Research Part B: Methodological, 75,
58–73.

Schuĳbroek, J., Hampshire, R. C., & Van Hoeve, W.-J. (2017). Inventory rebalancing and vehicle routing
in bike sharing systems. European Journal of Operational Research, 257(3), 992–1004.

Shui, C. S., & Szeto, W. Y. (2018). Dynamic green bike repositioning problem–a hybrid rolling horizon
artificial bee colony algorithm approach. Transportation Research Part D: Transport and Environment,
60, 119–136.

Shui, C. S., & Szeto, W. Y. (2020). A review of bicycle-sharing service planning problems. Transportation
Research Part C: Emerging Technologies, 117, 102648.

Soriguera, F., & Jiménez-Meroño, E. (2020). A continuous approximation model for the optimal design
of public bike-sharing systems. Sustainable Cities and Society, 52, 101826.

Wang, Y.-J., Kuo, Y.-H., Huang, G. Q., Gu, W., & Hu, Y. (2022). Dynamic demand-driven bike station
clustering. Transportation Research Part E: Logistics and Transportation Review, 160, 102656.

Wang, Y., & Szeto, W. Y. (2018). Static green repositioning in bike sharing systems with broken bikes.
Transportation Research Part D: Transport and Environment, 65, 438–457.

Zhang, D., Yu, C., Desai, J., Lau, H., & Srivathsan, S. (2017). A time-space network flow approach to
dynamic repositioning in bicycle sharing systems. Transportation research part B: methodological,
103, 188–207.

Zhu, S. (2021). Optimal fleet deployment strategy: Model the effect of shared e-bikes on bike-sharing
system. Journal of Advanced Transportation, 2021(1), 6678637.



A
Scientific paper

41



Dynamic Shared Bicycle Repositioning with Flexible Time Horizon in a Mixed Fleet
System

Tom Bruininka,1,∗

aTU Delft, Stevinweg 1, 2628 CN, Deft, The Netherlands

Abstract

Shared bicycle systems offer a sustainable alternative to car and public transport use in urban areas, but maintaining a balance
between bicycle availability and demand remains a challenge. This thesis presents a time-adaptive dynamic repositioning strategy
that jointly optimizes station selection, bicycle quantities, and routing for continuously operating systems with a mixed bicycle
fleet. User satisfaction is captured through a no-service penalty, while operational efficiency is ensured by enforcing time-dependent
maximum route durations, shorter during peak hours and longer during off-peak and at night. Applied to a real-world case study with
a mixed bicycle fleet in Valladolid, the strategy significantly increases satisfied demand and user satisfaction. These improvements
enhance the potential of the system to promote sustainable urban mobility on a broader scale.

Keywords: bike-sharing, dynamic repositioning, station-based, mixed-fleet, MILP, simulation

1. Introduction

Shared bicycle systems have become a key element of sus-
tainable urban transportation by reducing greenhouse gas emis-
sions, travel time, and traffic congestion, while improving con-
nectivity to other modes of transit by addressing the first-
mile/last-mile challenge (DeMaio, 2009). Over the last two
decades, the number of shared bicycle systems has expanded
rapidly, with more than 2000 systems and nearly 10 million
bicycles operating worldwide (O’Brien, 2025). However, this
rapid growth has introduced new operational challenges. With
an increasing number of stations and users, maintaining a bal-
ance between supply and demand has become more complex.
The imbalance in bicycle availability between different areas
throughout the day reduces system efficiency and user satisfac-
tion, ultimately limiting system impact and growth potential.
To address this, operators deploy repositioning vehicles to re-
distribute bicycles. At the same time, the adoption of mixed
bicycle fleets that combine electric and mechanical bicycles,
further enhances the attractiveness of the system by improving
accessibility, allowing longer trips and reducing physical effort
for users (Ghamami and Shojaei, 2018). However, this diversi-
fication also introduces additional complexity to the reposition-
ing problem, as a surplus of one bicycle type cannot necessar-
ily compensate for a shortage of another, which requires more
sophisticated decision-making to balance both types across sta-
tions.
The most common strategy to address the bicycle repositioning
problem is a static approach, where bicycles are redistributed
during off-peak hours, mainly at night (Alvarez-Valdes et al.,
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2016; Chemla et al., 2013). Using this approach, reposition-
ing routes are planned to prepare the system for the expected
demand the following day. However, this method struggles to
respond to real-time system dynamics and heavily relies on de-
mand predictions, which are often uncertain. Furthermore, pre-
venting imbalances during the day would require an excessively
large fleet of bicycles, making this approach inefficient for dy-
namic environments.
An alternative strategy is the dynamic approach, in which repo-
sitioning occurs during operation, based on the real-time system
state and short-term demand forecasts. Repositioning vehicles
are deployed on short routes that serve only the most critical
stations. This method offers several advantages: It can respond
to fluctuations in demand, depends less on demand forecasts,
and has a low computational cost, since typically only one ve-
hicle is optimized at a time, specifically the one that has just
completed its previous route.
In this paper, we propose an integrated dynamic repositioning
model that simultaneously optimizes station selection, bicycle
movements, and routing in real time. The model incorporates
a flexible planning horizon, which is shorter during peak hours
and longer during off-peak periods, to balance service quality
and operational efficiency. To ensure scalability and coordina-
tion in multi-vehicle operations, the model uses vehicle-aware
repositioning, taking into account the expected end location of
all vehicle to guide future task assignments. The inclusion of
a mixed bicycle fleet further increases the complexity of the
bicycle repositioning problem, as repositioning decisions must
consider both bicycle types to maintain a balanced availability
which enhances service quality for diverse user needs.
The contributions of this paper can be summarized as follows:

• Operational efficiency and user satisfaction measures are defined
for continuously operating shared bicycle systems.Tom Bruinink Preprint submitted to Computers & 
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• A time-adaptive dynamic bicycle repositioning problem is pro-
posed that integrates station selection, bicycle quantity decisions,
and efficient routing planning for continuously operating shared
bicycle systems with mixed bicycle fleet.

• Valuable insights are provided on the growing importance of bi-
cycle repositioning, based on realistic case study results.

This paper is structured as follows. Section 2 reviews the ex-
isting literature, while Section 3 introduces the problem. The
model is presented in Section 4 and Section 5 explains the sim-
ulation method. Section 6 discusses the case study and Section
7 presents the results. Finally, Section 8 and Section 9 sum-
marize the main conclusions and describe some future research
directions.

2. Literature review

We first introduce the dynamic approach and then discuss the
different approaches to improve it. An overview of the main
characteristics of the literature reviewed in this section is pro-
vided in Table 1. Only papers explicitly addressing the bicycle
repositioning problem are included; studies without routing or
relocation considerations are excluded due to their fundamen-
tally different scope and modeling assumptions.

2.1. Dynamic approach
The goal of the dynamic approach to bicycle repositioning is
to maintain balanced bicycle availability across stations in real
time, ensuring high user satisfaction by minimizing empty and
full stations during operations. The dynamic approach lever-
ages real-time station data and short-term demand predictions
to make adaptive, responsive decisions throughout the day. A
key feature of this method is that new repositioning routes are
generated only after the previous route is completed. This se-
quential decision-making process significantly reduces compu-
tational complexity, as only one route is constructed at a time,
rather than solving an entire network of repositioning actions si-
multaneously (Jiménez-Meroño and Soriguera, 2024). The pri-
mary objective of dynamic repositioning is to minimize unsat-
isfied demand by proactively adjusting station inventories be-
fore they become empty or full. Although factors such as min-
imizing travel time or aligning station inventories with target
fill levels are still considered, they are generally secondary to
service quality (Jiménez-Meroño and Soriguera, 2024). Stud-
ies have shown that even minimal repositioning efforts can lead
to substantial improvements in service levels (Legros, 2019).
Interestingly, the optimal inventory level for each station of-
ten varies throughout the day based on demand fluctuations,
but tends to be independent of vehicle capacity (Legros, 2019).
To support these decisions, various prioritization policies have
been developed to select which stations to visit. These include
targeting stations with high current or future unmet demand,
large deviations from desired inventory levels, high movement
frequency, or proximity to other stations (Legros, 2019). In con-
trast, stations with consistently low demand are deprioritized to
avoid inefficient repositioning operations (Jiménez-Meroño and
Soriguera, 2024).

Various approaches have been developed to solve the bicycle
repositioning problem, differing in how they determine which
stations to serve, the number of bicycles to relocate, and the
routes to follow. One approach to address the bicycle reposi-
tioning problem is the action-based approach, which simpli-
fies decision-making by focusing on the next station to visit
and the number of bicycles to pick up or deliver. By focus-
ing on individual actions rather than full routes, this method
greatly reduces computational complexity. It enables fast re-
sponsiveness to real-time station conditions and short-term de-
mand forecasts, ensuring that the most critical stations are ad-
dressed quickly (Jiménez-Meroño and Soriguera, 2024; Legros,
2019). For example, Jiménez-Meroño and Soriguera (2024)
and Legros (2019) model the problem as a pairwise task assign-
ment, where a repositioning vehicle is continuously assigned to
a single action. Likewise, Brinkmann et al. (2015) introduce a
framework that distinguishes between short-term and long-term
strategies. Their short-term approach prioritizes nearby stations
with immediate violation risks, while the long-term approach
targets the most imbalanced stations overall. However, a com-
mon limitation of these action-based strategies is that decisions
are made sequentially, considering only one step at a time. This
can lead to inefficiencies as opportunities to combine actions
or optimize across multiple stations are missed. For example,
visiting two nearby unbalanced stations together or allowing si-
multaneous pickup and delivery actions might produce better
results than handling each action in isolation (Legros, 2019).
Another approach is the two-step strategy, which breaks the
repositioning problem into sequential decision phases. Pfrom-
mer et al. (2014) first identify promising repositioning routes
and then determine the optimal number of bicycles to move
along each route, ultimately selecting the route with the high-
est utility. In contrast, Regue and Recker (2014) first optimize
the station inventory levels and then construct a route based on
the optimal repositioning quantities. To reduce computational
complexity, they only consider nearby stations with significant
inventory imbalances. Although two-step methods can improve
computational efficiency and impose structure, they are limited
by the strong influence of first-stage decisions. Fixing part of
the solution early may reduce flexibility in later stages, poten-
tially leading to suboptimal outcomes.
The integrated approach to dynamic bicycle repositioning com-
bines the decisions of determining which stations to visit, the
optimal number of bicycles to relocate, and the most efficient
route (Kloimüllner et al., 2014). By addressing all of these sub-
problems together in a single model, the integrated approach
enables vehicles to receive optimized repositioning routes, ulti-
mately improving both operational efficiency and user satisfac-
tion.
An important dimension in dynamic bicycle repositioning is
the time horizon over which decisions are planned and up-
dated. Two common formulations are the rolling-horizon and
the time–space network approaches, which can be applied to
different repositioning strategies regardless of whether they
are integrated, two-step, or action-based. The rolling-horizon
method divides the operational period into a sequence of fixed-
duration intervals, each treated as a static subproblem (Shui and
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Table 1: Classification of literature on dynamic bicycle repositioning approaches
Reference Strategy Optimization method Time horizon Demand predictions Fleet type Coordination Main objective
Caggiani and Ottomanelli (2013) Integrated Simulation-based Rolling horizon Short-term Single No coordination Hybrid
Kloimüllner et al. (2014) Integrated Heuristic Rolling horizon Short- & Long-term Single No coordination User satisfaction
Pfrommer et al. (2014) Two-step Heuristic Rolling horizon Short-term Single Vehicle-aware User satisfaction
Regue and Recker (2014) Two-step Exact Rolling horizon Short-term Single No coordination Hybrid
O’Mahony and Shmoys (2015) Integrated Exact/Heuristic Time-adaptive Short- & Long-term Single Clustering User satisfaction
Brinkmann et al. (2015) Action-based Simulation-based Rolling horizon - Single No coordination User satisfaction
Zhang et al. (2017) Two-step Exact/Heuristic Time-space Short-term Single No coordination Hybrid
Shui and Szeto (2018) Two-step Heuristic Rolling horizon Short-term Single No coordination Hybrid
Caggiani et al. (2018) Integrated Simulation-based Rolling horizon Short-term Single Clustering User satisfaction
Brinkmann et al. (2019) Action-based Simulation-based Time-adaptive Short- & Long-term Single No coordination User satisfaction
Legros (2019) Action-based Exact Rolling horizon Short-term Single Clustering User satisfaction
Jiménez-Meroño and Soriguera (2024) Action-based Heuristic Rolling horizon Short-term Single Vehicle-aware User satisfaction
This study Integrated Exact Time-adaptive Short-term Mixed Vehicle-aware User satisfaction

Szeto, 2018). During each stage, real-time station states and
short-term demand forecasts are assumed to be known, effec-
tively making the problem static for that interval. After exe-
cuting the repositioning routes, the system is updated with new
inventory levels and demand estimates before the next stage be-
gins. This method balances adaptability with simplified op-
timization at each step. A common implementation of this
method is to divide the day into five-minute intervals (Caggiani
and Ottomanelli, 2013; Caggiani et al., 2018; Shui and Szeto,
2020). This short interval lengths provides sufficient opportuni-
ties to react to fluctuations in demand while keeping the compu-
tational effort manageable. The time–space network approach
instead models operations on a continuous-time basis, provid-
ing a more detailed representation of system dynamics. This
method, as explored by Zhang et al. (2017), facilitates making
real-time decisions by capturing the evolving nature of both the
repositioning process and station demand. A key advantage of
this approach is its ability to take into account the actual sta-
tion status at the time the repositioning vehicle arrives, result-
ing in more accurate repositioning actions. However, flexibility
in modeling comes with a significant increase in computational
complexity. To manage this, Zhang et al. (2017) proposed a
decomposition into a two-stage optimization model, reformu-
lating the original nonlinear problem into a mixed-integer pro-
gram. Although this makes the problem more tractable, such
a staged approach inherently leads to suboptimal solutions, as
decisions in the first stage do not fully anticipate outcomes of
the second. As a result, this approach has seen limited appli-
cation in the literature and remains impractical for large-scale,
real-world systems.

2.2. Model extensions

To align with the developments in bicycle sharing systems, mul-
tiple model extensions will be considered. These extensions are
independent of the repositioning strategy.
Most existing dynamic repositioning models assume homoge-
neous fleets, which limits their applicability to real-world sys-
tems that often offer a variety of bicycle types, such as electric
and mechanical bicycles (Shui and Szeto, 2020). The model
proposed by Li et al. (2016) introduces this heterogeneity con-
sidering bicycles with varying characteristics. Zhu (2021) stud-
ies how the integration of electric bicycles into a mechanical
fleet impacts system performance. This introduces new opera-

tional challenges: A surplus of one bicycle type cannot neces-
sarily compensate for a shortage of another, and different bicy-
cle types may occupy varying amounts of space in both repo-
sitioning vehicles and docking stations. To address this, Mar-
tins Silva et al. (2023) determine target inventory levels for each
bicycle type and examine how the willingness of users to substi-
tute their preferred bicycle type influences system performance.
These complexities highlight the need for more refined loading
and unloading strategies, as well as more advanced decision-
making processes to ensure that the correct type of bicycle is
delivered to meet the specific user demand.

Another extension is the time-adaptive approach, considered as
a variant of the rolling-horizon method, which accounts for the
heterogeneous demand patterns throughout the day, recogniz-
ing that the operator’s priorities typically align with these vary-
ing demand levels. O’Mahony and Shmoys (2015) propose
using a clustering model during the day and a routing model
overnight, acknowledging that different periods require tailored
strategies. Brinkmann et al. (2019) propose a policy that sim-
ulates future demand over a predefined horizon, with decision-
making horizons that vary throughout the day to capture hetero-
geneous demand patterns. These time-dependent look-ahead
horizons are autonomously set using the value function approx-
imation, enabling the system to anticipate peak-hour commuter
demand without extending simulations unnecessarily. From an
operational perspective, their model assumes that repositioning
vehicles operate continuously throughout the day and that costs
related to routing and drivers are already incurred. As a result,
transportation costs are excluded from the optimization, allow-
ing the model to focus primarily on maintaining high service
levels.

A final extension aimed at reducing computational complex-
ity and improving vehicle coordination is vehicle-aware repo-
sitioning, which incorporates the expected end locations of ve-
hicles into the decision-making process. Traditionally, many
studies address complexity by clustering stations into different
areas, each assigned to a repositioning vehicle. For example,
Chemla et al. (2013) and Legros (2019) divide the city into ex-
clusive zones to avoid coordination issues and allow indepen-
dent vehicle routing. Similarly, O’Mahony and Shmoys (2015)
propose clustering stations during peak hours to manage high
demand and system fluctuations. Clustering helps to reduce the
problem size and avoids long truck routes. Although cluster-
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ing offers clear computational advantages, it can reduce flexi-
bility in dynamic environments. To address this, a more adap-
tive strategy, vehicle-aware repositioning, directly incorporates
the locations of other vehicles into the repositioning model.
For example, Pfrommer et al. (2014) and Jiménez-Meroño and
Soriguera (2024) explicitly consider the expected end locations
of all vehicles in the system when assigning a new task. This
look-ahead approach retains some of the efficiency benefits of
clustering while improving flexibility, as decisions are based on
both current and anticipated vehicle positions.

3. Problem definition

To evaluate the trade-off between operational efficiency and
user satisfaction, we consider a daily operation of a shared bicy-
cle system. The system must function across different time peri-
ods, overnight, peak, and off-peak hours, each characterized by
different demand patterns. Throughout the day, multiple repo-
sitioning vehicles continuously relocate bicycles to maintain a
balanced inventory between stations, based on the current num-
ber of bicycles at each station and the expected demand in the
upcoming period. Each driver completes one task at a time,
usually involving multiple actions, such as picking up or deliv-
ering bicycles. After completion of a task, the driver requests a
new one. Therefore, for each vehicle, a route must be created
by assigning the next task to be performed, without knowing
which tasks will follow. We adopt a rolling-horizon approach
in which the time horizon is discretized into minutes. The plan-
ning horizon for each task is set equal to the maximum route
duration applicable to that time period, with routes allowed to
depart and return at any minute. We begin by presenting the
dynamic framework, which outlines the steps involved in creat-
ing the next route, starting with the driver’s request for the next
task and ending with the execution of that task. Thereafter we
explain briefly the real-time station status, the demand predic-
tions, and the no-service penalties.

3.1. Dynamic framework

The steps of creating the next route are presented in the dynamic
framework (Figure 1). The process begins in the upper-left cor-
ner, where a driver requests a new task after completing the pre-
vious one. This request enters the platform, which analyzes the
real-time status of all stations defined as the number of available
bicycles and free docking spots. Additionally, demand predic-
tions are generated for the upcoming period. The system sta-
tus and demand predictions are used as inputs to the no-service
level function. This value is computed for each station using
the function f (S ,D), where S represents the current inventory
level and D denotes the predicted demand. Together, these
values represent the expected inventory at each station if no-
repositioning actions are performed. The resulting no-service
penalties are then used as inputs for the Dynamic Bicycle Repo-
sitioning Problem with Flexible Time Horizon (DBRPFTH).
This model determines which stations to visit, how many bi-
cycles to relocate, and the most efficient route to follow. A de-
tailed description of the model is provided in Section 4. Once

the next route is determined, the task is assigned to the driver
for execution. Upon completion, the driver submits a new task
request, and the cycle repeats.

Figure 1: Schematic overview of the dynamic framework

3.2. Real-time station status

The real-time station status describes the current state at each
station. It contains the number of bicycles available and the
number of free docking spots. Data will be collected from open-
access data sources in the standard General Bikeshare Feed
Specification (GBFS) format, which contains real-time infor-
mation on shared bicycle systems. It is updated every 30 sec-
onds.

3.3. Demand predictions

Demand predictions estimate fluctuations in bicycle levels at
each station for the next time interval. To ensure flexibility, the
prediction horizon is adapted to the planning horizon of each
repositioning route. During peak hours, shorter forecasts of 30
minutes are preferred due to rapid changes in station inventory
levels. In contrast, longer prediction windows of 40 to 45 min-
utes are more suitable for overnight and off-peak periods when
fluctuations are less frequent. In addition, the predictions are
aligned dynamically with route schedules. For example, if a
route ends at 10:40 with a half-hour forecast horizon, predic-
tions are generated for 10:40–11:10. This is achieved by parti-
tioning the predictions into five-minute intervals, allowing flex-
ible adaptation to different start times and planning horizons.
The prediction model relies solely on unconstrained historical
demand data, which means that changes in bicycle inventory
are unaffected by station capacity limits. If a station has no bi-
cycles and is still empty in the next period, the actual demand
might be nonzero, but any demand is unobservable. Similarly,
when a station reaches full capacity, the number of users who
wanted to return a bicycle but were unable to do so remains un-
known. To ensure accuracy, we only use historical data where
the station inventory remained within capacity limits during the
next interval.
The demand prediction model consists of several steps. The
first step involves clustering past dates based on their demand
patterns, without considering calendar characteristics. The
number of trips for all stations will be aggregated to a total de-
mand for a day. Note that if the demand pattern for several
stations differs significantly from the usual pattern, the day will
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be in a different cluster. Importantly, rainy days are excluded
from clustering because the rain negatively affects demand, po-
tentially leading to misclassifications.
In the second step, a machine learning (ML) classification
model predicts the cluster to which a future date belongs based
on its calendar characteristics, such as the day of the week,
month, holidays, and special events.
In the third step, an ML regression model is used to forecast de-
mand for the next time interval based on multiple input features.
These include the assigned cluster for the given date, lagged de-
mand values from previous time periods, demand fluctuations
observed on similar past dates within the same cluster, calen-
dar variables, and the most recent weather forecasts, including
rainfall, temperature, wind speed, and humidity.
To improve reliability, two quantile regression models are
trained to estimate the lower and upper demand bounds. These
quantile models are trained with loss functions that empha-
size penalties on either negative demand (more bicycles taken
than returned) or positive demand (more bicycles returned than
taken), which also an estimation of the 20th and 80th per-
centiles, respectively. To improve robustness against demand
uncertainty, the system adopts a worst-case scenario approach
based on the estimated demand bounds. When the lower and
upper quantiles indicate that two additional bicycles might be
picked up or dropped off and the station is currently empty, the
scenario with more pickups is considered the worst case. In
contrast, if the station is full, the scenario with more deliveries
is considered worse. This conservative approach helps mitigate
the risk of demand fluctuations, ensuring a more reliable and
stable system.

3.4. No-service penalties

User satisfaction will be quantified using no-service penalties.
They are determined using real-time station status and demand
predictions, as these two factors allow us to determine the ex-
pected inventory level for each station in the upcoming period,
assuming no repositioning actions are taken. The ideal scenario
for each station is a balance between the number of bicycles
and free docks, ensuring that the station is neither empty nor
full and is capable of accommodating future demand. Since
future demand is uncertain, stations that are near-empty or
near-full are considered suboptimal. A no-service penalty will
be imposed if the station occupancy becomes nearly empty or
nearly full.

The problem definition outlined in this section forms the basis
for the mathematical formulation presented in the next section.

4. Model formulation

In this section, we introduce the Dynamic Bicycle Reposition-
ing Problem with Flexible Time Horizon (DBRPFTH), which
focuses on determining the stations to visit, the optimal num-
ber of bicycles to relocate, and creating an efficient route with
a flexible time horizon for a mixed bicycle fleet. We formu-
late the DBRPFTH as a standard Mixed Integer Linear Program

(MILP) to optimize user satisfaction while ensuring operational
efficiency. This model is based on the Static Bicycle Repo-
sitioning Problem (SBRP) introduced by Raviv et al. (2013).
We begin by introducing the measures for operational efficiency
and user satisfaction before delving deeper into the model.

4.1. Measures
Operational efficiency is important in evaluating reposition-
ing strategies with the primary goal of creating efficient routes
that respond effectively to fluctuations in station inventory lev-
els. In our context, where the number of drivers is prede-
termined and vehicles operate continuously, traditional cost-
minimization objectives, such as reducing driver wages and ve-
hicle operations, are less relevant. Since drivers request new
routes immediately after completing the previous one, mini-
mizing routing costs does not significantly impact efficiency.
Instead, we focus on creating efficient routes to maximize user
satisfaction.
We introduce a maximum route duration T , which determines
how long a vehicle can operate before requesting a new route.
The route duration is influenced by the travel time between sta-
tions, which varies throughout the day, and the stop time, which
includes both a fixed time for the pickup or delivery of bicy-
cles and an additional component based on the number of bicy-
cles being moved. To account for variations in travel time and
system conditions throughout the day, we divide the day into
three distinct time intervals: peak hours, off-peak hours, and
overnight. Each time period falls within one of these intervals,
allowing parameters to be defined at the interval level rather
than for each individual time period. To further adapt to these
variations, we use different duration matrices for travel times
in each interval, ensuring that travel times accurately reflect the
conditions during repositioning routes.
In order to address variations in demand and station inventory
fluctuations throughout the day, we introduce the time-
dependent maximum route duration, Tt, where t represents
the specific time period. During peak hours, when demand is
high and station inventory fluctuates significantly, it becomes
crucial to respond quickly to these fluctuations by planning
shorter routes. To achieve this, we reduce the maximum route
duration Tt during peak hours, ensuring that repositioning
routes can adapt faster to changes in inventory levels. On the
other hand, during nighttime and off-peak hours, when demand
is lower and station inventory levels are more stable, the model
shifts its focus towards optimizing operational efficiency. In
these periods, longer routes can be planned because the station
inventory fluctuates less, allowing more actions to be efficiently
included in a single route. To accommodate this, the maximum
route duration Tt is extended, which allows the system to
optimize for fewer, but longer, repositioning tasks.

User satisfaction is assessed by no-service penalties, as de-
scribed in Subsection 3.4. A penalty is imposed if the expected
station occupancy, determined by the current inventory level
and the demand forecast for the upcoming period, falls below
a lower threshold (nearly empty) or exceeds an upper thresh-
old (nearly full). These penalties are calculated based on the
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squared deviation from the thresholds, which places greater em-
phasis on larger deviations. This reflects the fact that extreme
imbalances can result in unmet demand. Note that we have a
mixed-fleet. An excess of one bicycle type may not effectively
resolve the shortages of another (Shui and Szeto, 2020). More-
over, the impact of repositioning a single bicycle can go beyond
the benefit of a single user, as it may enable a chain of success-
ful rentals and returns (Chemla et al., 2013). In addition, a fixed
penalty is applied if a station becomes completely empty or full.
Together, these mechanisms discourage extreme inventory lev-
els and promote more balanced stations, ultimately aiming to
improve service levels and reduce the risk of long-term nega-
tive consequences.
To determine the optimal inventory level for each station in the
upcoming periods, demand forecasts are incorporated for both
the upcoming period and the period after. The demand in the
upcoming period reflects the demand during which reposition-
ing takes place, while the forecast for the two periods ahead rep-
resents the expected demand after repositioning has occurred.
For example, if a station is expected to become (nearly) full in
the coming period, we know that a pickup is needed, but it re-
mains unclear whether this should involve removing 25%, 50%,
or 75% of the bicycles. The forecast for the period after repo-
sitioning helps refine this decision: If demand is expected to
be positive (more returns than withdrawals), it is preferable to
leave fewer bicycles at the station; if demand is expected to be
negative (more withdrawals than returns), having more bicycles
available is advantageous. This component is integrated into a
quadratic penalty function, where the penalty is lowest at the
target inventory level that best aligns with anticipated demand.
A relatively small weight is assigned to this term to ensure that
inventory levels outside the acceptable range are still penalized
more heavily than those within it. This structure prioritizes
meeting immediate demand predictions while using future fore-
casts to fine-tune inventory within the preferred bounds.

4.2. Notation

The dynamic repositioning problem is described by the follow-
ing set and parameters:

N Set of nodes, including the depot, indexed by i = 0, . . . , |N |.
io Origin node, where the repositioning operation starts.
s0m

i Number of mechanical bicycles at node i before the repositioning oper-
ation starts.

s0e
i Number of electric bicycles at node i before the repositioning operation

starts.
d1m

i Predicted demand of mechanical bicycles at node i for the next period.
d1e

i Predicted demand of electric bicycles at node i for the next period.
d2m

i Predicted demand of mechanical bicycles at node i for two periods
ahead.

d2e
i Predicted demand of electric bicycles at node i for two periods ahead.

ci Number of docks installed at node i, referred to as the node’s capacity.
cmax Maximum number of docks.
lm Initial load of mechanical bicycles in the vehicle.
le Initial load of electric bicycles in the vehicle.
k Capacity (number of bicycles) of the vehicle.
fi(sm

i , s
e
i ) Penalty function reflecting user satisfaction for node i.

ri j Traveling time from node i to node j.
Tt Repositioning time, i.e., maximum duration of a repositioning route in

period t.

V Constant time required for visiting a node.
P Time required to pick up a bicycle from a node.
D Time required to deliver a bicycle to a node.
M Upper bound on number of arcs, default is |N |

Note that to reduce computational complexity only imbalanced
stations are considered (Regue and Recker, 2014). The depot is
assumed to have no demand and capacity, because the vehicle
cannot drop-off or pick up bicycles at the depot. Since the
driver requests a new route after completing the previous one,
the vehicle does not necessarily start its route from the depot.
Instead, the starting location is referred to as the origin node,
denoted by io. Station capacity is defined as the total number
of usable bicycles and docks, excluding any that are broken
or unavailable. Additionally, we assume that all docks are
available for both types of bicycles, that each bicycle type
occupies the same amount of space in the repositioning vehicle,
and that the time required to pick up or deliver a mechanical or
electric bicycle is identical.

The following decision variables will be used:

xi j Binary variable which equals one if the vehicle travels directly from node i to node
j, and zero otherwise.

ym
i j Number of mechanical bicycles carried on the vehicle when it travels directly from

node i to node j. If the vehicle does not travel directly from i to j, ym
i j equals zero.

ye
i j Number of electric bicycles carried on the vehicle when it travels directly from

node i to node j. If the vehicle does not travel directly from i to j, ye
i j equals zero.

yPm
i Number of mechanical bicycles picked up at node i.

yPe
i Number of electric bicycles picked up at node i.

yDm
i Number of mechanical bicycles delivered at node i.

yDe
i Number of electric bicycles delivered at node i.

zPm
i Binary variable which equals one if mechanical bicycles are picked up from node

i, and zero otherwise.
zPe

i Binary variable which equals one if electric bicycles are picked up from node i,
and zero otherwise.

zDm
i Binary variable which equals one if mechanical bicycles are delivered to node i,

and zero otherwise.
zDe

i Binary variable which equals one if electric bicycles are delivered to node i,
and zero otherwise.

zi Binary variable which equals one if action is performed at node i,
and zero otherwise.

qi Auxiliary variable used for sub-tour elimination constraints.
sm

i Expected inventory level of mechanical bicycles at node i at the end
of the repositioning operation.

se
i Expected inventory level of electric bicycles at node i at the end

of the repositioning operation.

4.3. Objective function

Our objective is to maximize user satisfaction by minimizing
no-service penalties, using the satisfaction measures defined in
Subsection 4.1. This approach is supported by Caggiani and
Ottomanelli (2013), who model utility as a plateau function,
where utility increases from an empty station to a sufficient
lower bound, remains high within an optimal range, and de-
creases as the station nears full capacity. However, in contrast
to their approach, we aim to determine the optimal inventory
level within the acceptable range (the plateau) based on the de-
mand predictions for the period after repositioning, which cor-
responds to two periods ahead.
We introduce the penalty function to evaluate the expected
inventory levels. This function combines a convex component
and a piecewise-linear component to reflect the penalties

6



related to imbalanced stations, based on the research of Raviv
et al. (2013). To incorporate this function into an optimization
model, we reformulate both components in linear terms
using auxiliary variables and constraints. This transformation
enables the complete model to be expressed as a Mixed-Integer
Linear Program (MILP), following the approach of Raviv et al.
(2013). It is important to note that the values of fi(sm

i , s
e
i ) can

be calculated from the input variables.

The function contains the following parameters:

Lm Percentage of station capacity considered as almost empty of mechanical bicycles
Le Percentage of station capacity considered as almost empty of electric bicycles
H Percentage of station capacity considered as almost full
pL Penalty (almost) empty station
pH Penalty (almost) full station
pcL Constant penalty empty station
pcH Constant penalty full station
β Weight/scaling factor for optimal inventory level

The penalty function for station i ∈ N given station inventory
level sm

i , se
i is as follows:

fi(sm
i , s

e
i ) = pL(max(ci · Lm − sm

i , 0)
)2
+ pL(max(ci · Le − se

i , 0)
)2

+ pH (max(sm
i + se

i − ci · H, 0)
)2

+ β ·
[(

sm
i −
( Lm + 0.5 · H

2
· ci − d2m

i
))2

+
(
se

i −
( Le + 0.5 · H

2
· ci − d2e

i
))2]

+ pcL1sm
i ≤0 + pcL1se

i ≤0 + pcH1sm
i +se

i ≥ci
∀i ∈ N (1)

The penalty function consists of eight components, which can
be divided into two types: convex components and piecewise
linear components. The first five components form the convex
part of the function, while the last three components introduce
piecewise linear penalties. Consequently, the penalty func-
tion fi(sm

i , s
e
i ) can be separated into a convex penalty function

f C
i (sm

i , s
e
i ) and a piecewise linear penalty function f L

i (sm
i , s

e
i ).

f C
i (sm

i , s
e
i ) = pL(max(ci · Lm − sm

i , 0)
)2
+ pL(max(ci · Le − se

i , 0)
)2

+ pH (max(sm
i + se

i − ci · H, 0)
)2

+ β ·
[(

sm
i −
( Lm + 0.5 · H

2
· ci − d2m

i
))2

+
(
se

i −
( Le + 0.5 · H

2
· ci − d2e

i
))2] ∀i ∈ N

f L
i (sm

i , s
e
i ) = pcL1sm

i ≤0 + pcL1se
i ≤0 + pcH1sm

i ,s
e
i ≥ci

∀i ∈ N

The first and second components of the convex penalty func-
tion address situations where a station’s inventory level sm

i or
se

i drops below a low threshold, indicating that the station is
nearly empty of mechanical or electric bicycles. This penalty is
squared and weighted by the scalar pL, increasing the penalty
as the inventory level is further from the threshold. The third
component focuses on stations that are (nearly) full, applying
a similar squared penalty with a scalar pH as the total station
inventory level sm

i + se
i approaches the station’s full capacity.

The fourth and fifth components are always active, but are
specifically used in determining the optimal inventory level
within the acceptable range. It distinguishes between inven-
tory levels that are still balanced, between the lower and upper
bounds, by using the demand forecast for two periods ahead,

which is the demand in the period after repositioning. If the
post-repositioning demand forecast is zero, the optimal inven-
tory level for each bicycle type lies in the middle of its lower
bound and half of the overall upper bound. Combined, the op-
timal total inventory level of both types lies in the middle of the
sum of their lower bounds and the overall upper bound. If the
forecast is positive (indicating more returns than withdrawals),
it is better to leave fewer bicycles at the station to prevent over-
flow. As a result the penalty function then favors lower inven-
tory levels. In contrast, if the forecast is negative (more with-
drawals than returns), the system benefits from higher bicycle
availability, and the penalty is minimized at higher inventory
levels. This preference is modeled using a quadratic penalty
function, where the minimum penalty corresponds to the in-
ventory level that best matches the expected post-repositioning
demand. A small scalar weight β is applied to this term to
ensure that inventory levels outside the boundaries are always
worse than inventory levels within the boundaries. This ensures
that the model prioritizes meeting immediate demand (during
repositioning). Future forecasts are used to fine-tune inventory
levels within the bounds. This results in more balanced and
forward-looking repositioning decisions.
Piecewise linear components introduce additional penalties
when a station becomes either completely empty or completely
full. These components are captured by an indicator function
that equals 1 if sm

i or se
i is non-positive (station is empty) or

greater than or equal to the capacity of the station ci (station is
full). A negative inventory level is possible when the station
expects a large demand deficit, meaning that significantly more
bicycles are taken than returned. Similarly, an inventory level
exceeding the station’s capacity can occur when the station ex-
pects a large demand surplus, meaning that significantly more
bicycles are returned than taken.
Together, the above mentioned eight components ensure that
the repositioning strategy not only addresses immediate de-
mand and balances stations within acceptable inventory levels
but also accounts for future demand fluctuations, minimizes
the likelihood of stations becoming entirely empty or full, and
prioritizes critical stations that directly impact service levels.
This multi-component penalty structure enables the model to
make forward-looking, balanced repositioning decisions that
improve both operational efficiency and user satisfaction.

To transform the convex penalty function f C
i into linear terms,

we must first determine the domain of the expected inventory
levels sm

i and se
i . This level depends on the initial inventories

before repositioning s0m
i and s0e

i , the predicted demands d1m
i and

d1e
i , and the repositioning actions yPm

i , yPe
i (pickups), yDm

i and
yDe

i (drop-offs). The initial inventories s0m
i and s0e

i range from
0 to station capacity ci, while d1m

i and d1e
i can take any integer

value. Repositioning actions yPm
i , yPe

i , yDm
i and yDe

i are limited by
the number of bicycles at the station or the free docks available
before repositioning. If d1m

i and d1e
i are zero, the inventories sm

i
and se

i will remain within the range [0, ci]. However, if d1m
i or

d1e
i is negative, which means that more bicycles are taken than

returned, sm
i or se

i can drop below zero, extending the lower
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bound of the domain to d1m
i or d1e

i . Conversely, if d1m
i or d1e

i
is positive, which means that more bicycles are returned than
taken, sm

i or se
i can exceed the station’s capacity, extending the

upper bound to d1m
i + ci or d1e

i + ci. Thus, the overall domains
of sm

i and se
i are given by:

sm
i ∈ [min(0, d1m

i ),max(ci, ci + d1m
i )]

se
i ∈ [min(0, d1e

i ),max(ci, ci + d1e
i )]

The domains for the first two and last two components of the
convex penalty function f C

i are sm
i and se

i respectively. For
the third component the domains are combined, since the up-
per bound depends on the total inventory level. To replace the
convex penalty functions f C

i with a linear term and linear con-
straints, we introduce the following sets and equations:

U1 = [min(0, d1m
i ),max(ci − 1, ci − 1 + d1m

i )]

U2 = [min(0, d1e
i ),max(ci − 1, ci − 1 + d1e

i ]

U3 = [min(0, d1m
i + d1e

i ),max(ci − 1, ci − 1 + d1m
i + d1e

i )]

biu ≡ f C
i (u + 1) − f C

i (u) ∀i ∈ N, u ∈ U1,U2,U3

aiu ≡ f C
i (u) − biu · u ∀i ∈ N, u ∈ U1,U2,U3

The sets U1, U2 and U3 define the index ranges over which
sm

i , se
i and sm

i + se
i are defined, respectively. The parameter

biu captures the marginal penalty associated with adding the
(u + 1)th bicycle to the station i. Together, aiu and biu represent
the intercept and slope, respectively, of the linear function that
approximates the convex penalty function f C

i at the uth level.
These linear approximations are included as constraints in the
MILP to ensure that the correct value of the convex part is
considered in the objective function, depending on the expected
inventory levels sm

i and se
i . The resulting value of the convex

penalty function for each station is captured by the variables
gLm

i (lower bound mechanical), gLe
i (lower bound electric), gH

i
(upper bound), gIBm

i (optimal level mechanical) and gIBe
i (opti-

mal level electric), which are included in the objective function.

To linearize the piecewise penalty function f L
i , we replace

the indicator functions in f L(·) with binary decision variables.
Specifically, we define binary variables wm

i , we
i and oi, which

indicate whether station i is empty or full, respectively. That is,
wm

i = 1 if the inventory level sm
i ≤ 0, we

i = 1 if the inventory
level se

i ≤ 0 and oi = 1 if the inventory level sm
i + se

i ≥ ci. To en-
force this behavior, we introduce three linear constraints using
a sufficiently large constant C.

4.4. Mathematical model
The mathematical model for the dynamic bicycle repositioning
problem is as follows:

min
∑

i∈N
gLm

i + gLe
i + gH

i + gIBm
i + gIBe

i

+ pcL · (wm
i + we

i ) + pcH · oi (2)

s.t. gLm
i ≥ aLm

iu1
+ bLm

iu1
· sm

i ∀i ∈ N, u1 ∈ U1 (3)

gLe
i ≥ aLe

iu2
+ bLe

iu2
· se

i ∀i ∈ N, u2 ∈ U2 (4)

gH
i ≥ aH

iu3
+ bH

iu3
· (sm

i + se
i ) ∀i ∈ N, u3 ∈ U3 (5)

gIBm
i ≥ aIBm

iu1
+ bIBm

iu1
· (sm

i ) ∀i ∈ N, u1 ∈ U1 (6)

gIBe
i ≥ aIBe

iu2
+ bIBe

iu2
· (se

i ) ∀i ∈ N, u2 ∈ U2 (7)

sm
i > −C · wm

i ∀i ∈ N (8)

se
i > −C · we

i ∀i ∈ N (9)

sm
i + se

i < ci +C · oi ∀i ∈ N (10)

sm
i = s0m

i + d1m
i − (yPm

i − yDm
i ) ∀i ∈ N (11)

se
i = s0e

i + d1e
i − (yPe

i − yDe
i ) ∀i ∈ N (12)

yPm
i − yDm

i =
∑

j∈N, j,i

ym
i j −

∑

j∈N, j,i

ym
ji ∀i ∈ N \ io (13)

yPe
i − yDe

i =
∑

j∈N, j,i

ye
i j −

∑

j∈N, j,i

ye
ji ∀i ∈ N \ io (14)

lm + yPm
io
− yDm

io
=
∑

j∈N, j,io

ym
io j (15)

le + yPe
io
− yDe

io
=
∑

j∈N, j,io

ye
io j (16)

ym
i j + ye

i j ≤ k · xi j ∀i, j ∈ N, i , j (17)
∑

j∈N, j,i

xi j =
∑

j∈N, j,i

x ji ∀i ∈ N (18)

yPm
i ≤ s0m

i ∀i ∈ N (19)

yPe
i ≤ s0e

i ∀i ∈ N (20)

yDm
i + yDe

i ≤ ci − (s0m
i + s0e

i ) ∀i ∈ N (21)
∑

i∈N

(∑

j∈N
ri j · xi j + P · (yPm

i + yPe
i )

+ D · (yDm
i + yDe

i ) + V · zi

)
≤ Tt (22)

q j ≥ qi + 1 − M(1 − xi j) ∀i ∈ N, j ∈ N \ io, i , j (23)

yPm
i

cmax ≤ zPm
i ≤ yPm

i ∀i ∈ N (24)

yPe
i

cmax ≤ zPe
i ≤ yPe

i ∀i ∈ N (25)

yDm
i

cmax ≤ zDm
i ≤ yDm

i ∀i ∈ N (26)

yDe
i

cmax ≤ zDe
i ≤ yDe

i ∀i ∈ N (27)

zPm
i + zDm

i <= 1 ∀i ∈ N (28)

zPe
i + zDe

i <= 1 ∀i ∈ N (29)

zPm
i + zPe

i + zDm
i + zDe

i

4
≤ zi

≤ zPm
i + zPe

i + zDm
i + zDe

i ∀i ∈ N (30)

xi j ∈ B ∀i, j ∈ N (31)

zPm
i , z

Pe
i , z

Dm
i , z

De
i , zi ∈ B ∀i ∈ N (32)

yPm
i , y

Pe
i , y

Dm
i , y

De
i ∈ Z≥0 ∀i ∈ N (33)

ym
i j , y

e
i j ≥ 0 ∀i, j ∈ N, i , j (34)

qi ≥ 0 ∀i ∈ N (35)

The objective function (2) minimizes the no-service penalties,
as described by (1). Constraints (3)-(7) determine the convex
no-service penalties based on the linearization intercept and
slope, while constraints (8)-(10) set the piecewise-linear no-
service penalties. The inventory balance is enforced by con-
straints (11) and (12), which set the expected inventory levels
after repositioning. Furthermore, the bicycle flow is conserved
through constraints (13) and (14), while constraints (15) and
(16) ensure that the flow leaving the origin node equals the ini-
tial vehicle load plus any actions taken at the origin. The con-
straints (17) limit the number of bicycles carried by a vehicle to
its capacity and ensure that no bicycles are transported along an
arc if the vehicle does not use that arc.
Vehicle flow is preserved through constraints (18), while the
number of bicycles picked up or delivered to a station is re-
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stricted by constraints (19)-(21), ensuring that the pickups do
not exceed the available inventory and that deliveries do not ex-
ceed the remaining docking capacity. Constraints (19) and (20)
inherently enforce non-negativity of inventory variables, while
constraints (21) ensure that the inventory at each station and the
depot remains within capacity limits. As a result, explicit con-
straints for inventory non-negativity and capacity limits are not
required.
The maximum route duration is constrained by (22). Note that
the return to the origin node is set to zero to enforce a round-
trip structure in the model, while the actual route will not return.
The sub-tour elimination is enforced through constraints (23),
which prevent small loops in the route. Constraints (24)-(27)
ensure that an action is only performed if bicycles are picked
up or delivered. Furthermore, constraints (28) and (29) ensure
that a vehicle may only pick up or deliver a given bicycle type
at a station, but not both for the same type. However, it may
pick up one bicycle type and deliver another at the same sta-
tion. Furthermore, constraints (30) ensure that stations are only
visited when an action is performed.
Binary and integer constraints on decision variables are
imposed by (31)-(33), while non-negativity conditions are en-
forced by constraints (34) and (35). Non-negativity constraints
on sm

i and se
i cannot be enforced, as the expected inventory

level can be negative after repositioning when the demand
deficit (d1m

i and d1e
i ) is highly negative. Similarly, si may

exceed the station capacity ci when demand is exceptionally
high. In such cases, it is assumed that unmet demand is lost,
but it is still taken into account in the objective function to
quantify its impact. Finally, the integrality of ym

i j, ye
i j, sm

i and se
i

is implicitly ensured by the integer nature of yPm
i , yPe

i , yDm
i yDe

i ,
s0m

i and s0e
i .

Similar to Raviv et al. (2013) we introduce valid inequalities to
reduce computation time.

∑

j∈N
xio j ≥ 1 (36)

∑

j∈N, j,i
xi j ≤ 1 ∀i ∈ N (37)

yPm
i ≤ min(s0m

i , k)
∑

j∈N
xi j ∀i ∈ N (38)

yPe
i ≤ min(s0e

i , k)
∑

j∈N
xi j ∀i ∈ N (39)

yDm
i + yDe

i ≤ min(ci − (s0m
i + s0e

i ), k)
∑

j∈N
xi j ∀i ∈ N (40)

yPm
i + yPe

i + yDm
i + yDe

i ≥
∑

j∈N
xi j ∀i ∈ N \ {io , 0} (41)

Constraint (36) ensures that the vehicle departs from the origin
at least once. In the LP relaxation, this departure count can take
fractional values. By enforcing the departure of a complete ve-
hicle, the vehicle flow-conservation constraints (18) guarantee
that this condition holds across all visited nodes. Constraints
(37) ensure that each station is visited at most once. Addition-
ally constraints (38)-(40) impose a stricter form of constraints
(19)-(21), limiting the number of bicycles picked up or deliv-
ered based on vehicle capacity and applying only when the ve-
hicle visits the station. Note that in constraints (38) and (39),
xi j is 1 as well if bicycles of the other type are picked up. Fi-

nally, constraints (41) ensure that vehicles visit a station only if
bicycles are picked up or delivered.

4.5. Vehicle-aware repositioning

Vehicle-aware repositioning is used to improve operational effi-
ciency and reduce computational complexity while preserving
vehicle flexibility without fixed spatial boundaries. This strat-
egy incorporates the expected end locations of all reposition-
ing vehicles directly into the decision-making process. This
look-ahead approach enables the model to assign tasks in a
way that anticipates future opportunities (Jiménez-Meroño and
Soriguera, 2024).
In our approach, when a driver requests a new task, we explic-
itly consider the ongoing tasks of currently busy vehicles. If a
busy vehicle is expected to finish its current task in a location
close to a particular demand, that location is not assigned to
the requesting driver. We limit potential task assignments by
excluding a fixed number of locations near the expected end
locations of busy vehicles. This vehicle-aware coordination
improves fleet efficiency and scalability by flexibly limiting
certain locations, without setting fixed area boundaries. Im-
portantly, no such restrictions are applied to locations near the
current position of the vehicle requesting the task.

Figure 2 shows how vehicle-aware repositioning affects the set
of stations considered for assignment in Valladolid. In this ex-
ample, four repositioning vehicles operate simultaneously. The
green vehicle marks the position of the driver currently request-
ing a task. The three red vehicles represent the expected end
locations of currently busy vehicles. Stations shown as green
dots are the closest locations to the requesting vehicle, while
red dots indicate stations located near the expected end points
of busy vehicles. These stations are temporarily restricted for
the requesting vehicle. Blue dots represent all other stations that
remain available. The visual representation shows how certain
areas of the network are effectively “reserved” for other vehi-
cles that are better positioned to serve them in the near future.
In the scenario with ten restricted locations, some overlap oc-
curs between green and red dots, meaning certain stations are
both close to the requesting vehicle and within a restricted area.
Proximity is calculated using travel time rather than straight-
line (Euclidean) distance, so stations that appear geographically
close on the map may still be farther away in practice. The
model also excludes stations already assigned to other vehicles,
stations previously visited by the requesting vehicle, and sta-
tions that are currently balanced. Consequently, the number of
restricted locations directly influences the set of stations con-
sidered in the optimization.

5. Simulation

To evaluate the performance of bicycle repositioning strategies,
we will perform a series of simulation experiments compar-
ing four operational approaches: (1) no repositioning, (2) a
static repositioning strategy, (3) the proposed state-of-the-art
dynamic repositioning strategy developed in this study and (4) a
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(a) 3 restricted locations (b) 5 restricted locations (c) 10 restricted locations

Figure 2: Vehicle-aware repositioning

perfect information strategy. In the static repositioning strategy,
bicycles are redistributed only during the night shift, when de-
mand is relatively low. The purpose of this strategy is to prepare
the system for the following day. This can be seen as a simpli-
fied variant of the proposed dynamic repositioning approach,
restricted to nighttime operations with a larger number of repo-
sitioning vehicles. As a result, the expected demand during the
day is not explicitly considered, only the demand that occurs
during the repositioning period itself is taken into account.
The perfect information approach serves as a benchmark by as-
suming that the dynamic repositioning strategy is executed with
full knowledge of future demand. Instead of relying on fore-
casts, the actual demand for the upcoming planning horizon is
provided to the strategy. This allows us to determine the maxi-
mum achievable satisfied demand under the proposed dynamic
approach if the forecasts were perfectly accurate. Any remain-
ing unsatisfied demand can then be attributed to resource limita-
tions, such as the number or capacity of repositioning vehicles,
available bicycles, or dock space, rather than to the reposition-
ing strategy itself. This highlights the performance limits of the
dynamic strategy and clarifies the extent to which lost demand
is caused by factors other than forecast accuracy.

5.1. Demand

To replicate real-world system dynamics, user demand is sim-
ulated on the basis of historical station status data. Ori-
gin–destination (OD) trips are generated by Poisson sampling,
which models discrete trip events and ensures system stability.
The expected demand for each OD pair in a given hour is cal-
culated as the average demand from historical data. Similar
to demand predictions, periods with constrained data must be
excluded from historical data. Such constrained periods occur
when stations are empty or full, making the actual demand un-
observable during these times. A departure station is only con-
sidered constrained when it is empty (since a full station does
not restrict departures), while an arrival station is constrained
only when it is full. The demand for these constrained periods is
determined based on the level of available unconstrained data.
If more than half of the hour consists of unconstrained periods,
the constrained demand is estimated proportionally, assuming
that demand would have been linear relative to the observed
unconstrained periods. However, if more than half of the hour
is constrained, the remaining unconstrained data is considered
unreliable. In such cases, the demand is replaced by the average
hourly demand for that specific OD pair.

Since many OD pair combinations are rare events, either be-
cause stops are located very close to each other or too far apart,
there are many OD pairs for which no demand was observed
in the historical data. As a result, the OD matrix of the ex-
pected demand contains many zeros. This would imply that the
Poisson-distributed demand for these OD pairs is always zero,
preventing the simulation of any trips along these pairs. How-
ever, such rare trips do occasionally occur and therefore a small
probability should be assigned. To address this issue, Laplace
smoothing is applied. This technique assigns a small positive
value to all OD pairs to prevent zero probabilities. To ensure
that the total expected demand remains unchanged, the prob-
abilities are subsequently rescaled. Specifically, for each OD
pair (i, j), the smoothed probability is calculated as:

Psmoothed
i j =

λi j + γ

λtotal + γV

where:

• λi j is the original expected demand for OD pair (i, j)

• λtotal is the total expected demand over all OD pairs

• V is the total number of OD pairs

• γ is the smoothing parameter

The smoothed expected demand for OD pair (i, j) is then scaled
back to ensure that the total demand remains unchanged:

λ̂i j = λtotal · Psmoothed
i j = λtotal ·

λi j + γ

λtotal + γV

This approach guarantees that the sum of all smoothed demands
remains equal to the original total demand, while allowing all
OD pairs to remain possible in simulations.

5.2. Experiment

The simulation incorporates three repositioning shifts per day,
each lasting eight hours: a night shift (22:00–06:00), a morning
shift (06:00–14:00), and an afternoon shift (14:00–22:00). To
ensure smoother operations, the start and end times of some ve-
hicles within a shift may be slightly adjusted. For example, the
start of a shift for part of the fleet may be delayed by an hour to
avoid all vehicles being at the depot simultaneously. Each ve-
hicle starts its shift by leaving the depot and returns there at the
end of the shift. During operations, drivers request a new task
after completing their previous one. The next task can include
stations that are unbalanced, not visited by other vehicles and
not visited in the previous route of the vehicle. The reposition-
ing algorithm then determines the next assignment. If no feasi-
ble route is found at that moment, the driver will wait for five
minutes before requesting a new task. The system is updated
every minute, taking into account both user trips and reposi-
tioning movements. When a bicycle trip and a repositioning
action occur at the same station within the same minute, the
repositioning trip is prioritized. If no bicycles of the requested
type are available at the departure station, the user cannot start
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the trip, and the request is recorded as unsatisfied demand. An
important assumption is that users do not switch bicycle types
if their preferred type is unavailable. This implies that a short-
age of one bicycle type cannot be compensated by a surplus of
another. If no available docks are found at the intended destina-
tion station, the user parks the bicycle at the nearest station with
available docks. However, this is still counted as unsatisfied de-
mand at the intended destination station. Note that when the
simulation day begins, there may already be bicycles moving,
trips that started before the simulation’s start time but arrive af-
ter it has begun. To account for these trips, historical trip data is
used to represent bicycles that were actually moving at the time
the system status is retrieved. These are not simulated move-
ments but real trips that started before the simulation period
and are scheduled to arrive after its start, ensuring the initial
system status reflects the true state of bicycles on the network.
When a vehicle arrives at a station to pick up or deliver bicycles,
but the required number of bicycles (for pickup) or free docks
(for delivery) is not available, the vehicle adjusts by picking up
or delivering as many as possible. This limitation may affect
the feasibility of subsequent planned actions, as the number of
bicycles on the vehicle may differ from what was initially in-
tended. If the remaining bicycle stock on the vehicle does not
allow the original plan to continue, the planned quantities for
the following stations are adjusted accordingly or the remain-
ing actions are canceled.
The standard analysis will focus on a typical weekday under
normal conditions. In addition, the simulation will investigate
the effects of several factors. Each simulation scenario will be
assessed using the validation metrics introduced in Section 7.
This comprehensive approach will provide insights in the per-
formance of different repositioning strategies under various op-
erating conditions.

6. Case Study

We evaluate the performance of our models by means of sim-
ulation experiments using data from a station-based bicycle-
sharing system in Valladolid. Data are collected from open-
access data sources with standard General Bikeshare Feed
Specification (GBFS) formatted data, which contain real-time
information for shared bicycle operations. The predictions and
simulated demand used in our models are generated as de-
scribed in Subsection 3.3 and Section 5.
The shared bicycles system in Valladolid serves around 1,800
daily users and operates a mixed fleet of 420 mechanical and
415 electric bicycles distributed over 100 stations. The system
offers a total of 1846 docks, resulting in a docks-to-bicycles
ratio of 2.2, which is favorable for efficient operation (Soriguera
and Jiménez-Meroño, 2020). The daily trips-per-bicycle ratio is
relatively low at 2.2, indicating low usage compared to systems
with higher demand. The average number of docks per station
is 18.5, providing sufficient capacity to accommodate returning
bicycles and reduce the risk of full stations.
Table 2 presents the parameter settings. The system operates
with four vehicles during the day and one at night. In the static
approach, four vehicles are used during the night to prepare the

system for the upcoming day. Vehicle capacities range from 11
to 14 bicycles, with no restrictions on locations visited. Maxi-
mum route durations depend on the time period: 45 minutes at
night, 40 minutes off-peak, and 30 minutes during peak hours.
The first task of each shift has a maximum route duration of 45
minutes to allow the vehicle to depart from the depot. If the
remaining shift time is less than the maximum route duration
plus the time needed to return to the depot, the vehicle must
return to the depot to ensure it finishes its shift on time. Each
stop includes a fixed handling time plus an additional time per
bicycle moved. Penalty values are consistent across scenarios,
with lower inventory bounds set per vehicle type and the up-
per bound applied to total station occupancy. The scalar pL for
(near) empty stations is higher than pH for (near) full stations,
as empty stations are considered more problematic. Denied de-
partures often mean users leave the system, while in the case
of full stations, users continue their trip by diverging to nearby
stations. The smoothing parameter for demand estimation en-
sures that the expected demand ratio between OD pairs with
and without observed trips is at least 50.

Table 2: Parameter settings
Category Parameter Value
Number of vehicles Number of vehicles (night) 1

Number of vehicles (morning) 4
Number of vehicles (afternoon) 4

Vehicle restrictions Vehicle capacity 11-14
Restricted locations 0

Duration (min) Maximum duration (night) 45
Maximum duration (off-peak) 40
Maximum duration (peak) 30

Stop-time (min) Constant stop-time 5
Stop-time per bicycle 0.5

Penalties β 0.001
Lower bound 0.15
Upper bound 0.7
pL 1
pH 0.5
pcL 20
pcH 20

Simulation γ 0.0002

7. Results

The results are obtained by applying the simulation methods as
explained in Section 5 to the model explained in Section 4 to the
case study introduced in Section 6. All optimization problems
are solved using Gurobi 12.0.1, with an average computation
time of approximately 5 seconds per task. For each scenario,
10 simulation runs are performed to obtain stable results, and
the results are presented as the average values along with their
standard deviations.
The main KPI to evaluate the performance of bicycle reposi-
tioning strategies is satisfied demand, which reflects the number
of users able to find an available bicycle at their origin and a free
dock at their destination. This measure directly represents user
satisfaction, the main objective in shared bicycle operations. In
contrast, unsatisfied demand at origins (due to empty stations)
and destinations (due to full stations) highlights potential im-
balances. Unlike satisfied demand, the no-service penalty is
not suitable for comparing repositioning strategies, as it is zero
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Table 3: Average results
Type No repositioning Static Dynamic Perfect information
Demand satisfaction
Satisfied demand 1542.6 1622.8 1743.5 1782.7
Unsatisfied demand origin 250.2 178 79.6 42.7
Unsatisfied demand destination 36.2 27.5 3.3 0.6
Satisfaction rate (%) 84.3 88.8 95.5 97.6
Station status
Empty stations mechanical bicycles 5.6 2.6 0.7 0.3
Empty stations electric bicycles 13.1 9 3.9 2.4
Full stations 1.8 0.7 0.1 0
Number of mechanical bicycles at stations 415.1 412.5 411.6 410.8
Number of electric bicycles at stations 400.2 396.8 391.1 391.5
Repositioning
Number of tasks 0 44 115.1 116
Number of stations visited 0 136.6 296.4 299.8
Number of bicycles repositioned 0 180.9 451.4 474.3
Route duration (s) - 2570.2 2197.2 2180

for the no-repositioning strategy and generally lower for the
static strategy due to night-time operations. Additional valida-
tion metrics include the number of empty and full stations, the
number of bicycles at stations, the total number of repositioning
tasks, stations visited and bicycles moved, and route durations.

7.1. General results

The average results for mixed-fleet system in Valladolid are
presented in Table 3. As expected, the scenario without repo-
sitioning results in the lowest level of satisfied demand, with
the system serving around 1540 trips. The static repositioning
strategy already improves this by approximately 80 additional
trips, while the dynamic strategy achieves a substantial further
increase, satisfying 120 more users and covering over 95% of
total demand. With perfect information about future demand,
the system could only serve about 40 additional trips (2%) com-
pared to the regular dynamic strategy, suggesting that the dy-
namic approach already comes close to the maximum achiev-
able performance.
The unsatisfied demand at the trip origins is notably higher than
at the destinations for all strategies. This indicates that the pri-
mary reason for unsatisfied demand is the lack of available bi-
cycles rather than the lack of dock space. Notably, for the dy-
namic strategy and perfect information scenarios the unsatis-
fied demand at the destinations is reduced to almost zero. The
distinction between mechanical and electric bicycles further re-
veals that stations experience electric empty states more fre-
quently than mechanical empty states, highlighting the greater
challenge of maintaining the availability of electric bicycles.
With the dynamic approach, an average of 3.9 stations have no
electric bicycles available compared to only 0.7 stations lack-
ing mechanical bicycles. This disparity aligns with the con-
siderably higher demand for electric bicycles, which is more
than 4 times higher than the demand for mechanical bicycles.
The number of mechanical and electric bicycles at stations is
similar across the different strategies. The difference between
strategies is slightly larger for electric bicycles (around 10) than

for mechanical bicycles (around 5). This is consistent with the
higher usage of electric bicycles, which probably also increases
the need for their repositioning.

With regard to repositioning movements, the static strategy
leads to more visited stations per task compared to the dynamic
strategy, probably because the allowed route duration is longer
during the night period. The number of bicycles moved per sta-
tion is relatively low for all strategies, indicating many small-
scale repositioning moves. The total number of tasks, stations
visited, and bicycles moved in the regular dynamic approach
and the dynamic approach with perfect information is very sim-
ilar, implying that further improvements in demand prediction
could increase satisfied demand without additional operational
effort. Finally, the average route duration for the static strategy
is considerably higher than for the dynamic and perfect infor-
mation strategies, as expected, since it takes place only during
the night. The dynamic and perfect information strategies yield
nearly identical route durations, indicating that route length is
not a differentiating factor between these approaches.

To analyze the repositioning strategies in more detail, we first
look at the demand pattern and the number of bicycles at sta-
tions throughout the day (Figure 3). These patterns are very
similar across all strategies, with only subtle differences. There-
fore we present them only for the dynamic approach. Demand
stays relatively high until midnight, after which it drops sharply
to nearly zero. Around 6:00 AM, demand begins to rise again,
reaching a morning peak between 7:00 and 9:00 AM, then de-
clining significantly until about 1:00 PM. The highest demand
peak occurs between 2:00 and 3:00 PM, after which demand
remains elevated until midnight. The results show that almost
all unsatisfied demand is avoided, and repositioning helps stabi-
lize the system following peak periods. Notably, unsatisfied de-
mand at destination stations is barely visible. Furthermore, we
observe that the confidence interval, represented by the shaded
area around the mean, is narrow, indicating a high consistency
and low variability in the results.

Figure 4 shows how station status changes over the day for
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(a) Demand over the Day (b) Number of Bicycles at Stations over the Day

Figure 3: Analysis over the Day

(a) No repositioning (b) Static repositioning (c) Dynamic repositioning (d) Perfect information

Figure 4: Station Status over the Day

each repositioning strategy. There is a significant difference
between the no-repositioning and static strategies on one side,
and the dynamic approach (with perfect information) on the
other. In the no-repositioning and static cases, where no repo-
sitioning is carried out during the day, the number of empty
stations steadily rises, with particularly many stations lacking
electric bicycles. Full stations are also present throughout the
day. In contrast, the dynamic strategies keep the number of
empty stations low during the day, with further reductions after
peak periods and overnight. Full stations are almost negligible
under these approaches. Although perfect information allows
for slightly better handling after peak hours, its advantage over
regular dynamic repositioning is relatively small.

7.2. Sensitivity analysis of system parameters
To gain a deeper understanding of how various model parame-
ters affect system performance, an additional sensitivity analy-
sis was performed on the dynamic repositioning strategy. First,
we find that the initial system status has minimal impact on
the satisfied demand, confirming the robustness of the results
to variations in starting conditions. Figure 5 presents the re-
sults of the sensitivity analysis. The light blue bars represent
the absolute number of satisfied demand, while the dark blue
line indicates the satisfaction rate. It is worth noting that the
absolute satisfied demand may increase even when the satis-
faction rate decreases, and vice versa. Increasing the number
of vehicles improves the satisfaction rate from 94% to 96%,
with the largest gain observed when increasing from fewer ve-
hicles to the current number. Varying vehicle size has a small
effect on performance; even when decreasing vehicle capac-
ity to just 9 bicycles, the satisfaction rate remains considerably
high. The small differences observed are mainly due to random-
ness of demand. Incorporating demand predictions improves
model performance, increasing the satisfaction rate by almost
1% and bringing it within 2% of the perfect information bench-
mark. Vehicle-aware repositioning lowers satisfaction slightly

but reduces the computation time from 5 to 3 seconds. Its lower
performance is likely due to the relatively small number of un-
balanced stations, meaning that restricting the set of candidate
stations greatly limits the solution space. Weekend and holi-
days share similar, significantly lower demand patterns. How-
ever, the satisfaction rate drops on weekends, probably due to
the reduced repositioning fleet of only two vehicles during the
day. Finally, when the system demand increases, the number
of trips increases substantially, while the satisfaction rate de-
creases only moderately (by 1%–4%), remaining above 90%.
This indicates that the system can handle significant demand
growth with minimal loss in service quality.

7.3. Analysis of empty stations
In the results, we observed significantly more unsatisfied de-
mand at the origin of a trip, more empty stations than full ones,
and that even with perfect information it was difficult to avoid
empty stations during the day. To investigate the root of this
issue, we consider two options: increasing the penalties for
empty stations to prioritize them, or adding bicycles to test
whether a shortage of bicycles is the underlying cause. Figure
6 shows the analysis of empty stations. The additional bicycles
considered here are electric, since earlier results showed that
stations were short of electric bicycles more frequently. Elec-
tric bicycles also have higher usage rates. Increasing the scalar
for nearly empty stations, raising the constant for empty sta-
tions, or doing both does not improve the satisfaction rate. In
contrast, adding extra bicycles can increase satisfaction to over
98%, satisfying almost all demand. However, adding more than
200 bicycles does not lead to further improvement, and adding
300 or 400 bicycles actually reduces satisfaction because it in-
creases the number of full stations. The optimal addition is 200
electric bicycles, which increases satisfaction above 98% and
reduces the number of critical stations (empty + full) by more
than half. This confirms that the availability of electric bicycles
is a key bottleneck in mixed-fleet system of Valladolid.
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(a) Number of vehicles (b) Vehicle size (c) Predicted demand

(d) Restricted vehicle locations (e) Day of the week (f) Increased demand

Figure 5: Sensitivity Analysis of System Parameters

(a) Penalties (b) Satisfaction with extra bicycles (c) Empty and full stations with extra
bicycles

Figure 6: Analysis of Empty Stations for Mixed-Fleet System

8. Conclusion

This paper presented the successful implementation of a dy-
namic repositioning strategy for continuously operating shared
bicycle systems with a mixed bicycle fleet. The primary objec-
tive was to improve user satisfaction while maintaining opera-
tional efficiency by flexible time-dependent planning horizons.
The no-repositioning strategy had the lowest performance,
whereas the static strategy offered modest improvements. The
dynamic strategy further improved performance, satisfying
more than 95% of total demand. Demand shortages were con-
centrated at the origin of a trip, particularly for electric bicycles,
reflecting the imbalance between the high demand of electric
bicycles and their limited availability. Further analysis revealed
that adding 200 extra electric bicycles satisfies almost all de-
mand. Adjusting key parameters showed that the number of
vehicles affects satisfaction levels, while vehicle size has little
to no impact. Similarly, vehicle-aware repositioning has little
effect on performance, though it can help reduce computation
time. Lastly, the system is capable of handling an increase in
demand of 50% while the satisfaction level remains above 90%.
In summary, this thesis demonstrates the successful develop-
ment of a dynamic repositioning strategy with flexible, time-
dependent planning horizon that substantially increases satis-
fied demand, and consequently, user satisfaction. The strategy
makes shared bicycle systems more attractive as a sustainable
alternative to the use of cars and public transport.

9. Further research directions

Future research could focus on developing targeted strategies
for specific bottlenecks in the system. When these critical sta-

tions and time periods are identified, it would allow specific
solutions, such as more frequent visits or adjusted prioritiza-
tion rules, to enhance overall system performance. Another
valuable extension would be to incorporate broken bicycles into
the repositioning model. These bicycles take up docking space
without contributing to availability, thereby reducing service
levels. Efficiently returning broken bicycles to the depot not
only frees up space but also allows repairs, ultimately increas-
ing the number of functional bicycles in the system (Wang and
Szeto, 2018). Additionally, solar-powered stations introduce
unique operational challenges, because they do not charge bicy-
cles. These stations operate on solar energy, which limits them
to providing availability data only. As a result, bicycles with
low battery levels parked at these stations cannot be used by
riders and occupy dock space, similar to broken bicycles. Man-
aging the relocation of these low-charge bicycles to charging
stations adds another layer of complexity, requiring strategic
decisions that impact both bicycle availability and dock space
utilization.
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