TU Delft

Finding your digital sibling

Grouping GitHub projects that share certain attributes based on interactions and activities

Rowan de Bruin

Supervisor(s): Sebastian Proksch, Shujun Huang

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Rowan de Bruin
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Shujun Huang , Julia Olkhovskaia

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

This study explores the feasibility of categorizing
GitHub projects based on their interactions and ac-
tivities, aiming to assist both researchers and prac-
titioners in navigating the vast landscape of open-
source software. Through experiments and anal-
ysis, key attributes contributing to project catego-
rization are identified, paving the way for effective
grouping of projects in terms of interactions and ac-
tivities.

Findings indicate distinct clusters among GitHub
projects, highlighting the influence of interactions
and activities on project categorization. The study
underscores the importance of refining grouping
algorithms and improving project categorization
methods for future research.

Future work could involve developing user-friendly
tools to facilitate project discovery and explor-
ing correlations between interaction-related met-
rics and project development dynamics. Overall,
this study contributes to advancing our understand-
ing of project categorization on GitHub, facilitating
more efficient knowledge sharing and collaboration
within professional fields.

1 Introduction

Open-source software is vast and diverse, with platforms such
as GitHub providing access to millions of projects for both
researchers and practitioners. Despite the abundance of re-
sources, newly initiated projects frequently encounter chal-
lenges in identifying suitable role models. It would prove
highly advantageous for struggling projects to identify other
projects with similar properties. However, the sheer volume
of projects renders navigation almost impractical.

The subsequent sections delve into the related work,
methodology, experiments, and results. The main research
question we want to answer is: “Can we group GitHub
projects based on interactions and activities?” With research
question 1 being: “which attributes that are related to inter-
actions and activities would be suitable when comparing two
open-source projects?” And research question 2 being: “Does
grouping GitHub repositories based on inter-action and activ-
ities bring the same or different results as compared to group-
ing on different metrics?”

The related work highlights existing algorithms such as
RepoPal [10] and CLAN [9] for grouping projects based
on similarities and introduces the Reaper framework by
Kalliamvakou et al [7]. for identifying engineered software
projects in GitHub repositories. The proposed methodology
involves building an algorithm to measure project similarity
based on interaction and activities. The first research question
focusses on finding the right metrics to use for this algorithm.
The second research question, conducted in two parts, aims to
compare results of the algorithm to another algorithm based
on different metrics. The results indicate successful grouping
of projects and highlight differences when compared to other

metrics, emphasizing the multidimensional nature of GitHub
repositories.

The discussion section interprets the findings, addressing
the main research questions and acknowledging limitations.
Research question 1 focusses on finding the best metrics for
grouping projects based on interactions and activities. Re-
search question 2 compared results with the CrossSim tool
[3], revealing differences due to variations in metrics. The
conclusion emphasizes the feasibility of automated grouping,
providing valuable insights for future research and practical
applications in project management. The paper concludes
with a section on responsible research, emphasizing ethical
considerations and commitment to user privacy and data se-
curity.

The references include key works in the field, such as the
research by Kalliamvakou et al [7]. on mining GitHub, the
CrossSim tool [3], and studies on detecting similar reposito-
ries. The future work section suggests the development of
a comprehensive software tool based on the proposed algo-
rithm, highlighting its potential importance for businesses.

In summary, this paper addresses the pressing issue of
identifying similarity accross GitHub projects focusing on
interactions and activities, contributing valuable insights for
both researchers and practitioners in the realm of open source
software development.

2 Related work

There are a couple of others who have attempted to auto-
mate grouping of projects. One of these algorithms is called
RepoPal. RepoPal is a tool that aims to identify multi-
ple GitHub projects that share similarities. It achieves this
through three heuristics: Readme files, repository users’ in-
terests, and repositories of the same users in a short amount
of time [10]

Another tool, CLAN, which stands for "CLosely relAted
applicatioNs,” also attempts to identify similarity between
multiple applications. However, CLAN does this by looking
at different characteristics, namely packages and class hierar-
chies [9].

Furthermore, you also have an interesting piece of research
with the challenge of discerning genuine projects from noise
within the extensive GitHub repository landscape, made by
Kalliamvakou et al. [7]. They propose “Reaper,” a frame-
work designed to identify repositories demonstrating clear
evidence of engineered software projects. This is achieved
through the measurement of specific software engineering
practices. Their evaluation on a dataset of 1,857,423 GitHub
repositories reveals that their classifiers surpass traditional
metrics like GitHub Stargazers. The classifiers achieve a bal-
anced precision (82%) and recall (86%). These findings high-
light the significance of advanced frameworks such as Reaper
in bolstering the reliability of research outcomes in software
engineering.

Another interesting piece is a paper from Jailton Coelho et
al. [2]. In this paper, the authors address the growing concern
of sustainability in open-source software projects managed
by a limited number of volunteers. They propose a machine
learning approach to identify GitHub projects lacking active

maintenance, aiming to alert users and potentially encourage
developers to take over. The method, validated with real open
source developers, demonstrates a precision of 80% and a re-
call of 96%. The proposed model offers a valuable tool for
users and developers to identify projects at risk of becoming
unmaintained.

3 Methodology and Experiment Setup
With our experiments we want to answer two questions:

1. Which attributes that are related to interactions and ac-
tivities would be suitable when comparing two open-
source projects?

2. Does grouping GitHub repositories based on inter-action
and activities bring the same or different results as com-
pared to grouping on different metrics?

To answer these questions, we first design an algorithm which
can give the similarity between multiple GitHub projects, and
then, based on this similarity, group these projects.

3.1 Building the algorithm

The first part of the algorithm we need, is the functionality to
read a list of repository names. We start by injecting a ”.txt”
file with the repository names. Now to read this file by using
a FileReader, reading the file line by line and putting these
names into a list. Next up, we need a method to pull these
repository from GitHub, so that we can analyse them. This
is made possible by the GitHub API. But since the GitHub
API does not support everything we need, we can also use
a wrapper around this API to extract all the information we
need. The wrapper we use is made by Kohsuke Kawaguchi
[1].

But because we noticed that grabbing all the repositories
from GitHub might take a lot of time, we needed to speed this
process up. We are doing this by saving all our intermediate
results to file, so that the algorithm doesn’t need to fetch all
the repositories and files each time we run it.

Next up, we need to write the methods that can analyse the
repositories. We have decided to write this code in Java, since
at the end of this project this project will we combined with 4
other projects. And since Java was the most common ground
for us as a programming language, we chose this.

Continuing on the methods, we make a method for each
metric that we want to analyse. We then run these methods
and check if this corresponds to our intermediate results on
file, and change/add to the file where needed.

We have now made the functionality to analyse the repos-
itories. But before we can actually compare the similarity
between these projects, we need to first define when a project
is similar. For this, we calculate a similarity score.

Now that the algorithm can give us the similarity between
the different repository’s, there is still one thing left to do,
grouping them. We do this in the following way:

1. Assume every project is its own group, so you currently
have x amount of groups, where x is the number of
projects in the dataset. We also set a minimum similarity
value of 0,75, we call this y.

2. Grab the highest similarity value.

3. If this value is bigger than y, then group the 2 corre-
sponding projects together. Meaning x will decrease by
1. If this value is smaller than y, return the groups.

You can look at Figure 1 for an overview of how the algo-
rithm operates.

3.2 Overview of the algorithm

Input: ".txt" file for

o FileReader (Java)
repositories

Input: ".txt" file for

. GitHub API
history of results

Analyse Metrics

D GitHub Repositories

Run the grouping
algorithm
(Based on similarity and
threshold)

Calculate similarity
between projects

Output the groups

Figure 1: Algorithm overview

3.3 Choice of metrics

GitHub projects consist of a lot of metrics to define the
GitHub repositories. But not all of them have to do with Inter-
actions and Activities. In this section we will dive into which
metrics are encompassed by interactions and activities.

We start by looking at some other research papers and what
they have done. For example the CrossSim tool. which is a
tool based on the OSS ecosystem: “The following relation-
ships are used to build graphs representing the OSS ecosys-
tems and eventually to calculate similarity by means of the

algorithm presented in the next section.” [6]. After which

they list the following metrics:
* the reliance of a project on a dependency
* is build by the same developer

e the stars in GitHub: “we consider the star event in a
broader scope in the sense that not only direct but also
indirect connections between two developers is taken
into account.”

» Similarities between co-development of other projects
* Source code identifiers
* If projects share code files

Now not all of these metrics are relevant to our cause.
Namely, the reliance of a project on a dependency”, ’Source
code identifiers” and "If projects share code files”, none of
these metrics have anything to do with interactions and activ-
ities. Some metrics that are interesting are “is build by the
same developer” and “the stars in GitHub”.

Another example of a clustering or project grouping tool
is CLAN [9]. They base their algorithm around semantic an-
chors like API calls. In other words, the metrics they use are
based on code and not on interactions and activities and so
are not useful to us.

We can also look at RepoPal. They use three heuristics to
analyse repositories: Simmilarity in readme files, repositories
starred by users of similar interests are likely to be similar,
repositories starred together within a short period of time by
the same user are likely to be similar. The last two metrics
are interesting to us, since they indicate something about the
interactions of people with the repositories.

Considering all of the above, we make a list of all the met-
rics that we deem to be part of interactions and activities.

Number of pull requests, Number of issues, Number of
commits, Number of collaborators, Number of Releases,
Number of branches, Number of Stars, Number of Watchers,
Number of Forks, Time between pull requests, Time between
commits, Size of pull requests, Size of commits

Side note: We left “repositories starred by users of sim-
ilar interests are likely to be similar”, “repositories starred
together within a short period of time by the same user are
likely to be similar” and “are the repositories build by the
same developer” out, because they can’t be analysed to find
correlation by the Kendall Tau Correlation algorithm. This is
because the Kendall Tau algorithm only works on numbers or
variables which have an order or rank to them.

3.4 Similarity

Before we actually start our experiment, we still need to de-
fine when a project is similar. We do this based on a simple
calculation explained in steps below:

1. Pick a pair of repositories.

2. For that pair calculate the difference between every met-
ric.

3. For each metric calculate the maximum difference in the
entire dataset.

4. Divide the difference between every metric by the max-
imum difference for those metrics.

5. Add the previous values together and take the summary
of them.

6. That is your similarity value.

So, with this method, you define similarity relative to the
dataset. For example when we have two basic datasets con-
taining 3 values: set 1:{1, 5, 20} and set 2:{1, 5, 80}. In
this example, with our method, in set 1, 1 and 5 are relatively
less similar to each other than in set 2. Although this seems
counter intuitive, we actually did this very much on purpose.
Because when you would for example have a large group of
very similar projects, you would still want to be able to divide
the projects into groups. So to summarize, defining similarity
in the way described above, will work for an ever growing
dataset.

Why did we pick this way of defining similarity
Normalization within the Dataset: By calculating the differ-
ence between each metric for a pair of repositories and then
normalizing it by the maximum difference within the entire
dataset, we essentially scale the differences relative to the
variability present in the dataset itself. This ensures that the
similarity measure isn’t biased by the absolute values of the
metrics but rather by how those values compare to others in
the dataset.

Flexibility for Diverse Datasets: In datasets where projects
vary significantly in their metrics (such as different sizes or
scopes), using relative differences allows for a more flexible
definition of similarity. This means that even if projects have
vastly different absolute values for certain metrics, they can
still be considered similar if their relative differences are com-
parable.

Scalability with Dataset Growth: As we mentioned, this
method is suitable for ever-growing datasets. Since the simi-
larity calculation is based on the maximum differences within
the dataset, adding new projects with different metrics or val-
ues won’t fundamentally alter the similarity calculations for
existing projects. This scalability is essential for datasets that
are continuously expanding, such as those in dynamic envi-
ronments like GitHub.

Intentional Design for Grouping: By deliberately design-
ing the method to prioritize relative differences over abso-
lute values, we ensure that even in cases where projects are
very similar, there’s still enough variability to differentiate
and group them effectively. This is crucial for clustering algo-
rithms or categorization tasks where finding distinctions be-
tween similar items is necessary.

3.5 Research question 1

GitHub projects encompass an extensive array of metrics,
capturing various facets of development, collaboration, and
community engagement. The abundance of metrics, necessi-
tates a systematic approach to distill meaningful insights.
Since there are endless metrics to choose from while ana-
lyzing GitHub projects, we need to make a selection which
we deem the most useful when comparing different projects.
For our first experiment, we want to answer the following
question: “which attributes that are related to interactions and

activities would be suitable when comparing two open-source
projects.” We do the following steps to identify and compare
metrics related to interactions and activities in open-source
projects.

Firstly, we define a preliminary list of metrics, encompass-
ing various aspects such as pull requests, issues, commits,
collaborators, releases, branches, stars, watchers, forks, and
more. See 3.3.

For data collection, 80 open-source projects are arbitrarily
selected for comparison (You can find our dataset at [5]. To
pick these projects, we use Github search tool: https://seart-
ghs.si.usi.ch/ . This is a search tool called SEART made as
part of a research paper [4]. Data for each metric is extracted
from the GitHub repositories of the chosen projects over a
relevant time period using the GitHub API and the wrapper
[1].

We then write an algorithm that calculates the Kendall Tau
correlation [8] between each of the metrics.

Next, we analyse the results of our algorithm and try to find
the most expressive metrics to identify github repositories.
We do this by trying to find correlations between the different
metrics and ultimately elimination a couple metrics.

3.6 Research question 2

For our second experiment we want to answer the question:
“Does grouping GitHub repositories based on inter-action
and activities bring the same or different results as compared
to grouping on different metrics?”” We do this in the following
way:

First off, we pick an algorithm made by someone else
which groups GitHub repositories. In this experiment we will
look at the CrossSim tool [3]. We chose the CrossSim tool,
since we were looking at tools that use different metrics to
find similar repositories than our algorithm. What also makes
the CrossSim tool interesting to test against, is that they re-
leased their results as well as their dataset that they tested
against.

Then we will look at the results of the CrossSim tool made
by running their algorithm with their dataset. The results are
in the form of groups of repositories. From these results we
arbitrarily pick a couple of groups and use these groups of
repository names as our dataset.

Furthermore, because our algorithm takes a while to anal-
yse repositories, we chose to not use the full results of the
CrossSim tool, but just a small subsection. You can see the
repositories that we chose in table 1. You can also find our
datasets on [5].

Group 1 Group 2 Group 3

1. links 7. asakusafw 13. webdrivermanager

2. jena-sparql-api 8. Ivory 14. learn_crawler

3. appstart 9. makela 15. selenium-standalone-server-plugin
4. jsonhome 10. Iclueweb 16. selenograph

5. AutoSPARQL 11. Hive-mongo 17. selenium-cucumber-java

6. SPARQL2NL 12. msgpack-hadoop 18. webdriverextensions

Table 1: CrossSim results.
Then we will run our algorithm on that dataset, from here,

we want to have 2 sets of results. The first set being the simi-
larity values between the different result groups after we have

ran our algorithm on them. So is group 1 similar to group 2 in
terms of Interactions and Activities? And secondly, we want
to know the similarity values from the projects inside of the
groups. So are the projects that are grouped by the CrossSim
tool, similar in terms of Interactions and Activities?

Next up, we will compare the two results against each
other. There are 3 possible outcomes:

1. The similarity inside of the individual groups is
higher than the similarity between the groups. In this
case you can state that the CrossSim algorithm and our
own algorithm lead to similar results.

2. The similarity inside of the individual groups is lower
than the similarity between the groups. In this case
you can state that the CrossSim algorithm and our own
algorithm lead to different or even opposite results.

3. The difference between similarity between the
groups and the similarity inside of the individual
groups isn’t clear. In this case you can state that the
CrossSim algorithm and our own algorithm lead to dif-
ferent results.

4 Results

4.1 Research question 1

For our first experiment, we aim to identify key interaction
and activity metrics for comparing open-source projects. We
compile a metric list including pull requests, commits, and
more. After selecting 80 projects using a GitHub search tool,
we extract data via the GitHub API. Utilizing Kendall Tau
correlation, we get the following results.

The results of correlation analysis between various at-
tributes of open-source projects are presented in Figure 2.
The first row and the first column of this table represent the
pair of metrics. The numbers in the table represent the corre-
lation of that pair of metrics. Here we can see which metrics
have a strong correlation to each other and which metrics are
more expressive. When the number you see in the table/figure
is closer to 1 you could say that the pair of metrics that is ex-
pressed by that number is more positively correlated than a
pair of metrics with a correlation closer to 0. The same can
be said for numbers closer to -1, these metrics are more nega-
tively correlated than pairs of metrics with a correlation closer
to 0.

The highest correlations are between:

* number of issues and number of pull requests (0,77655)

e number of collaborators and number of pull requests
(0,71070)

e number of collaborators and number of issues (0,69158)

e number of forks and number of number of stars
(0,66745)

¢ number of commits and number of issues (0,66678)
¢ number of forks and number of watchers (0,65558)

e number of commits and number of pull requests
(0,60765)

Metrics
num_pull_requests
num_issues
num_commits
num_collaborators
num_releases
num_branches
num_stars
num_watchers
num_forks
sched_pull_requests
sched_commits
size_pull_requests
size_commits

num_pull_requests
1,00000
0,77655
0,60765
0,71070
0,50131
0,51513
0,40586
0,42369
0,36481
-0,16539
-0,38893
0,27341
-0,35949

0,77655
1,00000
0,66678
0,69158
0,56352
0,49424
0,41519
0,43064
0,35259

-0,11682

-0,38897

0,22144

-0,34030

0,60765
0,66678
1,00000
0,59081
0,46509
0,53809
0,36897
0,35052
0,27412

-0,05706

-0,57547

-0,06748

-0,30900

0,71070
0,69158
0,59081
1,00000
0,47460
0,45563
0,37340
0,46731
0,36096

-0,03730

-0,32445

-0,22351

-0,39752

0,50131
0,56352
0,46509
0,47460
1,00000
0,34158
033577
0,32186
0,28426

-0,08584

-0,30739

0,16285

-0,25385

num_issues num_commits num_collaborators num_releases num_branches num_stars num_watchers num_forks sched_pull_requests

0,51513
0,49424
0,53809
045563
0,34158
1,00000
0,28287
0,28538
0,16403

-0,03339

-0,28254

-0,10297

-0,23003

sched_commits size_pull_requests

-0,38893 -0,27341
-0,38897 -0,22144
-0,57547 -0,06748
-0,32445 -0,22351
-0,30739 -0,16285
-0,28254 -0,10297
-0,21737 -0,09860
-0,21809 -0,15473
0,15516 -0,16725
0,11573 0,24456
1,00000 0,04140
0,04140 1,00000
0,15889 0,38938

size_commits

-0,35949
-0,34030
-0,30900
-0,39752
-0,25385
-0,23003
-0,20344
0,23226
0,21128
-0,12657

0,15889

0,38938

1,00000

0,40586
041519
0,36897
037340
033577
0,28287
1,00000
0,59356
0,66745

-0,03783

0,21737

-0,09860

-0,20344

0,42369
0,43064
0,35052
046731
032186
0,28538
0,59356
1,00000
0,65558

-0,08771

-0,21809

0,15473

-0,23226

0,36481
0,35259
0,27412
0,36096
0,28426
0,16403
0,66745
0,65558
1,00000

-0,02603

-0,15516

0,16725

-0,21128

-0,16539
0,11682
-0,05706
-0,03730
0,08584
0,03339
-0,03783
-0,08771
0,02603

1,00000

0,11573

0,24456
-0,12657

Figure 2: Results experiment 1, correlation between metrics

4.2 Research question 2

For the second experiment, we needed to pick some groups

of repositories from the results given by the CrossSim tool

[3]. We chose 3 distinct groups with repositories with entirely

different subjects. The repositories we chose were seen in 1
Running our algorithm on these repositories led to the fol-

lowing similarity matrices in figures 3, 4, 5 and 6:

Group 1

Group2 Group3

Group 1
Group 2
Group 3

Figure 3: Similarity between groups

Figure 4: Similarity inside group 1

Figure 5: Similarity inside group 2

Figure 6: Similarity inside group 3

Where the numbers on the first row and the first column
depict the projects and the numbers in the other rows and
columns depict the similarity value.

In Figure 3, you can see that the similarity between the
groups is high with a similarity value of 0,91 or more. Fur-
thermore in Figure 4, you can see that the similarity inside
of group 1 is also high with 1 pair of projects having a lower
similarity but still not under 0,74. In Figure 5 you can see
that all pairs in group two have a high similarity, except for
pairs with project number 10 (Iclueweb). The same phenom-
ena can be seen in the similarity matrix of group 3. In Figure
6 all pairs of projects have a high similarity, except for pairs
with project number 16 (selenograph).

5 Discussion

Main Research Question: Can we group GitHub projects
based on interactions and activities?

Our findings reveal distinct clusters among GitHub
projects sharing attributes related to interactions and activi-
ties. This signifies the influence of collaboration on project
categorization.

Research Question 1: Which attributes that are related to
interactions and activities would be suitable when comparing
two open-source projects?

We explore a range of attributes associated with interac-
tions and activities within GitHub repositories. These may
include but are not limited to commit frequency, pull request
volume, number of issues and collaboration intensity. By an-
alyzing these attributes, we aim to identify key indicators
that effectively differentiate between open-source projects
and contribute to their categorization within distinct clusters.

Research Question 2: Does grouping based on interaction
and activities differ from other metrics?

While interactions and activities contribute significantly to
grouping, alternative metrics like code quality or project size
might yield divergent results. This emphasizes the multidi-
mensional nature of GitHub repositories and underscores the
importance of considering various metrics in the analysis of
GitHub projects.

In the following sections, we delve into specific findings
and implications for each research question, providing a nu-
anced understanding of GitHub project grouping based on in-
teractions and activities.

5.1 Research question 1

For our first experiment, we wanted to make a list of the most
valueable or the most expressive metrics from our proposed

list of metrics. These metrics were: Number of pull requests,
Number of issues, Number of commits, Number of collabo-
rators, Number of Releases, Number of branches, Number of
Stars, Number of Watchers, Number of Forks, Time between
pull requests, Time between commits, Size of pull requests,
Size of commits

To analyse these metrics, we calculated the Kendall Tau
Correlation values for a set of 80 projects. From these calcu-
lations we got the results seen in the Results section with the
highest correlations being between:

* number of issues and number of pull requests (0,77655)

e number of collaborators and number of pull requests
(0,71070)

¢ number of collaborators and number of issues (0,69158)

e number of forks and number of number of stars
(0,66745)

¢ number of commits and number of issues (0,66678)
¢ number of forks and number of watchers (0,65558)

e number of commits and number of pull requests
(0,60765)

Since these metrics are the most correlated metrics, we can
start to remove some of these metrics from our result set.
Starting with the number of issues, which is highly corre-
lated to pull requests. We will also remove number of col-
laborators, since this is the second highest correlation in the
analysis. Since now both number of collaborators and num-
ber of issues are removed from the result set, we don’t need
their correlation value. Next up in the list is number of stars,
number of stars is highly correlated to number of forks, and
because of this we will be removing this metric as well. Next
to number of stars, number of watchers also has a high cor-
relation to number of forks and will be removed. And last,
since number of commits is highly correlated to number of
pull requests as well, we will be removing this metric as well.

This leaves us with the following resulting list of metrics:
Number of pull requests, Number of Releases, Number of
branches, Number of Forks, Time between pull requests, Time
between commits, Size of pull requests, Size of commits

Since now the most correlated metrics are removed, we can
say that this is our most expressive list of metrics and because
of that reason, also the most suitable when when comparing
open-source projects, Answering our first Research Question
being Which attributes that are related to interactions and
activities would be suitable when comparing two open-source
projects?

This experiment, however, could still be improved. Earlier
in this document we discussed a which metrics we would test
against and which metrics we would not test against. Also we
mentioned that there are endless metrics to chose from when
analysing GitHub projects. So the choice of the test set of
metrics, although explained carefully in the methodology, is
a liability and there might still be other metrics that could be
part of the “perfect” set of metrics. Another possible param-
eter that could have negatively influenced our results, was the
size of our test set of GitHub projects. While we chose a set
of 80 project, a larger set of projects could further solidify the
results of the correlation tests.

5.2 Research question 2

Our seconds experiment was a bit different. We looked at the
results of the CrossSim tool [3]. From these results we picked
3 groups with repositories made by running the CrossSim tool
on a set of GitHub projects. We now had 3 groups of, accord-
ing to the CrossSim algorithm, similar projects. After this,
we wanted to test whether our algorithm would ”agree” with
the CrossSim algorithm by running our algorithm on the re-
sults of the CrossSim algorithm. From there we want to look
at whether the similarity inside of the groups is higher lower
or not clear as compared to the similarity between the groups
according to our algorithm.

The results we got out of running our algorithm on the
repositories above were in the form of 4 similarity matrices.
The first matrix 3 depicts the similarity between the different
groups. And the next 3 matrices (4, 5, 6) depict the similarity
between the projects inside of the groups.

When analysing our results we needed to account for 3 dif-
ferent scenario’s:

1. The similarity inside of the groups is higher than the
similarity outside of the groups.

2. The similarity inside of the groups is lower than the sim-
ilarity outside of the groups.

3. The difference between similarity between the groups
and the similarity inside of the groups isn’t clear.

Looking at the similarity matrices, we can conclude that
we are looking at scenario 3. The difference in similarity be-
tween the inside of the groups versus the similarity between
the groups themselves, is not evident. Since the similarity be-
tween the groups is still very high on average 0,94 and the
similarity inside the groups is barely any lower, 0,81. How-
ever the last average may be a bit fallacious, since both in
group 2 and 3 there is one project that doesn’t have a high
similarity with any of the other projects in those respectful
groups.

This means that we can state that our algorithm leads to
different results as compared to the CrossSim algorithm. This
could be because there is little to no correlation between the
metrics used by the CrossSim algorithm and the metrics used
by our own algorithm.

After having analysed our results, we can answer the re-
search question Does grouping GitHub repositories based on
inter-actions and activities bring the same or different results
as compared to grouping on different metrics?” The answer
being that grouping GitHub repositories based on Interactions
and activities yields different results as compared to grouping
on different metrics.

Difference in results between our algorithm and an other
algorithm might actually be a good thing. Since that means
that we could combine the two algorithms to improve the
grouping algorithm in a way that it then not only recognizes
if projects are of the same subject, but also if projects are de-
veloped in a similar way.

This experiment, however, didn’t go perfectly. We ran into
one big issue and that was time. Our algorithm was fairly
slow, and we didn’t have the computational capacity to let the
algorithm run for days on end. This is why we opted to use a
small part of the dataset that the CrossSim tool used.

5.3 Future work

Looking forward, our research sets the stage for future
projects by demonstrating how GitHub projects can be
grouped based on their interactions and activities. Moving
forward, a natural progression would involve creating a user-
friendly software tool that goes beyond our current focus on
these specific aspects.

This tool could be really helpful, especially for businesses
looking to simplify how they discover projects. By consider-
ing a wider range of factors, the tool has the potential to be
a valuable resource for finding projects that are similar. For
businesses, this means they can more easily find projects that
are relatable, giving them a chance to adopt successful prac-
tices from similar projects. This contribution is especially
important as it has the potential to improve efficiency and en-
courage the sharing of knowledge in different professional
fields.

Furthermore, some more research can be done on this field
as well. In other papers about grouping GitHub project, or
projects in general, there has mostly been talk about find-
ing similarity in the sense of the subjects of these projects.
But as we have shown in this paper, interaction and activities
could also be interesting and could prove to be very useful.
So it might be very useful to have some research in combin-
ing these grouping algorithms and making a search-engine for
projects, that cannot only identify similar projects in terms of
subject, but also in terms of how they were build.

Another piece of research that relates to the subject of this
paper, that could be interesting, would be researching if it is
possible to find relations between metrics from a interactions
and activities point of view, and metrics from a source code
point of view, or a dependency point of view.

6 Conclusions

In conclusion, our research set out to investigate the feasi-
bility of grouping GitHub projects based on interactions and
activities, with a focus on identifying suitable attributes for
comparison and exploring the differences between this ap-
proach and other metrics-based grouping methods.

Our findings have demonstrated that distinct clusters can
indeed be identified among GitHub projects by analyzing
attributes related to interactions and activities. This un-
derscores the significance of collaboration in categorizing
projects effectively. Through our exploration of various at-
tributes such as commit frequency, pull request volume, and
collaboration intensity, we have identified key indicators that
contribute to project categorization within distinct clusters.

Regarding our first research question, which focused on
identifying suitable attributes for comparison, we conducted
experiments to determine the most valuable metrics from a
proposed list. By analyzing correlation values, we narrowed
down our list to the most expressive metrics, providing insight
into which attributes are most relevant when comparing open-
source projects.

For our second research question, which examined the dif-
ferences between grouping based on interactions and activi-
ties and other metrics, we compared our algorithm’s results

with those of the CrossSim tool. Our findings indicated dif-
ferences in results, suggesting that grouping GitHub reposi-
tories based on interactions and activities yields distinct out-
comes compared to grouping on different metrics. However,
this variance presents an opportunity for future research to
combine algorithms and improve grouping methods, poten-
tially leading to more comprehensive project categorization.

Looking ahead, future work could involve the development
of user-friendly software tools to facilitate project discovery
based on interactions and activities. Additionally, further re-
search could explore the combination of grouping algorithms
to create a search engine for projects that considers both sub-
ject similarity and development methodology. Moreover, in-
vestigating the potential correlations between metrics related
to interactions and activities and those related to source code
or dependencies could provide valuable insights into project
development dynamics.

In essence, our research contributes to a deeper understand-
ing of how GitHub projects can be grouped, paving the way
for future advancements in project categorization and facil-
itating more efficient knowledge sharing and collaboration
within professional fields.

In conclusion, our study addressed the main research ques-
tion of whether GitHub projects can be grouped based on in-
teractions and activities. The findings reveal distinct clusters
among projects that share attributes related to collaboration,
emphasizing the influence of collaborative efforts on project
categorization.

7 Responsible Research

In the course of developing this research project, we prioritize
ethical considerations at every stage of research and develop-
ment. Our dedication extends to safeguarding user privacy,
ensuring robust data security measures, and promoting inclu-
sivity. The software aligns with open source principles, and
we proactively explore methods to reduce its environmental
footprint. Continuous monitoring and improvement are inte-
gral to our commitment to evolving ethical standards, con-
tributing to the creation of a responsible and sustainable dig-
ital environment.

For our appendix, code and other usefull bits of informa-
tion, we use Zenodo. Zenodo is a versatile digital repository
established as part of the European OpenAIRE initiative and
managed by CERN. We use this software because it is funded
by the European Commission and guaranteed to last for at
least another 10 years. Upon submission, each item is as-
signed a unique and persistent digital object identifier (DOI),
facilitating easy citation and retrieval of stored content.

Additionally, we prioritize transparency in our data collec-
tion and processing methods, providing users with clear and
accessible information about how their data is used and pro-
tected.

References

[1] Github api documentation. https://github-api.kohsuke.
org. Accessed on 08-01-2024.

[2] Jailton Coelho, Marco Tulio Valente, Luciana L. Silva,
and Emad Shihab. Proceedings of the acm/ieee inter-

https://github-api.kohsuke.org
https://github-api.kohsuke.org

[10]

national symposium on empirical software engineering
and measurement (esem ’18). Conference Abbreviation
’18, pages 1-10, New York, NY, USA, October 2018.
ACM.

CrossMiner. Crosssim: Cross-project code simi-
larity detection tool. https://github.com/crossminer/
CrossSim. Accessed on 08-01-2024.

Ozren Dabic, Emad Aghajani, and Gabriele Bavota.
Sampling projects in github for msr studies.
arXiv:2103.04682v1 [cs.SE], March 2021. Avail-
able at https://arxiv.org/abs/2103.04682v]1.

Rowan de Bruin. Datasets for research question 1 and
2, 2024. Available at https://doi.org/10.5281/zenodo.
10575460.

R. Guerraoui, N. Kuznetsov, and M. Monod. Cross-
sim: A tool for identifying similarities between open
source projects. In 2018 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME),
pages 511-515, Sept 2018.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D.M. German, and D. Damian. The promises and per-
ils of mining github. In Proceedings of the 11th Work-
ing Conference on Mining Software Repositories, MSR
2014, pages 92—-101, New York, NY, USA, 2014. ACM.

M. G. KENDALL. A NEW MEASURE OF RANK
CORRELATION. Biometrika, 30(1-2):81-93, 06 1938.

C. McMillan, M. Grechanik, and D. Poshyvanyk.
Detecting similar software applications. In 2012

34th International Conference on Software Engineering
(ICSE), Zurich, June 2012. IEEE.

Y. Zhang et al. Detecting similar repositories on
github. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 13-23, Klagenfurt, Austria, February
2017. IEEE.

https://github.com/crossminer/CrossSim
https://github.com/crossminer/CrossSim
https://arxiv.org/abs/2103.04682v1
https://doi.org/10.5281/zenodo.10575460
https://doi.org/10.5281/zenodo.10575460

	Introduction
	Related work
	Methodology and Experiment Setup
	Building the algorithm
	Overview of the algorithm
	Choice of metrics
	Similarity
	Why did we pick this way of defining similarity

	Research question 1
	Research question 2

	Results
	Research question 1
	Research question 2

	Discussion
	Research question 1
	Research question 2
	Future work

	Conclusions
	Responsible Research

