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ABSTRACT
Distributed reputation systems establish trust among strangers in
online communities and provide incentives for users to contribute.
In these systems, each user monitors the interactions of others and
computes the reputations accordingly. Collecting information for
computing the reputations is challenging for the users due to their
vulnerability to attacks, their limited resources, and the burst of
their interactions. The low cost of creating accounts in most rep-
utation systems makes them popular to million of users, but also
enables malicious users to boost their reputations by performing
Sybil attacks. Furthermore, the burst of user interactions causes
an information overload. To avoid the impact of malicious users
and information overload, we propose EscapeLimit, a sybil attack-
resistant, computationally simple, and fully distributed method for
information collection. EscapeLimit leverages user interactions as
indicators of trust and similarity between the corresponding users,
and collects relevant and trusted information by limiting the escape
probability into the Sybil area. We evaluate it by emulating in-
teraction patterns derived from synthetic and real-world networks.
Our evaluation shows EscapeLimit’s effectiveness in terms of its
resilience to Sybil attacks, its scalability, and its ability to provide
relevant information to each user.

1. INTRODUCTION
Reputation systems establish trust and provide incentives for co-

operation among users in many decentralized networks such as P2P
networks [13,19], distributed social networks [21], and markets on
mobile devices [8]. In such systems, each user independently col-
lects and stores the history of user interactions, and aggregates it
in one reputation value per user. The collection of the history of
user interactions directly affects both the quality and the cost of a
reputation system [10]. In this paper, we propose a scalable method
based on random walks to collect information in distributed repu-
tation networks.

Characterized by their open nature, most distributed systems such
as P2P networks are popular to millions of users, yet they are very
vulnerable to attacks, scalability issues and information overload.
The ease of creating accounts in these systems enables malicious
users to create numerous fake identities, their Sybils, and to spread
false reports about their interactions. Moreover, with the increase
of network size, communication load balancing becomes harder.
Finally, the large number of interactions between users causes an
information overload. By blindly storing and processing informa-
tion, users easily become victims of Sybil attacks as well as waste
their resources for information that contributes little to the reputa-
tions. To avoid the impact of malicious nodes and the misuse of
their resources, users have to collect trusted and relevant informa-

tion.
In this paper, we propose EscapeLimit, a method to collect trusted

and relevant information in decentralized reputation systems. While
traditional methods against Sybil attacks, such as SybilGuard [29]
and SumUp [24], require the existence of a social network, we as-
sume no such network. As a result, our approach is suitable for
systems without a social network such as P2P networks and mar-
kets on mobile devices [8]. Our only assumption is the existence
of interactions between users, such as file sharing in the context
of P2P networks, and exchanged messages in the context of social
networks. We interpret interactions as indicators of trust and simi-
larity between the corresponding users. EscapeLimit uses random
walks with restarts to successively visit nodes to collect interaction
reports. In this way, it exploits the transitive flow of positive inter-
actions and guarantees a link between the creator of a report and
the user who uses it in his reputation calculations. EscapeLimit
reduces the escape probability, which is defined as the probability
that a random walk initiated by an honest node ends up in a Sybil
node.

We evaluate EscapeLimit in terms of its resilience to Sybil at-
tacks, its scalability, and its ability to collect relevant information.
In our experimentation, we emulate user interaction patterns de-
rived from networks with different properties. Particularly, we use
synthetic power-law networks, and real-world networks derived from
the Internet-deployed Bartercast reputation system [11] used in the
BitTorrent-based client Tribler [20], and from Facebook [25]. In
our evaluation, the reputations of users are simply computed as the
ratios of the resources they contribute to the system and the re-
sources they consume. In this way, we can assess the quality of the
collection of information independently of the computation of rep-
utations. To further enhance EscapeLimit, we bias random walks
with trust-driven properties such as the strength of user interactions
and the activity level of users, and we explore their effect on the
collection of information. Our evaluation shows that the strength
of user interactions guides random walks efficiently in almost any
type of network. Finally, we show the ability of EscapeLimit to
radically limit the influence of Sybils and to collect relevant infor-
mation.

2. PROBLEM STATEMENT
In this section, we describe the problem of collecting informa-

tion in distributed reputation systems and three requirements that
a collection method applicable in distributed systems has to fulfil.
We model the history of all the interactions in a decentralized rep-
utation system as the (user) interaction graph with the nodes of
the system representing its vertices and the interactions among the
nodes of the system representing its edges. As each node in de-



(a) The interaction graph (b) The interaction subgraph of the red
node, the part of the interaction graph
drawn with grey indicates the unknown
area from the perspective of this node

(c) The red node learns the complete inter-
action graph after having walked to several
nodes, the red line indicates the walk steps

Figure 1: The red node collects information using its interaction subgraph.

centralized reputation systems has a limited view of the system, it
builds its own subgraph of the interaction graph, its (user) interac-
tion subgraph, using its stored interactions. In Figures 1a and 1b,
we present an illustration of the interaction graph and the interac-
tion subgraph available at each node. Initially, a node knows only
its own direct interactions in its interaction subgraph and so, it is
able to compute only the reputations of the nodes with which it has
previously interacted.

Nodes should periodically contact each other in order to acquire
information about the interaction subgraphs of other nodes, since
they need to expand their interaction subgraphs to compute the rep-
utations of other nodes in the network. Ideally, the interaction sub-
graph of a node converges to the interaction graph when it succes-
sively contacts other nodes. The information collection is crucial
for the quality of the computed reputations, since poor information
collecting results in inaccurate reputations [10]. In order to be ap-
plicable in decentralized reputation systems, a collection method
must satisfy the following three requirements:

Resilience to attacks. From the various self-promoting attacks
in decentralized reputation systems, we consider only sybil attacks
since most other types (e.g., link farming, collusion, spam), can be
seen as special cases of it. In a sybil attack [17], the attacker man-
ages to gain a disproportionally large influence on the network, for
instance, in order to determine the result of a voting process, to
spam other users, to monopolize system resources, or even to sell
its sybils to other attackers as has occurred in Facebook [7]. The
sybil attack is predominant in reputation systems. It has been re-
ported that in Facebook more than 1.5M fake accounts have been
identified during February 2010 [7], that in RenRen more than
660K fake accounts exist [27], and in Tuenti about 180K [7]. Ac-
quiring polluted information results in inaccurate reputations.

Scalability. We define scalability in terms of computational and
communication cost at each node, which increases with the size of
the network. Due to the limited resources available at nodes, the
method of information of collecting information should not add a
lot of computational and communication cost. Moreover, it should
distribute the communication load evenly across all the nodes. Par-
ticularly, in many real world networks where a few nodes have the
majority of connections, balancing communication load is chal-
lenging.

Relevance of Information. Not all the information about node
interactions contributes equally to the computation of reputations at
every node. Interactions of high strengths occurring close to a node
contribute more in the computation of reputations than interactions
of low strengths in the periphery of the network. Furthermore, a
node is more likely to interact with highly active nodes close to it,
and so, computing the reputations of these nodes accurately is more

useful. Therefore, every node must acquire relevant information
so that the reputations computed from its interaction subgraph are
close to the reputations of the interaction graph.

These three requirements cannot be completely satisfied by a sin-
gle method since they are conflicting to a some extent. For instance,
in a perfect attack-resilient solution, every node should only contact
nodes with which it has previous successful interactions. However,
this results in very poor collection of relevant information since
that node fails to compute the reputations of potential new encoun-
ters. Furthermore, a node can obtain relevant information fast if
it contacts the highly active nodes in the system often, since those
nodes keep the network connected and perform the largest number
of interactions. However, this results in overloading these nodes.
Nevertheless, by not considering all these requirements, a collec-
tion mechanism is not applicable to online distributed systems and
so, it has to make a trade-off among them.

3. COLLECTING INFORMATION
USING RANDOM WALKS

In this section we describe EscapeLimit, the network model, and
the proposed trust-driven biases for random walks.

General description. EscapeLimit is based on random walks,
which are computationally tractable, and naturally decentralized
using only information locally available at each node. Further-
more, random walks are flexible and with the appropriate biases,
they are able to quickly detect relevant and trustworthy information
in a network. As a result, they have been widely used in distributed
systems for search [6], topology maintenance, and computations of
reputations such as Eigentrust [16] and SybilRank [7]. In Escape-
Limit, we use random walks with restarts [23], where a random
walk is directed back towards its initiator with a fixed restart prob-
ability. A random walk with restarts represents better the inherent
trust in a network, since each node trusts itself more than the other
nodes and its trust towards the other nodes decays with the increase
of their distance [14, 17]. Each node in the network performs its
own random walks and requests parts of the interaction subgraphs
of the contacted nodes.

The propagation of the interactions subgraphs when using ran-
dom walks can be implemented with two different strategies, push
(information dissemination) or pull (information collection). In the
push strategy, a node sends (pushes) its messages towards other
nodes in the network while in a pull strategy, it probes another node
for messages that it has not received yet, and then it fetches (pulls)
the corresponding messages. We perform a pull-based strategy
since it results in significantly smaller overhead and ensures the de-
livery of message in sparsely connected areas of the network [12].
From a security perspective, a node collecting information requests



messages from selected nodes following the flow of trust in the
interaction graph and so, it has more control on the received infor-
mation.

Unlike previously proposed methods, in order to incorporate trust
we use the interaction subgraph available at each node, as regular
and successful interactions between nodes are strong indicators of
trust relationships and similarity among users [14], [17]. In many
proposed systems such as SybilRank [7] and SybilInfer [9], random
walks enhance their resilience against sybil attacks by using a so-
cial network to incorporate trust. However, in many systems such
as P2P networks no social network is available. Furthermore, in so-
cial networks many social connections between nodes are superfi-
cial or of very low strength and thus, they do not indicate trust [26].
As a result, EscapeLimit is not only useful in systems without a so-
cial network available, but it is more effective against sybil attacks
as well.

During the collection of information, a node contacting another
node requests the part of the latter’s interaction subgraph containing
only its direct interactions. Collecting only direct information from
other nodes enhances security, scalability, and the importance of
the collected information since it allows control on the received
information and decreases the redundancy of information. Figure 1
presents an illustration of our method.

Network model and definitions. The interaction graph of a
network is a weighted directed graph of interactions G = (V,E)
whose vertices V correspond to the nodes in the network, and whose
edges E correspond to the interactions among nodes. Its adjacency
matrix is denoted by A = {αij}. A weighted edge eij ∈ E con-
necting i, j ∈ V in the direction i → j has a weight wij that rep-
resents the strength of an interaction, for instance, the amount of
data transferred across the edges in a P2P network or the number
of interactions in Facebook. We denote by r the vector contain-
ing the (real) reputations of nodes. Depending on the application,
the vector r can be computed by various computations. We use a
very simple computation of reputation so that we can investigate
the dissemination of nodes. The reputation of a node j is the ra-
tio of the resources it contributes to the network and the resources
it consumes, and so, r(j) =

∑
k∈Nj

wjk/
∑

k∈Nj
wkj where Nj

denotes the set of neighbours of node j in G. Each node i in the
network locally stores its interaction subgraph Gi = (Vi, Ei) with
Vi ⊆ V and Ei ⊆ E.

A random walk on G is defined by its transition matrix P =
{pij}, and its stationary distribution π is given by the equation π =
πP . Its mixing time indicates the time (in walk steps) needed for
any initial distribution π0 to approach the stationary distribution π.
To measure the mixing time of our graphs we compute the total
variation distance between the two distributions 1/2||π − π0P

t||1
over consecutive walk steps t, as it is described in [17]. A low
mixing time implies that the initial distribution converges to the
stationary distribution in O(log V ) steps.

Types of random walks. We use random walks with restart
probability α. Then, the transition matrix becomes P ′ = (1 −
α)P + α1, where 1 is the matrix with all its entries equal to 0 ex-
cept for the elements of the column corresponding to the initiator,
which are equal to 1.

In simple RW (RW) with restarts, the next step of the walk is
chosen uniformly at random among the neighbors of the currently
visited node. The transition probability at each step is determined
by the adjacency matrix pij = αij/

∑
j αij . We use three addi-

tional biased random walks.
First, we consider a random walk biased towards the strength

of interactions assuming that the strength of an interaction reflects
both trust and similarity between adjacent nodes. We call this walk

Table 1: The diameter, the average path length (L) and the cluster-
ing coefficient (cc) of real-world graphs.

Graph # Nodes # Edges Diameter L cc

Power-law 1, 000 5, 725 5 2.92 0.067
Bartercast 1, 000 4, 723 8 2.64 0.0065
Facebook 1, 000 11, 596 9 3.38 0.13

weighted RW (wRW) where the bias towards node j from node i is
denoted by wij and pij = wij/

∑
j wij .

Then, we define random walks biased towards the nodes with
the lowest activity level, namely the smallest degree. In RW, high-
degree nodes are visited with a higher probability since more paths
lead to them. On the contrary, low-activity nodes are rarely vis-
ited, and biasing a RW towards them may help with a faster spread
of their information. Furthermore, it balances the communication
overhead among the nodes in the network. This random walk re-
sults in a uniform visiting probability of nodes, and corresponds
to the Metropolis-Hastings Random Walk (MHRW) [15] for uni-
form selection of nodes. According to MHRW, the probability
of visiting node j from node i when i 6= j is defined as pij =
(1/di)min(1, (di/dj)) with di representing the degree of node i
and pii = 1−

∑
j pij .

Finally, we consider random walks biased towards the nodes
with the highest activity level, namely the highest degree. Intu-
itively, highly active nodes are trustworthy, have fresh informa-
tion, and interact with the other nodes with a higher probability.
This type of random walk corresponds to Maximal Entropy Ran-
dom Walk (MERW) [5] and has been introduced and studied in
[4]. The probability of visiting node j from node i is equal to
pij = (αiju[j])/(λu[i]), where u is the principal eigenvector of
A, u[i] is the i-th entry of u, and λ is the corresponding eigen-
value. This RW requires global information, but recently Sinatra et
al. [22] showed that MERW can be accurately approximated by a
RW biased towards the degree of nodes in networks without degree
correlations. MERW results in fast diffusion of information since
it uses the highly connected nodes more often.

4. EXPERIMENT METHODOLOGY
We evaluate EscapeLimit with the different types of random walks

in terms of their resilience to attacks, their scalability, and its ability
to provide relevant information. Particularly, we integrate Escape-
Limit into Tribler, an open-source P2P BitTorrent-based client and
we run 1000 clients on a computer cluster. Each client emulates the
interaction patterns deriving from traces of synthetic and real-world
datasets with different connectivity properties and construction pat-
terns. Simultaneously, each client collects information about the
interactions of other nodes using EscapeLimit. In this section, we
describe our datasets, the experiment setup, and the model to create
the sybil attacks.

Datasets. In order to perform our emulations, we use datasets
from synthetic power-law graphs and graphs derived from Barter-
cast and Facebook networks. In the real world graphs, the creation
of edges is defined by timestamps available in the corresponding
datasets which are expressed in actual time. In the synthetic graphs,
we divide time into time steps during which new edges are added,
since no notion of actual time exists.

Power-law graphs are characterized by their degree distribution
following a power law. We create a growing directed power-law
graph based on the Barabasi-Albert model [3]. We start with a
small connected seeding graph, and at each time step we add a new
node with 3 edges whose end points are adjacent to already existing
nodes with probabilities proportional to their degrees. After having



Figure 2: The power-law (left), Bartercast (middle), and Facebook (right) graphs of 1,000 nodes.
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Figure 3: The distributions of nodes degrees and edge weights in
the power-law, Bartercast, and Facebook graphs
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Figure 4: The mixing time of the power-law, Bartercast, and Face-
book graphs

created a network with 1000 nodes, we continue adding 3 directed
edges at each time step, adjacent to existing nodes again with prob-
abilities proportional to their degrees. We allow the occurrence of
multiple edges between a pair of nodes and we consider the number
of occurrences of an edge as the weight of that edge.

The Bartercast graph is derived from the distributed reputation
mechanism called Bartercast [11] of the BitTorrent-based client
Tribler [20]. This dataset contains information about 29,716 nodes
and their interactions [14]. The weights of the edges represent the
amount of data (in KB) transferred between two users. In order
to interpret interactions as trust in Bartercast, we reverse the direc-
tion of links since when a user downloads from another user, the
corresponding trust flows from the former towards the latter.

The Facebook graph is derived from the Facebook network in
New Orleans with 63,732 users and their interactions [25]. The
weights of edges represent the numbers of interactions between the
corresponding users.

The main difference between the Bartercast and the Facebook
graphs, besides their structural properties, is that the former is de-
rived from a deployed distributed system while the latter is de-
rived from a centralized social network. Due to resource limita-

tions of the computer cluster, we conduct our emulations using
a strongly connected component of 1000 nodes. We constructed
those strongly connected components from the initial graphs by
starting from the node with the highest degree a Breadth First Search
(BFS) modified so that it traverses only bidirectional edges. The
characteristics of the corresponding subgraphs are presented in Ta-
ble 1. All the graphs are small-world characterized by small av-
erage path length and small diameter. The Facebook graph forms
a tightly connected community. In Figure 2, we illustrate the se-
lected strongly connected components (small average path length
and high clustering coefficient). On the contrary, the Bartercast
graph consists of a few highly connected nodes and many loosely
connected nodes (small average path length and small clustering
coefficient), since it has a high population turnover. In Figure 3,
we show their indegree distribution and the distribution of their
weights. We observe that the power-law and Bartercast graphs have
a few outlier nodes with high indegree. In this paper, we use Tukey
boxplots where the bottom and top of the box depict the first and
third quartiles of the distribution, the band inside is the median. The
outliers are identified using the interquartile range (IQR), defined
as the difference between the third and first quartiles. Outliers fall
below 1.5 IQR from the first quartile, and above 1.5 IQR from the
third quartile. The whiskers indicate the range of the distribution
without the outliers.

To better understand the community structure of the graphs and
interpret the evaluation results of the random walks, we estimate
their mixing time. The mixing time of our strongly connected
graphs is defined since all the nodes will be visited by a random
walk. In Figure 4 we present the total variation distance versus the
mixing time (walk length) averaged over 1000 initial distributions
of a random walk. Facebook and power-law graphs are fast-mixing
graphs with tightly connected nodes. On the other hand, Barter-
cast is slow-mixing because a few highly connected nodes keep the
nodes connected by forming clusters around them, as we see in Fig-
ure 2. Note that the clustering coefficient of a graph indicates its
clustering on a local level (the fraction of closed triangles among
its nodes), while its mixing time indicates its clustering into large
communities.

The restart probability. During a random walk, the value of the
restart probability α determines its expected length l and as a result,
its resilience against sybil attacks and its ability to collect relevant
information fast. Even though a large value of α allows the dis-
covery of new nodes at a large depth in the network, it draws the
walk away from trusted and relevant nodes. The appropriate value
of α depends on the characteristics of the graph. In our graphs, we
observe that the vast majority of nodes interact with other nodes
that are only a few hops away. In Figure 5, we present the proba-
bility of interaction between two nodes as a function of their dis-
tance just before they interact. Our graphs exhibit a high locality
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Figure 5: The distance (in hops) between two nodes just before
they interact

of interaction, which implies that a node does not need to perform
long walks in order to acquire relevant information. Particularly in
real-world graphs, we observe that more than 90% of pairs of in-
teracting nodes have a distance of at most 3 hops just before they
interact. Therefore, for these graphs we use random walks with an
expected length l of 3 hops. In synthetic graphs, we use random
walks of an expected length 4 hops, since for power-law graphs the
majority of pairs of interacting nodes have a distance of at most 4
hops just before they interact.The restart parameter is computed as
a function of the desired expected length as α = 1/(l+1) [2]. So,
for real world graphs we use α = 0.25 and for synthetic graphs,
α = 0.2.

Experiment setup We integrated the proposed random walker
in Tribler and we can evaluate it on a computer cluster, the DAS-
4 supercomputer [1] available at Delft University of Technology.
Particularly, we run 1000 clients distributed evenly on 20 nodes
of DAS-4. In Tribler, the dissemination of information is based
on epidemics [11]. We modified only its dissemination component
integrating the proposed random walker.

Each Tribler client has its own local database keeping its own lo-
cally stored history of interactions and it interacts with other clients
following the interactions in the previously described datasets. At
the same time it performs its own random walks towards other
nodes. We divide our datasets into two parts: a small part used for
initialization and the main part used for emulation. In Facebook,
this initialization part consists of the interaction occurred during
the first week in the corresponding dataset, in Bartercast during the
first day, and in power-law graphs during the first 1000 steps.

After the end of the initialization process, nodes emulate the in-
teractions, compute the reputations of nodes and walk towards each
other collecting information. The time of emulated interactions has
been mapped to the duration of our emulation. A node emulates an
interaction with another node, by creating a record with the details
of this interaction and it sends it to the other interacting node. Then,
both nodes store this record in their database and they include it in
the history of interactions they distribute. All nodes perform walk
steps with the same period about every 30 secs so that all nodes
perform a similar number of random walks during the experiment.
Each experiment lasts 2 hours.

Sybil Attack Model
Most of the random walk-based methods proposed in literature

against sybil attacks [7], [9] assume fast mixing graphs, since they
have tight trust relationships between the nodes. On the contrary,
in a slow-mixing graph multiple communities exist and so, sybil
nodes might be incorrectly recognised as honest. We use both fast-
mixing graphs such as Facebook where honest nodes form one well
connected community, and slow-mixing graphs such as Bartercast,
where more than one communities are present.

In our experiments, we take as the honest region our initial datasets

and we create a power-law graph of 100 nodes as a sybil region.
Then, we randomly chose some sybil nodes and some victim nodes
from and connect them through the corresponding attack edges.
The evaluation metric is the escape probability which does not de-
pend on the number of Sybil nodes nor on the topological charac-
teristics of the sybil region [28] but on the number of attack edges
over the number of honest nodes. To each attack edge, we as-
sign probabilistically a weight in the range of the weights of edges
among honest nodes so that, attack edges with small weights are
more common, since it is more costly for an attacker to create an
attack edge with a large weight than an attack edge of a low weight.
For the timestamp of the attack edges, we assume that they are uni-
formly distributed over time. The nodes in the sybil region can
claim any values for the properties of their edges.

5. EVALUATION
In this section, we present the results of the evaluation of Es-

capeLimit with the different biased random walks in terms of its
resilience to attacks, its scalability and its ability to acquire rele-
vant information fast. We use a set of metrics associated with our
requirements. All the presented results are the average of 10 exper-
iments.

Resilience against Sybil Attacks A random walker escaping
into the sybil area will be trapped there till it restarts. Therefore, we
evaluate the fraction of walks escaping into the sybil region when
starting at any node in the honest region, which is called the es-
cape probability [28]. Lower values of escape probability indicate
higher resilience against sybil attacks. This probability depends on
the number of attack edges, since in order to escape to the sybil
region, the random walk has to traverse an attack edge. We note
that the escape probability does not depend on the number of Sybil
nodes nor on the topological characteristics of the sybil region [28].

In Figure 6 we present the escape probability of the different ran-
dom walks depending on the average number of attack edges per
honest node for the different datasets. Independently of the char-
acteristics of the graphs, all biased RWs exhibit a smaller escape
probability into the sybil region than simple RW, indicating that
the strength of interactions, and the activity level of nodes are ac-
curate indicators of trust. The fast-mixing graphs, power-law and
Facebook, have smaller escape probability when using RWs and
MERW than Bartercast. Being fast-mixing, those graphs have a
tightly connected honest region and a random walk does not escape
into the sybil region with high probability. In power-law graphs,
wRW exhibits the highest escape probability in comparison with
the other graphs since in power-law graphs the range of the weights
is smaller.

Nevertheless, independently of the characteristics of the graph,
wRW and MHRW exhibit the lowest escape probability, which in-
creases very slowly with the increase of the number of attack edges
per honest node. Highly weighted attack edges are more rare due
to high engineering cost required for their creation and as a result,
wRW traverses with low probability the attack edges. Hence, it
exhibits low escape probability for all the examined graphs. Fur-
thermore, MHRW tends to visit low degree nodes at the periphery
of the network and so, it rarely escapes into the sybil region. On
the contrary, MERW visits more often high degree nodes, and as a
result it has a similar escape probability to RW.

Scalability In Section 2, we define scalability in terms of compu-
tational and communication overhead. EscapeLimit has low com-
putational cost since at each step only the transition probabilities
are computed and each node maintains connectivity information
only about its neighbors. Therefore, we have to evaluate the com-
munication overhead imposed by EscapeLimit at each node. In
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Figure 6: Resilience against sybil attacks: the escape probability of the different random walks in the power-law, Bartercast, and Facebook
graphs.
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Figure 7: Scalability: the distribution of the communication load of nodes for the different random walks in the power-law, Bartercast, and
Facebook graphs.

Table 2: Scalability: the correlation between the indegree and the
distribution of the communication load of the walks

power-law Bartercast Facebook

RW 0.939 0.88 0.77
bRW 0.94 0.75 0.78

MHRW −0.82 −0.6 −0.51
MERW 0.95 0.89 0.817

EscapeLimit, each node sends one introduction request to another
node in the system. Thus, the communication overhead at each
node during a random walk depends on the visit ratio of that node
at each step, namely the fraction of introduction requests it receives
from other nodes at each walk step. To evaluate this overhead at
each node, we define the distribution of communication load in
terms of the average visit ratios of the nodes per step. This ratio is
proportional to indegree of a node, as is presented in Table 2. Due
to the highly skewed indegree distributions of real world networks,
a few highly connected nodes receive the majority of introduction
requests. As a results, those highly connected nodes may be over-
loaded.

In Figure 7, we present the distribution of communication load
of nodes in the power-law, Bartercast and Facebook graphs when
we integrate different biases in the random-walk based collection
method. Since we ran the experiment for 1000 nodes, the optimal
communication load value for a node is 0.001, meaning that it has
been visited exactly once during a walk step. In this experiment,
we do not include sybil nodes, since sybils will have no impact on
the communication load of honest nodes.

For all the examined graphs, MHRW distributes the load evenly
to almost all the nodes independently of the indegree distribution of
the corresponding graph. In a random walk, the high degree nodes
are visited more often, but this property is counterbalanced by the
bias of MHRW towards the low-degree nodes and so, MHRW achieves

an almost uniform load distribution. Conversely, MERW intensifies
the selection of the highly connected nodes and as a result, in all
graphs it exhibits the most skewed distribution of communication
load. Particularly in the power-law graph, a few highly connected
nodes have a communication load value close to 0.100 implying
that those nodes receive 100 introduction requests during a walk
step. Those nodes cannot reply to all those request and as a result,
MERW is not scalable in that graph. Furthermore, wRW has a load
distribution similar to RW.

Relevance of Information. In order to capture different charac-
teristics of the relevance of the acquired information at each step of
the walk, we use two metrics. The first metric is the relative size of
the interaction subgraph Gi at node i with respect to the size of G
and it is defined as RE(Gi, G) = |Ei|/|E|.

According to the second metric, the ranking similarity (RS), the
interaction subgraphGi at node i is similar toG if it produces sim-
ilar reputation rankings of the most highly reputed nodes. Ranking
similarity is a modification of Spearman coefficient and the vertex
ranking metric proposed in [18], so that it can be applied to lists
of different lengths and takes into account the reputation of each
node. If we denote by r (and ri) the reputation vector produced at
G (and Gi), the ranking similarity is defined as:

RS(G,Gi) = 1−
∑

u∈Vi
r(u)(σ(r(u))− σ(ri(u)))2

D

where σ(r(u)) (and σ(ri(u)) ) is the rank of the reputation of node
u in r(u) (and ri(u) ) when only vertices in Vi are considered
and r (and ri) is ordered in decreasing order. The normalization
factorD is equal to

∑
u∈Vi

r(u)(σ(r(u))−σ(rw(u)))2 where rw
is the sequence containing the nodes in Vi in reverse order from
r. The ranking similarity between the two graphs is equal to 1 if
their reputation vectors produce exactly the same ranking. On the
contrary, a ranking similarity equal to 0 indicates that the ranking
derived from ri is the reverse of the ranking deriving by r.
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Figure 8: Relevance: the relative size between the interaction subgraphs of nodes and the interaction graphs of the power-law, Bartercast,
and Facebook networks over consecutive steps of the different random walks.
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Figure 9: Relevance: the average ranking similarity between the interaction subgraphs of nodes and the interaction graphs of the power-law,
Bartercast, and Facebook networks over consecutive step of the different random walks.

In Figure 8, we present the relative size between the interaction
graph and the interaction subgraphs over consecutive steps of the
different random walks for all the datasets. For all the different
graphs, MERW achieves the largest relative size faster. According
to MERW, each nodes visits with higher probability the highest
degree nodes. These nodes have the majority of information since
they perform the majority of interactions. On the contrary, MHRW
visits mostly low degree nodes which perform very few interactions
and so, results in very small relative size.

In fast-mixing graphs after some steps all the random walks achieve
almost perfect relative size. On the contrary, in Bartercast only
MERW achieves perfect relative size. As we can see from its inde-
gree distribution in Figure 3, Bartercast has 3 hubs and most nodes
are not connected with each other but only with the hubs. As a
result, all the RWs but MERW do not manage to visit all the hubs
and visit other nodes in the periphery since their expected length is
small. In graphs with skewed degree distribution, such as power-
law graph and Bartercast, all the different random walks achieve
most of the information after a small number of walks steps since
those hubs are visited with higher probability. Piatek et al [19]
based their dissemination scheme on a similar observation. How-
ever, in graphs with a more symmetric degree distribution, such as
Facebook, the collection of information is much slower. Particu-
larly, MHRW on Facebook needs more than 40 steps to achieve
most of the information.

In Figure 9, we present the ranking similarity between the inter-
action graph and the interaction subgraphs over consecutive steps
of the different random walks for all the datasets. In accordance
with the results for the relative size, MERW achieves faster a high
ranking similarity while MHRW is the slowest. In power-law and
Bartercast graphs, ranking similarity follows the patterns of the rel-
ative size due to the skewed degree distribution. In these graphs,
the hubs not only have a high degree but a high reputation as well.

Table 3: The ability of random walks to satisfy the requirements of
a collection mechanism applicable to distributed reputation systems

Method Resilience to Attacks Scalability Relevance of information

RW fair good good
wRW very good good good

MHRW very good very good poor
MERW good poor very good

In Facebook, there is an instability in the ranking similarity in the
first steps of random walks. From Figure 8, we observe that dur-
ing those steps nodes collect about 75% of the information. After-
wards, the ranking similarity increases.

Discussion Our evaluation indicates that properly biased random
walks satisfy the requirements of an applicable collection method
since they achieve resilience to sybil attacks, good load balancing
and provides relevant information. The bias of a random walk de-
termines the extent to which each requirement is satisfied. In Table
3, we summarize the experimental results for all the different ran-
dom walks.

In fast-mixing networks, simple RW achieves good resilience
against attacks while in slow-mixing networks it escapes with high
probability into the sybil region even if the number of attack edges
per honest node is small. Furthermore, it distributes the communi-
cation load across the nodes of a network with a preference towards
nodes with high degree nodes. RW is suitable only for fast-mixing
networks. Adding the appropriate biases by using richer informa-
tion about the interactions of nodes further improves its quality.

Through our experimental results, we have shown that wRW
achieves robustness against sybil attacks and collects relevant in-
formation independently of the characteristics of the graph. There-
fore, the strength of interactions represent accurately both the trust
and the similarity of nodes. Furthermore, the communication load



at each node when using wRW is close to RW. This type of walk
is suitable for all networks and particularly for networks where the
strength of edges has a skewed distribution.

Next, we studied the bias towards the nodes with low activity,
namely the nodes with low degree. In MHRW, the bias is towards
the low degree nodes. This walk achieves high resilience to at-
tacks since sharing interactions with low degree nodes is a stronger
indication of trust than interactions with high degree nodes. Fur-
thermore, MHRW has excellent load balancing properties indepen-
dently of the degree distribution of the network. However, a node
visiting the low degree nodes cannot obtain fast relevant informa-
tion. This type of walk can be used when for a network the main
concerns are security and load balancing.

Besides the strength of interactions, the activity level of a node
as represented by its degree is another indicator of trust and sim-
ilarity among nodes. In MERW, the resilience against sybil at-
tacks is similar to that of RW indicating that sharing interactions
with high degree nodes is not a strong indication of trust. Further-
more, the bias towards the high degree nodes results in overloading
those nodes. Nevertheless, MERW achieves fast relevant informa-
tion since it visits more often the hubs even if the network is slow-
mixing. Through the hubs, MERW manages to visit the different
communities in a slow-mixing network. This type of walk is suit-
able for slow-mixing graphs when the fast acquisition of relevant
information is relevant.

6. CONCLUSION
In this paper, we propose a method to collect information in dis-

tributed reputation systems based on random walks. EscapeLimit
collects only relevant and trusted information as well as reduces
the escape probability of an honest node to the Sybil area. Escape-
Limit uses the observation that user interactions require real effort
and so, they reflect trust and similarity among users. We guide
random walks in EscapeLimit with three different trust-driven user
properties and through experimental evaluation we show their ef-
fectiveness in terms of resilience to attacks, scalability and the abil-
ity to provide each user with relevant information. Our evaluation
suggests that the strength of user interactions guides random walks
efficiently in almost any type of network. As future work, we would
like to investigate the performance of EscapeLimit in networks with
high population turnover.
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