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Abstract
When mobile urban robots will share the sidewalk with peo-
ple, the resulting interactions can cause unexpected unde-
sirable outcomes to emerge – from people running away
scared to people deliberately teasing and harassing such
systems. How can we design such AI systems to aptly han-
dle the unexpected? Directly anticipating and/or detecting
these kinds of situations will inherently be unreliable; they
are unexpected, after all. And yet, there exists a very clear
signal for social slip-ups: the emotional response of people.
We thus argue that such systems need to be imbued with a
capacity to interpret the socio-emotional reactions to their
own behavior.
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CCS Concepts
•Computing methodologies → Cognitive robotics; •Human-
centered computing → Interaction design theory, con-
cepts and paradigms;

Introduction
Social Sidewalk Navigation will be fundamental to the suc-
cess of the upcoming field of Urban Robotics. Companies
and municipalities are more and more putting robots in ur-



ban environments, to fulfil functions ranging from last-mile
delivery to garbage collection and from handing out flyers
to guiding people. For the most, people seem quite willing
to accept such robots and share the sidewalk with them:
“once we put one of the robots out there onto the sidewalk,
[...] the vast majority of the public didn’t pay any attention
whatsoever to the robots, even those seeing it for the first
time” [7].

And yet, introducing such systems into the ‘wild’ also causes
wildly unexpected reactions from people to emerge, which
can have undesirable and unanticipated consequences
(emerging challenges). Consider, for example, wheelchair
users getting stuck on the street because robots occupy the
curb1. Or what to think of the robot handing out flyers being
harassed and assaulted by children [3] and other cases of
robots being bullied in the wild [4]?

This raises the question: How can we design the social AI
for such urban robotics to ably handle such emerging chal-
lenges?

We can’t reliably avoid these challenges, because they are
unknown upfront. While it will often be possible to patch
them after they become apparent, such a patch will neces-
sarily be applied only after the problem has arisen the first
time. In addition, this may require an unfeasible amount of
patches, given the complex and ever-changing dynamics of
our social interaction; patches may not even be compatible
with each other.

Even detecting when a system runs into such a challenge
will be difficult, because of their unanticipated nature – how
can we train a system to detect something unexpected?

1An account of one person, Twitter user Emily E. Ackerman, expe-
riencing this, can be found on twitter.com/EmilyEAckerman/status/
1186363305851576321

We argue that the only way to detect when such social
problems emerge will thus be from the socio-emotional re-
actions of the people involved. It is impossible to reliably
detect or predict when an urban robot will make mistakes,
but it may be doable to detect when people are upset with
you (detecting emerging challenges).

Patching in Socially Aware Navigation
There is an extensive body of work on Socially Aware Nav-
igation, which has been successfully deployed in urban
robotics and beyond; many approaches aim to navigate
such that the system avoids getting closer to people than
certain set distances (derived from notions of personal
space, such as Hall’s proxemics [11] and others [14]).

As with any set of rules, these approaches always run into
exceptional situations not sufficiently covered by the rules.
For example, in earlier work, a failure to properly predict
human motion could result in erratic paths being executed
[9] and the aforementioned case of a robot blocking some-
one in a wheelchair on the street. To further complicate this,
people will often actively respond to the navigation behavior
of such systems (e.g. [13, 10, 12]), which can make it even
harder to anticipate what interactions will emerge.

To some extent, these exceptional situations can of course
be ‘patched’ by updating the software after they arise and
are picked up by the responsible engineers and design-
ers. This is what happened to resolve most of the problems
mentioned above: for example, the robot bullied by chil-
dren was patched to seek the safety of their parents [3] and
the robot with the erratic paths was patched to slow down
when needed [9]. Of course there is a limit to how many
such band-aids can be used; some patches will cause new
problems, and some situations will have conflicting needs in
terms of the patches that apply. In other words, a more fun-
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damental solution is needed, ideally one that would allow
for a solution to be found on the spot.

Detecting Socio-Emotional Reactions to Behav-
ior
Human emotion is expressed through – and can thus be
detected from – a wide range of social signals and cues
[15], including facial expressions, verbal cues, body lan-
guage [6], and gait/trajectories [5]. These latter two are
most applicable to the context of social sidewalk navigation,
because of their relative robustness against occlusions, ef-
fectiveness at a longer range, and because they require
less privacy-sensitive information to function.

Recent work has attempted to take such socio-emotional
reactions into account in social navigation, e.g. by assum-
ing that negative emotions are caused by a robot violating
peoples’ comfort zones [2, 1], or that robots should give
pedestrians more personal space when negative emotions
are detected [8].

Though these approaches work well in their context, they
still leave a lot of the expressivity of such socio-emotional
reactions untapped. Other aspects of robot behavior, such
as movement speed or obstructing a pedestrian’s path,
could also trigger negative emotions result in unexpected
human responses. To tackle emerging challenges, a mobile
robot should not only detect whether the negative emo-
tion is caused by its own behavior [16] but also distinguish
which aspect of its behavior is the cause, be it its speed,
its distance to the pedestrian, its approaching angle, or an-
other aspect.

Towards Responsive Social Sidewalk Navigation
Mobile robots navigating in urban environments will have
to cope with emerging interactions and the unexpected

challenges that can arise from them. This means that, as
argued above, in order to respond appropriately, such sys-
tems will need to detect the socio-emotional reactions of
pedestrians to their own behavior. We briefly discussed re-
cent advances in social signal processing that suggest that
such detections may soon be within reach.

Though these kinds of detections will thus be a necessary
starting point, even with them it will still be a (design) chal-
lenge to handle emerging challenges appropriately. One
approach would be to include a human operator in the loop,
who can assume manual control when the system detects
it is causing a negative reaction in nearby pedestrians. An
alternative would be to have the system try to resolve the
socio-emotional reaction autonomously, e.g. by using it as
feedback for an online reinforcement learning system that
tries to find/learn the appropriate behaviour.

Beyond urban robotics, these arguments may well also ap-
ply to the broader topic of urban AI. While the physicality
of robotics gives a more direct urgency to responding to
people’s socio-emotional reactions, other systems may well
benefit from a capacity to properly handle socio-emotional
reactions.

And then, maybe, one day, if we are offended or otherwise
inconvenienced by that robot in our city, it can detect that
socio-emotional reaction and thus respond in a more under-
standing way.
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