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Abstract

The Multi-Agent Pickup and Delivery (MAPD) problem has received significant academic at-
tention, resulting in a variety of solution techniques that both assigns tasks to agents and finds a
conflict-free routing plan for all agents in the system. However, limited research is done to investi-
gate the added value of an integrated MAPD solving technique for real-world problems in which task
allocation and path planning are performed simultaneously. The integration of the assignment and
routing problem is relevant for the minimization of ground delay when implementing tug-enabled
taxiing operations at airports to reduce the environmental impact of aircraft ground movements.
In this work, a novel algorithmic framework is introduced that minimizes ground delay for tug-
enabled taxiing compared to conventional taxiing operations by combining the Temporal Sequential
Single-Item (TeSSI) allocation algorithm with Priority Based Search (PBS) and Safe-Interval Path
Planning (SIPP) for path planning. Experiments were conducted to assess the performance of a
coupled approach, where the assignment and routing problem are solved together, in comparison to
a decoupled approach, where they are solved separately. The evaluation focused on ground delay for
different towing fleet sizes. The findings indicate that the coupled approach does not offer significant
advantages compared to a decoupled approach in the domain of aircraft engine-off towing operations:
the decrease in total ground delay for a few specific cases was minimal, while the computational run
times significantly increased across all scenarios. Key operational results highlight that, when tugs
are limited, the primary contributor to the total ground delay per departing flight is the ramp delay
caused by tug unavailability. Furthermore, the relationship between ramp delay and fleet size is
not linear but exhibits exponential growth only after reducing the fleet size below a certain thresh-
old of available tugs. These practical observations provide relevant insights for airports considering
implementation of tug-enabled taxiing operations.

1 Introduction

The growth in air transportation demand over the past decades up to 2019 (pre-pandemic levels) has
led to airports approaching capacity and environmental limits [1]. At the same time, the International
Civil Aviation Organization (ICAO) does not only expect complete recovery of air passenger demand
to pre-pandemic levels in the beginning of 2023, but also predicts growth of around 3% on 2019 figures
[2]. Therefore, a need arises for airports to simultaneously increase capacity and sustainability of their
operations. From an environmental point of view, significant gains are expected in the area of airport
ground surface movements, since aircraft taxi-in and taxi-out times account for almost 30% of an air-
port’s carbon emissions [3]. At the same time, one of Europe’s largest hub airports, Amsterdam Airport
Schiphol (AMS), has set the ambition to achieve emission-free ground surface operations by 2030 [4].
Therefore, existing research has investigated the possibilities of engine-off taxiing techniques to reduce
the environmental impact of conventional taxiing operations, while maintaining at least a pre-pandemic
capacity level [5]. A distinction between on-board and external engine-off towing techniques can be made.
While on-board techniques are anticipated to yield greater reductions in emissions, currently the most
promising option is an external technique that involves the use of a towing tug, as this method is the

*MSc Student Air Transport & Operations, Delft University of Technology (Delft)
TSenior Aviation Consultant, To70 (The Hague)

t Assistant Professor, Delft University of Technology (Delft)

$PhD Candidate, Delft University of Technology (Delft)



only one that has received full certification thus far [6]. The certification holds for the TaxiBot concept,
that involves towing of the aircraft from the ramp towards a decoupling location near the runway. Trials
performed at AMS using TaxiBots show an average of 65% fuel reduction for runways identified as most
promising for tug-enabled taxiing. However, the implementation of tug-enabled taxiing is considered
to be a capital intensive concept, due to the purchasing, maintenance and operating costs of tugs [7].
Therefore, a need arises to analyze operational performance of the airport system for limited number of
tugs available in terms of ground delay when using tug-enabled taxiing instead of conventional taxiing
techniques.

Insights into the relationship between the amount of tugs available and the propagation of ground
delay at an airport can be obtained by simulation. The geographically distributed nature of the tug-
enabled taxiing problem combined with its dynamic nature, make the problem especially suitable for
agent-based modelling and simulation [8]. Within the agent-based modelling paradigm, the tug-enabled
taxiing problem can be described as a Multi-Agent Pickup and Delivery (MAPD) problem. This problem
is a well-studied problem in the academic literature and involves assigning tasks to agents and finding a
conflict-free routing plan for all agents that ensures successful completion of all tasks [9]. A distinction
in solving approaches for an MAPD problem can be made between techniques that solve the allocation
and routing problem separately (decoupled approaches) [9, 10, 11] and techniques that solve both parts
of the problem simultaneously (coupled approaches) [12, 13, 14]. In theory, combining the assignment
and routing problem using a coupled approach would yield improved solutions, as the assignment deci-
sions would be based on real costs instead of relying solely on lower-bound costs using estimated pickup
and delivery times [14]. However, limited research has been done on the application of coupled MAPD
solving techniques on real-world applications in complex environments. Therefore, this work aims to
contribute towards the development of solution techniques to analyze the propagation of ground delay
for tug-enabled taxiing operations using a limited fleet of towing tugs by designing and evaluating an
approach for integration of task assignment with path planning using a multi-agent control architecture.

In order to address the research goal, the following steps were performed. First, a concept of op-
erations for conventional taxiing and tug-enabled taxiing was defined. Second, a Multi-Agent System
(MAS) simulation model was created to investigate these two concepts, building upon existing research
as a foundation [15, 16]. Next, a novel algorithmic framework was developed especially for airport ground
surface movement operations that allows for the integration of the assignment and routing problem. The
framework makes use of an adapted version of the Temporal Sequential Single-Item (TeSSI) [17] auc-
tion algorithm for allocation, because of its scalability, computational efficiency and ability to deal with
tasks characterized by pick-up deadlines [18]. Previous research on the planning of vehicles in the tug-
enabled taxiing problem has demonstrated the effectiveness of combining Priority Based Search (PBS)
with Safe-Interval Path Planning (SIPP) for dealing with the routing problem [15, 16]. Therefore, in
this study, an adapted version of PBS + SIPP is also implemented for path planning. After verification
and validation of the MAS and algorithmic model, we analyzed 14 scenarios to evaluate the performance
of the algorithmic framework in terms of ground delay for various fleet sizes and to provide operational
insights related to the implementation of tug-enabled taxiing at large airports.

The structure of this paper is as follows: in section 2, the concept of operations for both conventional
taxiing and aircraft engine-off towing will be described, as well as the airport that is used as a case study
for analysis. Subsequently, the MAS used for simulation experiments is discussed in section 3. Next,
the algorithmic model that is embedded into the MAS is elaborated on in section 4. Verification and
validation procedures of the MAS is elaborated on in section 5. The experimental setup is then presented
in section 6, and the corresponding results are discussed in section 7. Finally, a discussion of the study
is presented in section 8 and the conclusions are discussed in section 9.

2 Case Study for Tug-Enabled Taxiing Operations

In this section, the conceptual model for simulating tug-enabled taxiing and its characteristics is de-
scribed. First, a general concept of operations will be provided in subsection 2.1 for conventional taxiing
and aircraft engine-off towing operations, including an outline of the most important assumptions related
to these operations. Subsequently, the concept of tug-enabled taxiing at Amsterdam Airport Schiphol
(AMS) specifically will be discussed in subsection 2.2. A list of all assumptions related to the concept of
operations can be found in Appendix A.



2.1 Concept of Operations for Conventional Taxiing and Tug-Enabled Taxi-
ing

In this section, an overview will be provided of the concept of operations for both conventional taxiing
and tug-enabled taxiing. Figure 1 shows the procedures for outbound conventional taxiing that are mod-
elled in this study. The Target Startup Approval Time (TSAT) as provided by Air Traffic Control (ATC)
is used as starting point. To account for engine-start in the conventional scenario when Multi-Engine
Taxiing (MET) is used, the start of the taxiing activity of the aircraft from its starting location towards
the runway entry is delayed by 100 seconds. For inbound flights, it is assumed that the entire engine
cool-down procedure is performed during the taxi-in movement.

Note that for both conventional taxiing and tug-enabled taxiing operations, we assume that aircraft
can leave the ramp nose-first since no apron operations (pushback and push-pull maneuvers) are included
in the simulation model. As a result, all ramps are modelled as meta-ramps that represent a group of
aircraft ramps for a specific bay area, which do not require pushback or push-pull procedures.

TSAT of AC

Engine warm-up Taxi to Runway Entry

Duration: depending on

Duration: 100 seconds
meta-ramp/runway

Figure 1: Overview of conventional taxiing operations using Multi-Engine Taxiing (MET).

In Figure 2, the 5 different stages of outbound tug-enabled taxiing operations are shown. The overall
procedure for tug-enabled taxiing is based upon previous work on aircraft engine-off towing operations
[15, 16]. Similarly as for MET operations, the starting time point of tug-enabled taxiing operations
from the aircraft perspective is the TSAT. From the perspective of the tug, the operation starts with
the movement of the tug from the tug parking facility to the ramp where the aircraft is located through
service roads. When the tug is moving over the service road network and not coupled to an aircraft, the
tug is controlled by the tug driver and drives in solo mode. The coupling maneuver of the tug to the
aircraft starts if the tug is present at the ramp and not before tcouple, start @s defined in Equation 1, where
teoupling Tepresent the duration of coupling (120 seconds). After coupling, the tug is driving in pilot mode
(controlled by the pilot) over the taxiway network to a designated decoupling location in vicinity of the
assigned runway. When arrived at the decoupling location, the aircraft-tug combination decouples, after
which the aircraft resumes its journey towards the runway entry powered by its own engines. Depending
on its schedule, the tug either returns to the parking facility or moves to a ramp to attend to the next
outbound flight assigned through service roads.

In the remainder of this study, only outbound towing is considered, since the expected benefits of
outbound towing are significantly higher than for inbound towing in terms of fuel reduction [19, 20, 21]
and because implementation of inbound towing at airports is generally considered to be a very long-term
goal [22].

TSAT of AC Taxi to Runway Entry

Duration: depending on
ﬁ decoupling
Taxi to Decoupling location/runway entry
Coupling Location Decoupling
Duration: 120 seconds Duration: depending on Duration: 120 seconds

meta-ramp/runway

Driving to Ramp

Duration: depending on
meta-ramp

Driving to
Parking/Ramp
Duration: depending on
tug schedule

Figure 2: Overview of tug-enabled taxiing operations. Grey blocks represent maneuvers executed by the
tug only, orange blocks represents maneuvers executed by the tug-aircraft combination and blue blocks
represent maneuvers by the aircraft only.

tcouple, start > TSAT — tcoupling (1>

When comparing conventional with tug-enabled taxiing operations, a number of differences can be identi-



fied. First, the maximum velocity of aircraft taxiing using own engine power is higher than the maximum
velocity reached by towing tugs (60 km/h versus 45 km/h). As a result, taxi times are expected to increase
when comparing tug-enabled taxiing with conventional taxiing operations. Furthermore, decoupling on
the taxiway network is expected to disturb traffic flow around runway entries. Finally, the performance
of tug-enabled taxiing operations is expected to be directly influenced by the number of available tugs,
as the dependency on tugs to start the movement of the aircraft towards the runway can result in delays.

2.2 Tug-Enabled Taxiing at Amsterdam Airport Schiphol

In the remainder of this work, Amsterdam Airport Schiphol (AMS) is used as case study to evaluate the
effects of implementing aircraft engine-off towing operations. AMS is one of Europe’s largest hub airports
in terms of infrastructure and passenger flow [23], providing for a challenging case in which the concept of
aircraft engine-off towing operations will be tested under demanding circumstances. In addition, Royal
Schiphol Group and its partners have performed several TaxiBot trials where single outbound flights
were towed from the ramp to a designated runway, providing for relevant operational data [24, 25].

In this study, tug-enabled taxiing operations will be compared to conventional taxiing operations
during an outbound and inbound peak. At AMS, a large variety of runway configurations exist. Based
on feasibility studies regarding the implementation of tug-enabled taxiing operations at AMS [24, 25],
it was concluded that a runway configuration for which runway 36L and/or 36C are used as departing
runways is most promising. The reason for this is threefold: 1) both runways are characterized by long
taxi-out times, offering the highest potential fuel savings; 2) infrastructure where decoupling operations
can take place without blocking other traffic on taxiways is present near both runways; and 3) runway
36L has a preferred status for departing flights in peak hours, and therefore, is in use most of the time
[25]. Based on this reasoning, Runway Mode of Operation (RMO) North will be studied in this work,
where outbound flights depart from 36L and 36C, and inbound flights arrive at 06 and 36R (Figure 3).

For departing runways 36L and 36C, four decoupling locations per runway have been defined based on
feasibility analysis of Royal Schiphol Group [25] and previous work done by Soomers [15] and Kamphof
[16]. The exact locations and associated assumptions can be found in Appendix A.
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Figure 3: Runway usage in RMO North (inbound peak and outbound peak): Polderbaan (36L),
Aalsmeerbaan (36R), Kaagbaan (06) and Zwanenburgbaan (36C) in use.

3 Multi-Agent System

In this section, the Multi-Agent System (MAS) used for modelling tug-enabled taxiing operations is
described in more detail. An overview of the high-level structure of the MAS is provided in Figure 4.
The MAS consists of an environment and different types of agents, that are able to interact with the
environment and with each other. The environment consists of the airport network and the flight
schedule. The details on the elements of the environment are provided in subsection 3.1.

Two types of agents can be distinguished in the MAS: Central Agents and Individual Agents. The
Airport Operations Agent, Tug Allocation Agent and Routing Agent can all be considered Central
Agents that are responsible for the overall planning and coordination of all vehicles in the system.



Offline planning is performed for the duration of a planning window w4 at a fixed planning frequency
hping. In this planning window, the Central Agents are charged with defining the set of aircraft to route
based on the flight data (Airport Operations Agent), the allocation of outbound flights to tugs (Tug
Allocation Agent) and the actual routing of all vehicles avoiding any conflicts between them (Routing
Agent). Individual Agents are agents that represent the actual vehicles moving in the system (Aircraft
and Tug Agents) and are charged with execution of the plan developed by the Central Agents. In
subsection 3.2, an explanation is given on the exact role of each agent in more detail.
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Figure 4: Overview of the structure of the multi-agent system used.

3.1 Environment Specifications

The environment of the MAS consists of two objects: the airport network graph and the historic flight
schedule.

3.1.1 Airport Network

The layout of AMS is represented by a static graph G = (V, E) consisting of 237 nodes and 390 bidirec-
tional edges as shown in Figure 5. Given that apron operations are excluded from the model, aircraft
ramps in a specific bay area are mapped to meta-ramps, shown in white in Figure 5 (for the exact
mapping, refer to Appendix A). Connections between nodes are represented by different types of edges.
All edges are bidirectional and can be traversed in both directions, except for a number of apron entries
and exits (refer to Appendix A).

Taxiway and runway edges are both shown in black by a thin or thick line and obtained from their

actual locations using geographical information. Crossings and turns are represented in a simplified man-
ner, excluding actual turn angles. Restricted turns for aircraft on the taxiway network are included as
layout constraints, as well as restrictions on the required heading for aircraft and tugs to enter decoupling
locations. Finally, layout constraints are put in place that restrict movements over certain taxiways that
are closed when operating RMO North. More information on the exact layout constraints can be found
in Appendix A. Based on the layout constraints, the shortest feasible path between any two nodes in the
network is precomputed to limit computational complexity during simulation.
Next to taxiways and runways, service roads are modelled as well and depicted by a red line. The
service road infrastructure consists of the central service road at AMS and service road edges around
departing runways 36L and 36C. Although parts of the service road infrastructure around these runways
is currently non-existing, it is included in the model to allow for tug return movement after decoupling
[25]. For more details on the assumptions related to the graph network, refer to Appendix A. Note that
the graph network representation is fully accessible to the the Airport Operations Agent, Routing Agent
and Tug Allocation Agent.

3.1.2 Flight Schedule

The flight schedule contains all relevant information on the flights that depart or arrive in the current
planning window, including the flight ID, flight direction, ICAO Aerodrome Reference Code, the wake
turbulence category, assigned ramp and assigned runway. For all flights, the assigned ramp is mapped to
a meta-ramp node location. Based on the ICAO Aerodrome Reference Code and operational experts, a
set of possible runway entries and exits is defined for each flight. In addition, the flight schedule contains
the landing time for inbound flights and the TSAT for outbound flights. Note that in the flight schedule,
only flights that depart from or arrive at a runway that is active in RMO North are included. Similarly,



Figure 5: Part of graph network of AMS, showing taxiway edges (black, thin line), service road edges (red,
thin line), runway edges (black, thick line), runway nodes (black), meta-ramp nodes (white), decouple
nodes (red), all-clear nodes (blue) and tug base node (purple).

General Aviation flights are excluded. Additional assumptions, analysis and details on the input flight
schedule can be found in Appendix B.

The flight schedule is considered deterministic and thus, can be classified as a static object in the
environment of the MAS. During every replanning instance, the information in flight schedule is accessible
for the Airport Operations Agent, Routing Agent and Tug Allocation Agent for the duration of the
current planning window.

3.2 Agent Specifications

Next to the environment, a MAS is made up of agents, that can be described as autonomous actors in the
environment. In this section, an overview will be given of all agents present in the system. Furthermore,
the interaction between the agents is elaborated on as well. In Appendix A, a more elaborate description
of the characteristics and properties for all agents can be found.

3.2.1 Airport Operations Agent

The role of the Airport Operations Agent is to define the set of flights to be routed for the current
planning window wping. Based on the status of all vehicles provided by the Routing Agent, the Airport
Operations Agent checks for each aircraft that is planned to spawn before the end of the planning window
if it has arrived at its goal location yet. The output of the Airport Operations Agent (a set of flights to
route) is communicated with the Tug Allocation Agent (outbound flights only) and the Routing Agent
(all flights).

3.2.2 Routing Agent

The role of the Routing Agent is to execute the routing algorithm to find a conflict-free path for all
vehicles to route in the current planning window. The Routing Agent receives information on the set of
aircraft to route from the Airport Operations Agent. If we are considering a scenario where outbound
towing is performed, the Routing Agent communicates the outbound flights in this set of aircraft to
the Tug Allocation Agent and triggers the execution of the allocation algorithm. For every tug that is
assigned to at least one outbound flight, the Routing Agent receives a set of maneuvers to be performed
by the tug from the Tug Allocation Agent, based on the current position and status of the tug. For more
information on the sequence of maneuvers to be executed by tugs, refer to section 2.

Once the total set of vehicles to route is defined, the Routing Agent creates a set of individual agents
(Aircraft and Tug Agents) that represent the vehicles to route. Next, the Routing Agent triggers the
path planning algorithm to find a conflict-free routing plan for all tugs and aircraft to route in the current
planning window. For each vehicle, the routing plan describes the route and time for every maneuver
that it has to perform. The working principle of the PBS 4 SIPP path planning algorithm is described
in more detail in subsection 4.3. The Routing Agent communicates the solution found to all Aircraft
and Tug Agents.



In the simulation model, the possibility exists to explore the consequences of multiple different allo-
cations on the planning of paths for the vehicles to route in parallel. The details of the working principle
will be explained in greater depth in section 4. The Routing Agent will identify the need for an additional
allocation to be explored based on a set of conditions that is described in greater detail in section 4. Once
the conditions are met, the Routing Agent triggers the Tug Allocation Agent to initiate the allocation
algorithm and provides this agent with a set of constraints to prevent an allocation to be generated
that has been explored previously. Based on the set of constraints provided by the Routing Agent, the
Tug Allocation Agent generates a new allocation. Using the new allocation, the Routing Agent again
generates a set of Individual Agents for routing, alongside the existing sets.

3.2.3 Tug Allocation Agent

The Tug Allocation Agent receives a set of outbound flights from the Routing Agent that is planned to
spawn before the end of the current planning window and has not arrived at the goal location yet. In
addition, the Routing Agent provides information on the status of the vehicles that have been routed so
far, including the status of all tugs available for towing.

Based on this information, the Tug Allocation Agent defines an allocation of outbound flights to
tugs for the current planning window. This is done by executing the TeSSI auction algorithm. At the
beginning of every auction, the Tug Allocation Agent creates a Simple Temporal Network (STN) for
every Tug Agent in the fleet of available tugs. The STN is used to keep track of the tug schedule and its
previously assigned tasks. Based on its STN, the Tug Agent can determine what is the optimal position
to insert a task up for auctioning into its current schedule. If the tug under consideration has already
started a coupling, the task cannot be reallocated anymore and is inserted in its schedule as a fixed task.
During every auction round, all Tug Agents submit a bid to the Tug Allocation Agent for every aircraft
in the set of unallocated outbound flights. Then, a winning tug is determined that gets assigned the task
to tow the aircraft from the meta-ramp location to a decoupling location in vicinity of the designated
runway. The winning tug inserts the assigned task in its STN. This is repeated until all outbound flights
are assigned to a Tug Agent. More details on the working principle of the TeSSI auction algorithm and
the use of STNs is provided in section 4.

The final allocation is shared with the Routing Agent that is responsible for the routing of the agents
based on the defined allocation.

3.2.4 Aircraft and Tug Agents

Both Aircraft and Tug Agents have the role to represent the actual vehicles that are routed in the current
planning window. When a solution is found, the agents receive information on the route to execute in
the next planning window from the Routing Agent. During execution, the agents move according to
their routing plan and communicate their current status and position back to the Routing Agent.

Note that Tug Agents also participate in the auction process led by the Tug Allocation Agent. During
this process, the Tug Agents receive information on the task that it gets assigned from the Tug Allocation
Agent. In addition, Tug Agents provide the Tug Allocation Agent with their bid for all aircraft that are
not yet assigned to any other tug.

4 Integration of Multi-Agent Task Allocation and Path Plan-
ning

The concept of tug-enabled taxiing operations for a finite fleet of tugs can be formalized as a Multi-
Agent Pickup and Delivery (MAPD) problem. In MAPD problems, a set of agents R = {r,r2,...,7n}
is charged with execution of a set of unexecuted tasks T = {71, 72,..., T} in a network. The network
consists of an undirected graph G = (V, E), whose vertices V' correspond with node locations and edges
E correspond with connections between locations. Every task 7; € T is characterized by a pickup vertex
s; € V and a delivery vertex g; € V. Typically for MAPD problems, the total number of tasks in the
system is greater than the number of agents [9], resulting in agents having to attend to a stream of tasks
while avoiding collisions with other agents. Note that in this work, the MAPD problem is modelled in
an offline setting, meaning that for a certain time interval or planning window wping, all characteristics
of tasks scheduled in that time interval are known at the time of allocation [26].

A solution to the MAPD problem both defines an allocation of agents to tasks and a conflict-free
routing plan for all agents in the system. In the existing literature, a distinction can be made in MAPD



solution techniques that solve task assignment and path finding consecutively (decoupled approaches)
[9, 10, 11] and approaches that integrate allocation of tasks with path finding (coupled approaches) [12,
13, 14]. The main advantage of the latter approach is that the assignment choices are not only informed
by lower-bound estimates of path costs associated with the execution of the task at hand, but reflect
additional path costs resulting from interaction and conflict resolution between agents. However, the use
of a coupled approach increases the computational complexity.

In this work, a novel algorithmic framework, Priority-Based Search including Task Allocation (PBS-
TA), is developed that allows for the comparison of a decoupled and coupled MAPD solving technique in
the context of tug-enabled taxiing operations. In this section, more details are provided on the general
working principle of the PBS-TA framework (subsection 4.1), the allocation algorithm implemented
(subsection 4.2) and the algorithm used for path planning (subsection 4.3). The pseudocode of the
adapted versions of all algorithms can be found in Appendix A.

4.1 General Outline of the PBS-TA Framework

In this section, we present an outline of the PBS-TA framework that is capable of solving the MAPD
problem at hand in both a coupled and decoupled manner (subsection 4.1.1). Within the framework,
three different algorithms are tested on their algorithmic and operational performance with respect to
delay minimization for aircraft engine-off towing operations. The characteristics of the three algorithms
are discussed in subsection 4.1.2.

4.1.1 Integration of Task Allocation with Path Planning

In order to solve the task allocation and path planning problem in an integrated/coupled manner, the
PBS-TA framework makes use of a search forest for path planning instead of a single search tree used in
conventional search algorithms. The search forest principle is inspired by the work of Honig et al. [13]
and based on the idea that interaction between agents is not taken into account when assigning tasks.
However, when interaction between agents is considered in path planning, the initial (optimal) allocation
found might not result in a global optimum due to rerouting of agents with respect to their shortest
paths. By using a search forest in the coupled approach, multiple possible task assignments and their
resulting path conflicts can be explored simultaneously. Every additional tree in the forest analyzes the
path planning problem for a next best allocation of agents to tasks. The addition of a tree to the search
forest based on a yet unexplored allocation is triggered iff a root node of a previously added search tree is
expanded and a conflict is found. As a consequence, a factorial explosion of all possible task assignments
is avoided, since a new allocation is only explored on-demand [13]. Note that for the decoupled approach,
only a single allocation (and thus, a single search tree) is explored in the path planning domain.

Solution pool A0 Solution pool A0 Solution pool A1
allocation 0 allocation 0 constraints allocation i + 1
a\loc;ﬂon i a\loc;uon i al\oca;i;m i+j
allocation 5 allocation 5 allocation i + 5
ROOT NODE 0-0 ROOT NODE 0-0 ROOT NODE 1-0
I ! | “
CHILD NODE 0-1 CHILD NODE 0-2 CHILD NODE 0-1 CHILD NODE 0-2 1 ) 1 )
I ‘ | |
[a"m“f’"“ﬂm] [a‘locahonimAﬂ] [al\ocatiamin AD] [a\locahon i inAU] ******* S s ’
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[ routing plan routing plan } [ routing plan J [ routing plan J
(a) Decoupled approach (b) Coupled approach.

Figure 6: Overview of the working principle of the PBS-TA algorithmic framework for a decoupled (a)
and coupled (b) approach.



In Figure 6, a visualization is shown of the working principle of the PBS-TA framework, for both the
decoupled and coupled approach. In both approaches, the algorithm is initiated with an initial set of
allocations A0 (step 1), containing a number of different assignments of all flights in the current planning
window to tugs. The generation of the allocation solution pool will be elaborated on in subsection 4.2.3.
From the solution pool, a preferred allocation i is chosen that is used to generate a routing plan for all
vehicles in the root node 0 of the first search tree in the path planning forest (step 2) (refer to subsection
4.2.4 for more details on this step). If a conflict is found in the routing plan (step 3), two child nodes are
generated that explore the consequences of resolving this conflict (step 4). Up until this point, we are
executing a standard (decoupled) search procedure based on a single search tree. However, for a coupled
approach, an additional root node is created as well and added as a new search tree to the forest. To
do so, a new task allocation is needed and found in the following steps: first, a set of constraints is
formulated based on the initial set of allocations A0 (step 5), to generate a new set of allocations Al
(step 6). Again, a preferred allocation is chosen from the set of allocations A1, which is used to generate
a new routing plan in the newly created root node (step 7). Then, based on the cost of the two child
nodes (0 — 1 and 0 — 2) and root node 1 — 0, the next node to expand is determined as the node with
the minimum cost. If the next node to expand is the root node, the procedure is repeated starting from
step 3. If the next node is a child node, the search is continued in a depth-first manner.

4.1.2 Algorithms to Evaluate

Based on the PBS-TA framework, three different algorithms are developed and evaluated in this study
on their performance in the context of aircraft engine-off towing operations. Table 1 shows the main
characteristics of the three algorithms to test. In order to assess the added value of a coupled approach for
the integration of task assignment and path planning in the context of airport ground surface movement
operations, a decoupled algorithm (DCPL) is used as a baseline and compared against two coupled
algorithms (CPL-MIN and CPL-DIF). The coupled algorithms differ in the way how a preferred allocation
from the allocation solution pool is chosen. More details on this will be provided in subsection 4.2.3.

All three algorithms make use of an altered version of the auction-based Temporal Sequential Single-
Item (TeSSI) algorithm to generate allocations that assign outbound flights to tugs (subsection 4.2).
Path planning is done in all three algorithms based on Priority-Based Search (PBS) [27] in combination
with Safe Interval Path Planning (SIPP) [28], inspired on previous work related to agent-based modelling
of aircraft engine-off towing operations [15, 16]. The implementation of the path planning algorithm will
be discussed in detail in subsection 4.3.

Table 1: Characteristics of algorithms to evaluate on their performance for the application in airport
ground surface movement operations.

Size of allocation

Algorithm Approach . Preferred allocation
solution pool
DCPL Decoupled b) Minimum cost
CPL-MIN Coupled 5 Minimum cost
CPL.DIF Coupled 5 Combination of minimum cost

and degree of similarity

4.2 Adapted TeSSI for Allocation of Outbound Flights to Tugs

The modelling of tug-enabled taxiing operations requires an allocation method that remains efficient for
an increasing number of agents and tasks, while not compromising on the quality of the solutions. In the
field of Multi-Robot Task Allocation (MRTA), auctions are widely studied and implemented because of
their scalability to large networks, performance in terms of solution quality and applicability to problems
where the set of tasks to assign changes over time [29, 30, 31]. Therefore, an auction mechanism is used
in which tugs are considered bidders and all outbound flights available in the current planning window
are considered tasks to be executed. Since the tasks are not only characterized by spatial attributes (the
location of the ramp with respect to the current position of the tug), but also by temporal attributes (the
time the aircraft is scheduled to leave the ramp), a need arises for allocation mechanisms that are able
to deal with tasks characterized by deadlines. In the work of Nunes and Gini [17], an auction mechanism
is proposed that is able to handle temporal constraints for tasks, resulting in the Temporal Sequential
Single-Ttem (TeSSI) algorithm. For every task in the set of unallocated tasks, all agents submit bids for



every task based on their capability of executing the task within the associated time window. In every
auction round, one task is assigned to the agent with the best bid. The procedure repeats itself until all
tasks are allocated [32].

In the remainder of this section, a number of important aspects of the adapted TeSSI algorithm
will be discussed. First of all, the modelling of outbound flights as tasks with temporal constraints is
elaborated on in subsection 4.2.1, as well as the mechanism that is used by tug vehicles to keep track
of their schedule. Next, more details are provided on the allocation objective and associated bidding
rules in subsection 4.2.2. Additionally, the design of the PBS-TA framework requires an efficient way
of computing the next best allocation to use in the root node of an additional search tree in the path
planning search forest. The setting of constraints and the generation of a next best allocation using
the adapted TeSSI algorithm is further discussed in subsection 4.2.3. Finally, the determination of the
preferred allocation from the solution pool is discussed in subsection 4.2.4.

4.2.1 Temporal Constraints of Tasks and Maintaining Tug Schedules

Similarly to the original implementation of TeSSI [17], the temporal constraints related to the tasks at
hand are modelled as a simple temporal problem [33]. In such, each task 7 is specified by a starting
and finishing time point, S; and F.. respectively. Both the duration and the earliest and latest starting
time of the task are considered a characteristic of the task. When considering outbound flights as the
tasks to be assigned, the earliest and latest starting time of the task are characterized by the interval
[TSAT — teoupie, ), where TSAT represents the Target Startup Approval Time and teoupie the time
needed for coupling. We are interested in the propagation of ground delay and hence, no bound on the
latest starting point is defined for the task. The duration of the task is defined as the time needed to
perform coupling, move the tug-aircraft combination to a decoupling location near the assigned runway
and perform decoupling. To account for unexpected delays en route, an additional buffer of 60 seconds
is added to the duration of the task. Although there are multiple decoupling locations available for the
two departing runways (subsection 2.2), a preferred location to perform decoupling can be determined
for both runways, depending on the scenario to be analyzed. For the determination of the duration of a
task, the preferred decoupling location for each runway is used as the goal location for the tug. Note that
when planning paths, the tug might perform decoupling at a goal location different from the preferred
decoupling location. The preferred decoupling location per runway is defined in Appendix A.

When an outbound flight is assigned to a tug, the starting and finishing time points corresponding
to the flight are added to a Simple Temporal Network (STN). The STN is used to keep track of the
schedule of the tug vehicle and allows the tug to find the best insertion position of new flights into its
schedule before bidding on it. For a pair of starting and finishing time points in a STN, two types of
constraints exist: travel time constraints and duration constraints. If both time points belong to the
same task, a duration constraint is imposed and requires the start of a task not to be later than its
finish time ((F; — S; € [DUR;, >0), where DU R, represents the duration of task 7). For a starting and
finishing time point belonging to two different tasks, we impose travel time constraints that require the
agent to only start the next task 7,41 after finishing the previous task 7, (S7, ., — Fr, € [TTr, ..., 00),
where 77", -, ., represents the time needed to travel from the all-clear location corresponding with the
preferred decoupling location to the ramp of the flight).

For every flight that has yet to be allocated, a copy of the current STN of the tug is made and the
number of possible insertion points for the flight is determined. For every insertion position, both the
travel time and duration constraints for all tasks in the schedule (including the flight yet unassigned) are
added. Using Floyd-Warshall’s all-pairs-shortest-paths algorithm, the consistency of the resulting STN
is checked [33]. If the network is consistent, the shortest path in the network represents the network in
which the starting time of each task is minimized. After having evaluated every possible insertion position
of the task, a bid is calculated for the insertion position that minimizes the allocation objective. More
details on the allocation objective and the associated bidding rules are provided in the next paragraph.

4.2.2 Allocation Objective and Bidding Rules

When considering fully outbound towing, the aim is to find an allocation of outbound flights to tugs that
minimizes delay in off-block time due to unavailability of tugs for all aircraft. Therefore, the adapted
TeSSI algorithm minimizes for the delay in arrival of the tug at the ramp of the assigned aircraft with
respect to the deadline for the tug to be at the ramp. The deadline is defined as the TSAT of the assigned
aircraft minus the time needed for coupling of the tug to the aircraft (Equation 1). In the context of
aircraft engine-off towing operations, the set of unallocated tasks are considered to be all outbound flights
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for which the TSAT is scheduled in the current planning window and for which no coupling activity has
started yet. If a coupling activity has started, the corresponding outbound flight cannot be reallocated
to another tug anymore.

For the set of unallocated tasks, all tugs submit their bid according to a shared bidding rule in order
to prevent conflicting assignments [32]. In this study, tugs bid the difference in cost of their current
schedule including already assigned tasks I, and the cost of the schedule if task 7,,, would be allocated
(Equation 2). The cost of a schedule is calculated by summing the delay in arrival time at the ramp
with respect to the deadline for arrival based on the TSAT at this ramp for all the tasks in its schedule
(Equation 3). If the tug arrives at the ramp before the deadline, zero cost is used. When all agents have
submitted their bids, the task with the minimum bid overall is assigned to the agent that submitted the
corresponding bid. If two or more agents submit the same minimum bid, the agent with the bid that has
been assigned the least tasks wins the auction round to ensure equal task distribution in a finite fleet of
tugs. If both agents have the same amount of tasks assigned, tie-breaking is performed.

3 — o . _ E k k
bld?“iﬂ'm - COth’iJCUTm - COthz‘JC (2) COStTiJC - max (0> tarrival at ramp tdcadline) (3)
k

4.2.3 Constraint Setting for Generation of Next Best Assignment

Based on the bidding rules defined in subsection 4.2.2, the TeSSI algorithm generates identical allocations
in every auction when provided with identical input parameters. However, both the CPL-MIN and CPL-
DIF algorithms require an efficient way to find a different, next best allocation when a new search tree is
added to the path planning search forest. For deterministic allocation approaches, such as the Hungarian
algorithm used in the original CBS-TA framework [13], a set of k best solutions can be found for which
it is guaranteed that any solution not present in the set has a lower solution quality than the solutions
that are part of the set [34]. However, since the TeSSI algorithm is not guaranteed to find the optimal
solution in the first place, a novel constraint setting mechanism is proposed to find a next best allocation.

Figure 6 showed that a pool of allocation solutions is generated from which the preferred solution
is chosen. In order to ensure that different allocations are created in the solution pool, a constraint is
set for the task to assign in the first auction round for the next allocation to generate. Based on the
previously generated allocation (for example, allocation ¢ in pool A0), the task is found for which its
assignment to a tug resulted in the highest increase of the objective value. This specific task is selected
to be assigned first when generating allocation ¢ + 1 in pool A0. If the generated allocation is already
present in the solution pool, infinite cost is assigned to the allocation. By imposing these constraints, it
is guaranteed that all allocations in the solution pool will be unique if the size of the solution pool is less
than the number of possible allocations based on the number of agents and tasks.

From the allocation solution pool, a preferred allocation is chosen that is used as input for the path
planning algorithm. In the next subsection, the determination of a preferred allocation from the pool is
further elaborated on.

4.2.4 Determination of Preferred Allocation from Allocation Solution Pool

Since the objective of the allocation of outbound flights to tugs is to minimize the delay in off-block
time, the preferred allocation from the allocation solution pool is a solution which results in the least
estimated amount of delay. Therefore, for the decoupled algorithm DCPL, the preferred allocation from
the solution pool is the allocation for which the objective value is minimum. In other words, the allocation
that results in the lowest sum of schedule costs for all tugs is used when planning paths.

As shown in Table 1, the two coupled algorithms CPL-MIN and CPL-DIF differ from each other in
the determination strategy of the preferred allocation from the solution pool. Similarly to DCPL, the
allocation in the solution pool with minimum cost is chosen as the preferred allocation for CPL-MIN.
However, when exploring the consequences of a next best allocation when planning paths, we would
prefer the next best allocation to be significantly different from the current allocation being explored.
The reason for this is that a similar next best allocation could provide for similar constraints on the path
planning problem, resulting in a roughly similar outcome in terms of path planning as for the current
allocation. In other words, the added value of exploring multiple allocations in the PBS-TA framework
is expected to be higher when significantly different allocations are being explored. Therefore, the total
cost of every allocation in the solution pool when using the CPL-DIF algorithm is not solely based on
the total amount of estimated delay, but also on the degree of similarity of the assignment with respect
to all allocations explored in previous root nodes of the path planning forest. In order to measure the
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degree of similarity, the cosine degree of similarity is calculated between the solution under consideration
and all previously explored allocations [35]. More details on the calculation of the degree of similarity
between two allocations is provided in Appendix A. Then, the total cost for every assignment in the
solution pool is calculated using Equation 4,

COstiotal = COStdelay - DOS (4)

where costgelay is the delay in off-block time [s] and DOS is the cosine degree of similarity [-]. The
allocation with the minimum total cost in the solution pool is considered the preferred solution and used
for the next search tree in the path planning search forest when using CPL-DIF. Note that for all three
algorithms, a solution pool of 5 allocations is created.

4.3 Path Planning Based on PBS and Activity-Based SIPP

In this work, a routing algorithm inspired on the work of Soomers [15] and Kamphof [16] is implemented
that consists of two levels: a high-level search based on Priority-Based Search (PBS) [27] and a low-level
search based on Safe Interval Path Planning (SIPP) [28]. The high-level search finds a priority ordering
among agents that resolves conflicts by setting constraints for the paths of lower-prioritized agents based
on the paths of higher-prioritized agents. Then, the low-level algorithm searches for a path that results
in the earliest arrival time at the goal location based on the constraints set in the high-level search for a
lower-prioritized agent.

4.3.1 High-Level Search Using PBS

The goal of the high-level search is to find conflicts between the agents and resolve them at the earliest
time [13]. The PBS-TA search forest starts with a single root node in which paths are planned for all
agents based on the best assignment available of outbound flights to tugs. More details on the planning
of individual paths using the SIPP algorithm will be provided in subsubsection 4.3.3. PBS maintains a
priority tree and adds two child nodes whenever a conflict is detected in a parent node. Both child nodes
inherit the existing priority ordering of their parent node, and add a priority couple that restricts one of
the two agents to avoid the other’s path. If a conflict is detected with a tug that is currently towing an
aircraft, the resulting priority does not only affect the tug vehicle, but also applies to the aircraft being
towed when travelling from the decoupling location to the runway entry. If the parent node in which
a conflict is detected is a root node, an additional root node will be created, based on the next best
allocation as provided for by the adapted TeSSI algorithm. No existing priority orderings are inherited
by the newly created root node.

The resulting priority ordering in both child nodes is translated into unsafe intervals for all relevant
locations in the network in which lower prioritized vehicles are not allowed to enter. More details on
the construction of unsafe intervals can be found in subsubsection 4.3.2. The set of constraints is then
passed on to the low-level path planning algorithm that constructs single-agent paths. Once new paths
are found for the agents affected by the newly added priorities or the newly generated allocation, the
solution cost of all newly added nodes is determined by summing the delay of all agents in the node. In
this study, the total delay consists of ramp delay (for outbound flights, the delay in departure from the
ramp with respect to their TSAT) and the delay en route (the delay in arrival at the goal location of the
vehicle with respect to the earliest possible arrival time if interactions with other agents are neglected).

As for the original PBS implementation, a depth-first search is conducted until a node is expanded
for which no conflicts are found in the current planning window [27]. In order to prevent the algorithm
from exploring an unlimited amount of possible allocations, a maximum number of root nodes that can
be added to the search forest is defined beforehand and set to 5 for this study (based on run time limits).

4.3.2 Construction of Safe Intervals

The priority ordering defined in the high-level search is translated in unsafe intervals for every location
in the network that represent contiguous periods of time for which a prioritized vehicle occupies a loca-
tion. Thus, deprioritized vehicles are not allowed to be present during an unsafe interval at that specific
location. In addition, we add unsafe intervals to ensure runway separation for outbound flights based on
Wake Turbulence Category (WTC) separation constraints (Appendix B).

For edge locations, unsafe intervals are defined for the edge in reversed direction for the duration of
the traversal time in order to avoid head-on conflicts. At node locations, separation between vehicles is
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maintained by defining unsafe intervals for the node based on the arrival and departure time of prioritized
vehicles at the location, including a separation margin of 150 meters. The resulting unsafe interval starts
at the time step for which the prioritized vehicle is first present within the separation distance from the
node, and ends with the time step for which the vehicle is lastly present within the separation distance
from the node. Note that the separation distance is measured along the path (and not using Euclidean
distance).

Overlapping unsafe intervals are merged. The same holds for two unsafe intervals on an edge for
which the time between them is smaller than the minimum time needed for the agent to traverse the
edge, since traversal of this edge will not be possible for the deprioritized vehicle. Finally, the set of
unsafe intervals is translated to a set of safe intervals and used in the low-level SIPP search to find
single-agent paths.

Next to head-on conflicts and node conflicts, overtaking conflicts at edges are also restricted. In-
stead of using unsafe intervals, overtaking conflicts are restricted by adhering to the occupancy order of
prioritized vehicles at an edge.

4.3.3 Low-Level Search Using SIPP

In the low-level search, single-agent paths are constructed that adhere to the safe intervals set by the high-
level search and additional layout constraints (Appendix A), while minimizing for the travel time. When
planning for single-agent paths, the input for the planning algorithm consists of an origin, destination and
kinematic constraints of the vehicle. Based on the existing priority order and resulting unsafe intervals,
SIPP generates states that consist of a (configuration, safe interval) pair. A single state represents a
kinodynamically possible movement from the current state towards a location (configuration) in a certain
safe interval and replaces what used to be many states: one for each time step in the safe interval. From
the initial state (the safe interval in which the vehicle is at its starting location), a safe path is found for
the agent using route and time as degrees of freedom.

During planning, all vehicles are assumed to be travelling at maximum velocity, except when unsafe
intervals do not allow for this. If an agent would arrive in an unsafe interval when travelling at maximum
velocity, the velocity is decreased in such a way that the vehicle will arrive as early as possible in the
next safe interval at the specific location. Additionally, vehicles are not allowed to stand still anywhere
on the taxiway and service road network, except for at the ramp or at a decoupling location.

The use of states instead of single time points allow for significant reduction of the search space,
speeding up the path planning and making it more efficient [28]. In addition, SIPP allows for dealing
with continuous time since safe intervals do not require time to be discretized into unit time steps.
For more information on the working principle of SIPP, readers are referred to the work of Philips and
Likhachev [28].

5 Verification and Validation

To ensure the accuracy and reliability of the simulation model, a variety of verification and validation
procedures are performed. The conceptual model was validated by operational experts from To70 Avia-
tion Consultancy. The model was developed in separate modules, allowing for independent unit testing
of building blocks. Implementing exceptions is done to guarantee the course of internal processes is
according to our expectations. Visual animations were used to ensure that routes were executed as
intended, and small test scenarios were conducted to verify the model’s behavior in various situations.
These scenarios included the comparison of costs in the allocation and path planning domain, as well
as the path planning for various activities to ensure correct implementation and adherence to kinematic
constraints. As a results, the output of the model were checked to be according to our expectations.
Finally, individual agent behavior was carefully tracked to ensure accuracy and continuity in the time
domain.

6 Experimental Setup

Given the objective to evaluate the use of an integrated approach for allocation and path finding in the
context of airport ground operations, experiments are performed that focus on analysis of algorithmic
performance. In addition, experiments are performed that provide insights into the operational con-
sequences of the implementation of tug-enabled taxiing at AMS. In subsection 6.1, the hypotheses to
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be tested are stated, both for the algorithmic and operational performance of the PBS-TA framework.
Second, the simulation plan is elaborated on in subsection 6.2. Finally, the key performance indicators
(KPIs) that are used for evaluation of the hypotheses are discussed in subsection 6.3.

6.1 Hypotheses

This section focuses on the hypotheses that have been formulated and tested to assess the research
objective. The first set of hypotheses relates to the comparison of results between the coupled and
decoupled algorithms in the novel PBS-TA framework and is discussed in subsection 6.1.1. Next, a set
of operational hypotheses is elaborated on in subsection 6.1.2. For all hypotheses, the total delay per
flight is defined as the difference in arrival time of the aircraft at its destination in tug-enabled taxiing
scenarios compared with the conventional taxiing scenario. For more information on the KPIs, refer to
subsection 6.3.

6.1.1 Algorithmic Performance

With respect to the algorithmic performance of the PBS-TA framework, one hypothesis is formulated at
the global (Ga) level that relates to the difference in solution quality between a coupled and decoupled
approach.

Gal The sum of total delay per flight for all aircraft scheduled in the outbound peak is equal or lower
when using a coupled approach than when using a decoupled approach.

e Motivation: according to literature [12, 13, 14], the expectation is that when task alloca-
tion and path finding are performed simultaneously (coupled approach), this will result in
better overall solutions than when performing both procedures consecutively in a decoupled
approach. Since the aim is to minimize ground delay, it is expected that on a global level, the
sum of total delay is less when using a coupled algorithm compared to a decoupled algorithm.

6.1.2 Operational Performance

Similarly to the hypotheses on algorithmic performance, hypotheses related to the operational perfor-
mance of the system are formulated at a global (Go) level and concern the measurement and testing of
total delays for flights when comparing tug-enabled taxiing with MET operations. Furthermore, different
effects of tug-enabled taxiing operations are expected to be visible per departing runway. These expected
effects are formulated as local (Lo) hypotheses.

Gol The total delay per flight for departing aircraft in tug-enabled taxiing scenarios increases with a
decrease in available tugs.

e Motivation: when decreasing the number of available tugs, it is expected that aircraft will
be delayed in their off-block time due to unavailability of tugs. As a consequence, aircraft
are expected to arrive later at their final destination when compared to MET operations.
Therefore, the total delay per flight is expected to increase for a decrease in number of tugs
available.

G2 In tug-enabled taxiing scenarios with a similar number of tugs available, the total delay per flight
for departing aircraft scheduled in the outbound peak is higher than for departing aircraft scheduled
in the inbound peak.

e Motivation: during the outbound peak, the number of departing aircraft is higher than
during the inbound peak. When having the same number of tugs available, more flights will
be delayed during the outbound peak than in the inbound peak. In addition, the traffic
density is expected to be increased on tracks used by departing flights in the outbound peak
due to the higher traffic volume. Therefore, the total delay per flight for departing aircraft is
expected to be higher during the outbound peak compared with the inbound peak.

Lol In tug-enabled taxiing scenarios during the outbound peak, the total delay per flight for aircraft
scheduled to depart from 36L is higher than for flights scheduled to depart from 36C.

e Motivation: total delays for departing flights in the outbound peak are expected to be higher
for 36L, since the route towards the runway is longer and thus, the chance on possible conflicts
is larger.
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6.2 Simulation Plan

In order to evaluate worst-case algorithmic and operational performance, flight data for one of the busiest
days in terms of traffic volume at AMS (July 17th) of 2019 is used for simulation, in which RMO North
was active. Based on the runway schedule throughout the day (refer to Appendix B), an outbound peak
from 20:30-22:00h and inbound peak from 07:30-09:00h are defined and chosen to analyze. Any flights
departing from or arriving at other runways that are not active in RMO North during the peak under
consideration are removed from the flight schedule. Table 2 shows the number of departing and arriving
flights during both the outbound and inbound peak. Any additional information and assumptions on
the input data can be found in Appendix B.

Table 2: Number of departing and arriving flights per runway for the outbound peak (20:30-22:00h) and
the inbound peak (07:30-09:00) for one of the busiest days in terms of traffic volume at AMS.

Flight Direction Runway Outbound Peak Inbound Peak

36L 47 45

Departures 36C 50 not active
Total 97 45
06 46 43
Arrivals 36R not active 44
Total 46 87

In order to measure and test the hypotheses as formulated in subsection 6.1, 14 scenarios are formulated
and analyzed on their algorithmic and/or operational performance. Two baseline scenarios are specified
that are used as a reference for system performance of MET operations in both the inbound and outbound
peak (conventional operations). For all remaining scenarios, a coupling and decoupling duration of 120
seconds is used, based on previous research [15, 16] and operational data [24]. Kinematic characteristics
of the vehicles can be found in Appendix B.

For analysis of the algorithmic hypotheses, 9 scenarios are generated for the outbound peak that
differ in algorithm used (DCPL, CPL-MIN or CPL-DIF) and in available fleet size. The goal of the
comparison of the selected scenarios is to gain insights in the added value of using a coupled approach
compared with a decoupled approach for solving an MAPD problem in the context of airport ground
surface operations. The comparison of the coupled and decoupled algorithms is deemed only useful for
scenarios in which resources are limited. The reason for this is that a coupled approach is of no added
value when the initial allocation results in no ramp delay (allocation cost of 0). In the case of tug-
enabled taxiing operations, resources are considered limited if insufficient tugs are available to guarantee
zero ramp delay for all departing flights. Therefore, the minimum number of tugs needed to ensure
zero ramp delay is determined by forcing the decoupled algorithm to find an allocation that results in
zero ramp delay for all departing flights. For the outbound peak, the analysis showed that 42 tugs are
needed to guarantee zero ramp delay for all departing flights. Based on this number, three limited fleet
sizes are chosen and determined to be 30, 21 (half) and 10 for the outbound peak. A summary of the
characteristics of the algorithmic scenarios can be found in Table 3. After evaluation of the algorithmic
scenarios, a conclusion is drawn on the algorithm most suitable for the application of aircraft engine-off
towing operations. This algorithm is then used for analysis of the operational scenarios.

Concerning the analysis of the operational hypotheses, an additional 2 scenarios are formulated for
the inbound peak. First, the number of tugs needed to guarantee zero delay in off-block time for all
departing flights with respect to the flight schedule is found to be 21 during the inbound peak. Based
on the limited fleet sizes evaluated in the outbound peak, the effects of using similar fleet sizes in the
inbound peak are analyzed as well. Note that only fleet sizes smaller than the fleet size needed to ensure
zero ramp delay in the inbound peak are evaluated. Table 4 shows the characteristics of the operational
scenarios to evaluate.

6.3 Key Performance Indicators

Analysis and testing of the hypotheses is performed using a set of predetermined Key Performance
Indicators (KPIs). Similarly as for hypotheses, KPIs are defined for different levels. Global KPIs (G)
reflect performance of the model on a system level, while local KPIs (L) only reflect behaviour visible
in certain parts of the airport. Finally, two KPIs related to sensitivity (S) reflect the difference in
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Table 3: Summary of algorithmic scenarios to

evaluate (9)

Table 4: Summary of operational scenarios to
evaluate for tug-enabled taxiing operations (6)

Algorithmic Performance Analysis

Operational Performance Analysis

Peak outbound Peak outbound | inbound
DCPL DCPL DCPL
Algorithm | CPL-MIN | CPL-MIN | CPL-MIN Algorithm DCPL/CPL—MIN/CPL—DIF
CPL-DIF CPL-DIF CPL-DIF
Tug Fleet 10 21 30 Tug Fleet | 14 91 30 42|10 21
Size Size

performance for a scenario with limited tugs available, compared to the scenario with unlimited tugs
available.

G1 Total Run Time (tiota): the run time needed to complete one entire simulation, expressed in
minutes.

G2 Total Delay per Flight (d): the difference in arrival time of the aircraft at its goal location
between the tug-enabled taxiing and conventional taxiing scenario, expressed in minutes.

G3 Route Delay per Flight (tt): the additional time required for an aircraft to reach its destination
by comparing the duration it takes for the aircraft to travel from the starting location to the
destination for tug-enabled taxiing versus MET operations, expressed in minutes.

L1 Ramp Delay per Flight (dr): the duration by which an aircraft’s off-block time exceeds its
planned off-block time (TSAT) as a result of a delayed arrival of a tug at the ramp, expressed in
minutes.

S1 Difference in Total Delay per Flight (§d): the difference in total delay per flight for a scenario
with limited tugs available, compared to a scenario with unlimited tugs available.

S2 Difference in Route Delay per Flight (6tt): the difference in route delay per flight for a
scenario with limited tugs available, compared to a scenario with unlimited tugs available.

7 Analysis and Results

In this section, the results of the scenarios described in section 6 are presented, including their analysis.
First, the results related to the algorithmic performance are discussed in subsection 7.1. In subsection 7.2,
an outline is provided on the results of the evaluated scenarios from an operational point of view. For
both the algorithmic and operational scenarios, the number of runs is determined to be 30 based on the
coefficient of variation as function of the number of runs (Appendix C). All runs are performed on a 2.60
GHz Intel Core i7-2592M laptop with 8 GB RAM.

7.1 Algorithmic Performance Analysis

The emphasis of this section is on the analysis of the performance between a coupled and decoupled
approach in the novel PBS-TA framework. Two algorithms that are based on a coupled approach (CPL-
MIN and CPL-DIF) are compared against an algorithm based on a decoupled approach (DCPL). The
main performance indicator is the total delay per flight with respect to MET operations for departing and
arriving flights, ddep, out and darr, out respectively. Furthermore, the run time needed for the execution of
a single simulation (tota1) is used. As explained in subsection 6.2, the algorithmic analysis is performed
for the outbound peak only.

7.1.1 Overall Trend Analysis

Table 5 shows for algorithms DCPL, CPL-MIN and CPL-DIF the medians, first quartiles and third
quartiles for the run time per simulation tyota in minutes. Furthermore, the distribution characteristics
of the total delay of departing and arriving flights in the outbound peak for various fleet sizes is shown,
ddep, out and dasr, ous respectively. In addition, the sum of the total delay per flight for all aircraft
scheduled in the outbound peak is listed (Edep} arr dout ). To quantify the added value of a coupled
approach for allocation and path finding in the current application compared to a decoupled approach,
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statistical tests are performed. The performance of both CPL-MIN and CPL-DIF is compared against
DCPL, by evaluating the statistical difference in the distributions for the KPIs listed in Table 5 using
the Wilcoxon Signed-Rank test [36]. The effect size of the statistical difference is evaluated using the
Vargha-Delaney A-Test [37]. For more information on the statistical evaluation of the results, refer to
Appendix C.

A decrease of the (sum of) total delay per flight of a coupled algorithm compared to a decoupled
algorithm is shown in green, whereas an increase is shown in red. The magnitude of the statistical
difference is indicated by the capital letters N (negligible), S (small), M (medium) and L (large) and
through color shading. Darker shades indicate larger effect sizes, while lighter shades indicate smaller
effect sizes. Results that do not show statistical differences are indicated in light-blue. In the remaining
part of this section, the results will be discussed in the order of the KPIs as listed in Table 5.

Table 5: Comparison of algorithmic performance for algorithms DCPL, CPL-MIN and CPL-DIF. Signif-
icance level = 0.05/2 = 0.025. Statistical difference between CPL-MIN/CPL-DIF and DCPL determined
using the Wilcoxon Signed-Rank test.

. DCPL CPL-MIN CPL-DIF
Fleet size KPI p-value p-valie
[tugs] [min)] median (Q1, Q3) median (Q1, Q3) Atest median (Q1, Q3) Atest
ttotal 12.95(12.74,13.14) | 52.0(51.50,55.20) N/A 56.87(52.07,58.53) N/A
ddep, out 13.72(2.82, 84.80) 13.67(3.30,83.39)  0.70,(—) | 13.91(3.02,74.09) ' 0.94,(—)
10 arr, out 0.0(=) 0.0(=) 0.59, () 0.0(—) 0.25, (—)
e, ane dout 4252.5(—) 4137.7(-) 4160.2(—)
trotal 14.79(14.71,14.89) | 64.70(61.84,66.54)  N/A | 69.44(65.21,72.36)  N/A
dep, out 2.67(1.31,9.10) | 2.75(1.38,10.28) | 0.87,(=) | 2.82(1.41,8.28)  0.96, ()
21 darr, out 0.0(—) 0.0(-) 0.29,(—) 0.0(—) 0.29, (—)
de arr dout 936.0(—) 1000.4(—) 1033.5(—)
trotal 15.07(14.92, 15.44) | 30.27(27.46,31.76) ~ N/A | 27.82(27.43,31.09)  N/A
20 ddep, out 2.34(1.14,2.72) 2.17(1.14,2.72) 1073, (=) | 2.19(1.14,2.72) | 0.88,(~)
arr, out 0.0(0.0,0.024) 0.0(0.0,0.024)  1.0,(=) | 0.0(0.0,0.024) = 1.0,()
5 dep. ane out | 264.8(263.4,264.8) | 264.8(263.4,264.8) 0.91,(~) | 264.8(263.4,264.8) 0.98,(~)

Run Time Performance

It is noted that significant differences in run time performance between both coupled algorithms and
the decoupled algorithm exist. While the decoupled algorithm performs the entire simulation in 10 to
15 minutes for all scenarios, both coupled algorithms require 30 to 70 minutes to find a solution. The
increase in run time for the CPL-MIN and CPL-DIF can be explained by the increase in the number
of nodes that is explored when comparing both approaches. Whereas a single search tree is expanded
in the decoupled approach, multiple search trees are explored in the coupled approach (for more details
on the exploration of a search forest, refer to subsection 4.1). In Appendix C, a comparison is shown
between both approaches for the number of nodes explored.

Total Delay per Flight: Individual Aircraft Level

With respect to the distribution of the total delay per departing/arriving flight, no statistical differences
can be found for CPL-MIN and CPL-DIF compared to DCPL for all fleet sizes. Thus, on the level of
individual aircraft, the integration of allocation and path planning in both coupled algorithms does not
seem to be of benefit when aiming to minimize delay with respect to MET operations.

Sum of Total Delay per Flight: Global Level

Two interesting observations can be made when evaluating the sum of the total delay per flight for all
aircraft scheduled in the outbound peak. First, the performance of both coupled algorithms is compared
to each other. Based on the results in Table 5 it is concluded that independent of the number of tugs
available, CPL-MIN provides a solution for which the sum of total delay is lower or equal to CPL-DIF.
This leads us to believe that the CPL-MIN algorithm is more suitable for the current application than
CPL-DIF. As explained in subsection 4.2.4, the selection of the allocation to explore in the path finding
domain differs for CPL-MIN and CPL-DIF. Similarly to DCPL, CPL-MIN picks the allocation in the
solution pool with minimum cost. For CPL-DIF, the selection of the allocation to explore in the path
planning domain is not solely based on the cost of this allocation, but also on its cosine degree of similarity
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with respect to previously explored allocations. It was expected that this would decrease the chances of
the algorithm from getting trapped in a local minimum and to increase the chances of reaching a global
minimum. However, the results in Table 5 show that this is not true. It turns out that the inclusion of
the cosine degree of similarity in the cost calculations forces the algorithm to explore another allocation
that is in fact located further away from the global minimum than the allocation with minimum cost.
The results in Table 5 show that in terms of total delay on a global level, it is not desired to include
the cosine degree of similarity in the cost calculation of the allocation in the solution pool. In other
words, it is expected that the allocations in the solution pool are already close to the global minimum
and therefore, no need exists to force the search area to be further expanded.

Second, we compare the best performing coupled algorithm (CPL-MIN) with the decoupled algorithm
(DCPL) in terms of total delay per flight on a system level. For a fleet size of 10 tugs, we can see that
CPL-MIN provides a solution where the summed delay for all flights with respect to MET operations is
less than for the solution found by the decoupled algorithm. This is in line with our hypothesis item Ga 1.
Similarly, the results for a scenario with 30 tugs available show that CPL-MIN produces a solution that
is at least equal to the solution provided by the decoupled algorithm, supporting hypothesis item Gal
as well. However, in a scenario with 21 tugs available, CPL-MIN produces a solution that shows an
increase in the sum of total delay per flight when compared with DCPL. Since this case is not in line
with hypothesis item G a1, we study the reason for this behaviour more in detail in the next subsection
7.1.2, by evaluating the difference in Edep) arr dout between DCPL and CPL-MIN for multiple levels of
tugs available.

7.1.2 Sensitivity Analysis: Total Delay per Flight and Tug Fleet Size

In Figure 7, the sum of the total delay per flight for all aircraft scheduled in the outbound peak is shown
as a function of tug fleet size. Next to the fleet sizes already evaluated in the previous subsection, the
algorithmic performance of the decoupled algorithm (DCPL) and best-performing coupled algorithm
(CPL-MIN) is analyzed for an increased variety of number of tugs available. The results for DCPL and
CPL-MIN are shown in blue and orange respectively.

Sum of Total Delay for All Flights
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Figure 7: Comparison of the sum of total delay per flight for all aircraft scheduled in the outbound peak
between DCPL and CPL-MIN for different tug fleet sizes.

Two interesting phenomena can be observed in Figure 7. First, it can be noted that for higher number of
tugs available, the differences between DCPL and CPL-MIN for > dep, arr dous become smaller. If having
25 tugs or more available, no benefits can be expected in terms of ground delay minimization when using
a coupled algorithm compared to a decoupled algorithm. It is in line with our expectations that when
having limited resources, specifically the allocation is of higher influence on the total delay arising in
the system. As a result, differences between a decoupled and coupled algorithm can be observed more
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frequently or become larger when having less tugs available.

Secondly, it can be seen that only for the scenario of 21 tugs, the coupled algorithm produces a worse
solution in terms of total delay compared with the decoupled algorithm. For all other scenarios, the
results in Figure 7 support hypothesis item Gal. A possible explanation for the increase in the sum
of total delay when comparing CPL-MIN with DCPL for 21 tugs available, is the unknown effect of an
allocation used in the current planning window on all future planning windows. For both the coupled
and decoupled algorithm, a solution is found for a planning window of 30 minutes. Within this planning
window, the objective is to reach a global minimum. However, the effect of the solution in the current
planning window on all future planning windows is not taken into account. Therefore, a better solution
for the current planning window found using CPL-MIN compared to DCPL does not guarantee that
a better solution for the entire simulation is found. However, the results in Figure 7 show that this
phenomena does not occur for the majority of the cases.

7.1.3 Conclusion on the Algorithm to Use for Operational Performance Analysis

Based on the comparison of the three algorithms, one algorithm is chosen to use for simulation and
evaluation of the operational performance of the airport system for different number of tugs available.
From the results analyzed in the previous sections, it is concluded that for all fleet sizes except 21 tugs,
the use of CPL-MIN results in the lowest sum of total delay per flight. However, the decrease in total
delay on a system level comes at the price of a significant increase in run time performance for CPL-
MIN compared with DCPL. Furthermore, no statistical differences could be found when comparing the
distribution of total delay per flight of both coupled algorithms with the decoupled algorithm.

In Table 6, the percentage decrease in the sum of total delay per flight as well as the percentage
increase in run times are shown for CPL-MIN and CPL-DIF compared to DCPL. In the scenario where
the biggest decrease in total delay per flight on a system level is observed (10 tugs when using CPL-MIN),
the decrease is merely 2.7%. Since run times more than quadruple, the authors deem the use of DCPL
for simulation and evaluation of the operational scenarios the most beneficial.

Table 6: Comparison of CPL-MIN/CPL-DIF with DCPL in terms of sum of total delay per flight and
total run time. All values are percentages with respect to the DCPL algorithm.

KPI . Tugs

(%] Algorithm 10 921 30
CPL-MIN | 27 6.9 0.0
A2 dep, arr dont CPL-DIF 22 104 0.0
CPL-MIN | 3015 337.5 100.9
CPL-DIF | 339.2 369.5 84.6

Attotal

7.2 Operational Performance Analysis

In this section, a number of operational scenarios is analyzed to evaluate the performance of the airport
system in terms of ground delay per flight upon implementation of tug-enabled taxiing operations. For
both the outbound and inbound peak, several types of ground delay are recorded for scenarios in which
the number of available tugs varies. In subsection 7.2.1, an overview is given of the global results for
ground delay. Next, an in-depth analysis on the relation between ground delay and assigned runway for
the outbound peak is discussed in subsection 7.2.2.

7.2.1 Overall Trend Analysis

In this section, the airport performance in terms of ground delay is discussed when implementing fully
outbound towing. For varying number of tugs available, three types of ground delay are recorded: total
delay, route delay and ramp delay. The total delay per flight is defined as the difference in arrival time of
an aircraft at its destination when comparing tug-enabled taxiing with conventional taxiing techniques.
The additional time required for an aircraft to reach its destination, referred to as taxi time increase
per flight or route delay, is determined by comparing the duration it takes for the aircraft to travel from
its starting location to its destination for both types of operations. Finally, ramp delay refers to the
duration by which an aircraft’s off-block time exceeds its planned off-block time (T'SAT) as a result of
a delayed arrival of a tug at the ramp. Additional KPIs such as tug waiting time and gate scheduling
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conflicts are reported on in Appendix C.

In a scenario where unlimited tugs are available, initial analysis showed that 42 tugs are needed in the
outbound peak to ensure zero ramp delay. In other words, if 42 tugs are available during the outbound
peak, no aircraft will be delayed in its off-block time with respect to the historic flight schedule due to
the unavailability of a towing tug. For the inbound peak, this number is determined to be 21 tugs. In
the remainder of this section, the total delay, route delay and ramp delay will be discussed when having
unlimited tugs available (42 and 21 tugs in the outbound and inbound peak respectively) and when
limiting the number of resources.

Total Delay per Flight

Table 7 shows the medians, first quartiles and third quartiles for a set of KPIs related to the total
delay per flight. Separate distributions are presented for the outbound and inbound peak, as well as
for departing and arriving flights. All distributions are shown to be not normally distributed using the
Shapiro-Wilk test [38]. Therefore, the statistical significance of the distributions for delay is determined
using the Wilcoxon Signed-Rank test [36]. If a statistical difference between tug-enabled taxiing and
MET operations is found, the effect size of the difference is determined using the Vargha-Delaney A-test
[37]. Similarly as for the results discussed in section 7.1, the effect size is indicated by the capital letters
N (negligible), S (small), M (medium) and L (large) and through color shading. Darker shades indicate
larger effect sizes, while lighter shades indicate smaller effect sizes. Results that do not show statistical
differences are indicated in light-blue.

Table 7: Comparison of the total delay per flight for various number of tugs available between tug-enabled
taxiing and MET operations. Significance level for outbound peak = 0.05/4 = 0.0125. Significance level
for inbound peak = 0.05/2 = 0.025. Statistical difference of the distribution is determined using the
Wilcoxon Signed-Rank test.

KPI 10 tugs 21 tugs
[min] median (Q1, Q3) p-value (A-test) | median (Q1, Q3)  p-value (A-test)
darr. out 0.0, (—) 0.80, (—) 0.0, (—) 0.056, (—)
dar, in 0.0, (—) 0.11, () 0.0, (—) 0.27, ()
Tdep, out 13.72, (2.82, 84.80) 2.67, (1.31,9.10) | < 0.001, (0:58,9)
ddep, in 15.45, (2.77,28.62) | < 0.001,(0.65,5) | 2.68,(2.59,2.90) < 0.001,(0.53, N)
3aep. out (ref: 42) | 12,01, (0.98,83.92) 0.0,(0.0,6.58) < 0.001, (0.56, N)
Sdgep. i (vef: 21) | 12.73,(0.0,25.74) - -
KPI 30 tugs 42 tugs
[min] median (Q1, Q3) p-value (A-test) | median (Q1, Q3) p-value (A-test)
darr, out 0.0, (0.0,0.02) 0.076, (—) 0.0, (0.0,0.03) 0.042, (—)
darr7 in - - - -
Qdep, out 9.34,(1.14,2.72) | < 0.001, (053, N) | 1.97,(1.06,2.72) | < 0.001, (0.52, V)
ddep, lIl - - - -
dddep, out (ref: 42) 0.0, (—) 0.52, (—) - -
6(2].(;161)7 in (ref: 21) - - - -

First, the total delay per flight for arriving aircraft is evaluated for both the outbound and inbound
peak, darr, out and darr, in respectively. Based on the results presented in Table 7, we can see that no
statistically significant differences are found between tug-enabled taxiing and MET operations for all
scenarios. Therefore, we conclude that that tug-enabled taxiing operations are not of significant influ-
ence on ground movement operations for inbound traffic.

With regards to the total delay for departures ddep, out/ddep, in, OUr analysis reveals that departing flights
experience positive total delay in reaching their goal location when compared with MET operations, re-
gardless of the type of peak or the number of tugs available. While this delay is statistically significant
across all scenarios, it is only relevant in size for 3 out of 6 scenarios in which fleet sizes are smallest.
Furthermore, although the median of the distribution for the total delay decreases with increasing num-
ber of tugs for all scenarios, the most significant decrease can be seen when increasing fleet size from
10 to 21 tugs in both peaks. This result indicates that the distribution for total delay per flight is not
linearly related to the fleet size.
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Sensitivity analysis related to fleet size confirms this statement, showing that differences in total
delay for the outbound peak ddgep, out are only relevant in size when comparing a fleet size of 42 tugs
with 10 tugs. For the other two scenarios in the outbound peak, the results do not show statistical
significant differences (42 tugs vs. 30 tugs) or the differences are negligible in effect size (42 tugs vs.
21 tugs). Therefore, hypothesis Go1 is rejected for the outbound peak, since the total delay per flight
for departing aircraft in tug-enabled taxiing scenarios does not increase significantly in all cases for a
decrease in available tugs.

When performing a similar analysis for the inbound peak, we can see that a decrease from 21 tugs
to 10 tugs does result in a statistically relevant increase in total delay per flight. This result suggests
that although less outbound flights are departing in an inbound peak, the total delay per flight is more
sensitive and dependent on the number of available tugs than for an outbound peak. This result can be
explained by the fact that only runway 36L is in use during the inbound peak, requiring longer taxi times
and tug return times than runway 36C. Therefore, the built-up of delay is more steep in the inbound
peak when limited tugs are available, compared to the outbound peak. To conclude, the results for the
inbound peak in Table 7 support hypothesis Go1.

Finally, a statistical comparison between the distribution of total delay per departing flight in the out-
bound and inbound peak is performed. Since we are comparing two unpaired groups, the Mann-Whitney
U-test is used to detect any statistical difference between the two distributions. The results of the sta-
tistical comparison are shown in Table 8.

It was expected to see higher total delays per departing flight in the outbound peak compared with the
inbound peak for a similar number of tugs available (hypothesis Go2). The reasoning for this is based
on the fact that more departing flights are scheduled during an outbound peak than an inbound peak.
Therefore, if having the same number of tugs available, delays are expected to stack up more quickly in
an outbound peak. However, the results in Table 8 show that no statistical difference between the total
delay per departing flight exists in the inbound and outbound peak when having 10 or 21 tugs available.
Therefore, it is expected that the stacking up of delays in the outbound peak is counteracted by the
longer taxi times and tug return times for runway 36L in the inbound peak. Since only runway 36L is in
use during the inbound peak, the average tug journey for every flight in the inbound peak is longer than
in the outbound peak. As a result, the number of tugs available has more influence on the total delay per
flight in the inbound peak than in the outbound peak. Thus, whereas the percentage of departing flights
that is delayed in the inbound peak is lower, the total delay per flight is higher compared to the outbound
peak for similar number of tugs available. It is expected that this phenomena is responsible for the lack of
any statistical differences in the total delay per flight for both peaks and the rejection of hypothesis Go2.

Table 8: Comparison of the total delay per departing flight in the outbound peak and inbound peak
for various number of tugs available. Significance level = 0.05/2 = 0.025. Statistical difference of the
distribution is determined using the Mann-Whitney U-test.

KPI 10 tugs 21 tugs
[min] median (Q1, Q3)  p-value (A-test) | median (Q1, Q3) p-value (A-test)
daep, out | 13.72,(2.82,84.80) 2.67,(1.31,9.10)
ddep, in | 15.45,(2.77,28.62) 0.41, (-) 2.68, (2.59,2.90) 0.93, (-)

Route Delay per Departing Flight

Next, we consider the taxi time increase per departing flight ttqep for both peaks. The results in Table 9
show that the median value for the increase in taxi time is higher in the inbound peak than in the
outbound peak for all scenarios. In the inbound peak, all flights depart from the more remotely located
runway 36L, whereas runway 36C (closer to the central parking area at Schiphol) is also used as departure
runway in the outbound peak. Since the maximum speed for a tug-aircraft combination is lower than
for single aircraft (approx. 45 km/h versus 60 km/h), increase in taxi time per flight is expected to be
higher in the peak where the average taxi distance is higher as well.

Furthermore, the median value for the increase in taxi time per flight shows very limited variation
for all scenarios within the same peak. This suggests that the taxi time increase is independent of
the number of tugs, but can solely be attributed to: 1) difference in maximum speed for tug-aircraft
combinations and single aircraft; and 2) the increase in decoupling times of the tug-aircraft combination
at a decoupling location (120 seconds) compared with conventional engine warm-up operations at the
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apron (100 seconds). For all scenarios with limited tugs available, the taxi time increase per departing
flight is compared with the taxi time increase per departing flight in a scenario with unlimited tugs
available. The distribution characteristics of the resulting parameter dttgep out/dttdep, in can be found
in Table 9. Statistical analysis showed that all distributions for dttgcp are symmetrical around zero and
thus, no differences exist between the taxi time increase per flight across all scenarios. Therefore, the
increase in taxi time per departing flight in both peaks is shown to be independent of tug fleet size. As a
consequence, the authors conclude that the increase in traffic density on the taxiway network for larger
tug fleet sizes is not of influence on the taxi time of departing aircraft.

Table 9: Comparison of the route delay per flight for various numbers of tugs available between tug-
enabled taxiing and MET operations. Significance level for outbound peak = 0.05/4 = 0.0125. Signif-
icance level for inbound peak = 0.05/2 = 0.025. Statistical difference of the distribution is determined
using the Wilcoxon Signed-Rank test.

KPI 10 tugs 21 tugs
[min] median (Q1, Q3)  p-value (A-test) | median (Q1, Q3)  p-value (A-test)
thdep, out 2.06, (1.03,2.77) 2.10, (0.93,2.79)
taep, in 2.68, (2.49, 2.98) 2.68, (2.59, 2.90) _
3ttaep, out (ref: 42) | 0.0, (—0.59,0.64) 0.60, (—) 0.0, (—0.22,0.18) 0.77, (=)
Sttaep, i (ref: 21) | 0.0,(—0.23,0.05) 0.36, (—) ; -
KPI 30 tugs 42 tugs
[min] median (Q1, Q3)  p-value (A-test) | median (Q1, Q3)  p-value (A-test)
ttdep, out 2.19,(1.14,2.72) [E000R0GSIM)N 1.97,(1.06,2.72) 0001 (068NN
ttdcp7 in - - - -
Ottdep, ous (ref: 42) 0.0,(—) 0.78,(—) - -
Ottdep, in (vef: 21) - - - -

Ramp Delay per Departing Flight

Lastly, we consider ramp delay. Ramp delay refers to the duration by which an aircraft’s off-block time
exceeds its planned off-block time (TSAT) as a result of a delayed arrival of a tug at the ramp. In
Table 10, it can be seen that significant ramp delay occurs in the outbound peak when having 10 and 21
tugs available. The increase in ramp delay for both peaks is largest for the scenario in which the least
amount of tugs is available, which is according to our expectations. Interestingly, no significant ramp
delay is found in the outbound peak for the scenario in which the fleet consists of 30 tugs. Thus, it can
be concluded that ramp delay is not linearly related to fleet size.

In addition, the median value of the distribution for ramp delay does not change for scenarios in
which 21, 30 and 42 tugs are available and remains equal to zero. The significant increase in the median
value for ramp delay when decreasing the fleet size from 21 tugs to 10 tugs suggests that a tipping point
exists in the relation between ramp delay and fleet size.

Table 10: Comparison of the ramp delay per flight for various numbers of tugs available between tug-
enabled taxiing and MET operations. Significance level for outbound peak = 0.05/4 = 0.0125. Signif-
icance level for inbound peak = 0.05/2 = 0.025. Statistical difference of the distribution is determined
using the Wilcoxon Signed-Rank test.

KPI 10 tugs 21 tugs
[min] median (Q1, Q3)  p-value (A-test) | median (Q1, Q3)  p-value (A-test)

draep, out | 13.20,(0.34,82.77) 0.0,(0.0,7.63) 00006 NN
drdep, in | 12.46,(0.0,25.95) 0.0, (—) 0.11,(—)

KPI 30 tugs 42 tugs

[min] median (Q1, Q3)  p-value (A-test) | median (Q1, Q3)  p-value (A-test)
Traop, out 0.0,(—) 0.028, () 0.0, (—) 0.32, (-)
drdep, in - - - -

All results on the total delay, route delay and ramp delay are summarized in Figure 8. For both peaks,
the variance of the total delay per departing flight increases for a decrease in tug fleet size. However,
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this increase in total delay per flight does not seem linearly related to the number of tugs available. The
reason for this is the significant increase in total delay per flight when decreasing the number of available
tugs from 21 to 10, whereas decreasing the fleet size from 42 to 30 tugs does not have significant effect
on the distribution of the total delay per flight.

In both the outbound and inbound peak, the distribution of route delay per departing flight does not
show significant changes when varying the number of tugs available. Furthermore, note that the increase
in total delay per flight for decreasing fleet sizes exhibits the same behaviour as the ramp delay per flight
does. This result is an indication that the ramp delay is a dominant factor in the development of the
total delay per flight.

Break-Down of Delay per Departing Flight
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Figure 8: Break-down of delay for departing flights in both the outbound and inbound peak for various
numbers of tugs available.

7.2.2 In-Depth Analysis: Delay per Departing Flight per Runway

In order to provide more insights on the effect of runway assignment on the ground delay for tug-enabled
taxiing operations, the following section provides details on ground delay per departing flight in the
outbound peak, split per runway. Similarly as to the previous subsection, the total delay, route delay
and ramp delay per departing flight will be discussed.

Table 11: Comparison of the total delay per departing flight per runway for various number of tugs avail-
able between tug-enabled taxiing and MET operations. Significance level = 0.05/4 = 0.0125. Statistical
difference of the distribution is determined using the Wilcoxon Signed-Rank test.

21 tugs

KPI 10 tugs
[min] median (Q1, Q3)
dseL, out 86.92, (34.442,127.96)
dssc, out 3.64, (1.39,8.78)

5d36L, out (ref: 42)

84.11, (30.12,124.88)

p-value (A-test)

< 0.001, (0.58, 5)

median (Q1, Q3)  p-value (A-test)
6.75,(2.77,27.46)
1.35, (0.84, 2.44)

< 0.001, (0.53, N)

473(0.0,24.89) | '<0.001, (0:65,9)

8ds60. ous (ref: 42) 2.92, (0.0,7.64) < 0.00L, (0.57,N) | 0.0(0.0,1.38) < 0.00L, (0.52, )
KPI 30 tugs 42 tugs

[min] median (Q1, Q3) p-value (A-test) | median (Q1, Q3)  p-value (A-test)

AL, out 2.72(2.53,3.07) < 0.001, (0.55,N) | 2.72(2.59,2.93) | < 0.001, (0.54, V)

360, out 1.21(0.90,1.63) < 0.001,(0.52,N) | 1.14(0.80,1.51) = < 0.001,(0.52, N)

6d36L, out (ref: 42)
ddsec, out (vef: 42)

0.0, (0.0, 0.04)
0.0(-)

0.65, () 5 5
0.63,(—) - -
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Total Delay per Departing Flight per Runway

In Table 11, results are presented on the total delay per departing flight in the outbound peak, split
per runway. The first thing that is noticed is that a large difference in the total delay per flight can be
identified between the two runways, especially for smaller fleet sizes. In a scenario where 10 tugs are
available, we observe relatively small delays of approximately 3.5 minutes for flights departing from 36C,
whereas at least half of the flights departing from 36L are delayed by almost 87 minutes. Whenever
the fleet size consists of 30 tugs or more, the differences in total delay for both runways with respect to
MET operations can be considered negligible. However, comparison of the total delay per flight for both
runways shows that independent of fleet size, the total delays per flight are higher for aircraft departing
from 36L than for aircraft assigned to 36C. We will now look into the cause for these differences between
total delay per departing flight per runway.

Route Delay per Departing Flight per Runway

When examining Figure 9 for the scenario with unlimited tugs available (42), we can observe a slight
difference in taxi time increase per flight for runway 36L compared to 36C. This can be explained by the
increase in travelling distance towards 36L. Since the maximum speed of tugs is slightly lower than that
of aircraft using conventional engine taxiing techniques, an increase in travelling distance results in an
increase in travelling time as well with respect to MET operations. Thus, for scenarios with zero ramp
delay, the differences in total delay per flight per runway can be entirely attributed to the increase in
taxi time when comparing both departure runways.

Break-Down of Delay per Flight per Departure Runway
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Figure 9: Break-down of delay for departing flights in the outbound peak, split per runway assigned and
dependent on the number of tugs available.

Ramp Delay per Departing Flight per Runway

For scenarios in which limited tugs are available, it can be observed that large differences in ramp delay
per runway exist. The results from Table 11 and Figure 9 show that the differences in total delay per
flight between both runways increase for decreasing number of tugs available. For a scenario in which
10 tugs are available, a large statistical difference in total delay per flight ddser,, out can be observed for
runway 36L when compared with unlimited tugs available, whereas this difference is small for runway
36C (ddsec, out)-. Similar behaviour can be seen for a scenario with 21 tugs available. For a scenario
with 30 tugs, no differences in total delay per flight are detected when comparing against a fleet size of
42 tugs.

In subsection 7.2.1, it was concluded that ramp delay is the dominant factor in the total delay per
flight when considering scenarios in which limited tugs are available. The break-down of the delay per
flight per runway in Figure 9 supports this conclusion. An increase of the median value and spread of
the distribution of ramp delay per flight departing from 36L is reflected in an increase for median and
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spread of the total delay per flight as well. This result is an indication that the differences in total delay
per flight per runway are mainly caused by differences in ramp delay per runway.

A possible explanation for the large differences in ramp delay per runway concerns the implicit priority
given to flights departing from 36C in the allocation phase. Due to the smaller taxi times and tug return
times for runway 36C, the completion of tasks to be delivered at 36C takes less time than the tasks
to be delivered at 36L. Therefore, adding a flight into the schedule of the tug that is departing from
36C will have less effect in terms of delay compared to a flight scheduled at 36L on all other flights
that are already present in the schedule of a tug. Tug formulate bids for any outbound flight based on
the additional delays arising in their schedule due to towing the flight to its designated runway. Since
tasks are assigned in increasing order of costs, flights that have less effect on the delay in the schedule
of the tug will be assigned first. As a consequence, it could be that only after the majority of the flights
departing from 36C are assigned, the flights departing from 36L are allocated.

In Table 12, characteristics of the distribution are shown that represent in what round a flight
departing from 36L or 36C is allocated in the TeSSI auction process, when having 10 tugs available
(iauction). The median value of this KPI for flights departing from 36L is indeed higher than that of
flights departing from 36C, meaning that in general, aircraft scheduled to depart from 36C are assigned
earlier in the TeSSI auction process. In addition, the distribution representing the index of a flight
departing from 36L or 36C in the schedule of the tug (ischedule tug) is provided for both runways in
Table 12. When analyzing this distribution, it can be observed that aircraft departing from 36L are in
general placed at a higher index in the schedule of the tug than aircraft departing from 36C. In other
words, aircraft departing form 36L are in general placed more towards the end in the schedule of the
tug. These results confirm the statement that an implicit priority is given to aircraft departing from 36C
in the allocation process, resulting in large differences in the ramp and total delay per flight between
runway 36L and 36C.

Table 12: Comparison of auction characteristics for flights departing from 36L and 36C. Statistical
significance = 0.05/1 = 0.05. Statistical difference of the distribution is determined using the Mann-
Whitney U-test.

10 tugs
[Ifnif] 36L 36C comparison
median (Q1, Q3) | median (Q1, Q3) | p-value, (A-test)
Tauction 17(7,31) 15(7,21) < 0.001, (0.58, S)
ischedule tug 7(57 8) 2(17 4) ;

8 Discussion

In the previous section, results are presented for the set of scenarios analyzed to evaluate algorithmic and
operational performance. The interpretation and broader implications of these results will be discussed
in subsection 8.1, as well as the contributions to the academic field and recommendations for future
work. In subsection 8.2, reflections on the assumptions and methodology will be provided.

8.1 Discussion on the Results

In this work, we have evaluated the performance of a novel algorithmic framework in the context of airport
ground surface movement operations. First, focus will be put on the performance of the framework from
an algorithmic point of view (subsection 8.1.1). Afterwards, the performance of the framework in terms
of operational output is evaluated in subsection 8.1.2, focusing on how tug-enabled taxiing operations
compare to MET operations in terms of ground delay for varying fleet sizes.

8.1.1 Discussion on Algorithmic Results

The outcome of this study shows that the PBS-TA framework is capable of solving the MAPD problem
for aircraft engine-off towing operations at a major hub airport, using either a coupled or decoupled
MAPD solving technique. Both approaches have shown to provide for a conflict-free solution for various
number of outbound flights and various number of tugs. In terms of total solution cost, the results point
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out that CPL-MIN provides for equal or lower total solution cost when compared with the DCPL algo-
rithm in the scenarios analyzed. The maximum decrease in total solution cost was found to be 2.7% and
becomes less for increasing the number of agents in the system. However, due to the significant increase
of run times (for smaller fleet sizes, approximately 300% increase), the use of a coupled approach for this
specific application is not preferred over the use of a decoupled approach.

From the results of this study, a proposal is drafted for scenarios in which the application of cou-
pled approaches can be of added value. In general, it is expected that the use of a coupled approach
is especially valuable in real-world problems for which the routing of agents is highly dependent on the
allocation of tasks to agents. In the context of fully outbound towing, this is only the case to a limited
extent. Both the pickup (gate area) and delivery locations (one or two departing runways) for all tasks
are located relatively closely together. In other words, independent of the aircraft assigned, all tugs will
have similar high-level routes from the pickup location to the delivery location. In combination with the
fact that only limited taxiways exist that connect the pickup and delivery locations, conflicts arising on
these routes are expected to be influenced only very limited by the exact allocation and more by factors
such as runway throughput and capacity of all decoupling locations. Thus, exploring different allocations
when using a coupled approach in this context is seen to have only limited effect on the total solution
cost. Applications with sparsely located pickup and delivery locations are expected to be more suitable
for the application of integrated approaches that solve task allocation and path planning simultaneously.
Future research will have to further investigate this.

Moreover, the solution quality of the simulation is expected to increase if consequences of the current
allocation on the future dynamics of the system are accounted for. If estimates of the effects of an assign-
ment choice in future planning windows can be taken into account, we move one step closer to finding
an allocation that is more likely to be near the global minimum. The inherently uncertain dynamics
of airport ground surface movement operations add an extra complexity layer to this aspect. Future
research should point out whether efficient allocation of tasks to agents can be done while accounting
for propagating effects of current assignment choices.

8.1.2 Discussion on Operational Results

With regards to the operational performance of an airport upon implementation of tug-enabled taxiing
operations, three general conclusions can be drawn. First, the results of this work show that the difference
in delay for departing flights between tug-enabled taxiing and MET operations when having unlimited
tugs available is caused by an increase in taxi time. The increase is caused by a lower maximum taxiing
velocity of tug-aircraft combinations compared with aircraft and longer decoupling procedures compared
with conventional decoupling of the pushback truck. It is shown that the taxi time for outbound flights is
not affected by the size of the towing fleet. This result implies that it would be beneficial if the maximum
velocity of the tug increases and/or decoupling times decrease. Future research should point out whether
it is technically feasible to increase the speed for tug-aircraft combinations up to conventional taxiing
speeds. For airports that consider implementation of towing operations, it is of importance to devote
time and resources into training of personnel to ensure efficient decoupling operations.

Second, when having limited tugs available, ramp delay is a dominant factor in the total delay per
departing flight. For decreasing number of tugs, the median value for both the ramp and total delay per
flight do not change significantly, until a tipping point is reached. For both the inbound and outbound
peak, this tipping point is in between 10 and 21 tugs available. Note that in this study, fully outbound
towing is considered, meaning that all departing flights should be towed towards the runway. In order
to limit ground delays and make more efficient use of tugs, it is suggested to devote attention in future
research on the determination of a strategy on how to decide which aircraft will be towed and which
aircraft will use conventional taxiing techniques, if having limited tugs available.

Third, analysis of the delay per runway when having limited tugs available showed that the delay per
flight for aircraft departing from runway 36L increases significantly with respect to the delay for aircraft
assigned to depart from 36C. However, from an environmental perspective, runway 36L is identified as
the most promising runway for tug-enabled taxiing due to its remote location and as a result, longer
engine-on times. The implicit priority given by TeSSI to flights departing from 36C is expected to be the
reason for the significant increase in delay between 36L and 36C for decreasing number of tugs available.
Therefore, a major improvement of the current PBS-TA framework concerns the performance of TeSSI
when having to deal with a set of tasks in which two subsets of tasks exist, that exhibit large differences
in cost per group. Especially for scenarios in which limited tugs are available, we can see “greedy”
behaviour of TeSSI by first assigning all tasks with lower costs (flights departing from 36C). Since the
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degrees of freedom decrease with every new auction round, suboptimal allocations are generated if tasks
with higher costs are assigned at the end of each auction. This behaviour points out that TeSSI is not
capable of taking all synergies between tasks in the system into account. For future work on similar
problems, the authors suggest to investigate the tuning of TeSSI or the application of other allocation
algorithms to improve this behaviour. As a consequence, a contribution could be provided on how to
allocate flights to tugs such that aircraft departing from a runway that provides for the largest fuel
savings are not delayed more than aircraft departing from other runways.

8.2 Reflection on Assumptions and Methodology

The proposed PBS-TA framework and algorithms have proved their capability to provide insights on the
applicability of integrating allocation with path planning in the field of airport ground surface move-
ments. In addition, this work has provided practical insights in the application of tug-enabled taxiing
operations compared against conventional taxiing techniques. However, a number of practical limitations
related to the assumptions or implementation of the methodology can also be identified. First, the role
of Air Traffic Control (ATC) in the implementation of tug-enabled taxiing operations is left out of scope
in this study. However, if tugs will be crossing taxiways while driving in solo mode, clearance is required
in current operations. Future research should point out how the implementation of tug-enabled taxiing
operations affects current ATC procedures and workload.

Furthermore, this study has looked into the operational consequences of tug-enabled taxiing oper-
ations for RMO North. It is suggested to explore other runway configurations in future research, and
evaluate on the major operational differences for different runway configurations.

Finally, all information available to the agents in the system as well as the operations themselves
are considered to be deterministic in this research. However, real-life airport ground surface movement
operations are inherently dynamic and uncertain in nature. In this study, a fixed buffer time is included
for the allocation of tasks. It would be of interest to evaluate in detail how buffer times can be used
during planning in future research. In addition, uncertainty in the execution of the solution is considered
to be out of the scope for this study. If a feedback loop is included in the model that allows for optimizing
the allocation of flights to tugs based on real-time status information, the practical applicability of the
model and framework would increase significantly.

9 Conclusion

In this study, a novel algorithmic framework is proposed that allows for comparison of conventional
taxiing techniques with tug-enabled taxiing operations, while integrating multi-agent task allocation and
path planning. The framework combines the Temporal Sequential Single-Ttem (TeSSI) auction algorithm
with Priority-Based Search (PBS) and Safe Interval Path Planning (SIPP) to generate a search forest in
which the consequences of an allocation in the path planning domain are explored. A simplified network
representation of Amsterdam Schiphol Airport (AMS) is implemented, that is used as a case study for the
evaluation of both the algorithmic and operational performance of the framework. For varying number
of available tugs in an outbound and inbound peak, various types of delay per flight are used to evaluate
algorithmic and operational performance of the proposed framework and airport system respectively.

Analysis showed that an integrated approach for allocation and path planning did result in a decrease
of the sum of the total delay per flight for all aircraft when compared to an approach where allocation
and path planning are performed separately. However, since this decrease was very minimal (maximum
of 2.7% decrease) and due to a significant increase in required run times (between 100-300% increase), the
added value of the coupled approach is considered to be minimal for aircraft engine-off towing operations.
In general, the authors recommend to make use of a coupled approach in applications where pickup and
delivery locations of tasks are not clustered, but sparsely located.

Upon evaluation of tug-enabled taxiing compared to MET operations, results show zero delay for all
inbound flights. A total delay per departing flight ranging between 2 and 3 minutes (depending on the
peak) is found in a scenario with unlimited tugs available, mainly caused by a lower maximum velocity
of tug-aircraft combinations compared with aircraft and longer process times for decoupling procedures.
When decreasing the number of available tugs, ramp delay becomes an increasingly dominant factor in
the total delay per flight. Analysis shows that the median value of the ramp delay is not linearly related
to the fleet size. Furthermore, the total delay per flight for runways that are located further away from
the apron area is found to be more sensitive to the number of available tugs. With regards to providing
practical insights to airports that consider implementation of tug-enabled taxiing operations, the authors
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recommend to investigate how to determine which departing flights should be towed towards the runway
and for which departing flights it is best to use conventional taxiing techniques, taking into account the
interests of all stakeholders involved (airport, airlines, passengers and ground handlers).
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Introduction

The aviation sector is dealing with a number of conflicting challenges. On one hand, the expected
growth rate for air transportation cannot be accommodated by the current infrastructure, that is already
reaching its limits [1]. Especially airport congestion and ATC workload are identified as two major bot-
tlenecks. The addition of infrastructure at airports to reduce congestion is often not only infeasible due
to limited space available, but also adds to the complexity of operations resulting in increasing human
workload. Therefore, a need arises to increase the efficiency of current ground surface operations. On
the other hand, the urge for the airspace industry to become greener becomes more and more pressing.
The current global aviation sector is responsible for almost 3 % of global greenhouse gas emissions,
which is expected to increase further with increasing demand for air transportation [2]. From an airport
point of view, almost 30 % of its emissions can be attributed to aircraft ground surface movements [3].
One of Europe’s biggest hub airports, Amsterdam Airport Schiphol (AAS), has announced its ambition
to provide for emission-free operations by 2030 [4].

In order to tackle the challenges of increasing demand for air transportation combined with the urge
for the aviation sector to become more sustainable, a number of research projects have been launched,
including the Advanced Engine Off Navigation (AEON) project. This research focuses on the imple-
mentation of more environmental-friendly concepts of taxiing. One of the promising concepts identified
by the AEON project is the use of external towing tugs, such as the TaxiBot [5], that has shown to pro-
vide for almost 50% of fuel savings [6]. However, the expected downsides of TaxiBots are increased
process times and increased traffic density, possibly leading to additional delays [7].

In order to study the effects of implementing TaxiBots at large airports in more detail, previous
studies have been conducted on overall system performance using a multi-agent simulation model.
Although this model has shown to provide for safe, realistic and efficient routing of aircraft and TaxiBots
over the airport ground surface [8, 9], it has not considered the allocation of TaxiBots to aircraft. This
MSc thesis will continue on the previous research by explicitly focusing on how to perform assignment
of aircraft to TaxiBots in a manner that allows to adjust for real-time events.

Thus, the aim of this thesis is to elaborate the existing multi-agent model with a task allocation part, that
allows for more realistic operations. In addition, focus will be put on how to integrate task allocation
with path finding. From an academic point of view, especially the latter is of interest: to the best of our
knowledge, no research before has implemented an integrated algorithm that combines task alloca-
tion and path finding in a real-world airport application before. The results of this study will therefore
provide insights on how task allocation algorithms can be implemented in real-life pickup and delivery
problems. From a practical point of view, it is of interest to see how the airport system is affected by
the implementation of TaxiBots, especially in terms of throughput, delays and emissions. Amsterdam
Airport Schiphol (AAS) will be used as a case study to generate results on the latter three items. Both
goals are summarized into the following research objective: “To design and evaluate an approach for
combining task allocation with path finding for a cooperative fleet of TaxiBots to perform fully outbound
towing at AAS, using a hierarchical multi-agent control architecture.”

In this literature study, the basis will be formed to tackle the aforementioned research objective.
First, conventional ground surface operations will be investigated on in chapter 2. Special attention will
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be paid on how ground surface operations at AAS take place, since this airport will be used as our case
study. In chapter 3, developments in the field of ground surface operations will be discussed, with a
focus on various aircraft engine-off taxiing techniques. This chapter will be concluded with the definition
of the research gap to be fulfilled in this study. Next, based on previous work, a concept of operations
regarding the implementation of TaxiBots at AAS will be defined and elaborated on in chapter 4. Based
on the concept of operations, a set of system requirements is developed, and a suitable modelling
technique is defined. In chapter 5, chapter 6 and chapter 7, the subject of task allocation, path finding
and the combination of the two will be discussed respectively. Based on a literature review and trade-
off as provided in these three chapters, a combination of algorithms is chosen to implement in the
remainder of the thesis. A formal research proposal is then defined in chapter 8, including research
questions, methodology and time plan.



Conventional Airport Surface Movement
Operations

In order to understand the context and relations of the problem under consideration in this study, it is
of importance to gain a basic understanding of the airport ground movement problem. In essence, this
problem deals with scheduling and routing aircraft from the gate to the runway (and vice versa) in a
safe and efficient manner [10]. In this chapter, an overview will be given of ground surface operations in
general (section 2.1). First, the key components of ground surface operations from the aircraft point of
view will be discussed, followed by an elaboration on the Airport Collaborative Decision Management
(A-CDM) system used to monitor ground surface operations from an airport and control point of view. A
zoome-in on taxi operations specifically will be provided, including a description on involved stakeholders
and interaction between them.

In section 2.2, ground surface operations at Amsterdam Airport Schiphol (AAS) in particular will
be discussed, focusing primarily on the available infrastructure (runways, the taxiway network, service
roads and the apron area). Although airports share many similarities, AAS has been chosen as the
case study for this thesis due to several reasons: first, the airport is among one of the largest airports in
Europe, both in terms of layout and passenger flow [11]. Next to that, Schiphol has already performed
several trials and investigations into the subject of sustainable taxiing, providing for relevant practical
data (refer to chapter 4 for more details on these studies).

2.1. General Overview of Ground Surface Operations

This section deals with the context in which the airport ground movement problem should be placed.
The subsection 2.1.1 provides a general overview of the key components in the ground surface op-
erations viewed from an aircraft’s perspective. Next, the Airport Collaborative Decision Management
(A-CDM) system will be elaborated on in subsection 2.1.2, providing insights in how ground surface
operations are managed from an airport and control perspective. Specific attention will be paid to the
part of taxi operations within the A-CDM system. Finally, the stakeholders within the airport surface
movement operations and interactions between them will be discussed in subsection 2.1.4.

2.1.1. Process Flow in Ground Surface Operations

The operation flow of aircraft in airports is visualized in Figure 2.1 [12]. After having completed the
turnaround process for a departing flight, the aircraft waits for instructions by Air Traffic Control (ATC)
on the assigned runway and taxi route. When clearance is provided, the aircraft is pushed back and
starts moving from the apron area through the taxiway to the runway. When arrived at the runway
entrance, the aircraft waits for ATC clearance to take off.

When arriving, the aircraft follows ATC instructions on exiting the runway to the taxiway. The taxi
route and assigned gate are determined prior to the aircraft entering the taxi system. As soon as the
aircraft arrives at the gate, the turnaround process can start. A more detailed description on the taxi
operations is given in subsection 2.1.3.
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Figure 2.1: General overview of flow in ground surface operations. Taken from [12].

During the entire process of the aforementioned ground movements, different stakeholders are in-
volved. More details on stakeholders are provided in subsection 2.1.4. In order to ensure efficient use
of resources and cooperation of all parties involved based on accurate and high-quality information,
EUROCONTROL has introduced the concept of Airport Collaborative Decision Management (A-CDM).
The main goals are to "improve operational efficiency, predictability and punctuality to the ATM network
and airport stakeholders” [13, p. 1-1]. In subsection 2.1.2, a general overview of the key principles of
this approach will be given.

2.1.2. Airport Collaborative Decision Management (A-CDM)

The A-CDM system consists of six key elements [13]: Information Sharing, the Milestone Approach,
Variable Taxi Time, Collaborative Pre-Departure Sequence, CDM in Adverse Conditions and Collab-
orative Management of Flight Updates. A brief description of these elements will be elaborated on
below.

1. Information Sharing: in order to achieve common situational awareness among all relevant
stakeholders, the most basic requirement is the sharing of accurate and high-quality informa-
tion with all parties involved. This includes information from aircraft operators/ground handlers,
the airport itself, network operations, ATC and other service providers (think of meteorological
information).

2. The Milestone Approach: in different phases of the ground operation seen from the perspective
of an aircraft, a sequence of different events can be identified, corresponding with so-called mile-
stones. These milestones are used to track the progress of the turn-around process and provide
for an enhanced situational awareness for the parties involved.

3. Variable Taxi Time: instead of making use of a standard default value for the expected time
for aircraft to taxi, the A-CDM approach recommends using realistic individual taxi times. As a
result, ATC is able to optimize push back, taxi and take off sequence to reduce queuing and
taxiway congestion.

4. Pre-Departure Sequencing: a complementary method to reduce queuing at the runway, is to
determine a more optimal sequence of departing flights based on the progress in turn-around.
This is opposed to the frequently used principle of "first come, first served”, where the aircraft is
cleared by ATC based on the order of finishing the turn-around process. Instead, when ATC can
decide to for example postpone pushing back an aircraft in some cases, a more regulated traffic
flow with less waiting times at the runway may be the overall (improved) result.

5. Adverse Conditions: by taking into account the probability of adverse conditions that can be
foreseen with reasonable accuracy, the impact of situations of reduced capacity can be predicted
more easily. This would allow for managing these situations of reduced capacity more optimally
and returning to normal operating conditions more swiftly.

6. Collaborative Management of Flight Updates: in order to provide for more accurate estimates
of arriving flights to A-CDM airports and to improve departure slot management, the next key
element concerns sharing information (Flight Update Messages) between A-CDM airports and
EUROCONTROL Network Managers.
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2.1.3. Taxi Operations Viewed in the Light of A-CDM

In this section, an elaboration will be provided on how conventional ground and taxi operations are han-
dled described from the perspective of the A-CDM approach. First, the most important events related
to taxiing from the Milestone Approach will be elaborated on. Next, two key elements of the A-CDM
approach that aim for decreasing of delays through optimizing taxi operations are described: Variable
Taxi Time (VTT) and Pre-Departure Sequencing.

In the baseline model of this thesis, no unexpected events causing delay are considered. Although
the baseline model might be extended to deal with uncertainty depending on available time and re-
sources, no further elaboration on the key element related to Adverse Conditions will be provided in
this literature study. Similarly, since the focus of this thesis will be on AAS as an individual airport with-
out considering interaction between other airports, no further details are provided on the key element
related to Collaborative Management.

The Milestone Approach

Within the Milestone Approach, three different phases of the flight can be distinguished: inbound, turn-
around and outbound. Within these three phases, different milestones can be defined, as shown in
Figure 2.2. From the perspective of taxiing, the milestones from the Actual Landing Time (ALDT) to the
Actual Take Off Time (ATOT) are especially of interest (milestone 6 to 16). Below, a description will be
given of these milestones, based on [13], in order to gain a general understanding of the sequence of
events related to taxiing operations.
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(EXIT)
ATOT \.' HALDI
12z 3 4 5 & MTTT Minimum Turn ARDT
. Round Times will be
;mal /hl in the CDM platform * Boarding ASHT
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Take Off from outstation ABT 9 10 12 13 1§ asar
AGHT ATC issues TSAT
/ Taxi Qut
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of TOBT
-3hrs Flight Plan activation (FPL) 15 16

AOBT ATOT

Figure 2.2: Overview of Milestone Approach, including all milestones for different phases of the flight. Taken from [13].

* INBOUND

— Milestone 6 - Landed: as soon as the aircraft touches down on the runway, the Actual
Landing Time (ALDT) is determined and saved to the CDM system. The aircraft exits the
runway and an estimate for the Estimated Taxi-In Time (EXIT) is used to determine Estimated
In-Block Time (EIBT). Based on the ALDT, the Target Off-Block Time (TOBT) and Target Take
Off Time (TTOT) are updated accordingly.

— Milestone 7 - In-Block: once the aircraft has arrived at its parking position (Actual In-Block
Time (AIBT)), again the TOBT and TTOT are updated. In addition, the AIBT triggers the start
of milestone 8.

* TURN ROUND

— Milestone 8 - Ground Handling Started: as soon as the aircraft is parked (AIBT), the turn-
around process can start. Based on the Estimated Turn-Round Time (ETTT), the TOBT and
TTOT are updated.
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— Milestone 9 - Final Confirmation of TOBT: based on the operational situation, a final esti-
mation of the TOBT is provided by the Aircraft Operator (AO)/Ground Handler (GH) t minutes
before the Estimated Off-Block Time (EOBT) (where t is a parameter agreed upon for each
airport specifically). An accurate TOBT is of importance to ATC to be able to optimize the
pre-departure sequence.

— Milestone 10 - TSAT Issued: ATC issues the Target Start Up Approval Time (TSAT) to the
pilots once the flight is scheduled as part of the pre-departure sequence. This provides for
guidance for the ground crew to manage the turn-around process accordingly. Again, the
TTOT might be updated based on the issuing of the TSAT.

— Milestone 11 - Boarding Starts: this milestone corresponds with the moment that passen-
gers physically start boarding the aircraft.

— Milestone 12 - Aircraft Ready: the Actual Ready Time for Movement (ARDT) corresponds
with the moment that boarding is completed and the boarding bridge is removed, all doors
are closed, the push-back vehicle is connected (if push-back is required) and that the aircraft
is ready to move directly upon instructions from ATC.

— Milestone 13 - Start Up Requested: based on request of the pilot to ATC, clearance is
asked to start up the engines. This milestone correspondes with the Actual Start Up Request
Time (ASRT). Provided that the ARDT was on time, it is now the responsibility of ATC to
ensure that the flight meets its Calculated Take Off Time (CTOT).

— Milestone 14 - Start Up Approval: after the request to start-up, ATC approves start up,
corresponding with the Actual Start Up Approval Time (ASAT). After the approval, the aircraft
starts up, is pushed back and starts taxiing towards the designated runway.

+ OUTBOUND

— Milestone 15 - Off-Block: the moment that the aircraft actually starts push-back corre-
sponds with the Actual Off-Block Time (AOBT). Based on the AOBT, the ATOT is updated
considering the Estimated Taxi-Out Time (EXOT).

— Milestone 16 - Take Off: once the aircraft takes off, the ATOT is saved to the CDM system.

Table 2.1: Definition of metrics used in the milestones approach related to taxiing. Based on [13].

Metric Definition
Actual Taxi-In Time (AXIT) Actual In-Block Time (AIBT) - Actual Landing Time (ALDT)
Actual Taxi-Out Time (AXOT) Actual Take Off Time (ATOT) - Actual Off-Block Time (AOBT)

Estimated Taxi-In Time (EXIT) Estimated In-Block Time (EIBT) - Estimated Landing Time (ELDT)
Estimated Taxi-Out Time (EXOT) | Estimated Take Off Time (ETOT) - Estimated Off-Block Time (EOBT)

Several important times can be identified in the Milestone Approach related to taxiing of aircraft. These
metrics and their definitions according to [13] have been summarized in Table 2.1. Based on these
definitions, it becomes apparent that minimizing the difference between the actual taxi time and the
estimated taxi time (both for inbound and outbound flights) is of importance to limit delays as much as
possible.

Variable Taxi Time

In order to provide for taxi times as accurate as possible, the key element of Variable Taxi Time (VTT)
is incorporated in the A-CDM approach. This will not only enable ATC to optimize the pre-departure se-
quence and thus, reduce runway queuing, but also allows to improve CTOT compliance [13]. Especially
at medium to large airports where multiple runway configurations and lay-out of terminal buildings can
affect taxi time for arriving and departing flights significantly, it is recommended to adopt the approach
of VTT [13]. Instead of using default taxi times solely based on runway configuration (e.g. landing
runway X corresponds with t minutes taxi-in time), the following additional factors should be taken into
account [13]:
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» Operational Expertise: the parties involved in ground operations (e.g. ATC, AOs, GHs) have
great experience in the movement of aircraft, and therefore, can provide for valuable information
regarding the estimation of taxi times.

+ Aircraft Type/Category: since the type of aircraft can be of significant influence on the taxi time,
this factor should be involved in the estimation of the taxi time.

 Historical Data: based on statistical data on average taxi times for specific aircraft types, the
default taxi time can be improved. In this case, a differentiation should be made for different
runway configurations, stands (or groups of stands) and different periods of the year/day (e.g.
weekdays vs. weekends).

- Operational Conditions: default taxi times are independent of for example weather conditions.
When these operational conditions are taken into account, more reliable estimates can be pro-
vided. In addition, when queuing near the runway frequently occurs, it is necessary to add addi-
tional time to account for these delays.

» Advanced Monitoring Systems: with the use of more advanced tools, such as Advanced Sur-
face Movement Guidance and Control System (A-SMGCS) that include both a routing and surveil-
lance service, accurate taxi times can be provided and updated more dynamically [14].

Pre-Departure Sequencing

Another key element of the A-CDM approach to decrease queuing at the runway (next to VTT), is to
make use of pre-departure sequencing. One of the CDM airports that has implemented this technique
is AAS. In Figure 2.3, the process of Collaborative Pre-Departure Sequence Planning (CPDSP) that
is implemented at Schiphol is graphically depicted. If a flight is IFR, planned to leave on one of the
main runways and has a known TOBT, the earliest possible TTOT’ is determined taking into account
the situation-specific EXOT. The actual TTOT is then determined not on a ‘first come, first served’-
basis, but determined through an optimized take-off sequence. This sequences in its turn leads to an
optimized TSAT for each individual flight by subtracting the EXOT from the TTOT [15].
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Figure 2.3: Graphical representation of Collaborative Pre-Departure Sequence Planning (CPDSP) implemented at Schiphol
Airport (CDM airport) [15].

2.1.4. Communications and Interactions Related to Ground Surface Operations
In subsection 2.1.2 and subsection 2.1.3, it has become apparent that many different stakeholders are
involved in the operational process related to ground handling at airports. In order to provide clarity
on the interactions and responsibilities of these stakeholders, a visual representation of this system
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has been provided in Figure 2.4, based on previous work within the research group Air Transport &
Operations (ATO) at Delft University of Technology [16, 17, 18, 19].

First, a description will be given of the involved stakeholders, also called agents in the context of a
socio-technical system representation. After having specified the goals and responsibilities of all agent
types involved, their interactions will be described.

Ground Handler Other Aircraft

43>( Aircraft

: L
Y Y

Delivery Controlle 3 Qutbound Planner 9 Ground Controller 10 Runway Controlle

A

Air Traffic Control

Figure 2.4: Graphical representation of a CDM airport as socio-technical system. Based on work by [16, 17, 18, 19].

Agent Types

When representing the ground operations of an airport as a socio-technical system, several different
types of agents can be identified. Below, a description of the involved stakeholders in the context of
ground surface movement is given.

« Aircraft: the overall goal in the field of ground surface movements is to make sure that aircraft

are guided efficiently from their starting point to their destination in a safe manner. As a result,
aircraft are at the center of the socio-technical system representation. Aircraft have properties
like weight, wingspan, speed and acceleration limits etc. and are controlled by their flight crew.
The flight crew bears the responsibility of complying with ATC instructions and the Rules of Air
defined by ICAO [20].
In the context of ground surface movement, a distinction can be made between arriving and
departing aircraft. For arriving aircraft, their goal is to travel from the runway to the assigned gate
in an optimal manner (in terms of fuel consumption and/or travel time) and comply with the airline
schedule, for departing aircraft vice versa.

» Ground Handler: the process of ground handling is concerned with optimizing the turn-around
process, including e.g. cleaning, refueling, passenger boarding and more. Therefore, the agent
‘’Ground Handler’ does not refer to a single person/entity, but rather represents all persons in-
volved in the turn-around process (e.g. cleaners, tow truck operators, baggage handlers and
fueling services).

The ground handler is responsible for minimizing the Minimum Turn-round Time (MTTT). Based
on interaction with the aircraft/flight crew and its own insights, the ground handler provides for the
final update of TOBT (Milestone 9, see subsection 2.1.3).

- Delivery Controller: the delivery controller provides for clearance on the flight plan submitted

by departing aircraft. After checking the flight plan, the delivery controller communicates either
through radio or data link an assigned runway and Standard Instrument Departure (SID), which
is a route that the aircraft takes after take-off. After confirmation of the provided information by
the flight crew, the aircraft will be considered in the pre-departure sequence.
Any information regarding assignment of Calculated Take Off Time (CTOT) by EUROCONTROL’s
network operations is communicated by the delivery controller to the respective aircraft. In addi-
tion, it is checked by the delivery controller whether the clearance request by an aircraft which is
assigned a CTOT is actually within the assigned CTOT window.
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» Outbound Planner: once the aircraft is ready for movement (Milestone 12), the flight crew re-
quests the outbound planner for start-up approval (Milestone 13). It is the responsibility of the
outbound planner to regulate traffic flow by granting start-up clearances based on the congestion
levels of the airport (expected queues at runways or conflicts resulting from clearances provided
to adjacent aircraft). Using tools like Collaborative Pre-Departure Sequence Planning (CPDSP)
(subsection 2.1.3), a TSAT sequence is determined and start-up approval is provided to the spe-
cific aircraft.

* Ground Controller: the goal of the ground controller is to ensure safe and efficient operations of
all ground vehicles. This includes giving instructions related to push-back and taxiing to departing
and arriving aircraft, but also providing guidance to all other vehicles related to the turn-around
process (e.g. fueling services, luggage handling trucks). Avoidance of conflicts in the bay area
and on the taxiway network is one the main responsibilities of the ground controller. In addition,
the ground controller is responsible for adhering to the pre-departure sequence established by
tools such as CPDSP.

Note that all movements on runways (including crossing of active runways by aircraft or ground
vehicles) are overseen by the runway controller.

* Runway Controller: all operations on or close to active runways are controlled by the runway
controller. The goal of the runway controller is to ensure that these operations are executed
both in a safe and efficient manner. The responsibilities include providing clearance for departing
aircraft to take-off based on the pre-departure sequence, as well as providing clearance for ar-
riving aircraft to land on their assigned runways. Maintaining separation between departing and
arriving aircraft is also part of the runway controller’s responsibilities and is based on Wake Tur-
bulence Category (WTC). Furthermore, ground vehicles crossing active runways must request
for clearance of the runway controller to do so.

* Network Manager Operations Centre (NMOC): NMOC is part of EUROCONTROL and provides
for optimization of traffic flows in the European air traffic network [21]. This is done by processing
updates regarding TOBT and TTOT of all flights departing from CDM airports, and monitoring
traffic load with available airspace capacity.

Interactions Between Agents
Based on the links as shown in Figure 2.4, a description of the interactions between the different stake-
holders is given below.

1. Ground Handler — Outbound Planner: based on the progress in turn-around, the ground han-
dler provides a final update on the TOBT t minutes before the EOBT (where t is a parameter
agreed upon for each airport specifically) to the outbound planner.

2. Ground Handler < Aircraft: the ground handler and aircraft keep each other updated on the
progress in turn-around, both on processes outside the aircraft such as fueling (ground handler)
and processes inside the aircraft such as boarding (aircraft). Furthermore, the aircraft notifies the
ground handler of any issues related to TOBT or TSAT which they receive from ATC.

3. Delivery Controller < Aircraft: the flight crew requests departure clearance from the delivery
controller. After checking the flight plan, the delivery controller grants this clearance and informs
the flight crew of the assigned departure runway and SID. In its turn, the flight crew provides clear-
ance and instructions confirmations to the delivery controller. Furthermore, the delivery controller
instructs the flight crew to contact the outbound planner. All communications between the aircraft
and delivery controller take place through Very High Frequency (VHF) radio, the Aircraft Com-
munications and Reporting System (ACARS) or the Controller-Pilot Data Link Communications
(CPDLC) system.

4. Outbound Planner < Aircraft: the flight crew requests start-up clearance from the outbound
planner through radio communication once the aircraft is ready for departure. In case the start-up
request falls within the TSAT window, the outbound planner grants start-up approval or forwards
the aircraft to the ground controller in case push-back is required. Furthermore, the outbound
planner provides the flight crew with airport and weather related information and requests the
flight crew to contact the ground controller.
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5. Ground Controller < Aircraft: the flight crew contacts the ground controller to request for
push-back clearance through radio communication. The ground controller grants this clearance
if push-back of the aircraft under consideration will not interfere with push-back procedures of
neighboring aircraft. Once push-back is completed, the flight crew requests the ground controller
for taxi instructions. During taxiing, the ground controller can provide the flight crew with additional
instructions, e.g. to solve conflicts. Note that the flight crew is expected to confirm or read back
all instructions given by the ground controller.

Arriving aircraft that have exited the runway also fall within the responsibilities of the ground
controller. In some cases, the ground controller may request arriving aircraft to wait at a remote
holding position if the assigned gate is still occupied.

6. Runway Controller < Aircraft: the runway controller is responsible for providing clearances to
aircraft related to lining up on the runway, taking off, landing and crossing active runways. This is
both done through radio communication and by means of lights on taxiways (such as stop-bars
on taxiway crossings). The flight crew has to confirm all the instructions issued by the runway
controller.

7. Other Aircraft «— Aircraft: aircraft should maintain separation based on visual inspection and
instructions received from ATC. More elaboration on interaction between aircraft on the taxiway
network and the type of conflicts is provided in subsection 2.2.2 and section 4.2 respectively.

8. Delivery Controller < Outbound Planner: after clearance of the flight plan by the delivery
controller, the responsibility for the flight is handed over to the outbound planner by means of
transferring Electronic Flight Strips (EFS). If changes occur with respect to assigned runway or
departure route which require new clearance, the outbound planner might hand over the respon-
sibility over the flight back to the delivery controller.

9. Outbound Planner < Ground Controller: once start-up clearance is given by the outbound
planner, responsibility for the flight is handed over to the ground controller. Since EFS are used
for handing over the responsibility, the outbound planner can monitor the workload of the ground
controller and decide whether a new aircraft can be forwarded. If the aircraft is suddenly not able
to start with push-back, it might occur that the ground controller hands over the responsibility back
to the outbound planner.

10. Ground Controller < Runway Controller: when an aircraft approaches the runway holding
point or needs to cross an active runway, the responsibility of the flight is handed over from the
ground controller to the runway controller by means of transferring EFS. Similarly, when an arriv-
ing aircraft is leaving the runway or when an aircraft has crossed an active runway, responsibility
of the flight is handed over from the runway controller to the ground controller.

2.2. Ground Surface Operations at Amsterdam Airport Schiphol
(AAS)

Now that a general overview is provided on ground surface operations, more details will be described
on the ground surface operations at AAS, specifically on its infrastructure used for these operations.
The specific runways and runway configurations are elaborated on, as well as the taxiway and service
road network. Finally, the apron area is discussed.

2.2.1. Runways

At AAS, six runways are present that are used to facilitate all inbound and outbound flights (Figure 2.5).
Note that the Oostbaan is not used for commercial flights, but for general aviation only [9]. The runway
usage at AAS is subjected to a number of restrictions that can be found in the Annual Runway Usage
Forecast [22]. For example, the Polderbaan can only be used for departures in Northern direction
(36L) and arrivals from Southern direction (18R), due to the presence of Hoofddorp at the south of the
Polderbaan. Similarly, the Aalsmeerbaan can only be used for departures in Southern direction (18L)
and arrivals from Northern direction (36R).

In the same manual [22], preferred sequences of runways are defined, both for daytime and nighttime.
The preferred sequences are defined with respect to restrictions on noise and emissions and consist
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Polderbaan (runway 18R-36L)

Buitenveldertbaan (runway 09-27)

Oostbaan (runway 04-22)

Aalsmeerbaan (runway 18L-36R)

Figure 2.5: Configuration of runways at AAS, including their names and locations. Taken from [6].

of combinations of arrival and departure runways. A summary of all preferred sequences is given in
Table 2.2. Note that the actual runway usage will not always adhere to one of the preferred sequences,

due to for example weather conditions.

Table 2.2: Preferred sequences of runway usage during the day and depending on visibility conditions [22].

Preferred

Time Visibility Conditions Sequence Arrival Departure
1 06 (36R) 36L (36C)
Good, during daylight 2 18R (18C) 24 (18L)
period 3 06 (36R) 09 (36L)
Day (06:00h - 23:00h) 4 27 (18R) 24  (18L)
Good 5a 36R (36C) 36L (36C)
5b 18R (18C) 18L (18C)
: 6a 36R (36C) 36L (09)
Good or marginal 6b 18R (18C) 18L (24)
1 06 - 36L -
. . ) 2 18R - 24 -
Night (23:00h - 06:00h) - 3 36C - 36L -
4 18R - 18C -

2.2.2. Taxiway Network

The taxiway network at AAS is used to connect the gates with runways and is controlled by ATC. At
AAS, a central taxiway surrounds the piers, visualized in Figure 2.6. It consists of two unidirectional
taxiways, Alpha (clockwise direction) and Bravo (counterclockwise). Although more efficiency might be
achieved when allowing for bidirectional traffic on both taxiways, adhering to the prescribed directions
is enforced by ATC due to limited cognitive capacity of humans [9]. Furthermore, a final segment called
Quebec is a single taxiway used to connect the rear ends of both Alpha and Bravo. It can be used in
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both directions, but only allows for unidirectional traffic [9]. Currently, taxiway Quebec is being extended
to a bidirectional taxiway [23].
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Figure 2.6: Center taxiway network at AAS, where taxiway Alpha (clockwise) is shown in green, taxiway Bravo (counterclockwise)
in orange and Quebec in red. Taken from [9].

As stated previously, the taxiway network is under control of ATC by providing aircraft specific instruc-
tions on which routes to take. Next to the instructions of ATC, pilots need to adhere to a set of predefined
rules by ICAO (taken directly from [20]):

+ In case of danger of collision between two aircraft taxiing on the movement area of an aerodrome
the following shall apply:

— when two aircraft are approaching head on, or approximately so, each shall stop or where
practicable alter its course to the right so as to keep well clear.

— when two aircraft are on a converging course, the one which has the other on its right shall
give way.

— an aircraft which is being overtaken by another aircraft shall have the right-of-way and the
overtaking aircraft shall keep well clear of the other aircraft.

» An aircraft taxiing on the manoeuvring area shall stop and hold at all runway-holding positions
unless otherwise authorized by the aerodrome control tower.

+ An aircraft taxiing on the manoeuvring area shall stop and hold at all lighted stop bars and may
proceed further when the lights are switched off.

2.2.3. Service Road Network

Whereas aircraft make use of the taxiway network to move over the airport, other Ground Service
Equipment (GSE) vehicles might also have to move over the airport. Therefore, a specific service road
network is put in place as well. According to the Schipholregels [24], vehicles on the air side of the
airport have to adhere to the following set of rules:

* Vehicles are not allowed to enter aircraft taxiways, unless they use the predefined crossings.
» The maximum speed on service roads and platforms is 30 km/h.

* Vehicles on the service roads around the piers have right of way on vehicles from the platforms.
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* Vehicles on taxiways have right of way on vehicles crossing the taxiways.

* Vehicles in the landing area or on the platform have a predefined priority where vehicles lower in
the list should give right of way to vehicles higher in the list:

Aircraft that are taking off or landing.

Emergency vehicles with siren and lights on.

Taxiing aircraft or hovering helicopters including vehicles guiding them.

Passengers who are guided to or from an aircraft.

Towed aircraft.

AN O

All other vehicles.

Note that an aircraft being towed by a TaxiBot to the runway, is not classified as a "towed aircraft’, since
it is formally taxiing [6]. In order to avoid confusion on this, it was noted by Schiphol that a procedure
should be developed that clearly distinguishes TaxiBotting aircraft from towed aircraft [7].

2.2.4. Apron Area
The final infrastructural component of importance concern the aprons and gates. At AAS, 93 gates are
present, divided over 7 piers, as shown in Figure 2.7.
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Figure 2.7: Overview of the existing piers and gates at AAS. Taken from [9].

As already mentioned in subsection 2.1.1, arriving flights arrive at the gate, after which the turnaround
process starts. At AAS, a maximum turnaround time of 170 minutes is handled for most narrow bodies
(CAT 4 or lower), whereas most wide bodies are allowed a maximum turnaround time of 210 minutes
(CAT 5 of higher) [25].

After having turnaround completed, the pushback procedure is initialized. For most gates at AAS,
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aircraft are parked nose-in, meaning that the aircraft needs to reverse to leave the gate. Since this is not
possible, a pushback truck is needed to perform the pushback procedure. One exception is the B-pier,
where aircraft can leave the gate autonomously [26]. Both the pushback procedure and pushback path
are highly standardized procedures, which are described in detail in [27]. Once the aircraft crosses the
so-called red clearance line (represents the border between ATC controlled area and the aircraft stand,
refer to Figure 2.8), engine start-up is allowed. Note that clearance is always needed to cross the red
line [27]. Engine start-up can either happen during or after the pushback procedure, depending on the
required duration of both engine start-up (dependent on engine type) and the pushback procedure itself
(dependent on pushback path, where a maximum speed of 3 kts is maintained [6]).
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Figure 2.8: Overview of west-side of B-pier, indicating the red clearance line. Taken from [9].



Developments in Airport Surface
Movement Operations

A general overview of airport surface movement operations has been provided in the previous chap-
ter, with a special focus AAS. Although current ground surface operations are both safe and efficient,
challenges are always present, as in any field of study. The major challenges that are related to airport
surface movement operations are summarized in section 3.1. Based on these challenges, a number
of developments can be identified in the sector, which will be outlined in section 3.2. Special focus will
be put on the project of SESAR called Advanced Engine Off Navigation (AEON), focusing on aircraft
engine-off taxiing techniques. A promising alternative to conventional engine-on taxiing is the TaxiBot,
which is an external towing vehicle. The characteristics, expected effects of implementation of the Tax-
iBot at AAS and findings of previous research on TaxiBot implementation will be elaborated on. Finally,
the research gap that this thesis will try to fill is described in section 3.3.

3.1. Challenges within Ground Surface Operations

One of the biggest challenges within the airspace industry in general concerns the expected growth
rate of demand for air transportation. In 2019, figures showed an expected annual increase of approxi-
mately 4% in Revenue Passenger-Kilometer (RPK) [28]. Despite the fact that the COVID-19 pandemic
has caused for a serious fallback in the entire air travel industry, it is expected that passenger levels
return to 2019-levels in 2024 and keep increasing from there on [29].

The increase in demand for air transportation cannot be accommodated with the current infras-
tructure, which already is reaching its capacity limits [1]. Especially hub airports are expected to form
bottlenecks for the overall air traffic management system within Europe [10] due to a combination of
two reasons: airport congestion and limits on ATC-workload [1, 30, 31]. Regarding airport congestion,
the normal approach for increasing capacity would be to increase the physical infrastructure by con-
structing new terminals, runways and surface area for taxiing [31]. However, besides the fact that the
realization of large-scale infrastructure projects at airports is often limited by available space [1], it also
adds to the complexity of operations which increases human workload [30, 31]. As a result, the net
benefits of increasing physical infrastructure to reduce airport congestion are limited, which calls for
optimization of current airport ground operations using the existing space [10]. In addition, workload of
ATC is per definition limited since exceeding the mental capacity of an air traffic controller (by increasing
the amount or complexity of traffic) increases the risk of human error with the result of potential unsafe
operations [30].

Next to the expected growth rate of demand in air transportation, another major challenge in the air
transport industry concerns sustainability and the urge for aviation to become greener. Seen from
the perspective airport surface movement operations, a study into the carbon footprint of Heathrow
Airport has shown that approximately 30% of the carbon dioxide emissions can be attributed to aircraft
ground movements, including taxiing and the use of the Auxiliary Power Unit (APU) [3]. Looking from
the aircraft point of view, it is estimated that short haul fleets operating a single-aisle aircraft use up

49
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to 6% of the total fuel consumption during taxiing only [32]. Besides, in combination with the problem
of airport congestion, aircraft burn an unnecessary additional amount of fuel because of waiting times
in ground operations [33]. The latter suggests a large potential gain when increasing the efficiency of
ground surface operations, both from an operational as well as environmental point of view.

When it comes to tackling the challenges of increasing demand and reducing emissions in ground sur-
face operations, international initiatives such as the Single European Sky ATM Research (SESAR) in
Europe and Next Generation Air Transportation System (NextGen) in the United States aim to con-
tribute to this. Among their main goals is to increase overall efficiency of the air traffic management
system while reducing the environmental impact of flights on the environment [34, 35]. A promising
project related to these goals is called Advanced Engine Off Navigation (AEON) and is concerned with
the implementation of more environmental-friendly concepts of taxiing, such as TaxiBot, E-Taxi and
single engine taxiing [5]. A more elaborate description of this project is given in section 3.2.

Another research direction that SESAR focuses on is to investigate to what extent automation and
decision support systems can provide for reduction of ATC-workload [36]. The potential of this research
direction is endorsed by various entities, including Royal Schiphol Group, which has announced a pro-
gram called Autonomous Airside Operations. This program aims for making all vehicles and associated
processes fully autonomous by 2050 [37]. As will become apparent in section 3.2, introducing aircraft
engine-off taxi operations allows for moving towards more autonomous processes related to manage-
ment of airport surface movement operations. Despite the fact that moving towards autonomy will have
significant influence on current ATM systems and procedures, the implications of decentralization on
ATM and ATC is considered to be out of the scope for this thesis and will therefore not be elaborated
on in more detail in this literature study.

3.2. Developments in Aircraft Engine-Off Taxiing at Airports

In the remainder of this thesis, focus will be put on taxiing specifically as part of ground surface op-
erations at airports. As identified by [10], the airport ground movement problem is a research area of
past and current interest, since it is highly related to airport capacity and therefore, to the overall ca-
pacity of the entire air transportation system. In addition, previous research has shown large potential
in reducing the environmental impact of the taxiing phase by considering so-called engine-off taxiing
techniques, which reduce engine-on time of aircraft [30, 38, 39, 40].

As mentioned before, the Advanced Engine Off Navigation (AEON) project of SESAR in particu-
lar focuses on the implementation of these engine-off taxiing techniques which reduce environmental
impact. The AEON project considers three different methods to reduce engine-on time of aircraft:
Single-Engine Taxiing (SET) solutions, non-autonomous taxiing solutions and autonomous taxiing so-
lutions. Below, a short description of these technologies will be provided, based on [5]. In this context,
autonomous taxiing techniques refer to solutions that are installed on-board and allow for the aircraft
to taxi independently. Non-autonomous taxiing techniques are solutions that entail an external towing
device [41].

+ Single-Engine Taxiing (SET): this concept involves the use of half the number of installed air-
craft engines in order to generate propulsion when taxiing. Although the expected reduction in
fuel consumption is significant (approximately 25%), the solution is not suitable for all taxiways
and weather conditions, since using SET-techniques influences manoeuvrability and balance of
the aircraft. In addition, SET-techniques are more suitable for taxi-in procedures in comparison
with taxi-out procedures, due to a higher workload for the pilots related to engine cooldown when
warming up and lower predictability in taxi duration when departing (due to possible runway queu-

ing).

» Non-Autonomous Taxiing: as stated before, non-autonomous taxiing techniques involve the
use of an external towing vehicle. A promising concept is the TaxiBot, which is a pilot-controlled
pushback truck that is capable of performing taxi operations by towing the aircraft at regular taxi
speeds [42]. Fuel savings during taxiing are expected to be around 50-80% according to the
manufacturer. However, three major challenges are still to be tackled: from a technical point
of view (how to reduce decoupling time), from an infrastructural point of view (where to create
decoupling locations) and from an ATC-point of view (how to incorporate the extra traffic in the
ground controller’s workload).
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« Autonomous Taxiing: when considering autonomous taxiing techniques, this involves systems
that are internally embedded in the nose or main landing gear and provide for propulsion of the
aircraft without the use of the main engines. Examples of such systems are the E-Taxi system or
WheelTug. A reduction between 50-85% of fuel consumption is expected, although no live trials
have been performed on these internal systems.

From an environmental point of view, either autonomous or non-autonomous taxiing techniques have
the highest potential in reducing emissions. Therefore, focus will be put on a comparison between au-
tonomous (internal, or on-board systems) and non-autonomous (external systems) taxiing techniques.
Several studies have been performed in comparing these two techniques [43, 44]. Both studies con-
firm that the greatest reduction in greenhouse gasses is achieved when using on-board systems. In
addition, using on-board systems will simplify push-back procedures, since no external towing device
is needed.

However, on-board systems add significant weight to the aircraft, possibly reducing environmental
benefits for long-haul flights [41]. Next to that, maintenance costs are expected to be increased for
internal systems [45] and due to required changes in aircraft architecture, considerable efforts are ex-
pected in terms of certification and legislation [43, 46]. Especially the latter is considered to be decisive:
up until to this date, the TaxiBot concept is the only alternative taxiing technique that is fully certified and
considered in practice for engine-off taxiing [18, 42]. Previous related work [18, 47] has also identified
the TaxiBot as the alternative taxiing technique with the highest potential. Therefore, in the remainder
of this thesis, the concept of non-autonomous taxiing using TaxiBots will be considered.

3.2.1. Technical Characteristics of the TaxiBot Concept
The TaxiBot is an external towing truck for aircraft ground movements developed by Israeli Aerospace
Industries (lAl). The drive line of the tractor consists of two diesel engines that power two separate
electric generators. The generators supply 8 electric motors attached to the 4 wheels, capable of
providing for a maximum power of 500 kW with maximum achievable torque of 45 kNm [43]. Two
types of TaxiBots have been developed: a Narrow-Body (NB) and Wide-Body (WB) version. Technical
specifications of both types are provided in Table 3.1. In Figure 3.1, a front and side view are provided
on the NB TaxiBot.

As mentioned before, the NB TaxiBot is only certified for the B737 and A320 family. However, when
considering AAS, these aircraft types account for approximately 54% of the total number of flights [7].

Table 3.1: Technical specifications of NB and WB TaxiBots.

Technical Specifications NB TaxiBot WB TaxiBot
Single-aisle aircraft [48] Twin-aisle aircraft [49]
Designed for: - A318 to A321 - A330 to A380
- B737 to B757 - B767 to B747
Certified for: B737 and A320 n.a.
. Pilot mode 43 [42]
Maximum speed [km/h] Solo mode 30 [6]
Normal turning speed [km/h] 18.5 [6]
Purchasing costs [USD] 1.5 million 3 million

In Figure 3.2, the coupling of the TaxiBot to the nose landing gear of an aircraft is shown. The TaxiBot
slightly lifts the front wheel and locks it in position on a rotating turret platform [43]. Note that after
push-back out of the bay area, control is switched from the TaxiBot driver to the pilot [6]. This is an
important characteristic of the TaxiBot due to safety and accountability regulatories [43]. Controlling
the TaxiBot by the pilot is done through sensors installed at the platform that detect the steering angle
of the nose landing gear. In a similar fashion, braking is also accounted for [43].

3.2.2. TaxiBot Operations Compared with Conventional Taxi Operations
The introduction of TaxiBots on AAS will have significant impact on the current ground surface oper-
ations. First, an overview of the operational flow will be outlined for ground surface operations when
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Figure 3.1: Technical drawings of NB TaxiBot. Taken from [6].
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Figure 3.2: Visualization of the working principle of coupling an aircraft nose landing gear to a TaxiBot. Taken from [50].

deploying TaxiBots, including the main differences with respect to conventional ground surface opera-
tions.

When deploying TaxiBots at AAS, the ground surface operations for outbound towing will consist of

the following procedures for TaxiBots: pushback, TaxiBotting, decoupling and a TaxiBot return move-
ment [6]. Note that in this section, only outbound towing will be considered. For more details on the
reasoning behind this choice, refer to section 4.3.

1. Pushback: after loading the aircraft onto the TaxiBot, pushback from the gate stand will occur,

similar to conventional operations. In normal taxi operations, the pushback truck will be decoupled
from the aircraft after push back and the engines of the aircraft will be started, a process normally
taking about 100 seconds [6]. When using a TaxiBot, both decoupling and starting of the aircraft
engines will be postponed until reaching a decoupling location. After having pushback completed,
control of the TaxiBot driver will be handed over to the pilot (taking about 30 seconds [6]) and the
aircraft will start moving towards the runway and a corresponding decoupling location.

. TaxiBotting: TaxiBotting is defined as the movement of an aircraft on the ground by means of a

TaxiBot providing power, while being controlled by the pilot. The aircraft will move from the apron
area to a decoupling location corresponding with the assigned runway during TaxiBotting. During
TaxiBot trials performed at AAS in 2020, engine start was not performed in parallel with TaxiBotting
or uncoupling. However, since Schiphol announced the intention to develop a procedure for
starting of the engines during TaxiBotting, it is assumed in this study that engine warm-up is
finished at the moment that the TaxiBot driver gives the all-clear signal.

Normal taxiing aircraft have a top speed of 30 knots, whereas TaxiBots have a top speed of 22
knots. As a result, the process of taxiing itself takes slightly longer, especially on long straight
tracks (e.g., taxi segment towards runway 36l) [6].

. Decoupling: when arrived at the decoupling location, the decoupling process consists of the

following steps [6]:

+ Braking of aircraft by pilot at decoupling location
« Communication between pilot and TaxiBot driver to determine unloading moment of TaxiBot
* Unloading of TaxiBot
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« Stepping out of TaxiBot by driver to unplug communication cable
« Driving of TaxiBot to all-clear point and signalling all-clear signal to pilot

* Requesting of taxi clearance by pilot to ATC and starting to taxi the remainder of the route
to runway once clearance received

The decoupling process was measured by Schiphol to take 150 seconds during trials [6]. Ac-
cording to Smart Airport Systems (SAS) (product owner of the TaxiBot), decoupling durations
vary between 90 and 120 seconds [8].

4. TaxiBot Return Movement: after decoupling, the TaxiBot will have to move from the decoupling
location to its next mission, which is either a next outbound flight or its base location. Compared
with conventional operations, this is an extra step regarding taxiing that is currently not present.

Assumptions on TaxiBot Operations Compared with Conventional Taxi Operations

Based on the outline of TaxiBot operations, several assumptions are made on specific operational
characteristics of implementing TaxiBots at AAS. These assumptions only relate to operational char-
acteristics of an individual TaxiBot, whereas assumptions on the global concept of operations will be
defined in chapter 4.

1. Engine Start: itis assumed that a procedure for starting the engines during TaxiBotting/decoupling
is developed, resulting in fully warmed-up engines at the moment that the decoupling procedure is
finished. As a result, the aircraft can start moving immediately once the all-clear signal is provided
by the TaxiBot driver. Currently, performing engine start-up during taxiing is not allowed due to
safety reasons, since the pilot will have to monitor the engine warm-up process while taxiing [7].
However, as Schiphol has already declared that it is necessary to develop a procedure that will
allow engine start-up during TaxiBotting [6], this assumption is considered to be valid.

It is assumed that both engine warm-up and cool down time is 3 minutes. This is based on an
average of the Boeing 737-800 operator [7].

2. Coupling Time: coupling of the TaxiBot to the aircraft at the gate has to be considered. However,
no sources could be found that provide operational data on the duration of coupling at the gate. If
the duration of coupling remains unclear after consultation of operational experts, a similar time
for coupling as for decoupling will be incorporated in the model.

3. Decoupling Time: a decoupling time of 120 seconds is assumed in this thesis. The result is
based on different trials performed by SAS, which pointed out that 120 seconds was the worst
case scenario for the entire decoupling process [8]. Although trials performed by Schiphol re-
sulted in an average decoupling time of 150 seconds, it is assumed that with increased training
and experience this time can be brought down by at least 30 seconds, since trials where only
performed on seven outbound flights [6].

3.2.3. Expected Effects of Implementing TaxiBots at AAS

A number of previous studies has been conducted in order to quantify the effect of the expected benefits
and challenges of the deployment of TaxiBots at AAS. As mentioned earlier, Schiphol itself conducted
a number of trials to assess the operational implications of using TaxiBots for outbound towing [6]. The
results of these trials provide for practical data on the use of TaxiBots, but do not consider the effects of
implementing an external towing system on system performance level. Therefore, a simulation study
has been conducted by the aviation consultant To70 [51]. In this research, it has been investigated what
the potential savings in terms of delay and fuel consumption are when using fully outbound towing with
TaxiBots for the two most common Runway Mode of Operation (RMO) at the busiest day of 2019 with
1520 movements. Based on the results of the simulation study, a number of expected benefits and
challenges can be formulated.

Expected Benefits of Introduction of TaxiBots at AAS
The introduction of TaxiBots in the ground surface movement system is expected to create two major
benefits: reduced environmental impact of aircraft ground movements and increased capacity [51].
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* Reduced Environmental Impact: instead of towing the aircraft just outside the apron area, air-
craft are towed as close to the runway as possible while using TaxiBots. During the TaxiBotting,
the main aircraft engines are not needed for thrust, but power is provided by the TaxiBot itself.
Therefore, the time that the main engines are running is significantly reduces when using Tax-
iBots compared with conventional operations. However, due to the fact that the main engines
still need to be warmed up (or cooled down for inbound flights) and the APU needs to be running
during TaxiBotting, fuel savings will not reach 100% (see Figure 3.3, [7]).

Based on trials for 7 outbound flights at AAS, the observed fuel savings were observed to be
around 50% compared to conventional taxiing. However, usage of runway 24 was over-represented
in these trials, which is characterized by shorter taxi times. Using the actual runway mix is ex-
pected to increase gains [6]. Especially runway 36L seems to be very promising for sustainable
taxiing from a fuel reduction point of view, due to the combination of very long taxi times and its
preferred status for departing flights [6].

 Increased Capacity: due to the fact that aircraft can start moving faster after pushback, conges-
tion in the bay area is reduced and capacity in the apron area can be improved. Upon discussion
with operational experts, another advantage of TaxiBots related to capacity became apparent.
Since gate capacity is one of the limiting factors at Schiphol, performing outbound holding (out-
bound flights leaving their stand at ARDT instead of waiting at the gate until their departure slot
is available) could potentially increase capacity at the gate for inbound flights. In conventional
operations, this would result in additional fuel burn by aircraft operators, since engines will be
running idle when performing outbound holding, for example while waiting on a holding platform.
However, this problem can be tackled using TaxiBots, since it will not cost any additional fuel and
increase gate capacity for inbound flights.

Conventional taxiing (100%) Aircraft Engines

Current technology (52%) Aircraft Engines Effect Engines off

Full Electric (49%) Aircraft Engines

PP = Effect Electrification Propulsion

Figure 3.3: Indicative visualization of potential fuel savings when using TaxiBots for outbound towing, both for the current tech-
nology (diesel driven) and a fully electric version. Percentages shown are calculated based on an average of 14 minutes taxi
time. Taken from [7].

Expected Challenges of Introduction of TaxiBots at AAS

Despite the benefits, a number of challenges is also expected when TaxiBots are incorporated in the

ground movement system at AAS. On the level of individual TaxiBot performance, Schiphol has con-

cluded based on its trials that the "concept is infeasible in its current form, but might be feasible with

adjustments” [7, p. 39]. These adjustments concern infrastructural, procedural and technical changes.
On the overall system performance level, the following expected challenges were identified [7]:

* Increased Process Times: due to the lower maximum speed while taxiing using TaxiBots and
increased decoupling duration with respect to normal uncoupling after pushback, the process
time is expected to increase. Especially for hub and spoke carriers like KLM, it is of utmost im-
portance that any additional delays are prevented as much as possible. The reason for this is
twofold: on one hand, connecting flights need to arrive on schedule in order for passengers to
catch transfer flights, since the business model of KLM depends on these connecting passengers
through Schiphol. On the other hand, since most aircraft depart and arrive multiple times a day,
delay of already a couple of minutes could lead to the deployment of an additional aircraft, large
delays or cancelled flights [6].

Another side-effect of increased process times is a potential decrease in runway capacity. If un-
coupling durations take longer than minimal runway separation requirements, the possible num-
ber of departing flights per hour diminishes [6].
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* Increased Traffic Density: since an additional movement is introduced in the ground movement
system (the return movement of a TaxiBot), traffic densities are expected to increase. Not only
may this result in additional delays on the taxiway network, it is also expected that workload of
ATC increases.

Especially from an ATC perspective, it was concluded that implementation of TaxiBots in its current form
at AAS would not be possible while maintaining capacity, on-time performance, safety and workload [7].
However, the simulation study performed by To70 showed significant differences in effect of increasing
process times on system throughput, largely depending on factors such as the runway configuration
used and the configuration of decoupling locations. Note that the increase in traffic density has not been
investigated in the simulation study by To70, since TaxiBot return movement has not been modelled.
In addition, an infinite number of TaxiBots available at the gate was assumed [51].

To conclude, based on the proposed adjustments and initial outcomes of the trials performed by
Schiphol [6] and the simulation studies performed by To70 [51], the need arises to further investigate
the conditions under which the implementation of TaxiBots has minimal effects on the airport system
performance. In the next section, an overview will be given on previous research performed based on
the outcomes of the initial feasibility study performed by Schiphol and To70.

3.2.4. Previous Academic Research on Implementing TaxiBots at AAS

Based on the findings of the initial feasibility study performed by Schiphol and partners and the con-
clusions of mainly ATC related to the decreased capacity of the airport system, steps in the direction
of autonomy to tackle the aforementioned issues have been suggested. One of the first studies to
look into the effects of implementing self-driving technology to enable autonomous taxi systems at air-
ports, is the work done by Morris et al. [30]. It was concluded that implementing towing tugs might
increase operational complexity. However, the authors suggest that these effects could be partially or
completely mitigated by the introduction of autonomous decision making in the vehicles. Although the
outcome of the research performed by Chua et al. [52] show that an increase in the workload on ATC
was observed upon introduction of autonomous tugs, other studies show that distributed coordination
and planning for autonomous vehicles within airport ground surface movements allow for safe and ef-
ficient operations [18].

The concept of distributed coordination and planning has been further investigated by Soomers
[8] and Kamphof [9]. Both studies focus on the implementation of a hierarchical control structure that
guides autonomous towing tugs over the surface of AAS to perform outbound towing under various
operational scenarios. In their work, a realistic representation of the runways, the taxiway network, the
service roads, holding platforms and gates is included in a graph layout of Schiphol. Especially the
addition of bay areas and actual pushback paths makes their model different from previously existing
representations of AAS. Even for the high level of complexity of the network, both studies validate the
aforementioned findings of Benda [18] and show that a hierarchical distributed control architecture is
capable of finding collision-free solutions for the routing of both scheduled flights and TaxiBots, adher-
ing to kinematic constraints of all vehicles [8, 9].

In his work, Soomers investigated how the use of decoupling locations and durations influences
ground delays [8]. It was concluded that ground delays are minimized when making use of both hold-
ing platforms and decoupling locations on taxiways. Furthermore, each decoupling configuration has
an individual maximum capacity, determined by each location and decoupling duration. Once capacity
of the decoupling configuration is exceeded, queues emerge and delays are seen to be stacked up.
Interestingly, inbound flights were not significantly affected by outbound towing. Important limitations in
his study were the exclusion of other airport processes that are linked to uncoupling operations, such as
the use of CTOT slots for pre-departure sequencing, runway capacities or pushback operations. Next
to that, the problem was modelled in an offline setting using time windows of one hour, not allowing
for testing the control architecture on real-time performance nor for evaluating the influence of stacking
delays over time. Finally, although TaxiBot return movements were modelled, it was assumed that an
infinite number of TaxiBots was available for outbound towing at the gate, excluding the allocation of
TaxiBots to departing aircraft from the model.

In order to study the effect of pushback operations and especially engine warm-up, Kamphof in-
cluded pushback paths and speeds into the model to compare the duration of conventional taxi opera-
tions with duration of TaxiBot operations [9]. Similarly as for the study performed by Soomers [8], it was
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concluded that departing flights suffer from additional ground delays due to decoupling durations and
lower taxiing speed with a TaxiBot compared to normal taxiing. However, performing engine warm-up
during TaxiBotting decreases both bay area and total outbound taxi time, especially for larger engine
warm-up times. Similarly as in the model of Soomers, task allocation of TaxiBots was not incorporated,
as well as the TaxiBot return movement [9].

3.3. Concluding Remarks and Research Gap

Due to the increasing awareness related to the environmental impact of the aviation sector and the
growing demand for air transportation, the need arises to develop sustainable solutions that allow for
efficient airport operations. Within the field of airport operations, the ground surface movement problem
has been identified as a promising research area, since it is highly related to overall airport capacity
and has shown large potential for reducing environmental impact by using engine-off taxiing techniques.
One of the most promising engine-off taxiing techniques is the TaxiBot developed by IAl, an external
towing tug that is capable of towing aircraft from the gate to the runway and v.v. at reasonable taxiing
speeds.

Several studies have done preliminary analyses on the implementation of TaxiBots at AAS. In trials
performed with a single TaxiBot at Schiphol in 2020, useful operational data was obtained, including a
set of necessary conditions and changes to be implemented in order to consider the concept of fully
outbound towing feasible. However, trials were only performed with one TaxiBot and therefore, no
conclusions could be drawn of the influence on high-level system performance when external towing
tugs would be implemented at AAS. In a simulation study performed by To70, effects on high-level
system performance were investigated by modelling the concept of fully outbound towing at Schiphol.
Significant differences in the effect of increasing process times on system throughput were observed,
largely depending on factors such as the configuration of decoupling locations.

Therefore, two studies have been performed based on the initial findings, investigating in greater
detail how both decoupling locations/durations and pushback operations influence overall system per-
formance respectively [8, 9]. Although both studies distinguish themselves by using a realistic repre-
sentation of the layout of Schiphol including a high level of detail and complexity, it was assumed that
infinite TaxiBots are available for outbound towing. In addition, allocation of TaxiBots to aircraft was
not considered and the work did either not consider modelling the problem in an online setting [8] or
taking the TaxiBot return movement into account [9]. Due to these assumptions, it is yet unclear how
allocation of TaxiBots to aircraft should be performed in general and in an online setting specifically;
and how it affects high-level system performance.

To conclude, an area that has not received enough academic attention is how to perform assignment of
TaxiBots to aircraft for fully outbound towing in an online setting, while using a hierarchical distributed
control architecture. From a practical point of view, this proposed research direction is of interest
since it enables to investigate how the allocation of TaxiBots to aircraft affects system performance in
terms of capacity and delay. From an academic point of view, this research adds value in the field
of combining task assignment with path planning in a computationally efficient manner to provide for
real-time operations.

Based on the defined research gap, a detailed concept of operations will be developed that define
how implementation of the TaxiBot at AAS will take place and which modelling assumptions should be
made.



Defining a Concept of Operations for
Deploying TaxiBots at AAS

In chapter 2, an overview on current ground surface operations is provided, with special attention for
the ground surface operations at AAS. Then, the developments related to ground surface operations
were discussed in chapter 3. From this chapter, it was concluded that the use of TaxiBots could provide
for reducing the environmental impact of ground surface operations. After having defined a research
gap related to the implementation of TaxiBots at AAS, combined with a justification for future research
on this subject, a concept of operations can be determined. In this chapter, relevant literature will be
reviewed on different models and modelling assumptions related to the implementation of a tug-enabled
engine-off taxi system at airports. As a guideline, a set of operational and tactical issues is used, as
defined by Vis [53] that has to be addressed when considering the design of an Automated Guided
Vehicle (AGV) system.

* Network Layout

- Traffic Management and Resolving Conflicts
« Location of Pick-Up and Delivery Points

» Fleet Composition and Characteristics

« Control of AGVs

In section 4.1 to section 4.5, each item will be elaborated on. This includes a general description of the
item under consideration based on the work done by Vis [53], followed by a more detailed description
based on concepts of operations discussed in papers that review the operational consequences of
implementing a tug-enabled taxiing system at airports [18, 30, 31, 47, 58, 52, 59, 60, 61, 54, 55, 56,
57,7, 6, 8, 9]. Using this work as a reference, a set of assumptions related to each item will be defined.
All together, this defines the use case that will be studied in this thesis regarding the implementation of
TaxiBots at AAS. A final summary is provided in section 4.6, including the final concept of operations,
scope of the research, resulting system requirements and a modelling technique used in the remainder
of the thesis to simulate the defined concept of operations.

4.1. Network Layout

The network of a system defines the paths along with AGVs can travel. Usually, the network is defined
by arcs (paths or links) and nodes (intersections of paths, e.g. pickup and delivery locations). When
defining the network, choices have to be made on the direction of travel along arcs. These can be unidi-
rectional (travel is allowed only in one direction) or bidirectional (travel is allowed in both directions) [53].
Unidirectional arcs allow for easier control of the system, since no opposite traffic is allowed. However,
bidirectional arcs allow for shorter paths since shorts cuts may be possible. In order to combine the
advantages of both unidirectional and bidirectional flow, multiple lane paths can be used, introducing

57
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multiple paths with opposite traffic flow on the same arc [53].
The network layout is of direct influence on the system performance: it affects travel time for vehi-
cles, the number of vehicles required and the degree of possible congestion [53].

4.1.1. Airport Representation

In the context of a tug-enabled taxiing system, the network layout mainly concerns the representation
of the airport in the system. Not all papers specify the exact representation of the airport [58, 52], but
the vast majority considers a graph-based lay-out using nodes and edges to represent the airport in-
frastructure. Airport characteristics such as location of gates, runway entrances, spots or intersections
are represented by nodes. Edges represent the possible paths for vehicle movement between these
locations.

Since Amsterdam Airport Schiphol (AAS) will be considered as use case in this thesis, a review
of research based on implications for AAS [18, 60, 61, 55, 56, 7, 8, 9, 51] will be considered when
discussing network layout.

The majority of the differences in network layout between the considered papers are related to the
simplifications made with respect to real infrastructure at AAS. The most elaborate model is the one
used by Soomers and Kamphof [8, 9], mainly distinguishing itself due to a very realistic representation
of the taxiway network. This includes multiple runway entrances/exits instead of one entrance/exit per
runway; realistic turning paths (avoiding right-angle turns); and constraints on allowable directions, ve-
locities and accelerations per segment. In addition, the service road network is incorporated, as well as
apron operations. Previous research mostly did not take these operations into account, meaning that
push-back from the gate was not considered. As a consequences, gates are modelled using a single
meta-gate node representing an apron area, including multiple gates. This means that for the majority
of the models, aircraft movements are only modelled from their respective apron to the assigned run-
way and vice versa [18, 60, 61, 55, 56]. In [9], all gates are modelled using separate nodes, taking into
account the modelling of push-back operations as well.

4.1.2. Runway Configurations

As explained in section 2.2, AAS has 5 runways that can be used in different combinations. All studies
that consider AAS as their case study, base their input data on historic flight information for one or
multiple days of operation. When evaluating this input data, it can be seen that the majority of the
departing flights use runways 36L, 36C, 24 and/or 18L [18, 60, 61, 55]. For arriving flights, common
runways to use are runway 06/24, runway 18R, runway 18C or runway 36R [60, 61, 55].

The commonly-used runways for departing and arriving flights correspond with the most frequently
used Runway Mode of Operation (RMO) at AAS [7]. These are RMO North and RMO South. In
Figure A.3 and Figure 4.2, the runway use in the various RMOs during the arrival and departure peak
and transition phase is shown. Both the studies conducted by Schiphol itself [7] and the studies by
Soomers [8] and Kamphof [9] focus on evaluating the TaxiBot concept for these two RMOs.
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Figure 4.1: RMO North (arrival peak, transition and departure peak), including the corresponding runways. Taken from [8].
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Figure 4.2: RMO South (arrival peak, transition and departure peak), including the corresponding runways. Taken from [8].

4.1.3. Concluding Remarks on Network Layout

The network representation of AAS as proposed by Soomers and Kamphof [8, 9] will be used in this
study due to its high level of detail and agreement with reality. Figure 4.3 shows a visual representation
of AAS in the model of Soomers, with zoomed in sections provided in Figure 4.4 [8].

The network consists of nodes and edges, where nodes represent gates, uncoupling points, parking
facilities, runway entrances/exits and intersection locations. Two unidirectional edges connect adjacent
nodes, either representing runways, taxiway centerlines or service roads. Next to type, edges also
contain information on dimensions, position and operational constraints, such as closing of segments,
stop bars (for crossing of runways) and the RMO. Due to these operational constraints, the network
can be considered a dynamic object.

With respect to RMOs, operations for days with the two runway combinations that are used most
often at AAS are evaluated. These concern RMO North and RMO South (Figure A.3 and Figure 4.2).
This is in accordance with the studies done by Schiphol and To70 [51] and the work done by Soomers
[8] and Kamphof [9].

Assumptions

1.1 Service Road Infrastructure: for all terminal and air side service roads, it is assumed that the
roads are wide enough to allow for bidirectional traffic of TaxiBots between themselves (when not
towing an aircraft). Based on trials performed by Schiphol using TaxiBots at AAS [€], in reality
not all terminal and air side service roads allow for this bidirectional traffic. An example is the
area between D and E concourse. Therefore, this assumption may result in lower levels of traffic
present on taxiways than in reality, since TaxiBots might have to use the taxiway network to make
a return movement instead of the service roads.

1.2 Taxiway Infrastructure: the construction of an extra taxiway lane on taxiway Quebec is assumed
to be completed, allowing for bidirectional traffic flow on this specific road. Currently, taxiway
Quebec can only be used in one direction, depending on instructions from ATC. However, it is
expected that the infrastructural expansion of Quebec will be finished towards 2025 [23]. Since
it is not expected that the TaxiBot concept will be fully deployed before then, this assumption can
be considered valid.

In addition, wingspan restricted taxiways as provided by the Aeronautical Information Package
(AIP) are adhered to [9].

1.3 Direction of Taxiways: while in reality taxiway Alpha and Bravo have standard flow directions
(section 2.2), these limitations are lifted in this work. The result is that traffic is allowed to move in
both directions on the taxiways, as long as edge conflicts are avoided. For ATC, this may result
in a less well-organized environment, possibly increasing workload. On the other hand, when
considering distributed control of TaxiBots using automated systems, this does not necessarily
have to be true. However, the result of this assumption on ATC workload will have to be validated
in future work.



60 4. Defining a Concept of Operations for Deploying TaxiBots at AAS

1

=77 U

. - )

AN
B

Figure 4.3: Network layout of Amsterdam Airport Schiphol (AAS) used by Soomers [8]. Including: taxiway centre lines (thin black
line), runways (thick black line) and service roads (thin blue line).

4.2. Traffic Management and Resolving Conflicts

If two vehicles are moving on the same edge in opposite directions on a single lane path, the vehicles
are forced to stop in front of each other and blocking of the path occurs. With respect to system
performance, it is suggested by Vis [53] to avoid collisions instead of solving upon detection.

Three different categories can be defined with respect to deadlock and collision avoidance [53].
First of all, the layout of the network can be designed in such a way that collisions and deadlocks are
avoided. Next, use can be made of so-called non-overlapping control zones, where only one vehicle at
the time is allowed to enter and travel through the zone. Finally, deadlock and collision avoidance can
also be tackled when defining routing strategies. In this thesis, the focus will be on the third option.

4.2.1. Prediction and Avoidance of Collisions and Deadlocks

When considering collisions and deadlocks in the context of aircraft taxi operations, three main types of
conflicts can be determined as defined by Smeltink et al. [62]. In Figure 4.5, the three types of conflicts
(intersection, rear-end and head-on) are visualized [62].

* Intersection Conflict: two aircraft use the same taxiway intersection at the same time.

* Rear-end Conflict: two aircraft use the same edge at the same time, in similar direction. This
will result in a conflict if the rear aircraft has a higher speed.

* Head-on Conflict: two aircraft use the same edge at the same time, in opposite direction. This
will result in a conflict if multiple lane paths are not introduced in the system.
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(a) Network layout of AAS at runway 18L. (b) Network layout of AAS at runway 18C.

Figure 4.4: Zoomed-in sections of network layout of Amsterdam Airport Schiphol (AAS) used by Soomers [8]. Including: taxiway
centre lines (thin black line), runways (thick black line), service roads (thin blue line), stop bars (thin green line), regular nodes
(yellow), uncoupling locations (red) and all-clear points (green).
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Figure 4.5: Graphical representation of an intersection conflict (a), rear-end conflict (b) and head-on conflict [62].

As stated previously, using collision avoidance techniques instead of collision detection and solving
consecutively improves the overall system performance [53]. To backup this claim, it is noted that the
maijority of the relevant literature stated before makes use of conflict avoidance strategies by imposing
separation constraints when determining and/or evaluating (possible) routes [18, 30, 31, 59, 61, 54, 8,
9]. A more elaborate description on how conflict avoidance can be done while finding optimal paths,
can be found in chapter 6.

Only in the work of Van Baaren [60], interference with other traffic is not considered. In the work
of Salihu, Lloyd and Akgunduz [57], intersection conflicts are not considered. For the models used
by Tindemans [55] and Kroese [56], only separation between aircraft among themselves. However,
conflicts between TaxiBots among themselves and between aircraft and TaxiBots is not taken into
account. Soomers and Kamphof [8, 9] assume that separation between TaxiBots does not have to be
maintained on roads wide enough to allow for bidirectional traffic.

4.2.2. Separation Constraints

Different studies use different types of separation constraints. A distinction can be made between time-
based and distance-based separation. When using distance-based separation, Benda [18] assumes
a required separation distance of 50 meters between TaxiBots themselves and between TaxiBots and
aircraft when travelling on taxiways. Aircraft need to maintain 150 meters of separation. When trav-
elling on service roads, the required separation distance for TaxiBots is 35 meters. Soomers [8] uses
significant smaller values and assumes 20 meters of required separation between aircraft themselves
and between aircraft and TaxiBots, excluding a 5 meter safety margin. In the study performed by To70,
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a separation distance of 60 meters is maintained [51]. All other research do not specify the distances
required for separation (if used at all).

Time-based separation is mainly used for separation on runways between arriving and departing
flights and is dependent on aircraft size. Based on Wake Turbulence Category (WTC), time-based
separation is maintained [59, 8, 9]. In Table B.4, the different timing criteria are listed for arriving and
departing flights.

Table 4.1: WTC separation in seconds for different aircraft categories. Based on RECAT-EU wake separation rules [63].

Super Heavy Upper Heavy Lower Heavy Upper Medium Lower Medium Light
Leader

A B C D E F
Super Heavy A 80 100 120 140 160 180
Upper Heavy B 80 80 80 100 120 140
Lower Heavy C 80 80 80 80 100 120
Upper Medium D 80 80 80 80 80 120
Lower Medium E 80 80 80 80 80 100
Light F 80 80 80 80 80 80

4.2.3. Concluding Remarks on Traffic Management Strategies

In this thesis, interference between traffic will be taken into account. Based on the different types of
conflicts as described before, a set of definitions can be formulated describing when vehicles are in
conflict with each other, based on the work done by Soltani et al. [54].

1. Two vehicles that are trailing each other on the same edge in the same direction, are not consid-
ered to be in conflict when they maintain separation distance.

2. Vehicles that interact on intersections are not considered to be in conflict when they maintain
separation distance.

3. Vehicles that travel on the same edge in opposite direction are considered to be in conflict (for
exceptions, refer to assumptions).

Assumptions

2.1 Modelling of Ground Vehicles: in this thesis, only aircraft and TaxiBot movements are modelled.
The movement of other ground vehicles, such as luggage handling or catering services, are
excluded. This will mainly result in simplifications regarding the apron area, where other ground
handling vehicles will also be present, and possibly affecting the optimality of the path traversed
by TaxiBots.
Schiphol has announced that it strives for autonomous ground operations by 2050 and thus, the
interaction between TaxiBots and ground handling vehicles will have to be studied in future work.
However, since it is assumed that the TaxiBot is controlled by a human driver at this point, the
avoidance of conflicts with other ground handling vehicles can be expected to be handled by the
driver, since this is similar to driving a car on the road.

2.2 Interaction Between Vehicles: separation between aircraft themselves and between aircraft and
TaxiBots are maintained, while separation between TaxiBots themselves on bidirectional service
and taxi roads is not guaranteed. Similar to the previous assumption, the assumption that the Tax-
iBot is controlled by a human driver allows for relaxation of separation control between TaxiBots
themselves.

2.3 Aircraft Types Under Consideration: all aircraft available in the flight data that is used for sim-
ulation will be mapped into one of the six categories of the RECAT-EU system [63], based on
their MTOW. This results in a simplification of actual weight and size of aircraft. However, since
this study aims to provide a preliminary insight in how different task allocation strategies influence
system performance, the actual aircraft specifics are of minor importance at this research stage.

2.4 Separation Distances Between Vehicles: with respect to separation required between arriving
and departing flights, different aircraft will be mapped to one of the six categories available in the
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RECAT-EU system provided by EUROCONTROL [63]. Subsequently, the required separation
between the different aircraft will be based on the values in Table B.4.

Regarding separation distances on taxiways and service roads, it is assumed that both aircraft be-
tween themselves and aircraft and TaxiBots should maintain 60 meters separation [51]. Although
this is not strictly specified in airport manuals, it is deemed a valid assumption upon consultation
of operational experts.

Finally, separation distances in the apron area are considered the same as on taxiways and ser-
vice roads, with the additional requirement that the entire pushback path of aircraft should be free
when performing this maneuver [9].

4.3. Location of Pick-Up and Delivery Points

When designing a network layout, one has to determine the location of pick-up and delivery points.
Pick-up and delivery points could refer to points where an actual load has to be picked up and/or
delivered, but also to inspection/charging stations or machines that have to be visited by the AGV. The
choice of the locations is of importance since it is of influence on the system performance in terms of
e.g. total distance travelled or waiting times [53].

4.3.1. Type of Flights Considered for Towing

When considering pick-up and delivery points in the context of tug-enabled taxi operations, a distinction
can be made between outbound and inbound taxiing. For departing aircraft (outbound taxiing), the pick-
up location will be the aircraft stand near the gate and the delivery location will be a decoupling location
on the route towards the assigned runway. The opposite will be the case when considering arriving
aircraft (inbound taxiing).

In the majority of the research on the implementation of a tug-enabled taxiing system, only towing of
outbound flights is considered [18, 58, 52, 59, 61, 7, 8]. One of the reasons for this is that the potential
for emission savings for taxi-out is higher than for taxi-in, since the amount of carbon dioxide emitted
during outbound taxiing is almost doubled compared with inbound taxiing [58]. This can be attributed
to two factors: a higher weight of departing aircraft compared with arriving aircraft [60] and on average,
higher taxi-out times compared with taxi-in times (based on major US hub airport operation) [61].

In [54, 57], different strategies related to towing for inbound and outbound taxiing are considered.
A baseline scenario (no towing at all) is compared with different approaches related to deployment of
tugs (e.g. both inbound and outbound always using tugs; outbound using tugs and inbound using main
engines; inbound and outbound using tugs if tug is available). As concluded by Soltani et al. [54],
the deployment of tugs both for inbound and outbound taxiing based on availability of tugs results in
the most economical solution, while providing for 95% reduction in carbon dioxide emissions. Similar
results are obtained by Salihy, Lloyd and Akgunduz [57]. In addition, it is shown that when deploying
tugs based on availability also for inbound flights, a carbon dioxide reduction of around 70% is achieved,
compared to 50% reduction when only deploying tugs for outbound flights (with respect to conventional
taxi operations). However, it has to be noted that a fully electric towing system is assumed in both
studies.

4.3.2. Centralized and Decentralized (De)Coupling

As explained in subsection 3.2.2, the coupling and decoupling for respectively inbound and outbound
flights near the runway is a procedure that takes time. Therefore, the location of these coupling/decoupling
locations has to be chosen wisely in order to avoid blocking of other traffic as much as possible. In
addition, fuel savings are also highly influenced by the location of these points, since the position of the
points with respect to the assigned runway determines the distance that remains for the aircraft to taxi
with its main engines.

In a TaxiBot simulation study executed by Schiphol and To70 in 2020 (only considering outbound
towing), two main strategies were defined for positioning the decoupling points: at central locations, or
at de-central locations [7]. Central locations are considered to be so-called P-platforms (parking areas),
not dedicated to a specific runway but strategically located to be accessible from multiple runways. Ex-
pected advantages are flexibility and the possibility to decouple outside main taxiways, not blocking
any other traffic during decoupling. The downside is that fuel savings are expected to be lower, since
approximately half of the entire taxi operation will still have to executed using the aircraft’'s main engines
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[7].

On the other hand, when considering de-central decoupling locations, the aircraft is being towed
as close to the runway as possible. Therefore, de-central locations will be dedicated to one runway. It
is expected that fuel savings will be higher. However, when performing decoupling in a decentralized
manner, this procedure will have to take place on the main taxiway, potentially resulting in queuing at
runways [7].

As a result of the simulation study, it was concluded that using a centralized distribution of decou-
pling locations was not a favourable concept of operations to be implemented at AAS [7]. This had
two reasons, namely negligible fuel savings (due to increased taxi distances because of the central
locations) and increased airport congestion (due to exceeding the capacity of the P-platforms, which
are also used as holding) [7]. Therefore, it is suggested to adopt a concept of operations with de-
central decoupling procedures at Schiphol. These findings are confirmed by the research of Soomers
[8], which concludes that using a mixed strategy (using decentralized decoupling locations and when
capacity allows for it, use centralized decoupling locations) is optimal in terms of minimizing for delays.

4.3.3. Possible Decoupling Locations at AAS

In addition to (de)coupling strategies, the actual locations for possible (de)coupling will also have to
be considered from an infrastructural point of view. Possible locations for decoupling are identified
by Schiphol after careful consideration of all possibilities and making a distinction between locations
that are invalidated provisory (can in the future be validated after a specific update) and invalidated
indefinitely (no actions will be undertaken to validate the decoupling location) [7]. Currently, no possible
decoupling location is suitable for direct use. The decoupling locations that are disqualified for actual
use until action is taken are summarized in Table 4.2. The necessary actions vary from adding markings
or lights to changing procedures to make return movements possible (also refer to subsection 4.1.3).
Note that decoupling locations that are invalidated indefinitely are not further considered in this work.

Table 4.2: Overview of possible decoupling locations, identified after feasibility study by Schiphol [7].

Decoupling Point Runway Comment

P1 Central/18L  Add marking and/or lighting to indicate stopping point
P3 Central/18L  Add marking and/or lighting to indicate stopping point
P4/P5 36C . Add marking and/or lighting to indicate stopping point

. Return movement not possible

. Add marking and/or lighting to indicate stopping point

. Return movement not possible

. All-clear point TaxiBot is too far away, create new all-clear point
. Add marking or lighting to indicate stopping point

. All-clear point TaxiBot is unsafe to reach, create new all-clear point
. Add marking or lighting to indicate stopping point

. Decoupling point at busy taxiway (flow risk)

. Add marking or lighting to indicate stopping point

. Decoupling point at busy taxiway (flow risk)

. Add marking or lighting to indicate stopping point

. Decoupling point at busy taxiway when in use (flow risk)

Pe6/P7 36L

18C-C Northbound 18C

18C-D Northbound 18C

09 Westbound (A20) 09

09 Eastbound (A20) 09

27 at N1 27 . Add marking or lighting to indicate stopping point
. Return movement not possible
. Decoupling point at busy taxiway (flow risk)

24 Southbound 24 . Add marking or lighting to indicate stopping point

. All-clear point with blast risks

. Decoupling point at busy taxiway (flow risk)

. Add marking or lighting to indicate stopping point

. All-clear point with blast risks

. Decoupling point at busy taxiway (flow risk)

. Add marking or lighting to indicate stopping point

. All-clear point TaxiBot is hard to reach, create optimized route to
all-clear point

24 Northbound (A7) 24

18L E6 18L

WN=22YWON=22ON=2WON=2IN=2N=2IN=2N=2N =N -
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4.3.4. Concluding Remarks on Location of Pick-up and Delivery Points
In this study, fully outbound taxiing is considered, implying that all departing flights will have to be
assigned a TaxiBot to tow them from the gate to a designated decoupling location. Inbound flights use
their own engines to taxi from the runway to the designated gate.

Based on the work done by Soomers [8], a mixed strategy concerning the choice of decoupling
locations will be used, combining both decoupling locations at holding platforms and on taxiways.

Assumptions

3.1 Departing Flights: in this thesis, only outbound taxiing is considered when deploying TaxiBots.
This means that departing flights will be towed from the gate to a decoupling location near the
designated runway, while all arriving flights use their own engines to taxi from the runway to the
assigned gate.
The reason for only considering outbound towing is that emission savings are higher for outbound
taxiing compared with inbound taxiing. Since all inbound flights use their own engines for taxiing,
extra waiting times for arriving flights that need to be coupled to a TaxiBot are not considered,
including the allocation of TaxiBots to arriving flights. The assumption of only considering out-
bound towing is considered to be valid since Schiphol itself has identified inbound taxiing as a
"very long-term goal” [51, p. 9].

3.2 Decoupling Locations: the decoupling locations as mentioned in Table 4.2 are assumed to be
suitable to use for the decoupling procedure. In addition, all required infrastructural changes to
make the decoupling locations feasible are assumed to be in place. As mentioned above, this is
currently not the case until various measures have been taken. However, Schiphol has started
investigating the feasibility of these measures [7]. For now, it is assumed that the required in-
frastructural and procedural updates are feasible and can be executed to make the decoupling
locations suitable for operations. If part of these measures turn out not to be feasible, less decou-
pling points will be available, possibly affecting traffic flow, airport congestion and fuel savings.

3.3 Runway Scheduling and Gate Allocation: in this study, the assignment of aircraft to gates
(pick-up point) and runways (delivery point) is considered to be out of the scope. This means
that runway scheduling and gate allocation is assumed to be provided as an input to the model
as part of the flight schedule, based on historic data. As a result, the computational complexity of
the model is decreased, not accounting for the planning and allocation of aircraft to their starting
and ending point. In addition, real-time changes of assignment of aircraft to gates/runways is not
considered.

4.4. Fleet Composition and Characteristics

To make sure that all tasks in the system are completed in time, a minimum number of vehicles required
has to be determined. However, from a financial point of view, the number of vehicles should not be
overestimated. Besides, a (too) large number of vehicles in the system could cause unnecessary
congestion.

Vis [53] has identified several factors that are of influence when determining the optimal fleet size
for an AGV-system. These are copied below.

+ Type of drive

» Costs of the system

+ Capacity of the vehicle
» Speed of the vehicle

* Number of units to be transported and points in time at which units can be or need to be trans-
ported

» Layout of the network system (see section 4.1)

« Traffic congestion (see section 4.2)
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» Number and location of pick-up and delivery points (see section 4.3)

* Vehicle dispatching strategies (see section 4.5)

4.4.1. Type of Drive

In several applications of AGV systems, electrically powered vehicles are used. As a result, battery
charging has to be considered when designing such a system. The time required for charging can
heavily affect system performance in terms of number of vehicles required, throughput of the system,
congestion and costs [53].

Although the TaxiBot, which is diesel-driven, is the only certified towing tug on the market up until
this date, Schiphol already identified in its feasibility study (2020) that a carbon-neutral driveline should
be developed for the TaxiBot [7]. Several previous studies assume fully electric towing tugs running on
batteries, taking into account charging time [47, 60, 61, 54, 55, 56, 57]. However, since for this study
the current version of the TaxiBot will be implemented as towing tug, a more into-depth analysis on
battery charging is considered beyond the scope of this thesis.

4.4.2. Costs of the System

With respect to the fleet size of a tug-enabled taxi system, some past research assumes an infinite
number of vehicles available or does not take into account how a finite number of vehicles available
influences system performance [18, 30, 31, 58, 7, 6, 8]. For the remaining studies, costs of the system
are the driving factor when it comes to determining an optimal solution. Three main approaches can be
distinguished when it comes to taking costs into account and are summarized below. The work done
by Chua et al. [52] is the only study that focuses on the effect of a tug-enabled taxiing system on the
workload for ground control.

» Research that primarily aims to reduce the environmental impact of a finite number of towing tugs
available and thus, minimizes for fuel cost or fuel consumption [47, 59, 60]

» Research that primarily aims to reduce delays introduced by a finite number of towing tugs avail-
able and thus, minimizes for taxi time [55, 56]

» Research that aims to reduce the overall cost of implementing an alternative taxi system, taking
into account fuel cost, operating cost and delay cost (for a finite fleet) [61, 54, 57]

Based on the different approaches, an outline is provided on how the fuel costs, delay costs and tug
purchasing/operating costs are estimated. Studies that assume infinite vehicles available are taken
into account when providing this outline.

Fuel Cost
When considering fuel cost, both fuel consumed by the aircraft and fuel consumed by the towing vehicle
(if not electrically powered) have to be taken into account.

- Jet Fuel Cost: when considering aircraft fuel consumption, both the fuel usage of the engines
and the APU have to be taken into account. Different studies use different ways to estimate
these fuel usages. The work done by Postorino, Mantecchini and Gualandi [58] makes use of the
Emissions and Dispersion Modelling System (EDMS) based on EUROCONTROL Base of Aircraft
Data (BADA) to calculate aircraft engine emissions based on characteristics of air side aircraft
operations and engine characteristics. Similar approaches use aircraft and engine characteris-
tics from the ICAO Aircraft Engine Emission Databank in combination with calculated/measured
performance profiles [59, 60, 61, 54, 57].

In their feasibility study related to the TaxiBot concept, Schiphol uses as a rule of thumb a fuel
flow of 7.5 kg/min per engine and 2 kg/min for the APU. These values are indicative and based
on the Boeing 737NG [6].

- TaxiBot Fuel Cost: in the studies that take into account the fuel consumption of diesel-driven
TaxiBots [59, 58], the fuel consumption of the TaxiBot is estimated by computing the product of unit
fuel consumption depending on TaxiBot type and the total duration of operations. No distinction
is made between time when the TaxiBot is towing an aircraft and when it is driving in solo mode.
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Values for fuel consumption range from 0.28 kg/min (NB) [59, 58] to 1.03 kg/min (WB) [59].
According to Guillaume [61], using a constant fuel rate per unit time is not sufficient. Therefore, he
uses an approach based on Newton’s equations of motion, taking into account the performance
profile, friction forces and drag forces to calculate fuel consumption for each specific part of the
trajectory of a TaxiBot.

When performing measurements with a NB TaxiBot at Schiphol, a fuel consumption of 0.65 kg/min
was found when in pilot mode [6]. However, when comparing the current technology (using a fossil
driveline) with a fully electric towing system, an indicative reduction of approximately 3% in fuel
usage can be obtained (based on an average taxi-out time of 14 minutes). In the work done by
Salihu, Lloyd and Akgunduz [57], a similar reduction in fuel consumption was found, resulting in
omitting the fuel consumed by TaxiBots from the analysis.

Delay Cost

When speaking about aircraft delays, various definitions and interpretations of delay exist. In addition,
one can express delays in terms of minutes or in terms of money. In this section, focus will be put on
how to express delays in monetary terms.

One of the studies that extensively investigates delay cost, is the work done by Guillaume [61].
According to Cook [64], a relation can be found between the tactical delay cost and the MTOW at given
delay durations (5, 15, 30, 60, 90, 120, 180, 240 and 300 minutes). Equation 4.1 shows the relation,
where the variables m and ¢ can be found in the work of Cook [64]. Guillaume shows that Equation 4.1
can be used to estimate at-gate delay costs, consisting mainly of extra costs for crew and passengers
(e.g. re-booking and compensation), if extra costs related to fuel are already taken into account in the
model [61]. If this is not the case, both at-gate and en-route tactical delay costs should be taken into
account.

CoStgelay = m-VMTOW + ¢ (4.1)

Tug Purchasing and Operating Cost

Guillaume [61] calculates an hourly depreciation cost of the vehicle to account for purchasing and
operating costs in his model. The hourly depreciation cost can be found by converting purchasing
costs, driver costs and maintenance costs to an hourly values. In order to do so, the estimated vehicle
amortization is 5 years, while using the vehicles for 18 hours/day [65]. Currently, the NB and WB
TaxiBot purchasing costs are 1.5 million USD and 3 million USD respectively [65]. Driver costs are
expected to be 40 USD/h and maintenance costs can be estimated by adding 7.5% of the new value to
the depreciation cost of the vehicle [65]. In addition, a salvage value of the vehicle of 10% is assumed
after being operated for 5 years [61]. Linear depreciation is used to find an hourly depreciation cost for
both types of TaxiBots.

4.4.3. Capacity and Speed of the Vehicle

Intuitively, the throughput of a tug-enabled taxi system will also be dependent on the technical specifica-
tions of the towing tractor. In subsection 3.2.1, an overview of the technical specifications of a TaxiBot
is given, including capacity and speed constraints. These constraints differ between the two types of
TaxiBots that are available: a Narrow-Body (NB) and Wide-Body (WB) version. Most research focuses
on the implementation of NB TaxiBots or do not differentiate between the two types and assumes all
flights can be towed by a single type of TaxiBot [18, 30, 31, 58, 54, 56, 57, 8, 9]. Some research take
into account the differences between NB and WB TaxiBots into the constraints of the model [59, 61].

4.4.4. Number of Units To Be Transported and Associated Time Frame

When considering the number of units to be transported and their associated time frame for completion
in the context of a tug-enabled taxi system, this mainly concerns the flight schedule. The construction
of the flight schedule is described in detail for the majority of the studies [18, 47, 59, 60, 61, 55, 56, 8,
9] and usually contains the following parameters:

« Aircraft Type: refers to the type of aircraft, such as A380. For example, the type can be used to
extract information on weights [55], or to map it to a specific aircraft category used in the model
[8, 9].
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* Flight Direction: defines whether the aircraft is arriving or departing.

- Starting Node: depending on the flight direction, the starting node can either be an assigned
(meta-)gate (departing flight) or the assigned runway exit (arriving flight).

» Ending Node: depending on the flight direction, the ending node can either be an assigned
runway (departing flight) or assigned (meta-)gate (arriving flight). Depending on the complexity
of the network layout, the runway entrance already is predetermined (for departing flights), or the
runway entrance is optimized for. As far as we know, the model used by Soomers and Kamphof
[8, 9] is the only model that optimizes for runway entrances.

- Starting Time: depending on the flight direction, the starting time refers to the moment the aircraft
leaves the gate (departing flight) or the moment the aircraft leaves the runway (arriving flight). For
some studies, both the scheduled and block departing/arrival times are included [61, 55].

Note that for all studies under consideration, runway scheduling and gate allocation is not considered
part of the scope of the research. On the contrary, it is assumed that the flight schedule already includes
an assigned gate and runway. This is also included in the assumptions related to pick-up and delivery
points in section 4.3.

Some studies take pre-departure sequencing into account. In the work done by Baaren [60], next
to a start time, an ending time is included as well. For departing flights, this means that the starting
time refers to the earliest moment the aircraft is allowed to leave the gate, and the ending time is the
scheduled take-off time. Soomers and Kamphof [8, 9] includes a more simplified form of pre-departure
sequencing, by using the TSAT time as starting time for departing aircraft.

4.4.5. Concluding Remarks on Fleet Composition and Characteristics

In this thesis, a finite number of vehicles will be available for outbound towing. The deployment of
these vehicles will be optimized in terms of environmental impact and delays. As a result, travel time
will be one of the most important parameters to consider, since this both covers fuel consumption
(environmental impact) and delays.

In this context, both delays on the taxiways and at the gate will be considered. Delay is considered
to be the increased average duration of aircraft taxi time when compared to conventional operations,
including additional waiting time at the gate for departing flights due to unavailability of a TaxiBot for
towing with respect to the original flight schedule. This includes decoupling time of the TaxiBot from
the aircraft at decoupling locations. Both the aircraft taxi time for conventional and TaxiBot scenarios
will be simulated, allowing for an objective comparison of the two situations.

Assumptions
4.1 Diesel-Driven TaxiBot: the TaxiBot is considered to be diesel-driven, and capable of performing
operations consecutively for 18 hours per day [65] without the need to refuel. Although Schiphol
has announced that it could and should decarbonize the drive-line of the TaxiBot (which currently
is diesel-driven) [7], no timeline for this ambition is available. Therefore, it is assumed that this
will be a very long-term project, approving the belief that the TaxiBot will remain diesel-driven in
the near future.

4.2 Fuel Cost of Jet Engines: in this thesis, the simplified numbers used by Schiphol in their feasi-
bility study related to fuel use of engines will be used as well (7.5 kg/min per engie and 2 kg/min
for APU use). Although these numbers are a great simplification of actual fuel use, the aim of this
thesis is not to quantify the exact environmental benefits of using TaxiBots, but merely to optimize
the allocation of TaxiBots in terms of environmental impact. It is assumed that using indicative
figures at this stage of the research on assignment of TaxiBots to aircraft provides for enough
accuracy.

4.3 Fuel Consumption Due To Engine Warm-Up: as explained in subsection 3.2.2, engine warm-up
will be performed during taxiing with a TaxiBot. Since engine warm-up will have to be performed
both in the conventional taxi situation and when deploying TaxiBots, it is not of a difference when
we are mainly interested in the difference in fuel consumption between both cases. Therefore,
the fuel consumption due to the engine warm-up will not be taken into account in the analysis.
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Fuel Cost of TaxiBot: the values used by Schiphol for fuel consumption of the TaxiBot as a rule
of thumb will be used (0.65 kg/min of diesel). Since these values are directly obtained through
measurements during trials, they are assumed to be representative for the actual fuel consump-
tion.

No differentiation between driving in solo mode or pilot mode will be made in this study. As a
result, the estimated fuel consumption will be higher than in reality, since it is expected that the
fuel usage will be less when the TaxiBot is driving in solo mode. However, since the fuel usage
of the TaxiBot accounts for only 3% of the total fuel consumption when comparing it with a con-
ventional scenario, this assumption is expected not to be of significant influence when comparing
both scenarios and thus, can be considered valid.

Delay Cost: when expressing delay at the gate in monetary terms, the assumptions as described
in subsection 4.4.2 will be used.

Tug Purchasing and Operating Cost: when including tug purchasing and operating cost as an
hourly depreciation cost, the assumptions as described in subsection 4.4.2 will be used.

Types of TaxiBots Under Consideration: no differentiation between the two different types of
TaxiBots will be considered. As a reference, the NB TaxiBot will be used. Currently, this type of
TaxiBot is certified for towing the B737 and A320 aircraft, accounting for approximately 54% of the
total flights at Schiphol [7]. The B737 and A320 families fit within CAT-D in the RECAT-EU system
('upper medium’) [63]. Assuming that the NB TaxiBot in theory should be capable of towing all
aircraft in CAT-D to CAT-F, this accounts for approximately 80% of all flights at Schiphol (based
on conversations with experts). All flights in CAT-A to CAT-C should theoretically be towed by a
WB TaxiBot.

As a result of not differentiating between the different types of TaxiBots, the output parameters of
the model will not be representative for real-life scenarios, such as number of vehicles required,
the allocation of TaxiBots to aircraft and even the total taxi time required. However, since this
study is a first look into allocation of TaxiBots and different strategies, it can be considered out
of the scope of this research to take different types of TaxiBots into account. Future work should
evaluate how the use of different types of TaxiBots influences the model output.

Kinematic Constraints of Vehicles: in this study, it is assumed that all modelled vehicles have
a maximum acceleration and deceleration level, as well as speed limits on straight segments and
in turns. These values can be found in the work of Soomers [8] and Kamphof [9].

Speed Limits of TaxiBot: the maximum speed of the TaxiBot while driving in solo mode is in-
creased from 30 km/h to pilot mode speed. This assumption is based on recommendations for
future operations of Schiphol [6]. Since the normal taxi speed of aircraft and aircraft with TaxiBot
(55 km/h and 43 km/h respectively) is significantly higher than the 30 km/h, the TaxiBot is not able
to blend into the taxiway system [6]. Therefore, increasing the speed limit to pilot mode speed
when driving in solo mode, will result in a more realistic simulation of reality.

Pre-Departure Sequencing: the model will not take departure slots for runway use into account,
but instead will use the TSAT from historic data as the time that an aircraft will have to leave
the gate. Since this is the way that Schiphol takes into account the process of pre-departure
sequencing (subsection 2.1.3), it is assumed that using the TSAT as input to the model will be a
realistic measure to decrease runway queuing.

Deviations from Flight Schedule: in the baseline model, the flight schedule is considered to be
deterministic, meaning that no deviations from the schedule will occur in the execution. The only
exception is that due to an unavailability of TaxiBot, delay at the gate for departing flights might
occur with respect to the TSAT (see also assumption item 4.12 mentioned next).

When considering model extensions, the inclusion of random delay to model disruption is con-
sidered (also refer to assumption item 5.1). For more details on the methodological steps to be
taken in the modelling process, refer to chapter 8.

Minutes Delay at Gate: when considering delay at the gate, the delay in minutes will be mea-
sured with respect to the TSAT time. This is the time that is used as an input for the model
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and corresponds with the time that the aircraft will have to leave the gate. Refer to assumption
item 4.10 why the TSAT is used.

4.5. Control of AGVs

In order to satisfy all demands in the AGV-system as efficient as possible in a safe manner, a control
policy should be set in place. This policy should include a strategy for dispatching the vehicles to loads,
routing and scheduling of the vehicles and dispatching idle vehicles to waiting locations [53].

A determining factor in choosing the set-up of such a control policy, is the difference between an
offline and online controlled system. When all transportation demands including origin, destination,
release time and transportation time are known beforehand for a certain time frame, the system can
be classified as an offline system. If the complete set of tasks is not known a priori and/or decisions
have to made real-time due to the stochastic nature of the system (e.g. high degree of uncertainty),
the system will have to be controlled online [53].

4.5.1. Dispatching of Vehicles

When considering the assignment of vehicles to loads, Vis [53] describes two different approaches for
the dispatching problem: work centre initiated dispatching vs. vehicle initiated dispatching. Viewing the
dispatching problem from a work centre point of view, means that a vehicle is selected from a set of idle
vehicles to perform a task. In the vehicle initiated dispatching problem, a vehicle that is not assigned
to a task has to choose a task from a set of open requests.

The dispatching of vehicles only plays a role in problems that assume a finite number of vehicles
available. Within those studies, the majority models the problem as a Vehicle Routing Problem (VRP)
using a Mixed-Integer Linear Programming (MILP) approach, implying a work centre initiated dispatch-
ing point of view [47, 60, 55, 56, 61, 54, 57]. In the work done by Khammash, Matecchini and Reis
[59], a general-purpose simulation tool is used to model the problem, not stating explicitly whether the
dispatching is work centre or vehicle initiated.

4.5.2. Routing and Scheduling of Vehicles

Similarly to dispatching strategies, routing and scheduling of vehicles is mostly done using linear pro-
gramming techniques, by modelling the problem as a VRP [30, 31, 58, 60, 61, 54, 55, 56, 57]. The
three main exceptions are the work done by Benda [18], Soomers [8] and Kamphof [9], which use an
agent-based approach.

According to Vis [53], VRPs can be categorized as static problems, meaning that the route is de-
termined in advance and that the solution will be carried out as planned. Opposite to this are dynamic
problems, where the routing of vehicles is based on real-time information and changes in the system
are taken into account when planning [53]. Despite the stochastic nature of the airport environment
and related ground operations, all studies under consideration model the routing and scheduling of
vehicles as a static problem [18, 30, 31, 58, 60, 61, 54, 56, 57, 8, 9]. One exception is the study done
by Tindemans [55], who takes into account uncertainties in arrival and departure times of aircraft by
generating operating times based on probability density functions. However, this study still assumes
an offline version of the problem, since it is assumed that the flight schedule for an entire day (including
the uncertainties) is known beforehand.

More details on suitable modelling techniques used for dispatching, routing and scheduling in the
field of ground surface operations will be provided in subsection 4.6.3. A review of the state-of-the-art
algorithms on dispatching and routing/scheduling can be found in chapter 5 and chapter 6 respectively.

4.5.3. Positioning of Idle Vehicles

After having finished a task, a vehicle can either immediately get assigned a new task or can become
idle. If a vehicle becomes idle, it has to be positioned in the system in such a way that it can efficiently
reach a new task and does not block tasks or routes for other (active) vehicles [53]. Three commonly
applied rules for positioning idling vehicles are mentioned by Vis [53]:

» Central Zone Positioning Rule: idling vehicles are routed towards centrally located parking
areas and can respond to new tasks once arrived at these buffer locations.

 Circulatory Loop Positioning Rule: when having completed a task, empty vehicles are routed
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on one or more loops in the network and wait from there for new tasks to fulfill.

» Point of Release Positioning Rule: once a vehicle becomes idle (after having completed a task
at a destination), it remains at its last point of release until a new task is assigned.

When considering the positioning of idling towing tugs, almost all studies assume that after completion
of a towing assignment, the tug moves back to a parking or holding location [18, 30, 31, 47, 58, 52,
60, 61, 54, 8, 9]. For some studies, the possibility of directly moving towards a new departing aircraft
is included [30, 31, 47, 60, 61, 54].

With regards to the studies using AAS as use case, the location of the parking facility is not always
specified [61, 7, 6]. In studies that have specified these locations, the parking locations for towing
trucks used by KLM near the G-pier (WB) and the B-pier (NB) [18], the P-platforms P1 and P2 [60] and
a dead-end node in the north of the central service road network near the H-apron [8, 9] are used as
parking locations for the towing trucks.

4.5.4. Concluding Remarks on Control of AGVs

The focus of this study will be on evaluating different TaxiBot dispatching strategies in the context
of aircraft ground movements. Different dispatching, routing and scheduling algorithms will therefore
be elaborated on more extensively in chapter 5 to chapter 7. However, some specific control-related
assumptions will be elaborated on below.

Assumptions

5.1 Perfect Execution: in the baseline model of this thesis, it is assumed that the execution of
the plan generated by the model is perfect and that no unexpected delays or disruptions will
occur. In reality, airport ground operations are inherently stochastic by nature, and therefore, this
assumption results in a simplification of real operations. However, since this study is one of the
first to investigate allocation of a finite fleet of TaxiBots to outbound aircraft, it is considered valid
to focus merely on the planning phase.
When time and resources allow to do so, it is planned to incorporate a type of unexpected events
into the model by introducing some random variable representing delay. For more details on the
methodological steps to be taken in the modelling process, refer to chapter 8.

5.2 Online Problem: the problem will be modelled in an online setting using intervals, meaning that
new information on arriving and departing flights will arrive in the system in time intervals. Since in
real-life operations the TSAT is issued approximately 10 minutes before the EOBT, a time horizon
of 10 minutes look-ahead is used in this thesis. However, it is assumed that for this entire interval,
all the information is available and no changes will occur. In reality, this is not the case (item 4.11
in section 4.4 and item 5.1).

5.3 Waiting Locations TaxiBots: similarly to the model used by Soomers [8], the main parking
location for the TaxiBots is located at a dead-end node in the north of the central service road
network near the H-apron.

4.6. Final Concept of Operations
Based on the literature review and associated assumptions made throughout the previous sections, a
final concept of operations can be formulated. This concept of operations can be seen as a high-level
summary of all assumptions made earlier and is described in subsection 4.6.1. In addition, the scope
of the research is also set and described.

Next, a set of system requirements is formulated, based on the concept of operations and described
in subsection 4.6.2. These requirements are used to provide for the mapping of the domain (deploying
TaxiBots at AAS) to the modelling technique, which is elaborated on in subsection 4.6.3.

4.6.1. Summary

In this study, the deployment of TaxiBots to make fully outbound towing at AAS possible, will be studied.
The main goal will be to minimize the travel time, taking into account both environmental impact in
terms of fuel consumption and delay with respect to conventional airport ground and taxi operations.
All inbound flights will taxi from the runway to their designated gate using their own engines.
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Actual flight schedules for past operating days with the two most frequently used RMOs will be used
to evaluate the feasibility of the concept. Note that the flight schedule is considered to be deterministic
in the baseline model, meaning that no unexpected deviations or disruptions will occur in the execution.
Future model extensions might include unexpected events by including a random variable representing
delay. In addition, both runway scheduling and gate allocation are considered outside the scope of this
study, meaning that the assigned runway and allocated gate are based on historic data and available
in the flight schedule. A simplified version of pre-departure sequencing is taken into account to avoid
runway queuing, by using the TSAT as the time that an aircraft will have to leave the gate.

From an operational point of view, interaction between different vehicles is taken into account by
ensuring separation between all aircraft and between aircraft and TaxiBots. Coupling of the TaxiBot
to the assigned aircraft will happen at the gate, decoupling will take place on an assigned decoupling
location. Both centralized and decentralized decoupling is possible, implying that all possible (future)
decoupling locations at AAS are available for the model to choose from. Apron operations will be
included in the model. The main parking/waiting location for TaxiBots is located near the H-apron, on
the north of the central service road network. Note that no differentiation in type of TaxiBot is made
(Narrow-Body and Wide-Body versions). In this study, only the use of the NB TaxiBot will be considered,
assuming that this type is certified to tow all aircraft.

Scope of Research

When considering the aforementioned concept of operations for the deployment of TaxiBots at AAS,
several boundaries regarding the scope of this research can be identified in order to keep realistic
research goals in terms of resources and time.

» Operational Feasibility: the main focus of this study is to evaluate the operational feasibility
of deploying TaxiBots at AAS, while economic feasibility is investigated to a lesser extent. Both
technical feasibility and legal feasibility of the concept are not taken into account.

- Commercial Airlines: in this research, only taxi operations for commercial passenger flights are
considered, excluding cargo flights, military flights and general aviation.

* Human TaxiBot Drivers: itis assumed that enough trained crew is present to handle the TaxiBots
at AAS. Besides, no additional time has been accounted for switching drivers during operating
hours because of ending shifts.

* Human-Machine Interactions: although itis assumed that TaxiBots will be controlled by a human
driver, the resulting human-machine interactions are considered to be outside the scope of this
research. Instead, it is assumed that no disruptions arise due to human factors, implying that
humans execute all commands perfectly.

 Air Traffic Control: the consequences of implementing a tug-enabled taxiing system on ATC
is not considered in this research, both in terms of workload and procedural changes as well
as technical changes of the current ATM systems. In addition, legal feasibility of the concept in
relation to ATC is not considered in this research.

+ Environmental Impact: the environmental impact of deploying TaxiBots in comparison with con-
ventional taxi operations will be determined only in terms of fuel consumption, excluding quantifi-
cation of greenhouse gas emissions and aircraft noise.

- Nominal Operating Conditions: this study focuses on nominal operating conditions, meaning
that all non-nominal operations are excluded from the analysis. This includes for example de-icing
operations and low visibility conditions.

» Operating Data: due to the COVID-19 pandemic, operating data will be based on the year 2019
(instead of 2020 or 2021) to account for a more realistic scenario for the coming years. Expected
growth of the aviation sector with respect to 2019 is not taken into account and thus, the feasibility
of the concept will be evaluated based on travel levels in 2019.
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4.6.2. System Requirements
Based on the concept of operations and associated assumptions, a set of model requirements can be
formulated. These requirements will form the basis for the evaluation of the suitability of a modelling
paradigm and more specifically, which algorithms related to dispatching, routing and scheduling are
suitable to study the implementation of TaxiBots at AAS.

Note that this set of system requirements is not meant to be a complete and all-encompassing set
of requirements, but rather can be considered an extension of the aforementioned set of assumptions.

1. The airport nodal network shall represent the lay-out of Amsterdam Airport Schiphol (AAS), in-
cluding apron areas, service roads, taxiways and runways.

2. The flight schedule shall match a real flight schedule at AAS for operating days where only the
two most frequently employed RMOs are in use.

3. The objective of the model shall be to minimize the total taxi travel time of all outbound and
inbound flights.

Conflict and collision avoidance strategies for both aircraft and TaxiBots shall be in place.
The model shall be able to deal with unexpected delays and disruptions.

The model shall be able to be used for real-time operations and in an online setting.

N o o &

The model shall be able to generate results on performance for both the high-level system, as
well as for the local level (considering specific runways and/or taxi segments).

8. The model shall be completed within the limited time and resources available.

4.6.3. Modelling Paradigm

Based on the concept of operations and resulting system requirements as formulated above, a choice
for a modelling paradigm has to be made. In this section, the characteristics and benefits of multi-agent
systems will be discussed, including its applicability to the problem under consideration specifically.
Special attention will be paid to coordination between agents. All information provided in these sections
is based on the lecture series on "Agent-Based Modelling and Simulation in Air Transportation” of
Sharpanskykh [66, 67, 68].

Characteristics of the Agent-Based Modelling Paradigm

Within the agent-based modelling paradigm, a model is specified as a Multi-Agent System (MAS), which
is "a set of agents interacting in the environment to solve problems, achieve goals, or execute tasks that
are difficult or impossible for a single agent” [66, p. 22]. Within this definition, three key components of
MASSs can be distinguished: the environment, agents and interaction [66].

« Environment: the environment of a MAS consists of all objects that are not agents. However,
agents can interact with the environment or act upon (changes in) the environment. The environ-
ment can be classified along three axes:

— Deterministic vs. Non-Deterministic: in a deterministic environment, a specific action
always has the same effect that is known beforehand. In other words, no uncertainty in the
consequences of actions is considered.

— Static vs. Dynamic: in a static environment, no changes occur except the changes that are
a consequences of actions of agents. In dynamic environments, the environment itself may
change over time, unrelated to agent behaviour.

— Accessible vs. Inaccessible: in an accessible environment, all agents always have access
to the complete state of the entire system.

« Agents: agents in a MAS are autonomous actors in the environment. They are able to perceive
this environment and act upon changes in it, based on their behavioural properties. Agents can
also include some form of rationality, that allows them to not only be driven by observations, but
also by internal states. In that case, one speaks of the agent characterized by cognitive properties
as well.
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* Interaction: when considering interaction, both interaction among agents and between agents
and the environment is considered. Social abilities of agents allow them to communicate and
coordinate with each other. In addition, agents might have the ability to reason about behaviour
or internal states of other agents. More on coordination between agents is elaborated on in the
next section.

Benefits of Agent-Based Modelling Paradigm

As mentioned before, the agent-based modelling paradigm is due to its characteristics suitable to ap-
ply in the general transportation domain [69]. When examining the system requirements described in
subsection 4.6.2 in more detail, it can be concluded that also in this context, the agent-based mod-
elling paradigm is very applicable and suitable. In accordance with Adler and Blue [70], Sharpanskykh
also concludes that agent-based modelling is a suitable technique especially for geographically open
distributed system [66]. When considering system requirement item 1, it becomes apparent that the
problem is geographically dispersed over an airport environment. Since agent-based modelling allows
for explicit interaction between components and agents [66], the implementation of collision and conflict
avoidance strategies (system requirement item 4). Furthermore, with regards to system requirement
item 5 and item 6, it is noted by Sharpanskykh that MASs are especially suitable for dynamic, uncertain
environments that allow for analyzing of emergent behaviour [66]. Finally, since agent-based models
are inherent to represent multiple scales of analysis [66], a MAS is deemed suitable to generate per-
formance results on both the high-level, as well as the local level.

Although the agent-based modelling paradigm seems very suitable based on the majority of the sys-
tem requirements, special attention should be paid to item 8, concerning limited resources. One of the
disadvantages of agent-based modelling, is that it may be (very) time-consuming to create an agent-
based model [66]. Therefore, in the modelling phase of this thesis, the available time and resources
should be monitored closely to prevent serious delay from happening.

Control Structures in an Agent-Based Network

Different type of control structures can be distinguished in networks, as shown in Figure 4.6. In a cen-
tralized network, information about the state of the entire network is known at the central node. When
moving from a centralized network to a more decentralized or even distributed network, differences
mainly arise due to differences in this information availability. In a decentralized network, nodes only
have information about local conditions in their connected cluster of nodes, whereas in a distributed
network, no hierarchical structure is present. All nodes are equally connected and all have the same
amount of information available. With less information available in decentralized and/or distributed net-
works, this often leads to a faster response to changes since decision authority and thus, processing
capacity is distributed over more resources. However, local optimization may not result in a global
optimal solution. Since in a centralized network information about the state of all nodes is available at
a single point, global optimization of the entire network is allowed [1].

Station

(a) Centralized (b) Decentralized (c) Distributed

Figure 4.6: Graphical representation of centralized (a), decentralized (b) and distributed (c) networks [71].
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Concerning current control in the field of ATM, this is mainly done in a centralized manner. Several
studies suggest a shift from the current centralized control paradigm to a more decentralized system,
including Udluft [1]. The reason for this is that it could increase the available capacity by moving away
decision authority and consequently, the number of tasks, from a centralized control unit to distributed
entities in the system. In the context of air traffic management, “control” can be visualized using net-
works consisting of nodes (elements where information is processed, or agents) and links (elements
that connect nodes and represent transfer of information, or interactions between agents) [1].

In their work, Soomers [8] and Kamphof [9] propose a hierarchical multi-agent control architecture,
using both centralized and decentralized approaches at different levels of the system to combine the
advantages of both control structures. In this hierarchical control architecture, planning and conflict
avoidance is performed on the central level, whereas plan instruction, execution and monitoring is per-
formed at a local level. A visualization of the control structure is presented in Figure 4.7. Since the
work of Soomers [8] and Kamphof [9] show that the proposed architecture is capable of providing for
safe and efficient ground surface operations, the same control architecture will be used in this thesis.

m Central Route Planning and
Coordination

Local Plan Instruction and 4 |% g l% 4 @
Q % O H%
Execution Monitoring fQ/V 22 Py

Local Execution a’ ﬁ )*

Figure 4.7: Visualization of the hierarchical multi-agent control architecture used in the work of Soomers and Kamphof. Taken
from [9].

Coordination Between Agents

When considering coordination between agents, two types of settings can be considered: a cooperative
setting and competitive setting (Figure 4.8). Intuitively, one can understand that when cooperating,
agents try to combine their efforts to accomplish a common goal, whereas agents try to maximize their
own benefits at the expense of others in a competitive setting.

Coordination

Cooperation Competition

Planning Negotiation

Distributed Planning Centralized Planning

Figure 4.8: Classification of different types of coordination in a MAS. Taken from [67].

In this context, a cooperative fleet of TaxiBot is considered to perform outbound towing at AAS. As a
consequence, all TaxiBot agents will work together to maximize the defined objective. More on the
specifics on the objective of the fleet of TaxiBots can be found in chapter 5.

As can be seen in Figure 4.8, when considering a cooperative setting among agents in a MAS, a
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multi-agent planning problem arises. In this problem, the goal is to find a plan for each individual agent
such that both global and individual goals are met by means of coordination between the set of agents
[68]. The coordination can either be set up in a centralized manner or in a distributed/decentralized
manner, as discussed in the previous section.

The general multi-agent planning problem usually consists of six phases, outlined below [68]. Note
that not all phases have to be part of the multi-agent planning problem. In addition, a seventh step
related to replanning may be incorporated [68].

1. Global Goal or Task Refinement: if necessary, the global goal is divided into a set of sub-goals
that can be assigned to individual agents.

2. Task Allocation: the set of (sub-)goals or (sub-)tasks is assigned to agents.

3. Coordination Before Planning: in this phase, a set of rules or constraints is defined that restrict
the behaviour of agents, usually aimed at preventing the production of conflicting plans.

4. Individual Planning: each individual agent makes a plan to perform the assigned task(s). In this
phase, coordination among agents may be involved.

5. Coordination After Planning: all individual plans of agents are coordinated to check for con-
flicting plans.

6. Plan Execution: after resolving of conflicts, plans are executed. This phase may involve coordi-
nation as well.

Concluding Remarks on Modelling Paradigm
Within the general traffic and transportation domain, agent-based approaches are widely used to model
and simulate control [69]. According to a study done by Adler and Blue [70], the agent computing
paradigm can provide significant benefits in problem domains that 1) are geographically distributed; 2)
have a dynamic nature; and 3) require flexible interactions of subsystems. Since transportation sys-
tems are in general spatially distributed and characterized by highly dynamic environments that require
communication on different levels, agent-based approaches are considered to be suitable [69]. Simi-
larly, when modelling TaxiBots at AAS, we are also dealing with a geographically distributed problem
(system requirement item 1) that is inherently dynamic and uncertain by nature (system requirement
item 5 and item 6). Based on the previous review of the agent-based modelling paradigm, it is con-
cluded that this modelling technique is suitable to use in the remainder of this thesis.

This claim is backed up by the fact that existing research on distributed control in aviation in general
[1, 16, 17, 72] and on the implementation of external towing tugs at airports [18, 8, 9] is largely based
on the agent-based modelling paradigm.
Using the aforementioned enumeration related to the multi-agent planning problem as a guideline for
the remainder of this report results in the following structure: first, the problem of assigning agents to
tasks will be discussed in chapter 5. Next, finding a set of paths to execute the task assignment will be
elaborated on in chapter 6. Finally, special attention will be paid to the combination of task allocation
with path finding in chapter 7.



Multi-Robot Task Assignment

Up to this point, the domain of the problem under consideration in this thesis has been described,
concluded with a fully defined concept of operations in chapter 4. Based on this concept of operations,
a Multi-Agent System (MAS) can be set up. One of the phases in this MAS will be the assignment of
tasks to agents, or the allocation of a finite fleet of TaxiBots to all outbound flight at AAS.

Therefore, in this chapter, the subject of task allocation will be further explored, starting with a
taxonomy of allocation problems in section 5.1. Next, a broad overview of different task assignment
approaches will be provided in section 5.2, including a trade-off of these approaches with respect to
applicability in the TaxiBot domain. Based on the trade-off, two approaches will be elaborated on
in more detail: greedy approaches in section 5.3 and auction-based approaches in section 5.4. Both
sections will be concluded with a review on which algorithm is deemed most suitable to use for allocating
TaxiBots to outbound flights.

5.1. Classification of Allocation Problems

In the work done by Gerkey and Mataric [7 3], it becomes apparent that existing task allocation problems
can be categorized along three different dimensions. These dimensions are visualized in Figure 5.1
and explained below.

+ Single-Task Robots (ST) vs. Multi-Task Robots (MT): in the case of ST problems, each robot
can execute at most one task at a time, whereas in MT problems, some robots can perform
multiple tasks simultaneously.

- Single-Robot Tasks (SR) vs. Multi-Robot Tasks (MR): in the case of SR problems, each task
can be fulfilled by exactly one robot, whereas in MR problems, multiple robots are needed to fulfill
one task.

* Instantaneous Assignment (IA) vs. Time-Extended Assignment (TA): in the case of IA prob-
lems, the available information related to tasks, robots and the environment only allows for in-
stantaneous allocation of tasks to robots, whereas in TA problems, the number of tasks exceeds
the number of robots and/or more information is available (such as how tasks are expected to
arrive over time), allowing for reasoning of agents about future allocation of tasks.

Based on the concept of operations as described in section 4.6 and the associated assumptions in
chapter 4, the problem that will be studied in this thesis can be classified as an ST-SR-TA problem ac-
cording to the definitions above. Each TaxiBot can only tow one aircraft at a time (ST), each aircraft can
be towed by exactly one TaxiBot (SR) and based on the windowed approach of making the information
in the flight schedule available to the agents, TaxiBot agents are allowed to consider future allocations
to outbound flights up to a certain extent (TA).

Although the taxonomy used by Gerkey and Mataric is widely used and considered ground-breaking
at the time, in the work done by Korsah, Stentz and Dias [74] it is argued that this classification is in-
complete since it is limited to systems with independent tasks. An example given by the authors that is

77
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Task Type MR ' , Robot Type

Single robot (SR) versus i Single-task (ST) versus

multi robot (MR) tasks g 11T 71 multi ~task (MT) robots
SR /T

1A TA

Allocation Type
Instantaneous assignment (IA) versus
time-extended assignment (TA)

Figure 5.1: Visualization of the dimensions along which Gerkey and Mataric [73] categorize different task allocation problems.
Based on work done by Korsah, Stentz and Dias [74].

notably excluded, concerns multi-robot routing systems in which robots have to perform various spa-
tially distributed tasks. Obviously, it could improve overall system performance if the tasks that are
located close together, are executed by the same robot. In this case, the total utility of the robot per-
forming these clustered tasks might not equal the sum of the utilities for executing them one by one.
Therefore, Korsah, Stentz and Dias propose another taxonomy called iTax to explicitly incorporate the
degree of interrelated utilities and task constraints [74]. Since the assignment of a TaxiBot to aircraft
depends on which aircraft at which location is dropped off before, taking interrelated utilities into ac-
count is relevant for this subject.

The authors propose a two-level taxonomy, where the first level relates to the degree of interdepen-
dence of agent-task utilities. A description of the four different options is given below [74]. The second
level uses the taxonomy used by Gerkey and Mataric mentioned before [73].

* No Dependencies (ND): in this case, the utility of an agent performing a task is completely in-
dependent of all other tasks and agents in the system, which commonly occurs when the utility
function of an agent is determined by its capabilities or proximity to a certain task.

* In-Schedule Dependencies (ID): in this case, the utility of an agent performing a task is depen-
dent on the other tasks assigned to the agent, which commonly occurs in time-extended allocation
problems. Another case in which In-Schedule Dependencies occur is when agents are capable
of performing multiple tasks simultaneously.

» Cross-Schedule Dependencies (XD): in this case, the utility of an agent performing a task does
not only depend on its own schedule, but also on the schedule of other agents. A common
example is when tasks consists of multiple sub-tasks that need to be performed in a predeter-
mined order by different agents, in some cases even simultaneously. A key difference between
In-Schedule Dependencies and Cross-Schedule Dependencies is that for ID, agents can indi-
vidually optimize their schedule, while for XD this can only be done in coordination with other
agents.

+ Complex Dependencies (CD): in this case, the goal is to allocate complex tasks to the avail-
able agents. Complex tasks have multiple possible decompositions, meaning that not only the
question of who is going to perform a task and when, but also which set of sub-tasks should
be performed. Similar to Cross-Schedule Dependencies, an agent’s utility is dependent on the
schedules of other agents.

When considering task allocation in the context of assigning TaxiBots to outbound flights, the utilities of
agents are interrelated based on In-Schedule Dependencies. Since tasks can be performed by single
agents independently of the other agents in the system, no cross-schedule or complex dependencies
exist. However, the utility of performing a task for a single agent is indeed dependent on the other
tasks in its schedule. For example, towing a certain aircraft to a certain runway influences the utility
of towing future aircraft: some might be located closer to the end position of the agent then others. In
addition, since outbound aircraft have task deadlines (times that towing should start), previous tasks of
agents affect whether they can make it in time to future outbound flights. Thus, their utility is affected
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by previous tasks in their schedule.

To conclude, the allocation problem related to assigning TaxiBots to outbound flights at AAS can be
considered a ID [ST-SR-TA] problem. Therefore, in the remainder of this chapter, focus will be put on
solution techniques that apply to this variant of the task allocation problem.

5.2. Overview and Comparison of Solution Techniques

In this section, an overview of solution techniques applicable to the IDST-SR-TA problem is provided.
Based on the survey of Korsah, Stentz and Dias [74], a distinction between optimization-based and
market-based approaches can be made. Both solution techniques will be elaborated on below, followed
by a trade-off in subsection 5.2.3.

5.2.1. Optimization-Based Approaches

When dealing with optimization, one aims to find mathematically a solution that maximizes or minimizes
a certain function or variable subject to a set of constraints [75]. Based on the set of constraints, a set
of feasible solutions to the problem exist, and the optimal solution is then defined by a set of criteria
formulated in the form of an objective function [76].

Within the optimization domain, two main approaches can be distinguished: deterministic and
stochastic approaches [76, 77]. In the sections below, a general description of these two approaches
will be provided, including relevant literature on the application of such approaches in the domain of
MRTA.

Deterministic Approaches

Generally speaking, deterministic approaches apply a method for solving optimization problems to end
up with a global or an approximately global solution [78]. The guarantee of optimality is based on the
fact that deterministic optimization approaches are strictly repeatable: based on a certain initial condi-
tion, the approach will follow a set of strict and rigid procedures, resulting in the same result every time
the optimization is performed [76, 79].

One of the most well-known task allocation problems in optimization research is formulated as
the Optimal Assignment Problem (OAP) and can be characterized as a one-shot ST-SR-IA problem.
This problem is generally composed of r amount of robots and t amount of tasks, where t is at most equal
to r. This method can be solved in 0 (rt2) time by using linear programming optimization algorithms,
such as the Hungarian method [80]. Although these methods have shown to perform computationally
well when scaled to hundreds of robots and tasks [73], a prerequisite of these methods are the costs
related to each rt combination, which can be unavailable or computationally expensive to produce [81].

In the domain of MRTA, several studies have applied the Hungarian method in more realistic ver-
sions of the assignment problem. Examples of this are the study done by Mills-Tettey, Stent and Dias
[82], which efficiently recalculates the optimal assignment of tasks to robots in a dynamic environment
where costs associated for each robot-task combination may change.

Another interesting variation of the OAP is the variant where the number of tasks to be performed
exceeds the number of available robots or problems in which the arrival of new tasks is known before-
hand. When previously assigned robots can be reassigned after the arrival of new tasks, the problem
reduces to an instance of the iterated ST-SR-IA [73]. The iterated version of the ST-SR-IA problem can
both be solved deterministically (by rerunning the Hungarian algorithm every time a new task enters
the system) or greedily (refer to the section below). When robots cannot be reassigned after the arrival
of new tasks, the problem can be classified as ST-SR-TA. Since problems in this class are strongly
NP-hard, meaning that no guarantee for an optimal solution within polynomial time can be given, de-
terministic approaches are not suitable to tackle the OAP for ST-SR-TA problems. However, various
greedy approaches have been formulated based on the previous described deterministic approaches
to find (bounded) suboptimal solutions. These will be elaborated on in the following section.

Within the domain of MRTA, the allocation of agents to tasks can also be formulated as a Multiple Trav-
eling Salesmen Problem (mTSP). The mTSP is based on the original Traveling Salesmen Problem
(TSP), in which a salesmen has to visit n number of cities in the most efficient way (e.g. shortest route,
shortest time) before returning back home. When considering mTSP, the main difference with TSP is
that not one, but multiple salesmen are given. Various studies have formulated the MRTA problem as
a mTSP, due to its analogy with assigning robots to tasks in the most efficient way [83].
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For solving the mTSP, several classical optimization techniques have been considered, such as
Mixed-Integer Linear Programming (MILP) [84, 85]. Exact solution methods such as Branch-and-
Bound, Brach-and-Cut and Dynamic Programming have been used [86] that provide guarantees to
reach optimal solutions. However, as shown by Martin et al. [77], the number of feasible discrete solu-
tions for the considered ST-SR-TA MRTA problem can be approximated by Equation 5.1 ' Already for
5 robots and 5 tasks, the number of feasible solutions goes up to 244,140,625, which is several orders
of magnitude larger than the proposed limit for using exact methods (less than 10> solutions according
to Equation 5.1) [77].

t+1
Ngo = (r - t)

(5.1)
Greedy Approaches

For various MRTA problems, the number of tasks t often exceeds the number of robots r, not allowing
to deterministically compute a solution using the OAP formulation. In addition, new tasks might arrive
in an online fashion to the system, requiring time-extended scheduling of tasks for each robot. Both
problems are instances of the ST-SR-TA problem, which is known to be strongly NP-hard. However,
as mentioned before, when previously assigned robots can be reassigned, the problem reduces to an
instance of the iterated ST-SR-IA. The iterated version of the ST-SR-IA problem can be solved using
a deterministic approach as explained before, or by the use of the Broadcast of Local Eligibility (BLE)
assignment algorithm [87]. The greedy BLE algorithm is known to be 2-competitive for the OAP, mean-
ing that in the worst case scenario, the algorithm will produce a solution with the benefit of at least half
of the benefit of the optimal solution [73]. However, it is noted by the authors of [73] that the greedy
algorithm "works extremely well on [typical MRTA] problems” [73, p. 945].

When previously assigned agents are not allowed to be reassigned, the ST-SR-TA problem can be
approximately solved by reducing it to an online instance of the ST-SR-IA problem. This problem can
be solved sequentially by first optimally solving the initial assignment problem (e.g. using the Hungarian
method) and afterwards greedily assigning remaining tasks in an online fashion when the agents be-
come available. The latter can be done by using the MURDOCH algorithm, which prescribes to assign
a new task upon introduction to the most fit agent to execute this task [73]. Note that if re-allocation
of robots is not allowed, the MURDOCH algorithm is known to produce the best possible outcome for
any online assignment problem [73]. This ST-SR-TA approximation algorithm is 3-competitive in the
worst case for the offline OAP, but performance approaches optimality when the difference between
the number of of initially presented tasks and robots decreases.

One of the works that implements an online version of the Hungarian method in the context of
pickup and delivery problems is the research done by Ma et al. [88]. They use the algorithm CENTRAL
that combines task allocation and path planning for robots with pickup and delivery tasks in a ware-
house setting. Although the algorithm is capable of performing efficient task assignment every time a
task enters the system, the running times are considerably large for reasonable number of agents and
tasks (e.g. around 400 seconds for 20 agents and 500 tasks, all added with a frequency of 2 tasks per
timestep). However, since CENTRAL both performs task allocation and path planning, the run time
cannot be solely attributed to the task allocation mechanism. It remains unclear how the computational
time should be divided over the task allocation and path finding part respectively.

Stochastic Approaches
Due to scalability issues with deterministic approaches for optimization problems in the domain of task
allocation, several heuristic or stochastic methods have been developed to find solutions in reasonable
time frames. Stochastic approaches are characterized by the integration of random factors, meaning
that solutions are generated by combining heuristics and randomness and not guaranteed to produce
the exact same result every time [76, 79]. Although stochastic approaches are in general more effi-
cient and flexible than deterministic approaches, the solution quality of stochastic approaches cannot
be guaranteed [78].

Two main approaches can be distinguished within the domain of stochastic optimization approaches:
trajectory-based and population-based algorithms [76]. Trajectory-based methods make use of a sin-
gle agent or solution, moving through the solution space in a discrete fashion by adhering to certain

"The determination of the number of feasible solutions is based on the fact that the problem is modelled mathematically using
discrete variables u;(n), representing the nth allocated task to robot i [77].
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guidelines. A better solution is always accepted, whereas a not-so-good solution can be accepted with
a certain probability. Examples of trajectory-based algorithms are tabu search and simulated anneal-
ing [75]. In the work done by Juedes et al. [89], a simulated annealing approach is used to allocate
tasks to processors based on the workload of each task. Through experiments, it was shown that the
simulated annealing algorithm generated comparable results with respect to a greedy algorithm (ana-
lytically proven to provide a solution of at least 41% of the optimal). Although results went up using a
larger number of iterations (40,000), this also increased run time significantly: around 700 seconds for
the allocation of 20 tasks to 10 processors, compared to 170 seconds for 10,000 iterations.

The work done by Zhang, Collins and Shi [90] shows that both the run time and solution quality for
a simulated annealing approach are also highly dependent on the cooling ratio. For smaller cooling ra-
tios, run time increase significantly, but so does the solution quality (with respect to greedy algorithms)
and v.v. In experiments where 3 robots are used to perform 50 tasks, the solution is approximately 12%
increased with respect to a greedy algorithm, while run times are 200 times higher (around 20 seconds
versus 0.1 second for a greedy algorithm). Note that this applies to a simulated annealing approach
using a smaller cooler rate. Finally, it was also tested by these authors how the simulated annealing
algorithm performs in an online environment. In the case of 6 robots and 50 tasks, the number of re-
quired iterations has increased sixfold. It is not clear how this relates to run time, but based on other
research, it is expected that run times increase at least sixfold as well.

Finally, the research of Hussein and Khamis [91] compares two optimization-based methods (a
simulated annealing algorithm and genetic algorithm) with a market-based approach in the context of
MRTA. For large scale problems (including 15 robots and 50 tasks), they show that the simulated an-
nealing algorithm reaches the best solution of the three approaches in approximately 20 seconds.

Among the reviewed studies related to trajectory-based stochastic approaches, it can be concluded
that large variations in run times arise. However, for all outcomes it holds that no guarantees on the
bounds for optimality can be provided. In addition, generally speaking, it can be concluded that the
large number of iterations required for a trajectory-based algorithm does not allow for scalability to
TaxiBot applications in an online environment [81, 86].

Next to trajectory-based approaches, population-based approaches can be used to find solutions to
the task allocation problem. These include amongst others genetic algorithms, swarm optimization
approaches or evolutionary-based algorithms. Compared to trajectory-based approaches, population-
based approaches use multiple agents or solutions instead of a single one to explore the search space
to find a near-optimal solution [76].

Genetic algorithms are widely applied to solve problems formulated as an instance of the mTSP
[92, 93, 94, 95, 96, 97, 98]. The principle of the genetic algorithm relies on the Darwinian theory of
evolution and survival of the fittest. Based on combining promising solutions and applying mutations
to the combined solution, the search space is discovered [99]. Although all research apply different
variations of the genetic algorithm, a common characteristic is that several thousands of iterations are
generally needed to reach stable solutions (3-5 robots and 20-70 tasks). In addition with the fact that
most research assume task allocation problems of the ST-SR-IA class and ignore any time-extended
assignment of robots to tasks, seems to make genetic algorithms not suitable to apply in the domain
of TaxiBot scheduling.

However, several exceptions were found with regards to the significant running times needed for
convergence. In the work done by Martin et al. [77], a genetic algorithm is used to allocate 5 robots (het-
erogeneous fleet) to 15 inspection tasks in a solar power plant represented by a meshed warehouse-like
grid. While the algorithm was able to present near-optimal solutions, the total average computation time
was just 3.5 seconds. Furthermore, the research took temporal constraints into account by modelling
the problem as an instance of the ST-SR-TA class. However, no guarantees on optimality of the genetic
algorithm can be provided [77]. In the work done by Edison and Shima [100], a genetic algorithm is
used to solve the integrated task assignment and path finding problem for UAVs. Roughly speaking,
the run time of the algorithm was % of the entire scenario duration, meaning that for a scenario of 2
minutes, the algorithm took around 2 seconds.

Another research implemented a decentralized version of the genetic algorithm to a situation where
a number of tasks are distributed over a grid of 100 x 100, to be performed by a selection of robots [101].
For a scenario where 45 tasks were to be executed by 5 robots, the algorithm did not only produce the
best solution compared to other state-of-the-art heuristics, it was also shown to converge rapidly (within
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5 seconds after completion of the first iteration). However, no graph-based layout was used, possibly
increasing the complexity of the problem. In addition, the online arrival of new tasks to the system has
not been evaluated.

Next to genetic algorithms, swarm-based approaches can be found in the literature that tackle the
MRTA problem. Similarly as for genetic algorithms, often a large number of iterations is required to
produce converging solutions. An example of this is presented in the work done by Du et al. [102],
which combines task allocation based on the model of honeybees (where agents specialize in certain
tasks) with the Ant Colony Optimization (ACO) algorithm that is based on the shortest-path finding ca-
pability of ants to their food using pheromones. The result is the so-called Ant Task Allocation (ATA)
algorithm. Even for a simple grid-like environment, several thousands of iterations are needed to pro-
duce converging solutions. Another research makes use of the ACO algorithm in the context of gate
assignment [103]. Although the algorithm produces results relatively fast (on average 3 seconds) for
the assignment of 10 aircraft to 6 available gates, the computational time increases significantly when
the number of aircraft is increased to 30 (on average 80 seconds). Similar examples can be seen in
research on applying Particle Swarm Optimization (PSO) to cooperatively assign UAVs to military tasks
[104], combining PSO with hill-climbing and neighborhood search techniques to assign towing trucks to
taxiing aircraft [105] and using a evolutionary-based algorithm to assign UAVs to tasks, while avoiding
dead-locks and taking time-sensitive uncertainties into account [106].

Some interesting exceptions to the large number of required iterations for swarm-based approaches
can be found in the literature. An example of this is the work done by Kurdi et al. [107] and uses a
bacteria-inspired approach to allocate UAVs to perform tasks in a cooperative setting. During foraging,
bacterial colonies show swarm movement based on the release of attracting and repelling chemicals.
Using this behaviour as a source of inspiration, UAVs are assigned to tasks related to detection and
treatment of palms in plantation areas. Especially with respect to scalability and increasing number
of robots, the Multi-UAV Task Allocation for RPW Combat Based on Bacteria Behaviour (UTARB) al-
gorithm outperforms several other state-of-the-art heuristics significantly. For a set of 64 tasks and
varying robot numbers (2, 4, 8, 16 and 32), all calculations could be performed within 30 seconds while
maximizing throughput, where other heuristics need at least several minutes and in most cases multiple
hours. However, no applications to an online setting are tested.

5.2.2. Market-Based Approaches

Whereas optimization-based approaches focus on exploring a finite solution space based on a set of
constraints, market-based approaches are inspired by the market trading concept and are based on
economic theory [76].

Two main approaches can be distinguished: approaches based on auctions and based on game
theory. According to economic theory, an auction is a mechanism in which activities can be distributed
among participants according to their bids and bid evaluation criteria [76, 108]. On the other hand,
game theoretic approaches model agents and their objectives in a game setting, allowing for agents to
maximize their own utility based on knowledge about the other agents and the environment [86].

Auction-Based Approaches

Ever since the beginning of history, auctions have been used to allocate resources among a group
of participants [109]. Generally speaking, the process of task allocation when considering auction
mechanisms can be split up in four stages: announcement, submission, selection and contract [76,
108].

+ Announcement: a central auctioneer announces the available tasks in the system and informs
the robots on the specifics related to the tasks.

+ Submission: based on its capability to perform the task and the objective function, each individ-
ual agent submits a bid to the central auctioneer representing the individual utility.

+ Selection: depending on the optimization strategy, the central auctioneer evaluates the received
bids and chooses the winning agent.

« Contract: the winning agent is offered a contract by the central auctioneer to commit to its bid
and to perform the task under consideration.
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In some cases, no central auctioneer is present, allowing tasks to be allocated based on the submitted
bids and a consensus algorithm. Auctions of this type are therefore referred to as consensus-based
auctions [110]. Furthermore, a distinction can be made between open-cry auctions, where all bids are
publicly available to all agents involved, and sealed-bid auctions, where bids are only submitted to the
auctioneer. In most MRTA applications, use is made of sealed-bid auctions [110].

Although it might seem counter-intuitive to use a competitive mechanism in a cooperative setting
where the goal is to maximize the entire system performance, it is noted by Gerkey and Mataric that
agents are not considered to be selfish: "the most basic motivation is to do useful work” [109, p. 761].
Thus, greedy or dis-honest behaviour will not occur, and self-interested actions will only be seen if this
is due to limited resources that impact the quality of work (e.g. low battery levels might result in refusing
to take on new tasks) [109].

Auction-based approaches are widely studied and implemented in the field of MRTA [81, 86, 108].
The reason for this is that they are scalable to large networks, while remaining computationally efficient
[76, 81, 86, 109, 111]. This is mainly due to the local characteristic of auction-based approaches: by
relying on local information and/or self-interest of agents, efficient solutions for large scale problems
can be found [112]. Furthermore, auctions are especially suitable for online problems where new tasks
arrive continuously to the system [76, 81, 113] and auctions allow for flexibility in team objectives, agent
characteristics and specifics of the environment [81]au.

Several types of auctions can be distinguished. When we consider auctions with a central auctioneer,
a popular approach is the class of Sequential Single-Item (SSI) auctions, in which agents submit bids
for all unallocated tasks, but only one task is assigned in each bidding round [114]. SSI auctions com-
bine the advantages of combinatorial auctions (every agent bids on bundles of tasks, taking synergies
between tasks into account) and parallel auctions (tasks are allocated simultaneously in single-round
auctions). As a result, SSI auctions allow for more optimal solutions (taking synergies between tasks
into account resulting in a smaller sum of travel distances) that are computationally inexpensive (small
number of bids and fast winner determination) [114, 115, 116]. Furthermore, it can be analytically proven
that when using SSI auctions, the sum of travel distances can be a factor 1.5 larger than the optimal
solution and at most a factor 2 larger. This holds for both exact determination of the travel distance
or heuristics that approximate the travel distance, allowing for obtaining solutions in polynomial-time
[114].

Various improvements have been suggested in the literature regarding the use of SSI [114], as well
as an elaboration of the SSI algorithm taking temporal constraints (time windows for execution of tasks)
into account, known as the Temporal Sequential Single-ltem (TeSSlI) algorithm [117]. Another variation
are the so-called Sequential Single-Cluster (SSC) auctions, where tasks that are geographically located
close to each other are bundled into clusters that agents bid on. By bundling the tasks, the number of
required bids and communication overhead reduces, which improves scalability of the algorithm [118].

Regarding consensus-based auctions where no central auctioneer is present and tasks are allo-
cated based on predefined agreements, the Consensus-Based Bundle Algorithm (CBBA) is a promis-
ing approach, providing for a 50% optimality guarantee [119]. In the past years, several improvements
and extensions have been developed, including the handling of time-sensitive tasks [86], the imple-
mentation in highly dynamic environments [116] and reallocation of new tasks arriving to the system
[120].

Game Theoretic-Based Approaches

When tackling the MRTA problem using game theory, the interaction between agents is inspired on
a game, where all agents aim to maximize their own utility based on knowledge of behaviour and
characteristics of other agents and the environment [86]. Although similarly to auctions, a competitive
mechanism such as a game can be used to maximize entire system performance, enforcing coopera-
tion between agents in game theoretic-based approaches is much more difficult than for auction-based
approaches. The reason for this is that the formulation of an objective on the level of each individual
agent which ensures a global optimum, is a challenging task [116].

However, some studies have investigated how to apply game theory in a cooperative setting. An
example is the work done by Arslan, Marden and Shamma [121], in which a set of autonomous vehi-
cles is expected to optimally assign themselves to a set of tasks (from a global perspective). Different
negotiation mechanisms are evaluated, including Action-Based Fictitious Play (ABFP), Utility-Based
Fictitious Play (UBFP) and Regret Matching (RM). Although these negotiation mechanisms guarantee
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convergence towards a stable and conflict-free solution (also called a pure strategy Nash equilibrium
in the field of game theory), the obtained solution is in most cases far from optimal [86, 121]. Empiri-
cally, the negotiation mechanism based on Selective Spatial Adaptive Play (sSAP) shows near-optimal
behaviour with "arbitrarily high probability” [121, p. 592]. However, for convergence towards a stable
solution in a large-scale problem, almost 1500 iterations are required, resulting in significant computa-
tion times that do not allow for online problems. In addition, the sSAP algorithm only solves IA problems
and do not consider target assignment over a time horizon, making the approach unsuitable for online
problems [121].

In more recent research, some promising studies implement game-theoretic approaches to the task
allocation problem. In the work done by Cui, Guo and Gao [122], an initial task assignment is computed
using an auction-based approach, followed by the possibility of task reallocation using game theory.
The results show that for a fixed number of robots (10 agents) and increasing number of tasks, running
times of the algorithm increase. However, up to 100 targets, the computational time of the algorithm
remains below 1 second. This is achieved by only allowing up to three robots to participate in one ne-
gotiation procedure. Cost reduction with respect to the initial solution is achieved, however, no bounds
on solution quality are provided.

Similar results regarding computational performance are achieved in the work of Smyrnakis, Gu
and Veres [123]. For varying robot team sizes (ranging from 10 to 50 robots), running times of the
algorithm stay below the 0.1 second. However, the study only examines performance of problems in
the ST-SR-IA class and do not consider online arrival of new tasks to the system. Although strict online
problems tackled by a game-theoretic approach could not be found in the literature, several studies
consider dynamic environments, such as changing workloads of tasks over time. Examples of this are
task reallocation in a multi-stage setting [124] or task reallocation based on growing workload of tasks
over time [125]. Both studies show that game-theoretic remain computationally efficient in dynamic
environments and are scalable to situations similar to towing of aircraft by TaxiBots. In addition, in the
work done by Wu and Shang [124], an upper (optimal) and lower bound (2-competitive) is provided for
the end result of the algorithm based on game theory.

5.2.3. Comparative Evaluation of Solution Techniques

Based on the review of task allocation approaches described in subsection 5.2.1 and subsection 5.2.2,
a trade-off is done to select suitable approaches for the assignment of TaxiBots to outbound flights.
Based on the concept of operations and system requirements described in chapter 4 and subsec-
tion 4.6.2 respectively, a set of trade-off criteria has been determined to evaluate the different allocation
approaches on. Scoring will be done using a range from 1 to 3 (worst to best).

» Solution quality: this criteria concerns the degree of optimality of the solution produced by the
approach under consideration. A score of 3 is given when the approach guarantees to provide the
optimal solution, a score of 2 is given when a bounded (suboptimal) solution is produced and a
score of 1 corresponds with solutions that are unbounded (corresponds with system requirement
item 3).

+ Scalability / Computational efficiency: when an approach remains efficient for increasing num-
ber of agents and tasks, a higher score on scalability is rewarded. This trade-off criteria relates
to system requirement item 2. Computational efficiency is measured in terms of run time of the
algorithm and is related to the real-time requirement of the system (item 6). According to Ma et
al. [88], real-time corresponds with computational times less than 1 second. Approaches that in
general provide solutions within this time frame are rewarded a score of 3. When approaches are
able to provide results within 30 seconds, a score of 2 is given. Approaches with larger compu-
tational times are rewarded a score of 1.

Due to the fact that scalability and computational efficiency are very much related to each other,
both scores are averaged into a single score (equally weighted). The notation in Table 5.1 is as
follows: average score (score on "Scalability”, score on "Computational efficiency”).

« Flexibility: this criteria measures the flexibility of an approach to adapt to varying team objectives,
agent characteristics or constraints originated from the environment.

+ Complexity: in order to reflect the system requirement related to the limited available time and
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resources in this project (item 8), a criteria related to complexity is introduced and measures the
complexity of implementing the approach under consideration and building upon previous work.

- Applicability: depending on the degree of applicability of the approach to the task allocation
problem of TaxiBots, a score is given. Applicability concerns to what extent approaches have
been tested on large-scale, real-world applications involving cooperative task assignment. Lim-
ited simulation testing in few application areas scores a 1, extensive simulation testing in multiple
application areas scores a 2 and a score of 3 is awarded when approaches are not only exten-
sively tested in a simulation environment, but also tested on real hardware. This criteria can be
linked to the objective of the model as formulated in system requirement item 3.

- Suitability for online use: regarding the suitability of approaches to apply to problems in an
online setting, a score of 1 is given when no/very limited studies are found that use the approach
under consideration in an online setting. When the approach is applied occasionally to online
problems or in dynamic environments (for example, requiring task reallocation), a score of 2 is
awarded. Finally, when the approach is widely applied to online problems, the highest score of 3
is given. This criteria is based on the system requirement related to real-life operations (item 2)
and real-time execution (item 6).

In Table 5.1, the resulting scores for all approaches on each criteria is presented. Regarding solution
quality, only deterministic approaches guarantee to provide the optimal solution to a problem, hence,
a score of 3 is given. For all approaches except stochastic approaches, bounds on the optimality of
solutions can be analytically proven.

When it comes to scalability and computational efficiency, it is clear that deterministic approaches
are not suitable for this domain due to the exponentially increasing numbers of variables when increas-
ing the number of agents and tasks. Both auctions and game-theoretic approaches are very suitable to
apply in larger problems and are still capable of providing solutions within 1 second based on reviewing
the literature. For greedy approaches, the number of variables generally also increases with increasing
problem-size, however, they are known for their computational efficiency. With respect to stochastic
approaches, they are especially suitable for large-scale problems, but in general provide solutions for
problems with a scale of 3-7 robots and 10-30 tasks in a multiple of ten seconds, therefore, scoring a
2 on computational efficiency.

Concerning flexibility of the selected approaches, it can be noted that all optimization-based ap-
proaches are equally flexible. This is due to the fact that both objective functions and constraints can
be altered relatively easy to reflect agent characteristics and environmental/task constraints. Auctions
share this characteristic as well. For game-theoretic approaches in a cooperative setting, it is a chal-
lenging task to align individual utility functions for agents with the global team objective. Therefore,
flexibility of game-theoretic approaches receives a low score.

When it comes to complexity, both greedy approaches and auction approaches are scored the high-
est, due to their intuitive concept that can be easily translated to the TaxiBot situation. For deterministic
and stochastic approaches, the concept may be slightly more complex, however, significant literature
is available to be able to grasp the approach within the available time and resources. Although game-
theoretic approaches have also been widely discussed in literature, the concept of deriving at Nash
equilibria in a cooperative setting is significantly more complex than the other approaches under con-
sideration.

Concerning applicability of the approaches to the problem under consideration, it can be seen that
all approaches except for game-theoretic approaches are awarded a score of 3. The reason for this
is that all approaches have been extensively tested in simulation environment in multiple application
areas and large-scale problems. However, the application of game-theoretic approaches to large-scale
cooperative problems is limited and therefore, a score of 1 is given.

Finally, the approaches are evaluated on their suitability for online use. Notably, both auction-based
approaches and greedy approaches are scored highest, due to the fact that they are widely applied
to (and especially developed for) problems where new tasks arrive to the system in an unknown man-
ner. Some examples of research using stochastic and game-theoretic approaches also make use of
problems in a time-extended setting or dynamic environments, but to a far lesser extent than the two
previous ones. Finally, no research has been found that applies deterministic approaches to an on-
line setting. This can be explained due to the fact that ST-SR-TA type of problems are classified as
NP-hard, meaning that an optimal solution cannot be found within polynomial time [73].
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As can be seen from Table 5.1, both greedy and auction-based approaches turn out to be the most
suitable approaches when it comes to task assignment in the context of TaxiBot deployment at AAS.
Therefore, in the remainder of this chapter, a selection of specific greedy and auction-based approaches
will be reviewed in detail.

Table 5.1: Scoring on trade-off criteria for different approaches on task allocation

Optimization-Based Approaches Market-Based Approaches

Deterministic Greedy Stochastic Auction-Based Game Theoretic-Based

Approaches  Approaches Approaches Approaches Approaches
Solution quality 3 2 1 2 2
Computational | ' 25 25 3 3
efficiency (1.1) (2,3) (3, 2) (3,3) (3,3)
Flexibility 3 3 3 3 1
Complexity 2 3 2 3 1
Applicability 3 3 3 3 1
Suitability for
online use 1 3 2 3 2

Total 13 16.5 13.5 17 10

5.3. Further Elaboration on Greedy Approaches

In this section, more details will be provided on three specific greedy algorithms: the previously men-
tioned Broadcast of Local Eligibility (BLE) and MURDOCH algorithm, as well as a greedy algorithm
specifically taking temporal constraints into account.

5.3.1. Broadcast of Local Eligibility (BLE) Algorithm

When tasks arrive in an online fashion to the system and the system allows for reallocation of previously
assigned robots, the ST-SR-TA type of problem reduces to an iterated instance of ST-SR-IA [73]. This
instance can be solved by the use of the Broadcast of Local Eligibility (BLE) algorithm which is described
in the work done by Werger and Mataric [87]. In essence, this algorithm (re)calculates all robot-task
utilities when at least one robot becomes unassigned, by considering all (assigned and unassigned)
tasks. For the robot-task pair that results in the highest utility, task t is assigned to robot r until no robot
remains unassigned.

The algorithm is known to be 2-competitive for the optimal solution of the OAP [73].

5.3.2. MURDOCH Algorithm

Contrary to the BLE algorithm, the MURDOCH algorithm is useful when robots that are previously
assigned to a task cannot be reassigned [73]. The MURDOCH algorithm originally was proposed for
problems of the class ST-SR-IA, in which newly arriving tasks to the system have to be assigned and
is based on the original work as proposed by Gerkey and Matari¢ [109]. For problems of the class ST-
SR-TA, it is proposed by the same authors in later work [73] to initially assign all robots to tasks in an
optimal way, using for example the Hungarian method. All remaining tasks are assigned in an online
fashion to the robot that is most fit (according to some predefined metrics) and currently available.
Although this algorithm strictly is an auction-based method [109] (newly arriving tasks are allocated
using a basic auction scheme based on the CNP protocol), it is placed under the greedy approaches
since it is initiated using a deterministic method followed by a greedy way of assigning all remaining
and newly arriving tasks. The altered version of the MURDOCH algorithm is known to be 3-competitive
[73].

5.3.3. Flexibility-Based Task Assignment

In a very brief paper, Wu et al. [126] propose a framework that integrates task assignment with path
planning for offline problems. Although this framework will be discussed in more detail in chapter 7,
the notion of how the authors propose to determine the next task to be assigned will be discussed
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in this section. In their problem, the tasks in the set of tasks T are characterized by a deadline d;,
thus, explicitly taking temporal constraints into account. The goal is to maximize the number of tasks
completed before the associated deadline.

In order to take the deadline of a task into account in the assignment phase, Wu et al. [126] introduce
a measure called flexibility f;, which is defined according to Equation 5.2 where ¢ ; represents the
earliest timestep that any agent r,, r, € R can complete the unassigned task t;. Thus, the flexibility f;
represents the margin that is available for execution of a task with respect to its deadline. In the set of
unassigned tasks with non-negative flexibility values, the next task i* to be assigned is the task with
the least value f;: thus, the most urgent task is assigned (Equation 5.3, [126]).

fi=d; —mincy; (5.2) [* = argmin f; (5.3)
TRkER fi=0

In section 7.3, a more elaborate description is provided on how the most suitable agent k* is found
to fulfill the task i*, including results on the success rate of the algorithm (i.e. the number of tasks
completed before their deadline). Unfortunately, no other results in terms of optimality were provided.
However, due to the fact that this greedy algorithm explicitly takes deadlines of tasks into account,
makes it a suitable candidate to apply to the problem of allocating TaxiBots at AAS.

5.3.4. Concluding Remarks on Greedy Task Allocation

In the previous sections, three greedy approaches have been reviewed that can be used for task al-
location in the MAS to be designed. In this section, a qualitative reasoning will be provided based on
the trade-off criteria presented in subsection 5.2.3 to choose the most suitable greedy technique for
allocation of TaxiBots to outbound flights at AAS.

As will be explained in section 8.3, in a first version of the model to be designed, no reallocation
of tasks will be considered. Therefore, the BLE algorithm is not suitable to use for implementation in
a baseline model, since it explicitly requires reallocation of tasks to be possible. Due to the fact that
the MURDOCH algorithm provides for a boundary on suboptimality of the solution and is specifically
designed for dealing with online problems [73, 109], the framework of the MURDOCH algorithm is
preferred over the offline algorithm as presented in subsection 5.3.3. However, it is noted that using
flexibility as a measure to determine the most-fit robot seems to be promising, especially since general
bidding rules and more specifically, rules on how to deal with temporal constraints, are not defined
in the original paper introducing the MURDOCH algorithm [109]. Therefore, based on the findings in
literature, the following greedy approach in task allocation is proposed: (1) define an initial, optimal
allocation of TaxiBots to aircraft by means of the Hungarian method; (2) for newly arriving flights to the
system, use the measure of flexibility to determine path costs for free TaxiBots; (3) assign the most-fit
robot to the most urgent task (read: aircraft with earliest TSAT time); (4) repeat steps 2 and 3 until no
aircraft remain unassigned.

5.4. Further Elaboration on Auction-Based Approaches

In this section, more details will be provided on three specific types of auction algorithms: Sequential
Single-ltem (SSI) auctions, the SSI version with temporal constraints included (TeSSI) and Sequential
Single-Cluster (SSC) auctions. Note that consensus-based auctions are not considered in more detail
based on recommendations by Chen in previous related work on the automation of ground handling
at airports [72]. It was pointed out that using multiple local auctions in ground handling may lead to
inconsistent situational awareness, often leading to solutions far from optimal. Since common situa-
tional awareness is of a prime concern in the context of aircraft engine-off towing operations as well, it
was chosen not to consider auctions that have a distributed nature in more detail. In addition, as will
become apparent throughout the next section, it was shown by previous studies that TeSSI outperforms
consensus-based approaches significantly in run time performance, which is another primary concern
in this research.

5.4.1. Sequential Single-ltem (SSI) Auctions

In Sequential Single-ltem (SSI) auctions, all tasks are initially unallocated. Tasks are assigned based
on the bids of robot for each task. In every auction round, every robot bids on each unallocated task.
The central auctioneer allocates the task to the robot with the best bid. After winner determination, the
procedure repeats itself until all tasks are allocated [115].



88 5. Multi-Robot Task Assignment

The first study to formalize the type of SSI auctions, is the work done by Lagoudakis et al. [127]. In
their work, they specify a multi-robot routing problem by a set of robots R = {ry,n;,..,1,} and a set of
targets 7 = {t,,t,, .., t}. A strictly positive and symmetric * cost function c(i, j) is assumed, denoting
the costs to travel from location i to j. Furthermore, the Robot Path Cost (RPC) associated with robot
r concern the costs related to the total path travelled by the robot, including all allocated targets. The
Target Path Cost (TPC) of target t relate to the increase in total path costs for robot r to visit target ¢
from the initial location of robot r [127].

The goal of a multi-robot routing problem is to assign robots to tasks in such a way that all tasks are
fulfilled, while taking the team objective into account. In the work of Lagoudakis et al., three different
team objectives are considered [127]. When considering A = {44, 4, .., A,} as a partition of the set of
targets, where 4; is the set of targets allocated to robot r;, the team objectives can be formally defined
as follows:

+ MINISUM :rrbilnz RPC(1;, A;). The objective is to minimize the sum of all path costs associated
J
with all robots.
+ MINIMAX :mfi{n max RPC(rj, 4;). The objective is to minimize the sum of the path cost for the
j

robot with the largest costs.
* MINIAVE :rr(lfiln % 2. CTPC(r;, 4)), where the Cumulative Target Path Cost (CTPC) are the costs
J

associated with visiting all targets in A; for robot r; from its current position. This leads to the
objective to minimize the average TPC for all robots.

Based on the previously mentioned team objectives, a general bidding rule can be derived and formu-
lated as follows:

Robot r bids on unallocated target t the difference in performance for the given team objec-
tive between the current allocation of targets to robots and the allocation that results from
the current one if robot r is additionally allocated target t [127].

Using this general bidding rule, a set of specific bidding rules corresponding with the three team objec-
tives can be formulated. Let § = {S;, S,, .., S,} be the current partial allocation of tasks t to the robots,
then the bidding rules can be defined as follows [127]:

* BIDSUMPATH :RPC(r;, S; U {t}) — RPC(r;, S;). According to this bidding rule, robot r; should bid
the increase in path cost when adding task t to its partition S;.

+ BIDMAXPATH :RPC(r;, S; U {t}). According to this bidding rule, robot r; should bid its total path
cost associated to its current allocation including the addition of task t.

* BIDAVEPATH :CTPC(r;, S; U {t}) — CTPC(r;, S;). According to this bidding rule, robot r; should
bid the increase in cumulative task path costs when adding task t to its partition S;.

In order to find the RPC and CTPC, robot r; has to find the optimal path through all target in S;, which
corresponds with an instance of the TSP. Since this is an NP-hard problem, Lagoudakis et al. [127]
propose to use the cheapest insertion heuristic that finds the cheapest position to insert task t in the
existing path in terms of path costs. Assuming that the approximation of path costs is no worse than
the cheapest insertion heuristic, the performance ratios as summarized in Table 5.2 for various team
objectives and bidding rules hold [127]. The performance ratios are expressed as an upper and lower
bound, meaning that the resulting factor is a maximum and minimum factor respectively away from the
optimal solution.

Despite the performance guarantees of SSI auctions, no guarantees on completeness can be pro-

vided. This is due to the fact that not all synergies between tasks are taken into account because of
auctioning tasks in multiple rounds [81].
In the past years, several adjustments have been made to SSI auctions to improve the solution quality
while still maintaining computational efficiency needed for online task allocation problems. According
to the work of Rizzo [81], the most important improvements are the inclusion of rollouts and making
use of the K-swaps procedure. Both phenomena will be elaborated on below.

2A symmetric cost function means that travel costs for both directions along the same edge are equal.
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Table 5.2: Summary of performance bounds for different team objectives and bidding rules for n robots and m targets. The
bounds are presented as a ratio of rule performance over optimal performance [127].

Team Objective
Bidding Rule MINISUM MINIMAX MINIAVE
Lower Upper Lower Upper Lower Upper
BIDSUMPATH | 1.5 2 n 2n mT” 2m
BIDMAXPATH | n 2n = o am'?) 2m
BIDAVEPATH | m 2m? %1 2m*n  Q(m'3) 2m?

SSI with Rollouts

In basic SSI auctions, each robot evaluates the effect of inserting task ¢ in its current partial allocation,
without considering the allocation of remaining tasks. In the work done by Zheng, Koenig and Tovey
[128], it is suggested to make use of so-called rollouts: instead of using the team costs resulting from
the partial assignment of target ¢, the team costs corresponding with the complete allocation are used
to evaluate the partial allocations of tasks. As a result, robot r; uses the costs associated with the
complete allocation (of all m targets) that would follow if it was assigned task t to calculate its bid.
A downside of this technique is that several sets of SSI auctions need to be run instead of just one,
increasing computational times. Therefore, it is suggested to only use rollouts in the first few rounds of
SSI auctions when large amounts of targets are still to be allocated. Experiments done by the authors
show that using rollouts only in the first three rounds already improves the solution significantly, while
computation times are still in the order of tens of seconds (especially for the combination of large
number of robots and small number of tasks) [128].

The K-Swaps Procedure

In order to capture synergies between tasks that are already allocated and tasks that are on auction
in a later round [81], the possibility of swapping tasks is introduced by Zhen and Koenig [129]. In their
work, they introduce the set {T, },.c», representing the solution before any task exchanges and {T;}TER
as the solution after task exchanges. Three different types of exchanges can be formalized [129]:

« Out Swap: agent r, transfers task t € T, to some other agent r,;, written as (1, —, t, —).
* In Swap: agent r;, receives task t ¢ T, from some other agent r,;, written as (ry, —, —, t').

+ Exchange Swap: agent r;, and agent r,i exchange task t € T, from agent r;, to agent r,; and task
t e T, from agent r,i to agent ry, formalized as (rk,r,;, t, t').

When an in and out swap can be combined into an exchange swap, the pair of in and out swaps is
called a resolvable pair. The exchanges of tasks among agents are described using the variable s*,
denoting a partial k-swap for agents R(s¥) € R. The partial k-swap contains a set of out swaps (tasks
transferred from agents in R(s*) to agents not in R(s¥)); a set of in swaps (tasks received from agents
not in R(s¥) to agents in R(s¥)); and a set of compact exchange swaps (tasks exchanged between
agents that are both in R(s*)). A partial k-swap is said to be complete if and only if it contains only
compact exchange swaps. Note that the value k is the number of exchange swaps present in s¥.

In their work, Zhen and Koenig [129] present both a centralized and distributed approach to exe-
cuting the K-swaps procedure. In the centralized approach, a central planner constructs all profitable
complete k-swaps for 1 < k < K for a given solution, where K is a user-defined value.

1. The set P of all profitable k-swaps for 1 < k < K is initialized to empty, as well as the set S,;4nner»
containing all the partial k-swaps that are constructed.

2. Each agent r € R constructs all possible swaps that only contain itself bounded by K, meaning
that the so-called partial zero-swap consists of at most K in swaps, at most K out swaps, no
exchange swaps and at least one in or out swap. All possible partial zero-swaps are then send
to the central planner.
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3. In K rounds, the central planner adds all received partial zero-swaps to §,;4nner and:

(a) Creates partial k-swaps by combining a partial g-swap s and partial h-swap s", if and only
if s9 and s form a combinable pair.

- If the resulting pair s* is profitable and complete, it is added to the set P.
- If sk is not profitable, but bounded by K, it is added to the set Splanner-

As noted by the authors, the centralized approach might result in a communication or computation
bottleneck. Therefore, a distributed approach was introduced. The main difference between the dis-
tributed and the aforementioned centralized approach, is that the agents themselves decide whether a
partial zero-swap that only contains itself is profitable and subsequently, only send the profitable partial
zero-swaps to other agents. Based on a predefined order among the agents, global partial k-swaps are
found using the own partial zero-swaps combined with partial zero-swaps received from other agents
[129].

Both a greedy and roll-out approach are introduced to implement the above procedures in sequential
auctions. In the greedy approach, the distributed algorithm is used to determine all profitable complete
k-swaps and then selects the swap that results in the highest gain for the system. When using the
roll-out approach, all profitable complete k-swaps are again found using the distributed algorithm, but
instead of choosing the swap with the highest gain, they are all hypothetically executed. Then, the
greedy approach is hypothetically executed on this hypothetical solution, after which the swap is cho-
sen that resulted in the smallest overall team cost.

When comparing the greedy and roll-out approaches with each other on a 51 x 51 size grid repre-
senting an office environment, it was concluded by the authors that both greedy and roll-out approaches
significantly contribute in reducing the overall solution cost. For larger values of K, the team cost was
reduced more but at the expense of more required run times. Especially the greedy approach looks
promising for the application of TaxiBotting, since this algorithm is capable of improving the initial solu-
tion cost by more than half (from 1070.5 to 443.3) in only 0.01 seconds for K = 1 [129].

5.4.2. Temporal Sequential Single-Iltem (TeSSI) Auctions

When tasks need to be completed in a specific time window, temporal constraints are introduced in
the assignment problem. In the work of Nunes and Gini [117], SSI auctions are extended to include
temporal constraints, resulting in the Temporal Sequential Single-ltem (TeSSI) auction algorithm. TeSSI
distinguishes itself from previous work on including temporal constraints in auctions because of its
capabilities to handle overlapping time windows and changing starting times of tasks [81].

If we consider a set of robots R = {r,n,,..,1,} and a set of targets T = {t;,t,,..tpn}, Al t € T
have an earliest starting time (ES;), latest starting time (LS;) and a duration (DUR;). Based on the
combination of the earliest or latest starting time and duration, both an earliest and latest finish time
can be determined (EF; and LF; respectively). Similarly as for SSI auctions, agents submit bids for
all tasks available. Subsequently, the task is allocated to the agent with the best bid and the bidding
continues until the set of tasks T is empty. Tasks that are not executable for any robot are added to
the set of unallocated tasks (T .q100), Quaranteeing the termination of TeSSI (since the set T will be
empty at some point).

In order for robots to determine whether their current schedule allows them to execute task t on
auction, each robot stores its task schedule as a Simple Temporal Network (STN). The STN consists
of time points related to the start and finish time of tasks, an origin time point as a reference value
(assigned zero) and two types of constraints between pairs of time points: duration constraints and
travel time constraints. Duration constraints are applicable to time points that correspond to the same
task and ensure that the start of a task does not occur after its finish time: (F, —S; € [DUR;, «)). Travel
time constraints are imposed when one time point corresponds with the end of a task and the other
time point with the start of a task. This type of constraints ensure that an agent can only start the next
task t after having finished its previous task t": (S; — Fyr € [TTyr ¢, )). An example of a STN with three
tasks and associated duration and travel time constraints is shown in Figure 5.2.

For every task t on auction, all agents try to insert the task into their STN by propagating it using the
Floyd-Warshall algorithm without making it inconsistent, meaning that no negative cycles occur [117].
When multiple insertion options exist, the resulting objective value for each position is calculated and
the one that minimizes the overall objective is returned. The individual bid of each agent on task ¢ is
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Figure 5.2: Example of a STN with three tasks and associated duration and travel time constraints. The reference value of zero
is omitted from the figure [117].

based on the lowest objective value. Similarly as for SSI auctions, the task t* among all tasks that
yields the lowest bid is awarded to agent r*. Next, the procedure is repeated for the set of tasks ex-
cluding task t*. Note that no agent except for agent r* need to recalculate their bidding, since their
schedules have not changed.

The solutions generated by TeSSI are not guaranteed to be complete or optimal, due to similar rea-
sons as why SSI auctions cannot provide any guarantees on completeness or optimality [117]. How-
ever, in the work of Nunes and Gini [117], it is shown that the TeSSI algorithm consistently outperforms
both a greedy algorithm and a version of a consensus-based algorithm that handles time windows in
terms of number of tasks allocated and number of robots used. This was shown by conducting several
experiments, one in which 100 tasks arrive in a dynamic fashion to the system and have to be fulfilled
by a team of 10 agents. Furthermore, it is shown that the computation time of TeSSI is competitive with
that of the greedy algorithm, and two orders of magnitude smaller than that of CBBA (0.43 seconds
versus 98.9 seconds respectively) [117].

Probabilistic Temporal Sequential Single-ltem (pTeSSI) Auction

In order to deal with uncertain task durations, Rizzo [81] introduced the Probabilistic Temporal Sequen-
tial Single-ltem (pTeSSI) algorithm, based on the original TeSSI algorithm. For each task t, agent r;
calculates the minimum distance and time needed to complete the task. However, the duration of the
task is not given as a constant, but as a random uniformly distributed variable, with upper and lower
bounds known beforehand. Note that Rizzo assumed a uniformly distributed duration, but that any kind
of distribution can be implemented in the algorithm.

Similarly as for TeSSlI, the agent tries to fit a task t on auction into its temporal network, called
Simple Temporal Network with Uncertainty (STNU). A valid insertion point satisfies the constraint that
the earliest delivery time of the new is no larger than the latest delivery time of the subsequent task.
Based on the insertion position, the risk of not being able to execute the new schedule is determined.
If this risk remains below a certain agent threshold, the agent calculates its bid for the task at the spe-
cific insertion point. After having evaluated all possible insertion points, the lowest bid is submitted.
On a system level, the probability that the resulting schedules will not be dispatched successfully is
minimized, next to the original MINIMAX or MINISUM obijectives [81].

In the evaluation of pTeSSI compared with TeSSI, it was shown that pTeSSI is a more efficient and
effective task allocation algorithm when dealing with uncertain task duration. The pTeSSI not only allo-
cated more tasks, but also runs significantly faster than the TeSSI algorithm. This is a surprising result,
since the worst-case complexity was shown to be equal for both algorithms [81]. Especially the latter
characteristic makes the pTeSSI suitable to apply to the TaxiBot problem, since real-time operations
require fast enough running times of the algorithm.

5.4.3. Sequential Single-Cluster (SSC) Auctions

As mentioned earlier, when using SSI auctions (or variations thereof such as the TeSSI algorithm),
some synergies among tasks are taken into account, but not all of them. As a result, the associated
team costs when using SSI auctions are in general higher than when all tasks would be allocated in
one round, as is the case in full combinatorial auctions. These types of auctions allow agents to take
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all synergies among tasks into account resulting in an optimal solution. However, due to the increased
computational complexity and higher run times, full combinatorial auctions are not suitable to use in
an online task allocation problem that requires real-time solutions. In order to take more synergies
between tasks into account when compared with basic SSI auctions without increasing computational
efficiency, Koenig et al. [130] proposed to assign k > 1 additional tasks among agents in each round
during a SSI auction. In this altered version which is called a Sequential Bundle-Bid (SBB) auction,
agents bid on bundles of at most k tasks. Although experiments show that in general, SBB provide for
reduced computational and communication costs by several orders of magnitude compared with fully
combinatorial auctions [130], SBB auctions cannot be easily implemented in online problems where
tasks arrive dynamically to the system [81].

Another approach that makes use of bundling of tasks, is an extension of the SBB auction introduced
by Heap and Pagnucco [118], called Sequential Single-Cluster (SSC) auctions. This type of auction
is specifically designed for dynamically appearing tasks, making it especially useful for task allocation
problems in an online setting. Similarly as for SBB auctions, individual agents calculate their bidding
costs for each unassigned cluster of tasks and submits its lowest bid for any one cluster. Bidding costs
are based on the path costs for each robot to incorporate the tasks in cluster C in its current allocation of
tasks, eventually making use of a cheapest insertion heuristic. After each bidding round, a previously
unassigned cluster C is assigned to the robot that results in the lowest increase of overall team costs.
After having allocated all clusters, each robot finds the path that minimizes the distance travelled to
complete all allocated tasks [118].

Before the auction begins, all tasks are assigned to one cluster. Clustering of tasks is based on
the associated pickup and delivery locations of tasks. First, tasks that have geographically closely
positioned pickup locations are clustered, in which new clusters based on delivery locations are formed.
An example of this way of clustering is shown in Figure 5.3. Although this type of clustering is shown
to be effective by Heap and Pagnucco in an environment where pickup and delivery locations are
scattered, itis questionable if clustering based on these characteristics will have any benefitin an airport
environment where pickup locations are relatively clustered (apron area) and delivery locations widely
spread over the environment (decoupling locations near runways). In addition, as already mentioned
by Rizzo [81], when considering pickup and delivery problems with deadlines, an additional temporal
layer in which tasks are clustered according to their deadlines has to be added to make it suitable for
our problem.

(13 ¥

(a) Clustering based on pickup locations (b) Clustering based on delivery locations

Figure 5.3: Example of clustering in a SSC auction as proposed by Heap and Pagnucco [118]. In Figure 5.3a, first clustering
based on pickup locations is done. Subsequently, as shown in Figure 5.3b, new clusters within the existing clusters are formed
based on delivery locations. Taken from [81]

When it comes to dynamically arriving tasks to , a new task t is instantaneously assigned to a robot
r; € R. This robot can be chosen randomly or based on agent characteristics, such as the robot
that has completed the least amount of tasks to distribute workload. After this assignment, the robot
has two options: local replanning of its path to incorporate the new task t in its route; or initiate a
repeated auction to globally reallocate the task to another robot. When global reallocation is chosen,
all agents cluster their uncompleted tasks, excluding the tasks that are being executed at the moment
of auctioning. In the work of Heap and Pagnucco [118], the auction is then executed in a fully distributed
manner, meaning that each individual agent sends its bids for all available clusters to all other agents.
Based on a globally aligned winner determination strategy, each individual agent determines for each
cluster the winner independently. Variations to a fully distributed auction could be that the agent that
initiates the global reallocation, acts as a central auctioneer, reducing communication and computation
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overhead.

In their work, Heap and Pagnucco [118] studied the performance of the SSC auctions in an office-
like environment with 10 robots and 60 tasks, both for the MINISUM and MINIMAX objective. When
comparing local replanning with global reallocation strategies in terms of team costs and computation
time for robots with a capacity of one, it is shown that global reallocation of tasks results in lower team
costs especially for the MINIMAX objective (ranging between 18.7 and 36.5%), whereas marginal
differences for the MINISUM objective are observed, in favor of global reallocation (ranging from 4.2
to 18.5%). However, this comes at a cost when comparing computational times for both strategies. In
the case where 75% of tasks is unknown upfront, local replanning results in a mean overall cumulative
task allocation computation time of 41 seconds, whereas global reallocation almost requires triple of
the time (119 seconds) [118].

5.4.4. Concluding Remarks on Auction-Based Task Allocation

In this section, the three auction-based algorithms that are investigated in the previous sections, will
be reviewed on suitability to apply to the problem under consideration in this thesis. Note that the use
of auction-based approaches for the allocation of TaxiBots to outbound flights in an online setting is
assumed to be proven in subsection 5.2.3, and that this holds for all three algorithms. Thus, the quali-
tative reasoning in this section will focus on specific aspects of the problem that is expected to be dealt
differently with in the three auction algorithms.

First of all, the assignment of TaxiBots to aircraft will include deadlines: as mentioned in section 4.6,
the TSAT based on historic flight schedules will be used as the time that an aircraft has to leave the
gate in order to be able to depart in its departure slot at the assigned runway. From the selection of
auction algorithms, TeSSl is the only algorithm that already has a temporal layer included.

In a first version of the model, no disruptions or unexpected events will be considered, as described
in chapter 4. However, one possible extension that is considered is the addition of uncertainty and
delay in the model (section 8.3). Similarly as for temporal constraints, the TeSSI algorithm is the only
auction algorithm that already has been altered to deal with uncertainty [81]. This is another reason for
the preference to use TeSSI as an allocation algorithm in the baseline model already.

In addition, when compared with SSC auctions, it is noted that computational times are significantly
smaller for TeSSI. Furthermore, the relevance of using clustered tasks based on their pickup and de-
livery location is questioned for the specific problem under consideration. The reason for this is that
all pickup locations (gates) are geographically located closely together, whereas the delivery locations
(decoupling locations near runways) are relatively dispersed. Since it is a given that TaxiBots will al-
ways return from the runway to the apron area for their next mission, it is expected that clustering of
tasks will not be of added value. If inbound towing would be considered as well, clustering is expected
to improve the efficiency of the overall system. However, since this is not the case and only outbound
towing is considered, TeSSI is preferred to use as an initial task allocation mechanism over a variant
of a SSC auction.






Multi-Agent Motion Planning

Having considered the allocation of TaxiBots to aircraft when implementing outbound towing in chap-
ter 5, the next step is to focus on motion planning of the vehicles in the Multi-Agent System (MAS). In
this chapter, the planning of agents’ paths to execute the tasks they have been assigned is considered.

First, the concept of path finding in general will be elaborated on, introducing the Multi-Agent Path
Finding (MAPF) instance and a selection of classical MAPF solution techniques (section 6.1). Next,
the application of the MAPF instance to real-world problems will be discussed in section 6.2, including
difficulties associated with this application. In the same section, different algorithms will be elaborated
on that tackle the aforementioned difficulties. Finally, one of the reviewed algorithms will be chosen to
use in the remainder of this thesis for planning paths of all vehicles in the MAS representing aircraft
engine-off towing operations.

6.1. Path Finding in General

In this section, first a description of the single-agent path finding problem will be given, including an
explanation on the working principle of one of the most well-known solving algorithms for path finding:
the A* algorithm. Next, the single-agent path finding problem is generalized to a Multi-Agent Path
Finding (MAPF) instance in subsection 6.1.2. A selection of solution techniques to solve the classical
MAPF problem will be elaborated on in subsection 6.1.3.

6.1.1. Shortest Path Finding Problem

When considering a single agent, the shortest path finding problem can be described as finding the path
in a graph from a start node to a goal node with the least amount of costs [131]. Cost can be expressed
by the weight of edges, representing distance, time or any other variable of interest. Dijkstra [132]
developed a shortest path finding problem, which still forms the basis of most current shortest path
finding algorithms.

One of the most well-known extensions to Dijkstra’s algorithm is the A* algorithm [133]. In this
algorithm, a best-first search is performed guided by the function f(n) = g(n) + h(n), where g(n)
represents the cost related to the shortest known path of the starting node to the current node n. Then,
h(n) represents a heuristic value of the expected path costs from node n to the goal node. If h(n) never
overestimates the costs of the shortest path from n to a certain goal node, that is, if h(n) is admissible,
then the A* algorithm is guaranteed to be optimal and complete [133]. One of the most commonly used
heuristics is the Euclidean distance, neglecting all obstacles [81, 9].

6.1.2. Classical Multi-Agent Path Finding (MAPF) Problems

When extending the single-agent path finding problem to an instance where multiple agents need to
find a shortest path, one speaks of a Multi-Agent Path Finding (MAPF) problem. Using the definition
as proposed by Stern et al. [134], a classical MAPF problem instance consists of a tuple (G, s, t) where
G = (V,E) is an undirected graph whose vertices VV correspond with node locations and edges E
correspond with connections between locations, where n agents can move along. Each agent i has a
source vertex s : [1,..,n] = V and target or goal vertex t : [1,..,n] = V, that represent the predefined

95



96 6. Multi-Agent Motion Planning

task allocation. Note that both source vertices and goal vertices are pairwise different [135].

In classical MAPF problems, time is assumed to be discretized, meaning that kinematics (such as
finite accelerations/decelerations) are neglected. In every time step, agents can perform a single action
a : V - V such that a(v) = v’, meaning that if agent k is currently at vertex v and performs action
a, it will be in vertex v’ in the next time step [134]. Two types of actions can be distinguished: either
to wait (staying at the same location during a time step), or to move (moving from current vertex v to
an adjacent vertex v’, where (v,v") € E). Finally, a single-agent plan can be defined as a sequence
of actions for agent i = = (ay,..,a;) that start in the starting vertex s; and makes sure that agent k
ends at its goal vertex t; at the arrival time T;, which is the minimal time step T; such that for all time
steps t = T;,..,00 m;(t) = t;. Formally, the latter can be expressed as the path of agent i: n; =
(;(0), 7; (1), .., r; (Ty), m; (T; + 1), ...) [135]. A solution to the MAPF problem can then be defined as a set
of n single-agent plans [134].

An example of a classical MAPF problem is given in Figure 6.1 [135]. White cells are traversable,
black cells represent objects. Agents are defined as fully colored circles, with their corresponding target
vertices represented by similarly colored hatched circles. Using the graph as depicted in Figure 6.1,
the problem can be formally described as follows: agent a; with s; = B and t; = D, agent a, with
s, = A and t, = E and an optimal solution {r; = (B, C, D), m, = (A, A, C, E)} [135].

®)
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(a) Grid representation of MAPF problem. (b) Graph representation of MAPF example

Figure 6.1: Example of an MAPF problem, where agents a, and a, are represented with fully colored circles. Their corresponding
goal vertices t; and t, are represented using similarly colored hatched circles. Taken from [135].

Assumptions Related to Classical MAPF Problems
When referring to a "classical” MAPF problem, one usually refers to a MAPF problem with the following
set of assumptions:

1. No unexpected events that introduce delay of any kind are considered [136].

2. The duration of every action (move to an adjacent vertex over an edge or wait at current vertex)
takes exactly one time step [137].

3. During one time step, each agent only occupies one single location [137].

4. Time is discretized into time steps [137].

Over the past decades, a lot of extensions to the MAPF problem have been proposed, both when
considering the problem definition itself and when it comes to relaxation of the assumptions mentioned
above. Concerning the latter, a discussion of MAPF in real-world applications will be discussed in
section 6.2. A selection of the extensions in the problem definition itself will be elaborated on in more
detail in section 7.1.

Before diving into the application of MAPF in real-world settings, first the three types of solution
techniques to the classical MAPF will be elaborated on in more detail in the next section.
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6.1.3. Classical MAPF Solution Techniques

The problem of MAPF has been extensively studied over the past few decades, resulting in a wide va-
riety of solution approaches. Since the focus of this thesis is mainly on task allocation and integrating
task allocation with path finding, not all solution approaches available in the domain of path finding will
be reviewed in detail. Based on previous work of MSc students working on the subject of path finding
in multi-agent systems [19, 8, 81, 138, 72, 9], focus is put on a selection of search-based solvers. A
description of the well-known A* algorithm has already been provided in subsection 6.1.1, since this
algorithm forms the basis of the majority of MAPF solution techniques. Based on the outcomes of com-
paring different MAPF solvers [19, 8, 81, 138, 72, 9] and recommendations [8] in previous related work,
two approaches are chosen to highlight in more detail: Conflict-Based Search (CBS) and Priority-Based
Search (PBS). The working principle of both algorithms will be discussed in greater detail, including ex-
tensions that make them more suitable for larger problems.

Note that no elaboration on performance characteristics of the discussed algorithms will be pro-
vided in this section. Experiments showing effectiveness and efficiency of the algorithms in real-world
applications will be elaborated on in more detail in section 6.2, where some of the assumptions related
to classical MAPF problems as provided above are lifted.

Approaches Based on Conflict-Based Search (CBS)

Sharon et al. [131] were the first authors to introduce the Conflict-Based Search (CBS) algorithm. The
key idea of CBS is to split a problem where multiple agents have to find paths into multiple single-agent
pathfinding problems. This is done by finding paths based on a set of constraints. If collisions exist
among these paths, new constraints are added that resolve the conflicts. As mentioned before, the A
algorithm is exponential in the number of agents (k). However, CBS is only linear in the graph size and
thus, more efficient than (variations of) the A* algorithm for large number of agents [131].

The CBS algorithm consists of two levels. In the high-level, conflicts are detected and constraints
are added to resolve the conflicts. Subsequently, paths are found based on the set of constraints in the
low-level of the search. While searching for conflicts, CBS makes use of a Constraint Tree (CT) with
nodes consisting of a set of constraints, a set of k paths that are consistent with the constraints in the
node corresponding with agent r;, and the total cost of the current solution. If the solution of a node is
valid, e.g. no conflicts occur between paths of agents, the node is described to be the goal node.

However, if the solution includes conflicts, child nodes are added to the root node that include
constraints that resolve the conflict. If conflict C,, = (ry, 1, v, T) arises, two constraints need to be
added that ensure either 1, or r,» not being present at (v, t). To guarantee optimality, both possibilities
are included in the CT (in programming language also referred to as the list OPEN), after which the low-
level search is invoked that finds the shortest path using A* for each agent based on the constraints,
but ignoring any other agent. Then, the resulting paths are evaluated in the high-level on conflicts and
the procedure starts again. Note that CBS always expands the CT node with the smallest cost [131].

In Figure 6.2 [131], an example is shown of a MAPF instance where two mice have to reach two goal

locations. The corresponding CT is shown in Figure 6.2b and is initialized with a root node, containing
the two shortest paths for the two agents (found by the low-level search) and the corresponding solution
cost. No constraints are included in the root node. After validation of the two paths, a conflict is found
for both agents: C; = (s1,s3,D,2). As a result, two child nodes are created: one for restricting both
agents to be present at vertex D at time step 2. In the low-level search, new shortest paths for both
agents are found. While validating the newly found paths, no conflicts are found for both child nodes
and thus, both child nodes are declared a goal node. Using trivial tie-breaking due to similar costs for
both possibilities, the left node is selected as the final optimal solution.
The CBS framework is proved by Sharon et al. [131] to provide for optimal solutions. However, for
large problem instances, runtimes of the algorithm become excessive, motivating the idea to trade
solution quality for better computational performance. One of the most promising variations of the
CBS algorithm for path finding in the context of complex and large multi-agent systems according to
previous work [19, 8, 138, 72, 9], is Enhanced Conflict-Based Search (ECBS) and introduced by Barer
et al. [139].

The key idea of ECBS is to not expand nodes any further that are close to the optimal solution.
This is done by using an additional list of nodes (FOCAL) next to the already existing OPEN list in
the high-level search, and an OPEN; and FOCAL,; list in the low level for each agent r; affected by
the constraints originating in the high-level search. As mentioned before, OPEN contains all root and
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(a) Example of a MAPF problem where two mice  (b) Example of a constraint tree used in the solution technique CBS. Taken
(s, and s,) need to reach their goal locations g, from [131].
and g, respectively. Taken from [131].

Figure 6.2: Example of a MAPF problem where two mice (s; and s,) need to reach their goal locations g, and g, respectively.
The CT represents the working principle of the CBS algorithm. Taken from [131].

(expanded) child nodes. The FOCAL list is a subset of OPEN and only contains nodes that are within
a certain factor w from the optimal solution. Let f,,;,, (i) be the minimal cost in OPEN; when searching
in CBS’s low level for a path for agent r;. Then, the lower bound on the f-value (solution cost) for a
node n in the CT can be expressed using Equation 6.1 [139]. Similarly, the upper bound of the paths
considered for further expansion is based on f;,,in and factor w, as shown in Equation 6.2 [139].

k
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Instead of only passing the cost of a combination of paths from the low-level to the high-level (n.cost),
in the ECBS algorithm also the lower bound LB (n) is passed along. The list FOCAL is then determined
using the expression as stated in Equation 6.3 [139]. As a result, all nodes that are in FOCAL are within
a factor w from the optimal solution, making ECBS a bounded suboptimal solver for classical MAPF
instances.

FOCAL = {n|n € OPEN,n.cost < LB - w} (6.3)

Approaches Based on Priority-Based Search (PBS)

Instead of searching for new solutions based on conflicting paths, priority based solvers determine a
priority among the involved agents and plan collision-free paths subsequently in the priority order [9].
A promising priority-based solver as determined by Soomers [8], Chen [72] and Kamphof [9] is the
Priority-Based Search (PBS) algorithm introduced by Ma et al. [140].

Similarly as to CBS, PBS is a two level search algorithm. However, instead of using a best-first
search approach as adopted in CBS, the PBS algorithm uses a depth-first search approach. In a high-
level Priority Tree (PT), the algorithm stores in every PT node a priority order, sum of costs and paths
for all agents. No constraints are added to PT nodes, as opposed to the CT nodes in CBS. Using the
priority order stored in the root node, PBS runs a low-level search and finds paths for all agents, where
the paths of agents with lower priority are planned after the paths for agents with higher priority are
determined. Any conflicts resulting from the low-level search are to be resolved by adding priorities in
the high-level. This is done by expanding the root node into two child nodes: one in which agent r;, has
priority over r» and one with reversed priority. In the low-level, new paths are found with the updated
priority order. This procedure is repeated until a conflict-free solution for all individual agents is found.

6.2. MAPF in Real-World Applications: Multi-Agent Motion Plan-
ning (MAMP)

In subsection 6.1.2, a number of assumptions has been listed that apply for classical MAPF solving
algorithms. However, when applying these algorithms in real-world scenarios, the aforementioned
assumptions often will not hold [141]. This is also the case for applying classical MAPF algorithms to
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the problem of routing aircraft and TaxiBots over an airport ground network. According to Chen [72]
and Kamphof [9], five main differences can be identified when it comes to classical MAPF instances
and airport ground surface operations.

» Perfect Plan Execution (related to assumption item 1): as stated by Ma et al. [141], agents often
have imperfect plan executions causing the assumption of perfect plan execution not to be valid
in real-world problem settings. In addition, unexpected events are inherent to the field of airport
ground surface operations, which underlines the importance of taking uncertainty into account.

Uniform Edge Traversal Times (related to assumption item 2): in the grids used in classical
MAPF instances, edges are assumed to be uniform, meaning that traversing from edge i to edge
j, i,jVi,j € E will take one time step exactly. However, when considering a graph layout of e.g.
AAS, edges may not be uniform in length. Although this issue can be easily solved by using
weighted edges that represent travel time in a classical MAPF graph [134], the notion of non-
uniform edge traversal time is an important difference between classical MAPF instances and
real-world airport ground surface operations.

» Kinematics of Agents (related to assumption item 2): in classical MAPF instances, the actions
of an agent (either move to an adjacent vertex or wait at the current vertex) always take exactly
one time step. In addition to non-uniform edge traversal times as discussed before, the actual
kinematics of agents is another factor that does not allow for this assumption to hold in real life
[142]. For example, aircraft are subject to finite accelerations and decelerations and maximal
turning velocities and therefore, cannot be realistically modelled without kinematic constraints.

Point Agents (related to assumption item 3): using a graph layout in classical MAPF instances,
it is assumed that agents are represented by points occupying a single location on the graph.
However, as pointed out by Kamphof [9], this assumption might result in collisions between aircraft
on certain taxiways (Figure 6.3).

Discretization of Time (related to assumption item 4): in classical MAPF instances, time is dis-
cretized into time steps. However, since actual time is continuous and agents are restricted in
their kinematic movements, modelling time using discrete time steps is in most real-world appli-
cations not sufficient nor accurate enough [72, 9].

(a) Example of wingspan restricted taxiway at AAS. (b) Schematic representation of wingspan restricted taxiway at
AAS.

Figure 6.3: Example of a situation in which modelling agents without shapes in classical MAPF instances would lead to collisions
in real-life airport ground surface operations. Taken from [9].

In literature, several approaches have been suggested that tackle the relaxation of the assumptions
as listed in subsection 6.1.2 to make the classical MAPF problem suitable to apply in real-life prob-
lems with experiments on hardware. Examples of these approaches include adapted versions of CBS
to account for geometric shapes of agents [143], the use of conflict intervals to allow for planning in
continuous time [136], post processing of MAPF plans to account for imperfect plan execution and
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kinematic constraints of agents (referred to as MAPF-POST) [142] and forward simulation of paths of
agents to include kinematics [18, 17].

It is pointed out by Kamphof [9] that the assumptions related to shapes of agents and non-uniform
edge traversal times can be relatively easily accounted for by the addition of extra constraints. However,
the inclusion of agent kinematics, the use of continuous time and allowing for imperfect plan execution
are significantly harder to overcome. The reason for this is that both MAPF-POST and forward simu-
lation do not take kinematics into account in the planning phase, but account for this by modifying the
output of a classical MAPF algorithm. Since it is expected that the restrictive kinematics of aircraft (due
to their weight) is of high influence on the actual execution, it is preferable to make use of an approach
that takes kinematics into account already in the planning phase [9].

A type of approach that does not suffer from the aforementioned disadvantages are motion-based
approaches, also referred to as Multi-Agent Motion Planning (MAMP) [144]. More explicitly, MAMP
is "the task of finding conflict-free kinodynamically feasible plans for agents in a shared environment
[while] efficiently reason[ing] with continuous time” [144, p. 44]. Previous work on airport ground sur-
face operations [8, 72, 9] has shown that using a motion-based approach for path finding in large and
complex multi-agent systems is a successful approach to take into account the kinematics of agents
and deal with continuous time. In combination with the fact that the main focus of this thesis is on task
allocation and the integration of task allocation with path finding (and not on path finding specifically),
this literature study is limited to reviewing recommended MAMP algorithms for path finding based on
the outcomes of aforementioned previous work.

One of the algorithms that forms the basis in this domain is Safe Interval Path Planning (SIPP),
which is a single-agent path finding algorithm. In subsection 6.2.1, SIPP and useful extensions will be
elaborated on. Next, the integration of SIPP with other search-based MAPF solvers will be discussed
to account for interaction between agents in motion planning in subsection 6.2.2.

6.2.1. Single-Agent Motion Planning with SIPP

As mentioned above, the SIPP algorithm forms the basis within the field of MAMP solvers and will
therefore be elaborated on first. In the remainder of this section, two extensions of SIPP will be dis-
cussed: Safe Interval Path Planning with Reservation Table (SIPPwrRT) and Soft Conflict Safe Interval
Path Planning (SCIPP).

Safe Interval Path Planning
The Safe Interval Path Planning (SIPP) algorithm was first introduced by Philips and Likhachev [145]
and plans paths for a single agent based on a predetermined priority ordering using a variant on the
A* algorithm. Agents that are higher prioritized are treated as dynamic obstacles in the environment
with whom collision should be avoided. The novelty of SIPP is that it makes use of [configuration,
interval] pairs to search the state-space instead of [location, time step] pairs. In this context, two types
of intervals can be distinguished: safe intervals (periods of time for a configuration in which no collisions
with dynamic obstacles occurs) and conflict intervals (periods of time for which the configuration is in
collision with a dynamic obstacle for each time step in the interval) [145]. Since the number of safe
intervals is in general significantly smaller than the number of safe time steps (that are comprised in
the safe interval), the state space is significantly smaller as well when using SIPP, due to the fact that
a single state (represented by the [configuration, interval] pair) replaces what used to be many states
(for each time step a [location, time step] pair).

Let the [configuration, interval] pair define a
state s, where the configuration is a set of non-

time variables describing the agent’s state, such fimelne
H HY Saf lis Saft lisi Saft
as heading and position. For each state s, a cost T 22 = e

function representing the g-cost (g(s)), a heuris-

tic score (h(s)) and a cost function c(s,s') repre-

senting the cost of transitioning from state s to S’, Figure 6.4: Example of a timeline constituting of safe and conflict
is saved. When the algorithm is initialized, it first intervals. Taken from [145].

examines the graph and creates a spatial time-

line constituting of safe and conflict intervals based on the trajectories of dynamic obstacles (assumed
to be known beforehand, Figure 6.4). Afterwards, a modified version of the A* algorithm is run, in which
a function M(s) is defined to return possible movements from the current state s. For each possible
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movement, the earliest possible time of arrival based on the safe interval of the new configuration is
determined. The different possibilities to move to adjacent vertices are referred to as successors in the
vertex under consideration. Note that for moving to new configurations, arrival in the new safe interval
is assumed to occur as early as possible and successors with the lowest cost (f-values) are expanded
first.

t=1, [0,1]

(a) Example of an environment with two dynamic obstacles and  (b) Expansion of configuration B based on the environment

three configurations (A, B, C). The agent initially is located at con-  as represented in Figure 6.5a. White circles represent states,

figuration B. consisting of: the name (first line); the configuration and its safe
interval (second line); and the earliest known time the state can
be reached and the corresponding safe interval (third line). The
arrows represent transitions from one configuration to another,
where the red crosses indicate infeasible transitions.

Figure 6.5: Example of an expansion using the SIPP algorithm. Taken from [145].

An example of expansion of configurations using the SIPP algorithm is shown in Figure 6.5. In Fig-
ure 6.5a, the environment with two dynamic obstacles and three configurations is shown, where the
agent is initially located in configuration B. After initialization of the algorithm, the safe intervals for the
current configuration (B) and adjacent configurations (A, C) are determined. When expanding Sg,, two
possible successors are found for configuration A: the agent can move their immediately (t = 1, within
safe interval of S4,) or wait until t = 7 to move there. However, for the latter, it has to wait in B until
t = 6, which is not in the safe interval of Sz,. Therefore, the expansion of state S, is not a feasible
state. A similar reasoning is used to expand the states in C, resulting in two feasible successors (S¢q
and S¢4). The cost for the successors is determined based on the time steps that the new state can be
reached. All feasible expansions will be added to the OPEN list and the state with the lowest cost will
be expanded first [145].

Safe Interval Path Planning with Reservation Table

Based on the idea of the space-time A* algorithm that keeps a reservation table for each cell indicating
all safe intervals of that cell, Ma et al. [146] propose to extend the SIPP algorithm with a reservation
table as well, resulting in the Safe Interval Path Planning with Reservation Table (SIPPwrRT) algorithm.
In this context, a reservation table is referred to as a list that contains all reserved or collision intervals
of the cell under consideration in increasing order of the earliest time step that the cell is considered not
to be safe. When a new path is planned, new entries to the reservation table are added and redundant
entries are deleted to keep the table small in size. According to the authors, the use of reservation
table increases the efficiency of SIPP, since the algorithm does not have to iterate through all the paths
of each dynamic obstacle separately to determine the safe intervals for a specific cell.

In addition, the authors also propose a method to handle continuous agent movements and include
shapes of agents using SIPPwrRT. In the work of Ma et al. [146], an agent r;, with a volume are
represented as circular object using aradius R;. In order to avoid conflicts between agents, the distance
D between the center points of two agents should at least be larger than R; + R,. This distance is
converted into a time offset 6T, representing the time that should be added to the conflict interval
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to restrict any agent accessing the cell. For different cases (agents moving in the same direction, in
orthogonal direction and in opposite direction), Ma et al. [146] defined three formulas that represent the
time offset to prevent agents from overlapping conflict intervals. Note that a similar collision avoidance
system is used in the model of Soomers [8] and Kamphof [9] (refer to subsection 6.2.2).

The authors prove that SIPPwrRT finds collision-free paths for all agents and guarantees optimality
given a certain priority order [146]. When using the algorithm in a pickup and delivery context (combined
with Token Passing (TP), refer to subsection 7.2.3), the SIPPwrRT is claimed to be complete for all well-
formed Multi-Agent Pickup and Delivery (MAPD) problems (subsection 7.1.3).

Soft Conflict Safe Interval Path Planning

In order to use SIPP in a FOCAL search algorithm, Cohen et al. [144] developed a low-level bounded
suboptimal version of SIPP, referred to as Soft Conflict Safe Interval Path Planning (SCIPP). This
version of SIPP is used in the MAMP solver Enhanced Conflict-Based Search for Continuous Time
(ECBS-CT), elaborated on in subsection 6.2.2.

Based on a starting state, goal state, a list of hard constraints for each cell and a reservation table
specified in the high-level search, the SCIPP finds a w-suboptimal feasible path from start to goal. Hard
constraints are represented using [cell, time step] pairs and soft conflicts are represented in a [cell, time
interval] pair that describes the time interval that the cell is swept by agents higher in priority. From
the FOCAL list, the algorithm chooses the node with the lowest cost first to expand, where the cost is
based on a conflict heuristic h, representing the number of soft conflicts in the path.

6.2.2. Multi-Agent Motion Planning with SIPP
As mentioned in subsection 6.2.1, SIPP is a low-level single-agent motion planning algorithm. In order
to use it in a multi-agent system, the SIPP algorithm has to be combined with a high-level search algo-
rithm to solve Multi-Agent Motion Planning (MAMP) instances. Whereas the nodes in MAPF problem
represent physical locations, the MAMP problem is posed on states, which specify e.g., the location,
orientation and velocity of agents [144]. Edges then are used to represent feasible motions from one
state to another of arbitrary duration. Finally, the set of edges that represent a sequence of feasible,
collision-free motions is referred to as a plan that leads an agent from its starting state to its goal state.
Two promising MAMP algorithms that are considered and/or implemented in previous related work
[8, 72, 9], are an altered version of ECBS to deal with continuous time (Enhanced Conflict-Based
Search for Continuous Time (ECBS-CT)) and a combination of SIPPwrRT with PBS.

Enhanced Conflict-Based Search for Continuous Time

In the work of Cohen et al. [144], an altered version of the ECBS algorithm is proposed that is capable
of dealing with continuous time, resulting in the Enhanced Conflict-Based Search for Continuous Time
(ECBS-CT) algorithm used for solving MAMP instances. Similarly to the discretized version of ECBS, a
suboptimality factor w is used to determine which nodes are placed from the OPEN list into the FOCAL
list (refer to subsection 6.1.3 for more details on the working principle of ECBS). Using the low-level
SCIPP search algorithm to find paths for all agents, conflicts are detected in the high-level search in
the form of a [cell, time interval] pair. In order to resolve the conflict, a constraint (c, t) is applied, where
¢ represents the cell in which the conflict takes place and t represents a single time step in the con-
flict interval. According to Cohen et al. [144], a single time point rather than a time interval is chosen
to guarantee the suboptimality of ECBS-CT. Based on the constraints, expansion of the root node is
performed, resulting in two child nodes. In the low-level search, a reservation table is updated with the
specified constraints and paths are found for the two successor nodes. Both child nodes are added to
the OPEN list, and to the FOCAL list if they satisfy the conditions as well. In order to efficiently keep
track of the time intervals that represent cell ¢ being occupied by a number of agents, Cohen et al.
[144] suggest to make use of an interval map. This data structure allows for efficient detection of the
earliest conflict in the high-level search [144].

When evaluating ECBS-CT for MAMP instances with varying number of agents in two different en-
vironments (Figure 6.6) and for different number of motions possible from one state to another (5 and
13 motion primitives respectively), Cohen et al. [144] concluded that ECBS-CT is a suitable algorithm
to find solutions and scales better to larger numbers of agents in obstacle-rich maps than other solvers.
In addition, solutions are produced with suboptimality guarantees that are significantly smaller than the
suboptimality bound w imposed. Although run times are relatively long for the application of the algo-
rithm to online problems (around 20 seconds for 50 agents in the Den520d environment as presented in
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Figure 6.6), Kamphof [9] pointed out that several significant differences exist between the implementa-
tion of Cohen et al. [144] and the intended implementation in the context of ground surface operations.
The main difference is that Cohen et al. [144] considered a cell-based environment in which swapping
of intermediate cells during a motion from one configuration to another was taken into account, leading
to a sizable reservation table. However, for an airport environment and ground surface operations, the
reservation table is expected to be much smaller, since we consider only segments (taxiways) instead
of individual cells. Therefore, ECBS-CT is considered to be a suitable candidate to implement in this
research.

(a) Arena map with 49x49 cells. (b) Den520d map with 256x257 cells.

Figure 6.6: Two example environments used to test the ECBS-CT algorithm. Taken from [147].

SIPPwrRT Combined With PBS

In the work of both Soomers [8] and Kamphof [9], airport ground surface operations at AAS are studied,
where aircraft and TaxiBots are routed from a predetermined starting location (gate) to a goal location
(runway). For this application, a novel combination of PBS (high-level) and SIPPwrRT (low-level) is
proposed [8, 9]. Their proposal is based on the fact that although PBS scores good on scalability, run
time and success rate, it is not directly applicable in the context of airport ground surface operations
due to the lack of taking kinematics of agents into account, as well as its assumption of discretization of
time. On the other hand, SIPP-based approaches explicitly handle the two latter difficulties efficiently.

In their implementation of a MAMP solver, two levels are distinguished: a high-level search based
on PBS (refer to subsection 6.1.3) and a low-level path planning search based on SIPPwrRT (refer to
subsection 6.2.1). The PBS algorithm finds a priority ordering among agents that results in the lowest
total sum of costs, assumed to be total taxi times. By translating the priority order in graph reservations
(reserving specific edges in a specific time interval for movement of higher prioritized agents) based
on the kinematics of aircraft and TaxiBots, constraints are generated that are used by the single-agent
path planning algorithm (an adapted version of SIPPwrRT). In order to provide for path planning of
newly arriving aircraft to the system in an online manner, Kamphof performed replanning every hy;, 4
minutes for the next w,;,, minutes [9].

The translation of a priority ordering into a set of graph reservations is done by using three inputs:
the shapes of agent 1, and r;,; the velocity profile of agent r;.,; and the distances between nodes in
the graph layout. Similarly as done by Ma et al. [146], agents are modelled as circular discs with radius
R, = max(W, L), where W represents the width of the agent and L its length [8, 9]. Using the combined
shape of both agents and a safety margin d, a planning radius R, is determined using Equation 6.4.
For each edge, the planning radius is then used to determine four relevant time points used for setting
constraints related to safe and unsafe (conflict) intervals for the edge under consideration. Figure 6.7
visualizes the definition of these four time points related to the planning radius: 7, represents the time
of entering edge AB in node A4; 7, represents the time of leaving node A while entering edge AB; 5
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represents the time of entering node B while leaving edge AB; and t, represents the time of leaving
edge AB in node B [8, 9].

Rp = Rkl + sz + dS (64)

Figure 6.7: Visualization of definition of time points 7, to 7,, related to edge traversal of agents on edge AB. The thick blue line
represents the shape of the agent, the thin blue line represents the combined shape of both agents 1, and ry, and the dashed
blue line represents the planning radius. Taken from [8].

After having defined the relevant time points for every node on the path of agent r;, all connected edges
to the path and all non-connected edges within the planning radius are evaluated. For all these edges,
conflict intervals are determined based on the previously determined time points. Two classification
systems are used: one for non-zero velocities of agent r,, and one when agent r;, is waiting (velocity
equal to zero). The classification systems are visualized in Figure 6.8 and the descriptions of edge and
node types are summarized in Table 6.1, including the corresponding conflict intervals [8]. Note that
the conflict intervals are defined by three variables: the starting time of the conflict interval, the ending
time of the conflict interval and the type of limitation. Concerning the latter, three types of limitations are
implemented: Do Not Enter (DNE) (restrict entering the edge), Do Not Persist (DNP) (restrict presence
at the edge) and Do Not Wait (DNW) (restrict waiting at the node) [8]. Next to conflict intervals, regular
constraints are implemented to prevent agents overtaking each other on the same edge.

(a) Classifications of edges based on agent 7, traversing over edge AB with non-  (b) Classifications of edge based on agent r;,
zero velocity. waiting in node M with zero velocity.

Figure 6.8: Classification systems for edge traversal of agent 1, where red nodes represent possible waiting locations for agent
1. The numbers correspond with the edge types as presented in Table 6.1. Taken from [8].
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Table 6.1: Description of edge and node types, corresponding conflict intervals and regular constraints for the edge classification
systems as depicted in Figure 6.8 [8].

Conflict Interval Conflict Interval
Type Description in Direction of Regular Constraints in Opposite Direction
Traversal of Traversal

If entered before 7,
leave before 73

1 Traversed edge [T1, T2, DNE] If entered after 7, [T1, T4, DNP]
leave after 7,
2 Any other edge on path i i i
within the planning radius
3 Incoming edge at start of i i i
traversed edge
If entered before 74,
Outgoing edge at start of leave before 73
4 traversed edge [r1, 72, DNE] If entered after 7, [r1, 74, DNP]
leave after t,
S e o 7.7, OV
6 Outgoing edge at end of i i i

traversed edge

Any other non-connected
7 edge to the path within [t1, T4, DNP] - [t1, T4, DNP]
the planning radius
Edge connected to
waiting location
Any other non-connected
9 edge to the waiting location [z, t,, DNP] - [t1, T2, DNP]
within the planning radius
Possible waiting location
within the planning radius

[Tli T2, DNE] - -

Nodel  gom any point on current [r1, 74, DNW] ) )
edge

Node M  Current waiting location [T1, T2, DNW] - -
Possible waiting location

Node S within the planning radius [r1, 7, DNW] i i

from any point on current
edge

Once all conflict intervals based on the paths of agents higher in priority have been determined, a set
of safe intervals and a set of regular constraints are defined. Then, in the low-level search, a feasible
path and corresponding velocity profile are found. From an initial state, the agent tries to move as
quickly to a neighboring node as possible, while adhering to the imposed constraints and safe intervals
from the high-level node. When no conflict intervals or other restrictions are present on the neighboring
edges of the next node, optimization for traversal time is performed by accelerating and decelerating
at the beginning and end of the edge respectively. In the case of conflict intervals being present at
neighboring edges of the next node, arrival at exactly the start of the safe interval is being aimed for by
optimizing the maximal final velocity on the edge. This is done by accelerating or decelerating at the
end or start of an edge respectively.

However, in some situations, the agent’s kinematic properties do not allow for adhering to limitations
related to future edges or nodes in the path. An example of this is that an agent might not have enough
braking power to satisfy a conflict interval on a next edge or node when travelling at maximum velocity.
Therefore, an anticipated-motion search is implemented in the SIPPwrRT algorithm. From the currently
being explored state, the connected node that can be reached with the highest velocity is called the
prime state. Then, the prime state is further explored for anticipation, meaning that all edges within the
braking distance away from the prime state are evaluated. For each node, it is checked whether this
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node can be reached through a feasible motion from the prime state. If the edge requires an unfeasible
motion, it is checked whether this edge can be reached not from the prime state but from the explored
state. Since distance is increased, more freedom with respect to kinematics is created. If the state
that required an unfeasible motion from the prime state still requires an unfeasible motion from the
explored state, this state is discarded as successor. All other options (the prime state and all states
that are unfeasible from the prime state but feasible from the explored state) are included as possible
successors [8, 9].

6.2.3. Concluding Remarks on MAMP Algorithms

In order to tackle the difficulties mainly related to agent kinematics and discretization of time when ap-
plying classical MAPF solution techniques to real-world applications, two Multi-Agent Motion Planning
(MAMP) solution algorithms have been presented: ECBS-CT and SIPPwrRT combined with PBS. In
this section, a reasoning will be provided on which MAMP algorithm is going to be used in the remainder
of this thesis for motion planning of vehicles on the airport taxiway network and surrounding infrastruc-
ture.

Based on previous work [8, 72, 9], the general class of motion-based approaches are deemed suit-
able to provide for path planning in real-world MASs. When evaluating the system requirements as
mentioned in subsection 4.6.2, it can be noted that both MAMP solvers are capable of dealing with
the objective to minimize the total taxi time of all inbound and outbound flights (item 3). Similarly, both
algorithms proved to efficiently avoid conflicts and collisions among agents (item 4) and are suitable
to apply in online problem settings (item 6). When considering the requirement on available time and
resources, a preference arises for the use of SIPPwrRT combined with PBS, since this algorithm is
already implemented in the hierarchical multi-agent control architecture developed by Soomers [8] and
Kamphof [9] that will be used in this thesis as well.



Integrated Task Allocation and Path
Planning

In the two previous chapters, both allocation of agents to a set of tasks and path finding from a starting
location to a target location has been discussed respectively. When considering the towing of aircraft
by TaxiBots, both techniques will have to be combined: not only do TaxiBots need to be assigned to
outbound aircraft, also conflict-free paths will have to be defined for all moving vehicles in the system
(aircraft, TaxiBotting aircraft and TaxiBots).

In this chapter, the combination of task allocation and path finding will be discussed. First, a gen-
eral description of the combined task allocation and path finding problem will be given, also called
the Multi-Agent Pickup and Delivery (MAPD) problem (section 7.1). Next, a selection of studies will
be elaborated on in section 7.2 that use a decoupled approach to solve the MAPD problem by sep-
arately and consecutively solving the task assignment problem and path finding problem. Finally, in
section 7.3, two algorithms will be discussed that solve the task assignment and path finding problem
simultaneously, allowing for guarantees on optimality. Again, the latter two sections will be concluded
with a review on which approach to combine task allocation and path finding is deemed most suitable
to apply in the context of TaxiBotting.

7.1. Extensions of the Classical MAPF Problem to Include Task Al-

location

When considering the description of classical MAPF problems in subsection 6.1.2, it can be noted that
the assignment of agents to tasks is assumed to be a given. In addition, all agents are assigned only
one task (or destination) and the problem terminates when all agents have reached the location of this
one task. Furthermore, the number of agents equals the number of tasks.

When considering real-world applications, several characteristics are not incorporated into this clas-
sical MAPF formulation, as described in section 6.2. However, this section focuses primarily on the
inclusion of kinematics and continuous time into the classical MAPF problem, but does not incorporate
other operational characteristics of real-world applications. Examples of this are situations where the
assignment of agents to tasks is not determined beforehand, where agents are grouped into teams or
where agents are constantly engaged with newly arriving tasks to the system. In the following subsec-
tions, extensions of the classical MAPF problem will be discussed, eventually leading to the definition
of the problem that will be studied in more detail in this chapter: the Multi-Agent Pickup and Delivery
(MAPD) problem. Note that the notation as described in subsection 6.1.2 will be assumed a baseline
and supplemented when necessary.

7.1.1. Anonymous Multi-Agent Path Finding (AMAPF) Problem

In the Anonymous Multi-Agent Path Finding (AMAPF) problem, the goal is similar to that of MAPF
problems: a set of agents has to move to a set of target vertices. However, in contrary to the classical
MAPF problem, every agent can be assigned to every target: it does not matter which agent fulfills
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which task [134]. Note that the task allocation is thus not a predetermined given to the problem. Given
a set of agents R = {ry,n,,..,1,} and a set of targets T = {t;, t,, .., t,}, the assignment of targets to
agents can be expressed as a one-to-one mapping o : t;; = a(r;). As a consequence, an AMAPF plan
consists not only of a path m; to each agent r;, but also includes the assignment ¢ of targets. A solution
to the AMAPF problem is an AMAPF plan for which all the paths of agents are collision-free [135].

An example of an AMAPF problem is shown in Figure 7.1. Similarly as for the MAPF example shown
in Figure 6.1, white cells are traversable and objects are represented using black colored squares.
Agents r; with s; = B and r, with s, = A and a set of targets t; = D and t, = E are given. An optimal
solution to this problem would be {m; = (B,C, E), 7, = (A A,C D)}, where o(r;) = t, and o(rp) = t;
[135].

(a) Grid representation of AMAPF problem. (b) Graph representation of AMAPF example

Figure 7.1: Example of an AMAPF problem, where agents a, and a, are represented with fully colored circles. A set of goal
vertices t; and t; are represented using colored hatched circles. Taken from [135].

7.1.2. Target Assignment and Path Finding (TAPF) Problem

In the Target Assignment and Path Finding (TAPF) problem, the set of n agents R is partitioned into K
disjoint teams team,, .., teamy. Each team; consists of J, agents agentk, agent}‘k and is assigned
with J targets tf,..,tf . Every agent r* is assigned a unique starting vertex s¥. Similarly as for the
AMAPF problem, the assignment of targets to team, is given as a one-to-one mapping o* : tlf‘, =
o (k). Again, targets and agents are interchangeable, meaning that any one agent r}* can be assigned
any target t¥ that is in the partition of targets belonging to the team,, [135].

Note that the TAPF can be viewed as a generalization of both the MAPF and AMAPF problem [135].
When the number of teams in the TAPF is equal to the number of agents (K = n), the problem turns
into a MAPF problem where each agent is part of its own "team”, assigned a single target. When the
number of teams is equal to one (K = 1), the problem becomes an instance of the AMAPF problem,
where a target can be assigned to any agent in the one team present [135].

In the example shown in Figure 7.2, two teams of agents are presented: team, consisting of agent
ri with s1 = C; and team, consisting of agent rZ? with s? = A and agent r? with s = B. The target
vertex given to team, is t] = E and the target vertices given to team, are t# = D and t5 = F. A
collision-free, optimal solution is given by {n} = (C,D,E),n? = (A A, B,D), 73 = (B, B, D, F)}, where
ol(rd) =t}, 6?(r}) = t? and %(r}) = t3 [135].

7.1.3. Multi-Agent Pickup and Delivery (MAPD) Problem

The last extension of the classical MAPF problem that will be discussed is the Multi-Agent Pickup and
Delivery (MAPD) problem. Similarly as for the MAPF, AMAPF and TAPF, the problem consists of a set
of agents R = {ry,13,..,1,,} and a set of unexecuted tasks 7' = {14,15,..,7n}. Every targett; € T is
characterized by a pickup vertex s; € V and a delivery vertex g; € V. However, the number of agents is
not necessarily equal to the number of targets. Furthermore, the set of tasks T changes dynamically:
new tasks can be added to the system over time [135]. In other words, the MAPD problem can be
seen as a "lifelong” version of the one-shot MAPF problem [88], where agents have to fulfill a stream of
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(a) Grid representation of TAPF problem. (b) Graph representation of TAPF example

Figure 7.2: Example of an TAPF problem, where agents a}, a and a? are represented with fully colored circles, corresponding
with two different teams. A set of goal vertices are represented using colored hatched circles, where the color corresponds with
the team of agents that has to reach the given goal vertex. Taken from [135].

tasks while avoiding collisions with other agents and the environment. Similarly as for the AMAPF and
TAPF problem, any free agent that is currently not executing a task, can be assigned to any task in the
set 7. Furthermore, reallocation of agents can be done for tasks until agents have reached the pickup
location of the unexecuted task: after that point, reallocation of the given task is not allowed anymore
[88].

The goal in MAPD problems is to finish all tasks as quickly as possible while avoiding collisions
between agents. Two metrics that are frequently used to evaluate the effectiveness of MAPD algorithms
are the following [135]:

- Makespan: the earliest time step when all tasks are finished.

» Service time: the average number of time steps needed to finish each task from the moment it
has arrived in the system.

In Figure 7.3, two agents r; (blue) and r, (green) are shown with colored circles, with starting positions
m1(0) = A and ,(0) = E. A single task 7; with s; = A and g; = E is shown, where both the pickup
and delivery vertices are represented by dashed circles. A solution to the problem would be to assign
task 7, to agent ry, following path m; = (A, A, C, E). Agent r, is assigned path m, = (E, C, B) [135].

(a) Grid representation of MAPD problem. (b) Graph representation of MAPD example

Figure 7.3: Example of an MAPD problem, where agents r; and r, are represented with fully colored circles. Task t, is added
at time step 0 to the system and is characterized by a pickup vertex s, and delivery vertex g,, represented by dashed circles.
Taken from [135].

Well-Formed Multi-Agent Pickup and Delivery (MAPD) Instances
In the example shown in Figure 7.3, the path assigned to agent r; and r, is called a solution since it
results in a bounded service time for all tasks in the system. In general, an MAPD algorithm is said to
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be able to solve an MAPD problem if and only if the resulting service time or makespan for all tasks is
bounded [135]. However, not all MAPD instances are solvable: Figure 7.4 is an example of an MAPD
problem that is not solvable, since neither agent a, nor a, can execute task t; with pickup vertex s;
and delivery location g, [88].

According to Ma et al. [88], if MAPD instances are
well-formed, the problem is guaranteed to be solvable.

Before explaining the definition of well-formed, two ad- e =
ditional sets are defined. Let the set of endpoints 1, r \L ; i \L
be the set of all initial locations of agents, all pickup and v 51 ' v 1 ;
delivery locations and any additional possible parking ~aeamid i

locations. The set of task endpoints Vg is the set of
all possible pickup and delivery locations and the set of
non-task endpoints is the set I, \ V;sx [88]. Then, the Figure 7.4: Example of MAPD instance that is not solv-

definition of well-formed can be expressed as follows: aPle. Agents a, and a, are represented by fully colored
circles. Task t, is characterized by pickup location s; and

A MAPD instance is well-formed iff a) the delivery location g,. Taken from [55].

number of tasks is finite, b) there are no

fewer non-task endpoints than the number

of agents, and c) for any two endpoints, there exists a path between them that traverses no
other endpoints [88].

Figure 7.5: Examples of MAPD instances. White cells are traversable, black cells are blocked. Agents are represented using
fully colored circles. Red and black dashed circles are task endpoints and non-task endpoints respectively. Taken from [88].

Figure 7.5 shows three MAPD instances. The left MAPD instance is well-formed. The middle MAPD
instance is not well-formed, since the number of non-task endpoints (black dashed circles) is larger than
the number of agents. The right MAPD instance is neither well-formed, since no path exists between
endpoints e, and/or e, and e; that does not traverse over endpoint e; [88].

In order to solve well-formed MAPD problems, both task allocation and path finding will have to
be performed. In the following two sections, both decoupled (first allocating tasks and subsequently
defining collision-free paths for all agents) and coupled approaches (performing task allocation and
path finding simultaneously) will be elaborated on in more detail.

7.2. Decoupled Approaches to Solve MAPD Problems

In Multi-Agent Pickup and Delivery (MAPD) problems, agents have to both assign themselves to tasks
and find collision-free paths to execute these tasks. In general, all MAPD are considered to be lifelong:
the total number of tasks in the system is larger than the number of agents causing agents to attend to a
stream of tasks [88]. However, a distinction can be made between online and offline MAPD problems.
For offline problems, all tasks are known upfront, whereas for online problems, tasks can arrive at any
time to the system [88].

As explained before, the MAPD problem requires both task assignment and path finding. In this sec-
tion, an overview of research will be given that make use of decoupled algorithms in which agents first
assign themselves to tasks and thereafter computes its own collision-free path based on the provided
global information [88]. Distinctions will be made between offline and online algorithms
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7.2.1. Greedy Task Allocation Combined With SIPP (Offline)

In the work done by Yakovlev et al. [148], the performance of various task allocation strategies is re-
viewed, combined with the Safe Interval Path Planning (SIPP) algorithm (refer to subsection 6.2.1 and
subsection 6.2.2 for more details on SIPP). All task allocation strategies are based on the principle of
iterating over the robots and assigning each robot a task using a select () function. For this function,
three different variations are implemented, where the most basic version randomly assigns a sub-goal
out of the set of unexecuted sub-goals (random). A more intelligent approach makes use of the Eu-
clidean distance between all unassigned sub-goals and the location of the current robot and greedily
assigns the target for which the distance is minimal (without obs). Finally, in order to be able to
take obstacles into account, the cost of executing a certain task is based on finding the shortest path
between the start location of the robot and the sub-goal under consideration using the A* algorithm
(with obs) (refer to subsection 6.1.3 for more details on the A* algorithm) [148].

For a varying number of agents, the effectiveness of the MAPD algorithm is tested on 100 scenarios
in which 164 unique start, sub-goal and goal locations are randomly distributed over a grid-like ware-
house environment. In addition, two variations were compared: one in which the agents are allowed
to make cardinal moves and one in which any-angle moves are allowed. In Figure 7.6, the results
are shown for the various configurations and scenarios. As can be seen, including estimates of path
costs based on path finding algorithms such as A* in the allocation phase, results in significant im-
provements in terms of makespan. Furthermore, run times remain within 1 second for 32 agents when
making use of the most sophisticated task allocation strategy, arguably allowing for real-time execution
of the system.
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Figure 7.6: Experimental results showing effectiveness of MAPD algorithm for varying number of agents and task allocation
strategies, based on the work of Yakovlev et al. [148].

7.2.2. TA-Prioritized and TA-Hybrid (Offline)

One of the first studies to define the MAPD problem as a lifelong version of the MAPF, is the work done
by Ma et al. [88]. In this research, they present a selection of online MAPD algorithms, which will be
discussed in more detail in the following section (subsection 7.2.3). Although the original algorithms
were designed for online problems, they can also be applied to offline problems. In the research done
by Liu et al. [149], one online algorithm in particular called CENTRAL (originally implemented by Ma
et al. [88]), is altered to deal with the offline version of the problem and improved with respect to task
planning, path planning and deadlock avoidance [149]. In its original version, CENTRAL iteratively
assigns tasks using the Hungarian method and subsequently plans paths using Conflict-Based Search
(CBS) (for more details on CBS, refer to subsection 6.1.3). Two variations are suggested by Liu et al.
[149] and are Task Assignment - Prioritized (TA-P) and Task Assignment - Hybrid (TA-H).

For both TA-P and TA-H, the task assignment part is based on solving a special TSP on a directed
weighted graph to find a suitable task sequence for each agent [149]. The idea of using a directed
weighted graph and formulating the task allocation problem as an TSP is based on previous work [150,
151]. In this model, two objectives are used: the primary objective is to minimize the largest execution
time of all task sequences and the secondary objectives focuses on minimizing the sum of all execution
times of all task sequences. Rather than using travelling distance, minimizing for execution time also
accounts for possible waiting for the release of tasks. Note that in the task assignment part, interaction
with other agents and thus, collisions are not taken into account.

The solution of the TSP can be represented by a Hamiltonian cycle, containing each agent and
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task vertex only once (Figure 7.7). Thus, for a set of N agents, the Hamiltonian cycle consists of N
parts, where each part contains an agent vertex, a sequence of task vertices and another agent vertex.
These N parts can be converted to N task sequences, where the sum of the edge weights of each part
provides for a lower bound on the execution time. The reason that the sum only is a lower bound, can
be explained by the fact that only the release time for the first task is taken into account. Thus, waiting
for other tasks is not included. In addition, as mentioned before, rerouting to avoid collisions with other
agents is not incorporated in the model as well [149].
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Figure 7.7: Representation of an example solution to the TSP model used in the work by Liu et al. [149] as a Hamiltonian cycle,
containing three agent vertices and nine task vertices. On the right, three corresponding task sequences are shown for all three
agents. Taken from [149].

With respect to path planning in the TA-P approach, this is based on the prioritized planning approach
suggested by Van den Berg and Overmars [152]. In their work, they plan paths with the A* algorithm for
agents using a priority order, where priority is based on estimated execution times in decreasing order
(agents with larger execution times are given priority). After having planned a path for an agent, the
paths for next agents are not allowed to collide with the already existing paths. Therefore, the planning
of paths for agents with larger execution times is subjected to fewer constraints, which according to the
authors, may result in a smaller makespan [152]. In TA-P, the authors suggest the following improve-
ment with respect to the work of Van den Berg and Overmars: instead of using an estimate for the
execution times to base the priority order on, the actual execution time is used. This actual execution
time is based on the already existing paths in the model, instead of the estimate that does not take
interaction with other agents into account [149].

In the TA-H approach, agents are divided into two groups for which paths are planned differently:
new task agents (agents that are performing a task) for which paths are planned from their current
location to the delivery location of their current task; and free agents (agents that have not yet arrived
at the pickup location of their next task) for which paths are planned from their current location to the
pickup location of their next task. For new task agents, paths are planned by modelling the problem
as a MAPF instance and using an improved version of CBS (Improved Conflict-Based Search (ICBS)).
Once free agents have arrived at the pickup location of their next task (and thus become a new task
agent), the path is planned as described before and the resulting path remains unchanged until the
new task agent reaches the delivery location of the task [149].

As soon as a new task agent has reached the delivery location of their previous task, the agent
becomes a free agent. Then, by modelling the problem of finding a sub-path to the next pickup location
as an AMAPF instance (thus, allowing for swapping of future tasks between agents), a polynomial-time
min-cost max-flow algorithm is used to find the path for the agent to the pickup location of its next task.
Replanning of paths for free agents is done at every time step in which the set of free agents changes
[149].

Finally, both TA-P and TA-H approaches make use of the deadlock avoidance method “reserving
dummy paths”. A dummy path is "a path with minimal travel time to the parking location of the agent”
[149] and guarantees that there is at least one movement possible for the agent from its current location,
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thus, avoiding deadlocks [149]. For this to hold, a dummy path should avoid collisions with the paths of
all previous agents and in addition, a dummy path cannot contain parking locations of all other agents.
In TA-P, a new dummy path is planned every time that a new sub-path is planned. Thus, the new
dummy path replaces the non-final dummy path (the final dummy path is the only path that the agent
will actually follow, since this path leads from the final delivery location back to its parking location).
Note that when using TA-P, a new sub-path is immediately planned after a (non-final) dummy path has
been found. However, for TA-H, this is not the case: subsequent sub-paths are planned only once
agents switch from type (new task agent to free agent or v.v.). Therefore, all dummy paths are stored
and collisions with this path should be avoided [149].

Table 7.1: Results of comparison of different MAPD algorithms performed on small warehouse grid (Figure 7.8), where "f’
represents the task frequency per time step [149].

CENTRAL TA-Prioritized TA-Hybrid TSP
runtime runtime runtime
f agents | makespan (sec) makespan (sec) makespan (sec) makespan
10 1155 51 1094 10 1087 13 1062
1 20 661 122 608 21 612 38 590
30 553 180 546 35 528 118 525
40 555 482 534 44 525 182 525
10 1117 110 1054 10 1039 10 1020
5 20 603 218 551 19 549 19 519
30 424 257 370 29 377 21 345
40 332 345 289 41 285 31 268
10 1130 64 1036 10 1045 10 1017
10 20 589 131 559 19 541 17 512
30 422 221 369 19 373 21 343
40 344 356 294 40 279 29 261
10 1101 50 1045 10 1037 11 1016
500 20 580 124 535 19 539 14 508
30 421 720 370 29 362 21 338
40 357 976 275 39 280 22 254

In Table 7.1, the results of an experiment using the ware-
house grid as visualized in Figure 7.8 are shown. For differ-
ent task frequencies ranging between 1 and 500 (equivalent
to releasing all tasks at the beginning) and a varying number
of agents, both makespan and total run time (in seconds)
of three different MAPD algorithms are compared with each e N S
other. Note that for TA-P and TA-H, the run time only reflects ;
the run time of the path planning part. The task assign-
ment is performed separately using the TSP solver, which T T
was ran for 1,000 seconds after which the best Hamiltonian :
cycle has been chosen. Although both TA-Prioritzed and
TA-Hybrid outperform CENTRAL in terms of makespan, the
associated run times for the path planning cannot be imple- Figure 7.8: Representation of small warehouse on
mented in a system that requires real-time operation. 21x 35 grid. Black cells represent object, blue cells

task endpoints and orange cells are non-task end-
points. Taken from [149].
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7.2.3. Token Passing (TP) and Token Passing
with Task Swaps (TPTS) (Online)

As mentioned earlier, Ma et al. [88] were among the first
ones to define the MAPD problem as a lifelong MAPF instance. In their work, they present two novel
online algorithms, both based on the idea of cooperative A*, where agents plan their path one after each
other [153]. The first decoupled algorithm is called Token Passing (TP) and makes use of a so-called
“"token”, that represents a shared block of memory containing information on the current paths of all
agents, the task set (all tasks that have no agent assigned) and agent assignments. In each time step,
any new tasks in the system are added to the task set in the token. If an agent has reached the end
of its current path (that is, reached a destination location of a task), it requests the token. The token is
passed to all agents one by one that request the token. From the token, each agent tries to find a task
in the task set such that the path of any other agent does not end up in the pickup or delivery location
of the task under consideration. If such a task is available in the task set, the agent assigns itself to the
task with the minimal path costs (found using A*). Subsequently, a collision-free path from the current
location of the agent is found through the pickup location to the delivery location of the task. However,
if no task is available for which no other agent’s path ends up in the pickup or delivery location of the
task, the agent does not assign itself to a task in the time step. It either stays in its current location
(if the current location is not a delivery location of a task) or finds a collision-free path from its current
location to an endpoint that is neither a delivery location of a task nor an endpoint of any other path of
the other agents [88].

A more effective version of TP is Token Passing with Task Swaps (TPTS) [88]. Instead of using
a task set that contains all unassigned tasks, in TPTS the task set consists of all unexecuted tasks,
allowing agents that swap tasks that are not yet executed. Similar to TP, agent r; requests the token
once it has reached the delivery location of its last task and tries to assign itself to a task t in the task
set T. If agent r; finds a task that is already assigned to agent r;» but it reaches the pickup location in
fewer time steps than agent r;s, it assigns itself to the task and unassigns agent r;» from the task [88].

Table 7.2: Results of comparison of different MAPD algorithms performed on small warehouse grid (Figure 7.8), where "f’
represent the task frequency per time step [88].

CENTRAL TP TPTS

runtime runtime runtime

f agents | makespan (ms) makespan (ms) makespan (ms)
10 2,513 92.69 2,532 0.13 2,532 1.86

0.2 20 2,513 493.83 2,540 0.26 2,520 9.82
=30 2,513 1,225.62 | 2,546 0.25 2,527 21.57
40 2,511 2,246.66 | 2,540 38.88 2,524 27.49

10 1,143 141.32 1,198 0.20 1,182 0.37

1 20 673 279.52 757 1.03 706 2.80
30 557 446.38 607 2.81 561 8.45

40 556 1,159.76 | 624 2.14 563 39.54

10 1,105 126.19 1,162 0.20 1,165 0.41

5 20 594 350.13 655 1.02 645 1.68
30 426 595.04 478 2.22 474 8.85

40 334 864.56 418 4.15 396 12.31

10 1,090 125.55 1,163 0.22 1,172 0.40

10 20 607 379.53 643 1.09 645 1.87
30 414 593.89 526 1.98 491 10.82

40 341 899.81 407 1.65 389 12.62

Table 7.2 show the results of experiments performed by Ma et al. [88] comparing the different MAPD
algorithms on the warehouse presented in Figure 7.8 for a sequence of 500 tasks, released with differ-
ent frequencies (f) and using a varying number of agents. Both makespan and run times per time step
(in ms) are reported on. As can be seen, both TP and TPTS outperform CENTRAL when it comes to
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scalability and computational efficiency, with run times per time step under 5 miliseconds for TP and
under 40 miliseconds for TPTS [88]. Although CENTRAL outperforms both online MAPD algorithms
in terms of makespan [88], the marginal increase in makespan for TP and TPTS might not be signifi-
cant in the context of TaxiBotting, that require real-time operations. According to the authors, TP is the
best choice when real-time computation is of primary concern, since this algorithm produces efficient
outcomes for MAPD problems with hundreds of agents and tasks. However, since the scale of the
TaxiBotting problem is expected to be less than hundreds of agents and tasks, implementation of the
more efficient TPTS algorithm can also be considered.

Token Passing Approach for Multi-ltem Delivery

Instead of assuming a single-item capacity for agents, Contini and Farinelli [154] develop a decentral-
ized algorithm based on a token passing approach where robots can deliver multiple items in a single
travel. Although TaxiBots will not have a multi-item capacity, the multi-item token passing approach
is still of interest when clustering of tasks is considered (refer to subsection 5.4.3). In that case, the
clustered tasks and corresponding pickup and delivery locations can be seen as a sequence of tasks
(or locations) to be visited by the TaxiBot.

Contini and Farinelli [154] develop an iterative algorithm that is based on the same principles used
in the token passing approach used by Ma et al. [88]. From the initial set of tasks T, a set of multi-item
partitions P is made. Since clustering of tasks is already elaborately described in subsection 5.4.3,
focus in this section will be on the working principle of the iterative algorithm, which is visualized in Fig-
ure 7.9. As an input, a multi-item task set P is taken. Based on the current paths, a token containing
the multi-item task set P, is sent to the agent with the shortest current path. This agent chooses a task
p; from the set of multi-item tasks P and tries to find a path from its current location to all endpoints
related with task p; (pickup location s; and delivery locations g}, gZ, ...), back to the home endpoint of
the agent. If a valid collision-free path is found using a variation of the A* algorithm, the path is stored
in the token and the token is sent to the agent that now has the shortest path. If a valid path could not
be found, the task is re-inserted in the token, which is sent to the next agent for finding a valid path. In
the example, first the red agent chooses a task from the set . After having sent the token to the blue
agent, the blue agent chooses a task and sends the task to the cyan agent. The cyan agent picks one
of the remaining tasks and finds a collision-free path. Since it is the blue agent who has the shortest
path after all agents have had their first pick, the cyan agent sends the token to the blue agent for
picking the final task.
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Figure 7.9: Visualization of the working principle of the iterative algorithm based on the token passing approach as described in
the work of Contini and Farinelli [154].
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7.2.4. Concluding Remarks on Decoupled MAPD Approaches

In the previous sections, three different frameworks have been evaluated that solve the MAPD problem
in a decoupled manner, meaning that task allocation and path finding are performed separately. Based
on the system requirements as formulated in subsection 4.6.2, a preferred framework for implementing
in the remainder of this thesis will be chosen.

In this reasoning, one system requirement can be considered decisive: requirement item 6 related
to real-time operations and modelling the problem in an online setting. With respect to real-time op-
erations, it is of importance that run times per time step remain significantly below 1 second. Strictly
speaking, the only approach that allow for this is Token Passing (TP), although research presented in
section 7.3 will point out that Token Passing with Task Swaps (TPTS) is also capable of finding solu-
tions with run times well below 1 second. In addition, both TP and TPTS are the only methods that are
specifically designed for online problems.

Although it is shown that TP is more computationally efficient than TPTS, TPTS produces better
results in terms of makespan. Therefore, it is proposed to use TPTS in the final model if computational
times allow for it. Otherwise, TP is used to combine task allocation and path finding in a decoupled
manner. Note that anyways, in the baseline model no reallocation of tasks (or task swaps) will be con-
sidered. Therefore, TP will be implemented anyways, possibly extended with task swaps if resources
allow for it.

7.3. Coupled Approaches to Solve MAPD Problems

After having reviewed a selection of decoupled approaches to solving the MAPD problem, attention
will be paid to solving techniques that integrate task allocation and path finding in a coupled manner.
Similarly as for decoupled approaches, a distinction will be made between offline and online algorithms.

7.3.1. Multi-Agent Pickup and Delivery with Task Deadlines (MAPD-TD) (Offline)

In a very brief paper, Wu et al. [126] propose a priority-based framework that integrates task assignment
with path planning for offline problems. In addition, they assume that a task t; is characterized by a
deadline d;. The goal is to maximize the number of tasks completed before the associated deadline.

In section 5.3, a brief outline has been provided on how the next task to be assigned is selected. In
summary, a measure flexibility f; is used that represents the available time between the earliest time
step any agent r;, can finish the task and the corresponding task deadline d;. The most urgent task i*,
that is, the task with the lowest flexibility f;, is selected to be assigned next.

Subsequently, the agent k™ is found to which task i* is assigned. Let 7, be the time step that agent
1, arrives at the delivery location of the last task in its assignment set a;.. For all agents that are capable
of executing task i* before its deadline, the agent is chosen for which Equation 7.1 holds. That is, the
agent for which its current completion time of all tasks assigned t;, is closest to the earliest time step
cki+ it can finish the most urgent task i, is assigned to the task [126].

k* = argmin(cy ;+ — Tx) (7.1)
Ch,i* <d;

After having assigned task i* to robot k*, this agent plans its collision-free path using an A* algorithm,
taking into account the paths that are previously planned. Based on its new route, new values for
cx,;Vi € T have to be calculated.

In Table 7.3 [126], the average success rate (number of tasks completed before their deadline) is
shown when testing the algorithm on a small warehouse (Figure 7.8) for a varying number of agents.
The number of tasks equals ten times the number of agents. Furthermore, the deadline of each task
is based on the parameter ¢ where the deadline of each task is set to be (1 + ¢) times the completion
time of the task with a hypothetical path (ignoring any potential collisions). As expected, the larger ¢,
the more tasks are completed before their deadline. Although more results on makespan, service time
or run time are unfortunately not reported on, the idea of using flexibility as a measure to account for
deadlines of tasks is expected to be suitable for the problem of assigning TaxiBots to aircraft before a
certain time as well. However, the presented framework will have to be adjusted for an online setting.
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Table 7.3: Results of the MAPD-TD algorithm representing the average success rate for 10 runs of an experiment in a warehouse
environment (Figure 7.8) for a varying number of agents and tasks. Taken from [126].

¢
agents tasks | 0.0 0.1 0.25
10 100 0.8670 0.9380 0.9890
20 200 0.8090 0.8920 0.9810
30 300 0.7760 0.8580 0.9630
40 400 0.7378 0.8198 0.9402

7.3.2. Lifelong Enhanced Conflict-Based Search with Task Assignment (ECBS-
TA) (Online)

In a study done by Honig et al. [155], the CBS framework as explained in subsection 6.1.3 has been
extended to include task assignment. The resulting algorithm, Conflict-Based Search with Task Assign-
ment (CBS-TA), is capable of simultaneously assigning tasks and finding paths for agents in several
MAPF instances. In their work, the authors show that their algorithm is both optimal and complete. In
addition, the CBS framework allows for the extension to ECBS, resulting in a scalable, bounded subop-
timal solver called Enhanced Conflict-Based Search with Task Assignment (ECBS-TA). In this section,
the CBS-TA and ECBS-TA algorithms will be explained. Then, the extension suggested by Duchateau
[138] to make the ECBS-TA suitable for online, lifelong MAPD problems will be elaborated on.

As explained in subsection 6.1.3, the CBS framework consists of a low-level and high-level search.
In the low-level, the algorithm finds paths for each agent based on the constraints set in the high-level.
The high-level detects conflicts and tries to resolve them. For the CBS-TA, two major adjustments are
made in the high-level search with respect to the original CBS framework: (1) instead of using a search
tree, a search forest is used; and (2) instead of using a single root node, CBS-TA starts with a root
node representing the best possible assignment, but expands new root nodes only on demand (when
the best possible assignment results in conflicts between agents) [155].
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Figure 7.10: Visualization of working principle of CBS-TA. Taken from [155].

In Figure 7.10 [155], an example with two agents (N = 2) and three tasks (M = 3) is visualized to
explain the working principle of CBS-TA (Figure 7.10a). The assignment matrix A and corresponding
cost matrix C are shown in Equation 7.2 and Equation 7.3 respectively. Based on the cost matrix, the
best assignment is found. In the work of Honig et al. [155], the Hungarian method is used for this, but
in principle, any task allocation approach can be used [155]. In the example, agent 1 is assigned to
target d and agent 2 is assigned to target c. This assignment is added to the assignment tree (step 1,
Figure 7.10c) and a root node is created in the search forest (step 2, Figure 7.10d).

c d e c d e
1/(0 1 1 ] 0o 3 4
A=2<1 0 1> (7.2) C=2<1 o 3) (7.3)

After path construction for both agents based on the assignment, a conflict at t = 2 is found. Therefore,
the next-best assignment is added to the search tree (step 3). This is done by making use of the
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constrainedAssignment(], O, C) function, where I is the set of assignments that must be part of the
solution, O the set of assignments that must be excluded from the solution and C the cost matrix. In the
example, two possible successors are generated: in the first one, the assignment of agent 1 to target d
is disallowed (0 = {1 » d}); and in the second one, the assignment of agent 2 to target cis disallowed
(0 = {2 & c}), while enforcing the assignment of agent 1 to target d (I = {1 - d}). The option with the
lowest cost ([1 » e,2 ~ ¢]) is added as a new root node to the search forest (step 4) and paths are
found again.

Then, we first try to resolve the conflicts found in for the first root node, by adding additional nodes
to the search forest (step 5). Two child nodes are created: one in which agent 1 is restricted to be
at node c at t = 2; and another one in which agent 2 is restricted to be at node c at t = 2. Again,
conflicts are found and thus, the new root node is expanded (step 6) and the search tree is further
extended with another possible assignment taking the constraints from previous steps into account
(step 7). Whenever a root node is expanded, a new root node is added with the next-best assignment
([1 » d,2 » e], found in step 3). Similarly to before, we first try to resolve the conflicts found when
constructing paths for the second root node (step 9). Since the child nodes also contain conflicts,
paths are constructed for the third root node (step 10). Finally, no conflicts are found and thus, the
third root node is selected as solution since it results in an optimal task assignment while guaranteeing
collision-free paths for both agent 1 and agent 2.

When considering ECBS instead of CBS, a few adjustments are made to the framework to arrive at
the ECBS-TA algorithm. As explained in subsection 6.2.2, the ECBS algorithm uses a focal search
algorithm (instead of A*) for both the low- and high-level searches in the search. In a FOCAL list all
nodes are stored that are within a bound w of the lowest cost solution in the search forest. Then, using
a secondary heuristic that estimates the number of conflicts, focal search is used to find the entry in
FOCAL with the lowest estimated number of conflicts [155].

Due to the suboptimality bound w, slack is generated in the search, allowing for more flexibility in
when to add new root nodes. In the work of Honig et al. [155], three variants are considered:

- CBS-TA-style: similarly as explained before, an additional root node is added every time that a
root node is expanded.

+ MaxRoot: using this approach, the idea is to add as many root nodes as possibly useful for a
given bound w. Based on a lower bound LB, which is the lowest cost among the already expanded
nodes, all root nodes are added for which the cost is smaller than wLB. However, this method
is deemed impractical for problems with large N and M, due to the large increase of potential
assignments.

* MinRoot: contrary to MaxRoot, this approach aims at adding the least amount of root nodes as
possible. Based on the threshold wLB, a root node is added when the lowest cost node in the
assignment search tree exceeds the predefined threshold.

In his thesis, Duchateau implemented a lifelong version of ECBS-TA using a MinRoot approach (due
to scalability reasons) to model the pickup and delivery of bags in an airport baggage hall using AGVs
[138]. This was done by first invoking the ECBS-TA algorithm that provides for a coupled integration
of task allocation and path finding as explained before. When at least one AGV received a new task,
the path finding ECBS algorithm was invoked. However, since the allocation of new tasks is strictly
not coupled to path finding, it is better to speak of a hybrid approach instead of an entirely coupled
approach. In addition, tasks were allocated by making use of an improved auction algorithm instead of
the original Hungarian method that was proposed by Honig et al. [155].

The lifelong version of ECBS-TA is compared with two decoupled MAPD algorithms. Both MAPD
algorithms make uses of auctions to allocate tasks: the first one follows a simple CNP model, while
in the second algorithm, reselling and swapping of tasks is also taken into account using an IDMB
auctioning approach [138]. For 30 minutes of real-time operations in a system with 60 AGVs and total
capacity of 3600 bags/hour, the results as shown in Table 7.4 are obtained, including run time per time
step (in seconds), service time (the time between a bag entering the system and being delivered, in time
steps), the total number of bags handled and the delay (difference between calculated shortest path
using A* and the actual length of the path, in time steps). As can be seen, the coupled MAPD algorithm
performs consistently better on the three system KPIs. Although the run times are slightly higher per
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time step when compared with the two decoupled algorithms, they remain well below 1 second per time
step, thus, allowing for real-time operations [138].

Table 7.4: Results obtained by Duchateau [138] when comparing two decoupled MAPD algorithms with the coupled ECBS-TA
algorithm in a lifelong setting where 60 AGVs need to deliver bags at a system capacity of 3600 bags/hour [138].

Runtime Service time Number of bags Delay

(sec) (time steps) handled (time steps)
CNP + ECBS | 0.49 222.7 1264 0.27
IDMB + ECBS | 0.59 219.8 1274 0.20
ECBS-TA 0.67 215.3 1282 0.20

7.3.3. Lifelong Relative Regret-Based Marginal-Cost Based Task Assignment (RMCA(r))
(Online)

One of the first studies to develop a fully coupled MAPD algorithm that allows for scalability without
losing solution quality, is the work done by Chen et al. [156]. They propose a MAPD algorithm that
simultaneously performs task assignment and path planning by making use of a current assignment
set A and a priority heap #. In the current assignment set A, the following items are stored: a set of
assignments a;, characterized by an ordered sequence o, of pick-up and drop-off actions assigned to
each robot k € R; the current collision-free path of robot r;,; and the Total Travel Delay (TTD) associated
with the assignments a;, to be performed by r,. Note that the TTD is defined as the difference in the
shortest path for robot r;, to pick-up the task as soon as it arrives in the system and drop it off at the
intended location and the actual time between the task entering the system and being delivered.

The priority heap H contains a set of potential assignment heaps h; for each unassigned task i € 7.
A potential assignment heap h; contains for task i all possible assignments pa,ic of task i to robot r;
for each k € R. The potential assignment pal, stores information on an updated version of o, robot
1,’s path and associated path cost if task i would be added to robot r,’s current assignment set a,.
Assignment of tasks from the set of unassigned tasks P* initialized as P will continue until all tasks are
assigned.

At the start of the algorithm, the set of assigned tasks A is empty. The priority heap ¢ is initialized by
including one potential assignment heap h; for each task, where each heap h; consists of the potential
assignments pal, for all k € R (see also Figure 7.11). Within each potential assignment heap h;, all
potential assignments pal, are sorted based on increasing order of marginal costs. The ordering of h;
within the priority heap  will be elaborated on below.

While the set of unassigned tasks P is not yet empty, the algorithm keeps assigning the top potential

assignment pa,i( of the top potential heap h;, meaning that task i is assigned to robot r,. Therefore,
pal is added to assignment set ay, h; is deleted from heap # and task i is deleted from P*. Since
the action sequence, path and associated path costs for robot r, will change due to the addition of
task i, all other potential assignments for robot r;, in any h;,j € P%* \ {i} will have to be recalculated.
The potential assignments for all other agents k', k' # k, k' € R in principle will not change. However,
collisions may exist between their path and the new path of agent ;.. Therefore, for the first v elements
in each potential assignment heap h;, the paths are checked on collisions and updated if necessary
using the function updateHeapTop (). Note that this is a faster method than checking all paths for
agents other than k and saves considerable time, while only slightly influencing the task assignment
outcome [156].
In their work, Chen et al. [156] propose different task selection methods to base the ordering of heaps
h; within the priority heap H on. For their lifelong experiment, a Regret-Based Marginal-Cost Based
Task Assignment (RMCA) algorithm is used. This algorithm bases the next task i* to be allocated on
the difference in marginal cost of allocating task i in the route of the best robot and the second best
robot. Task i is then assigned to the robot that has the lowest marginal cost.

The robot that has the lowest increase in marginal cost when inserting task i from the set 2% in its
current route, is denoted 7 , which can be mathematically expressed using Equation 7.4, where g;
and g; are the action sequences for picking up and delivering task i* and t(o;) expresses the shortest
path to all tasks in the ordered sequence o,. The operator {t((ox Dq, si) Dq, gi) defines the insertion
of s; at the g, th position of the current route and subsequently the insertion of g; at the g,th position of
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Figure 7.11: Visualization of the working principle of the algorithm that performs task assignment and path planning simultane-
ously as proposed by Chen et al. [156]. The assignment of three tasks {1, 2, 3} to three agents {1, 2, 3} is considered. The grey
box represents the priority heap #, the green box is the potential assignment heap h;, the orange box is the current assignment
set A, the dashed box is the ordered action sequence oy for each agent i, including its starting location s; and pick-up and
delivery location p; and d; respectively (if assigned any). Taken from [156].

the current route. In a similar fashion, the second-best robot 7z, can be defined using Equation 7.5.

(e, 91, 92) = ar*glgin {t((ox By, si) Bq, 9:) — t(op)} (7.4)
Tk
1<qs<loxl,
q1<02<I0g|+1

argmin {t((ox @y, si) Bp, gi) — t(0x)} (7.5)
r,’;z E:R\{rfél}

1<p;<|ogl,
P1<p2s|og|+1

(" P1,P2) =

The ordering of potential assignment heaps h;,i € P* is done based on relative regret in increasing
order, where relative regret of task i* is expressed using Equation 7.6.

i* = argmax t((OZZ @p{ 5i) @p; 9i)
iepu  t((og, Dg; si) Bg; 91)

After having defined the potential assignment pal’ that is to be included in assignment set a,, an
insert () function is used to select the combination of g and g; that minimizes the increase in
marginal TTD (ignoring any potential collisions with other agents). Afterwards, the planPath () func-
tion is used to plan a collision-free path for the defined o], (using A*) and calculates the actual marginal
increase in terms of TTD. Finally, the function updateHeapTop () is called to update any potential
assignments for agents with paths conflicting with the newly added path.

In order to improve the initial solution, the authors propose to make use of a solution improvement
strategy by destroying already allocated tasks from the solution and reassigning them using RMCA.
This is done until time out. The authors propose three different destroying strategies [156]:

(7.6)

- Destroy Random: a group of tasks from all assigned tasks is randomly selected, removed from
the solution and re-assigned using RMCA.

- Destroy Worst: a group of tasks from all assigned tasks that have the worst TTD is selected,
again removed and re-assigned using RMCA. By means of a tabu list, it is recorded which tasks
have been selected to avoid selecting them again. Once all tasks are selected once, the tabu list
is cleared and all tasks can be selected again.

- Destroy Multiple: in this strategy, a group of agents that have the worst sum of TTD is selected.
For each agent, randomly one assigned task is removed from its current assignment set and re-
assigned. Again, use is made of a tabu list to prevent selecting the same group of agents multiple
times.

In the evaluation, Chen et al. [156] compared the performance of the proposed coupled MAPD algo-
rithm with CENTRAL (a centralized algorithm developed by Ma et al. [88], refer to subsection 7.2.2) and
TPTS (refer to subsection 7.2.3), which are two decoupled MAPD algorithms. Experiments are per-
formed on the grid presentation of a warehouse (Figure 7.8) for a total of 500 tasks, that are released
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with different task frequencies f and have to be executed by a varying number of agents. The improve-
ment strategy "Destroy Random” is used, with group size of 5 and improvement time of 1 second for
the entire run. In Table 7.5, the results on TTD, makespan and runtime per time step (in seconds) are
shown.

As can be seen, RMCA(r) significantly improves TTD and makespan when compared with CEN-
TRAL and TPTS for almost all configurations. Although TPTS in general has slightly better run time
performance for higher task frequencies, RMCA(r) stays well below the limit of 1 second per time step
that allows for real-time operations for every instance but one (task frequency of 2 with 50 agents)
[156], making this approach very suitable to apply in the context of TaxiBotting.

Table 7.5: Results of comparison of different MAPD algorithms performed on small warehouse grid (Figure 7.8), where "f’
represents the task frequency per time step. The values in bold represent the smallest values for the specific row. Taken from
[156].

Central TPTS RMCA(r) with
Random Improvement
runtime runtime runtime

f agents | TTD makespan (sec) TTD makespan (sec) TTD Makespan (sec)
20 4365 2528 0.364 3645 2528 0.103 3138 2526 0.205

0.2 30 3864 2527 0.762 3002 2526 0.242 2729 2525 0.208
40 3572 2527 1.300 2646 2525 0.442 2297 2523 0.210
50 3394 2525 1.945 2456 2524 0.710 2176 2523 0.214

20 75294 610 0.125 82734 639 0.022 65938 626 0.489

2 30 37327 446 0.284 47252 490 0.099 30317 436 0.705
40 19930 376 0.426 30491 413 0.273 13945 344 0.884

50 11185 328 0.615 21853 377 0.660 6279 300 1.022

20 116357 587 0.421 125374 626 0.025 106290 624 0.142

10 30 76934 419 1.062 86267 462 0.086 68166 435 0.210
40 56896 337 2.426 66171 383 0.238 49140 338 0.284

50 45170 288 2.828 55409 339 0.559 38050 280 0.362

7.3.4. Concluding Remarks on Coupled MAPD Approaches

In order to determine the coupled approach to implement in the modelling part of this thesis, another
look at the systems requirements as mentioned in subsection 4.6.2 is taken. Similarly as for decoupled
approaches, it is of importance that the proposed framework is capable of dealing with the problem
in an online setting (item 6). Although the first algorithm as proposed in subsection 7.3.1 is originally
designed for modelling offline problems, the framework can be easily adapted to an online setting due
to its similarities with the third (online) algorithm using priority heaps. Both algorithms integrate task
allocation with path finding by first determining path costs for all agent-task combinations, ignoring all
other agents. Then, based on some algorithm-specific ordering, the best agent-task combination is
chosen, upon which all other agents update their path costs, avoiding collisions with the path already
planned. In the first algorithm, this procedure is performed once at the beginning of the problem, but
using some characteristics of the third algorithm, this can easily be adapted to be performed in an
online setting.

However, the approach used by Wu et al. [126] is unfortunately not elaborated on in detail, possibly
leading to additional time needed for implementation. In addition with the fact that results on solution
quality are neither provided, this approach is not preferred. This leaves us with the hybrid version of
ECBS-TA and the algorithm using priority heaps. Due to the fact that ECBS-TA is officially not a coupled
approach, combined with the fact that it is specifically designed for using the ECBS approach in path
planning, the framework using priority heaps (third algorithm) is proposed to implement as a coupled
approach in the remainder of this thesis. It is possible to combine this approach with the preferred
algorithms defined previously for task allocation chapter 5 and path planning chapter 6. However, it
has to be noted that in the original implementation, the third algorithm does not consider kinematics of
agents, possibly increasing run times. If computational times do not allow for implementing the coupled
approach as proposed by Chen et al. [156], an online version of the algorithm as proposed by Wu et
al. [126] will be implemented.






Research Proposal

In this thesis, an outline has been provided on general ground surface operations and more specifi-
cally, the ground surface operations at AAS in chapter 2. Based on the challenges that are currently
encountered in this field of study, interesting developments related to the airport surface movement
problem have been elaborated on in chapter 3, with special attention for the concept of engine-off taxi
operations by the use of towing tugs such as the TaxiBot. A literature review on the consequences of
implementing TaxiBots at airports has been performed, as well as an in-depth analysis on the possible
concept of operations for implementation of TaxiBots at AAS, described in chapter 4. Based on the
concept of operations, three different agent-based domains have been further explored, namely: Multi-
Agent Task Allocation (MATA), Multi-Agent Motion Planning (MAMP) and the combination of both in
Multi-Agent Pickup and Delivery (MAPD) problems in chapter 5, chapter 6 and chapter 7 respectively.

This final chapter concludes the literature study by formalizing a research proposal for the remain-
der of this thesis. First, a recap of the research gap as formulated earlier will be provided in section 3.3.
Based on the research gap, the research objective and corresponding research questions will be dis-
cussed in section 8.2. Finally, an outline of the continuation of this thesis in terms of methodology will
be outlined in section 8.3.

8.1. Recap Research Gap

In the past years, both the challenge of increasing demand for air transportation and the urge for avi-
ation, including airport operations, to become more sustainable have received significant social and
academic attention. One of the promising solutions that tackles the challenge related to sustainability
is the use of external towing tugs, such as TaxiBots, that enable engine-off taxi operations at airports.
However, due to the increasing demand for air transportation and the required throughput in the airport
ground surface movement domain, it is of importance to evaluate the influence of implementing Tax-
iBots on the system performance. In this literature study, an extension of previous work is proposed
that uses a hierarchical multi-agent control architecture to perform planning of taxi operations at AAS in
a centralized manner and performs plan executions in a distributed manner. The existing architecture
has been shown to provide for safe and efficient taxi operations [8, 9], however, it does not include the
allocation of TaxiBots to flights that need to be towed.

In the academic world, the corresponding MAPD problem has received significant attention. How-
ever, limited research has been done on specifically integrating task allocation with path finding on
real-world applications requiring real-time solutions. Based on these findings, a research objective and
research questions have been defined, elaborated on in more detail in the following section.

8.2. Research Objective and Research Questions

A research objective represents the aim of a study. In our case, the research objective can be defined
as follows:

”To design and evaluate an approach for combining task allocation with path finding for a coopera-
tive fleet of TaxiBots to perform fully outbound towing at AAS, using a hierarchical multi-agent control
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architecture.”

Using this research objective as a starting point, the following set of research questions can be formu-
lated:

1. How can TaxiBot operations according to the defined set of assumptions and research
scope be implemented in the existing hierarchical multi-agent system?

(a) What additional elements need to be implemented in the system to model the use of TaxiBots
for fully outbound towing at AAS?

(b) What communication structure will exist between TaxiBots themselves and between TaxiBots
and the operator?

2. How can greedy and auction-based allocation approaches be used in a lifelong MAPD
problem to allocate TaxiBots to outbound flights?

(a) What are the objectives for allocating tasks and what allocation rules should be adopted by
the TaxiBots?

(b) What are the objectives and associated priorities for planning of paths?
(c) How can replanning on a real-time basis improve the overall solution cost?

(d) How can a good trade-off between computational efficiency and solution quality be main-
tained in the proposed framework?

(e) How can the proposed framework be validated?

As explained in section 5.3 and section 5.4, both a greedy algorithm based on flexibility with
regards to the deadline of the task and TeSSI are among the most promising task allocation
candidates. For path planning, the existing path finding algorithm based on a variant of the Safe
Interval Path Planning (SIPP) algorithm will be used, in combination with either PBS or ECBS-CT
(refer to subsection 6.2.3 for more details on the choice). Finally, both a decoupled approach
based on Token Passing (TP) and a regret-based coupled approach based on priority heaps will
be used to combine task allocation with path planning. For more details on the reasoning behind
these choices, refer to subsection 7.2.4 and subsection 7.3.4 respectively.

3. How do the different versions of the framework that combines task allocation and path
finding perform when compared with each other and how do they compare with conven-
tional operations in terms of system performance?

(a) What key performance indicators are relevant to measure system performance of the pro-
posed framework (with respect to conventional operations)?

(b) What are appropriate operational scenarios to use for evaluation of system performance
when comparing different frameworks to combine task allocation with path finding?

(c) What are appropriate operational scenarios to use for evaluation of system performance
when comparing the different frameworks with conventional operations?

(d) How does the solution cost of the proposed frameworks compare with optimal solutions?

(e) What is the influence of structural assumptions on system performance and how can they
be validated?

(f) How does the performance of the proposed framework vary with changing parameters, such
as fleet size?

(g) How can the performance of the proposed framework provide insight in the implementation
of engine-off tug enabled taxiing operations at AAS?
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8.3. Research Methodology

In this section, a more detailed plan will be provided on how the aforementioned set of research ques-
tions will be answered. This will be done by elaborating on the methodological steps to be taken in
subsection 8.3.1 and the corresponding time planning in subsection 8.3.2. Usually, a research method-
ology also includes the definition of the scope of the study and a corresponding set of assumptions.
However, since this has been elaborated on extensively in chapter 4, the final concept of operations
(including scope and assumptions) is not repeated here. The interested reader is referred to section 4.6
for more details on this section.

8.3.1. Methodological Steps

In this thesis, the hierarchical multi-agent control architecture developed by Soomers [8] and Kamphof
[9] that provides for conflict-free routing of flights at AAS will be developed further to include allocation
of TaxiBots to perform outbound towing (refer to subsection 4.6.3 for more details on this choice). The
elaboration of the model and further research will consist of various steps that are outlined below.

1. Model Orientation and Conceptualization: first, the current existing model will have to be famil-
iarized with and understood in order to implement the suggested allocation strategies. Then, the
focus will be on answering research question 1 related to defining a conceptual model, including
the development of additional agents and their interactions required for task allocation, as well
as any additional changes to the existing environment. The proposed changes and additions will
be formalized to be implemented in a baseline model.

2. Baseline Model: in the baseline model, two different approaches of combining task allocation

with path finding will be implemented: a decoupled approach based on TP and a coupled ap-
proach based on priority heaps. Both approaches should allow for the arrival of new tasks to the
system in an online setting and be able to allocate tasks/plan paths in real-time. For the allocation
of tasks, the TeSSI algorithm will be implemented. If TeSSI turns out not be suitable in terms of
computational efficiency, a greedy algorithm using the level of urgency of a task to determine the
next task to be assigned will be implemented. With respect to path planning, the MAMP solver
implemented in the existing model based on SIPP and PBS will be used.
In the baseline model, the main focus is on how to combine task allocation with path finding for
online problems in real-time, thus, focusing on research question 2. Therefore, the reallocation
of tasks nor disruptions of the schedule due to unexpected events are not considered. Once the
implementation of such a baseline model is achieved, possible model extensions can be consid-
ered. These extensions will be outlined below.

3. Model Extensions: after having completed an initial baseline model, several extensions to the
baseline can be considered if available time and resources allow for this. A number of proposed
extensions are listed below, in decreasing order of priority and expected relevance.

(a) Improvement of Task Allocation Strategy: once an initial solution is found, several im-
provement strategies can be considered to improve the overall solution cost. Examples of
this are the inclusion of reallocation of already assigned tasks and/or clustering of tasks
before allocation.

(b) Disruptions Due to Unexpected Events: since ground surface operations at airports are
inherent to the existence of unexpected events, one step towards a more realistic simulation
model would be to include a random variable representing delay. Possible operations in
which delay could be included are e.g., the duration of TaxiBotting (include uncertainty in
the velocity of TaxiBots), delay at the gate (include uncertainty in the issuing of TSAT) or
the duration of decoupling (include uncertainty in the duration of decoupling). In order to
cope with these types of delays, the model in general and the allocation of tasks specifically
will probably have to be improved, moving back towards item 3a in this list. Specifically
concerning allocation of tasks, it is suggested to extend the TeSSI algorithm towards an
variant on the pTeSSI that is capable of coping with uncertainty.

4. Evaluation and Sensitivity Analysis: in the final evaluation, the system performance will be
evaluated. This step mainly concerns research question 3 and concerns the definition of suitable
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KPls and operational scenarios to use for evaluation of the proposed frameworks. From an aca-
demic point of view, it would be of interest to determine how the solution cost of the algorithm
compares with the optimal solution to the problem. From a practical point of view, it is interesting
to focus on the implications on operations when allocation of TaxiBots is included in the prob-
lem. For example, think of the necessary amount of TaxiBots to perform fully outbound towing.
A statistical analysis will be performed on the results to determine their significance.

8.3.2. Time Planning

In Table 8.1, the different methodological steps are presented, including the expected time needed to

complete them.

Table 8.1: Research planning

i Duration
High-Level Low-Level (weeks)

Start-up \ Familiarize with existing hierarchical control architecture 3
Develop additional agents to include for task allocation

Model conceptualization Design communication architecture between exisiting/added agents 2
Design coordination architecture between existing/added agents

Implementatlon of Implement conceptual model in existing hierarchical control architecture 8

baseline model

Verification and validation | Define and analyze testing scenarios 9

of baseline model Perform verification and validation of baseline model

Implementation of Define and design relevant conceptual model extensions 5

model extensions Implement conceptual model extensions in baseline model

Verification and validation | Define and analyze testing scenarios 1

of model extensions Perform verification and validation of model extensions

. . Define and analyze final operational scenarios to test model performance
Final evaluation and e - .
analvsis Perform sensitivity and statistical analysis 7
y Write draft
Conclude thesis work Write final paper 4

Prepare presentation and defence
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Model Elaboration

In this chapter, the simulation model is further elaborated on. First, all assumptions related to the
concept of operations of conventional and tug-enabled taxiing at Amsterdam Airport Schiphol (AMS)
are listed in section A.1. Then, in section A.2, a detailed description of both the environment and the
agents is provided that are modelled in the Multi-Agent System (MAS). In section A.3, the pseudocode
of the most important algorithms developed in this study is provided. Finally, the steps taken to verify
the model are discussed in section A.4.

A.1. Assumptions Related to Concept of Operations

In this section, an overview is provided of all assumptions related to the concept of operations that
is implemented in the simulation model. First, a general set of assumptions on tug-enabled taxiing
operations is provided in subsection A.1.1. Next, specific modelling assumptions are elaborated on in
subsection A.1.2.

A.1.1. General Assumptions on Tug-Enabled Taxiing Operations
The following set of operational assumptions is formalized concerning the implementation of tug-enabled
taxiing operations in this study:

* Fully outbound towing is required, meaning that all outbound flights should be towed by a tug
towards a decoupling location near the assigned runway.

A finite fleet of identical tugs is available, assumed to be capable of towing all outbound aircraft,
independent of size and weight.

* A fixed time duration for decoupling procedures of 120 seconds is assumed, based on TaxiBot
trials performed by Royal Schiphol Group at AMS [6]. The same duration is used for coupling
procedures at ramps, although no operational data is available to base this assumption on.

* Ramps are assumed to provide for sufficient space and capacity, allowing tugs to wait for an
indefinite amount of time at the ramp location if assigned to a flight departing from that same
ramp.

+ Tugs return to the parking facility if not assigned any new tasks.

» Tugs driving on the service road network are not coordinated, meaning that separation among
tugs driving in solo mode on the service road network is not assumed to be maintained. At
locations where a service road crosses a taxiway, separation is ensured between tugs and any
vehicle travelling on the taxiway.

A.1.2. Modelling Assumptions for Specific Case Study
For the simulation of conventional taxiing and tug-enabled taxiing operations at Amsterdam Airport
Schiphol (AMS), the following set of modelling assumptions is formalized:
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« All aircraft are mapped to an International Civil Aviation Organization (ICAQO) Aerodrome Refer-
ence Code based on wingspan and aircraft length (refer to Appendix B for mapping of aircraft to
an ICAO Aerodrome Reference Code), indicating size of the aircraft.

+ Apron operations are not included in the simulation model and therefore, aircraft ramps are mod-
elled as meta-ramps. Meta-ramps represent a group of aircraft ramps for a specific bay area,
which do not require any pushback or push-pull procedures. Although meta-ramps are assumed
to be conflict-free (allowing for multiple vehicles to be present at the same location at the same
time), conflicts between arriving and departing flights at a ramp are detected and recorded. Since
ramp assignment and scheduling is considered to be out of the scope of this research, ramp con-
flicts between arriving and departing flights are not resolved. For more details on the mapping of
ramps to meta-ramps, refer to subsection A.2.1.

+ Inbound flights spawn at a runway exit based on the ICAO Aerodrome Reference Code at the
Actual Landing Time (ALDT) (refer to subsection A.2.1 for mapping of the ICAO Aerodrome Ref-
erence Code to designated entries and exits per runway). The goal location of arriving flights is
a meta-ramp, corresponding with the assigned ramp in the flight schedule. Once the vehicle has
arrived at its goal location, it is removed from the simulation.

» Outbound flights spawn at a meta-ramp corresponding with the assigned ramp in the flight sched-
ule and are assigned the Target Startup Approval Time (TSAT) as a deadline to leave the meta-
ramp. The goal location of departing flights is a set of possible runway entries, based on the ICAO
Aerodrome Reference Code (refer to subsection A.2.1 for mapping of the ICAO Aerodrome Ref-
erence Code to designated entries and exits per runway). Once the vehicle has arrived at its goal
location, it is removed from the simulation.

- Between the center of two vehicles moving on the airside roads, a separation of 150 meters has
to be maintained at node locations that are traversed by both vehicles.

« Travel direction constraints that are currently in-place for some parts of the general taxiway net-
work, do not have to be adhered to since a novel planning concept is put to test. For a selection
of apron entries and exits, travel direction constraints do apply (refer to subsection A.2.1).

+ A fixed time of 100 seconds is used to account for apron operations for all departing flights in
MET scenarios. For all inbound flights, it is assumed that engine cool-down is performed entirely
during taxiing from the runway to the assigned ramp.

« All vehicles move with constant speed over an edge and can change speed instantaneously at a
node location (assuming infinite acceleration and deceleration rates). Furthermore, all vehicles
have the intent to move to their goal location at maximum speed, unless constraints restrict this
from happening. No uncertainty in kinematic characteristics of vehicles exists, both for planning
of routes as for execution of the routing plan.

A.2. Detailed Description of Multi-Agent System

As explained in Section 3 of the scientific paper, the MAS consists of an environment and agents.
In subsection A.2.1, the construction of a graph network based on the layout of Amsterdam Airport
Schiphol (AMS) is provided. Next, the characteristics and properties of all agents is provided in sub-
section A.2.2.

A.2.1. Environment
In this section, the construction of the graph network of AMS is discussed. All its major elements will
be elaborated on, including relevant assumptions and examples.

General Graph Construction of AMS

Based on geographical information extracted from QGis [157], the layout of AMS has been translated
into a graph network consisting of 237 nodes and 390 bidirectional edges. Figure A.1 shows how
satellite data is used to construct this network.
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Figure A.1: Translation of taxiway network of Amsterdam Airport Schiphol using satellite images to a graph network, showing
taxiway edges (black, thin line), service road edges (red, thin line), runway edges (black, thick line), runway nodes (black),
taxiway nodes (orange), service road nodes (green) and meta-ramp nodes (white).

In the network, several types of nodes can be distinguished: taxiway nodes (orange), service road
nodes (green), meta-ramp nodes (white), decoupling nodes (red), all-clear nodes (blue), tug parking
node (purple) and runway nodes (black). In addition, three types of edges are used: taxiway edges (thin
black line), runway edges (thick black line) and service road edges (thin red line). The entire network
is shown in Figure A.2. Note that taxiway and service road nodes are excluded from this figure.

Figure A.2: Graph network of Amsterdam Airport Schiphol, showing taxiway edges (black, thin line), service road edges (red,
thin line), runway edges (black, thick line), runway nodes (black), decouple nodes (red), meta-ramp nodes (white) and tug base
node (purple).

Runway Placement and Configuration
In this study, Runway Mode of Operation (RMO) North is analyzed, meaning that the Polderbaan and
Zwanenburgbaan are used as departing runways in northern direction. The Kaagbaan and Aalsmeer-
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baan are used for arriving flights, coming from south-western or southern direction respectively. Run-
way usage for RMO North for different peaks is shown in Figure A.3.

Amsterdam

Amsterdam Amsterdam

Jo Jo do

Polderbaan
Polderbaan

As A5

A&

Zwanenburgbaan

A A

Zwanenburgbaan
Zwanenburgbaan

Buitgfiveldertba

Buitefiveldertba

Buitgfiveldertba

eeeeeeeeeeeeeeeeeeeeeeeee

Aalsmeerbaan

Aalsmeerbaan
Aalsmeerbaan

'
Tz

(a) Arrival peak (A: 06 + 36R, D: 36L) (b) Transition (A: 06 + 36R, D: 36L + 36C) (c) Departure peak (A: 06, D: 36L + 36C)

Figure A.3: Runway usage in RMO North (arrival peak, transition and departure peak). Created by author.

Every aircraft is mapped to a category in the ICAO Aerodrome Reference Code system (refer to Ap-
pendix B). Based on the input of operational experts, a mapping of the ICAO categories to possible
runway entries/exits is provided in Table A.1. Note that the names of specific runway entries and exits

can be found in the aerodrome ground movement chart provided in Appendix D.

Table A.1: Mapping of ICAO Aerodrome Reference Code category to possible runway entry or exit.

Runway Entry Exit ICAO Aerodrome Reference Code
36L V1,V2,V3 i A, B, C
V4 A, B,CD,EF
w9 A B, C
36C W10 ) A, B,C,D,E,F
S3 A, B
S4 C
06 i S6 D,E,F
S8 cargo flights only
E1 A, B
E2 C
36R - E3, E4 D, E
E5 F

Apron Area

The majority of the aprons at AMS are located in the Schiphol Centre Area. In Figure A.4, the terminal
and corresponding piers are indicated. In addition, the A-apron, J-apron, S-apron, R-apron and Y-apron
are indicated. Three aprons that are present at AMS that are not indicated in the figure are the U-apron
(located west of 18C/36C and north of 09/27), the K-apron and the M-apron (both located at Schiphol
East). Note that flights departing from the R-apron, Y-apron, U-apron, K-apron and M-apron are not

included in the simulation.
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Figure A.4: Configuration of piers at AMS [158].

All ramps located in a specific apron are mapped to one or multiple meta-ramp nodes. In Figure A.6,
all meta-ramps are shown, including labels. The labels of the meta-ramp nodes correspond with the
name of the taxiway connecting the apron with the taxiway network and can be found in the aircraft
docking chart in Appendix D. All ramps that can be reached through the specific apron taxiway are
mapped to the meta-ramp node, independent of flight direction of the aircraft assigned to a ramp. The
following exceptions are made regarding mapping of ramps to meta-ramps and labelling of meta-ramp
nodes:

* Ad: in reality, two taxiways exist for the apron between the B- and C-pier (A4W, A4E). Both
taxiways are merged into a single taxiway and end up in the same meta-ramp node A4.

+ ACO: the ramps C13, C15, C16 and C18 located at the head of the C-pier are mapped to a
separate meta-ramp node ACO.

« A5 and A6: all ramps assigned to arriving aircraft that are located between the C- and D-pier that
are not mapped to meta-ramp A8, are mapped to meta-ramp node A5. All ramps assigned to
departing aircraft located between the C- and D-pier that are not mapped to meta-ramp A8, are
mapped to meta-ramp node A6. The differentiation on flight direction is done because of travel
direction constraints for taxiway A5 and A6 (Figure A.5).
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(a) Travel direction constraints for taxiway A14 (b) Translation of ramps between E- and F-pier to meta-ramps A14
and A16 and A16

Figure A.5: Example of the translation of travel direction constraints for apron entries/exits into multiple meta-ramp nodes.

« A8: the ramps D16, D18, D22, D24, D26 and D28 located at the South side of the D-pier are
mapped to meta-ramp node A8.

+ A10: all ramps assigned to arriving aircraft that are located between the D- and E-pier that are
not mapped to meta-ramp node A12, are mapped to meta-ramp node A10.

+ A13: all ramps assigned to departing aircraft located between the D- and E-pier that are not
mapped to meta-ramp node A12, are mapped to meta-ramp node A13.

* A14 and A16: all ramps assigned to arriving aircraft that are located between the E- and F-pier,
are mapped to meta-ramp node A4. All ramps assigned to departing aircraft located between the
E- and F-pier are mapped to meta-ramp node A16. The differentiation on flight direction is done
because of travel direction constraints for taxiway A14 and A16 (refer to Appendix D).

+ A19C: in reality, three taxiways exist for the G- and H-apron (A19W, A19C and A19E). All three
taxiways are merged and end up in the same meta-ramp node A19C. Note that all ramps located
in the G- and H-apron are mapped to this meta-ramp node.

Figure A.6: Meta-ramp nodes used in the network, including labels.

Taxiway Network

The apron area and the runways are connected with each other by taxiways, which are accessible to
aircraft. The details on the taxiway network for AMS are defined in the Aerodrome Ground Movement
Chart provided for by Dutch ATC (LVNL) [158] (refer to Appendix D). This chart provides for the layout of
all taxiways, including directions currently implemented on the taxiways and restricted turns on taxiway
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crossings. An example of the translation of a crossing on the taxiway network to a simplified network
structure is provided in Figure A.7.

(a) Snapshot of crossing near 36C from aerodrome (b) Translation of crossing into simplified network structure, indicating a turn on
ground movement chart [158]. the crossing that is not allowed, based on Figure A.7a.

Figure A.7: Example of the translation of a crossing on the taxiway network at AMS to a simplified network structure, including
restrictions on allowed turns.

Due to safety reasons, certain taxiways at AMS cannot be utilized when specific runways are opera-
tional. These taxiways include those that intersect with an active runway or are situated within the flight
path of landing or departing aircraft. In Figure A.8, the taxiways that are blocked in RMO North are
shown. Consequently, all aircraft taxiing towards runway 36L will have to pass the Zwanenburgbaan
on its South side. Note that the service roads passing over the North side of the Zwanenburgbaan are
not closed, allowing tug vehicles to make their return movement towards the terminals.

Figure A.8: When RMO North is in operation (36C used as departure runway in Northern direction), the taxiways crossing 36C
and passing over its North side are closed due to safety reasons.

Decoupling Locations

For both departing runways, four decoupling locations are defined based on previous work of Soomers
[8] and shown in Figure A.9. In his work, Soomers defined 15 possible decoupling locations in cooper-
ation with Royal Schiphol Group for all runways at AMS. Although not all possible decoupling locations
meet the criteria set by Schiphol [7], it is anticipated that future advancements in tug technology, pro-
tocols and airport infrastructure will make these locations workable.

For each decoupling location, an all-clear location is defined from which the tug driver provides an
all-clear signal to the pilot indicating that the aircraft can safely resume its journey towards the runway.
It is assumed that the tug can always reach the all-clear location from the decoupling location, inde-
pendent of other traffic. In addition, it is assumed that no other traffic is blocked by tugs positioned at
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all-clear locations. Therefore, all-clear locations are tried to be placed at existing service road infras-
tructure. This does not hold for the all-clear points related to the decoupling locations at the East side
of runway 36C: currently, no infrastructure exists that allows for the return movement of tugs to the
central service road without making use of taxiways or blocking other traffic.

Finally, it has to be noted that during trials using a TaxiBot at AMS, it became apparent that the cur-
rent service road infrastructure does not allow for tug return movements in general, since these roads
are not built for (more) heavy and wide traffic [6]. In addition, there are many users of these roads,
including the fire department [6], that limit capacity of the service roads.

(a) Close-up of South end of runway 36L (b) Close-up of South end of runway 36C

Figure A.9: Close-up of graph network of Amsterdam Airport Schiphol, showing taxiway edges (black, thin line), service road
edges (red, thin line), runway edges (black, thick line), runway nodes (black), taxiway nodes (orange), service road nodes (green),
decouple nodes (red) and all-clear nodes (blue).

A.2.2. Agent Specifications
In the current section, the characteristics and properties for all agents in the system (denoted by a C
and P in the enumeration respectively) are described in more detail.

Airport Operations Agent
Role: define the set of of flights to be routed in the current planning window.

P1 Define Aircraft to be Routed Property: based on information obtained from the Routing Agent,
the Airport Operations Agent checks for each aircraft that is planned to spawn before the end
of the planning window if it has arrived at its goal location yet. If the route of the aircraft is not
completed yet, the Maneuver-Sequencing for Non-Towed Aircraft Property is executed.

P2 Maneuver-Sequencing for Non-Towed Aircraft Property: for the aircraft that do not require any
tug to tow them to their goal location, the Airport Operations Agent defines an activity sequence
for the flight. This applies to all inbound flights and to outbound flights if we are considering a
scenario with no towing at all. In the case of non-towed aircraft, the maneuver sequence consists
of a single moving activity: taxiing.

* Taxiing: the maneuver taxiing entails the movement of an aircraft using its own engines from
a starting position to a goal location. For outbound flights, it is assumed that the engines
of the aircraft are fully warmed-up when decoupling is finished. For inbound flights, it is
assumed that the entire engine cool-down can take place during the taxiing maneuver.

Routing Agent
Role: execute the PBS-TA algorithm, in cooperation with the Tug Allocation Agent, to find a conflict-free
routing plan for all vehicles for the current planning window.

P1 Provide for Current Status and Position of All Existing Individual Agents Property: this
property involves interaction between the Routing Agent and the Individual Agents (Tug and Air-
craft Agents). At every time step t, the Routing Agent collects the position and status of all indi-
vidual agents. If replanning is due, this information is shared with the Airport Operations Agent
and the Tug Allocation Agent.
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P2

P3

Create Individual Agents Property: when replanning is triggered, the Routing Agent receives
information on the set of vehicles to route in the current planning window from the Airport Oper-
ations Agent and the Tug Allocation Agent. For each vehicle, an individual agent is created that
is characterized by an ID, origin, destination, relevant times and kinematic properties. In addi-
tion, the sequence of maneuvers to be performed by the vehicle is added as an attribute to the
agent as well. If the vehicle has been routed before and has already started executing one of its
activities, the agent also inherits the current status and position of the vehicle. Once an agent
is created for every vehicle to route in the current planning window, the Get Routes Property is
executed by the Routing Agent.

Get Routes Property: once the Create Single Agents Property is performed, the Routing Agent
tries to find a conflict-free routing plan for all vehicles. For each vehicle, the routing plan describes
the route and time for every maneuver that is has to perform. The maneuvers can be grouped into
two different activities: moving activities and waiting activities. Additional details on the working
principle of the routing algorithm can be found in Section 4 of the scientific paper.

Tug Allocation Agent
Role: find an allocation of outbound flights to tugs.

P1

P2

P3

Create STNs Property: in order for the tug to make a bid on the tasks up for auctioning, it has to
determine what is the optimal position to insert the task up for auctioning into its current schedule.
In order to keep track of its schedule, the tug makes use of Simple Temporal Network (STN). More
information on the STNs is provided in Section 4 of the scientific paper. At the beginning of every
auction, the Tug Allocation Agent creates an STN for every tug in the fleet of available tugs. If the
tug under consideration has already started executing a task at the moment of replanning, this
task is inserted in its schedule as a fixed task. In addition, the Tug Allocation Agent shares the
set of tasks up for action with every Tug Schedule Agent.

Get Allocation of Outbound Aircraft to Tugs Property: for every aircraft in the remaining set
of outbound flights, all Tug Agents submit a bid to the Tug Allocation Agent. Then, a winning
tug is determined that gets assigned the task to tow the aircraft from the meta-ramp location to
a decoupling location in vicinity of the designated runway. The winning tug executes the Insert
Assigned Task into STN Property and adds the assigned task in its existing schedule. More
details on the allocation framework are provided in Section 4 of the scientific paper.

Maneuver-Sequencing for Tugs Property: based on the tasks assigned to each tug and the
current status of the tug, a sequence of maneuvers is determined that the tug will have to execute.

* Driving in solo mode: the maneuver driving in solo mode entails the movement of the tug
from its current position on the service road network to the pickup location of its next task
(meta-ramp location). If the tug is driving in solo mode, the tug is controlled by the tug driver.
The tug is not allowed to drive in solo mode on the taxiway network, except on a crossing of
a service road with a taxiway.

+ Waiting: if the tug arrives at the pickup location of its next task before its deadline (TSAT
minus the time needed for coupling), the tug performs a waiting maneuver until the coupling
activity starts.

Coupling: the coupling maneuver entails the coupling of the tug to the assigned aircraft at
the meta-ramp location. The coupling maneuver starts if the tug is present at the meta-ramp
location and not before TSAT minus the coupling duration.

Driving in pilot mode: the maneuver driving in pilot mode entails the movement of the tug-
aircraft combination from the meta-ramp location to a decoupling location in the vicinity of
the assigned runway. Although the pilot is in control of the tug-aircraft combination, the tug
accounts for the propulsion of the vehicle combination. Note that the tug is not allowed to
drive in pilot mode on the service road network.

* Decoupling: the decoupling maneuver entails the decoupling of the tug from the assigned
aircraft at a decoupling location. The decoupling procedure includes the driver stepping out
of the tug and unplugging the communication cable, driving of the tug from the decoupling
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location to an all-clear position and the driver providing the pilot with an all-clear signal once
arrived at that position [6]. The movement of the tug from the decoupling location to the
all-clear location is not modelled: it is assumed that the tug spawns at the all-clear location
at the moment that decoupling is finished. In addition, it is assumed that the engines of the
aircraft are started and fully warmed up at the end of decoupling.

Tug Agents
Role: represent the individual tug in the auction process to find an allocation of flights to tugs. In
addition, the Tug Agent executes its routing plan defined by the Routing Agent.

C1

C2

P1

P2

P3

P4

P5

P6

P7

Kinematic Characteristics: the Tug Agents are characterized from a kinematic perspective by
the maximum allowable speed for each possible maneuver that they are able to perform. The
details on vehicle kinematics can be found in Appendix B. Note that acceleration and deceleration
are assumed to be infinite for all vehicles.

Flight Schedule Characteristics: all information that is present in the flight schedule for the
aircraft the tug has been assigned, is stored as an attribute for the agents. This concerns the flight
ID, assigned ramp, assigned runway, ICAO Aerodrome Reference Code, the wake turbulence
category and spawn time.

Insert Fixed Tasks into STN Property: if the tug vehicle is coupled to an outbound flight at the
moment of replanning, the corresponding aircraft cannot be reallocated to another tug anymore.
Therefore, the task should be added to the schedule of the Tug Agent. Based on the remaining
work time, a time slot is reserved for completion of this task in the STN of the tug.

Find Best Position to Insert Task into STN Property: for a task in the set of unallocated tasks,
the Tug Agent tries to insert the task in each available time segment in its STN. For every insertion
position, the increase in cost with respect to its current schedule is recorded. After evaluation of
every possible insertion position, the STN is reset to the current schedule of the tug to ensure that
it only includes the tasks that are already allocated to the agent. The position for insertion of the
task that results in the least increase in total delay of off-block time for all tasks in the schedule is
considered to be the best insertion position.

Compute Bid Vector Property: for every task in the set of unallocated tasks, the best insertion
position of the task under consideration is determined using the item P2 property. Based on the
best insertion position, the bid of the agent for the task under consideration is computed and
stored in a bid vector. Once the bids for all unallocated flights are calculated, the bid vector is
shared with the Tug Allocation Agent to determine which task is being assigned next to which
agent.

Insert Assigned Task into STN Property: once a task has been assigned to a specific tug
vehicle, the Tug Agent inserts this task into its STN.

Clear Existing Routing Information Property: when replanning is triggered, the existing routing
information for all Tug Agents is removed. Information on the path travelled up until the moment
of replanning is preserved.

Retrieve Routing Plan Property: once the Routing Agent has executed the Get Routes Property,
it communicates the obtained solution with all Tug Agents. All individual agents store their own
path to be executed over time.

Move Property: for every time step t, every individual agent checks its routing plan and deter-
mines the position it should be at the end of the time step. If in the next time step the current
maneuver is finished, not only the position is updated but the status of the tug as well. Once the
Tug Agent has arrived at its goal destination, it is removed from the simulation.
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Aircraft Agents

Role: execute its routing plan defined by the Routing Agent.

C1

C2

P1

P2

P3

Kinematic Characteristics: similarly as for Tug Agents, the Aircraft Agents are characterized
from a kinematic perspective by the maximum allowable speed for each possible maneuver that
they are able to perform. The details on vehicle kinematics can be found in Appendix B. Note
that acceleration and deceleration are assumed to be infinite for all vehicles.

Flight Schedule Characteristics: all information that is present in the flight schedule for the air-
craft is stored as an attribute for the agents. This concerns the flight ID, assigned ramp, assigned
runway, ICAO Aerodrome Reference Code, the wake turbulence category and spawn time (ALDT
for inbound flights, TSAT for outbound flights).

Clear Existing Routing Information Property: when replanning is triggered, the existing rout-
ing information for all Aircraft Agents is removed. Information on the path travelled up until the
moment of replanning is preserved.

Retrieve Routing Plan Property: once the Routing Agent has executed the Get Routes Property,
it communicates the obtained solution with all Aircraft Agents. All individual agents store their own
path to be executed over time.

Move Property: for every time step t, every individual agent checks its routing plan and deter-
mines the position it should be at the end of the time step. If in the next time step the current
maneuver is finished, not only the position is updated but the status of the aircraft as well. Once
the Aircraft has arrived at its goal destination, it is removed from the simulation.

A.3. Algorithmic Implementation

In this section, pseudocode is presented for the most important algorithms developed in this study. First,
the working principle of the PBS-TA framework is formalized in subsection A.3.1. Next, the algorithms
related to the allocation of tasks are described in subsection A.3.2. Finally, the supporting functions
related to path planning are mentioned in subsection A.3.3.

A.3.1. High-Level Framework Integrating Task Allocation with Path Planning

The pseudocode of Algorithm 1 shows the working principle of the high-level PBS-TA framework. The
framework is based on the work done by Honig et al. [155]. Changes with respect to the original
algorithm are indicated in red. The supporting functions findAssignment() and updatePlan() are defined
in subsection A.3.2 and subsection A.3.3 respectively.
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Algorithm 1 High-Level of PBS-TA for every replanning moment. Adapted version of CBS-TA [155]
with changes and additions marked in red.

Require: Graph, pickup and delivery locations of all tasks, current position of all agents, heuristics on
shortest path, maximum number of trees to explore in forest n;.er max

Ensure: Conflict-free path for each agent
## Initialize the first root node

1: R.plan « @

2: R.priorities « @

3: R.constraints « @

4: R.root « True

5: R.iteration « 0

6: R.assignment, R.constraints « findAssignment(R.constraints)

7: for each vehicle a; do

8: success « updatePlan(R, a;) Find a path for vehicle a;
9: if not success then return no solution
10: end if

11: end for
12: R.cost « SIC(R.plan) SIC « sum of individual path costs
13: successors « {R.iteration: R} Initialize a dictionary containing all successors to consider per

search tree
14: OPEN « [R]

## Start the expansion of the search forest
15: while OPEN not ¢ do

16: P « pick and remove best node from OPEN Lowest solution cost
17: successors « successors[P.iteration] \P Remove P from possible successors
18: Find the first conflict in time for P

19: if P has no conflict then return P.plan Solution in P is conflict-free
20: end if

# If a conflict is found, create successors to explore in future iterations

21: if P.root is True and P.cost # 0 and P.iteration < n;¢e; max then
22: R < new root node

23: R.plan « @

24: R.priorities « @

25: R.root « True

26: R.iteration < P.iteration + 1

27 R.assignment, R.constraints « findAssignment(P.constraints)
28: for each vehicle a; do

29: success « updatePlan(R, a;)

30: if not success then return no solution

31 end if

32: end for

33: R.cost « SIC(R.plan)

34: update successors dictionary with {R.iteration: R}

35: end if

Continue on next page
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36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:

50:

Conflict « (a;, a;, location, time)
for agent q; in Conflict do

Q < new child node
Q.priorities « P.priorities + a; > q;
Q.assignment « P.assignment
Q.root « False
Q.iteration « P.iteration
success « updatePlan(Q, a;)
if not success then
continue
end if
Q.cost « SIC(Q.plan)
successors[Q.iteration] « successors[Q.iteration] + Q

end for

insert nodes in successors into OPEN in order of decreasing cost

51: end while
52: return no solution

First conflict in P

A.3.2. Task Allocation

All algorithms related to the generation of an allocation of outbound flights to tugs are presented in
the current section. First, Algorithm 2 shows how the solution pool of allocations is generated. Then,
the pseudocode of the adapted TeSSI auction algorithm is shown in Algorithm 3. The changes with
respect to the original implementation of TeSSI as described in the work of Nunes and Gini [117] are
presented in red. Finally, the supporting functions computeBid(), costSchedule() and calculateDOS()
are presented in Algorithm 4, Algorithm 5 and Algorithm 6 respectively.
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Algorithm 2 findAssignment()

Require: List of all outbound AC T = {ACy, AC,, .., AC,,}, set of tug agents R = {ry, 1y, .., 1.}, size of
solution pool ng;;,c, constraints
Ensure: Final assignment of departing flights to tugs
## Remove the flights from T for which execution has already started
fixedAllocation « {}
T T
for each tug agent r; in R do
fixedAllocation « {r; : []}
if r; is coupling or r; is towing or r; is decoupling then
T' « T"\AC; that r; is currently executing
fixedAllocation « {r; : [AG;]}
end if
end for
if len(T') < 0 then return fixedAllocation
end if

TN O R ON 2

- =

## Create a solution pool containing allocations of flights to tugs

12: STACK « ¢

13: CLOSED « ¢

14: for i in range(ng;;o.) do

15: allocation, taskHighestMarginalCostincrease, allocationCost « auctionTeSSI(T
straints, fixedAllocation)

16: Insert (allocation, taskHighestMarginalCostincrease) in CLOSED

r

, R, con-

17: allocationCost < cosineDOS(allocation, allocationCost, previously explored allocations)
18: constraints.taskToAssignFirst < taskHighestMarginalCostincrease
19: Add allocation to constraints.tabuDistribution

20: Insert (allocation, allocationCost) into STACK
21: end for
22:

23: allocationMinCost « allocation with minimum allocationCost in STACK

24: constraints.taskToAssignFirst « taskHighestMarginalCostincrease for allocationMinCost in
CLOSED

25: return allocationMinCost, constraints




A.3. Algorithmic Implementation 143

Algorithm 3 auctionTeSSI(). Adapted version of the TeSSI auction algorithm [117], with changes and

additions marked in red.

Require: List of outbound AC for which execution has not started yet 7' = {AC;, AC, ..., ACr,_;3, set of
tug agents R = {r,1,,.., 1.}, constraints, assignment of outbound AC to tugs for which execution
has already started (fixedAllocation)

Ensure: Possible assignment of flights to tugs
## Initialize the auction by computing the bid vector of all agents in the initial state

1: for each tug agent r; in R do

2: Initialize an STN S, to maintain the schedule of the tug
3: if fixedAllocation for r; is not @ then

4: Insert fixed task AC; for r; in fixedAllocation into S,
5: end if

6: bidVector,, < computeBid(7”, S, constraints)

7. Q% < bidVector,,

8: end for

## Start the auctioning of tasks
9: allocationPossible « fixedAllocation
10: costincreasePerTask « {}
11: totalAllocationCost « 0
12: while 7' is not ¢ do

13: (winner, AC,,,;, minBidOverall) = (null, null, o)

14: if constraints.taskToAssignFirst is not @ then

15: # Assign taskToAssignFirst to the tug with the minimum bid for this task
16: AC,,in < constraints.taskToAssignFirst

17: minBid, « argminrl_'Acﬂrst Q;{cﬂm, winner « r

18: minBidOverall « minBid,

19: constraints.taskToAssignFirst « @

20: else

21: # Assign the task that corresponds with the minimum bid in 7’
22: for each tug agent r; in R do

23: minBid,, AC « argmin,_ ,. Qz

24: if minBid,, < minBidOverall then

25: winner < r, AC,,,;, < AC

26: minBidOverall « minBid,

27: else if AC,,;,, is null then

28: AC,,in <« AC

29: end if

30: end for

31: end if

32: if winner is null then return no solution

33: else

34: # Insert task with minimum bid into schedule of winning agent
35: allocationPossible < {fi,inner : @dd AC,,;, to list}

36: costincreasePerTask < {AC,,;, : minBidOverall}

37: totalAllocationCost « totalAllocationCost + minBidOverall

38: Insert task AC,,,;n for 1y inner INtO Sy inner

39: T'"«T"—{ACpin}

40: bidVector,,inner < computeBid(T', S,y inner, CONstraints)

41: QWMmeT  bidVector,,mner

Continue on next page
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42: if S,y inner iN constraints.tabuDistribution then

43: # Update bids of agents to prevent an already explored allocation from being generated
44: for each tug agent r; in R do

45: if r; is not r,,inner then

46: bidVector,, < computeBid(7"”, S,,, constraints)

47: Q;% « bidVector,,

48: end if

49: end for

50: end if

51: end if

52: end while
53: taskHighestMarginalCostincrease « AC in costincreasePerTask for which minBidOverall is highest
return allocationPossible, taskHighestMarginalCostincrease, totalAllocationCost

Algorithm 4 computeBid(r;,., 7', S,, constraints). Adapted version of the Task Scheduling Algorithm
that is part of the TeSSI auction algorithm [117]. Changes and additions are marked in red.

Require: Agent location r;oc, list of outbound AC for which execution has not started yet 7' =
{ACy, AC,, .., ACy,_;}, partial schedule of tasks S,. for agent r, constraints
Ensure: Vector containing the minimum bids of agent r for all AC in T’
1: bidVector « {}
2: for ACin 7' do
3 if S, is empty then

4: bid . < costSchedule(S,., AC, 0)
5: bidVector « {AC : bid}
6: else
7 minBid,; « o
8: for i = 0,..,m where m is the number of tasks in S,. do
9: Insert AC at position i in S,
10: Add task time points and all constraints to STN
1: Propagate STN using Floyd-Warshall
12: bid 4. < costSchedule(S,, AC, i)
13: if bid,- < minBid, then
14; Save i, bid,
15: end if
16: Reset STN to the copy prior to inserting task AC at position i
17: end for
18: bidVector « {AC; : bidyc}
19: end if
20: end for

21: return bidVector,,
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Algorithm 5 costSchedule(S,, AC, i)

Require: Partial schedule of tasks S, for agent r, cost of current schedule costg_, AC to insert in the
schedule at position i, constraints
Ensure: Cost of schedule of tug r expressed in estimated delay with respect to pick-up time
S, « S+ insertion of AC at position i
if S, in constraints.tabuDistribution then
costincrease « oo
else
cost « 0
for task t in S;. do
Compare the deadline of t with the pick-up timepoint for t in the STN
if pick-up time > deadline then
cost « cost + (pick-up time - deadline)
end if
end for
costincrease « cost - costg,
end if
return costincrease

Algorithm 6 explains how the cosine degree of similarity is calculated for every newly generated al-
location in the allocation solution pool. In order to be able to find the cosine similarity between two
allocations, the allocations have to be converted to vectors of similar dimensions. An example of the
translation of an allocation to a vector is shown in Figure A.10. The cosine degree of similarity between
two vectors is then calculated according to Equation A.1 [159].

Allocation A Vector of allocation A
GV-1: [AC1, AC9, AC15, AC22] :(> a=[[1,9, 15, 22],
GV-2: [AC3, AC8, AC12] [3, 8,12, 0],
GV-3: [AC4, AC20] [4, 20, 0, O]]

Figure A.10: Example of the conversion to a vector of an allocation of flights to three tugs in order to determine its cosine degree
of similarity.

=
<

DOS(%, 7) = (A1)

=
<

Algorithm 6 calculateDOS()

Require: Allocation A to determine similarity of, cost of the allocation ¢, and a set of previously explored
allocations A4 in root nodes of existing search trees in path planning search forest.
Ensure: Cost of allocation corrected with the cosine degree of similarity
if CPL-DIF used for finding a solution then
Convert allocation A into a numerical vector
storeDOS « []
for previousAllocation in A do
Convert previousAllocation into a numerical vector
DOS « cosineDOS(previousAllocation, A)
storeDOS « storeDOS + DOS
end for
DOS,,.can <« mean(storeDOS)
allocationCost « DOS,,,.,,, allocationCost
else
allocationCost « allocationCost
end if
return allocationCost
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A.3.3. Path Planning

In this section, the supporting function updatePlan() is shown in Algorithm 7. The function is based on
the work of Ma et al. that discusses the Priority-Based Search (PBS) algorithm [140]. No changes are
made to the supporting function with respect to the original implementation.

The pseudocode of the low-level search is presented in Algorithm 8 and Algorithm 9 respectively.
Adaptations and changes with respect to the original implementation of the Safe-Interval Path Planning
algorithm [145] are indicated in red.

Algorithm 7 updatePlan(N, a;). Based on the work of Ma et al. [140]

1: LIST « topological sorting on partially ordered set ({i} U {j|i <y j}, <n)
2: for each j in LIST do
3: if j equals i or 3 ay : k <y j, a; collides with a; in N.solution then
4: Update N.plan by invoking a low-level search for a; that avoids colliding with all agents ay
with higher priorities (k <y j)
if no path is returned by the low-level search then return False
end if
end if
end forreturn True

o N a

Algorithm 8 Safe-Interval Path Planning (SIPP). Adapted version of SIPP [145] with changes and
additions marked in red.
Require: Set of goal configurations s;,,;, USIs on network, agent kinematics

1: OPEN < 0

2: g(Sstart) < 0

3 f(Sstart) < 9(Sstart) + h(Sstart)
4: OPEN « OPEN + sg;0r¢

5: while s;,,; not expanded do

6: Remove s with smallest f-value from OPEN
7 successors « getSuccessors(s)

8: for each s’ in successors do

o: if s' was not visited before then
10: fs) < g(s) <o

1: end if
12: if g(s’) > g(s) +c(s, s’) then
13: g(s') < g(s) +c(s, s')
14: updateTime(s)
15: f(s) < g(s) +h(s)
16: Insert s into OPEN with f(s)
17: end if
18: end for

19: end while
return path
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Algorithm 9 getSuccessors().

1: SUCCESSOrs « 0

2: for each neighbor node n’ of s do

3 if n' not allowed to be reached from s then

4 continue

5: end if

6 Miime minimum < time to reach n' from s with maximum velocity

7 for safe interval Sl,,44. On edge to reach n' from s do

8 if Sleage,start > €nd timeg) 5 OF Sleggeena < start timeg 5 then

9: continue
10: end if
1: earliest leaving time from s « max(Sl,qge stare, Start timeg; ;)
12: latest leaving time from s < min(Sl,4g4¢ ena, €Nd timeg; ;)
13: if earliest leaving time > latest leaving time then
14: continue
15: end if
16: earliest arrival time in n’ « max(earliest leaving time from s + Mgme minimum. arrival time of
previous (prioritized) vehicle in n')
17: if earliest arrival time in n’ > Sleage,ena then
18: continue
19: else
20: latest arrival time in n’ « mMin(Slegge,ena, arrival time of next vehicle in n')
21: end if
22: for safe interval Sl ; do
23: if latest arrival time in n’ < SIn,’Smrt or earliest arrival time inn’ > SIn’,end then
24: continue
25: end if
26: earliest arrival time in n’ < max(SIn:’start, earliest arrival time)
27: latest arrival time in n’ « min(SInr'end, latest arrival time)
28: if earliest arrival time in n’ > latest arrival time in n’ then
29: continue
30: end if
31: s « configuration n' with interval SI» and time t « earliest arrival time
32: Insert 5" into successors
33: end for
34: end for
35: end for

return successors

A.4. Model Verification

This section elaborates on a selection of steps taken to verify the output of the simulation.

A.4.1. Visualization of Movements over Airport Network

Using PyGame, the output of the simulation model is visualized and shows the movement of all vehicles
over the airport network. The visual tool served as means of continuous verification of the concept of
operations. The movement of individual agents within the system and the sequence of their maneuvers
are analyzed, and the interactions between multiple agents during conflicts are analyzed. Figure A.11
and Figure A.12 show multiple screenshots of the animation tool for (parts of) the airport network.
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(a) South end of runway 36C (b) South end of runway 36L

Figure A.12: Screenshot of the animation tool, showing a zoomed-in section of the network near the entrance of departing runway
36C (a) and 36L (b).

A.4.2. Allocation of Outbound Flights to Tugs



A.4. Model Verification 149

Performance Analysis of TeSSI
To assess the performance of the TeSSI auction algorithm, a comparison has been made in terms
of solution quality between the output of TeSSI and the MURDOCH algorithm [73]. The MURDOCH
algorithm is a greedy allocation algorithm and is capable of dealing with an unbalanced assignment
problem, in which the number of tasks to assign is larger than the number of agents. In addition, the
MURDOCH algorithm is proven to be 3-competitive for the unbalanced assignment problem, meaning
that the output of the algorithm is equal to at most three times the optimal solution. The general definition
of a g-competitive algorithm is shown in Equation A.2 [160].

When running the MURDOCH algorithm, all robots are initially assigned to their first task in an
optimal way, using the Hungarian method. Once a robot finishes its task, it gets assigned one of the
remaining tasks for which the costs are lowest. Similarly as for the TeSSI auction algorithm, the cost
of an allocation is based on the resulting sum of the delay in off-block time of all aircraft.

For a time window between 21:00h and 21:30h in the outbound peak on July 17th in 2019 (refer
to Appendix B for more info on the input data), a comparison is made between the allocation cost
generated by TeSSI and by the MURDOCH algorithm for various number of tugs available. Based on
the total number of outbound aircraft scheduled to depart in the time window (39), three different fleet
sizes are considered: 39 tugs (balanced assignment problem), 19 and 13 tugs (unbalanced assignment
problem). For every run, tugs are initialized at a random position at the service road network. In total,
100 runs are performed for every scenario to use as input for the comparison of the performance of
TeSSI against the MURDOCH algorithm. The relative performance of TeSSI with respect to MURDOCH
is calculated according to Equation A.3, where cress and cyurpocH represent the allocation cost of
TeSSI and MURDOCH respectively. For every fleet size, a number of different sizes of the allocation
solution pool for TeSSI (refer to Section 4 in the scientific paper) has been evaluated as well.

CTesslI

performance = g >
CMURDOCH

Calgorithm i = T * Coptimal algorithm (A.2) (A-3)

Performance Comparison of TeSSI and MURDOCH Algorithm

number of tugs: 13 number of tugs: 19 number of tugs: 39
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Figure A.13: Performance comparison of TeSSI and the MURDOCH algorithm for various fleet sizes and different sizes of
allocation solution pools. For solution pools larger than 1, the allocation with minimum cost is chosen from the solution pool and
used for comparison.

In Figure A.13, the performance of the TeSSI auction algorithm with respect to the MURDOCH algo-
rithm is shown for various fleet sizes. We can see that for both unbalanced assignment problems (13
and 19 tugs available), TeSSI outperforms the MURDOCH algorithm and provides for a total sum of
delay in off-block time that is between 30% and 50% lower. When evaluating the performance of TeSSI
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for the balanced assignment problem, note that the MURDOCH algorithm generates the optimal solu-
tion using the Hungarian method. In general, we can see that TeSSI does not approach the optimal
solution provided by the MURDOCH algorithm, which is in line with our expectations. When outliers are
excluded, TeSSl is empirically shown to be almost 2-competitive with respect to the optimal solution for
worst case solutions.

In order to evaluate the consequences of a larger allocation solution pool, the chances of finding an
allocation with lower cost in a larger solution pool are investigated. This is done by evaluating the index
of the allocation with minimum cost in the solution pool for various fleet sizes. Figure A.14 shows that
for larger fleet sizes, the allocation with minimum cost is found in the first run of TeSSI for the majority of
the cases. However, for smaller fleet sizes, the allocation with minimum cost is found only after several
iterations of TeSSl in at least half of the cases. This result indicates that a larger allocation solution pool
increases the chances of finding an allocation with minimum cost, especially when resources (robots)
are limited with respect to the number of tasks.

However, Figure A.15 shows that a larger allocation solution pool significantly increases required
run times, independent of fleet size. For larger fleet sizes, the required run times exponentially increase
for larger solution pools. To limit computational complexity while still increasing the chance to find an
allocation that minimizes delay in off-block time, an allocation solution pool of 5 is used in the scenarios
evaluated.

Index of Allocation with Minimum Cost in Solution Pool
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Figure A.14: Comparison of the index of the allocation with minimum cost in the allocation solution pool when running the adapted
version of TeSSI for various fleet sizes.

Tug Schedule Consistency

Figure A.16 shows a snapshot of the sequence of different maneuvers for tugs over time during the
outbound peak for a scenario in which unlimited tugs are available. The figure is used to verify the
consistency of all schedules of the tugs and shows that all towing (driving pilot) activities are preceded
by a coupling activity and followed up by a decoupling activity and tug return movement (driving solo)
activity. In addition, no overlap between the towing activities is seen, indicating that the schedules are
consistent.
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Total Run Time for Single Run of TeSSI
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Figure A.15: Comparison of the run time performance of TeSSI for various fleet sizes and different sizes of the allocation solution
pool.

Tug Schedule

###. Driving Pilot

mmm Driving Solo

vw  (De)Coupling
Waiting

Tug ID

20:20 20:30 20:40 20:50 21:00 21:10 21:20 21:30
time

Figure A.16: Snapshot of the schedules of three tugs in the operational scenario with unlimited tugs are available in the outbound
peak.

A.4.3. Route Planning of Individual Vehicles

The routes of individual vehicles are verified using velocity heatmaps and velocity profiles over time.
Two examples are provided for two tug vehicles that are routed in the outbound peak and shown in
Figure A.17 and Figure A.18 respectively. Both figures show that the vehicles travel along the shortest
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path in the network and that the velocity profiles match with the kinematics as presented in Appendix B.
It can be clearly seen that the velocity is constant when travelling over an edge and only changes
(instantaneously) when the vehicle is at a node location, which is in line with the assumptions.

Velocity Profile of GV-25
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(a) Velocity heatmap of the travelled path of tug with (b) Velocity profile of the travelled path of tug with ID 25.

ID 25.

Figure A.17: Figure showing the travelled path of tug with ID 25, including its velocity profile.
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Figure A.18: Figure showing the travelled path of tug with ID 40, including its velocity profile.



Simulation Setup

The following chapter provides additional information on the setup of the simulation scenarios. In sec-
tion B.1, the mostimportant input parameters are listed that are independent of the scenario to evaluate.
Then, in section B.2, all characteristics of the vehicles modelled in the simulation are provided. Finally,
details on the flight schedule input are discussed in section B.3.

B.1. Simulation Input Parameters

For all scenarios evaluated, a number of input parameters are fixed, independent of fleet size or ap-
proach used. In Table B.1, an overview is provided of the most important fixed input parameters.

Table B.1: Overview of the most important fixed input parameters for the simulation model.

Parameter Symbol Value
planning window [min] Wping 30
replanning frequency [min] hying 25
time step [s] dt 1
separation margin [m] dsafety 150
buffer in allocation [s] thuffer allocation 60

B.2. Vehicle Input Parameters

In this section, additional information is provided on the vehicles and their characteristics that are routed
in the model. In subsection B.2.1, a mapping of all aircraft types present in the flight schedule to an
ICAO and RECAT-EU category is provided. The specific kinematic characteristics of all vehicles are
provided in subsection B.2.2. Finally, runway separation constraints are listed in subsection B.2.3.

B.2.1. Aircraft Characteristics

All aircraft in the flight schedule are mapped to a category in the ICAO Aerodrome Reference Codes
and to a category that specifies the required runway separation based on wake turbulence constraints.

153
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Table B.2: Mapping of all aircraft in the flight schedule to ICAO Aerodrome Reference Code and RECAT-EU category for wake
turbulence constraints. Based on previous work [9].

Aircraft Name ICAO Category WTC Category
Cirrus Vision SF50 CatA CatF
Diamond Katana (DA-40) CatA CatF
Bombardier Learjett (all types) CatB CatF
Embraer 120 Brasilia Adv. CatB CatF
Canadair CRJ-100/200ER CatB CatE
Cessna (all types) CatB CatE
Embraer EMB-135 CatB CatE
Embraer EMB-505 Legacy 500 CatB CatE
Dassault Falcon (all types) CatC CatE
Bombardier Q400 CatC CatE
Embraer EMB-170/190 CatC CatE
Boeing B737-300 (+ winglets) CatC CatD
Gulfstream (all types) CatC CatD
Airbus A318-100 CatC CatD
Boeing B737-900 CatC CatD
Boeing B737-600 CatC CatD
Boeing B737-700 CatC CatD
McDonnell Douglas MD-80 CatC CatD
Boeing B737-800 CatC CatD
Bombardier CS-300 CatC CatD
Boeing B737-800 NG CatC CatD
Airbus A320-200 Sharklets CatC CatD
Boeing 737-700 NG CatC CatD
Airbus A319-100 LR/CJ CatC CatC
Airbus A320-200 CatC CatC
Boeing B737-200F CatC CatC
Airbus A310-200/300F CatD CatB
Airbus A300F CatD CatB
Boeing B767-300 CatD CatB
Boeing B757F CatD CatD
Airbus A330-200/300 CatE CatB
Airbus A340-300E CatE CatB
Boeing B747-400 + 400ER CatE CatB
Boeing B747-400 Combi CatE CatA
Airbus A350-900/1000 CatE CatB
Boeing B777F CatE CatE
Boeing B777/787 CatE CatE
Boeing B747-800F CatF CatF
Airbus A380 CatF CatE

B.2.2. Vehicle Kinematic Parameters

Table B.3 is displaying the maximum speed of aircraft, tug-aircraft combinations and tugs driving in solo
mode.

Table B.3: Overview of the kinematic characteristics of all vehicles in the simulation.

Parameter Symbol Value

maximum velocity of aircraft [m/s] Vmax, AC 15
maximum velocity of tug in pilot mode [m/s]  vmay it~ 11-8
maximum velocity of tug in solo mode [M/s]  Vax solo 8.33
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B.2.3. Runway Separation Constraints
All aircraft are mapped to a RECAT-EU category. This category is used to impose runway separation

constraints, based on the values shown in Table B.4 [161]. All separation constraints are expressed in
seconds.

Table B.4: Overview of the runway separation requirements based on RECAT-EU category, expressed in seconds [161].

Leader Follower | CatA CatB CatC CatD CatE CatF
CatA 60 100 120 140 160 180
CatB 60 60 60 100 120 140
CatC 60 60 60 80 100 120
CatD 60 60 60 60 60 120
CatE 60 60 60 60 60 100
CatF 60 60 60 60 60 80

B.3. Flight Input Data

In Figure B.1, the flight movements over time (aggregated using an interval of 15 min) are shown for
July 17th, 2019 at AMS. In addition, the number of flights departing per runway is shown in Figure B.2.
The duration of the peaks is determined based on the number of departing and arrival runways that
are in use, aggregated using intervals of 15 minutes. During an outbound peak, two departing and one
arrival runway is in use; during an inbound peak, two arrival and one departing runway is in use; and
in a transition period, two arrival and two departing runways are in use.

Based on both figures, it can be seen that the outbound peak with the highest amount of departures
that lasts at least 1.5h takes place from 20:30-22:00h. For the inbound peak, two options can be
considered: one from 07:30-09:00h and the other from 18:30-20:00h. Although the number of arrivals
is larger in the inbound peak at the end of the day, the number of departures from 36L during that time
slot is less consistent over time than in the time slot between 07:30-09:00h. Therefore, the latter time
slot is used for evaluation of the inbound peak.

V"

N

Figure B.1: Flight movements over time during July 17th, 2019.
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Figure B.2: Runway usage over time during July 17th, 2019.

Figure B.3 shows the breakdown of the various aircraft types that are scheduled to depart and arrive
during each peak. It can be observed that the majority of the flights can be grouped under ICAO
category C. The B737 and A320 family both belong to this category and are so far the only aircraft for
which the TaxiBot is certified.

Breakdown of AC types per peak
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number of AC
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Figure B.3: Breakdown of ICAQO aircraft types per peak.

B.3.1. Assumptions Related to Flight Input Data
In this section, a list of assumptions on the flight input data is stated.

« Flights that are present in the historic flight schedule departing or arriving at a runway that should
strictly speaking not be in use during an outbound/inbound peak when operating RMO North, are
deleted from the flight schedule. The active runways in RMO North can be found in Appendix A.

* Flights that are present in the historic flight schedule that are assigned a ramp outside of the
Schiphol Centre parking area are deleted from the flight schedule. Similarly, flights that are as-
signed a HG-ramp are excluded from the flight schedule.



Additional Simulation Results

In this chapter, an elaboration is provided on the statistical analysis performed for hypothesis testing in
section C.1. Furthermore, additional algorithmic and operational results are provided in section C.2 and
section C.3 respectively. Finally, the coefficient of variation as a function of the number of simulation
runs is shown for all scenarios evaluated in section C.4.

C.1. Elaboration on Statistical Analysis

In this study, hypothesis testing is performed using several statistical tests to analyze the data. Initially,
the Shapiro-Wilk test is utilized to assess the normality of the data, leading to the decision to employ
non-parametric tests since all data was found not to be normally distributed [162]. For comparing
identical agents across different scenarios, the non-parametric Wilcoxon Signed-Rank test for paired
populations is used [163]. Likewise, the non-parametric Mann-Whitney U test is applied for comparing
results of different groups of agents [164]. To maintain a significance level of « = 0.05 and minimize the
risk of falsely rejecting the null hypothesis, the Bonferroni correction method was employed to adjust
for family-wise error rates in multiple comparisons [165]. Based on the number of tests performed on
a dependent variable (n), the alpha level is corrected using Equation C.1.

_ 0.05 (1)
a= " .

In cases where a significant difference between two groups is detected, the Vargha-Delaney A-test is
used as a measure of effect size [166]. This test provides a value ranging from 0 to 1, representing
the probability of randomly selecting an observation from one group that is greater than an observation
from the other group. A value of 0.50 indicates no difference between the groups, while values above
0.56, 0.64, and 0.71 are considered indicative of small, medium, and large differences, respectively.
The same intervals apply when the value is below 0.5.

C.2. Additional Algorithmic Results

In this section, additional algorithmic results are provided, including an analysis of the allocation solution
pool and the number of nodes explored for all algorithms evaluated.

C.2.1. Number of Nodes Explored per Algorithm
In Section 7 of the scientific paper, it is observed that large differences exist in the run times when com-
paring both coupled algorithms (CPL-MIN and CPL-DIF) with the decoupled algorithm for fleet sizes
of 10 and 21 tugs available. It is stated that this difference is due to the increase in the number of
nodes explored in the path planning search forest for the coupled algorithms when compared with the
decoupled algorithm. In this section, results will be provided that support this conclusion.

Figure C.1 shows a comparison between the index of the root node in which the final solution is
found and the number of nodes explored per root for the CPL-MIN and CPL-DIF algorithm. When com-
paring the number of nodes explored per simulation run for both coupled algorithms with the decoupled
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algorithm (Table C.1), we can see that this number is significantly higher for a coupled algorithm com-
pared to a decoupled algorithm, except for the scenario when having 30 tugs available. This can be
explained due to the fact that the majority of the nodes in this scenario is explored in the first root node
(Figure C.1). Therefore, the average number of nodes explored in one simulation is comparable for all
three algorithms.

Analysis on Distribution of Nodes per Root (CPL-MIN) Analysis on Distribution of Nodes per Root (CPL-DIF)
Root Node in Which Solution is Found Root Node in Which Solution is Found
10 tugs 21 tugs 30 tugs 10 tugs 21 tugs 30 tugs
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Figure C.1: Graphs showing in which root node the solution is found and the number of nodes that are explored on average per
root during one simulation, for CPL-MIN (a) and CPL-DIF (b).

Table C.1: Comparison of the average number of nodes explored per simulation run for DCPL, CPL-MIN and CPL-DIF.

Average number of nodes explored per simulation run

Fleet size “Hep ™~ GPL-MIN CPL-DIF
T0tugs | 196 759 809
21tugs | 288 1042 1145
30tugs | 316 376 376

C.2.2. Allocation Solution Pool

In Section 4 of the scientific paper, the difference between the two coupled algorithms CPL-MIN and
CPL-DIF is explained. The difference between both algorithms relates to the allocation that is picked
from the allocation solution pool and used for the routing of vehicles. Whereas the allocation with
minimum cost is picked in the CPL-MIN algorithm, a measure of similarity of all allocations in the solution
pool with respect to previously explored allocations is included for CPL-DIF (for more details, refer to
Section 4 of the scientific paper).

In this section, the influence of the measure of similarity on the cost calculation of allocations in
the solution pool is elaborated on. In Figure C.2, two graphs are shown that compare the index of the
allocation with minimum cost to the index of the winning allocation in the solution pool. As expected,
no differences between both graphs are seen for CPL-MIN (Figure C.2a), since the allocation with
minimum cost is picked as the winning allocation from the solution pool. From Figure C.2b, differences
can be observed between the distributions for both types of indices for CPL-DIF. Thus, by including the
cosine degree of similarity in the calculation of the overall cost of the allocations, the winning allocation
is not in all cases the allocation with minimum schedule costs in the solution pool.
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Analysis of Allocation Solution Pool (CPL-MIN) Analysis of Allocation Solution Pool (CPL-DIF)
Index of Allocation with Minimum Cost in Solution Pool Index of Allocation with Minimum Cost in Solution Pool
10 tugs 21 tugs 30 tugs 10 tugs 21 tugs 30 tugs

80 80

60 60

40 I 40 I

20 20

, I i = , Al m I =
= o 1 2 3 4 0o 1 2 3 4 o 1 2 3 4 ~ 0o 1 2 3 4 0o 1 2 3 4 o 1 2 3 4
= =
§ Index of Winning Allocation in Solution Pool § Index of Winning Allocation in Solution Pool
o o

80 80

60 60

40 40

20 I I 20

N | - o N | ] =
o 1 2 3 4 o 1 2 3 4 o 1 2 3 4 0o 1 2 3 4 0o 1 2 3 4 o 1 2 3 4
index of allocation in solution pool index of allocation in solution pool

(a) CPL-MIN (b) CPL-DIF

Figure C.2: Graphs showing the index of the allocation with minimum cost in the allocation solution pool and the index of the
winning allocation in the allocation solution pool, for CPL-MIN (a) and CPL-DIF (b).

C.3. Additional Operational Results

In this section, additional operational results are provided, including the ratio of the waiting time of tugs
over the total simulation time, as well as the number of ramp conflicts occurring for various fleet sizes.

C.3.1. Tug Waiting Time

In Figure C.3, the ratio of the waiting time over the total simulation time for all tugs is depicted for various
fleet sizes. It can be seen that the ratio decreases as the fleet size decreases, which is according to
our expectations. In addition, large differences can be observed for this ratio between tugs within the
fleet for larger fleet sizes. This result indicates that the added value per tug decreases for an increasing
fleet size.

In Table C.2, the number of conflicts at the ramp between arriving and departing flights is shown for
various fleet sizes. In the case that a delayed departing aircraft still occupies a ramp that is assigned
to an inbound flight that has reached the ramp, a conflict is detected (but not resolved, refer to sub-
section A.1.2). Note that we are recording the conflicts for the actual ramps, and not the meta-ramp
nodes. We can see from the results in Table C.2 that a limited number of ramp conflicts occurs when
having 10 or 21 tugs available in the outbound peak. Although the number of ramp conflicts is small
in comparison to the total flight movements during the outbound peak (143), it still indicates that sig-
nificant disruptions occur in terms of gate scheduling when having limited tugs available for outbound
towing.
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Figure C.3: Ratio of the waiting time per tug over the total simulation time for different fleet sizes. Based on simulations during
the outbound peak.

Table C.2: Number of conflicts between arriving and departing flights at their assigned ramps (due to delay of departing aircraft)
in the outbound peak.

Fleet size 10 tugs 21 tugs 30tugs 42 tugs
Number of ramp conflicts 10 4 0 0

C.4. Analysis of Number Runs

In order to determine the number of runs per scenario, the coefficient of variation for the sum of total
delay per flight for all aircraft is determined using Equation C.2. When plotted as function of the num-
ber of runs, a stabilization of the coefficient of variation indicates that sufficient runs are performed to
perform analysis.

CV=-— (C.2)

In Figure C.4, Figure C.5 and Figure C.6, the coefficient of variation is shown for conventional taxiing
operations in the outbound and inbound peak, for tug-enabled taxiing operations in the outbound peak
and for tug-enabled taxiing operations in the inbound peak respectively. From the figures, it can be
seen that 30 runs for all scenarios is definitely enough for stabilization of the coefficient of variation.
Since hardly any variation exists as a function of the number of runs, one simulation per scenario would
have sufficed as well. For the scenario of 21 tugs, slight variation exists. This can be explained by the
fact that there are some situations in the TeSSI and PBS algorithm where tie-breaking is performed,
which introduces variability in the generated solution.
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Figure C.4: Coefficient of variation for the sum of the total delay per flight as a function of the number of runs, for all conventional
taxiing scenarios.
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Figure C.5: Coefficient of variation for the sum of the total delay per flight as a function of the number of runs, for all tug-enabled
taxiing scenarios in the outbound peak.
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Coefficient of Variation for Tug-Enabled Taxiing in Inbound Peak
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Figure C.6: Coefficient of variation for the sum of the total delay per flight as a function of the number of runs, for all tug-enabled
taxiing scenarios in the inbound peak.



AIP Information

In this chapter, charts from the Aeronautical Information Package (LVNL) are provided that are relevant
for the research [158].
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DIMENSION IN METERS FT 500 o 500 1000 1500 A31 521756.91N 0044511308 C5  521823.85N 0044556.56E E2  521837.40N 004455696E | P10 521846.54N 0044438.46E
A32  521757.93N 0044510.26E C6  521820.74N 0044553.88E E3 521839.10N 0044553.63E P11 521843.61N 0044438.20E
NOTES 8. Standard push-back directions: A33 521758.94N 0044509.22E C7  521822.26N 0044558.13E E4  521838.98N 0044558.73E P12 521843.27N 0044438.16E
ahturm (as seen from the push-back vehicie). A3 52I75996N 004450817E | C8  52181954N 004455497E | E5  52184091N 0044SSSSIE | P13 521840.78N 0044438.26E
1. Ifthe distance betwaen the aifcraft's engines and ground is in excess efturn (as seen from the push-back vehicle). A35  521800.98N 0044507 13E 09 52182042N 0044600.67E E6  521840.64N 004460041E P14 521839.87N 0044437.85E
of 5 metres (16.4 FT) engine nr.2 may not be used at breakaway ol 741 1o be surveyed C10 521818.54N 0044556.56E £7  52184307N 0044557.126 | P15 521838.45N 0044437.72E
& povertne gteard sra un e urnoma s spees s back it ne A2 100 suvoyed Cif 521810.74N 00MGO4STE | EB  52104225N 00ado0adeE | P16 S21BISSTN 0044437458
& s been reached dus to Diast problems. traight backwards A3 tobe surveyed C12 521817.08N 0044557.00E E9  52184521N 0044558.82E A7t 521739.70N 0044429, 11E
8 2. Atall sifcraf stands except G71 nose-n parking wi-in / taxi-out A44  tobe surveyed C13  521818.46N 0044604 54E E17  521847.18N 0044600.92E R72 52174040 0044429.56E
= and push-back procedures are applicable A4S tobe surveyed C14 521815.82N 0044558.18E E18  521844.32N 0044606.03E Ria 82174026N 004443081
w Schiphol Ground 121,705 A51  tobe surveyed C15  521817.31N 0044603.37E E19  521849.28N 0044603.43E R74 521741.87N 0044433.36F
& 3. Remarks on push-pull/ push-back procedures: 121808 A52  tobe surveyed C16  521815.76N 0044600.19E E20 521846.73N 0044608.10E R77 521743.32N 0044437 18E
o C13: push-back into TWY A5, 121908 A53  to be surveyed C18  521816.84N 0044601.41E E22 521848.76N 0044610.28E R8O 521745.19N 0044442.00E
< 02 & D4: B767 and arger push-back via TWY A8 nextto G11 AS4 1o be surveyed E24 521851.01N 004461250E | Ra1 52174641N 0044445 37E
D3, DS: push-back into TWY A10. CAUTION AS5  to be surveyed E72  521843.14N 0044617.82E R82 521747.65N 0044448 62E
D7, D43: 8757 and lrger push-back o TWY A1G 261 1000 suveyed D2 tobesuneyed £75 221643.01N 0044621 65E
2. 4 push-back ino TWY A0 (D) WY STWis designated for crossing RIY 06124 oy e tobesomvared D3 52180260 OMSSBE3E | £77  spipsrsON O0GDSATE | S84 tobosuveyed
9. £5, £7, O B757 an larger pusivpull on TWY A16. Other aicraft pustack into TWY AT4. | (3) Gompass devitons, caused by underground train, may occur 63 1o be surveyed D4 521820.50N 0044601248 S65  to be surveyed
o, E1o. 8757 ot vt el ‘when an aircraft s parked at the stands of the E-pier, AB4  to be surveyed D5 521832.62N 0044601.57E F2 tobe surveyed S66 1o be surveyed
£20, £22. Lot sl ono TN AT2 in the area botween the E- and F-pier, or when following 765 1o be surveyed D7 521832.34N 0044604 48E F3  521843.30N 0044540.19E | S67  tobesurveyed
2, F4,F6: B757 and arger push-pull on TWY A16. Other aircraft push back info TWY A4 the TWYS i the vicinity of the E-pier AT1 521802.76N 0044526.96E D10 521626, 19N 0044607.918 Tl b Qe Tt | e wopesuvered
3 push-back on TWY A opposite GS. (8) Avoid holding on the upsiope between A19 and A20 to prevent. A72 521803.80N 0044525.94E Df2  521826.96N 0044609.265 B IO OaN Q0aasa022E | 509 o besumere:
G3: aircraft wingspan up to 36 M push-back on TWY A19W. backward movement of the aircraft. A73  521804.82N 0044524.90E D14 521825.94N 0044610.71E 4 521846.70N 0044545.404 72 521737.65N 004453354
G3, G5, G7, G73, G76: B57 and larger push-pull (@ uapron i not contrlled by ATG. A74  521805.84N 0044523.85E D16 521826.12N 0044612.95E F7  521846.43N 004463802F | S74 521730.18N 0044537.30E
4! B767 and arger push-pul. A7s 22180686 004452261 | DIB 521826.05N 0044615.24E F8  521848B1N 0044SISBGE | S77 52174051N 0044540.77E
G71: REF EHAM AD. and hold 1. | (&) MAX wingspan 61 M only appicable to aircratt taxing to E3. a D22 521825.96N 0044617 63E F9  521848.72N 0044542.36E S79 521741.84N 0044544 23E
141,12 o on WY ATGE (6) Aecess to itcat stan 7 tand 73 s it o towed et oy Dos Sotaoa 16N Comoto ot e 521743 17N 0044547 70E
‘S-apron: push-back direction will be instructed by ATC, (2 Standard taxirouing uness othenvise insiructed by ATC: D26 521825.89N 0044619.80F G2 521842.61N 0044528 47E S84 521744.50N 0044551.17E
G3  52184164N 004452263E | S87 521745.83N 0044554 63
ACFT stands B15 - B35: TWY A4V, B15 521818.22N 0044544.87E D25 521828.08N 0044617.90E
4. Self-docking procedures apply to: - G4 521844.39N 0044528.43E S90 521747.16N 0044558.10E
ACFT stands C6 - G14: TWY AGE. B16 521815.20N 0044540.84F D26 521825.81N 0044622.08E
Al aircraft stands on the A-Af th G5  521843.98N 0044522 42E 892 521748.49N 0044601.57E
AGET stand E24; arcraf withwingspan greater than 65 M: TWY A1z N coras= | D27 521628.00N 0044620.19E
alrorat stands B16, B20, B24, B2, B32 and B35, ACFT stands G3 - GO and H - H7, arcraf with wingspan 36 M or less: from TWY A/B via TWY ATSE (orange line) D28 521825.73N 0044624.36E G6  521846.74N 004452822 | S94 521749.88N 0044604.98E
xcept during low visiblty phas G and D. ) ACFT stands G71 - G79, aircraft with wingspan 36 M o less: from TWY AB via TWY A19W (blue fine). B20  521814.24N 0044542018 D26 521827.92N 0044622.45E G7  521846.30N 0044522.20E | S9 521751.22N 0044608.43E
REF EHAM AD 2.22 paragraph 3.4 Phase C and 0 ACFT stands G3 - G and G73 - G7, aircaft with wingspan greater than 36 M: fom TWY AVE via TWY A19C. B23  521815.81N 0044547.34E G8  521849.08N 0044528.00E
824 521813.26N 0044543.01E D31 521827.84N 0044624.77E GO 521848.80N 0044521.95€ | Y71 521817.23N 0044439.12E
Seldocking prosedure at acrat stans () Aty Y 100 WY W9 o TWY W10, i sy sl on s o e | oy S2rerocon COUSOIE | B CTO oo 1 | 09, S21sdBBoN codssatesE | Y71 92161 29N 00aei 128
Stop aircraft when yellow STOP marking is in ine 10 TWY A southbound or TWY B northbound. B28  521812.28N 0044544.01E D43 521834.71N 0044610.14E G73 521843.52N 0044510.88E
it plots eye iew atan angle of 50 DEG o the leacin e, LEGEND Bai cotoaaoN COMOIOIE | D4 S2BI2B6N 0OMSTEONE |  Gra ootodeeN 004det0 st
B32 521811.30N 0044545.01E D47 521835.74N 0044612.71E G79  521848.22N 0044509 95E
. Nasalr e s o dockng e ooty vy enty proiied at s poit. B2 S1BIIN GOUSISOIE | e 57169578N O0A4BIAAE
-apron TWY E1 from TWY A, A an y D49 521835.66N 0044616.21E H1 21838.24N 0044520.71E
J-apron(except P10, P12, P14 and P16 in case of de-icing, see EHAM AD 2.20 par. 9) B36  521810.27N 0044546.06E 5 4! 45207
R;; mr ot o par.9) TWY N8 from TWY A and B. B91 o e suneyed D51 521835.77N 0044618.40E H2  521837.49N 0044518.76E
Vapron TWY W from TWY A, B.and D. BS2 tobe surveyed D52 521832.70N 0044620.62E Ha  521836.74N 0044516.82E
MAX WINGSPAN 35 M, LIMITED ENTRY B93  to be surveyed D53 521835.64N 0044620.53E H4  521835.99N 0044514.88E
6. Pholding: B4 tobe surveyed D54 521832.62N 0044622.92E H5  521835.24N 0044512.94E
Either P1 avallablo or PA and PB available. CROSSING VEHICLES B95 1o be surveyed DS5  521835.48N 0044622.83E HE  521834.49N 0044510.99E
Either PO avaiable or PC and PD avaiabl, ese0s  sTOPEAR D6 52183250N 004de252fE | H7  521833.74N 004450905
D57 521835.34N 0044624.97E
—  BuAsTFENCE D88 521841.81N 0044614 46E JB0  521847.40N 0044451.48E
ATC SERVICE BDRY D0 521841.74N 0044616.78E JB1  521846.74N 0044451.65E
D92 52184166N 0044610.10E | a2 521846.10N 0044451 36E
q—  omowomnume, O soloitsoN oomeardoe | 5 SoroaroeN boseast et
e S eTueTeD D94 52184165N 0044623.74E | B4 521841.74N 0044451 19E
"TWO-WAY AT ATC DISCRETION ONLY. D95 521841.49N 0044626.07E J85  521839.39N 0044450.97E
86 521837.05N 0044450.76E
INTERMEDIATE HOLDING POSITION 87 52183471N 0044450.54E
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