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NOMENCLATURE 

a speed of sound (mis) 

CD drag coefficient (-) 

CD,Q zero-lift drag coefficient (-) 

CD minimum drag coefficient (-) 

CDL logarithmic derivative of CD w.r.t .CL (-) 
CDM logarithmic derivative of CD w.r.t . M (-) 
CL lift coefficient ( - ) 

CL = lift coefficient for minimum drag coefficient (-) 

Cp Power Specific Fuel Consumption ((Nl s)IW) 

CT Trust Specific Fuel Consumption ((NI s)1 N) 
D drag (N) 
F fuel weight flow per unit time (Nis) 
II, h,h, 14 generalized engine performance functions (-) 
g acceleration due to gravity (mls2) 
H calorific value of jet engine fuel (Jlkg) 
h = alt itude (m) 

he energy height (m) 
K induced drag factor (-) 
kR factor accounting for flight schedule (-) 
kres reserve fuel fraction (-) 
L lift (N) 
M Mach number (-) 
m mass flow per unit time (kg/s) 
N engine RPM (-) 

n exponent of M in approximation for TSFC (-) 
p "" Range Parameter (-) 
Pbr engine shaft power (W) 
p atmospheric pressure (Nlm2) 
q dynamic pressure (N/m2) 
R range, distance flown (m) 
R equivalent all-out range in cruising flight (m) 
RH = range-equivalence of fuel calorific value, RH = Hl 9 (m) 
Rh harmonie or nominal range (m) 
S reference wing area (m2) 
sn Specific Range (miN) 
T net T hrust (N) 
t time (s) 
V true airspeed (m/s) 
Vj mean exhaust jet velocity (mis) 
W weight (no index: All Up Weight) (N) 
y CL/CL,md (- ) 
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ratio of specific heats of air, ,= 1.40 
increment 
relative ambient pressure 
fuel weight fraction 
overall powerplant efficiency 
propeller efficiency 
logarithmic derivative of TJ w.r.t. Mach number 
logarithmic derivative of TJ w.r .t. T/ó 

= relative ambient temperature 
atmospheric density 
normalized slope of payload range diagram 

combustion 
climb 
contingency 
crUIse 
drag divergence 
diversion 
equivalent 
fuel 
end of cruising 
horizontal flight , constant engine setting 
horizont al cruise, constant lift coefficient 
horizont al flight, constant Mach number 
holding 
initial cruising 
landing 
mISSlOn 
maXImum 
minimum drag for constant M 
optimum 
payload 
propulsion 
propeller 
reserve fuel 
Sea Level, ISA 
thermal 
take-off 

(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
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Abbreviations 

ATC 
AUW 
BSFC 
DOC 
EAS 
EGT 
ESDU 
GA 
HSC 
ISA 
LRC 
LW 
MTOW 
MZFW 
OEW 
RPM 
SL 
SR 
SST 
TC 
TIT 
TSFC 
TOW 
UL 
ZFW 

= Air Traffie Control 
All Up Weight 
Brake Specific Fuel Consumption 
Direct Operating Cost 
Equivalent Air Speed 
Exhaust Gas Temperature 
Engineering Seiences Data Unit 
General Aviation 
High Speed Cruise 
International Standard Atmosphere 
Long Range Cruise 
Landing Weight 
Maximum Take Off Weight 
Maximum Zero Fuel Weight 
Operating Empty Weight 
Revolutions Per Minute 
Sea Level 
Specific Range 
Super-Sonie Transport 
Transport Category 
Turbine Inlet Temperature 
Thrust Specific Fuel Consumption 
Take Off Weight 
Useful Load 
Zero Fuel Weight 





Chapter 1 

Cruise Performance for Preliminary 
Design 

1.1 Types of Performance Problems 

During the design process of Transport Category (TC) and General Aviation (GA) aircraft 
the designer(s) wiU inevitably be confronted with at least one of the following questions: 

• What are, for a given aircraftjengine combination, the best cruise altitude and 
speed from the point of view of minimum fuel consumed per unit time elapsed or 
per di stance travelled ? 

• For a specified flight mission, how to estimate the (minimum) amount of fuel and 
time required? In addition to cruise fuel and time this problem involves an estima­
tion of the fuel quantities required for the ot her phases of the flight, in particular 
climb and descent, and reserve fuel estimation. 

• How to find the best operational flight profile of a transport aircraft , resulting in 
minimum fuel consumed, elapsed time or Direct Operating Costs (DOC) with or 
without constraints on range or time travelled. 

From the flight mechanical point of view all three questions are closely related to the 
generalized problem of trajectory optimization. The first problem is the most basic and 
is usually treated as an instantanuous performance! problem, assuming equilibrium of 
forces in horizontal flight: Lift = Weight and Thrust = Drag. The second problem is 
more complicated since it involves integration of the instantanuous performance into path 
performance. Moreover , the Take Off Weight (TOW) is an input to the computation of the 
fuelload, but it is also an outcome of this calculation in case the Zero Fuel Weight (ZFW) 
is specified. Practical numeri cal procedures exist to solve this problem-for example the 
Newton-Raphson approach-but for preliminary design it would be nice to avail of a 

1 Also referred to as "point performance" . 



closed-form solution. The cruise sector is usually treated as a (quasi) steady fiight, with 
either constant or very gradual variations of the altitude and/or the speed. 

The third problem is by far the most complicated from the mathematical and numer­
ical points of view, since the fiight mechanics involved have to be treated as a dynamic 
problem and the optimization requires the calculus of variations or optimal control theory. 
Applications are mostly found in the operational use, with the objective of achieving fuel 
reductions or devising optimum Air Traffic Control (ATC) procedures. Since fuel savings 
obtained appear to he very modest-at least for medium and long range fiights- it is 
not common practice to use this compute-intensive technique in the preliminary design 
stage. The optimal trajectory analysis forms a subject in itself, which is not treated in 
the present report; for a review the reader is referred to Visser [29] . 

1.2 Optimum Cruise Performance 

This Report treats the computation of range and fuel required for high speed commercial 
aircraft. Cruise performance of propeller aircraft is a classical problem which is adequately 
covered in the literature, hence it will not be treated explicitly, although the generalized 
method presented applies to propeller aircraft as weIl. Moreover the optimization of 
endurance or fiight time is excluded from the analysis; the emphasis is on maximum 
range or minimum fuel. Flight conditions for minimum Direct Operating Costs (DOC) 
will not be considered primarily because the results are quite specific to the operational 
environment. Two more subjects are excluded from the analysis: 

• the effects of wind on cruise performance are disregarded; for a concise treatment 
see Hale (1979) [10]; 

• Super-Sonic Transports (SST's) are not considered explicitly, although the approach 
developed is applicable to this aircraft category, provided one is aware of the exis­
tance of dual optima at subsonic and supersonic speeds. 

This leaves us with the cruise performance problem of high subsonic jet aircraft which fiy 
most effectively at high altitudes, unless ATC requirements or non-standard conditions­
for example engine failure--impose a limit on speed or altitude. 

The question is justified as to whether the problem of cruise performance needs to be 
considered any more af ter so many years of successful operation of commercial aircraft. 
The subject is also treated extensively in several modern texthooks; see for example 
Shevell [24], Mair and Birdsall [12] and Ruijgrok [21]. However, there remain several 
misunderstandings and questions to be answered about range performance as illustrated 
by the following brief review of the literature. 

The first analyses of range for turbojet powered aircraft were published soon aft er 
WWII, in the UK by Page [18] and Edwards [8], and in the US by Jonas [11], Ashkenas 
[4], and Perkins and Hage [20]. The range equations were based either on a cruise/climb 
technique with constant speed and lift coefficient-resulting in the Bréguet equation for jet 
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propulsion-or on horizontal flight with constant lift coefficient, resulting in the "square­
root" equation [ll]. Although the cruise/climb technique results in longer ranges than 
horizont al cruising fiight , it is usually not a favoured operational procedure due to ATC­
imposed constraints. But the alternative cruise technique leads to decreasing airspeed and 
thrust settings as fuel is consumed during the fiight-which is not practical either-and 
inferior range performance. Alternative procedures were developed later [19] for horizont al 
cruising flight at constant speed, Mach number or engine rating. They are summarized 
in various ESDU Data Items, [2] and [3]. 

There is agreement in the literature as to the fact that-for specified initial altitude 
and speed-a cruise/climb fiight program yields the longe st range. There is, however, no 
consensus about the definition of the best initialor mean altitude and speed. In particular 
the ratio of optimum fiight speed to the Minimum Drag Speed has been debated by 
several authors, even in recent publications. For example, Hale (1976)[9] points out that 
different values have been derived for this ratio-namely 21/4 and 31/4, dependent on cruise 
technique-and concludes from analysis that the lat ter value is the correct one. Ironically, 
his derivation presupposes an implicit altitude constraint which inevitably leads to the 
following question: which altitude is the best if the constraint is deleted? Bert [6] derived 
a "new range equation" , in fact a modification of the "arctan range equation" for flight at 
constant altitude and speed that can be found already in Edwards' work [8]. He computed 
in an example an optimum speed equal to 1.864 times the speed for minimum drag-an 
unusual result, caused by a continuously decreasing Thrust Specific Fuel Consumption 
(TSFC) with increasing speed. In a recent article Miller [13] concludes that the best 
altitude is one where the drag is a global minimum, "which disproves the theory that 
the cruise lift/drag ratio is ,;3/2 times the maximum lift/drag ratio" , corresponding to a 
fiight speed equal to 31/4 times the Minimum Drag Speed. 

1.3 Scope of this Report 

Most of the conflicting results from the literature must be ascribed to the fact that below 
the drag rise there is no unconstrained optimum fiight condition for maximum range, as 
will be shown by the present analysis. Early publications-for example by Page [18]­
point out by means of examples that optimum cruise Mach numbers might occur in the 
drag rise. To the best knowledge of the author the first derivation of an analytical criterion 
for optimum flight Mach number has been given by Backhaus [5]. Miele [17] wrote a 
thourough treatment of optimum cruise performance at transonic speeds, but practical 
applications of his rather complex theory have not been found in the literature. The 
generalized criteria for maximum Specific Range derived by Torenbeek and Wittenberg 
[27]-which are valid at high subsonic speeds and for arbitrary propulsion systems-have 
been referred to as "fairly sophisticated" by Martinez-Val et al [15]. Since they provide 
the basis for a comprehensive theoretical fundament, these criteria will be readdressed 
in the present Report and further augmented to derive range performance and stage fuel 
required. 

3 



In the first chapters the effects of compressibility on the liftjdrag ratio and on the 
specific range will be treated. Conditions will be derived for the best fl.ight Mach number 
and cruise altitude resulting in maximum range of aircraft with various types of gas turbine 
based propulsion systems: turboprops, turbojets and turbofans. Analytical conditions will 
be derived for the unconstrained optimum lift coefficient and Mach number, as well as for 
the case of constraints on the altitude or the engine thrust. The second part deals with the 
problem of making a good estimate of the fuel required during the cruising fl.ight and of 
the total fuel required to fl.y a specified mission, including reserves. The complication that 
fl.ight takes place at transonic speeds makes it necessary to reconsider the fl.ight techniques 
for optimum range performance and minimum stage fuel required. Finally a useful method 
will be selected on the basis of accuracy, simplicity and suitability to preliminary aircraft 
design optimization studies, which require knowledge of the sensitivity of the fuelload to 
variations in the aircraft design characteristics. 
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Chapter 2 

The Ratio of Lift to Drag 

The lift/drag ratio-sometimes referred to as the aerodynamic fineness ratio or aerody­
namic efficiency-is an important performance parameter, since it determines the drag 
and thrust required in horizont al flight , 

W 
T= D = L/D (2.1) 

For given Specific Fuel Consumption of the powerplant , the fuel flow rate is therefore 
inversely proportional to the lift/drag ratio, which is determining to a large extent: 

• the endurance and range for a given amount of fuel, 

• the amount of fuel required to fly during a specified time period or to cover a 
specified distance. 

The aircraft drag coefficient of high speed transport aircraft, 

D 
CD =­

qS 

is a function of the lift coefficient 

L 
CL =-

qS 

and the flight Mach number 

M= V/a 

where the dynamic pressure is defined as 

q = 1/2pV2 = 1/2,pM2 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Most aircraft with low subsonic speeds feature a single drag polar for the en route con­
figuration, independent of the Mach number: 

(2.6) 
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Although variations of Reynolds number and center of gravity location theoretically have 
an effect on the drag polar, this is usually ignored in preliminary design and drag polars 
are refered to mean conditions of loading and typical flight profiles. Some aircraft feature a 
slight variation of the drag coefficient with Mach number at low subsonic speeds, mainly 
due to variation in Reynolds number. Compressibility effects come into play at high 
subsonic speeds, and the drag coefficient has to be expressed in terms of the lift coefficient 
and Mach number 

(2.7) 

A representative set of drag polars is depicted on Figure 2.1a; an alternative representation 
of the same data is presented in Figure 2.1 b. For the example aircraft there is a gradual 
drag reduction with Mach number at low speeds, which may be caused by an increasing 
Reynolds number andjor decreasing skin friction associated with the heating up of the 
boundary layer. For low lift coefficients the drag begins to increase first in the form of a 
"drag creep" for Mach numbers in excess of about 0.65, while for lift coefficients in excess 
of 0.50 there is also a Mach number effect at low speeds. This drag increase is probably 
caused by compressibility effects at locations where pressure peaks occur, e.g. at the nose 
of the airfoils. For Mach numbers above :::::J 0.80 the drag rise is much faster: the so-called 
"drag divergence". The usual definition of the drag divergence Mach number Mdd is based 
on the slope of the drag curve for constant lift coefficient, 

8CD 
8M = 0.10 (2.8) 

This condition defines a Mach number which depends on the lift coefficient and therefore 
the drag initiation is represented in the figure by a curve. By using these drag polars, 
values of the liftjdrag ratio have been derived-see Figure 2.2a-and contours of constant 
Lj D ratios have been plotted on Figure 2.2b. These contour plots have the advantage 
that constant L j D curves do not intersect since each combination of the independent 
variables CL and M define only one drag coefficient. This drag representation is therefore 
completely unambiguous. 

The thrust required in horizontal steady flight follows directly from Equation 2.1 

W 
T = D = CLjC

D 
(2.9) 

The condition for maximum liftjdrag for given Mach number-resulting in minimumdrag 
(md) and hence minimum thrust-is defined by the lift coefficient CL,md . 

For low subsonic aircraft designed to cruise at speeds up to about M ~ 0.6, the lift 
coefficient CL,md has a unique value defining the Minimum Drag Speed, which is obtained 
from Equation 2.3, with L = W: 

6 

2WjS 

pCL,md 
(2.10) 
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or the Mach number1: 

2WjS 

ipCL,md 
(2.11) 

In this case the Minimum Drag Speed is thus a constant Equivalent Air Speed (EAS), 
provided the All Up Weight (AUW) is specified. 

For high subsonic aircraft CL,md is a function of the Mach number; the example in 
Figure 2.2b indicates that it is nearly constant for Mach numbers up to about 0.65. Above 
this speed the effects of compressibility on drag re sult in rapidly decreasing values of the 
Lj D ratio. The contours of constant Lj D values are almost straight at low speeds but 
become closed at high Mach numbers, and a dip occurs in CL,md at high Mach numbers. 

2.1 Partial and Unconstrained Optima 

The mathematical condition of maximum Lj D is-for the case of general drag polars 
according to Equation 2.7-obtained from logarithmic differentiation: 

dlog(CL/CD ) = dlogCL - dlogCD = 0 (2.12) 

with 

o log CD o log CD 
dlog CD = o log CL dlog CL + o log M dlog M (2.13) 

The following logarithmic derivatives are now introduced, 

CD ~ o log CD CLOCD (constant M) 
L o log CL CD oCL 

(2 .14) 

CD ~ o log CD MOCD 
(constant CL) ---

M ologM CD oM 
(2.15) 

From their definitions it is clear that logarithmic derivatives can be interpreted as a 
percentage change in a dependent variabIe due to a given percentage change of the in­
dependent variabIe. Log-derivatives are therefore non-dimensional; their numeri cal value 
is of ten between zero and plus or minus two or three, which is convenient for numeri cal 
treatment. 

Af ter substitution of the log-derivatives Equation 2.13 reads as follows, 

(2.16) 

1 In the case of a constraint on the thrust the Mach number for minimum drag is obtained from the 
equilibrium Thrust=Drag. 
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Equation 2.12 may now be written alternatively by substitution of this result: 

(2.17) 

The partial optima for CL or Mare obtained by setting dCL=O or dM=O-alternatively 
dlog CL=O or dlog M = O-resulting in 

constant M: CDL = 1 -+ 

constant CL : CDM = 0 -+ oCD = 0 
oM 

(2.18) 

(2.19) 

The first of these partial optima can be allocated in the drag polar(s)-see Figure 2.3a­
by means of a tangent from the origin, the second is relevant only for high speed aircraft 
where CDM = 0 defines a relationship between CL and M as illustrated by Figure 2.2b. 
However, in most cases the drag at subcritical speeds is defined as a unique polar-hence 
CDM = O-up to a certain Mach number. Above this speed CDM > 0 and the liftjdrag 
ratio is generally degraded. 

The condition for an unconstrained maximum value of Lj Dis that both partial optima 
occur at the same time. Hence the combination of CDL = 1 and CDM = 0 defines a unique 
condition for (Lj D)max only in the case that a maximum or a minimum exists for a given 
lift coefficient. Figure 2.2b this condition is identified as Point A, with Lj D = 18.40. H, 
on the ot her hand, for low subsonic speeds there is only one drag polar, the aircraft has 
a constant maximum liftjdrag ratio defined by CL = CL.md . 

For the case of parabolic drag polars, generally with coefficients dependent on the 
Mach number, 

CD = CD.o(M) + K(M)CI with K(M) ~f dCDjd(Cl) (2.20) 

the conditions for minimum drag for given Mach number are 

CL •md = JCD.o(M)jK(M) (2.21 ) 

CD.md = 2CD.O(M) (2.22) 

(LjD) _ 1 
md - 2y'K(M)CD.O(M) 

(2.23) 

For this case the logarithmic derivative CDL is 

CDL = 2K(M)Ci = 2 lnduced Drag 
CD.o(M) + K(M)Ci Total Drag 

(2.24) 
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Figure 2.3: Graphical construction of conditions GDL = 1 and GDM = 1 

11 



LI D 
(L / Dl md 

1.0 

0.8 

0.6 

0.4 

0.2 

2.0 

0.5 1.0 

Figure 2.4: Generalized drag properties for parabolic polars 

and for CDL = 1 the well known result is obtained that the induced drag and the zero-lift 
drag are equal. The relationship between CDL and the lift coeflicient is : 

and the lift to drag ratio-in relation to its maximum value-amounts to 

LID 
(LID)md 

(2.25) 

(2.26) 

These interrelationships are depicted in a generalized form in Figure 2.4, which applies 
to low subsonic as well as high subsonic speeds, provided that drag polars can be ap­
proximated by Equation 2.20 at any Mach number (including the drag rise). However, 
for a cambered wing the term drag coeflicient at zero lift is not very meaningful. For the 
purpose of performance computation at subcritical speeds Equation 2.20-representing a 
symmetrie drag polar- is usually adequate. For high speeds a bet ter approximation is 
for example 

CD = CD(M) + K*(M)(CL - Ci:? (2.27) 

with Ci: denoting the lift coefficient for minimum drag coefficient CD' and K* denotes a 
modified (higher) induced drag factor than K used in Equation 2.20. 

12 



2.2 Constraints on Altitude or Thrust 

Altitude constraint: in a practical situation where for an aircraft (given AUW) flying 
at a specified altitude the condition of minimum drag is sought, the results of the previous 
section are not valid if the resulting Mach number is in the drag rise. Since for this 
condition L = W dictates that 

WjS 
CL M 2 = -1- = constant 

ï ÎP 
(2.28) 

the following constraint on CL and M applies 

dlog CL + 2d log M = 0 (2.29) 

Substitution into Equation 2.17 yields 

(2.30) 

For low-subsonic speeds CDM is usually negligible-except for high lift coefficients-and 
this result is identical to Equation 2.18. As soon as the drag rise is entered, CDM increases 
and hence CDL > 1 and CL > CL,md. This is illustrated in Figure 2.2b where curves of 
constant CLM2 have been drawn and their points of tangency to the Lj D contours have 
been constructed, defining the maximum according to Equation 2.30. The example shows 
that for M > 0.65 Equation 2.30 begins to diverge from Equation 2.18; this di vergen ce 
starts at point A, corresponding to CL M 2 = 0.215. In the present example the altitude for 
which Equation 2.30 has to be applied is defined by p < 2Wj(0.215ÎS), or p < 6.64WjS. 

For higher cruise altitudes-hence lower ambient pressures-than point A the con di­
tion for maximum LI D at given altitude is found by intersecting the appropriate curve 
CL M 2 = constant with Equation 2.30, as depicted in Figure 2.2b. The flight Mach num­
ber for maximum Lj D corresponding to this altitude is lower than the Mach nu mb er 
for CL,md defined by Equation 2.11. For example, in the same figure a selected condi­
tion CL M 2 = 0.35 intersects Equation 2.30 in Point B-the combination CL = 0.57, 
M = 0.78-where Lj D :::::: 17.0. This lift coefficient is considerably higher than CL,md for 
the same Mach number and hence the conditiuons for minimum drag are not correctly 
calculated when Equations 2.10 and 2.11 are used. 

Thrust constraint: this case is important when a flight condition is to be determined 
which results in minimum drag for given engine rating, since it will result in minimum 
thrust and hourly fuel consumption. An engine thrust rating limit is approximately 
equivalent to a constraint on the corrected thrust2 , 

T D I 2 J = 1" = 1 2ÎPs/M CDS = constant (2.31 ) 

2 For details see Section 4.1. 
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This constraint can be interpreted as 

CD M 2 = constant -+ d log CD + 2d log M = 0 (2.32) 

Expanding dlog CD in terms of the CL - and M-derivatives in accordance with Equa­
tion 2.16 yields the following condition for minimum drag: 

(2.33) 

Af ter substitution into Equation 2.17 the result appears-perhaps not surprisingly-to 
be identical to Equation 2.30: 

. For a selected value of CD M 2 = 0.02 point C in Figure 2.2b corresponds to this condition. 
If the aircraft flies in the drag ri se this condition again does not result in the Minimum 
Drag condition defined by Equations 2.10 and 2.11. 

In conclusion we find that for a given Mach number the condition for maximum L/ D 
is CDL = 1, whereas for an altitude or thrust constraint one finds CDL = 1 + 1/2CDM" At 
subcritical speeds these two conditions are compatible only for oCn/oM = o. At high 
subsonic speeds they result in different combinations of lift coefficient and Mach number, 
but always with a lower L/ D than at subcritical Mach numbers. However, the conclusion 
that optimum flight should take place at Point A in Figure 2.2b is not justified, because for 
jet and turbofan powered aircraft the engine efficiency is also variabIe with Mach number. 
For long range flights the condition for minimum drag is not the most interesting case, as 
wil! be shown in the following chapter. 
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Chapter 3 

The Parameter ML/D 

The Specific Range1 sn is the instantanuous value of distance covered per unit quantity 
of fuel consumed for a given aircraft weight, speed and altitude, 

sn~f b.R = b.Rlb.t = V (3.1) 
b.WF b.WFlb.t F 

wh ere F denotes the fuel weight consumed per unit time. Integration of the sn over a 
given fiight trajectory-for a change of aircraft weight equal to the fuel consumed-gives 
the range. Introducing the Thrust Specific Fuel Consumption TSFC for jet or turbofan 
engines: 

CT ~ f.­
T 

(3.2) 

and noting that in steady cruising flight it can be assumed that Lift is equal to Weight 
and Thrust is equal to Drag, the SR can be rewritten as follows: 

SR = asl M LI D (3.3) 
W CTI,[ö 

where asl and () denote the speed of sound at Sea LeveliSA and the relative ambient 
temperature, respectively. The term cTI.,fö is usually referred to as the "Corrected 
Specific Fuel Consumption". For a given engine rating and Mach number this parameter 
is constant in the stratosphere, and its variation below the tropopause is generally small for 
altitudes above 9150 m (30000 ft). Although the variation of TSFC with Mach number 
is by no means negligible-especially for high bypass ratio turbofans-the parameter 
M LI Dis of ten used for defining the Mach number for maximum SRThe resulting fiight 
condition appears to be fairly accurate for idealized jet engine propulsion, provided the 
Mach number range under consideration is not too large2• In this section the condition 
for maximum M LI D will be analyzed in terms of logarithmic derivates: 

d log M + d log CL - d log CD = 0 (3.4) 

1 Since the effects of wind are not considered in this report the Specific Range is identical to the Specific 
Air Range. 

2The Specific Range treated in Chapter 4 is a more general criterion for optimum range performance. 
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Figure 3.1: The factor M LI D at subcritical speeds 

Expanding d log GD in terms of the lift coefficient and Mach number using Equation 2.16 
one finds 

(3.5) 

where the logarithmic derivatives GDL and GDM are defined by Equations 2.14 and 2.15. 

3.1 Maximum ML/D at Subcritical Speeds 

Although compressibility drag will be present at high subsonic Mach numbers, the case 
GDM = 0 wiU be treated as an instructive example. Figure 3.1 shows contours of constant 
M LID in the lift coefficient versus Mach number plane for the case of a single parabolic 
drag polar. For given lift coefficient the lift/drag ratio is independent ofthe Mach number, 
and M LID increases monotonically with the Mach number, leading to the following 
observations: 
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• For each Mach number the minimum drag has the same value---defined by GDL = 1, 
or GL = GL,md-and M(LI D)md increases proportional to M. 
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• For a given lift coefficient there is no partial optimum for the Mach number and the 
parameter M L / D does not have an unconstrained maximum. 

This means that-if the engines deliver unlimited thrust and TSFC is not affected by the 
Mach number-the aircraft will continue to improve its sn with increasing Mach number, 
and for constant lift coefficient the altitude will also increase. However, in practice there 
will always be at least one of the following constraints. 

Altitude constraint: CLM2 is constant and Equation 2.29 will apply. Substitution 
into Equation 3.5 yields 

CDL = 1/2 (for CDM = 0) (3.6) 

This result is identical to the weIl known maximum of CL/Cb- For a parabolic drag polar 
Equation 2.25 yields accordingly: CL = CL,md/v3, as indicated by Line III in Figure 3.1. 

Thrust constraint: the condition CD M 2 = constant applies and Equation 2.32 will 
apply. Substitution into Equation 3.5 yields 

CDL = 2/3 (for CDM = 0) (3.7) 

which is identical to the weIl known maximum of cl/Cb. For a parabolic drag polar the 
re sult is: CL = CL,md/V2, indicated by Line IV in Figure 3.1. 

In conclusion we find that the case CDM = 0 provides useful results only for con­
strained optimization. For parabolic drag polars the result is summarized in the following 
tabie. 

I case I Curve in Fig. 3.1 I 
M=constant 1 CL,md I 
W/Ó=constant 1/2 CL,md/.J3 III 
T / Ó =constant 2/3 CL,md/.J2 IV 

These conditions are clearly incompatible, confirming the absence of an unconstrained 
optimum for this hypothetical case, which is treated frequently in textbooks on flight 
performance. 

3.2 ML/D with Compressibility Effects 

Partial and unconstrained optima: the situation depicted in Figure 3.1 remains 
valid up to the Mach number where compressibility effects on the drag are becoming 
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manifest, i.e. in the case illustrated by Figure 2.1 up to M ~ 0.65. Figure 3.2 illus­
trates that contours of constant M L/ D are drastically different in the drag rise: they 
become closed curves and there appears an unconstrained optimum for the lift coefficient 
(GL = 0.465) and the Mach number (M = 0.795)-approximately 0.015 below the drag 
divergence Mach number-where M L/ D reaches a value of about 14.0: Point A. For this 
flight condition L/ D = 17.61, or 95.7% of (L/ D)max = 18.40. 

The partia1 optimum for given Mach number (Curve I) is obvious1y the same as that 
for maximum L/ D at given Mach number, but due to compressibility effects there is 
now a1so a partia1 optimum for given lift coefficient: CDM = 1 (Curve II). lts governing 
equation can be derived from Equation 3.5. Curves land 11 intersect at Point A, the 
unconstrained maximum of M L / D. 

Altitude constraint: for constant CL M 2 the optimum is found by substitution of 
Equation 2.29 into Equation 3.5, resulting in 

(3.8) 

identified in Figure 3.2 as Curve IIL For low Mach numbers (CDM = 0) this equation is 
identica1 to the resu1t found in Subsection 3.1 but for M > 0.65-in the present examp1e-­
there is a rapid increase in CDL and in CL, resulting in a bent-up branch of Curve 111, 
intersecting Curves land 11 in point A. It should also be noted that for Mach numbers 
in excess of Point A the optimum for specified altitude occurs at CL > CL,md, as opposed 
to the case of subcritical speeds. 

Thrust constraint: the optimum can be found by substitution of Equations 2.32 and 
2.16 into Equation 3.5, 

(3.9) 

This Curve IV-see Figure 3.2- again intersects the ot her partial optima in point A. 
This can be verified by combining Equations 3.8 and 3.9 resulting in CDL = CDM = 1. 

Graphical solution: although the location of the unconstrained optimum (point A) in 
the lift coefficient versus Mach number plane has been illustrated by means of iso-M L/ D 
contours, its determination does not require these contours. A graphical solution using 
the drag polars-see Figure 2.3-provides a direct solution as follows. 

• The condition GDL = 1 is identical to aGD/aCL = CD/CL for constant Mach 
number. The solution is found graphically by means of a tangent construction, see 
Figure 2.3a. 

• Similarlya tangent construction is applied to aCD/aM = CD/M for constant CL, 
see Figure 2.3b. 

• Both conditions are transferred to the CL versus M plane (see Figure 3.2): Curves I 
and 11, intersecting in Point A. 
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In conclusion an unconstrained fiight condition for maximum M LI D exists only when 
compressibility effects are present , and as a consequence it is located in the drag rise. 
For the example aircraft the criterion àC D I à M = CD I M defines a slope of approxi­
mately 0.033, as opposed to the usual definition for the drag di vergen ce Mach number: 
àCDlàM = 0.10. In the next section it will be shown that a similar criterion applies to 
the maximum sn of high speed jet aircraft. 
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Chapter 4 

The Specific Range 

The parameter M LID treated in the previous section is useful in the case that variations 
in the TSFC are negligible, but this is usually not the case when accurate results are 
required or Mach number variations are large. In that case it is appropriate to introduce 
the variation of the overall powerplant efficiency, 

def Net Propulsive Power TV TV 
.,., = Heat Content of Fuel Flow = mFH = FH/g 

( 4.1) 

where mF denotes the mass flow rate of the fuel with calorific value H. The relation 
between the overall powerplant efficiency and the TSFC for jet and turbofan engines is 
as follows, 

asl M .,.,=---
H/gCTlVO 

Substitution into Equations 3.1 and 3.3 yields 

SR= V = RH.,.,L/D 
F W 

(4.2) 

(4.3) 

where RH ~f H / g amounts to approximately 4400 km (2376 nm) for typical gas turbine 
engine fueP. The last equation shows that for given aircraft A UW the maximum value of 
the Range Parameter, 

(4.4) 

results in the maximum Specific Range. Since the overall powerplant efficiency has basi­
cally the same definition for propeller aircraft and for turbojet or turbofan aircraft, the 
Range Parameter is a more significant parameter than M LI D since it covers the complete 
range of transport aircraft powerplants. In particular for making a comparison between 

lIn that case Equation 4.1 yields 1/ = O.2788Mj(CTj.../ö). 
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subsonic and supersonic cruising aircraft it is not accept ab Ie to use M LI D instead of the 
Range Parameter. 

The objective of the cruise point optimization is to find a maximum of the product of 
the powerplant efficiency TJ and the aerodynamic fineness LID. Since both quantities are 
mutually unrelated functions of the airspeed and altitude, the combined optimum does 
not generally coincide with any of the maxima for TJ or LID, provided these exist. 

4.1 Generalized Engine Performance 

The engine thrust and fuel consumption-and hence the overall powerplant efficiency­
are basically functions of the altitude2, the airspeed and the engine rating. Textbooks on 
gasturbine engine performance show that the generalized performances of turbojet and 
turbofan engines can be described in generalized equations as follows, 

Corrected Thrust: 
T J = fl(M, NIVO) (4.5) 

Corrected Fuel Flow: Ffïi = h(M, NI.,fB) 
Jy8 

(4.6) 

where J denotes the relative ambient pressure and Njv'ö is the corrected High Pressure 
Rotor RPM. The latter can be eliminated to yield 

J~ = h(M, TIJ) (4.7) 

and by substition into Equation 4.1 we obtain 

-M!!:.!!... TjJ -f(MTjJ) 
TJ - RH Fj(Jv'ö) - 4 , 

(4.8) 

Hence, for variabie engine rating it is found that the overall powerplant efficiency is de­
termined by the flight Mach number and the Corrected Thrust. It can also be shown [25J 
that Equation 4.8 holds for any gasturbine-based propulsion system with propeller power 
andjor jet thrust output, provided effects due to Reynolds number variation and installa­
tion effects are ignored. Figure 4.1 is a representative example of the overall powerplant 
efficiency of a present day turbofan engine, showing the effects of Mach number variation 
and the engine rating parameter T j (JTto ). The latter compares the Corrected Thrust 
to the maximum take off Thrust for the Sea Level ISA static condition, Tto . For typical 
turbofan engine cruise conditions this rating parameter varies between approximately 0.8 
and 1.1. The maximum cruise rating has also been indicated in the diagram for altitudes 
near 35000 ft (10668 m)3. Figure 4.1 shows that the Mach number has a much larger 
effect on the powerplant efficiency variation than the engine rating. Hence the case that 
the powerplant efficiency is a function of the Mach number only will be considered first. 

2For standard atmospheric conditions the altitude defines a combination of ambient pressure and 
temperature. 

31n fact this curve is a limitation by the engine RPM. 
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Figure 4.1: Engine performance of a high bypass turbofan engine 

4.2 Maximum range parameter 

1.0 

In order to find conditions of maximum SR it appears appropriate to introduce the 
following log-derivative, for the case that the efficiency is a function of the Mach number 
only: 

der d log TJ M dTJ 
TJM = =--

dlogM TJ dM 
(4.9) 

This parameter generally varies between zero for prop uI sion with efficiency independent 
of the flight speed, and one for the (theoretical) case of constant TSFC4 . The condition 
for maximum SR may now be derived from logarithmic differentiation of Equation 4.4: 

d log P = d log TJ + d log CL - d log CD = 0 (4.10) 

which can be expanded in terms of partial derivatives: 

(4.11) 

It is noted that for TJM = 1-and hen ce constant TSFC-this equation is the equivalence 
of Equation 3.5, the condition for maximum M LI D. 

4See Section 4.3 for further explanation . 
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Figure 4.2: Graphical construct ion of the condition GDM = TJM 

Partial and unconstrained optima: for CL and M the partial optima are obtained 
from Equation 4.11, 

constant Mach number: 
constant lift coefDcient: 

The first of these partial optima is identical to the case of maximum M L / D, the 
second ean be rewritten alternatively, 

( 4.12) 

Since both the Mach number and the drag coefDcient are positive and generally CDM is 
either zero or positive, there can be two solutions: 
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1. TJM > 0 -t aCD/aM > 0, defining an optimum condition in the drag risej 

2. TJM = 0 -t aCD/aM = 0, with an optimum defined by the condition CDM = 0 (see 
Figure 2.2b), or with an undertermined optimum Mach number in case there is one 
(low speed) drag polar. 



~~~~~--------~~~-

The interpretation of this result is as follows: 

• If the overall efficiency is independent of the Maeh number, the range parameter 
has its maximum value--for any subcritical Mach number-when CL = CL,md' The 
maximum specific range has the same value for different altitudes, provided the 
airplane tEes at the Minimum Drag Speed and the efficiency is also independent of 
the altitude. 

• If the overall efficiency reaches a maximum value for a subcritical Mach number, 
say M~-opt, the maximum specific range occurs at this flight speed, and the pressure 
altitude is defined by 

2WIS 
(4.13) 

• If the overall efficiency increases continuously with Mach number, the condition 
CDM = TJM must be combined with the condition CDL = 1, in order to find the 
unconstrained optimum. 

The flight condition defined by CDM = TJM can be found numerically or graphically. 
An example of a graphical approach is shown on Figure 4.2 where a log-log scale has been 
used in accordance with the use of logarithmic derivatives. The points where the slop es 
of log CD are equal to the slopes of log TJ define the solution of Equation 4.12. 

An example of iso-P curves in the CL versus M plane is shown on Figure 4.3 with 
partial optima for CL and M, indicated as Curves I and II, respectively. Although the 
general shape of this diagram is similar to Figure 3.2 for M LID there are some noticeable 
differences. 

• Since TJM < 1, the unconstrained optimum (point A) is at a lower Mach number 
than point A for maximum M LI D-approximately 0.045 below the drag divergence 
Mach number-while the optimum itself is not so sharp. 

• For subcritical Mach numbers the constrained optima for constant W I Ó and TI ó­
Curves III and IV respectively-occur at higher values of the lift coefficient com­
pared to Figure 3.2. This will be explained in the following paragraphs. 

Altitude constraint: the maximum value of Pis obtained by substituting CL M2 =con­
stant (or dlogCL + 2dlogM = 0) into Equation 4.11, which yields 

(4.14) 

In Figure 4.3 this equation is represented by Curve lIL lts intersection with the approp­
priate value of CLM2 defines the constrained optimum, Point B. In the case of a drag 
potar without eompressibitity eiJeets (CDM = 0) Equation 4.14 has the following solution, 

( 4.15) 
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Usually the drag polar is a parabola at low speeds, hence from Equation 2.25 

M = Mmd 2+T]M 
( )

1/4 

2 - T]M 
( 4.16) 

with M md defined by Equation 2.11. The corresponding lift/drag ratio according to Equa­
tion 2.26 is 

L/ D = 1/2.)4 - TJ~ (L/ D)md ( 4.17) 

This result covers various classicaloptima: CL = CL,md/v'3 for constant corrected TSFC 
(T]M = 1), and CL = CL,md for constant overall propulsive efficiency (T]M = 0). For 
modern turbofan engines TJM is typically between 0.4 and 0.65

. Equations 4.14 and 4.16 
are therefore useful generalisations of the classical flight-mechanical criteria, applicable to 
arbitrary propulsion systems, though applicable to low speeds only. 

Thrust constraint: the maximum of P is obtained by combining Equation 4.11 and 
Equation 2.32, yielding the following result : 

C _ 2+ CDM 

DL - 2+TJM 
(4.18) 

An example of a constrained optimum is Point C in Figure 4.3. In the case of zero 
compressibility Equation 4.18 has the following solution: 

(4.19) 

At subcritical speeds the drag polar is usually parabolic. In that case Equation 2.25 applies 
and the result is the following condition for the optimum lift coefficient , 

1 + T]M 
1+T)M/2 

( 4.20) 

where in this case the Minimum Drag Mach number is determined by the drag coefficient 
for the minimum drag condition instead of the lift coefficient6 : 

2T/S 

ÎpCD,md 

The lift/drag ratio according to Equation 2.26 is 

L/D= ~(L/D) 
1+T]M/2 md 

(4.21 ) 

(4.22) 

This result is again in accordance with classical criteria: CL = CL,md/V'i for constant 
TSFC, and CL = CL,md for constant powerplant efficiency. 

5The actual value is not entirely independant of the Mach number; see Section 4.3. 
6For further explanation reference is made to [27] . 
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For turboprop engines the engine rating is based on the engine output shaft power 
Pbr instead of the thrust. In that case a more logical combination of independent variables 
is the Mach number and the corrected power, 

( 4.23) 

The results for the various partial optima may now be derived analoguous to the previous 
case. Only one result will be mentioned here: the optimum for constant Corrected Power 
Pbr/(ÓVO) = CDhps/as/M3S, hence dlog CD + 3dlog M = O. For this case Equation 4.11 
yields 

C _ 3+ CDM 
DL - 3 +"'M 

(4.24) 

For aparabolie drag polar and zero compressibility this is equivalent to: 

( 4.25) 

aresult that is directly comparable to Equation 4.20. This case may be assumed to apply 
to turboprop or prop-fan powered aircraft where "'M has a small positive or negative value 
near the subcritical cruise Mach number. 

Multivalued optimum solutions. It is possible that the conditions for partial optima 
do not result in a unique solution. For example, supersonic cruising aircraft-not treated 
in the present report-may have maxima for LID and VI F both at subsonic and super­
sonic speeds. Subsonic aircraft mayalso have anomalies in the drag polars, for example 
when a shock-free condition with low drag occurs in a small region of Mach numbers. 
This behaviour will be clearly manifest in the drag polars, making the analist aware of 
the situation. In such a case both local maxima for ."L/ D must be studied in detail and 
compared to find the highest value [17] . For supersonic cruising aircraft good subsonic 
range performance is also of paramount importance, and both the subsonic and supersonic 
optima are of practical significance. 

4.3 Interpretation of the Derivative 1]M 

The logarithmic derivative TJM introduced in the previous section effectively denotes the 
corresponding percentage change in efficiency divided by the corresponding percentage 
change in Mach number . It can be related to the corrected TSFC as follows, 

_ 1 _ M d(CT/VO) 
TJM - CT/VO dM (4.26) 

This parameter has been used extensively in the analysis to define the optimum flight 
Mach number and deserves further explanation. 
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The overall powerplant efficiency may be expressed as the product of a combustion 
efficiency 'TJcb, a thermal efficiency 'TJth, and a propulsive efficiency 'TJpr, 

'TJ = 'TJcb 'TJth 'TJpr ( 4.27) 

Logarithmic differentiation yields 

d log TJcb d log TJth d log TJpr 
TJM = + + --=-~ 

dlog M dlog M dlog M 
( 4.28) 

The fi.rst of these terms is generally nearly zero, while the second will have a small positive 
value due to the ram effect at high speeds. The third contribution is the most important 
one; its value can be associated with the well known expres sion for the Froude efficiency 

2V 2 
'TJpr = V + Vj = 1 + Vj/V 

(4.29) 

with Vj denoting the mean exhaust jet velo city. The variation of Vj with the flight Mach 
number is not readily determined since off-design engine performance analysis is a rather 
complex problem. However, in general it can be observed that for powerplant installations 
with a high jet velocity (e.g. idealized jets) this variation is small, while for low exhaust 
velocities-in the case of very high bypass engines and propeller propulsion-the speed 
increment Vj - V varies little with airspeed. The following hypothetical cases can therefore 
be distinguished: 

constant Vj : 

and 

constant Vj - V : 

dlog'TJpr = dlog'TJpr = 1- _V_ = 1- 'TJ r/2 
dlogM dlogV V +Vj p 

dlog 'TJpr 

dlogM 
dlog TJpr 2V 
d I V = 1 - -V-- = 1 - 'TJpr 

og +Vj 

( 4.30) 

(4.31 ) 

Thus it is found that 'TJM = 1 - factor x TJpr, where the factor depends primarily on the 
specific thrust. Since for all cases TJpr = 0 for M = 0, TJM approaches 1.0 for M + O. For 
subsonic cruise Mach numbers the propulsive efficiency of turbofan engines is generally 
between 0.4 and 0.8 and hence TJM will vary between 0.2 and 0.8. For propeller powered 

aircraft the propulsive efficiency varies only slightly with airspeed and 'TJM is approximately 
zero7 , unless the propellers operate at supersonic tipspeeds. In that case 'TJM will become 
negative. 

As an example Figure 4.1 shows that for a high-bypass turbofan the constant-T / J­
curves have a nearly constant slope for Mach nu mb ers between 0.6 and 0.9. As the 
diagram is a double logarithmic plot, this indicates that an exponential relatioDship for 
the corrected TSFC caD be used as an approximatioD, 

CT /.JO = constant x Mn (4.32) 
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Figure 4.4: The engine efficiency power law exponent 

Substitution into Equation 4.26 yields 

TJM = 1 - n (0::; n ::; 1) 

12 

( 4.33) 

Statistical values for the exponent nare given in [2] and have been reproduced in Fig­
ure 4.4. In accordance with the derivation given above there appears to be a correlation 
between n and the bypass ratio-which is related to the specific thrust. An alternative 
relationship between the corrected TSFC and the Mach number, 

CT/VO = Cl + C2 M (4 .34) 

can be used in Equation 4.26 and it follows that 

1 
( 4.35) 

resulting in a value of TJM which is not independent of the Mach number. Although 
Equation 4.35 provides an accurate approximation over a large range of Mach numbers, 
Equation 4.33 is usually adequate for cruise performance analysis to derive TJM for a 
given engine. Figure 4.5 depicts the relation between the overall powerplant efficiency, 
the corrected TSFC, the log-derivative and the flight Mach number. It illustrates the 
(in)accuracy of the approximation of a constant TJM for high subsonic speeds. 

7Note that since TJpr op < 1 Equation 4.31 gives a positive valuefor TJM; this demonstrates the limited 
value of the simple analysis. 
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4.4 Refinements in the Optima 

In the previous section only the primary variabie for the thrust (the Mach number) has 
been taken into account. For a more accurate analysis, accounting for the effects of 
engine rating on efficiency and of Mach number on the maximum cruise thrust, a further 
extension of the analysis may be required. 

Partial and unconstrained optima: the effect of thrust setting is taken into account 
by means of the following logarithmic derivative: 

der Olog 17 TI 0 017 
TJT = olog(T 10) = ---:;J o(T I 0) (constant Mach number) ( 4.36) 

and since 17 now depends on two variables we have to modify the definition of TJM accord­
ingly, 

der a log 17 M aTJ 
TJM = = -- (constant Tlo) a log M 17 oM ( 4.37) 

The condition for maximum SR according to Equation 4.11 must now be modified into8: 

dlogP = (I-CDL+TJTCDL)dlogCL 

+( TJM - CDM + 2TJT + TJTCDM)d log M = 0 ( 4.38) 

The partial optima with respect to CL and Mare obtained by setting the bracketed terms 
equal to zero: 

constant M -+ ( 4.39) 

constant CL -+ ( 4.40) 

The unconstrained optimum can be found when these partial optima are combined. This 
will generally require a numerieal iterative solution. 

Altitude constraint: the condition CLM 2 constant, or dlog CL + 2dlog M 0, IS 

substituted into Equation 4.38 yielding 

CDL = 1 + 1/2 (CDM -~) (4.41) 
1 - TJT 

The solution for the optimum flight condition may now be obtained iteratively by first 
assuming TJT = 0, resulting in a first order approximation for the lift coefficient and the 
Mach number, and henee Tlo. The engine data-see Figure 4.1-will then provide an 
actual value for TJT and an improved approximation ean be obtained. 

BThe derivation can be found in [27] . 
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Figure 4.5: Efficiency and TSFC of a high bypass turbofan engine 

Constrained optimum for given engine rating: although the case of constant TIJ 
gives areasonabie approximation for a thrust rating limit, a more accurate analysis may 
be required for the following reasons: 

• An engine rating may refer to an RPM limit , a maximum Turbine Inlet Temperature 
(TIT) , or an Exhaust Gas Temperature (EGT) limit. Not only will the result be 
a value of Nlv'O which varies with the altitude in the troposphere, but for a given 
altitude a constant RPtvi results in a variation of the corrected thrustj see Figure 4.1 
as an example. 

• For accurate performance analysis it will be necessary to account for installation 
effects due to inlet total pressure loss, bleed air and power extraction, scrubbing 
drag and Reynolds number effects. All these effects will not only re duce the overall 
powerplant efficiency, but they mayalso introduce an altitude effect on the efficiency 
for given TIJ. 

In this case it will be necessary to first calculate the Mach number versus altitude­
hence lift coefficient-limit by means of a numeri cal or graphical procedure, using the 
two equilibrium equations: Thrust=Drag, and Lift=Weight. Since this operationallimit 
depends on the aircraft AUW the result is no longer a unique rating limit in the CL versus 
M diagram. 
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Figure 4.6: The Specific Range affected by operating conditions 

Figure 4.6 shows an example of range performance with the SR plotted versus altitude 
and Mach number, for a given AUW. For low AUW the maximum SR appears to be 
unconstrained (Point A), but for high weights the cruise thrust limit may force the fiight 
condition to a Mach number and altitude below the 100% SR condition. 

Non standard conditions: the engine thrust rating and efficiency are dependent on 
the Mach number, the pressure and the non standard temperature. Similar to the previous 
case a numeri cal analysis is required to identify the best cruise condition for each aircraft 
weight and the maximum SR will vary during the cruising fiight. Depending on the 
ThrustjWeight ratio of the aircraft, a temperature above standard may force the aircraft 
to a considerably reduced altitude or Mach number compared to the 100% maximum SR 
condition, resulting in a range performance degradation. This applies in particular to 
cruising fiight af ter failure of an engine. 
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Chapter 5 

Analysis of Cruising Flight 

Different from the problem treated in the previous chapters, dealing with (optimum) 
instantaneous conditions, the cruise range is an integrated performance. Since there are 
two control variables at each moment of the flight-we have used the lift coefficient and 
the Mach number-optimal control laws can be proposed for these variahles in order to 
maximize the range for a given amount of fuel. For the flight crew these controllaws have 
different characteristics and it will be shown that several cruise techniques have serious 
disadvantages. 

Since equilibrium of forces will he assumed during the flight , the result is not neces­
sarily an absolute maximum range. For example, cyclic fiight with dolphin type climb 
and descent profiles may, at least theoretically, increase the range; see [16] and [22]. How­
ever, in practice civil transport aircraft fiy the cruise sector as a quasi steady fiight , with 
small variations in the control variables. We are therefore interested in approximate so­
lutions for the integrated (optimum) range performance, since they will be adequate for 
preliminary design purposes. It will be shown that the cruise range can be calculated by 
means of a simple analytical equation. Conversely, for a specified range the amount of 
cruise fuel required can be derived in closed form, and from these results the block fuel 
and the reserve fuel will be obtained readily. 

5.1 The Generalized Range Equation 

Classical derivations of range are hased on either constant propulsive efficiency for pro­
peller aircraft, or constant TSFC for idealized jet propulsion. The pertinent analytical 
equations can be found in most textbooks on performance. They are usually quite accu­
rate, provided the conditions do not vary considerably during the fiight. For example, the 
following well known expression for the range-ascribed to Louis Bréguet (1880-1955)­
was derived for propeller aircraft cruising at constant altitude and constant angle of attack, 

(5 .1) 
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where "i" and "f" denote the initial and final conditions of the flight . Later, it was found 
that a very similar equation applies to the range of jet aircraft in a cruise/climb with 
constant speed and constant angle of attack, 

(5.2) 

In the following text a general expression will be derived for the range of aircraft with 
various types of gas turbine based powerplants. The range in quasi steady cruising flight 
is obtained from integration of the specific range, 

l
WiV 

R= -dW 
w, F 

(5.3) 

For constant sn during the flight , the range would simply be: 

V V 
R= F(Wi -Wj )= FWF (5.4) 

with WF denoting the fuel weight. However, due to the decreasing AUW during the flight, 
the fuel flow is actually decreasing and V / F is increasing. This can be taken into account 
by using Equation 4.4 for the Specific Range, 

R= RH {Wi pdW 
Jw, W 

(5.5) 

with P denoting the Range Parameter. One special solution is found for the case of 
constant lift coefficient and Mach number-hence constant P, 

(5.6) 

This equation is a generalization of Equations 5.1 and 5.2, sin ce it applies to propeller as 
weil as jet propulsion. 

Due to practical operational considerations it is usually impossible to control the 
flight so that P is constant. Several alternative techniques have therefore been proposed, 
resulting in somewhat short er ranges than Equation 5.6. Although these derivations are 
covered in many textbooks-see also [2]-for the case of zero compressibility drag, the 
significant effect of compressibility will be demonstrated as weil. 

5.2 Range at Subcritical Speeds 

This low speed case is obviously most important for propeller aircraft, since jet aircraft 
have their best performance in the drag rise. But even jet aircraft may be forced to fly at 
reduced speed and/or altitude, for example when ATC requires this or af ter engine failure 
[15]. Especially in the latter case good off-design performance is important in order to 
reduce the required reserve fuel penalty. 
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In the following derivations certain combinations of terms are of ten used and will be 
designated by the following notations , 

(~WFjWi = 1- WfjWi 

y ~f CL)CL,md 

(5.7) 

(5.8) 

For subsonic speeds below the drag rise the drag coefficient is usuallya unique function 
of the lift coefficient , hen ce CL,md is a single number. 

Cruise/climb (cic): flying with constant CL and M results in a constant CD-hence 
constant liftjdrag ratio-and constant overall efficiency and corrected TSFC. Thus Pis 
constant and equal to its initial value, whence 

l WidW 
Rele = RHPi W = RHPi 10g(1 - ()-1 

W, 
(5.9) 

This flight profile requires the cruise altitude to be steadily increased as fuel is consumed 
in such a way that W / ó and T / ó remain constant. The relative ambient pressure must 
therefore decrease proportional to the AUW and in the (isothermal) stratosphere the 
aircraft flies with constant engine setting. The extra thrust required to increase altitude 
can be taken into account readily, but for a fair comparison with alternative schedules-at 
constant altitude-it is preferred to avoid this, assuming that af ter the cruising flight the 
aircraft can glide back to the initial altitude, thus regaining the small range loss. As 
mentioned before the cruise/climb technique will not be acceptable in many situations 
because of the requirements of ATC. 

Horizontal cruise, constant lift coefficient (h,l): this requires the speed of the 
aircraft to be steadily reduced as fuel is consumed, in such a way that V is proportional 
to VW. Again L j D is constant and for jet aircraft the Range Parameter varies only due 
to the decrease in Mach number, and hence the overall efficiency. The engines have to be 
throttled back so that T varies proportional to W in order to keep T jW constant. If we 
assume that for that for relatively small speed variations the log-derivative TJM remains 
constant, the following result is found [28]: 

Rh,l = 2RHPi {1 - (1- ()~M/2} /TJM (5 .10) 

This equation covers idealized jet propulsion with TJM = 1, propeller powered aircraft 
with TJM = 0, as well as turbofans with intermediate values of TJM; see Section 4.3. For jet 
propulsion Equation 5.10 complies with the classical "square root range equation" which 
can be written as 

R = 2RHPi{1 - .JI=(} (5.ll ) 

For TJM .!. 0 the numerical values become equal to Equation 5.91 . 

This flight procedure has several major disadvantages: 

lThis can be proven by means of de I'Höpital's rule. 
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• For jet propulsion there is a considerable loss in range relative to the cruise/climb 
procedure due to the deterioration of total efficiency with reducing speed. 

• The flight time is increased. 

• Steady decrease in speed and continuous variation of the engine setting during the 
cruise are unlikely to be acceptable to airlines as a normal operational procedure. 

Horizontal cruise, constant Mach number (h,M): this is a practical procedure 
from the operational point of view, because for given altitude a constant Mach number 
results in constant air speed. During the flight the drag is decreasing due to the weight 
reduction, and the engines have to be throttled back. This is easily accomplished with 
modern flight control systems. Integration of the SR results in the following equation 
[19] for a parabolic drag polar, 

Rh,M = 2RHTJi(L/ D)md{ arctan y - arctan y(1 - ()} (5.12) 

The difference between the two angles in this equation can be evolved by means of gonio­
metric equations into a single angle. Af ter introduction of the Range Parameter for the 
initial cruise condition one finds: 

R = RHPi (y-1 + y) arctan {y-1 + ;(1 _ ()} (5.13) 

Since for optimum cruising usually CL,; < CL,md, hen ce y < 1, the angle defined by the 
arctan is small, and the arctan can be set equal to its argument. This yields a very good 
approximation of Equation 5.13, 

(5.14) 

For y ::::::; 1 the range is only slightly shorter than for the cruise/climb, but the penalty 
due to the altitude constraint increases when CL,i < CL,md' If the available engine 
thrust limits the initial cruise altitude appreciably, it is the usual practice to execute 
intermediate step climbs to increased flight levels, the co-called "stepped cruisejclimb, " 
in order to approximate the continuous cruise/climb as closelyas possible. 

Horizontal cruise, constant engine setting (h,es): the decreasing A UW results in 
an increasing flight speed during the cruise. Formally, the range can be written as follows: 

Rh,es = RHPi J1 (TJ/TJi)d(W/Wi ) 
1-( 

(5.15) 

Due to the increasing speed the overall efficiency increases as weIl, but an analytical solu­
tion is rather complicated. For the special case of constant TSFC a graphical procedure 
has been proposed by Peckham [19]. No attempt has been made here to derive a general 
solution, since the following considerations would make such a solution virtually useless. 
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• ATC requirements and practical flight procedures disfavour the variation in flight 
speed . 

• The present section deals with subcritical speeds, but it is very likely that during 
the flight the aircraft will enter the drag rise. 

Initial conditions: Equations 5.9 and 5.10 show that the maximum range is obtained 
for initial flight altitude and Mach number such that the initial SR is maximal. For the 
horizontal cruise with constant Mach number, however, Equation 5.13 contains not only 
Pi but the ratio y = CL,dCL,md as weIl. In other words, the mean value of the SR should 
be maximized, not the initial value. 

Differentiation of Equation 5.13, assuming a specified Mach number, yields an optimum 
altitude defined by 

1 
Y = .11- ç ( 5.16) 

For a specified a/titude the optimum Mach number is determined by 

y = (2 + 7]M )(1 - () { 
2 

}

1/2 
-7]M 

( 5.17) 

These two conditions are incompatible for jet propulsion (7]M > 0), the same finding of 
Section 3.1. The aircraft will thus tend to improve its performance by flying faster and 
higher, until an engine thrust limit is met, which forms the ultimate constraint. The best 
range performance will than be obtained for an initiallift coefficient determined by 

1 
Y = -..,;r;=:( l=+=7]=M:;=;:) (=1 _=(~) (5.18) 

Contrary to what is usually suggested in the literature this equation shows that for long 
range flight the optimum initial lift coefficient can be quite close to the minimum drag 
condition. For example, a fuel fraction of 30% for a turbofan powered airplane, with 
'f/M = 0.60, yields an optimum y = 0.945. The optimum flight speed is than only a few 
percents above the Minimum Drag Speed. 

5.3 Range at High Speeds 

Figure 5.1 shows an enlarged sector of Figure 4.3 near the unconstrained maximum of the 
Range Parameter. The flight condition for maximum SR is Point A, corresponding to 
Point A in Figure 4.6. The absolute maximum range will be obtained in a cruise/climb 
with constant P for every AUW, resulting in 

(5.19) 
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Figure 5.1: Flight schedules for high speed cruising 

Although in the present example the available thrust allows the aircraft to fly continu­
ously at this optimum, this procedure is usually not selected in operational practice. For 
example, long range cruising is carried out in a flight condition where the specific range 
is 98% or 99% of its maximum value. The small fuel penalty is considered acceptable in 
view of the time saved due to the higher cruise speed. For short haul fiights a larger fuel 
penalty can be accepted and the aircraft is flown at the maximum cruise rating of the 
engines at a lower altitude. These practical flight conditions are referred to as Long Range 
Cruise (LRC) and High Speed Cruise (HSC) conditions, respectively. Gusty conditions 
may as weIl force the pilot to reduce the cruise lift coefficient below its optimum value 
by flying at a reduiced flight level in order to avoid buffeting problems and to improve 
comfort. 

The initial condition ofthe flight-denoted "i" in Figure 5.1-has been selected so that 
several flight schedules are possible with only slightly different ranges. In a stepped climb 
the idealized cruise/climb can be approximated, where the aircraft stays in Point "i". A 
horizont al cruise with constant lift coefficient, line "a", carries the aircraft almost "over 
the top" of the sn and yields a good range, as opposed to the low speed case. In spite of 
this, the speed reduction during the flight is usually objectionable for practical operation. 
A horizont al cruise with constant Mach number, line "b" , is another schedule "over the 
top", which may even be superior to the cruise/ climb staying in Point "i". Cruising 
with constant engine setting, line "c", is the only schedule which brings the aircraft to 
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significantly lower Range Factors because it penetrates the drag rise deeply. 
Similar to flying at subcritical speeds the constant altitude and Mach number cruise 

appears to be preferable. Different from the low speed case, the latter flight schedule 
does not necessarily have a significant unfavourable effect on the range. Equation 5.13 
will therefore be selected2 for further use to calculate the fuel load. Again the question 
is: at what altitude and Mach number should the cruising flight be started? Although 
for given Mach number Pi is maximum for CDL = 1, hence y = 1, the reduction in lift 
coefficient during the flight brings the optimum theoretically to a higher value. However, 
the high "optimal initial altitude" may not be achievable in practice due to a thrust limit, 
a pressure cabin limit or a required buffet margin. For practical performance analysis it 
is appropriate to select the intersection of the 98% or 99% maximum VI F condition and 
the cruise thrust limit as the initial flight condition. 

2This equation was derived for parabolic drag polars. Since during the fiight the Mach number is 
constant, the drag polar may be different from the low speed case, but it usually remains a parabola. 
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Chapter 6 

Prediction of the Fuel Load 

A typical mission profile for an international flight is shown on Figure 6.1. Total fuel is 
subdivided into 

• block Juel required to fly the complete mission, including fuel to taxi out before 
take-off and taxi in af ter landing, and 

• reserve Juel, in accordance with the pertinent rules for the operation under consid­
eration. 

For the determination of the Take Off Weight (TOW) taxi fuel is not included since 
the TOW is defined at the runway threshold, before starting the take off. Taxi fuel af ter 
landing is usually taken from the reserve fuel , except for multi mission operation. Mission 
Juel includes fuel required for 

• take off, acceleration and climb to cruise altitude, 

• cruising flight (with or without steps), 

• descent, approach and landing, 

• manoeuvering. 

The AUW of a transport aircraft is subdivided into Operating Empty Weight (OEW), 
Payload Weight and Fuel Weight. The payload plus fuelload is referred to as the Use­
ful Load (UL). For a given aircraft, the OEW is considered to be independent of the 
range. The payload is limited (see Figure 6.2) by the Volumetrie Payload-determined 
by the number of seats and volume of the cargo holds-or by the Maximum Zero Fuel 
Weight (MZFW), a structurallimit. In the early design stage maximum payload is de­
termined directly by the design specifications. For short ranges the required mission fuel 
is determined by the Landing Weight (LW), which in turn depends on the payload. 

Figure 6.2 illustrates that the mission fuel versus range is located within an envelope, 
initially determined by the case of zero payload and by the MZFW, assuming that the 
latter forms the critical payload limit. The AUW increases with range until it reaches 
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Figure 6.1: A typical flight mission 
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its limit, assumed here as the MTOW. The maximum range with Maximum Payload is 
referred to as the Nominalor Harmonic Range, Point A in Figure 6.2. For increasing 
ranges the fuel required is determined by the MTOW, which is independent of the range. 
The highest payload is than obtained by subtracting the Fuel Weight plus the OEW from 
the MTOW. 

A further increase in range and fuel is limited by the fuel tank capacity corresponding 
to the maximum useful range: Point B. The maximum range, Point C, is obtained by 
decreasing the MTOW through progressive payload reduction, since the fuel fraction can 
be increased only by reducing the initial weight . In the absence of a fuel tank capacity 
limit the ultimate range1, Point D, would be reached, where the total fuelload is equal 
to the MTOW minus the OEW. 

The payload versus range and fuel versus range diagrams dep end on the cruise tech­
nique. In particular there is a considerable difference between Long Range Cruise (LRC) 
and High Speed Cruise (HSC) techniques; see also Section 5.3. Furthermore there are 
effects of atmospheric conditions, assumptions with respect to wind, climb and descent 
flight profiles, reserve fuel policy and various payload configurations of the aircraft, which 
make it difficult to compare otherwise similar aircraft on their payload versus range dia­
grams. Nevertheless, it will be shown in the Appendix that these diagrams can provide 
useful information. 

6.1 Mission Fuel 

Accurate calculation of the contributions to the fuel load required for various flight seg­
ments can only be done when sufficiently detailed data are available in the form of drag 
polars, engine thrust and fuel flow diagrams, design weights, etc. However, in the con­
ceptual design stage the AUW is to be estimated from elementary information such as 
the maximum payload, the range, some preliminary engine data and basic aircraft dimen­
sions. In that case it will of ten be acceptable to estimate the fuel weight fraction WF/Wto 

on the basis of primarily the cruise fuel requirements. Additional allowances can be given 
for other flight segments, in particular climb and descent. A major factor to be used as 
input for such a method will be the range factor P = TlL/ D at the initial cruise altitude. 

A practical procedure to calculate the mission fuel is to determine the amount of 
fuel required for a hypothetical cruising fiight over the complete specified (still air) mission 
range, starting the cruising flight with TOW. An extra amount offuel ~WF is than added 
to allow for excess fuel consumed during take off, climb to cruise altitude and acceleration 
to cruise speed, referred to as "lost fuel" [2]. 

The analysis of range performance has resulted in expressions for the range according 
to several flight schedules. Recommended expressions are 

lSometimes referred to as the "Ferry Range", flown for special purposes with extra fuel tanks installed 
in the fuselage. 
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• Equation 5.14: subcritical speeds, single parabolic drag polar, for a fiight schedule 
with constant altitude and constant Mach number. 

• Equation 5.19: the maximum achievable range for a high speed cruise/climb sched­
ule, a significant result for theoretical work. 

The first of these equations is also applicable to high speed cruising. A slightly more re­
fined version is proposed to cover all practical cases by using a "cruise control factor kR"· 

This factor has been developed to offer the possibility to compare different cruise proce­
dures, using the same basic equation for the cruise Ju el load, 

(6.1 ) 

where Pi denotes the Range Factor TJLI D at the initial cruise condition, and the cruise 
control factor is 

RIRH 
kR = 1 + 6P

i 
for a cruise/climb 

RIRH 2y2 • 
kR = (1 - -6P )---2 for honzontal cruise, constant Mach number 

i l+y 

For a step/climb kR will have a value in between these two; a simple assumption kR = 1 
will be adequate. 

The following advice for the initial conditions is based up on the previous analysis. 

• For subcritical cruise speeds use Equation 5.18 to find the optimum initiallift co­
efficient for a horizontal cruise with a thrust constraint. The initial Mach number 
is than obtained from the equilibrium condition Thrust=Drag, Equation 4.21. For 
reasons of speed stability it should be above the Minimum Drag Mach number. 

• For high speeds the condition for the unconstrained maximum Range Factor should 
be determined first, as weIl as the contour of 99% or 98% of this value. The inter­
section of this curve with the thrust limit is a good initial cruise condition; see also 
Figure 5.1. 

For a more superficial approximation one may simply use kR = 1, and the Range Param­
eter for LRC is assumed equal to 98% of its maximum value. 

The lost Ju el may be obtained from an energy balance [28], 

Wto 2 
6,.WF TJcl RH = Wtohcr + 2;v.:r = Wtohe,cr (6.2) 

where TJcl denotes the mean value of the overall efficiency during take-off and climb to 
cruise altitude. Although TJcl is dependent on the speed schedule selected for the climb 
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and on the type of propulsion, it may be assumed equal to a certain fraction of the value 
during cruising fiight. In terms of the energy height at the top of the climb, 

h h 
v;,; 

ecr= cr+-
2 ' 9 

(6.3) 

one finds [28] 

~WF he cr 
-- ~ (1.1 + 0.5'TlM)-R' 
Wto 'Tlcr H 

(6.4) 

The additional Iud to account for manoeuvering [24] amounts to 

~WF -w: ~ 0.0025/'Tlcr 
to 

(6.5) 

Adding these losses to the cruise fuel results in the mission fuel for the mission range 
Rm, 

Rm/ RH + (1.1 + 0.5'TlM )he, cr / RH + 0.0025 
Pi + 0.5kRRm/ RH 'Tlcr 

(6.6) 

In accordance with procedures sometimes adopted in airline evaluations of proposed air­
craft the fuel consumed during descent, approach and landing is assumed to be equal to 
the fuel used during a cruising fiight over the same distance. It is thus assumed that a 
hypothetical cruising fiight extension up to the field of destination is made without any 
further allowances for the actual fuel used, generally a conservative approach. 

A further simplification can be made by writing Equation 6.6 as follows: 

WF,m Req/RH 
W to Pi 

(6.7) 

The equivalent range Req is obtained from Equation 6.6 

Rm 
Req = 1 + 0.5k

R
(Rm/ RH )/P

i 
+ {(1.1 + 0.5'TlM )he,cr + 0.0025RH }(L/ D)i (6 .8) 

The second term, accounting for the "lost fuel," amounts to approximately 5% for very 
long range fiights (~ 12000 km) up to 25% of the first term for relatively short ranges 
(~ 1200 km). For eveny short er ranges this term will become dominant, but due to its 
low accuracy a more accurate (numerical) procedure will than be required. 

6.2 Reserve and Total Fuel 

Reserve fuel will usually include fuel required for 
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shoot manoeuvre, 



• a holding flight of specified duration at a specified altitude, 

• contingency fuel, a certain percentage of the block fuel. 

• an extended duration of the flight. 

A reserve policy will combine several of these contributions, in accordance with govern­
ment al or company rules and dependent on the type of operation. There are important 
differences in reserve fuel policy between domestic and international fiights on the one 
hand, and between different nations and operators on the ot her hand. For example, the 
Association of European Airlines (AEA) specifies 

• a 200 nm (370 km) diversion flight for short and medium range aircraft, or a 250 nm 
(463 km) divers ion for long range aircraft, 

• 30 minutes holding at 1500 ft (457 m) altitude, 

• 5% of the mission fuel for contingency reserve. 

For flights in the USA typical reserves are less , for example 130 nm (241 km) diversion 
and 30 minutes holding at 1500 ft (457 m) altitude. For business aircraft the reserves 
are in total frequently specified to be equal to a 3/4 hour extension of the cruising flight. 
Long range international flights mayalso require an extension of the cruise, for example 
one hour at LRC flying. 

Reserve fuel estimation for preliminary design should be based on a method which 
allows the user to insert the actual reserve policy for the case under consideration. This 
results in the selection of several of the following allowances in accordance with the design 
specification: 

1. A diversion distance equal to D.Rdiv flown at the landing weight, expressed as an 
increase of the mission range, 

D.R = (r D.R)div ~;nd 
YVto 

(6.9) 

where the factor rdiv accounts for the fuel penalty due to the overshoot, and the 
deterioration in the sn due to flying at reduced speed and altitude. 

2. An allowance for a holding period of D.thold flown at the landing weight, in terms of 
a mission range increment , 

D.R = (r V D.thold ~;nd 
YVto 

(6.10) 

where the factor rhold accounts mainly for the reduced powerplant efficiency due to 
the low altitude and RPM during holding. 
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3. A contingency juelfraction t..WF,etg/WF,m equal to 0.05 or 0.10. 

4. An extension time of the cruising flight t..ten resulting in an increment of the design 
range t..R = Vcrt..ter. 

The total fuel load is obtained from summation of mission fuel (Equation 6.6) and 
the various reserve fuel allowances discussed in the previous paragraph. It is appropriate 
here to introduce the equivalent all-out range Pi for the case that diversion, holding 
and contingency fuel are specified, 

{ 
t..WF,etg } {( ) ( )} l-Viand ( ) n = Req 1 + W + r V t..t hold + r t..R div -w: + V t..t cr 

~m ~ 

(6.11 ) 

The holding speed is generally about 50% of the cruising speed, while Wland/Wto = 
1-WF,m/Wto. The penalty factors rhold and rdiv may require a rather complex calculation 
procedure, but the following rule of the thumb is proposed as an alternative: 

rhold = rdiv ::::: 1.10 + 0.57]M (6.12) 

If the reserves are specified as a continued duration of the cruising flight , the equivalent 
all-out range is simply 

n = Req {I + t..ter } 
ter 

Finally the total fuel fraction is obtained from 

WF = n/RH = R/RH 
Wto Pi (TJL/D)i 

(6.13) 

(6.14) 

The advantage of these analytical equations is that they provide a closed-form, non­
iterative, and therefore computationally very efficient method for calculating the total 
fuelload fraction. 
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------------------------ -------------------

Chapter 7 

Summary of Results 

In spite of the large amount of literature on optimum range performance there is still no 
undisputed generalized approach. The present report forms a basis for such a solution. 
Analytical criteria are presented for the unconstrained optimum of the Specific Range, 
which-in the case of tubofan powered aircraft-occurs at high subsonic speeds. For 
subcritical speeds only constrained optima exist. All criteria are given in relation to the 
powerplant overall efficiency and its derivative with respect to the Mach number and 
engine rating. They apply to any presently existing gas turbine based propulsion system 
for subsonic aircraft. Most criteria found in the literature are special cases of the general 
theory presented in the present report. 

Logarithmic derivates have proved to be very useful for the present analysis to derive 
optimum cruise conditions; they are defined as follows: 

• CDL = Blog CD/Blog CL 

• CDM = 8logCD/BlogM 

• TiM = Blog Ti/Blog M 

The present approach obviates the classical assumptions made in many previous publica­
tions on cruise performance: compressibility effects are absent, the drag polar is parabolic, 
the overall powerplant efficiency or TSFC is constant. 

The range parameter is a non-dimencional generalized cruise performance index, 

P = TiL/D 

The Specific Range SR appears to be proportional to this parameter, according to Equa­
tion 4.4, 

v = RH p 
F W 
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The combined aerodynamic/propulsive quality of aircraft with widely different AUW 
can be compared on the basis of this Range Parameter. For a given aircraft/engine 
combination P is a unique function of the lift coefficient and the Mach number only, 
and it appears advantageous to represent it in a CL versus M diagram; see for example 
Figure 4.3. 

For subcritical speeds where a single drag polar is used-e.g. for propeller aircraft­
an unconstrained optimum is possible only for TJM = 0, hen ce constant overall efficiency or 
an efficiency which reaches a maximum value. In the lat ter case both the lift/drag ratio 
and the overall efficiency can have a maximum value at the same altitude and speed, 
provided the altitude is chosen appropriately, according to Equation 4.13. For turbofan 
engines TJM > 0, and there will only be a constrained optimum, 

• attitude constraint: CVL = 1- TJM/2 or, in the case of a parabolic drag polar: 

• thrust constraint: CVL = 2/(2 + TfM) or, in the case of a parabolic drag polar: 

C - C 1 
L- L,md)l+TfM 

The latter is the most significant of the two constraints. For TJM = 1 these results are in 
accordance with classical criteria for constant TSFC. 

Unconstrained optima for high speeds: the drag coefficient, the lift/drag ratio and 
the range parameter are essentially a function of the lift coefficient and the Mach number. 
Optimum conditions have to be defined in terms of both CL and M, as opposed to the 
case of a single drag polar. Conditions for the unconstrained optimum are 

• CVM = TJM -+ aCv/aM = TJMCv/M 

defining a flight condition in the drag rise, slightly below the drag divergence Mach num­
ber. 
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Reference is made to Figure 7.1, depicting the following unconstrained optima: 

• propeller aircraft with constant overall efficiency: TJM = ° defining (L/ D)max at 
Point Al , 

• idealized jet propulsion with constant TSFC: TfM = 1 resulting in aCv/aM = Cv / M, 
hence (M L/ D)max, Point A2• This curve in Figure 7.1 can also be found directly 
from the drag polars; see Figure 2.3. 
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Figure 7.1: Overview of the partial and constrained optima 

• turbofan propulsion: 0 < TJM < I, the maximum for the SR at Point A3. Typical 
values for TJM are between 0.4 and 0.8; see Figure 4.4. 

Although Point A3 is theoretically the condition for maximum Specific Range it is usual 
to fly long distances at a somewhat higher Mach number, thereby accepting one or two 
percent increase in fuel consumption: the Long Range Cruise condition, LRC. 

Constrained optima for high speed flight: operational considerations~ . g. Air 
Traffic Control or a cabin pressure limit-may force the aircraft to fly at a specified 
altitude, imposing a constraint on GL M2. In combination with the general requirements 
for maximizing P defined by Equation 4.11 this constraint is: GDL = 1 + (GDM - TJM)/2. 
In Figure 7.1 this equation must be intersected with the specified value of GL M 2 , resulting 
in the optimum Point B. 

A similar constraint due to the engine thrust limit on TIJ, or on GDM 2, results in 
the following condition: GDL = (2 + GDM )/(2 + TJM) , which defines the optimum Point G 
aft er intersection with the specified value of GD M2 . 

Ot her factors affecting the optimum may be associated with: 

• the occurrance of multiple optima, see Section 4.2, 
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• refinements in the analysis associated with realistic engine rating limits and instal­
lation effects, see Section 4.4, 

• operational and/or economie considerations which may result in off-optimum fiight 
conditions. 

For example, Point D (M = 0.8, CL = 0.45) in Figure 7.1 could be a suitable initial value 
for long range cruising, since excursions to higher or lower lift coefficients will not degrade 
the SR by more than a few percent of its maximum value. If for operational reasons the 
cruise Mach number has to be reduced, the SR is in fact slightly improved. Final selection 
of the High Speed Cruise condition (HSC) will be based on economie considerations which 
are outside the scope of this report. 

Range in cruising flight is obtained from integration of the Specific Range. Several 
flight schedules have been used for deriving the integrated range in Section 5.2. The 
cruise/climb schedule is of ten used in theoretical work but the constant altitude and 
Mach number flight is more practical from the operational point of view. An accurate 
approximation for the range is 

(7.1 ) 

where ( denotes the fuel fraction WF/Wi and kR is defined by Equation 6.1 for several 
flight schedules. Usually kR is close to one, but lower values apply to constrained flight 
conditions. 

Calculation of the Fuel Load: using the approach presented in Sections 6.1 and 6.2 
the mission and reserve fuel loads can be computed by means of closed form analytical 
expressions, avoiding the usual labourious iterative procedure. The essential input re­
quired is the initial cruise Range Parameter Pi, which can be selected on the basis of the 
described optimization process. If detailed data of the design are lacking, the Appendix 
proposes a method for obtaining this factor from existing aircraft data, using an available 
payload versus range diagram. 
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Appendix A 

Statistical Derivation of the Range 
Parameter 

Section 4.2 was devoted to the analysis of flight conditions resulting in the maximum value 
of the Range Parameter. Unconstrained as weU as constrained maxima have been treated 
and the availability of drag polars and some basic engine data wi11 suffice to calculate 
the (initial) Range Parameter required for the mission fuel computation. In some cases, 
however, it may be useful to estimate Pi from statistical data for the Range Parameter 
of existing aircraft derived from published payload versus range diagrams. The most 
significant part of this diagram, see Figure A.l, is sector AB, corresponding to take off 
with MTOW. At point A, referred to as the Harmonic or Nominal Range Rh, the slope of 
this line is equal to minus the increase in cruise fuel required for a small range increment, 
which is found from differentiation of Equation 5.14, for y = 1, 

d(R IR ) = P d(WFIWt o ) 
h H '(I-O.5WFIWtoF (A.I) 

Substitution of the fuel fraction according to Equation 6.l with kR = 1 yields aquadratic 
equation in P , for which an approximate solution is 

(A.2) 

where the normalized slope of the payload versus range diagram has been introduced, 

~ ~f d( RI RH) ~ Wt o ~ for R = Rh 
d(WFIWto ) RH -.6.Wp 

(A.3) 

The identity .6.WF = -.6.Wp is strictly only valid when the reserve fuel is a constant 
fraction of the MTOW; since this is not exactly true a prediction error of plus or minus 
five percent may be introduced. The (negative) slope of the range versus the payload 
(.6.RI.6. Wp ) can be measured in the payload versus range diagram; see Figure A.I. Al­
though Equation A.2 has been derived for flight at constant altitude and Mach number, it 
is an equally good approximation when the cruise fuel is derived from the Bréguet range 
equation. 
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Figure A.l: Derivation of 'Pi from a payload versus range diagram 

The method derived in this paragraph has been used to obtain a mean value of the 
Range Parameter for a number of existing aircraft, for which a payload versus range 
diagram was available to the author. The result is found in Tables 1 and 21

, from which 
the following observations can be made: 

1. Large long range turbofan powered transport aircraft achieve the highest range 
factors: presently (1995) about 6.5 to 7.0 for modern, very long range transports 
for LRC conditions, and about 10% less for HSC. 

2. The Range Factor is aft"ected by the size of the aircraft: large aircraft have higher 
values than small ones. 

3. Short range aircraft are considerably less efficient in fuel usage due to their low 
range factor. This is aresult mainly of their :fl.ight taking place at lower altitudes 
and relatively short cruise sectors, contributing to a reduced mean value of the SR 
for the overall :fl.ight. 

4. In spite of the high propulsive efficiency of propellers the most fuel efficient propeller 
aircraft reach their limit at about 4.5 for LRC conditions, and 15-20% below this 
value for HSC. 

1 Due to differences in reserve fuel policy, aircraft should not be compared on the basis of only these 
derived data. 
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5. For several aircraft categories the effect of improvements in the state-of- the-art 
can be clearly seen. For example, for the Boeing 707/320 which was designed 
during the fifties, the range parameter was about 4.5 for LRC, while the more 
recent Boeing 757 and 767 achieve 5.2 and 5.7, respectively. The present day, very 
long range transport aircraft establish the practical limit of current state-of-the art: 
a range factor of about 6.5 to 7, complying with a lift/drag ratio of about 20 and 
an overall powerplant efficiency near to 35%. 
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Aircraft type MTOW Rh t>.WF/t>.R (T/L/D)i Remarks 
(lb) (nm) (lb/nm) (-) 

Airbus A 300-B2 302,030 860 25.82 4.55 HSC: 3.56 
Airbus A 310-220 291,000 1,245 21.48 5.16 
Airbus A 320-200 158,510 1,265 11 .80 5.10 A 320-100: 4.60 
Airbus A 330 467,400 3,233 23.76 6.78 GE CF-6-81 eng. 
Airbus A 340-200 566,600 5,475 25.54 6.65 
Airbus A 340-300 566,600 4,965 26.66 6.57 
Boeing 707-320 312,000 4,280 19.61 4.55 LRC 
Boeing 727-200 169,000 948 15.13 4.29 
Boeing 737-300 124,500 952 10.37 4.64 
Boeing 747-300 833,000 4,750 48.39 4.85 
Boeing 747-400 850,000 5,600 43.97 5.28 
Boeing 757 220,000 1,100 16.41 5.16 
Boeing 767-200 335,000 2,930 19.75 5.78 
Boeing 777 535,000 3,100 26.47 7.12 
Br.Aerospace 146-100 84,000 925 9.65 3.26 
Br.Aerospace 146-200 93,000 1,175 11.83 2.77 
BAC 1-11-400 88,500 980 8.84 3.78 99% max.range 
BAC 1-11-500 99,650 880 10.49 3.62 
Canadair Challenger 43,100 2,557 3.45 4.04 CF-34, LRC M=0.74 
Fokker F-28/2000 65,000 440 12.71 1.96 HSC 
Fokker 100 91,500 780 9.08 3.90 LRC 
Lockheed L-1011/100 426,000 2,500 28.92 5.05 HSC: 4.96 
Lockheed L-1011/500 496,000 3,660 30.03 5.21 
McD.Douglas DC-8/61 325,000 2,550 25.40 4.18 
McD.Douglas DC-8/63 350,000 3,400 23.32 4.68 
McD.Douglas DC-9/50 121,000 765 11.53 4.09 
McD.Douglas DC-9/80 140,000 820 14.07 3.83 
McD.Douglas DC-10/10 440,000 2,330 30.07 5.09 
McD.Douglas DC-10/30 572,000 4,167 34.98 4.83 
VFW-614 44,000 658 7.81 2.08 

Table 1: The derived Range Parameter for turbofan powered aircraft 
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Aircraft type MTOW Rh -6.WF /6.R (ryL/D)i Remarks 
(1b) (nm) (lb/nm) (-) 

ATR-42/100 32,440 776 3.00 4.22 HSC: 3.58 
ATR-42/200 34,280 910 2.97 4.46 HSC: 3.82 
ATR-72 44,070 0 4.47 4.15 LRC 
B.Aerosp. ATP 49,500 560 4.95 3.97 LRC 
B.Aerosp. Jetstream 15,322 600 2.11 2.93 HSC: 2.60 
D.H.Canada Dash-7 44,000 678 5.79 2.90 
D.H.Canada Dash-8 34,500 550 3.33 4.12 HSC: 3.74 
Dornier Do-228/200 12,500 580 2.33 2.00 
Embraer Brasilia 24,250 260 2.98 3.32 
Fokker F-27-Mk500 45,900 600 5.64 3.16 LRC 
Fokker 50 Basic 41,865 100 3.98 4.39 HSC: 3.47 
Fokker 50 incr.MTOW 45,900 900 4.26 4.14 LRC 
Hawker Siddeley 748 46,500 755 4.95 3.42 
Piaggio P-180 10,150 800 1.03 3.93 320 kts 
SAAB-Fairchild 340 27,275 300 3.35 3.30 LRC @ 25000 ft 
Fairchild Metro III 16,000 760 1.79 3.43 

Table 2: The derived Range Parameter for turboprop aircraft 
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A unified analytical treatment of the cruise performance of subsonic 
transport aircraft is derived, valid for arbitrary gas turbine 
powerplant installations: turboprop, turbojet and turbofan powered 
aircraft. Different from the classical treatment the present report 
takes into account compressibility effects on the aerodynamic 
characteristics. Analytical criteria are derived for optimum cruise lift 
coefficient and Mach number, without and with constraints on the 
altitude and/or the engine rating. A simple alternative to the Bréquet 
range equation is presented which applies to aircraft cruising at 
constant altitude and a high Mach number. A practical non-iterative 
procedure for calculating the mission and reserve fuel loads in the 
conceptual design stage is proposed as a conclusion of this report. 
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