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ABSTRACT

Context. To investigate the effectiveness of nonlinear calculation of the near and far angle for driver modelling in curve negotiation,
simulated data is analyzed based of Mars (7) driver model and the nonlinear realization of Mars model given in Scholtens (8).
Aims. It is shown that due to the dynamic calculation of the near and far angle, the simulated driver is less sensitive to change of
the Kp or Kc parameter value during a drive. Static calculation of the near and far angle showed a wider range of drivers that can be
identified before the start of the drive, but is less adaptable to change during the drive.
Methods. The range for the two parameters Kc and Kp was determined by setting two boundaries, whilst keeping the other parameters
constant: the lateral position is bound to an absolute value of 1.8 meter and the steering wheel reversal rate to a maximum of 6. A ten
by ten resolution range is subsequently established to form the basis for the simulations. The simulated results from the nonlinear and
linear model are assessed on three criteria: realism, identifiability and descriptiveness. The three criteria show the realistic fit of the
simulated data in comparison to real driver data (9).
Results. Static calculation of the near and far angle can capture a broader set of human drivers front end if the parameter set of
the driver is know front end. A dynamic calculation is more adaptable to an unknown driver set and is therefor in a smaller need of
knowing the driver before the drive starts.

Key words. driver modelling – human-machine interaction – curve cutting

1. Introduction

The interaction between humans and machines has seen a steady
increase of research since the late 1960’s and more profound in
the past decade (1). This interaction can lend a crucial helping
hand in task execution, navigation and inter robot and human
communication. Car driving is a field in which a dynamic
interaction between human and machine can improve overall
safety of both the human driver and its direct surroundings.
Since the start of driver modeling, different angles of approach
have been investigated to model the human behavior. There exist
driver models and haptic interfaces based on hybrid metrics
for adjustment of the haptic feedback (2), on direct measurable
input (3)(4)(5) and on distraction parameters (6) which do not
always have the steering wheel angle or position as a model
output. Models which take a more microscopic approach would
concern themselves with specific parts of a driver’s journey, as
car following or curve driving.

Automated driving is becoming an increasing part of daily
life. Cars with parking control and force feedback on the
steering wheel on the highway are Incorporated in an increasing
amount of cars. Within this field of research, we aim to develop
automatic systems that are able to help the driver as good as
possible in its personal driving style. The personal driving style
in curve driving should not be compromised by the automation
and enable safe driving in every personal way. How to best
be able to include cues from the automation, has not been
concluded in earlier research. One of the open questions is with
what parameters the human can be described in the automation,

and what values these parameters should be able to take. In this
research a deep-dive will be made into two of these parameters,
to see their effect on the driving style.

The goal of this study is to compare two realization of the
Mars(7) driver model, based on the difference between the
linear and nonlinear calculation of the near (θnear) and far
angle (θ f ar). An adaptation of the Mars(7) driver model will
be assessed as the linear model, and an adaptation of the
realization Scholtens(8) made on the Mars(7) driver model will
be assessed as the non-linear model. The comparison will be
drawn by researching a parameter span of the two most sensitive
parameters used in both models. A single parameter analysis,
on the steering wheel angle and lateral position, concluded that
the parameter set of [Kc Kp] had the highest change impact on
the model. Therefor it is a key combination to adapting a driver
model to uniquely being able to describe a human driver. Kc is
the compensation gain acting upon the far angle (θnear), and Kp
the anticipation gain acting upon the near angle (θ f ar).

2. Model elaboration

2.1. Model Background

In 2011 a driver model was proposed by Mars(7) et all (figure
1), which was based on the driver using visual cues and the car’s
speed, location and heading to determine the curvature of the
road ahead. The identification, the human driver executes to de-
termine the curvature of the road ahead, has been shown to be
based on near and far regions in the driver’s visual field. Mars(7)
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Fig. 1. Block diagram of the Mars Driver Model(7)

characterized these regions by identifying a near and a far point
(figure 2). Where the near point (near angle θnear) is used to stay

Fig. 2. Near and far point/angle

on the centre of the road, by looking a ls distance ahead of the
car. The far point (far angle θ f ar), also used as the tangent point,
is used to determine the future car trajectory based on the mea-
sured curvature of the road.
Mars hypothesized that human steering was a combined task of
two components, a compensatory and an anticipatory part. The
compensatory component uses the near angle θnear to tune the
driver to steer closer to the center of the road, by use of compen-
sation equalization:

Gc =
Kc

v
TLs + 1
Tls + 1

(1)

The anticipatory part uses the far angle θ f ar and tunes the angle
by use of the gain Kp. The anticipatory angle is added to the com-
pensatory angle, before the combined result is slowed down by
the time delay (τp) that is built in to simulate human behaviour.
The proposed driver by Mars(7) derives a part of its methodol-
ogy from McRuer(10). In 1977 McRuer proposed a driver model
which used a feedback loop for the compensatory and the antic-
ipatory part. The steering wheel angle would be described by:

δsw = YyYψye − Yψψ + Yψn (2)

Where ye is the lateral position error and ψ the vehicle heading.
Yy and Yψ are input dependent describing functions which
McRuer to form a feedback loop for the compensatory part of
the model and a feed-forward loop for the anticipatory part of
the model.

Scholtens(8) proposed a driver model in 2017, based on
an the driver model proposed by van Paassen(12). Scholtens
hypothesized that a separated control structure would reduce
conflicts between the driver model and the human compared
to a coupled shared controller (figure 3). Scholtens concluded
that "providing the driver with guidance based on a combination

Fig. 3. Driver-model by Saleh(11), with a realization of Scholtens(8)

of support and feedback torques is a promising approach to
increase the acceptance" of the human to the machine. Future
research should however continue on the focus of tuning the
control parameters and further development of the driver model
to ensure a better fit with individual human preferences.

The addition of nonlinear calculation of input cues to a
driver model, results in a real time involvement in the calcula-
tion of the next car position to be reached. In the driver model
proposed by Scholtens (8), the dynamic calculation is included
in the calculation of the near and far angle. Due to this nonlinear
cue calculation, the model is more adaptable to a change in
human driver parameter value change.
The driver model has 7 degrees of freedom (figure 4) The
end-steering-distance (ESD), begin-steering-distance (BSD)
and t f ar influence the moment a driver starts anticipating a curve
and when it stops anticipating on the curve it is in. The begin
steering distance determines what distance the car has to be
form the beginning of the curve to switch the target form the
center of the road to the inside of the curve. t f ar then determines
the distance ahead of the car where the target point is placed.
The end steering distance determines when the target point
switches back to the centre of the road.

Fig. 4. End steering distance and begin steering distance with respect to
the position of the car with respect to the curve

2.2. Neuromuscular Loop

Originally, in both the linear and the nonlinear model, a feed-
back loop (5) was included that proposes a way to include neu-
romuscular signals by applying two different gains of the steer-
ing wheel angle. First off, the neuromuscular system executes a
steering torque on the steering wheel, which can be calculated
with a gain (Kt) to the desired angle δ̂sw. Secondly, a gain (Kr)
was added effecting the vehicle speed. This neuromuscular loop
has been excluded from the analysis because the vehicle dynam-
ics used in this research take angles as input instead of torque.
The neuromuscular loop takes place in between the time delay
and the vehicle dynamics block.
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Fig. 5. Neuromuscular System loop

2.3. Vehicle Dynamics

The vehicle dynamics used in both the linear and nonlinear
model are:

x(t + Ts) = AX(t) + Bu(t) (3)

y(t) = Cx(t) + Du(t) + e(t) (4)

A =

[
0.8665 −0.0385
0.1313 0.9824

]
B =

[−14.2392
23.6425

]
(5)

C =

[ −0.2920 −0.1938
−0.000577 0.0283

]
D =

[
0
0

]
(6)

Following the literature study, two realizations of the Mars
driver model have been used to execute the comparison: the
linear driver model proposed by F. Mars (7) and the nonlinear
realization of the Mars driver model, assessed by W. Scholtens
(8). Both these models have been adapted to suit a proper analy-
sis between the two. These adaptations are further discussed in
this section.

2.4. Linear model

The linear model is depicted in figure 6. In the linear model(7),

Fig. 6. Control diagram linear model (7)

Fig. 7. Car trajectory calculation Mars(7)

the visual far angle θ f ar is calculated as(figure 7):

R = max(k) (7)

D f ar =
√
δ2 + 2 ∗ δ ∗ R (8)

θ f ar = D f ar ∗ k (9)

D f ar, the far distance is assumed constant dependent on the road
curvature. When the road is straight, the far distance has a large
value but this changes when the curve is approached. Mars origi-
nally hypothesized that this value for D f ar lied between 10 to 20
metres. Assuming a constant curvature, the gaze velocity to the
far angle should be constant:

dθ f ar

dt
=

dD f ar

dt
1
Rv

=
Vr

Rv
(10)

Where Vr is the relative velocity to the tangent point and Rv the
road radius. With a constant far distance, Vr would therefor be
zero. This supposes a constant far angle when the driver is driv-
ing a constant safe trajectory. In that same idea, a driver would
therefor be under-steering if the gaze velocity would be positive
and over-steering if dθ f ar

dt < 0.
In this calculation, δ is half of the road width (in this case 1.8
meter) and k the curvature. The near angle θnear is calculated as:

θnear = ψL +
yL

ls
(11)

2.5. Nonlinear model

The nonlinear model is depicted in figure 8. The difference be-

Fig. 8. Control diagram nonlinear model (8)

tween the two models is seen in the calculation of the near and
far angle, respectively θnear and θ f ar. In the nonlinear model, the
near and far angle are calculated by use of the angles θA and θC ,
which represent the target point angles in the global reference
frame (figure 9). In the nonlinear model the far angle is calcu-
lated as:

MaxDist = t f ar ∗ V (12)

DTC =

√
(xroad − xcar)2 + (yroad − ycar)2 (13)

T Pindex = f ind(DTC > MaxDist) (14)

xtangentpoint = xroad(T Pindex) (15)

ytangentpoint = yroad(T Pindex) (16)

θA = tan−1((xtangent − Xglobal), (ytangent − Yglobal)) (17)

θ f ar = θA − ψGlobalHeading (18)

MaxDist is the maximum distance the tangent point can lie away
from the car. DTC is the distance between car and possible tan-
gent points and T Pindex the specific location in the matrix of fu-
ture car points that the tangent point is located.
The near angle, θnear is calculated accordingly,as:

θnear = θC − ψGlobalHeading (19)
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Fig. 9. Angle Calculation Nonlinear Model

In the θnear calculation, slat is the lateral position, lp the look-
ahead distance and Herror the heading error angle. In every
simulation step these two angles are calculated anew, based on
the current car position.

As can be seen in the calculation of these two angles the
two models differ in the linear versus nonlinear calculation
of the angles. The more complex nonlinear calculation of the
angles could be hypothesized to be more realistic and would
therefor result in a better fit with real human test data.

The driving behaviour in a curve can be described in the dif-
ference between curve cutting and over steering behaviour (fig-
ure ??). Human driver generally tend to show different behaviour

Fig. 10. Curve Behaviour Visualization (9)

in right opposite to left curves, which is described more in depth
in the section ‘Results’.

3. Assessment procedure

3.1. Input determination

Both models are executed with a same list of parameters, used to
describe human driving behaviour in the simulated data:

Kp Anticipation gain
Kc Compensation gain
τp Time delay
TI Lag-time constant
TL Lead-time constant
TN Neuromuscular time constant

These parameters have been individually assessed on their effect
on the simulated output of the models. In this assessment, the
sensitivity of the individual parameter was first researched and
afterwards, a combined sensitivity when paired with another

parameter. This individual parameter assessment showed that by
ranging the values for the Kc and Kp parameters simultaneously,
the clearest differentiation could be shown between a linear and
nonlinear model. The main reason behind this is the fact that Kc
as the compensation gain effects the θ f ar angle and Kp as the
anticipation gain effects the θnear angle. The other parameters
are kept to the nominal values determined by Saleh (11).

τp Time delay [sec] 0.03
TI Lag-time constant 1
TL Lead-time constant 3
TN Neuromuscular time constant 0.1

In order to make a clear assessment on the best and most real-
istic fit of a model with human driving, the simulated data has
been assessed on three different criteria, following the method
proposed by Barendswaard (9):

– Realism
The parameter span resulting in realistic driver outputs

– Identifiability
The uniqueness of the mapping between a driver type and a
parameter combination (inherent and experimental)

– Descriptiveness
The extent of the model to capture different types of driver
behaviour

On basis of the results on these three analysis criteria, conclu-
sions can be drawn on how well the model fits real driver data.
After the analysis of the real driver data fitting, the results can be
compared with the same analysis on the other model, resulting
in a conclusion of which driver model method fits human driving
behaviour best.
The in- and outputs for this assessment method are depicted in
figure 11(9). In the comparison of the two driver models, the

Fig. 11. Flow diagram of the Assessment Method (9)

main input is the driver model structure, the third input. The
other inputs are kept constant over the two analyses. The first in-
put, identifiability inputs, entails the parameter set Θ and Driver
X real driver data derived from the human experiment executed
by Scholtens(8). The road data used comes from the same hu-
man experiment by Scholtens and the same parameter span Θ is
used for the model simulation.
The parameter span Θ has been derived by setting boundary set-
tings, set as realistic. The first boundary setting is set on the lat-
eral position of the car on the road, as a maximum deviation from
the center line of it’s lane to 1.8 meter. The second boundary set-
ting is set to a maximum and minimum steering wheel reversal
rate. The steering wheel reversal rate is the amount of times, in
a set period of time, that the steering wheel changes its angle by
more than 2 degrees. Based on the averaged runs of the human
driver set (Driver X) the realistic maximum, over a road with 1
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left and 1 right curve, is 22 reversals. Since the driver models
don’t include a noise signal that can reciprocate human jitters,
a maximum SRR of 22 results in unrealistic steering wheel an-
gles, still staying within the lateral position boundaries. Due to
the absence of noise in the model, Barendswaard (9) proposed to
set the maximum SRR to 5 for 2 consecutive curves. The non-
linear model has such a low descriptiveness (figure 12) when it
is bound by an SRR maximum of 5, that the conclusions from
an analysis would be to difficult to sustain. It is not possible for
a human being to reach a SRR of 2.5 in 1 curve. Therefor the
maximum SRR for 1 curve is rounded, resulting in a maximum
SRR of 3 per curve. Concluding the SRR has been extended to a
value of 6, with a maximum SRR of 3 per curve. With this maxi-
mum bound, the descriptiveness of both the linear and nonlinear
model lie above 30%, with which a proper analysis can be run.

Fig. 12. Non linear model descriptiveness with a maximum bound to
the steering wheel reversal rate of 5

Based on these boundary settings, the parameter span was com-
puted to be:

Kp [0 - 27]
Kc [0 - 6.3]

The parameter span is set to include the area in which both the
lateral position bound and steering wheel reversal rate bound
are met (figures 13 and 14). Based on the inputs, a quantitative
output is computed which will be used to compare the two
models as a model grade.

3.2. Identifiability

The inherent identifiability evaluates the extent to which the time
series of a model can uniquely be identified by its own time
series again. In contrast to that, the experimental identifiabil-
ity evaluates the extent to which the simulated time series can
uniquely identify a real human driver time series. The identifia-
bility is measured by the Variance Accounted For (VAF). The
VAF is a percentage, showing how well two signals coincide
with each other. The higher the VAF value is, the better two set
of signals match. The VAF is calculated as followed:

VAF = (1 −
∑N

k=1 |udriver[k] − umod[k]|2
∑N

k=1 u2driver[k]
) ∗ 100% (20)

Fig. 13. Boundary Setting Linear model

Fig. 14. Boundary Setting Nonlinear model

3.3. Realism

The second criterion, the realism, evaluates the chosen parame-
ter span based on the steering wheel reversal rate. The steering
wheel reversal rate (SRR) is defined as the number of times
that when the steering wheel angle is changed, the difference is
bigger than 2 degrees.

3.4. Descriptiveness

The third criterion, the descriptiveness, evaluates the extent to
which the driver model is able to identify different types of
driver behaviour. The descriptiveness is a percentage describing
the total area the simulated data covers in a curve. The total area
is described as the area from the start of the curve to the end of
the curve with an extra second before and after the curve, with
a maximum and minimum bound set as the upper and lower
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limit, 1.8 meter and -1.8 meter respectively. For every time step
the maximum and minimal position value is used as the outer
bounds of the simulated driver area. The descriptiveness area is
calculated as the area the simulated area covers the total area.

4. Results

4.1. Descriptiveness

Figures 15 and 16 shows the descriptiveness criterium of the
non-linear and linear model respectively. The two graphs consist

Fig. 15. Descriptiveness of the linear model

Fig. 16. Descriptiveness of the non-linear model

of three subplots. The top subplot shows the curvature profile of
the 2 curves. The first bend is a right curve and the second bend
a left curve. The middle subplot shows the road profile from a
top view with the road limits on the top and the bottom in gray.
The pink area shows the area of the road that is covered by the
human drivers from the experiment. The green area shows the
area of the road that is covered by the simulated data from the
driver models. The light gray area shows the entire area that can
be described in the curve. The descriptiveness percentage is de-
scribed as the curve area covered by the simulated model area.
A significant difference is seen in the curve driving behaviour
that can be described with the two different models. The linear
model shows the ability to describe both curve-cutting as over-
turning behaviour (figure 10), Whereas the non-linear model that
even though it can describe a larger over turning behaviour area,
it can hardly describe any curve cutting behaviour.

4.2. Identifiability

The identifiability criterium is displayed in the figures 17, 18, 19
and 20. The figures show the amount of overlap in data when
comparing two sets of data with each other, from which we can
conclude how unique a set of data is.
Figures 17 and 19 show the inherent identifiability, where a spe-
cific array of simulated data (in the figure chosen with the op-
timal experimental identfiability, linear Kp = 3.5 Kc = 3 and
nonlinear Kp = 3.5 Kc = 21) is compared to the entire matrix of
simulated data with ranging Kc and Kp. A significant difference

Fig. 17. Linear Inherent Identifiability

Fig. 18. Linear Experimental Identifiability

can be seen in the VAF of the steering wheel between the two
models. The non-linear model shows to be less sensitive range
to a change in a parameter than the linear model is. This can
be described by the dynamic calculation of the near and far an-
gles in the non-linear model, making it more adaptable to sudden
change.
Figures 18 and 20 show the experimental identifiability. The
driver data of the 16 human participants of the experiment have
been averaged to compare with the matrix of simulated driver
data. The experimental analysis of the steering wheel show the

Fig. 19. Non-Linear Inherent Identifiability

Fig. 20. Non-linear Experimental Identifiability

same difference in identifiability as the inherent analysis, where
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the non-linear model is better adaptable to a change in KC or Kp
value.
The experimental identifiability of the lateral position show ex-
tremely low values when compared to the inherent identifiability
plots. This is explained by the fact that even though the steer-
ing wheel angles may match up, the lateral position data does
not when we look at left curves specifically. Where humans have
the tendency to overturn curves when steering to the right, they
tend to cut the curve when steering to the left. The experiment
was executed in a simulator in the Netherlands. In the Nether-
lands humans drive on the right side of the road, which could
explain the curve cutting behaviour in right curves. This could
hypothetically result in a better visual what is coming up in a
curve when it is a left curve as opposed to a right curve, maybe
explaining why humans tend to curve cut left curves and over
turn right curves. As a test of this hypothesis a simulation was

Fig. 21. Linear experimental identifiability, averaged over the 5 right
curves in the road profile, Kc = 3 and Kp = 3.5

Fig. 22. Non-linear experimental identifiability, averaged over the 5
right curves in the road profile, Kc = 21 and Kp = 3.5

executed where the data was filtered to only use the right curve
data. The resulting experimental VAF is shown in figures 21 and
22. In these plots a significant increase is seen in the mapping of
the experimental data. The maximal VAF values have gone up
from 0% to around 50 %. This can be explained by the constant
values for the parameters ESD, BSD and t f ar. These values ap-
parently are set to result in a better simulation of right curves as
opposed to left curves.

4.3. Realism

Figures 23 and 24 show the realism criterium of the linear and
non-linear model respectively. The plots are divided up in three
subplots. The top subplot shows the heatmap of the steering
wheel reversal rate (SRR), depicting the amount of times a steer-
ing wheel change in the first two curves was larger than 2%.
This plot can give an easy visual representation of how the steer-
ing reversal rate changes, even when it is outside of the realism
bounds as set in figures 13 and 14. The plot doesn’t look the same
as figures 13 and 14, because the boundaries in figure 23 and 24
are not set to show the outer bounds of the realistic bound. The
plot shows to what length the steering wheel reversal rate would
become unstable and big when the setting does not lie in the re-
alistic bound. The steering wheel stays relatively stable however,

Fig. 23. Linear Realism

Fig. 24. Non-linear Realism

even outside of the realistic bound, with a maximum value of 15
reversals for the maximum values of Kc and Kp.
The middle plot and the bottom plot show the steering wheel
angle and lateral position respectively. The bottom two subplots
show three different lines. The optimal ID VAF is the combina-
tion set of the Kc and Kp value which resulted in the highest VAF
for the experimental identifiability of the steering wheel angle, in
the realistic area as seen in figures 13 and 14. The average driver
line is the average driving style, averaged over the 16 participants
of the human experiment. The Driver X line, depicts the single
driver, from those original 16, who’s driving style matched the
average driver style best when looking at the lateral position on
the road.
As was also seen in the descriptiveness criterium graph, the op-
timal ID VAF, is a curve-cutting line for the linear model and an
over turning line for the non-linear model.

5. Discussion

The original expectation was that the non-linear model would be
better in describing a wider range of driver behaviour. This ex-
pectation was based on the dynamic calculation of the near and
far angle, as opposed to the static calculation in the linear model.
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The results tell a different story however. Even though the non-
linear model is shown to be less susceptible to change, it doesn’t
describe curve-cutting behaviour well. The linear model shows
to be more sensitive to parameter change but on the other hand is
able to describe both curve-cutting and over-turning behaviour.
The main cause for this lack of descriptiveness by the non-linear
model is the fact that, even though the model is a 7 degree of
freedom model, only 4 degrees of freedom are used. The end-
steering-distance (ESD), begin-steering-distance (BSD) and t f ar
are kept constant throughout the simulations. Therefor the fol-
lowing recommendations are summarized to enable future re-
search to capture a completer analysis:

– Addition of variability in the 3 extra degrees of freedom non-
linear model (ESD, BSD, tfar)

– Addition of human like noise to be able to make the steering
more realistic

– Inclusion of the Kr, Kt loop to include a hypothesized part of
the Neuromuscular System

– The descriptiveness criterium could be elaborated on by
adding a percentage for the area of experimental data cov-
ered by the simulated data. Realisticly speaking, a human
would never be able to cover the whole 100% of the depicted
descriptiveness area, which could make the descriptiveness
percentage biased. It could be more interesting to look at the
percentage of the experimental data covered by the simulated
data.

6. Conclusion

The method of comparison between the two models has been
chosen as the set example by Barendswaard(9). This comparison
can show a complete image of the capabilities of the two models,
enabling an easy comparison.
From the results we can conclude the following:

– The linear model is more sensitive to change of the value of
Kp or Kc than the non-linear model.

– The linear model shows a higher, but more importantly
wider, descriptiveness area than the non-linear model.

– The non-linear model performs well in describing over-
turning behavior, but bad in describing curve-cutting behav-
ior for the limited parameters we looked into, with fixing the
ESD, BSD and t f ar parameter values.
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Chapter 1

Introduction

The interaction between humans and machines has seen a steady increase of research since
the late 1960’s and more profound in the past decade [1]. This interaction can lend a
crucial helping hand in task execution, navigation and inter robot and human communi-
cation. Car driving is a field in which a dynamic interaction between human and machine
can improve overall safety of both the human driver and its direct surroundings.
This literature survey will serve as a basis for further research on the optimal cooperation
between human and machine interaction when it comes to car driving. The main research
question that will be answered is:
‘What individual differences occur in steering behavior during curve negotiation and what
model best describes these differences?’

Which, for the purpose of simplification, is subdivided as follows:

• What individual differences in steering behavior occur during curve negotiation
• What realistic and tested driver models exist

The review in human variability is scoped to previously tested and applicable metrics. The
metrics used in the variability review are used to scope the driver model review in chapter
3. These metrics are both conscious and unconscious behaviors executed by the human
during driving, divided in the categories ‘vehicle based parameters’ also called Newtonian
parameters and ‘gaze based parameters’.
For the purpose of the comparison between human driver models an absolute comparison
has been written which can serve as a tool to choose a model for further research (Appendix
A). Depending on the topic of the further research a different model from the comparison
could be chosen to fit best.
The most important metric throughout this paper is ‘variability’. The opportunities to
explore inter human variability and how to in-cooperate variability in a driver model can
play a crucial future role in development of human-machine cooperative car driving.

3
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Chapter 2

Experimental Evidence for
Inter-Driver Variability

Driving is, and has always been, a complex task with multiple components, in need of
different human cues for safe execution. One needs their eyes to see the road, their ears to
hear the nearby cars, and hands to translate all the different inputs into the right maneu-
vers with the car. One is also in need of knowledge of the traffic law, the route to take to
get home or how to adapt speed with animals nearby.
In order to share the control of the vehicle movement with an automated system, the hu-
man must still be as able to perceive the vehicle’s state as before, if not even better by the
feedback the system can provide. It is therefor highly important that the form of communi-
cation between the human and automation is clear and precise to both sides. A mismatch
in the communication between human and machine can cause overcompensation from both
sides to fix the mismatch, causing the vehicle’s trajectory to become uncontrollable.

Since the start of driver modeling, different angles of approach have been investigated
to model the human behavior. There exist models based on hybrid metrics for adjustment
of the haptic feedback [12], on direct measurable input [5][7][11] and on distraction pa-
rameters [19] which do not always have the steering wheel angle or position as a model
output. Models which take a more microscopic approch would concern themselves with
specific parts of a driver’s journey, as car following or curve driving.

A multitude of processes exist in which a human executes conscious and unconsciously
how to get from A to B safely. These task processes can be identified by three classes for
driving[15]:

• Operational processes, the actual manipulation of control inputs
• Tactical processes, awareness of ones surroundings to keep the situation safe by safe
inter-action

4
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• Strategic processes, high end computing for tasks as route planning

It comes around all but too often that for certain task processes not just one of these classes
is used and needed for safe execution. The complexity that research has been trying to
solve for decades has been the question how to capture these ‘abstract’ classes in measur-
able individual human differences.
This chapter shows in which ways inter human variability could possibly be captured in
direct data. Data would be necessary to tell the automation what the human is doing and
how the automation should possibly adjust to that behavior. Therefor this chapter will
focus on the operational processes of human driving.

For the further research on this literature report the following definition is used for the
inter human variability:
"An individual difference is a physiologically measurable output of a human driving task
influenced by the task processing of the human in control."

For the case of simplicity the possible variability cues have been divided in ’vehicle’ and
’gaze’ measures. The vehicle measures could be directly fed back to the automation, corre-
lating with the outputs controlled by the automation. The gaze measures tell a story about
the physical state of the human being which would need a translation level to transform
human physical states into usable input for the automation. Examples of vehicle outputs
could be distance from the center line, longitudinal velocity and the relative curvature be-
tween car trajectory and road. Gaze outputs of human behavior could be the visual points
drivers use for path planning.

Studies conducted in the past do entail on the difference in driving performance[33], such
as shown in figure 2, but not in driver variability. If these figures would also show the

Figure 2.1: Sketch of different curve cutting

standard deviation and the differentiation from the mean, a measure of variability would
be available. This figure shows that difference exists in the driving performance between
humans using naturalistic data.
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2.1 Inter human variability based on vehicle based parame-
ters

As mentioned in the chapter introduction, driving processes can be divided into three pro-
cesses, as proposed by Michon [25]: operational, tactical and strategic. A similar model of
hierarchical division of the driver’s tasks is Rasmussen’s model of knowledge-based, rule-
based, and skill-based behaviors. These definitions have great overlap, since the strategic
behaviors happen at the knowledge-based level, tactical at the rule-based level and oper-
ational behaviors occur at the skill-based level. In this subsection the focus will lay on
the operational processes which happen at skill-based level, which are processes that are
highly automated in the human behavior due to much practice. In general drivers don’t
actively think about the actions taken to reach their desired outcome.
The outcome of these unconscious processes are the position, velocity and acceleration of
the car on the road. Every human has a different and preferred position and velocity with
respect to center lines, other cars and trees for example.

2.1.1 Position
The position of the car with respect to road markers is a distinctive manner of differenti-
ating between driver preferences. These can be defined by the distance between car and
for example center lines, trees, other cars, road edges and trucks. A multitude of studies
have been executed on whether the adaptation to these metrics happens consciously or not,
where for example the road with seems to yield a implicit perceptual human response [26].
Hess(1990) goes so far as to say that "The characteristics of a good driver/vehicle system
can be succinctly described in control terminology as those which cause the output yv(t),
to equal the input yr(t) over as broad a frequency as possible" [30], relating the lateral
position error to the desired lateral position on the road 2.1.1. Using the same input as
output parameter reduces the complexity of the system.
A second position based parameter is the heading angle as an input for the automation.
Usually in combination with the lateral error, the desired and actual heading angle are
compared a certain ’look-ahead’ time in front of the car [30]. The heading angle is in
general defined as the angle on the body axis of the car with respect to the defined neutral
angle of your x-y axis system. The heading angle error is the degrees difference between the
angle of the vehicle body axis and the angle of the center line of the road, usually chosen a
distance in front of the car 2.1.1. This distance is in general defined as a certain time span
from which the distance can be derived when the car’s velocity is known. Equivalently a
relative high look-ahead-time would result in a relative small heading angle error.
Figure 2 shows that there is a distinct difference between the way humans position them-
selves on the road, however not displaying the variability by measures such as the standard
deviation. This figure is derived from a typology study done by Peter Spacek [33] to show
the inter human variability in curve cutting.
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Figure 2.2: Visual representation of the lateral error (yv) and the heading angle error
(ψ)[30]

2.1.2 Velocity & Acceleration
Tracking these position markers over time results in velocities, and indicatively, the relative
velocity between the car and its surroundings. This consists of the lateral and longitudinal
velocity, the velocity in line with the heading angle and at a right angle with the heading
respectively.
Especially in bends the tracking of the acceleration or deceleration can show inter human
differences in lateral and longitudinal direction. Research studies and experimental studies

Figure 2.3: Visual representation of the lateral and longitudinal car velocity during curve
driving

show that humans adapt the velocity and acceleration of the car so that maximum vehicle
lateral acceleration is decreased at high speeds [27]. Reymond and Kemeny (2001) propose
a model which would include an acceleration safety margin therefor in case unsuspected
deviations of the trajectory occur [27]. They recorded the variability in accelerations during
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the curves in their test track and used their model to adjust the speed of the car to have
a safe vehicle lateral acceleration.

Figure 2.4: Regression coefficients based on the accelerations driven in the simulators by
the test participants [27]

2.2 Inter human variability based on gaze based parameters
When you disturb the vestibular human system it has been scientifically proven that driv-
ing performance and perception is affected (Clarke, Clarke & Schere 1996). Perturbations
in the human physical state have an effect on the driving of the human. By this equivalent,
tracking the human physical state is a source of information for the automation on how to
assist the human during its driving.
Inter human variability can be tracked in measures which are not a direct car state. Track-
ing the physical state of the human being is however more complex than linking it to a
direct car state. It will need an extra level of translation to be useful as input for the
automation.

One of the most crucial components of the human in control is his eyesight whilst driving.
With it he can capture his surroundings, the road, nearby cars and humans. It should
therefor be no surprise that most of the research found focuses on the focus points of hu-
man eyesight on straight roads and in curves. The visual focus has become a big point of
discussion from the very start where the driver’s gaze was modeled by the position of one’s
head[16] up unto papers that argue with one another whether to work with a FP or a TP
[3][2][17].
To understand the research parameters and global descriptions in this field of research this
section will explain the meaning of the most common and useful variables. The visual
paths the eyes follow can show what the driver will do in the following seconds, which with
a translation, can be led into the automation as future trajectory.
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2.3 Near & Far point
The two-point model designed by Salvucci and Gray [24] uses a ‘near’ and ‘far’ point to
estimate the driver’s trajectory explicitly. To avoid having to calculate curvature in bends,
the near and far point can be used on both straight road passages as curved ones. The
near point is set at a short distance from the car such that it is near enough to monitor
later position but far enough that the driver could easily see it from the driver’s seat. The
far point is implemented to track lateral stability and maintain a predictive steering angle
that compensates for the upcoming road profile. [24] It is hypothesized that these points

Figure 2.5: Near and far points for three scenarios: (a) straight road with vanishing point,
(b) curved roadway with tangent point, and (c) presence of lead car [24]

are used by humans to calculate their trajectory. In studies such as the two-point model
by Salvucci and Gray a calculated near and far point are used by the automation to adjust
the automation’s corrective steering. The study looks at variability in the initial heading of
the human instead variability in the landmark where humans put the near and far points
2.3. So it is a conceptual idea that these near and far landmarks are placed differently
inter-human but not proven up to date.

Figure 2.6: Difference in corrective steering force by the automation corresponding to a
different initial orientation angle
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2.4 Tangent point
The tangent point is a visual point in a driver’s gaze on the inside curve of the bend. It
is drawn on the point where the driver’s gaze intersects with curvature of the inside bend.
Several research papers [2][3] discuss the use of the tangent point by the driver and how
this could be used for an improved driver model.

Figure 2.7: Tangent point on road [3]

Figure 2.8: Lateral position of the car averaged across subjects in the study of Frank Mars
[3]

Boer [35] uses the tangent point in his model such that the automation calculates an
optimal trajectory based on target points on or nearby the tangent point. Boer however
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did not take the variability of where humans put the tangent point into account, using 1
calculated tangent point. Mars [3] also uses a calculated tangent point to see how portrayed
target gaze points affect the steering of drivers. The results of these studies did include
variability in lateral position between human drivers, but did not show results on where
the variability in gaze points go2.4.

2.5 Occlusion point
The occlusion point is the second visual point used for driver models. In Lehtonen et al.
(2012) [22] it is defined as the point where the road disappears from view.
Because the road has width, there is no such unique point. For example, there is one
occlusion point on the future path as well as two occlusion points on the road edges and
one on the road centerline, resulting in four occlusion points. [22]

Figure 2.9: Visualization of TP, OP and FP[22]

2.6 Future path
The future path (FP) is visualized as the center-line trajectory of the car (2.9). On this
path several points can be distinguished, ‘FP reference points’. These lie next to the tan-
gent point on the same vertical visual line and are located on the future path. These future
points have barely been used in studies thus far in field studies making the applicability
complex and realism uncertain[22].
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2.7 Splay angle
Calvert (1954) was the first to propose a different visual angle, named the splay angle.
The splay angle is formed between the angle of the road marking relative to the vertical
to control the lateral position on the road. It was first used in maintaining altitude in
airplanes named the ‘optical splay’ by R. Warren (1982) and a derivative named ‘splay
rate’. Loomis and Beall (1996) use this angle as an optical-flow rule to control their lateral
position.

Figure 2.10: Shown here is a plan view of a vehicle traveling with velocity V, Course (C)
is a measure of the angle between the vehicular velocity and a reference direction (such
as North); whereas heading (H) is a measure of the angle between the longitudinal axis
of the vehicle and a reference direction. Bearing (B) refers to the direction to a landmark
(L) with respect to a reference direction (eg North). Two other pertinent concepts are
course-relative bearing and heading-relative bearing. Course-relative bearing (Bc) is the
bearing of a landmark relative to the course of the vehicle. and heading-relative bearing
(Bh) is the bearing of a landmark relative to the heading of the vehicle.[34]

2.8 Conclusion
Studies have shown that inter human variability occurs in vehicle based parameters such as
lateral position and accelerations [27] [30]. There would be a big field of further exploring
these parameters and adaptation of the automation’s behavior on vehicle parameter vari-
ability. In the next chapter an exploration will be done with which existing driver models
this would be possible.

The data coming from gaze tracking can lead to numerous interesting options for use
in driver models. By deciding which of these visual cues to track and computing a fitting
mathematical model these cues could be used to form a future trajectory. This future
trajectory could in turn be used by the automation to adjust its heading angle and lateral
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position as a direct output. At the same time they provide a source of information which
corner points and visual way points are used by the human to compute the car’s velocity
and lateral acceleration [32].
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Chapter 3

Driver models

In order to incorporate individual human variability in the automation loop, realistic op-
erable driver models are necessary. For the scope of this literature study a broad search
has been executed to touch upon the state of the art driver models and how these would or
would not be useful for further research. Two of the biggest metrics in the decision making
were, realism of the variability and complexity of the model.
The realism of the variability has been discussed in the previous chapter. Four of the best
applicable models will be elaborated on in this chapter, where the scope has been narrowed
to models which are based on Newtonian parameters (vehicle based). The gaze parameter
models are not taken along in this chapter since their realism at this moment is lower than
the vehicle based parameters. Studies have already been done that prove the variability
in vehicle parameters [33], but none can be found that show the variability in between
humans in landmarks such as the tangent point.
The entire analysis of existing driver models has been added in appendix A. Gaussian
mixture models and model predictive control models have a certain level of complexity
which made them impractical. These entail a large amount of gains in general which make
it challenging to fully comprehend what is happening real-time. They do create a more
realistic calculation of the action the driver automation should take.
A different approach with regards to driver modeling can be taken with respect to inputs,
outputs and the working principle in between. Keeping an eye on the basis of research this
literature review will need to provide, the scope of this review kept itself to realistic and
tested driver models.
In order to provide a clear basis to compare the different models, the following sections
will at least include the following aspects of the models: inputs, outputs, assumptions,
limitations and a figure of the model structure. On the minimal basis of this informa-
tion and the knowledge acquired by reading the papers further research could deduce with
which model they could continue their specific part of research into human-automation
cooperative driving.
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3.1 Sensorimotor model
In 2009 a driver model was developed by Mars and Sentouh as part of the research program
‘Partage’ [11]. The model incorporates visual and kinesthetic perception, and compen-
satory and anticipatory processes.
As inputs the model uses the visual near and far point and the steering angel. The output
is haptic force feedback on the steering wheel.

Figure 3.1: Two-point driver model [11]

By implementing the angle that is computed from the near and far point, the model
doesn’t have to take preview time or the car velocity into account. The model does get
more complex, due to the fact that the observation behavior needs to be modeled in this
case, which would not be the case when using the prediction error.

Figure 3.2: The response of the driver model for three different driving strategies [11]

The bigger drawback occurs when entering and leaving curves. The moment needs
to be known when the driver starts looking at the tangent point and when this tangent
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point disappears from view. To compensate for the disappearance of the tangent point,
the model would keep the last calculated angle for the curvature tracking of the car until
the curve ends.
The model looks at variability in the lateral position of the human driving 3.2 and has
been tested in a simulator. The gaze points mentioned are calculated by the automation
by which the automation adjusts its corrective steering.

3.2 Adapted two-point
The adapted two-point model3.3 is a feedback model, where "the anticipatory control is
proportional to the actual curvature resulting in much more realistic driving behavior"[9].
This model is an elaboration on Sentouh’s two-point model, where in this model a high gain
in more severe corner cutting accordingly to the sharpness of a curve. This has advantages
for both strong and short curves. In a bend the estimate of the curvature gets lower due to
the fact that the vehicle will be closer to the inner lane boundary. Just as in the previous

Figure 3.3: Adapted two-point driver model [9]

paragraph, the model takes variability in the lateral position on the road into account 3.2
and has been tested in a simulator.

3.3 Boink
In his paper [20] Boink discusses a driver model with adapted parameters of the look-ahead
controller providing individualized guidance torques. The results of this study showed a
positive influence on the match of desired steering wheel angles. The model described
in his paper [20] was seemingly different from the model he actually tested with, which
was a more simplified driver model given in figure 3.4. Boink’s model makes use of the
small-angle approximation in its feedback loop. When the angle is significantly small
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Figure 3.4: Boink’s simplified driver model

enough the trigonometric function can be neglected and the angle can be fed back without
computation.
The model makes quite a number of assumptions, making the model relatively unrealistic.
Boink uses the variability in steering angle which is preferred by the current driver as input
for the automation to compute its corrective steering force3.3. By changing the look-ahead

Figure 3.5: Individual fits of look-ahead time and lateral error gain used in Boink’s exper-
iment [20]

time, the green gain in figure 3.3 named tlh changes value by which the addition circle
next in the block scheme compares the current car position with one in the nearby future
(depending on the look-ahead time). This model has been tested in a car simulator.
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3.4 Separating Haptic Guidance and Support Signals
Professor Renee van Paassen has been working on a model using both feedback and feed-
forward loops, using both the tangent point (or so target point) as the lateral deviation
from a predefined reference trajectory [21]. The feedback loop is used for the reference

Figure 3.6: Haptic shared control architecture

trajectory driven by a so-called ‘ghost car’. The feed-forward loop is only used for the
curvature in a bend. To simplify, the feed-forward loop tells you if you follow the correct
curvature in the bend but this could be 6 meters from the center-line, the feedback loop
doesn’t take the curvature into account but purely looks at the deviation from the center-
line of your lane 3.6.
The biggest difference with Boink’s model is that Boink’s model looks at the road for the
reference trajectory, whilst van Paassen’s model looks at the reference car for the feedback
loop [23]. This reduces the overshoot when the feedback loop detects that you entered a
curve or bend. This model has been tested in a simulation run with three different levels of

Figure 3.7: Overview of the driving parameters for three different simulated drivers in an
experimental set-up with the Van Paassen Model[23]

driving aggressiveness3.4. It tries to capture variability in lateral position, however, since
it was only run in a computer simulation, this is purely conceptual. It entails the inputs
lateral deviation and heading angle error in feedback and feed-forward loops to translate
the human variability in a realistic human driver model and ghost driver to assist the
human driver.
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Chapter 4

Discussion & Conclusion

To conclude we look back at the research question initiating this literature research:

• What individual differences in steering behavior occur during curve negotiation
• What realistic and tested driver models exist

Based on the given scope, appendix A and the discussed realism this chapter will finalize
a decision with a discussion and conclusion.

4.1 Discussion
The first part of the research question focused on the inter human variability. Based on
literature this variability could be divided into two segments: vehicle and gaze parameters.
Vehicle based parameters entailed direct car states such as lateral position, heading angle
and velocity. Gaze based parameters entailed landmarks which theoretically humans use
to orientate themselves in curves and plan their trajectory accordingly, such as tangent
point, occlusion point and splay angle.
The gaze based metrics could provide exact and real-time data. For the scope of this liter-
ature study they would however prove to be unrealistic since people would be continuously
driving with goggles, which is not an incorporated part in the driving culture yet. Vehicle
based parameters would be better suiting metrics since the sensors necessary for position,
velocity and acceleration control are already present.
To make a finalized decision, the research was extended in the review of driver models that
worked with human variability. Deduced from a more extensive study four models have
been reviewed in depth which worked with realistic Newtonian metrics. The vehicle based
parameters have been discussed as best controllable, by which the sensorimotor model and
adapted two-point model wouldn’t be best for further research. The separation between
haptic guidance and support signals entails a more complex and realistic model for the
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human driving behavior than the model proposed by Boink. Boink’s model operates on
several assumptions solved by the models of Mars[3], Sentouh[11] and van Paassen[21].

4.2 Conclusion
Depending on the future research, several following roads can be taken. Based on the gaze
parameters it could be very informative to conduct a research study to see if there is a
significant variability in where different human place the landmarks such as the tangent and
the extended tangent point. Since variability has already been proven to exist in vehicle
based parameters, an elaboration could be made on a model working with vehicle based
parameters to include inter human variability into the model.
If one would choose to investigate the existence of variability in gaze based parameters a
good option would be to design a new driver model since none of the models researched for
this literature study included the option to investigate inter human gaze variability. In the
further exploration of using vehicle based parameters one of the four models from chapter
three can be used to explore variability. Depending on the complexity the research would
include, the model choice could land on Boink’s model for simplicity or Mars’, Sentouh’s
or Van Paassen’s if the research would include a higher level of complexity.
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Appendix A

Driver model comparison

This appendix shows the models that have been investigated to see which models would
be realistic options for further research in inter human variability. They are listed in
chronological order, with the specific assumptions and concerns for every model listed next
to it. The four models discussed in more depth in chapter three showed the most potential
in realistic further research.
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Figure 1: Variance Accounted for Inherent Steering Wheel Angle Kc=0, Nonlinear model

The inherent identifiability of the nonlinear model has been analyzed over the full set of Kc (0-27) and Kp (0-6.3). All runs, where
an array of data with a specific Kc and Kp value is compared to the entire data set, are shown in figures 2a to 20j. The right y-axis
depicts the percentage of how well the array of data overlaps with the whole matrix set of data.
Looking at the variance accounted for for the steering wheel angle, it is clear to see the largest area of 95 to 100 % is found at the Kc
and Kp values lying closest to the centre of the data matrix, as well as falling in the realism bound. This can be explained by the fact
that the realistic combinations are able to describe other combinations better due to their more stable data. Combinations which lie
outside of the realism bound, show more extreme data, with heavier jitters and out of position bounds driving behaviour. This results
in a worse identifiability mapping due to the more ’unique’ behaviour of a out-lier combination of Kc and Kp.
When looking at the variance accounted for for lateral position, we do not necessarily see the same increase in high percentage area
as with the lateral position. The area of ‘identifiable’ combinations merely shift its position in the VAF graph, mirroring the Kc and
Kp value of the analyzed array of data. The lateral position mapping is more sensitive to the chosen parameter values than the
lateral position mapping is. This effect can also be seen in a more extreme way in the experimental identifiability in figures 21 and
22 where, when looking at the VAF in both left and right curves, the experimental identifiability can’t even reach 5%. This can be
explained by the fact that the car has a wide lateral position range where it drives safe on the road in the range from 0 to 3.6 meter,
when maintaining an average logical steering wheel angle. It is much harder to deviate far from the steering wheel angle, without
maintaining the curvature of the road.
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Figure 2: Variance Accounted for Inherent Lateral Position Kc=0, Nonlinear model
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Figure 3: Variance Accounted for Inherent Steering Wheel Angle Kc=3, Nonlinear model

3

44



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4: Variance Accounted for Inherent Lateral Position Kc=3, Nonlinear model
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Figure 5: Variance Accounted for Inherent Steering Wheel Angle Kc=6, Nonlinear model

5

46



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6: Variance Accounted for Inherent Lateral Position Kc=6, Nonlinear model
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Figure 7: Variance Accounted for Inherent Steering Wheel Angle Kc=9, Nonlinear model
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Figure 8: Variance Accounted for Inherent Lateral Position Kc=9, Nonlinear model
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Figure 9: Variance Accounted for Inherent Steering Wheel Angle Kc=12, Nonlinear model
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Figure 10: Variance Accounted for Inherent Lateral Position Kc=12, Nonlinear model
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Figure 11: Variance Accounted for Inherent Steering Wheel Angle Kc=15, Nonlinear model
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Figure 12: Variance Accounted for Inherent Lateral Position Kc=15, Nonlinear model
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Figure 13: Variance Accounted for Inherent Steering Wheel Angle Kc=18, Nonlinear model
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Figure 14: Variance Accounted for Inherent Lateral Position Kc=18, Nonlinear model
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Figure 15: Variance Accounted for Inherent Steering Wheel Angle Kc=21, Nonlinear model

15

56



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 16: Variance Accounted for Inherent Lateral Position Kc=21, Nonlinear model
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Figure 17: Variance Accounted for Inherent Steering Wheel Angle Kc=24, Nonlinear model
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Figure 18: Variance Accounted for Inherent Lateral Position Kc=24, Nonlinear model
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Figure 19: Variance Accounted for Inherent Steering Wheel Angle Kc=27, Nonlinear model
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(j)

Figure 20: Variance Accounted for Inherent Lateral Position Kc=27, Nonlinear model

(a)

Figure 21: Variance Accounted for Experimental Steering Wheel Angle, nonlinear model
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(a)

Figure 22: Variance Accounted for Experimental Lateral Position, nonlinear model
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(j)

Figure 1: Variance Accounted for Inherent Steering Wheel Angle Kc=0, Linear model

Figures 1 to 20 show the inherent identifiability for the linear model. The left y-axis shows the Kc value and the x-axis
the Kp value. The right y-axis shows the percentage of variance accounted for (VAF), when comparing the specific Kc and Kp
data-array with the entire data matrix.
Figure 21 shows the experimental identifiability for the linear model with the output steering wheel angle and lateral position.
The high percentage level area (above 90%), shows to be significantly smaller compared to the nonlinear model identifiability.
This can be seen in both outputs, the steering wheel angle and the lateral position. This also came forward in one of the con-
clusions of the article, that the linear model is therefor more sensitive to a change in parameter value of Kc or Kp.
The experimental identifiability (figure 21) shows a low VAF for the lateral position, which coincides with the nonlinear ex-
perimental identifiability of the lateral position. Due to the different curve driving in left and right curves, the model was not
capable to describe the driving behaviour in left curves as well as in the right curves, which resulted in the bad VAF values.
This is less of an issue when looking at the VAF of the steering wheel angle because, even though a driver can be curve cutting
or over steering, the steering wheel angle will still have to follow the curvature of the road.
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Figure 2: Variance Accounted for Inherent Steering Wheel Angle Kc=0, Linear model
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Figure 3: Variance Accounted for Inherent Steering Wheel Angle Kc=3, Linear model
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Figure 4: Variance Accounted for Inherent Steering Wheel Angle Kc=3, Linear model
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Figure 5: Variance Accounted for Inherent Steering Wheel Angle Kc=6, Linear model

5

68



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 6: Variance Accounted for Inherent Steering Wheel Angle Kc=6, Linear model
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(j)

Figure 7: Variance Accounted for Inherent Steering Wheel Angle Kc=9, Linear model
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Figure 8: Variance Accounted for Inherent Steering Wheel Angle Kc=9, Linear model
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Figure 9: Variance Accounted for Inherent Steering Wheel Angle Kc=12, Linear model
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Figure 10: Variance Accounted for Inherent Steering Wheel Angle Kc=12, Linear model
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Figure 11: Variance Accounted for Inherent Steering Wheel Angle Kc=15, Linear model
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Figure 12: Variance Accounted for Inherent Steering Wheel Angle Kc=15, Linear model
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Figure 13: Variance Accounted for Inherent Steering Wheel Angle Kc=18, Linear model
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Figure 14: Variance Accounted for Inherent Steering Wheel Angle Kc=18, Linear model
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Figure 15: Variance Accounted for Inherent Steering Wheel Angle Kc=21, Linear model
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Figure 16: Variance Accounted for Inherent Steering Wheel Angle Kc=21, Linear model
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Figure 17: Variance Accounted for Inherent Steering Wheel Angle Kc=24, Linear model
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Figure 18: Variance Accounted for Inherent Steering Wheel Angle Kc=24, Linear model
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Figure 19: Variance Accounted for Inherent Steering Wheel Angle Kc=27, Linear model
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Figure 20: Variance Accounted for Inherent Steering Wheel Angle Kc=27, Linear model

Figure 21: Variance Accounted for Experimental Steering Wheel Angle and Lateral Position, Linear model
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Appendix D

Single parameter analysis
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(a) (b)

(c) (d)

(e)

Figure 1: Lateral Position of a simulated car with a differing Kc value and a) Kp, b) Kr, c) Kt, d) tau, e) TL

During the first phase of this research, a sensitivity analysis was executed where the possible parameter
combinations were analyzed on the differentiation in output values they showed, when changing these 2
parameters over a 3 by 3 grid. The outputs which are looked into, are lateral position and steering wheel
angle. The parameters values were differentiated in the realistic scope set in the article by Mars(5). Figures 1
to 4 show the output lateral position and figures 5 to 8 the output steering wheel angle.
A first interesting combination which was looked into, was the lead and lag time constant combination. They
are combined in the compensatory gain block:

TLs+1
Tl +1

(1)

Together they determine the rate and frequencies of near angles to be compensated. Their realistic values
seem to fall in a narrow band where the output values don’t differ much from each other.
The differentiation’s with the Kr and K t parameters also show significant different output when differenti-
ating over the grid. The neuromuscular loop has been taken out of the model, as explained in the article, so
these combinations weren’t further looked into.
The combination which shows the biggest differing output, is the combination of the compensation and antici-
pation gain combination (Kc and Kp). The lateral position output shows both over-turning and curve cutting
behaviour, showing a hypothetically wide range of driving behaviour that could be described by differentiating
over these two parameters.

1

85



(a) (b)

(c) (d)

Figure 2: Lateral Position of a simulated car with a differing Kp value and a) Kt, b) tau, c) Ti, d) TL

(a) (b)

Figure 3: Lateral Position of a simulated car with a differing Kr value and a) Kt, b) TL
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(a) (b)

(c) (d)

Figure 4: Lateral Position of a simulated car with a differing Ti value and a) Kr, b) Kt, c) tau, d) TL
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(a) (b)

(c) (d)

(e)

Figure 5: Steering Wheel Angle of a simulated car with a differing Kc value and a) Kp, b) Kr, c) Kt, d) tau, e)
TL
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(a) (b)

(c) (d)

Figure 6: Steering Wheel Angle of a simulated car with a differing Kc value and a) Kp, b) Kr, c) Kt, d) TL

(a) (b)

Figure 7: Steering Wheel Angle of a simulated car with a differing Kr value and a) Kt, b) TL
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(a) (b)

(c)

Figure 8: Steering Wheel Angle of a simulated car with a differing Ti value and a) Kt, b) tau, c) TL
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