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Abstract

Atrial Fibrillation affects millions of people worldwide. It is associated with an impaired quality of life and
an increased risk of stroke, cardiac failure and mortality. Treatments exist, but early detection and treatment
is crucial, due to the progressive nature of the disease. Algorithms can help with early detection. Machine
learning algorithms are commonly trained to diagnose based on ECG data, but the interpretability is low.
A physiological model that simulates the heart gives more insight into the situation of the patient. Current
approaches, like the IPFM model, simulate only the SA node and generate RR intervals as output, while com-
pletely neglecting the interaction between the AV and SA node. By using an IPFM model and including the AV
node as well, an extended and more accurate physiological model was built to more accurately detect Atrial
Fibrillation.
The AV node model is able to estimate PR intervals when the P waves are annotated. This result shows that
the model extension is able to capture information about the signal conduction. When the SA node model
and the AV node model are cascaded and only the R peaks are considered, the classification accuracy does
not improve compared to the SA node model alone. The R peaks alone do not contain sufficient information
for accurate parameter estimation. The parameters governing the behavior of the AV node seem different for
NSR compared to AF, but more data is needed to confirm this. The ability of the model to predict PR intervals
gives hope that the inclusion of P wave data should improve the performance of the classification with the
extended physiological model.
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1
Introduction

Atrial Fibrillation (AF) affects millions of people worldwide. AF is associated with an impaired quality of life
and an increased risk of stroke, cardiac failure and mortality [1]. Due to these risks, as well as the progressive
nature of the disease, early detection accompanied with early treatment is of tremendous importance.

The Electrocardiogram (ECG) shows information about the activity of a heart. It measures the electrical
activity of the heart in real time using electrodes on the skin. Trained specialists are able to make an evalua-
tion of the patient and may be able to diagnose AF. However, accurate diagnosis requires expertise and a lot
of time. Also, it is difficult for clinicians to distinguish between the progressive developmental stages of AF.

It would be ideal to extract vital information from the ECG using an algorithm and predict the AF devel-
opment stage. Machine Learning (ML) algorithms are already able to make predictions about the risk of a
patient’s risk of AF [2]. They either take the entire ECG trace as input, or make decisions based on certain
metrics. In this thesis, we will build a physiological model that is able to generate sequences that repesent
the timing of the heart beats. When this model is fitted to a patient, the outcome should give a diagnosis in
an interpretable manner.

The ventricles create a QRS complex, which is clearly visible on an ECG trace. The fluctuations in the
timing of heart beats visible in the fluctuations of the QRS complexes is commonly known as Heart Rate
Variability (HRV). Analysis of these intervals is often done by observing the sequence of RR intervals, also
called a tachogram, as shown in Figure 1.1.

Figure 1.1: The generation of the RR tachogram from R peak detection.

We are interested in characterizing the tachogram in order to get insight into the health condition of a pa-
tient’s heart. To do so, we first develop a physiological model that can generate realistic artificial tachograms.
Then, at a later stage we use this model as an inverse model to extract the underlying physiological parame-
ters of a patient based on real tachograms. Based on the extracted parameters we then obtain insight in the
condition of the patient’s heart.
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2 1. Introduction

In Chapter 2, the physiology of the heart rate will be explored. Both the sinoatrial (SA) node and the
atrioventricular (AV) node are essential for regulating the pace of contraction. We will also take a look at AF
and the possible differences compared to a healthy heart producing a Normal Sinus Rhythm (NSR).

In Chapter 3, the analysis of the ECG and specifically HRV is presented. We start with the delineation of
the ECG. Given the RR or PP tachogram, there are methods of HRV analysis in three domains: time domain,
frequency domain and geometric domain. Our model should create RR tachograms that resemble the original
tachogram in all these domains. Lastly, we will analyze the PR interval.

In Chapter 4, a commonly used parametric model, the Integrated Pulse Frequency Modulation (IPFM)
model, is described and expanded. This model is able to generate artificial impulses by an ’integrate and fire’
model [3]. The IPFM model is generally used to describe the behaviour of the SA node, with the intention
of modelling the RR intervals. The RR peaks however, are the result of contraction of the ventricles, which
closely follows pacing of the AV node. We will include a second IPFM model, modelling the AV node. The
two IPFM models are then cascaded. The first one will model the SA node. Its output will be a PP tachogram,
which will act as the input for the AV node model. An evolutionary algorithm will aid in finding the model
parameters.

The results section in Chapter 5 shows the results in realistic interval generation, the prediction of PR
intervals, as well as parameter significance and classification. Both RR tachograms and PR tachograms are
created. We will test which model parameters are different during AF. These parameters should be able to
eventually classify and help with the diagnosis. We use Machine Learning (ML) algorithms to use these pa-
rameters to classifiy RR sequences originating from different heart conditions.

Finally, the discussion and future work is presented in Chapter 6 and the conclusions are considered in
Chapter 7.



2
Physiology of the Heart

Knowledge of the physiology of the heart is fundamental in order to understand any physiological model.
In Section 2.1 the basic functions, mechanisms and measurement techniques of the electrical activity of the
human heart are examined. Next, in Section 2.2 we will focus more on the cardiac nodes. They make impulses
propagate through the cardiac chambers, such that contraction directly follows their excitation. In Section 2.3
we investigate Atrial Fibrillation and some other cardiac arrhythmias. Finally, after discussing the physiology
of the heart and existing physiological models, we identify that particular aspects of the physiology of the
human heart are missing in existing models. This gives rise to extend these models as explained in Section
2.4, where we will state the research goal of this work.

2.1. Overview of the Heart
The human heart has the duty to pump blood around the body [4]. Blood is the transport medium that
carries oxygen and nutrients as well as waste products. There are four compartments inside the heart. There
is a right side and a left side and both sides consist of atria and ventricles. A frontal section of the human
heart is shown in Figure 2.1. The right side of the heart pumps blood to the lungs and the left side brings it
to the rest of the body. The split between atria and ventricles exists because of efficiency. The atria can fill up
with more blood, while the ventricles contract. This split requires the heart to have a mechanism to control
the timing of contraction of both the atria and the ventricles.

Figure 2.1: A schematic coronal view of the heart. The conduction system is highlighted (via openstax.org, 2013. Accessed 03-12-2021
[5]).

3



4 2. Physiology of the Heart

(a) Neural action potential (b) Sinoatrial action potential

(c) Ventricular action potential

Figure 2.2: Some typical action potentials. 1: Depolarization 2: Efflux of K+ starts repolarization 3: Influx of Ca2+ balances the trans-
membrane potential 4: Ca2+ channels close and repolarization finishes. There are no obvious phases 2 and 3 in neural or pacemaker
cells.

2.1.1. Electrical Conduction in the Heart
The cardiac cycle starts with the atria that contract. After some delay, the ventricles will contract as well. The
timing of these contractions is organized by two regulatory nodes. These nodes are the Sinoatrial (SA) node
and the Atrioventricular (AV) node. The bioelectrical signal starts its journey at the SA node. From here, it will
travel through the atria, which will contract upon stimulation. The signal will then reach the AV node. After a
delay of about 0.1 seconds it will then continue through the bundle of His towards the Purkinje fibres in the
ventricles. In Figure 2.1, the signal path can be followed when starting from the SA node.

The signal that travels through the heart is not a flow of electrons, but rather a wave of depolarizing cells.
Each myocardial cell produces an action potential (AP). An AP will trigger the neighboring cells using pores
known as gap junctions. Just like in neurons and skeletal muscle cells, an AP is caused by the opening of
voltage-gated ion channels. The membrane potential of a myocardial cell is negative at rest. When the po-
tential crosses a threshold, a positive feedback loop is started. Voltage-gated Na+ channels will open causing
more Na+ to enter the cell and increase the potential further. After depolarization, the efflux of K+ ions starts
the repolarization. During this phase, there is a difference between cardiac myocytes and neurons in the
brain. A neuron has a function as signal conductor, while a myocardial cell has is a signal conductor as well
as a contracting unit. An influx of Ca2+ in the myocytes balances the flow of K+, with as a result a stabilized
membrane potential. This allows for effective contraction. Typical cardiac AP’s are shown in figure 2.2.

In figure 2.2 three typical AP’s are shown. The neural AP only conveys information. The firing of a neuron
sends a binary signal in the nervous system. Sinoatrial AP’s are different in that they are able to fire without
external stimulation. There is an upward slope visible, so the threshold will eventually be reached, even
without external stimulation. The ventricular AP shows a clear plateau, where the ventricles are given the
time to contract and pump out all its contents.

2.1.2. The Electrocardiogram
The electrocardiogram (ECG) is used to unobtrusively measure the electrical activity of the heart. It does
so by using electrodes to measure the voltage on the skin of the patient. The combination of depolarizing
cells creates an electrical field that is recorded. It will result in a plot where the voltage (often in millivolts)
is plotted against time. The ECG is unobtrusive, it requires little preparation from the patient and it can be
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performed in just a few minutes. These properties make it the most commonly used method for diagnosing
cardiac problems. Experts are able to detect abnormalities in ECG traces. The 12-lead ECG method is the
clinical standard, but even a single lead is able to provide useful information.

The characteristic waves of an ECG are shown in Figure 2.3. The contraction of the atria results in the P
wave. The atria contain less muscle than the ventricles, which results in a lower amplitude. The ventricles
create the so called QRS complex. Repolarization of the ventricles produces the T wave.

Figure 2.3: A typical shape of an electrocardiogram trace for normal sinus rhythm. The P wave, the QRS complex and the T wave are
annotated.

2.2. Cardiac Nodes
2.2.1. The SA Node
The SA Node initiates the pulses that will travel through the heart. The SA node is autonomous, implying
it is able to fire on its own [6]. However, they are influenced by the Autonomic Nervous System (ANS) via
hormones. On the one hand, the sympathetic nervous system will increase the Heart Rate (HR). This is known
as the ’fight or flight’ system. On the other hand, the parasympathetic nervous system will decrease the HR
and is known as the ’rest and digest’ system. The firing of the SA node directly results in the contraction of the
atria resulting in the P wave. A visualization of the influence of the ANS on the HR is shown in Figure 2.4.

Figure 2.4: The Autonomic Nervous System uses hormones to modulate the Heart Rate.

Leaking ions allow the pacemaker node to fire autonomously. A steady stream of Na+ ions and K+ ions
increases the membrane potential [7]. It is called the pacemaker current. The hormone norepinephrine
increases this current [8]. The transmembrane voltage over time follows equation 2.1 for small changes.
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dVm

d t
= IL

Cm
(2.1)

Here Vm is the transmembrane voltage, IL is the leak current and Cm is the membrane capacitance. The
voltage increases when cations flow inward. Once the AP threshold is reached, this formula does not hold
anymore, as the capacitor will be in parallel with by a low valued resistor when the ion channels open.

2.2.2. The AV Node
The AV node starts the sequence of stimulation that will lead to the contraction of the ventricles. The ven-
tricles should contract when the atria have had the time to empty their contents. To guarantee this, 2the AV
node introduces a time delay. Together with the time it takes for the cardiac activation to pass through the
atria and the bundle of His, the PR interval is generally about 0.1 to 0.2 seconds. The interval is composed of
a relatively fixed conduction delay and a variable part determined by the state of the AV node [9]. The R wave
is produced when the ventricles contract.

The AV node is a highly complex structure. Although its functionality is partly understood, much is still
unknown [10]. Inside a living heart, its behaviour is rather unpredictable due to the plethora of body sig-
nals and other noise present. The properties listed below are better distinguishable in perfused and isolated
hearts, where the firing of the SA node is controlled. Their effects are still observable in living human hearts.

• Recovery: After firing, the AV node will slowly recover its ability to fire again. An impulse arriving from
the SA node earlier than expected will increase the time it takes the impulse to travel through the AV
node.

• Fatigue: An increased basic rate of impulse arrivals will also increase the AV nodal conduction time.

• Accommodation: The AV nodal conduction time settles when a new basic rate is applied.

• Concealed conduction: A premature impulse may be blocked in the AV node, but it will influence its
response to the next impulse.

Another aspect of the AV node is the dual pathway conduction. Inside the AV node there is a fast pathway
and a slow pathway. During NSR the fast pathway generally transduces impulses to the bundle of His. If an
impulse arrives at the AV node when the fast pathway has not yet repolarized, it will follow the slow pathway.
For this reason, the dual pathways often become apparent during arrhythmias.

Just like the SA node, the AV node is able to autonomously produce impulses. The base rate of the SA
node is higher, so it will generally dictate the pace of the heart. The automaticity of the AV node is useful
as a backup in case of a complete heart block as described in the following section. The structure of the AV
node is complex, so we will construct the physiological model in such a way that it aims to model the general
characteristics of the AV node behavior instead of the physical aspects.

2.3. Atrial Fibrillation
A cardiac arrhythmia is an abnormality within either the rate, rhythm, sequence of conduction or origin of
conduction [11]. When the timing of the impulses goes wrong, the heart will pump less efficiently. In severe
cases the heart can get damaged. Atrial Fibrillation is the most common arrhythmia. During AF, the typical
wave of cell depolarization in the atria is impaired.

2.3.1. Pathophysiology
There is no general consensus on the mechanisms behind AF. First, we have to distinguish between de novo
post-operative AF (POAF) and persistent AF. POAF is a common complication developed after cardiac surgery
[12]. It is generally short-lasting, while persistent AF is long-lasting. The mechanisms behind POAF clearly
have to be related to the surgery. Inflammation and oxidative stress are probable triggers. Still, predicting
its occurrence or prevention is difficult. Two possible mechanisms behind AF are foci and rotors. Foci are
irritable ectopic areas that start producing impulses together with the SA node, but not in sync [13]. Rotors
are regions where re-entry of an impulse is possible. This location will continually stimulate the cells around
it.

AF creates a recognizable pattern on an ECG. There is no clear P wave, but smaller chaotic waves are
present as visible in the ECG traces from Figure 2.5. Also, the RR intervals are irregular as visible in the
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(a) ECG traces (b) Tachograms

Figure 2.5: ECG traces (left) and the accompanying tachograms (right) of Normal Sinus Rhythm (top) and Atrial Fibrillation (bottom).

tachogram from Figure 2.5. After diagnosis, possible treatments include medication, ablation or the implan-
tation of an artificial pacemaker [14]. Various drugs are used to control the ventricular rate to a safe level.
When the origin is thought to be highly local, ablation can be applied. Here, the ectopic area is removed
by local application of energy, like radiofrequency, laser or cryotherapy. A pacemaker may aid in restoring
and maintaining the heart’s normal rhythm. AF is a progressive disease, so early detection and treatment is
crucial. In Section 2.4 we will describe how we will aim to improve detection methods.

2.3.2. Other Cardiac Arrhythmias
AF is not the only cardiac arrhythmia. A diagnosis should discriminate between AF and other complications.
A similar arrhythmia to AF is Atrial Flutter (AFL). AFL is commonly caused by re-entrant circuits in the atria,
often near the tricuspid valve. It has a more regular pattern of atrial contraction compared to AF. The differ-
ences between the two as seen on an ECG are shown in Figure 2.6. When untreated, AFL can often degenerate
into AF.

Figure 2.6: ECG of Atrial Fibrillation and Atrial Flutter (via https://www.healio.com/cardiology/learn-the-heart/cardiology-
review/topic-reviews/atrial-fibrillation, 2021. Accessed 26-10-2021).

An abnormal heart rhythm in the ventricles is called Ventricular Fibrillation (VF). It is much more danger-
ous than AF, since the ventricles pump blood to the body. Malfunctioning ventricles result in cardiac arrest
or even death [15]. In the case of AF, the AV node acts as a filter for the rapid atrial impulses. The result is
a somewhat stable rhythm of ventricular contraction. However, when the origins of fibrillatory contraction
are present in the ventricles, no filtering is possible. The ventricles will not be able to effectively pump blood,
which results in critical situations.

During NSR, the mean HR lies between the 60 and 100 beats per minute. If the rate is higher, this is called
tachycardia. If it is slower it is called bradycardia. A slow HR does not necessarily mean the heart is unhealthy.
Vagal tone, sleep, athleticism all lower the HR. There could however be an underlying reason for the altered
average HR, which may lead to more severe arrhythmias in the future if it remains untreated.

Re-entrant circuits can occur in the atria, but sometimes an accessory pathway will make re-entries on
a larger scale possible. The bundle of Kent is an example of an unwanted conduction area. It connects the
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ventricles with the atria and allows impulses to travel in the opposite direction without control. A contrac-
tion of the ventricles will immediately stimulate the atria again. And a contraction of the atria will stimulate
the ventricles without having to pass the AV node. The combination of AF and a Kent pathway dangerous,
because the fast contractions of the atria will directly result in fast contractions of the ventricles.

When the electrical connection in the heart is inadequate, we speak of Heart Block (HB). Blockades can
occur everywhere within the electrical conduction system, but they most commonly refer to AV node blocks.
Three degrees exist for SA and AV node blocks, where a higher degree is more severe. For example, in a first-
degree AV block the conduction through the AV node is slowed down. This results in a larger PR interval,
but it does not require treatment. In a third-degree AV block the conduction is completely blocked. The AV
node will fire autonomously, but the P waves and QRS complexes will have no correlation at all. An artificial
pacemaker is often used to restore synergy between the impulses.

Re-entrant circuits can appear in one more situation. An impulse travelling from the SA node towards
the AV node will take two pathways. Both the fast pathway and the short pathway as described in Section 2.2
will be stimulated. During NSR, the short one is dominant. However, during AF it often happens an impulse
arrives while the short path is still repolarizing. The long pathway will now conduct the impulse towards the
His bundle. A re-entrant circuit can appear when the signal goes back through the fast pathway once it has
recovered during the passing of the signal through the slow pathway.

2.4. Research Goal
We hypothesize that parametric models can be used to predict the development stage of arrhythmias and
the general condition of the heart. Given a parametric model, the model parameters are to be extracted from
measured signals. An existing model is the Integrated Pulse Frequency Modulation (IPFM) model. The IPFM
model models the SA node, but the model parameters are taken from the RR tachogram. The PR intervals
are thus ignored and assumed constant. However, the intervals are not constant, as can be seen in Figure
2.7. The PR interval contains information about the atrial conduction and the AV node. We hypothesize that
extracting the model parameters of this extended model will improve the detection of AF. Our research goal is
to investigate whether we can expand the IPFM model, such that it combines the SA node with the AV node.
The proposed cascaded IPFM model will produce pulse trains, resembling the PP and RR tachograms. We
will investigate whether the proposed AV node model is able to model the AV node accurately and whether it
could potentially increase classification accuracy.
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(a) ECG trace

(b) PR Tachogram

Figure 2.7: The PR intervals taken from a fully annotated dataset show variability.





3
Analysis of Heart Rate Variability

The human heart rate is not constant. Aside from a significant low frequency variation due to changes in
activity, the autonomic nervous system also modulates the pace of the heart. Due to this fact, HRV is a com-
monly used marker for the assessment of vagal and sympathetic activity. By analyzing the frequency content
of the RR intervals, the activity of both the sympathetic and the parasympathetic ANS can be assessed.

Figure 3.1: The R peaks of the ECG signal (black) can be robustly detected after a wavelet transformation is applied.

The goal of HRV analysis in our case is to compare the RR tachogram from measured data with the RR
tachograms generated by our physiological model. The model should create a sequence that is not necessarily
close to the data reference in absolute value, but the statistical properties should match. The ’Task Force of
The European Society of Cardiology and The North American Society of Pacing and Electrophysiology’ has
written a guideline on the standards of measurement, physiological interpretation and clinical use of HRV
[16]. They present various HRV metrics with their benefits and downsides. We have selected a subset of these
metrics based on their recommendations and we will explain them in this chapter. We use Matlab 2020a
for analysis. For HRV analysis, we start with the detection of the R peaks. The result of such a peak detection
algorithm is shown in Figure 3.1. Next, we show the analysis of the RR tachograms. Lastly, we describe analysis
of PR intervals.

3.1. ECG Delineation
In order to analyze the timing properties of the heart, we need some reference points. As HRV analysis is
sensitive to outliers, the detection of these points must be robust. Simple peak detection algorithms often

11



12 3. Analysis of Heart Rate Variability

make mistakes due to noise in the recording. Time-frequency analysis allows for the detection of specific
frequency contents over the entire recording. Wavelets are commonly used in these types of analysis. A
wavelet is a function used to transform into different frequency components. An example of a wavelet is the
sym4 wavelet shown in Figure 3.2. This specific wavelet is frequently used for the detection R peaks in ECG
data.

Figure 3.2: An approximation of the sym4 wavelet from the Matlab wavelet transform filter bank. The axes do not contain units, as the
width and height of the wavelet can be adjusted freely.

Traditional HRV analysis uses the peak of the R wave as a marker. For HRV analysis to be accurate, it
requires the ECG signal to have a high temporal resolution. A sampling frequency of 500 Hz is desirable, but
lower frequencies may be sufficient if the data is clean and if detection of small shifts in RR interval variability
is not required [17]. The R peak is detectable using an ECG with even one single lead. Distinct points on an
ECG are the P wave, the QRS complex and the T wave, as described in Chapter 2. Delineation algorithms, as
proposed by Laguna et al.[18], are able to detect these waves. The Physionet toolbox uses this algorithm, so
we use it to detect both the P waves and the R peaks, such that PR interval analysis is possible. For just R-wave
detection however, a simpler algorithm will suffice. Matlab can execute this less complex version easily, using
just the sym4 wavelet and peak detection. The result of the algorithm used by Matlab is shown in figure 3.1.

3.2. Analysis of the RR tachogram
3.2.1. Time Domain Analysis
In this section we present several instrumental measures to analyze the tachogram.

• Sample Mean
The sample mean is used as an estimator for the mean RR interval and is given by (3.1), where N denotes
the total number of intervals and RRn denotes the nth interval length.

RR = 1

N

N∑
n=1

RRn . (3.1)

• Sample Variance
The variance of the RR tachogram reflects the deviation from the mean of the HRV. Also, it is equal to
the total power of the spectral density function. It is estimated using the unbiased estimator given by
(3.2):

σ2 = 1

N −1

N∑
n=1

(RRn −RR)2. (3.2)

• RMSSD
There are several measures describing interval differences. They are notably correlated, since they all
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measure short-term variation. We will use the Root Mean Square of Successive Differences (RMSSD),
which shows the beat-to-beat variance. The unbiased estimator is given by (3.3).

RMSSD =
√√√√ 1

N −1

N−1∑
n=1

(RRn+1 −RRn)2. (3.3)

3.2.2. Geometric Analysis
In geometric analysis, the data is plotted in a geometric pattern. The metrics are based on the resulting shapes
and sizes of these patterns. This method of analysis is robust, because single mistakes in the measurements
will not lead to large errors in the metric. However, relatively large numbers of data is required for reasonable
estimation. The Poincaré plot is the only analysis we use from the geometric domain.

The Poincaré plot or Lorentz plot plots each interval against the previous one. A point cloud is formed
of all consecutive intervals. An example is shown in Figure 3.3. The metrics are visual, which allows for easy
interpretation. The standard deviation along the diagonal axes shows the short- and long term variability of
the RR tachogram [19]. In Figure 3.3, the standard deviation along the X1 axis (the width of the scatterplot)
denotes the short term variation. The X2 axis denotes the long term HRV.

Figure 3.3: A Poincaré plot of an RR tachogram. Intervals I with interval number k are plotted against the following interval. The metrics
SD1 and SD2 are computed by taking the standard deviation along the two axes.

3.2.3. Frequency Domain Analysis
The Power Spectral Density (PSD) denotes the power for all frequencies. For the RR tachogram, different fre-
quency bands have a specific physiological origin. The High Frequency (HF) band ranges from 0.15 to 0.4
Hz and consists of the activity of the parasympathetic nervous system. This part of the ANS is modulated by
breathing. Respiratory Sinus Arrhythmia (RSA) is a phenomenon where the breathing frequency is directly
detectable in the PSD plot. The Low Frequency (LF) band ranges from 0.04 to 0.15 Hz and consists of the ac-
tivity of the sympathetic nervous system. Furthermore there are the Very Low Frequency (VLF) band and the
Ultra Low Frequency (ULF) band. These bands are only measurable when the length of the recording is long
enough. The commonly used power bands are visible in Figure 3.4. The red line indicates the minimum fre-
quency that is measurable. The value is calculated as follows: fmi n = 2

T , where fmi n is the minimal frequency
and T is the total measurement time.

PSD estimation for the RR tachogram is non-trivial, because the horizontal axis only expresses the index
number, but the actual interval times are lost. Hence, the intervals times are plotted regularly, but the inter-
vals are not constant. This means a simple uniform Fast Fourier Transform (FFT) will produce a distorted
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Figure 3.4: PSD estimates using a 15th order AR model (top) and the Heart Timing method (bottom).

result. A multitude of solutions exist that aim to tackle this obstacle [20]. The Lomb-Scargle method is used
to detect periodicity in unevenly sampled data. The Non-Uniform Discrete Fourier Transform (NDFT) allows
for computation of the PSD of nonuniform sampling too.

Another strategy is the use of interpolation. When the signal is interpolated, methods that allow unevenly
sampled data are no longer needed. Common approaches include spline interpolation, where the signal is
fitted with a polynomial curve. After interpolation, a regular FFT or a PSD estimation using an Autoregres-
sive (AR) model can be used. Both will produce smooth curves, but the results are still distorted and some
assumptions have to be made. Spline interpolation assumes a polynomial fit and the AR method demands
the choice for a suitable model order.

Laguna et al. introduced the Heart Timing method [21], which is a method that solves all shortcomings
mentioned in the last paragraph. As shown in Figure 3.5 the signal is composed by subtracting the mean
from the RR tachogram. The FFT of the interpolated result gives an estimate for the PSD without distortion.
The Heart Timing method and the AR method are compared in Figure 3.4. The AR method produces smooth
results, so the peaks are easier to detect, while the Heart Timing method is free of distortion. We use the latter
for the calculation of power in the frequency bands, because the smoothness is of no relevance here, while
distortion is. We use the AR method for visualization and comparison between different PSD’s.

There is correlation between the metrics of the three domains. The RMSSD is correlated with SD1 and HF
power, while SD2 is related to the LF power. Each domain has its benefits, so the combination will make the
statistical evaluation more robust. There should be no imbalance between short- and long-term variability.
The weights for all the individual error metrics are equal.

Some metrics will change depending on the duration of the length of the measurement. The total variance
of HRV increases with recording length. The recording length also determines the smallest frequency power
that can be accurately measured. Ectopic beats and distorted peak detections heavily influence most of the
metrics. The removal of these beats prior to analysis will greatly improve performance.

3.3. Analysis of Atrial Conduction
The PR interval gives information about the atrial conduction and the AV node. Next to calculating the aver-
age and the standard deviation of the PR intervals, we can calculate the autocorrelation and we can inspect
the histogram.

We can also analyze the atrial conduction without considering the PR interval. The Functional Refractory
Period of atrioventricular Node (FRPN) denotes the shortest RR interval and by including the PP intervals in
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Figure 3.5: The Heart Timing signal shown in red is composed of the deviations from the mean interval length.

the analysis, we are in a position to calculate the Effective Refractory Period of atrioventricular Node (ERPN).
This metric is equal to the shortest preceding PP interval that does not result in a response from the bundle
of His [10].

Another geometric option includes a histogram of the PR intervals. In a histogram, it is possible to see
if both pathways in the AV node are transducing signals. If this is the case, this would result in a bimodal
histogram. In the case of Heart Block, some PR intervals may be nonexistent. If an impulse is blocked by the
AV node, an R wave will not follow the P wave. Missing beats are expressed as ratios in Heart Block patients.

We can use the autocorrelation coefficient to plot the correlation between the current PR interval and pre-
vious PR intervals. The lower lags will be the most interesting, as the higher lags show less correlation. Some
AV node characteristics may be noticeable here. The autocorrelation coefficient is the normalized autocor-
relation function with the mean extracted. The formula for the consistent and unbiased estimator is given in
3.4.

ruu(τ) = E

((
u(t +τ)−µu

σu

)(
u(t )−µu

σu

))
(3.4)

Here, the signal u is multiplied with itself at various lags. The signal mean is denoted by µu and the signal
standard deviation is denoted by σu . The result is ruu , the autocorrelation coefficient as a function of the lag.
An example is plotted in Figure 3.6. The sawtooth pattern is the result of the recovery property of the AV node,
because a decrease in PR interval length is followed by an increase and vice versa.

Figure 3.6: The autocorrelation coefficient sequence is plotted for PR intervals from ECG data.





4
The Extended Integrated Pulse Frequency

Modulation Model

In this chapter we will describe the IPFM model in more detail and we will illustrate how we expand the
classical SA node model with the AV part. We start with the IPFM model in general and its use in the modelling
of the SA node in Section 4.1. Then we will describe how the same idea is translated to the AV node model
in Section 4.2. Both sections end with an overview of the model parameters. The last step will then be the
parameter estimation, for which we use an Evolutionary Algorithm (EA). The idea behind the estimation
method and the consequences are outlined in Section 4.3.

4.1. The IPFM Model for the SA node
The Integrated Pulse Frequency Modulation (IPFM) model is the most commonly used physiological model
for the generation of artificial RR intervals. The idea for this model was first described by Li and Jones [3]. The
structure works as an "integrate and fire" system, which is inspired by neural communication. The diagram
in Figure 4.1 shows the model that generates the R peaks.

Figure 4.1: The diagram of the IPFM model. Image adjusted from [22].

The integrating unit corresponds to the SA node in this case. It will integrate the input until a threshold
is reached. The input consists of a constant part and a variable part. The constant part is analogous to
the ion leakage occurring in pacemaker cells. In case that this is the only input, the HR would be constant.
The variable part of the input originates from the ANS. This input follows a sum of sinusoids, in this case
two. One corresponds to the sympathetic nervous system, the other to the parasympathetic nervous system.
The threshold corresponds to the membrane potential threshold. An action potential will occur when this
threshold is reached. In the particular case of this model, the output is composed of a pulse train. Each pulse
represents an R peak. When the peak is generated the integrated input will be reset. The formula showing the
n impulses is as follows:

n =
∫ tn

0

1+µ(t )

T 1
d t . (4.1)

Here, n is the impulse number, T 1 is the threshold value and µ(t ) is the modulation signal, which is
composed of two frequencies F L and F H with amplitudes AL and AH . We can divide the fraction into two
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components. The part 1
T1

represents the near constant or low frequency factor. The part µ(t )
T1

represents the
variable or high frequency part of the HR.

The low frequency factor T 1 is not necessarily constant, especially over longer periods of time. For the
hearts of living humans, changes in mood or surroundings have a low frequency impact on the HR. Bailón et
al. [22] coined the idea of a time-varying threshold. Their study regarded the time varying threshold as a low
frequency influence and they estimated its value in both a simulation study and a stress testing database. We
take inspiration from this idea by including a time varying threshold in a forward model. We use a random
walk to allow the variable T 1 to wander. A central drift is included to prevent non physiological heart rates.
Formula 4.2 expresses this behavior. Only one parameter, k, governs the nature of the drift.

x(n +1) = x(n)+k (V (n)+T1 −x(n)) ,V (n) ∼ N (0,1). (4.2)

Here, the value of the threshold on moment n is given by x(n). The space between successive values of
n is 1/ fs , where fs is the sampling frequency. The middle term is White Gaussian Noise (WGN) with unit
variance. The last term is the drift towards the estimated average threshold value of the SA node model. The
effects of two extreme values for the parameter k are plotted in Figure 4.2. A very low value of the k parameter
allows more drift, while a high value keeps the value closer to the mean.

(a) Low value (b) High value

Figure 4.2: A low value of k results in lower variance compared to a high value.

The IPFM model is a well known model for NSR, but not necessarily for AF. During AF, aspects of the heart
which are not modelled here get a more noticeable influence. This will result in a worse fit for the modelled
tachogram, so lastly we add noi se1, the final parameter. The model can use this parameter to compensate
for the part that is not modelled by the rest of the model. The parameter itself determines the variance of the
WGN that is added to the intervals, simulating the inherent stochasticity of the mechanisms that underlie the
biological processes. An overview of the seven parameters of the SA node model are summarized in table 4.1.
Lastly, the output of a model for the SA node is supposed to be a P wave. As described in the research goal, we
will add a model for the AV node, which produces an R peak.

Table 4.1: The parameters for the SA node model

Parameter Explanation
T1 SA node threshold
k Governs the low frequency drift
FL Low modulation frequency value
FH High modulation frequency value
AL Low modulation frequency amplitude
AH High modulation frequency amplitude
noise1 Variance of the added WGN
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4.2. The IPFM Model for the AV node
The AV node is a highly complex structure. A physiological model should capture the most significant aspects
of the structure. Similar to the SA node, we also model the AV node with an IPFM-based model. The AV
node has automaticity. The ANS influences the conduction, but the input from the SA node is much more
significant. The repolarization phase is crucial in the AV node. The possibility of a long recovery time allows it
to block fibrillatory waves from the atria. The block diagram of a potential configuration of this version of the
IPFM model is shown in Figure 4.3. The two model blocks for the SA node and the AV node are cascaded. The
output of the SA node is modelled as a square wave and serves as the input of the AV node model. The output
of the AV node model is the R peak. The AV node model can also be used on its own on a dataset where both
P peaks and R peaks are annotated.

Figure 4.3: The schematic showing the IPFM model for the AV node.

The equation that characterizes the "integrate and fire" part of the model is similar to (4.1). The repolar-
ization prevents the build-up of charge during this phase. The formula is given below:∫ tk

tk−1+r

1+µ(t )

T2
d t = 1. (4.3)

Here, the moment of output is denoted by tk . The previous output pulse is tk−1. The variable r describes
the repolarization time, µ(t ) the modulation signal and T2 the threshold. The output of the SA node and thus
the input of the AV node model is assumed to be a square wave. Two parameters model the shape: the height,
and the width. The pulse will look like a narrow rectangular pulse for a healthy heart. For AF however, the
pulse can model the combination of fibrillatory waves as a broad wave with a lower amplitude. The formula
is given in (4.4).

µ(t ) =
N∑

n=1
h(u(t −τn)−u(t −w −τn)), w ∗ fs =Z+. (4.4)

The modulation signal µ(t ) resembles the sum of all P waves. The height of a P wave is denoted by h and
its width is denoted by w . Also, u(t ) is the unit step function. The vector τ contains the time occurrences of
the P waves. The signal is discrete, so the width of the pulse multiplied with the sampling frequency fs must
equal a positive integer.

Table 4.2: The parameters for the AV node model

Parameter Explanation
T2 AV node threshold
tw Repolarization time
pw Atrial pulse width
ph Atrial pulse height
dmin Controls repolarization fatigue
noise2 Variance of the added WGN
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The fifth parameter is dmi n. It adjusts the repolarization time, to allow the simulation of fatigue. As a last
step we introduce a second noise parameter noi se2, which simulates the variability in atrial conduction. The
patterns of behavior of the AV node are described in Chapter 2. In Figure 4.4 we see the model is able to fit
the shape of an artificial sequence if this sequence simulates a property of the AV node. When the opposite
effect is simulated, the fit is a straight line.

(a) Low value (b) High value

Figure 4.4: The AV model will fit the shape of the left artificial sequence using recovery. It does not find a fit for the right sequence, where
the oppostite of recovery is simulated.

When a sudden new pace is introduced by the SA node, the AV node will follow in steps following an ex-
ponential function [23]. This effect is seen when we introduce such a shift in pace with an artificial sequence
as shown in Figure 4.5. These tests with artificial intervals show that the model structure contains specific
information , which results in behavior that is typical to the AV node.

Figure 4.5: The model follows an exponential trajectory with the introduction of fatigue.

An overview of the six parameters in the IPFM model for the AV node is shown in Table 4.2. Some proper-
ties of the AV node are still not included in the model. There are for example no dual pathways present in the
model. The absence of this structure will result in worse fits for AF, where both pathways are often used.
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4.3. Parameter Estimation Using an Evolutionary Algorithm
4.3.1. Motivation
We use an evolutionary algorithm for the parameter estimation, because the solution space is non-convex. A
technique like gradient descent, where the parameters are iteratively changed towards the steepest descent
in error, is not possible here, since we would get stuck in local minima. In contrast, an evolutionary algorithm
will find its way even without any knowledge of the system that is being optimized. Also, this algorithm is
easily adaptable. An extension to the model will lengthen the process of parameter estimation, but it will not
change the process or strategy.

4.3.2. The Algorithm
An evolutionary algorithm finds the model parameters by random mutation of the parameters and selection
based on specified errors [24]. It is a method that is commonly used in optimization problems where the
system is highly non-linear. Pseudo-code for a simple evolutionary or more specifically a genetic algorithm
is shown in Figure 4.6. Here, the population P is a group of parameter sets. The survivors per generation
compose S. They generate a new generation: O , which has the same size as P . The perturbed set O ′ is
obtained after mutation. Hyperparameters include the number of parameters, the number of survivors per
generation, the number of children per survivor and the mutation rate.

Figure 4.6: Pseudo-code for a basic evolutionary algorithm. Image taken from [24].

We perform the fitness evaluation and selection by picking the parameter sets with the smallest total
error. This error is the summation of the relative errors of the metrics described in Chapter 3 compared to the
data sequence. Crossover is skipped and the mutation rate is increased when the relative decrease in error
does not drop. The mutation is relative to the current value of the parameter and all parameters are mutated
at the same time. This approach prevents the algorithm from getting stuck in local minima. The two best
performing sets will survive and compete with the new generation. The algorithm terminates when the error
has not gotten smaller and the number of generations is more than twice the number of generations it took
to find the last best performing parameter set.

4.3.3. Drawbacks and Possible Improvements
Due to the stochastic nature of the model, solutions will be slightly different each time. On the one hand,
running the EA multiple times will give slightly different parameter sets. On the other hand, a parameter set
will give a slightly different error each time they are used to generate an interval sequence. This variability
evens out over large samples of data, so it does not pose a problem for training a dataset. When analyzing a
single sequence it may be advisable to run the EA several times and take the average parameter values of the
runs.
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A higher number of parameters greatly increases the run time. This phenomenon can be attributed to
the "curse of dimensionality". If we find the parameter sets for both the SA node and the AV node separately
based on just R peak data, this method will greatly reduce the flexibility and the ability to alter the SA node
parameters based on AV node behavior. The parameters of the AV node part would essentially be fitting the
error of the SA node model. If we find all 13 parameters in one run, the parameter space will be very large.
The algorithm might get stuck in a local minimum in the highly dimensional solution space.

We can take some extra steps to help the EA. By imposing physiological constraints on the parameters we
can reduce the solution space and with it the run time. By imposing boundaries we also prevent non physical
solutions. The mean of the RR tachogram directly relates to the threshold of the SA node, so we can constrict
the boundaries for this parameter to the calculated mean ± 10%. We can also detect the peaks in the PSD of
the tachogram data and constrict the boundaries of the modulation frequencies in the same way. If all goes
well, the error steadily drops towards a stable value. The error per generation of a successful run is plotted in
figure 4.7.

Figure 4.7: The smallest error of the population is plotted against the generation number.
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Methods

In this chapter we describe the methods for testing the validity and the effectiveness of the model. We will first
list the data that we use to then specify the tests we constructed. For all tests, either the SA node model, the
AV node model or both models are fitted to a tachogram. The results of the tests are shown in the following
chapter.

5.1. Datasets
We use datasets from PhysioNet databases [25]. PhysioNet is a public service of the PhysioNet Research Re-
source for Complex Physiologic Signals and they provide open-source data and software. For our tests we will
use the locations of P waves and R peaks and we will need data for NSR as well as for AF. We can use ECG data
and detect the peaks ourselves or we can use tachogram data to remove this delineation step.

5.1.1. Tachogram Data
Since all our tests are based on tachograms the simplest method is to use tachogram data. We use the dataset
from the PhysioNet challenge "Is the Normal Heart Rate Chaotic?", which includes RR tachograms for both
NSR and AF for tests where we just need the R peaks and these two categories. By using a dataset of intervals
there is no risk of producing errors in the peak detection step. This "Chaos" dataset even provides filtered
versions of the tachograms where outliers and ectopic beats have been removed.

5.1.2. ECG Data
We can use tachogram data, but we can also use annotated ECG data and compute the tachograms directly
from the annotations. When there are no annotations, we can detect the relevant peaks from the ECG data
with delineation algorithms. The use of ECG data adds more information and thus adds more possibilities,
but there is a risk of errors in the peak detection, which would negatively impact the performance of the
model.

The tachogram dataset only contains R peaks. We use the "ECG-ID" database for NSR signals where we
need the P waves [26]. We use the delineation algorithm from the WFDB Software Package from the Phys-
ioToolkit to detect the peaks of the P waves. The data for AF is taken from the Brno University of Technology
ECG Signal Database with Annotations of P Wave or "BUT PDB" [27]. The P waves are only annotated in the
absence of an episode. Lastly, we use the data for the PhysioNet Computing in Cardiology (CIC) Challenge
2017 as a dataset with ECG signals from NSR, AF and "other" arrhythmias. We do not detect P waves for this
data, as they are ill-defined for AF.

5.2. Tests and Benchmarks
The tests described in this section aim to measure the ability of the model to simulate the behavior of a heart
during NSR and AF. For all tests, we will fit parts of the physiological model to either RR tachograms or PR
tachograms. We will first investigate the output of the model, which is the forward approach. Then we will
investigate the parameters that underlie these outputs, which is the inverse approach. The output of the
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model is a tachogram, so we will analyze both RR and PR tachograms. We will test the differences in the
model parameters with statistical tests and use these parameters for classification.

5.2.1. Tachogram Generation
The model should be able to generate realistic RR tachograms, where the statistics as described in Chapter 3
are similar to the data. We fit the complete physiological model to data from the RR tachogram dataset. We
compare the tachograms and their PSD’s to check the similarity.

We can compare not only RR tachograms, but also PR tachograms. The prediction of PR intervals based
on past PP intervals has been shown to be possible in isolated perfused rat hearts [23]. The same result will
not be possible for a living human hearts, as it is much more complex. Still, it is worth trying to see if the past
PP intervals help with the prediction. Next to the AV node model, we use two other methods. They will act as
benchmarks, because there are no results in the literature to compare with. All three methods will be trained
based on a training dataset and the error will be measured for a separate test dataset. We use the "ECG-ID"
database for this test.

The first alternative method is the histogram method. We compose a histogram of PR intervals from the
training set. New PR intervals for the test dataset can be generated based solely on PR intervals from this
training data. If the new values are taken from the histogram of training PR intervals, there is no assumption
needed about the underlying distribution of PR intervals. The only choice we have to make concerns the bin
size. This histogram method will serve as the first benchmark.

The second alternative method will make use of an Artificial Neural Network (ANN). The ANN is trained
on the training data with a certain number of PP intervals as input and the PR interval as output. We found
12 neurons in the hidden layer combined with 3 past PP intervals to have the best performance. Finally, the
physiological model is trained on the training data where the P peaks serve as input and the R peaks serve as
output.

Figure 5.1: The neural network takes PP intervals as input and PR intervals as output. It has 12 neurons in the hidden layer.

We measure the performance of the methods using the summed mean squared error between the pre-
dicted PR interval and the PR interval from the test data. The mean squared error gives us information about
the ability of the methods to predict PR intervals, but it does not show general behavior of the AV node. In
addition to using the mean squared error as metric we can plot the autocorrelation coefficient, which is de-
scribed in Chapter 3.

5.2.2. Parameter Significance and Classification
The model parameters should be significantly different for different pathologies, so the combination of the
model parameters will then be able to classify ECG traces. We will first test the significance of the parameters
individually. By using the Anderson-Darling test we conclude that the parameter values are not normally dis-
tributed (P < 0.001), so we use the Wilcoxon signed-rank test to check whether the parameters from different
datasets are statistically different. It is a non-parametric method and it does not assume the data is normally
distributed. The null hypothesis of the Wilcoxon signed-rank test states that the parameters are not signifi-
cantly different. We use a P value of 0.001 for the rejection of the null hypothesis. We use the "Chaos" dataset
for the complete physiological model and we use the "ECG-ID" dataset and the "BUT PDB" dataset to fit the
AV node model on PR intervals. Lastly, the PhysioNet CIC Challenge of 2017 provides ECG traces from four
different categories:
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• Normal; Normal Sinus Rhythm

• AF; Atrial Fibrillation

• Other; Other arrhythmias. This category includes all kinds of pathologies, ranging from atial to ventric-
ular problems.

• Noisy; The recording is too noisy

The challenge is to classify the ECG traces from the validation set into the correct categories. In order to
compare the parameters for the CIC challenge we need a multicomparison test. This test relates a group of
parameters to all the others.

Eventually, the physiological model should be used for interpretable classification. We will finish the tests
with two classification challenges. We first use the "Chaos" dataset for binary classification, in order to test
the basic functionality of discriminating between NSR and AF. Finallly, we try the PhysioNet CIC Challenge to
test the ability of the model to distinguish between NSR, AF and other signals with ECG traces as input.

We classify by using the model parameters as input for an ML algorithm. An overview of the data pipeline
is given in Figure 5.2.

Figure 5.2: An overview of the scripts that give a classification result with an ECG trace as input.

The ML algorithm of choice is a Support Vector Machine (SVM) for binary classification and a Random
Forest (RF) for the multiclass classification. We use the standard Matlab settings for both algorithms and the
RF has 256 trees. We use 5-fold cross validation for the binary classification. For the CIC Challenge, we follow
the approach from the challenge. We train the model on the available training data and the score is based on
the performance on the validation dataset.





6
Results

In this chapter we will list the results of the experiments listed in the previous chapter. First of all, the
model should generate realistic RR tachograms for both NSR and AF. The output test are split between RR
tachograms and PR tachograms. Next, tests for the model parameters that are used to create these tachograms
are split between statistical significance tests and classification tests. Next to presenting the results, we will
also explain all result shortly.

6.1. Realistic RR Tachogram Generation
First, we will aim to generate a realistic RR tachogram. A realistic tachogram should have similar statistical
properties compared with a tachogram from real data. Tachograms from the "Chaos" dataset will serve as
input for the Evolutionary Algorithm. The simulated output sequence is plotted together with the real data in
figure 6.1 for NSR. The PSD’s are plotted next to the tachograms. In Figure 6.3 the tachogram for AF is plotted.

The model generates RR tachograms that look realistic in the time domain. However, when looking at
the PSD we see the peaks are much sharper for the simulated data. The error is calculated on power within
the frequency bands. Since there are only two frequency modulators for the model, these frequencies have
a high amplitude as a compensation. The modulating frequencies are constant during the simulation and
they have to provide the power for the entire frequency band. In Figure 6.2 the modulating frequencies are
allowed to wander just like the threshold. The resulting PSD looks much better. Unfortunately, the run time
is much longer due to the iterative calculation method. Although the result looks more realistic, it makes no
difference for the eventual parameter. There will be no improvement in classification for this reason.

The tachogram is visibly different for AF. Both the data and the simulation give a PSD plot with less struc-
ture. The two peaks commonly seen in PSD’s of NSR hearts are not clear in this plot. Instead, the average
power is higher and more smaller peaks seem to appear. The model is able to raise the overall power with the
noise parameter and there are more than two peaks, but the peaks are not always in the correct position.

We can conclude that the physiological model in combination with the evolutionary algorithm is able to
generate tachograms that look realistic by eye, but are distinguishable from real data with analytical methods.
Still, the sequences are significantly different for NSR and AF, which is the most important in the end.
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(a) Sequences (b) PSD

Figure 6.1: The real and simulated NSR RR tachograms are plotted together with their PSD’s.

(a) Sequences (b) PSD

Figure 6.2: The real and simulated NSR RR tachograms with the variable modulation frequencies are plotted together with their PSD’s.

(a) Sequences (b) PSD

Figure 6.3: The real and simulated AF RR tachograms are plotted together with their PSD’s.
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6.2. PR Interval Prediction
When we fit the AV node model to a PR tachogram, we get the intervals as shown in figure 6.4.

Figure 6.4: The PR interval sequences are plotted against the data.

The physiological model is able to capture the shape and characteristics of the intervals. In Chapter 4 we
have shown that the model is able to fit individual characteristics emulated by artificial intervals. Here, we
show the combination of these characteristics can be fitted in real data. Still, it does not mean the model
is able to generalize well. We cannot check for overfitting with just this plot. So, we plot the validation
tachogram together with the predictions of both the model and the alternative methods as described in the
last chapter. We plot the PR interval sequences in Figure 6.5. Then, we run the methods for 100 times and plot
the boxplot of the mean squard error in Figure 6.6. In this figure we also plot the autocorrelation coefficients
of the data and one of the generated sequences for each method.

Figure 6.5: The PR interval sequences are plotted.
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(a) The mean squared error of the predicted PR intervals versus the test data over 100 runs.

(b) Autocorrelation plots of the real data (upper left) and the simulated PR interval sequences.

Figure 6.6: Analysis of the PR interval predictions. a) Boxplot of the mean squared errors. b) Autocorrelation coefficient.
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The physiological model performs better than the alternatives. Using the Wilcoxon signed-rank test, we
calculate that the error of the physiological model is significantly lower compared to both the histogram
method and the ANN (P < 0.001). The prediction is naturally not as accurate as the one achieved by Heethaar
et al. with the isolated perfused rat hearts. A living human heart is a lot more complex and unpredictable,
which is probably the reason the prediction of PR intervals has not been done before here. We can only com-
pare our results to the alternative methods.

The physiological model performs better than the histogram method because it is able to capture some in-
fluence from the PP intervals. The reduction in mean squared error proofs there is useful information present
in the P wave data. In theory, the ANN should outperform the other methods. It is able to use the information
of the PP intervals and it allows for the most complexity. However, an ANN needs a lot of data. This neural
network would probably perform much better with more data. Next to interpretability, data efficiency seems
another advantage for the physiological model.

The sequence of the histogram method should not show significant correlation, because the intervals are
picked randomly from the distribution with no correlation to the previous ones. The ANN has a different plot,
but once again this is probably due to the lack of sufficient data. The physiological model matches the data
quite well on the low lags. When the lags get higher, the correlation differs, as expected. The added noise over
multiple lags will add up.

We can conclude that the AV node model is not only able to fit artificial sequences, but also real PR interval
data. The model is able to generalize this result to a validation dataset by outperforming the alternative
methods. There has to be information present in the location of the P waves for this improvement to be
possible. From the autocorrelation coefficient we see the shape of the correlation for the lower lags is similar,
so we can conclude the model captures some physiological characteristics of the AV node.

6.3. Significance of the Model Parameters
The model parameters must discriminate between different conditions of the heart. We will try to classify
ECG’s in the next section, but first we will test the significance of the parameters individually. The P values
for the acceptance of the null-hypothesis of the Wilcoxon signed-rank test for the SA node model parameters
are given in Table 6.1. The null hypothesis states that the parameters for the different categories come from
the same distribution. This means that a lower P value stems from a more significant difference.

Table 6.1: P values for the Wilcoxon signed-rank test to determine whether the SA node model parameters come from the same distribu-
tion.

T1 k FL FH AL AH noise1
6.07e-22 6.28e-6 0.068 0.012 7.81e-9 1.44e-4 0.054

Five of the seven parameters are significant. The threshold value T1 directly relates to the average interval
length. The average HR is higher for AF patients, so this parameter is different. The parameter k is significant
as well. It makes sense, because the parameter controls the low frequency drift. The drift is present during
NSR, but when AF is present the control over the HR decreases. The parameter is now used by the model
to find a better fit without much of a physiological equivalent. The modulating frequencies are somewhat
significant. Lastly, the noise is able to compensate for the error. The model structure works best for NSR, so
the noise is generally higher for AF sequences.

We will first show the result of the parameter significance test when the parameters from the two models
are found iteratively. This means the parameter set for the SA node model is found first and the output serves
as P wave data for the AV node model. The result is shown in Table 6.2.

Table 6.2: P values for the Wilcoxon signed-rank test to determine whether the AV node model parameters come from the same distribu-
tion.

T2 RW PW PH RMIN noise2
0.26 0.92 0.11 0.93 0.35 0.066

None of the parameters are significant, because separate parameter estimation does not provide sufficient
flexibility. When we start parameter estimation for the AV node model, the parameters for the SA node model
will already be fixed. This means the AV node model will essentially be fitting the error of the SA node model.
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A better approach would be to fit the AV node model with the PR intervals for prediction. There is very little
useful data, which means the P values will also be less significant. We plot the P values in Table 6.3.

Table 6.3: P values for the Wilcoxon signed-rank test to determine whether the AV node model parameters come from the same distribu-
tion.

T2 RW PW PH RMIN noise2
0.026 0.053 0.80 0.55 0.71 1.0

We see the T 2 and the RW parameters seem different. They are both related to the AV node. The data for
the AF case is taken right after an episode, so the change is behavior might be a consequence of the episode.
The combination of the relatively low values for the parameters related to the AV node in combination with a
possible physiological explanation makes this result promising, but more data is needed to test if the differ-
ence is significant.

Lastly, we compare the parameters when there are four different categories with the PhysioNet CIC chal-
lenge. All parameters are estimated at the same time for this test. The boxplot is shown in Figure 6.7.

(a) Thresholds (b) Noise parameters

Figure 6.7: These boxplots show the parameter values of T 1, T 2, noi se1 and noi se2 for Normal (N), AF (A), Other (O) and noisy (x) data.

The boxplot shows a lot of overlap between the parameter values for the different groups. The AV node
model parameters provide little extra information. These results do not have a coherent explanation and the
parameter sets do not look consistent. A consistency test will show whether it is possible to find consistent
parameter sets when the SA node model and the AV node model are combined. The results are shown in
Table 6.4.

Table 6.4: Coefficient of variance values for the parameter consistency test.

T1 k FL FH AL AH noise1
SA 0.0018 0.0014 0.0154 0.0102 0.0182 0.0074 0.0039
SA+AV 0.747 0.0137 2.085 0.466 0.0779 0.388 1.038

The table shows a significant difference between the consistency of the SA node model parameters with
and without the addition of the AV node model. We can conclude there is not enough information in the RR
tachogram alone to find consistent parameter sets for both the SA node model and the AV node model. The
combined model results in an overdetermined system.
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6.4. Classification Results
After the parameter sets are found, a Support Vector Machine (SVM) is able to perform binary classification.
The classification accuracy is 98.7% for just the SA node model alone. The inclusion of the AV node model
does not improve the accuracy, but the significance of this result is difficult to assess, because the number of
wrong classifications is small. A more extensive test is required to determine whether the AV node parameters
add value.

The result of the PhysioNet CIC challenge is summarized in the confusion matrix shown in Table 6.5. The
total accuracy is 64%. First we note the "Noisy" category is poorly recognized. There is no separate method for
detecting noisy data, so the sequences are detected based on abnormal parameter sets. Both the sensitivity
and the specificity are below 50%.

The algorithm reaches a sensitivity of 81% for NSR and there are no false positives for AF when the heart
is healthy. The largest groups of mistakes are related to the "Other" category. This category contains various
tachycardias, so some will be similar to NSR while others will be comparable with AF. For example, ventricular
fibrillation will result in a similar parameter set as atrial fibrillation when the P wave data is absent. We can
conclude that the addition of the AV node model does not provide an increase in prediction accuracy when
there is no P wave data.

Table 6.5: Confusion Matrix

Predicted Classification
Normal AF Other Noisy

Normal 122 0 19 9
AF 8 20 16 6
Other 23 6 36 5

Reference
Classification

Noisy 3 7 6 14
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Discussion and Future Work

The rationale behind the usage of a physiological model for diagnosing cardiac arrhythmias is the increase in
interpretability. However, the approach may result in a drop in accuracy. If a deep neural network achieves
a higher accuracy there will be a trade-off between accuracy and interpretability. However, an interpretable
result in combination with further examination may lead to a better understanding and a better diagnosis
in the end. A combination of the two methods is possible too. If the algorithms disagree, further testing
could prove useful. Also, interpretability may not be the only benefit of a physiological model. The model
outperformed the ANN for PR interval prediction. The ANN should outperform the physiological model when
there is unlimited data, because the network will capture properties that are not modelled in the AV node
model. We argue that a physiological model has a higher data efficiency, because there is already information
present in the structure of the model, even before there is any input data. A more efficient model could result
in shorter test times and shorter waiting times for patients.

Data snooping occurs in machine learning when decisions are made concerning the algorithm after look-
ing at the data. The observer may for example choose a particular architecture based on a pattern seen in
the data. This pattern however, might just be a statistical incident. When we use a physiological model, there
is already a lot of information present in the architecture of the model. It is different from data snooping,
because the patterns are well documented in medical literature. The structure of the heart contains valid
information that can be used in a physiological model.

Our model assumes the output to be stochastic. However, whether the heart rate is stochastic or rather
chaotic is a topic of debate [28]. This debate even resulted in another challenge by PhysioNet. A system
is chaotic when small perturbations or differences in starting positions result in wildly different outcomes.
Toker et al. [29] stated that the heart rate is not chaotic, but rather stochastic. Running their algorithm on the
data used in this thesis returned the same result.

As described in Chapter 3, some metrics behave differently for varying recording lengths. The total vari-
ance of HRV for example increases with the recording length. The length also directly restricts the lowest
relevant frequency. Our Evolutionary Algorithm takes the relative error of the power in the LF band with con-
stant boundaries and the SD is not related to the recording length. Compensation for the recording length
in the error calculation could improve accuracy when working with different lengths. However, the model
works best for similar recording lengths, so the safest approach would be to fit the model on measurements
with a similar length to the training data.

The Withings ScanWatch provides the option of an ECG measurement. It is single lead ECG and the res-
olution is low. Still, it is able to detect episodes of AF. Nowadays there are even more ways to measure HRV.
The possibility of measuring HRV from photoplethysmography (PPG) is shown [30]. PPG uses infrared light
to illuminate the skin. The light is more strongly absorbed by blood compared to the surrounding tissue, so
amount of returning light reflects changes in blood flow. This find could allow the calculation of HRV metrics
for a smart watch. The PPG technology may provide the same possibilities as the ScanWatch, but cheaper.
Data security becomes an important aspect when health analysis with a smart watch becomes mainstream.

35
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The parameter significance test for the AV node model fitted on PR interval data shows a promising re-
sult, but more data is needed to validate the AV node model and its ability to differentiate between NSR and
AF. This result could be the result of different data types. The P waves for the NSR data are detected with a
delineation algorithm, while they are annotated for the AF data.

Although the end goal of the model is classification, the goal of this thesis was to expand the model and
test if the expansion is able to model AV node characteristics properly. We can conclude the model is able to
do so, provided there is P wave data. The reason this is needed shows the difficulty in combining two imper-
fect stochastic models. If the SA node model would have been perfect and complete and the parameters are
known, the RR tachogram would be sufficient. This is the case because the RR interval is composed of the
part modelled by the SA node model and the part modelled by the AV node model. If we know the SA node
perfectly, we would end up with the same information as provided by the PR intervals. Unfortunately, the
model is not complete, especially for AF. Also, the parameters are not perfectly estimated due to the inherent
stochasticity of the model. This means there is no ground thruth and the AV node model will model both the
AV node part combined with the error of the SA node model.

In the PhysioNet CIC challenge, the algorithm by Datta et al. [31] achieved the highest score. Their ap-
proach was feature extraction and classification with an ML algorithm. Improvements to the ML learning step
should improve accuracy. In order to increase the score further for the PhysioNet CIC challenge, a separate
prior step should be taken to filter out the noisy data, because the resulting parameters are unpredictable.
In order to increase the classification performance with respect to the "Other" category, more research is
needed. We discuss further possible research below.

Future Work
Several small improvements are possible with respect to the current approach:

• Adjustable weights for the calculation of the total error: The error for the statistics of an RR tachogram
related to the data is calculated as the sum of the error of each metric. However, some metrics might be
more important than others. A set of weights may improve performance of the EA.

• Include the modulating frequencies for the AV node model: The modulating frequencies can influence
the AV node model. The hormones norepinephrine and acetylcholine influence the atrial conductivity.
No extra parameters are needed, but conflicts may arise between the two model parts.

• Optimized EA: Right now the evolutionary algorithm is written by manually, but standard packages
exist. Self-written code is easy to adjust and interpret, but it is not optimized for speed. Packages
should be used once the model structure is set to reduces both training time and classification time.

The most important result from this thesis is the AV node model fit for PR interval data. The model is
able to find a fit and outperform alternative methods on a different dataset. The parameter significance test
and the classification test show that P wave data is crucial for correct parameter estimation for the AV node
model. Naturally, the most obvious way to go forward with the model is to detect the P waves and use them
as input for the AV model.

When the model is fitted to real PR intervals from the data, the performance is much better, as seen with
the PR interval prediction. However, the P waves are ill-defined for AF. The fibrillatory waves result in the
absence of a clear peak. Still, the information here is usable. One possibility could be to include the shape of
the P waves. This way, all information regarding the P wave would directly be imported from the ECG data
to the AV node model. With this approach, detection of the peaks would not be necessary, the pulse width
and pulse height parameters would not be needed anymore and abnormal behaviour of the atria would be
directly incorporated into the model. The drawback would be the loss of synergy with the SA node model,
because the computation of HRV metrics requires high resolution detection of peaks. This is not possible for
the ill-defined P waves.
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Conclusions

The newly introduced AV node model extension is able to estimate PR intervals with more accuracy than
any other methods we have tried. The model outperformed both the histogram method, which generates
PR intervals based on the histogram of past PR intervals. It also outperformed an ANN, which generated PR
intervals based on past PP intervals. A better performance compared to the histogram method shows that
the PP intervals hold information. The increase in performance compared to the ANN shows a gain in data
efficiency. The structure of the AV node model already contains information. With the limited amount of
data, the physiological model outperformed an ANN in the prediction of PR intervals. This result shows the
validity of the model structure for the AV node during NSR.

It is possible to discriminate between NSR and AF with the parameters of the physiological model in
most cases. However, discriminating between AF and other arrhythmias remains difficult. The classification
accuracy is far below the best performing algorithms at the time of writing. When the two IPFM models are
cascaded and fitted on the RR tachogram, the model parameters of the SA node model are discriminatory,
but those of the AV node model do not provide an increase in performance. When the parameter sets are
computed separately, there is not enough flexibility in this configuration. The AV node model will have to fit
the error of the SA node model, instead of fitting the PR interval. On the other hand, when all parameters
are found at the same time, the system is overdetermined, which prevents consistent parameter estimation.
We can conclude that the RR tachogram alone does not provide sufficient information for an accurate use of
both an SA model and an AV model.

Of the SA model, several parameters are significantly different for NSR and AF. The threshold value directly
relates to the average HR, which is often higher in the case of AF. The k parameter describes the wander of the
average heart rate. This effect is not present in the same way during AF, so the values are different. Lastly, the
noise that is added for a good fit is different for AF. The IPFM model is intended for the SA node during NSR,
so a small amount of noise is needed. For AF, the amount of noise is generally much higher. The modulating
frequencies are often not significant.

The AV node model shows realistic behavior for NSR when P waves from the data are used as input. How-
ever, when only R peak data is available and the output of the SA node model is used as P wave input, the
evolutionary algoritm is not able to find a consistent solution. The AV node parameters seem different when
we use P wave data for both NSR and AF right after an episode, but more data is needed to confirm this.
Future research should include information about the P wave into the parameter estimation process.
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Abbreviations

AF Atrial Fibrillation
AFL Atrial Flutter
ANN Artificial Neural Network
AP Action Potential
AR Autoregressive
AV Atrioventricular
CIC Computing in Cardiology
EA Evolutionary Algorithm
ECG Electrocardiography
FFT Fast Fourier Transform
FRPN Functional Refractory Period of atrioventricular Node
ERPN Effective Refractory Period of atrioventricular Node
HB Heart Block
HF High Frequency
HRV Heart Rate Variability
IPFM Integrated Pulse Frequency Modulation
LF Low Frequency
NSR Normal Sinus Rhythm
PPG Photoplethysmography
PSD Power Spectral Density
RF Random Forest
RMSSD Root Mean Square of Successive Differences
RSA Respiratory Sinus Arrhythmia
SA Sinoatrial
SD Standard Deviation
SVM Support Vector Machine
ULF Ultra Low Frequency
VF Ventricular Fibrillation
VLF Very Low Frequency
WGN White Gaussian Noise

.
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