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Abstract
To deal with permanent deformations and residual stresses, we consider a morphoelas-
ticmodel for the scar formation as the result of wound healing after a skin trauma. Next
to the mechanical components such as strain and displacements, the model accounts
for biological constituents such as the concentration of signaling molecules, the cel-
lular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we
present stability constraints for the one-dimensional counterpart of this morphoelastic
model, for both the continuous and (semi-) discrete problem.We show that the trunca-
tion error between these eigenvalues associated with the continuous and semi-discrete
problem is of orderO(h2). Next we perform numerical validation to these constraints
and provide a biological interpretation of the (in)stability. For the mechanical part of
the model, the results show the components reach equilibria in a (non) monotonic
way, depending on the value of the viscosity. The results show that the parameters of
the chemical part of the model need to meet the stability constraint, depending on the
decay rate of the signaling molecules, to avoid unrealistic results.
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1 Introduction

Burn wounds are a global problem and are the fifth most common cause of non-fatal
childhood injuries. Figures show that the number of burn injuries was nearly 11million
worldwide in 2004, and about 180,000 people die from burns each year (WHO 2018).
Given that burns mainly occur at home and workplace and that particularly adult
women and children are vulnerable to burns (WHO 2018), targeting burn prevention
specifically at these target groups results in lower numbers of incidents. Besides pain,
itching, and loss of energy, mental factors and additional factors of wound healing
play a role. Slow wound healing, infection, extreme pain, hypertrophic scars, and
contractures remain as major challenges in burn management (Ye 2018).

The wound healing process comprises four partially overlapping phases that nor-
mally act upon each other quickly. The first phase, haemostasis, begins almost
immediately after injury and aims primarily at stopping bleeding and starting the
second phase. Burn wound healing passes over haemostasis, by cause of burning and
cauterization of blood vessels. Hence burn wound healing starts with the second phase
of normal wound healing, called the inflammatory response, which starts in just a few
hours after injury to clean the wound and to protect it against infections. The growth
factors that play a major role stimulate angiogenesis and collagen metabolism (Enoch
and Leaper 2008) and activate cells, such as granulocytes (white blood cells) that play
a major role in the wound healing’s continuation.

During inflammation, the wound is cleaned and protected from bacterial infections,
and the proliferative phase begins. These phases in wound healing are overlapping.
The sub processes that take place during the proliferative phase are re-epithelialization,
angiogenesis, fibroplasia and wound contraction. Sometimes, re-epithelialization
never completes and skin grafting is necessary (Young and McNaught 2011). The
ultimate phase, remodeling and scar maturation, can take several years. This phase
brings various processes and structures into balance. This results in a scar that, on
average, has 50% strength of unwounded skin (within three months), and 80% on the
long-term (Enoch and Leaper 2008; Young and McNaught 2011).

Wound contraction is yet visible in small wounds: the edges of the wound pull in,
the wound size reduces and the wounded area deforms. In adult patients, wounds can
become 20–30% smaller over several weeks (Olsen et al. 1995). Wound contraction
involves a biomechanical interaction of fibroblasts, myofibroblasts, chemokines, and
collagen. Depending on the wound dimensions (location on the body, size), and the
extent of contraction, the result can cause reduced mobility. If the contraction result
causes reduced mobility, then we commonly refer to a contracture. Contraction can
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lead to limited range-of-motion of joints, which can lead to immobility and is an
important sign for scar revision.

Various studies report on mathematical models to predict the behavior of exper-
imental and clinical wounds and to gain insight into which elements of the wound
healing response might have a substantial influence on the contraction (Tranquillo and
Murray 1992; Olsen et al. 1995; Barocas and Tranquillo 1997; Dallon et al. 1999;
McDougall et al. 2006; Koppenol 2017; Menon et al. 2017) to name a few. This study
uses the morphoelastic model for burn wound contraction that has been developed
by Koppenol and Vermolen (2017). Morphoelasticity bases on the following princi-
ple (Hall 2008): the total deformation is decomposed into a deformation because of
growth or shrinkage and a deformation because of mechanical forces. In a mathe-
matical context, one considers the following three coordinate systems: X, Xe(t), and
x(t), which, respectively, represent the initial coordinate system, the equilibrium at
time t that results because of growth or shrinkage, and the current coordinate system
that results because of growth or shrinkage and mechanical deformation. Assuming
sufficient regularity, the deformation gradient tensor is written by

F = ∂x
∂X

= ∂x
∂Xe

∂Xe

∂X
= AZ, (1)

in which the tensor Z represents the deformation gradient tensor because of growth
or shrinkage, and A represents the deformation gradient because of mechanical forces
(Hall 2008; Goriely and Amar 2006; Rodriguez et al. 1994).

Given Koppenol’s morphoelastic model for skin contraction (Koppenol and Ver-
molen 2017), we analyse stability around equilibria in a one-dimensional environment
to study the parametric dependence of stable and unstable solutions. We use a linear
stability analysis with Fourier series, where the transformations represent perturba-
tions around equilibria. Such a stability analysis on morphoelastic models is new in
the literature. We analyse the nonlinear equations as a system of equations, and we
provide stability conditions. Here we distinguish between the entire continuous prob-
lem, which represents the actual solution, and the semi-discrete problem, which is
the solution of a semi-discrete solution method. We show that stability of the con-
tinuous system implies stability of the semi-discrete stable system. Next to stability
conditions, we call attention to the effects of system instability regarding the real-life
wound contraction. We further discuss particular components of the model that we
can adapt to bring the model closer to reality. The results in this article together form
an entirely recent addition to the existing morphoelastic model for skin contraction.

The organization of this paper is as follows. Section 2 presents the mathemati-
cal model and Sect. 3 presents the stability analysis. Subsequently, Sect. 4 presents
the numerical method that is used to approximate the solution and Sect. 5 presents
the numerical validation of the stability constraints and a biological interpretation of
(in)stability. Finally, Sect. 6 presents the conclusion and discussion.

123



   24 Page 4 of 35 G. Egberts et al.

2 Themathematical model

We borrow the morphoelastic continuum hypothesis-based modeling framework from
Koppenol, and present it in a one-dimensional form. It is not our aim to derive the
model completely and will therefore go into this less in depth than the original articles
by Koppenol and Vermolen (2017); Koppenol et al. (2017b). More details about this
framework can be found in the cited articles. This model considers the displacement
of the dermal layer (u), the displacement velocity of the dermal layer (v) and the
effective strain present in the dermal layer (ε). The effective strain is a local measure
for the difference between the current configuration of the dermal layer and a hypo-
thetical configuration of the dermal layer where the tissue is mechanically relaxed.
Furthermore, four constituents are incorporated: signaling molecules (c), fibroblasts
(N ), myofibroblasts (M) and collagen (ρ). Here we use collagen as a collective name
for the molecules, fibrils and bundles of collagen, and we use signaling molecules as a
collective name for growth factors, such as transforming growth factor beta (TGF-β),
platelet derived growth factor (PDGF) and connected tissue growth factor (CTGF),
and cytokines.

We show the conservation laws for mass and linear momentum, together with the
evolution equation that describes how the infinitesimal effective strain changes. We
bear inmind that because of the forces that are exerted by the cells; the domain deforms
and hence the points within the domain of computation are subject to displacement.
The local displacement rate is incorporated by passive convection, which is reflected
by the second term in the left-hand side in Eqs. (2)–(9). Next, we briefly discuss what
(the right-hand side of) the equations represent.

The equation for the signaling molecules (2) represents diffusion according to
normal Fickian diffusion and random spread, enhanced secretion by fibroblasts and a
portion of myofibroblasts (Barrientos et al. 2008), proteolytic breakdown by Matrix
Metallo Proteins (MMPs) (Mast and Schultz 1996; Sternlicht and Werb 2001), the
handle of release of MMPs by (myo)fibroblasts and collagen (Lindner et al. 2012),
and the inhibition of the secretion of MMPs by signaling molecules (Overall et al.
1991):

∂c

∂t
+ ∂(cv)

∂x
= Dc

∂2c

∂x2
+ kc

[
c

aI
c + c

]
[N + ηI M] − δc

[N + ηI I M]ρ
1 + aI I

c c
c. (2)

Here, Dc is the Fickian diffusion coefficient of the signaling molecules, kc is the
maximumnet secretion rate of the signalingmolecules,ηI is the ratio ofmyofibroblasts
to fibroblasts in the maximum secretion rate of the signaling molecules, aI

c is the
concentration of the signaling molecules that causes the half-maximum net secretion
rate of the signaling molecules, δc is the proteolytic breakdown rate parameter of the
signaling molecules, ηI I is the ratio of myofibroblasts to fibroblasts in the secretion
rate of the MMPs and 1/[1 + aI I

c c] represents the inhibition of the secretion of the
MMPs. Next to the derivation of this equation in Koppenol and Vermolen (2017), one
finds the derivation of the second part on the right-hand side in Olsen et al. (1995).

The equations for the (myo)fibroblasts (3)&(4) represent migration towards the
gradient of the signaling molecules (Postlethwaite et al. 1987; Boon et al. 2016; Dal-
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lon et al. 2001) by a minimal model for chemotaxis (Hillen and Painter 2008), and
cell density-dependent Fickian diffusion. The proliferation of the cells depends on the
signaling molecules (as an activator-inhibitor), and inhibition because of crowding
(Vande Berg et al. 1989). This is modeled by two similar logistic growth models. Fur-
ther, the equations represent differentiation of fibroblasts to myofibroblasts (Tomasek
et al. 2002), and apoptosis of the cells:

∂ N

∂t
+ ∂(Nv)

∂x
= − ∂

∂x

(
−DF (N + M)

∂ N

∂x
+ χF N

∂c

∂x

)
+

rF

[
1 + rmax

F c

aI I I
c + c

]
[1 − κF (N + M)]N 1+q − kF cN − δN N , (3)

∂ M

∂t
+ ∂(Mv)

∂x
= − ∂

∂x

(
−DF (N + M)

∂ M

∂x
+ χF M

∂c

∂x

)
+

rF

[ [1 + rmax
F ]c

aI I I
c + c

]
[1 − κF (N + M)]M1+q + kF cN − δM M . (4)

Here, DF represents (myo)fibroblast random diffusion and χF is the chemotactic
parameter that depends on both the binding and unbinding rate of the signaling
molecules with its receptor, and the concentration of this receptor on the cell surface
of the (myo)fibroblasts, rF is the cell division rate, rmax

F is the maximum factor of cell
division rate enhancement because of the presence of the signaling molecules, aI I I

c is
the concentration of the signaling molecules that cause half-maximum enhancement
of the cell division rate, κF (N + M) represents the reduction in the cell division rate
because of crowding, q is a fixed constant, kF is the signaling molecule-dependent
cell differentiation rate of fibroblasts into myofibroblasts, δN is the apoptosis rate of
fibroblasts and δM is the apoptosis rate of myofibroblasts.

An important difference between the two equations is that myofibroblasts only
proliferate in the presence of the signaling molecules. The form of the logistic growths
needs more justification. We do not always know the exact mechanism behind many
of the biological processes, let alone a quantitative description of such a biological
mechanism, and if others have developed a quantitative description, reliable estimates
of the values for parameters are often lacking. So Koppenol has avoided the use of
quadratic terms in the biological parts of themodels asmuch as possible, unless there is
really a good biological reason for this. The growth of the (myo)fibroblasts is therefore
taken to the power (1+q) to make the model consistent. The value of q is a necessary
consequence of the other values of the parameters of the model. Let therefore c, N , M
define the equilibria of the signaling molecules, the fibroblasts and the myofibroblasts,
respectively. If we take M = 0 and c = 0 as the kinetic equilibrium, then solving the
reactive term in Eq. (3) for δN yields:

δN = rF [1 − κF N ]N
q
. (5)

The equation for collagen (6) represents the production of collagen by (myo)
fibroblasts (Baum and Arpey 2006), enhancement of the secretion by signaling
molecules (Ivanoff et al. 2005), and proteolytic breakdown of collagen by MMPs
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(similar as for the signaling molecules):

∂ρ

∂t
+ ∂(ρv)

∂x
= kρ

[
1 +

[
kmax
ρ c

aI V
c + c

]]
[N + ηI M] − δρ

[N + ηI I M]ρ
1 + aI I

c c
ρ. (6)

Here, kρ is the collagen secretion rate, kmax
ρ is the maximum factor of secretion rate

enhancement because of the presence of the signaling molecules, aI V
c is the concen-

tration of the signaling molecules that cause the half-maximum enhancement of the
secretion rate of collagen and δρ is the degradation rate of collagen. A generic MMP
affects the reaction kinetics of the signaling molecules and collagen, and is assumed
always to be at a local equilibrium concentration. Reasoning for this modeling choice
has been to avoid even more complexity and additional unknown parameter values.

Let ρ define the equilibrium of collagen. Then, solving the reactive term in Eq. (6)
for ρ yields:

ρ = √
kρ/δρ. (7)

The equation for the displacement velocity (8) represents Cauchy stress by a visco-
elastic constitutive relation, and a body force that is proportional to the product of the
cell density of the myofibroblasts and a function of the concentration of collagen. This
visco-elastic constitutive relation follows the assumption from Ramtani (2004, 2002),
which incorporates the dependence of the Young’s modulus of skin on the density of
collagen:

ρt

(
∂v

∂t
+ 2v

∂v

∂x

)
= ∂

∂x

(
μ

∂v

∂x
+ E

√
ρε

)
+ ∂

∂x

(
ξ Mρ

R2 + ρ2

)
. (8)

Here, ρt represents the total mass density of the dermal tissues, μ is the viscosity,
E

√
ρ represents the Young’s modulus (stiffness), ξ is the generated stress per unit

cell density and the inverse of the unit collagen concentration, R is a constant. The
above equation represents the balance of momentum, and despite many studies neglect
inertial effects (the first two terms), we have kept the inertia terms in order to stay closer
to the underlying physics.

To incorporate a plastic deformation in the equation for the effective strain (9), we
use a tensor-based approach that is also commonly used in growth of tissues (such
as tumors). The ‘growth’ contribution, which with a negative sign models contraction
of the tissue, is assumed to be proportional to the product of the amount of effective
strain (see Hall 2008), the cell density of (myo)fibroblasts, and to be a function of the
collagen density. In particular, we assumed that the tensor for contraction depends on
the product of the concentration of the MMPs, the concentration of the chemokines
and the reciprocal of the collagen density. Taken together, the following equation
finalizes the presentation of the one-dimensional morphoelastic framework for skin
contraction:

∂ε

∂t
+ v

∂ε

∂x
+ (ε − 1)

∂v

∂x
= −ζ

[N + ηI I M]c
1 + aI I

c c
ε. (9)
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Here, ζ is the rate of morphoelastic change (i.e., the rate at which the effective strain
changes actively over time).

2.1 Initial and boundary conditions

We define the domain of computation byΩx,t and the boundary by ∂Ωx,t . The dimen-
sion x is in centimeters and t in days. Since we are interested in the model’s stability
around equilibria, we define the initial conditions by perturbations around equilibria,
where the values on the boundaries are the equilibrium values. Further, we impose the
following boundary conditions. For all x ∈ ∂Ωx,t and t ≥ 0:

c(x, t) = 0, N (x, t) = N , M(x, t) = 0, v(x, t) = 0. (10)

Regarding the equations for ε and ρ, an ordinary differential equation with derivatives
regarding time in terms of the material derivative is obtained. We see this if we write
the left-hand side of Eq. (6) as Dρ

Dt + ρ ∂v
∂x and Eq. (9) as Dε

Dt + ε ∂v
∂x = ∂v

∂x − αε. The
partial derivatives regarding space only involve the displacement velocity v. On the
boundaries, for v we use the boundary condition v = 0. Therefore, to specify the
solution of ε and ρ in the (open) domain Ω , it is unnecessary to specify any boundary
conditions (the characteristics in the x, t-plane are vertical). We note that in cases (not
currently) where characteristics would be directed out of the domain of computation,
imposing these boundary conditions would lead to failure of existence and continuity.
To summarize, we do not need any boundary conditions for ρ and ε.

3 Linear stability of themodel

In this section, we analyse the stability of the one-dimensional morphoelastic model
for skin contraction. First, we analyse linear stability of the continuous problem. The
stability conditions are formulated in terms of the input parameters.We do this analysis
in order to understand the a priori behavior of the solution. Since we cannot derive the
exact solution to the problem,we also analyse stability of the numerical approximation.
We consider the following linearised equations around equilibria (c, N , M, ρ, v, ε) =
(0, N , 0, ρ, 0, ε), where N , ρ, ε ∈ R≥0:

∂ ĉ

∂t
− Dc

∂2ĉ

∂x2
+ N

[
δcρ − kc

aI
c

]
ĉ = 0,

∂ N̂

∂t
− DF N

∂2 N̂

∂x2
+ χF N

∂2ĉ

∂x2
− rF N

q
((1 + q)(1 − κF N ) − κF N )N̂

+δN N̂ + rFκF N
1+q

M̂ − N

[
rFrmax

F

aI I I
c

[1 − κF N ]N
q − kF

]
ĉ = 0,

∂ M̂

∂t
− DF N

∂2M̂

∂x2
+ δM M̂ − kF Nĉ = 0,
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∂ρ̂

∂t
+ δρρ2(ηI I − ηI )M̂ − δρρ2N

(
kmax
ρ

aI V
c

+ aI I
c

)
ĉ + 2δρ Nρρ̂ = 0,

∂v̂

∂t
− μ

ρt

∂2v̂

∂x2
− E

√
ρ

ρt

∂ε̂

∂x
− Eε

2ρt
√

ρ

∂ρ̂

∂x
− ξρ

ρt (R2 + ρ2)

∂ M̂

∂x
= 0,

∂ε̂

∂t
+ (ε − 1)

∂v̂

∂x
+ ζεNĉ = 0, (11)

where ĉ, N̂ , M̂, ρ̂, v̂, and ε̂ are variations around the equilibria. Here we used that
kρ = δρρ2 must hold in equilibrium.

3.1 Stability of the continuous problem

We write the variations around the equilibria in terms of a complex Fourier series,

ĉ(x, t) = 1

|Ω|
∞∑

j=−∞
cc

j (t)e
2iπ j x , N̂ (x, t) = 1

|Ω|
∞∑

j=−∞
cN

j (t)e2iπ j x ,

M̂(x, t) = 1

|Ω|
∞∑

j=−∞
cM

j (t)e2iπ j x , ρ̂(x, t) = 1

|Ω|
∞∑

j=−∞
cρ

j (t)e
2iπ j x ,

v̂(x, t) = 1

|Ω|
∞∑

j=−∞
cv

j (t)e
2iπ j x , ε̂(x, t) = 1

|Ω|
∞∑

j=−∞
cε

j (t)e
2iπ j x , (12)

where |Ω| denotes the length of Ω and i represents the imaginary unit number.
Substitution of the variations (12) into the linearised equations (11), multiplication

by e−2iπkx , and integration over Ω gives

ċc
k(t) + Dc(2πk)2cc

k(t) + N

[
δcρ − kc

aI
c

]
cc

k(t) = 0,

ċN
k (t) + DF N (2πk)2cN

k (t) − χF N (2πk)2cc
k(t) + rFκF N

1+q
cM

k (t)

−rF N
q
((1 + q)(1 − κF N ) − κF N )cN

k (t) + δN cN
k (t)

−N

[
rFrmax

F

aI I I
c

[1 − κF N ]N
q − kF

]
cc

k(t) = 0,

ċM
k (t) + DF N (2πk)2cM

k (t) + δM cM
k (t) − kF Ncc

k(t) = 0,

ċρ
k (t) + δρρ2(ηI I − ηI )cM

k (t) − δρρ2N

[
kmax
ρ

aI V
c

+ aI I
c

]
cc

k(t)

+2δρ Nρcρ
k (t) = 0, (13)

for the chemical part of the model, and
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ċv
k (t) + μ

ρt
(2πk)2cv

k (t) − i
E

√
ρ

ρt
(2πk)cε

k(t) − i
Eε

2ρt
√

ρ
(2πk)cρ

k (t)

−i
ξρ

ρt (R2 + ρ2)
(2πk)cM

k (t) = 0,

ċε
k(t) + i(ε − 1)(2πk)cv

k (t) + ζεNcc
k(t) = 0, (14)

for the mechanical part of the model. The derivation of Eqs. (13) and (14) is given
in Appendix 1. Interchanging the second and third equation of (13), these equations
together with Eq. (14) are in the form y′ + Ay = 0 with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 0 0
A21 A22 0 0 0 0
A31 A32 A33 0 0 0
A41 A42 0 A44 0 0
0 A52 0 A54 A55 A56

A61 0 0 0 A65 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

We determine the eigenvalues of A by solving |A −λI | = 0 for λ, where I represents
the identity matrix. For this, we use the first four diagonal values as pivots and end up
with a 2-by-2 matrix containing the mechanical part of the model with determinant
λ2 − A55λ − A56A65. Hence the eigenvalues are the first four diagonal entries and

λ = 1
2 A55 ± 1

2

√
A2
55 + 4A56A65. Note that the system is linearly stable if and only if

the real part of the eigenvalues is non-negative, hence we need:

Dc(2πk)2 + N

[
δcρ − kc

aI
c

]
≥ 0,

DF N (2πk)2 − rF N
q
((1 + q)(1 − κF N ) − κF N ) + δN ≥ 0,

DF N (2πk)2 + δM ≥ 0,

2δρ Nρ ≥ 0,

(2πk)2μ

2ρt
± 1

2

√(
(2πk)2μ

ρt

)2

+ 4
(2πk)2E

√
ρ

ρt
(ε − 1) ≥ 0. (16)

The first two requirements imply that the model obtains stability for δc ≥ kc
aI

c ρ
and

combining the second requirement with Eq. (5), gives qδN ≤ κFrF N
1+q

(k = 0).
In addition, given the relation in (5), it must hold that δN > 0 and hence κF N < 1.
Further, the third and fourth eigenvalues meet the stability condition Re(λ(A)) ≥ 0
independent of the chosen values for the parameters given that the parameters are
positive. Finally, linear stability is obtained for ε ≤ 1, else a saddle point problem is
obtained if λ5,6 ∈ R. Note that this is also a physical requirement given that Eq. (9)
only holds for small strains. These last two eigenvalues are real-valued as long as

μ ≥
√

ρt E
√

ρ(1−ε)

π
(k = 1). If the last-mentioned condition is satisfied for k = 1, then

the eigenvalues are real-valued for other values of k. For all the other conditions, they
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hold for all k ∈ Z as well. The constant case k = 0 implies that these eigenvalues are
zero, which reflects the trivial case in which there are no dynamics. This also implies
that ε = 0 is a stable equilibrium state with real-valued eigenvalues. We summarize
these results in Theorem 1.

Theorem 1 Let {c, N , M, ρ, v, ε} satisfy equations (2)–(9). Let
δN = rF (1 − κF N )N

q
> 0 and ρ = √

kρ/δρ , then:

1. The equilibria (c, N , M, ρ, v, ε) = (0, N , 0, ρ, 0, ε), {N , ρ, ε} ∈ R>0, are lin-

early stable if and only if δcρ ≥ kc
aI

c
, and qδN ≤ κFrF N

1+q
and ε ≤ 1;

2. Given ε < 1, then the eigenvalues are real-valued if and only if

μ ≥
√

ρt E
√

ρ(1−ε)

π
(k = 1);

Remark 1 Note that δc ≥ kc
aI

c ρ
, for k = 0 (constant states). Hence, if constant perturba-

tions are stable, then wavelike perturbations are stable. In case δc is not large enough,
fast oscillating perturbations will vanish, while slow oscillating perturbations will not

vanish and can amplify. Further, if ε < 1 and if μ <

√
ρt E

√
ρ(1−ε)

π
, then convergence

from variations around ε will occur in a non-monotonic way over time because the
eigenvalues of the linearised dynamical system are not real-valued.

Next, we provide some quantitative examples that illustrate the stability claims.
Stability is warranted if there is a sufficient decay of the growth factor. Monotonicity
(of convergence) is obtained if there is sufficient damping in terms of viscous forces.

Example If we let δc = 5 × 10−4 cm6/(cells g day), kc = 4 × 10−13 g/(cells day),
aI

c = 10−8 g/cm3, and ρ = 0.1125 g/cm3, then we have δc = 5 × 10−4 ≥ 3.55 ×
10−4 = kc/(aI

c ρ). Hence, with these parameter values, wemeet the stability condition
for the signaling molecules. Further, if we let N = 104 < 106 = κ−1

F cells/cm3,

δN = 0.002/day, rF = 0.924 cm3q /(cellsq day) and q = log(δN )−log(rF (1−κF N )

log(N )
≈

−0.42, then we have qδN = −8.4 × 10−4 ≤ 1.9 × 10−4 = κFrF N
1+q

. Hence,
with these parameter values we meet the stability condition for the fibroblasts. Note
that there is only a distance of 1.45 × 10−4 cm6/(cells g day) between the left- and
right-hand side in the first condition, and a much larger distance of 1.03 × 10−3

between the left- and right-hand side in the second condition. In addition, substitution
of δN = rF (1 − κF N )N

q
into the second equation of (16), and solving for q with

k = 0 yields q ≤ κF N/(1 − κF N ) ≈ 0.01, yielding the upper bound δN < 1.004
(with the chosen parameter values). Given that the doubling time (DT) of fibroblasts
ranges from 18 to 20h (Alberts et al. 1989; Ghosh et al. 2007), and that the average
lifespan of fibroblasts varies between 40 and 70 population doublings (PD) (Ghosh
et al. 2007; Moulin et al. 2011), using the formula δN = (ln 2)/(PD×DT/24), yields
the save range 0.0119 ≤ δN ≤ 0.0231 for the fibroblast apoptosis rate.

3.2 Stability of the discrete problem

Stability of the continuous problem does not always automatically imply stability of
the (semi-) discrete counterpart of the problem. Therefore, we assess stability of the
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semi-discrete problem, which can assess stability of the full discrete system. Lax’
Equivalence Theorem states that a consistent, stable method converges. The global
truncation error tends to zero as the step size tends to zero (as h → 0), if the local
truncation error (i.e., the difference between the derivatives and difference ratios) tends
to zero as the step size is sent to zero.

A well-known way to assess numerical stability is by including Gershgorin’s Circle
Theorem.This theorem iswidely used andvery general in the sense that it is straightfor-
ward to generalize stability to general, non-equidistant meshes and to cases where the
input variables are non constant. However, in many examples, the eigenvalue bounds
obtained through Gershgorin’s Circle Theorem are less accurate than by the use of
the Von Neumann analysis, which is based on discrete Fourier analysis. Because of
the accuracy and also the ease of application of the Von Neumann analysis, we apply
this analysis on a uniform grid on the system of linearised equations with constant
coefficients (11). The Von Neumann stability analysis provides sufficient conditions
for numerical stability (Fletcher 1998). The finite difference method (FDM) gives:

λck = −Dc
ck−1 − 2ck + ck+1

h2 + N

[
δcρ − kc

aI
c

]
ck,

λNk = −DF N
Nk−1 − 2Nk + Nk+1

h2 + χF N
ck−1 − 2ck + ck+1

h2

+
[
δN − rF N

q
((1 + q)(1 − κF N ) − κF N )

]
Nk + rFκF N

1+q
Mk

−N

[
rFrmax

F

aI I I
c

[1 − κF N ]N
q − kF

]
ck,

λMk = −DF N
Mk−1 − 2Mk + Mk+1

h2 + δM Mk − kF Nck,

λρk = δρρ2(ηI I − ηI )Mk − δρρ2N

(
kmax
ρ

aI V
c

+ aI I
c

)
ck + 2δρ Nρρk, (17)

for the chemical part of the model, and

λvk = − μ

ρt

vk−1 − 2vk + vk+1

h2 − E
√

ρ

ρt

εk+1 − εk−1

2h

− Eε

2ρt
√

ρ

ρk+1 − ρk−1

2h
− ξρ

ρt (R2 + ρ2)

Mk+1 − Mk−1

2h
,

λεk = (ε − 1)
vk+1 − vk−1

2h
+ ζεNĉk, (18)

for the mechanical part of the model. Let

ck =
n−1∑
β=1

ĉβe−2πβkhi , Nk =
n−1∑
β=1

N̂βe−2πβkhi , Mk =
n−1∑
β=1

M̂βe−2πβkhi ,
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ρk =
n−1∑
β=1

ρ̂βe−2πβkhi , vk =
n−1∑
β=1

v̂βe−2πβkhi , εk =
n−1∑
β=1

ε̂βe−2πβkhi . (19)

Substitution of (19) in equations (17) and (18), subdivision by e−2πβkhi , and using
Euler’s formula and 2 − 2 cos(2πβh) = 4 sin2(πβh) results in

λĉβ = Dc

h2 4 sin
2(πβh)ĉβ + N

[
δcρ − kc

aI
c

]
ĉβ,

λN̂β = DF N

h2 4 sin2(πβh)N̂β − χF N

h2 4 sin2(πβh)ĉβ

+
[
δN − rF N

q
((1 + q)(1 − κF N ) − κF N )

]
N̂β

+rFκF N
1+q

M̂β − N

[
rFrmax

F

aI I I
c

[1 − κF N ]N
q − kF

]
ĉβ,

λM̂β =
[

DF N

h2 4 sin2(πβh) + δM

]
M̂β − kF Nĉβ,

λρ̂β = δρρ2(ηI I − ηI )M̂β − δρρ2N

[
kmax
ρ

aI V
c

+ aI I
c

]
ĉβ + 2δρ Nρρ̂β, (20)

for the chemical part of the model, and

λv̂β = μ

ρt h2 4 sin
2(πβh)v̂β + i

E
√

ρ

ρt h
sin(2πβh)ε̂β

+i
Eε

2ρt
√

ρh
sin(2πβh)ρ̂β + i

ξρ

2ρt (R2 + ρ2)h
sin(2πβh)M̂β,

λε̂β = −i
(ε − 1)

h
sin(2πβh)v̂β + ζεNĉβ, (21)

for themechanical part of the model. The derivation of equations (20) and (21) is given
in Appendix 2. These equations are in the form λz = Cz with the matrix C as in (15).
Hence, we found the eigenvalues in the same way as before. Note that the discrete
system is linearly stable if and only if the real part of the eigenvalues is non-negative,
hence we need:

Dc

h2 4 sin
2(πβh) + N

[
δcρ − kc

aI
c

]
≥ 0,

DF N

h2 4 sin2(πβh) − rF N
q
((1 + q)(1 − κF N ) − κF N ) + δN ≥ 0,

DF N

h2 4 sin2(πβh) + δM ≥ 0,

2δρ Nρ ≥ 0,
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2μ

ρt h2 sin
2(πβh)

±1

2

√(
μ

ρt h2 4 sin
2(πβh)

)2

+ 4
E

√
ρ

ρt h2 (ε − 1) sin2(2πβh) ≥ 0. (22)

To guarantee linear stability, the first requirement states δcρ ≥ kc
aI

c
. Given δN =

rF (1 − κF N )N
q
, the second requirement states qδN ≤ κFrF N

1+q
. The third and

fourth eigenvalues meet the stability condition independent of the chosen values for
the parameters given that the parameters are positive. Finally, for the discrete problem,
linear stability is also obtained for ε ≤ 1, and since

4
E

√
ρ

ρt h2 (1 − ε) sin2(2πβh) ≥ 0, (23)

stability is guaranteed for all h ∈ R>0. To conclude, we have demonstrated that if
the equilibrium is stable in the continuous problem, then it is also stable in the semi-
discrete problem.

There exists a consistency between the stability criteria of the continuous problem
and the stability criteria of the discrete problem. We show this consistency by writing
sin2(x) as a Taylor series. Substitution into the first and last equation in (22) yields:

Dc(2πβ)2 + O(h2) + N

[
δcρ − kc

aI
c

]
≥ 0,

(2πβ)2μ

2ρt
+ O(h2)

±1

2

√(
(2πβ)2μ

ρt
+ O(h2)

)2

+ 4
(2πβ)2E

√
ρ

ρt
(ε − 1) + O(h2) ≥ 0. (24)

Comparison to the first and last second equation of (16)

Dc(2πk)2 + N

[
δcρ − kc

aI
c

]
≥ 0,

(2πk)2μ

2ρt
± 1

2

√(
(2πk)2μ

ρt

)2

+ 4
(2πk)2E

√
ρ

ρt
(ε − 1) ≥ 0. (25)

yields a difference in eigenvalues of orderO(h2). Note that in the same way, a differ-
ence of order O(h2) follows for the second equations of (16) and (22).

Furthermore, the last equation in (22) implies that for real-valued eigenvalues, we
need

μ2

ρ2
t h4

42 sin4(πβh) ≥ 4
E

√
ρ

ρt h2 (1 − ε) sin2(2πβh).
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Writing sin2(2πβh) = 4 sin2(πβh) cos2(πβh), multiplication by ρ2
t h2

42 sin4(πβh)
gives

μ2 ≥ ρt h
2E

√
ρ(1 − ε)

cos2(πβh)

sin2(πβh)
.

Hence the numerical criterium

μ ≥ h

tan(πβh)

√
ρt E

√
ρ(1 − ε). (26)

For consistency, we have

lim
h→0

h

tan(πβh)
= lim

h→0

πβh

tan(πβh)
· 1

πβ
= 1

πβ

and h
tan(πβh)

≤ 1
πβ

, for β = 1, . . . , n − 1 (hn = |Ω|). Hence, for monotonic conver-
gence for β = 1, we see that the convergence is consistent with convergence of the
fully continuous model for h → 0. We summarise the results in Theorem 2.

Theorem 2 Let {c, N , M, ρ, v, ε} satisfy the semi-discrete spatial finite differences
version of Eqs. (2)–(9). Then stability in the fully continuous problem implies stability
in the semi-discrete formulation, regardless of the step-size. Furthermore, monotonic
convergence in the fully continuous problem implies monotonic convergence in the
semi-discrete problem formulation, regardless of the step-size.

Corollary 1 Let {c, N , M, ρ, v, ε} satisfy the semi-discrete spatial finite differences
version of Eqs. (2)–(9). Let δN = rF (1 − κF N )N

q
and ρ = √

kρ/δρ , then the
equilibria are unconditionally stable for the trapezoid rule and the Euler backward

method as long as δcρ ≥ kc/aI
c and qδN ≤ κFrF N

1+q
. Furthermore, the Euler

backward method is A-stable.

Remark 2 It is possible that the semi-discrete yields monotonic convergence, whereas
the continuous problem does not. The reason for this is that h

tan(πβh)
≤ 1

πβ
. Hence the

inequality for the continuous problem is sharper than for the semi-discrete problem.

4 Numerical method for validation

We approximate the solution to the model equations by the finite-element method
using linear basis functions. For more information about this method, we refer to
Van Kan et al. (2014). We multiply the Eqs. (2)–(9) by a test function ϕ(x, t) ∈
H1
0 , integrate over the domain of computation Ω (integration by parts), apply the

application of theGauss’ theorem, and apply theLeibniz–Reynold’s transport theorem.
To construct the basis functions, we subdivide the domain of computation into

n ∈ N sub-domains ep = [x p, x p+1] (i.e., the elements). Let Xh(t) = ⋃
ep the finite

element subspace and x j , j ∈ {1, . . . , n + 1} the vertices of the elements. We choose
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ϕi (x j , t) = δi j , i, j ∈ {1, . . . , n + 1} as the linear basis functions, where δi j denotes
the Kronecker delta function.

Note that the following holds for the chosen subspace Xh(t) ⊂ Ωx,t :
Dϕi
Dt = 0 for all

ϕi (Dziuk and Elliot 2007). The Galerkin equations are simplified using this property.
We solve the Galerkin equations using backward Euler time integration and we use a
monolithic approach with inner Picard iterations to account for the non-linearity of the
equations. To avoid loss of monotonicity (i.e. oscillations), we use the process called
mass lumping.

We approximate the local displacements by

ut+Δt
i � ut

t + Δtvt+Δt
i , (27)

with

u(x, 0) = 0, ∀x ∈ Ωx,0, (28)

the initial condition.

5 Results

To experimentally assess the convergence of the numerical method, we use a domain
of computation of 10 cm in which we model a 4 cm large wound. To account for the
steepness of the gradients of the initial fibroblast distribution, and signaling molecule
and collagen densities, we use an interval with a length of 1 cm over which the ini-
tial solution varies between its equilibrium and the initial wound density. Within the
wound, we assume that there are 2000 fibroblast cells/cm3, 10−8 g/cm3 signaling
molecules and 0.01125 g/cm3 collagen present. We model the gradient of the steep-
ness area by sine functions.We divide the domain of computation in n elements, where
n ∈ {41, 81, 161, 321, 641, 1281}. For each simulation, we define Δt = h2, where
h is the size of the elements, and simulate skin contraction for 1 day. In each simu-
lation, we report the densities of the variables (the solutions) and the relative surface
area of the wound (RSAW). The convergence order results are computed as follows.
Let limh→0 zh(x, 1) = z(x, 1) denote the true density of variable z on day 1 and
z0.0078(x, 1) =: zh/r the solution in the last simulation (i.e., the reference, which has
been computed using the highest numerical resolution). We approximate the errors
ε := ∫ |z − zh |dx of the solutions on the full domain of computation, and since we are
interested in the wound boundary’s displacement, we approximate the errors of the
solutions on the boundary of the wound in particular. For this, we use the following
error definition:

ε|41|(h) =
41∑

i=1

∣∣zh/r (xi,41) − zh(xi,41)
∣∣ , (29)
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Fig. 1 Numerical validation of convergence. Here, the contraction of a wound of 4 cm, with 1 cm steepness,
on a domain of 10 cm is simulated. Initially, in the wound there are 2000 fibroblast cells/cm3, 10−8 g/cm3

signaling molecules and 0.01125 g/cm3 collagen present. The values of the other parameters are shown in
Table 1. The left plot shows the logarithm of the step size versus the logarithm of the absolute displacement
velocity density error on the domain of computation on a fixed number of grid-points. The right plot shows
the logarithm of the step size h versus the logarithm of the absolute relative surface area error

where the grid-points xi,n correspond to the grid-points in the simulation with n = 41
nodes. This error is a variant of the L1-norm in which we evaluate the solution to the
equations on the same grid-points.

Figure 1 shows some results for error ε|41|, where we show the relations of the
errors with the element size h for the displacement velocity, and the error of the
relative surface area of the wound.

From the left plot, we see that the absolute error of the displacement velocity
decreases consistently as h becomes smaller. The average slope of this graph is 2.1882,
hence the order of convergence is about O(h2). From the right plot, we see that the
absolute error of the relative surface area of the wound decreases consistently as h
becomes smaller. The average slope of this graph is 2.2092, showing an order of
convergence about O(h2) as well. We note that all averaged slopes of the logarithms
of the absolute errors of the variables and the relative surface area of the wound show
an overall consistent convergence of order O(h2). One finds these slopes in Table 2.

To validate the model’s stability, we perturb the initial conditions around equilibria
using sine functions, and we vary the parameters δc and μ. We use n = 500 elements
to divide the domain of computation between 0 and 1, which represents half a domain
of the modeled skin on which we perform computations. This is possible because of
the symmetry of the model. We fix all parameters except for δc and μ. Table 1 shows
the values of the fixed parameters. When not stated otherwise, for time integration,
we use a step of Δt = 5 × 10−1 days.

For the initial conditions, we vary the number of waves k using three levels (1, 5 and
10). We perturb the initial condition for the fibroblasts and collagen by using a sine
function with amplitude 10 cells/cm3 and 10−2 g/cm3, respectively. This is possible
because the equilibrium distribution of the fibroblasts and the equilibrium density of
collagen are non-zero. For the initial condition of the myofibroblasts and the signaling
molecules, we use uniform splineswith 2k+1 knots. On the boundaries, the knots have
zero value, and in between the values are 3 and 6cells/cm3 for the myofibroblasts, and

123



Stability of a one-dimensional morphoelastic model for… Page 17 of 35    24 

Table 1 Overview of the parameters used for the simulations. Shown are the symbols, values, dimensions
and references. Here TW denotes that the value of the parameter is estimated in the study, and NC denotes
that the value of the parameter is a consequence because of the chosen values for other parameters

Symbol Value Dimension Reference

Dc 2.88 × 10−3 cm2/day Haugh (2006)

DF 10−7 cm5/(cells day) Sillman et al. (2003)

χF 2 × 10−3 cm5/(g day) Murphy et al. (2012)

kc 4 × 10−13 g/(cells day) Olsen et al. (1995)

rF 9.24 × 10−1 cm3q /(cellsq day) Alberts et al. (1989) & Gosh et al. (2007)

rmax
F 2 – Strutz (2001)

kρ 7.6 × 10−8 g/(cells day) [NC, Eq. (7)]

kmax
ρ 10 – Olsen et al. (1995)

aI
c 10−8 g/cm3 Olsen et al. (1995)

aI I
c 2 × 108 cm3/g Overall et al. (1991)

aI I I
c 10−8 g/cm3 Grotendorst (1992) & Olsen et al. (1995)

aI V
c 10−9 g/cm3 Roberts et al. (1986)

ηI 2 – Rudolph and Vande Berg (1991)

ηI I 5 × 10−1 – [TW]

kF 1.08 × 107 cm3/(g day) Desmoulière et al. (1993)

κF 10−6 cm3/cells Vande Berg et al. (1989)

q −4.151 × 10−1 – [NC, Eq. (5)]

δc 5 × 10−4 cm6/(cells g day) Olsen et al. (1995)

δN 2 × 10−2 /day Olsen et al. (1995)

δM 6 × 10−2 /day Koppenol et al. (2017b)

δρ 6 × 10−6 cm6/(cells g day) Koppenol et al. (2017b)

N 104 cells/cm3 Olsen et al. (1995)

M 0 cells/cm3 Olsen et al. (1995)

c 0 g/cm3 Koppenol et al. (2017b)

ρ 1.125 × 10−1 g/cm3 Olsen et al. (1995)

ρt 1.09 g/cm3 Wrobel et al. (2009)

μ 102 (N day)/cm2 [TW]

E 2.1 × 102 N/((g cm)0.5) [TW]

ξ 4.4 × 10−2 (N g)/(cells cm2) Maskarinec et al. (2009) & Wrobel et al. (2002)

R 9.95 × 10−1 g/cm3 [TW]

ζ 4 × 102 cm6/(cells g day) [TW]

0.5 × 10−15 and 2 × 10−15 g/cm3 for the signaling molecules. This way we ensure
that the myofibroblast distribution and signaling molecule density values are positive.
The initial amplitudes of the displacement velocity and effective strain are 0.05 and
0.5, respectively.

For stability, Theorem 1 requires that δc ≥ kc
aI

c ρ
in case k = 0. Further, given

that the equilibrium density of the effective strain is less than 1, eigenvalues are real-
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Table 2 Overview of the averaged slopes of the errors of the variables for different element sizes h on the
full domain of computation and on the boundary of the wound. The columns show slopes for the different
errors, and the rows show the averaged slopes for the variables. The last column shows the averaged slopes
of the rows. The reference is the solution in which h = 0.0078. For completeness, Appendix 3 shows other
error definitions

Variable ε|41| εL1 εL2 εboundar y Averaged

N 2.1843 2.0160 1.9701 2.1850 2.0889

M 2.1735 2.1203 2.0961 2.1892 2.1448

c 2.1900 2.0964 2.0675 2.0929 2.1117

ρ 2.1911 2.0626 1.9211 2.1708 2.0864

v 2.1882 2.1891 2.1911 2.1189 2.1718

ε 2.2283 2.2301 2.2521 2.2403 2.2377

valued if and only if μ ≥ √
ρt E

√
ρ(1 − ε0)/π in case k = 1. We choose to vary the

signaling molecule decay rate δc using three levels (2×10−4, 3×10−4 and 5×10−4)
cm6/(cells g day), where the first two values are chosen such that such that the stability
condition is not met. We vary the viscosity parameter μ using two levels (1 and 100)
(N day)/cm2. The first value is chosen such that the corresponding eigenvalue is not
real-valued. Videos corresponding to the shown figures can be found in the online
resources. The values of the fixed parameters can be found in Appendix 3.

In the first simulation, we take δc = 5 × 10−4 cm6/(cells g day) and μ = 100 (N
day)/cm2 and simulate for 400 days. We note that for these values, the stability criteria
are met. Figure 2 shows the results.

We see that the displacement velocity density rearranges to negative values. As the
density moves below zero, the amplitude of the wave initially increases, after which
the density moves gradually toward the equilibrium v = 0. The effective strain density
does not change signs. The values on the boundaries of the domain of computation ini-
tially move away from the equilibrium, where all other values gradually move toward
the equilibrium ε ≈ −0.05. Because of the boundary condition, the signalingmolecule
density is fixed at equilibrium on the left boundary of the domain of computation. We
see that on the right boundary, the density increases in the first days, after which it
decreases to the equilibrium c = 0 g/cm3. Because of the negative values of the dis-
placement velocity density after 12h, the mesh moves to the left. This is most clear
in the fibroblast plot. During the simulation, the fibroblast distribution displacements
to the left, and values above the equilibrium gradually move toward the equilibrium
N = 104 cells/cm3. The fibroblast distribution on the right boundary starts by moving
away from the equilibrium as the fibroblasts differentiate to myofibroblasts because
of the increased density of signaling molecules. After the signaling molecule density
is almost zero around the right boundary on day 30, the fibroblast distribution moves
toward the equilibrium, reaching it fully around day 400. We see the same effect in
the myofibroblast plot, where the distribution moves to the left, and moves gradually
toward the equilibrium M = 0 cells/cm3. Only the values on the right boundary move
away from the equilibrium in the first 10 days, because of the differentiated fibroblasts.
The plot of collagen is like the plot of the effective strain, although the effect of the
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Fig. 2 Evolution of distributions and densities of themodeled variables for δc = 5×10−4 cm6/(cells g day)
and μ = 100 (N day)/cm2. Table 1 shows the values of the other parameters. The plots on the upper left
and right, the middle left and right, and the lower left and right show the displacement velocity, the effective
strain, the signaling molecules, the fibroblasts, the myofibroblasts, and collagen, respectively

local displacements seems larger for collagen, and for collagen it takes much longer
before the density reaches the equilibrium ρ = 0.1125 g/cm3. Overall, the model
behaves absolutely stable given these stable parameter values.

From a biological perspective, minor variations in the number of (myo) fibroblast
cells, and in the density of signaling molecules and collagen, already initialises wound
healing in which contraction appears for 100 days. If there is a disruption in the distri-
bution of collagen, the skin recovers this almost immediately. However, this process
takes longer than for signaling molecules, for example. Further, local displacements
in the skin are in the direction toward the center of the wound or in the direction of
the boundary of the wound.

Next, in the second, third and fourth (k = 1, 5, 10) simulations we take δc =
2 × 10−4 cm6/(cells g day) and μ = 100 (N day)/cm2 and simulate for 1200 days
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(not shown). While running these simulations, at first the constituents (almost) reach
their equilibria. For k = 1, the signaling molecule density reaches the equilibrium
around day 250, the fibroblast distribution changes towards equilibrium until day
650, the myofibroblast distribution reaches equilibrium around day 390, and the col-
lagen density around day 650 as well. Further, both the displacement velocity and
effective strain density reach equilibria within 15 days. However, from day 660, the
signalingmolecule density increases and starts decreasing around day 753. The fibrob-
last distribution decreases after day 650 and starts increasing around day 745 again.
The myofibroblast distribution also increases, which happens around day 638, and
starts decreasing again around day 704. Shortly after the collagen density seems to
reach equilibrium around day 650, the density explodes and does not start decreas-
ing. Because of singular matrices, we ended this simulation. The Picard iterations did
not converge and because of NaN’s in all the solutions, there were no plots available
anymore. We see the same where k = 5, 10.

Theoretically, if the human body or an external factor reduces the decay rate of
signaling molecules too much, then initially, this does not cause the skin to rup-
ture. However, after a few years, the secretion of signaling molecules can increase
significantly, causing such problems. Present fibroblasts fully differentiate into myofi-
broblasts. The scar will undergo a severe contraction, and collagen will cause tissue
to rupture because of excessive production. We believe that the human body protects
against the lowering of the decay rate of signaling molecules to this extent, in order
to prevent such a non-realistic occurrence.

Next, in the fifth, sixth and seventh (k = 1, 5, 10) simulations we take δc = 5 ×
10−4 cm6/(cells g day) and μ = 1 (N day)/cm2 and simulate for 600 days. Note that
the signaling molecule decay rate stability condition is met and that we focus on the
effect of complex eigenvalues in the mechanical part of the model. Initially, we use a
time step of Δt = 0.01, and we change that to Δt = 1 after 2 days, and to Δt = 2
after 50 days. Figure 3 shows the results for k = 1.

We see that all the constituents reach equilibria within 600 days, after which the
distributions and densities do not change anymore. Initially, the displacement velocity
density oscillates around zero, moving the mesh to the left and right, and the effective
strain density oscillates around the (new) equilibrium. Shortly after the start of the
simulation, the wave in the displacement velocity density fades out. Further, within
approximately 15min, the amplitude increases by a factor 10 above the equilibrium
value, and by a factor 25 below the equilibrium value. Shortly after that, around
approximately 1.5h, the amplitude of the displacement velocity density has increased
by a factor 45, after which the amplitude decreases until zero. Both the displace-
ment velocity density and effective strain density reach the equilibria within a few
days, the displacement velocity density reaching the equilibrium v = 0 first. Note
that these results both confirm the non-monotonic convergence from the variations
around ε (see Theorem 1 and Theorem 2). We see the mesh also moving in the plots of
the constituents. While the displacement velocity density oscillates, the distributions
and densities of the constituents move from the right to the left and back, until the
distributions and densities move gradually towards the equilibria. First, the signaling
molecules density reaches equilibrium around day 60. About twice that time, around
120 days, the myofibroblast distribution reaches equilibrium. The fibroblast distri-
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Fig. 3 Evolution of distributions and densities of themodeled variables for δc = 5×10−4 cm6/(cells g day)
and μ = 1 (N day)/cm2. Table 1 shows the values of the other parameters. The plots on the upper left and
right, the middle left and right, and the lower left and right show the displacement velocity, the effective
strain, the signaling molecules, the fibroblasts, the myofibroblasts, and collagen, respectively

bution grows as follows. After a few days, when the displacement velocity density
reaches equilibrium, the fibroblast distribution above the equilibrium decreases, and
the fibroblast distribution below the equilibrium increases, except for the fibroblast
distribution around the right boundary of the domain of computation, representing the
center of the portion of skin that wemodel. The number of fibroblasts around this right
boundary decreases until about 23 days, after which it increases towards equilibrium.
The collagen density changes calmly: the density above the equilibrium moves down-
ward to the equilibrium, and the density below the equilibrium moves upward to the
equilibrium.

Where k = 5 (figures not shown), the results show that increasing the number
of waves makes the initial increase in amplitudes in the displacement velocity den-
sity smaller. Again, initially this amplitude increases around 15min, after which it
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decreases while the density oscillates around the equilibrium. Fading out the waves
takes more time, here about 4.8h, compared to 1.5h where k = 1, and the local dis-
placements are much smaller. The other densities and distributions change similarly
to where k = 1, except for some features. Equilibria are reached around day 112, 210,
and 600 for the signaling molecule density, the myofibroblast distribution, the fibrob-
last distribution and collagen density, respectively, the first two later than where k = 1.
The waves in the fibroblast distribution disappear faster and the distribution moves
faster toward the equilibrium. The smaller local displacements are clearly visible in
the plots of the constituents. We have seen that the signaling molecule density shifts
to the left between 0 and 3h, and to the right between 3 and 8h. Further, the density
decreases gradually toward the equilibrium, and the waves have already started fading
out on day 4.

Comparing the results from the simulation where k = 10 (figures not shown)
with the simulations where k = 1, 5, we conclude the waves fade out faster for
faster oscillating perturbations and that initially, the distributions and densities of the
constituents and the effective strain move faster toward the equilibria. In addition, the
initial increase in amplitude in the displacement velocity density is larger for smaller
k. Taken these numerical results together, we can confirm that the one-dimensional
morphoelastic framework for skin contraction is stable given that δc ≥ kc/(aI

c ρ).
From a biological perspective, a large value of the viscosity mimics an extensive

amount of damping, and this damping term makes the equation for the displacement
velocity more ‘diffusive’. A diffusion equation satisfies a maximum principle, we
can only assume the extremes on the boundary of the domain or initially, unless the
solution is constant. This implies that the solutionmust behavemoremonotonically for
large viscosities, shown by the upper left plot in Fig. 2. A small value in the viscosity
makes the equation for the displacement velocity less diffusive, so that the boundary
of the domain does not bound the extremes or initially, shown by the upper left plot
in Fig. 3. Here, the modeled medium is less resistant to the rate of deformation, and
given the initial fluctuation in the displacement velocity density, this results not only
in a back-and-forth movement in the displacement, also a direct effect in the stress
(effective strain) that is proportional to the shear deformation.

As stated before, the model can numerically be unstable when δc < kc/(aI
c ρ).

However, we have seen that sometimes for small signaling molecule decay rates not
too far below the stated lower boundary, themodel still converges. In the last simulation
we set the number of waves with k = 10, andwe take δc = 3×10−4 cm6/(cells g day)
and μ = 100 (N day)/cm2. Figures 4 and 5 show some results of the simulation of
1000 days. These show that the model converges, and highlight what happens in this
case.

First, everything seems calm until day 60 (for example, see the left plot in Fig. 4).
The displacement velocity density (figure not shown) reaches equilibrium within 10
days, and the effective strain density around day 20. However, the initial perturbed
waves are still visible. Initially, the signaling molecule density decreases, but on
approximately day 9 the upper bound of the density surpasses the initial upper bound
(see the right plot in Fig. 4). The signaling molecule density keeps increasing until
day 215, affecting the (myo)fibroblast distributions and the collagen density, shown
in Fig. 5.
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Fig. 4 (early) Evolution of myofibroblast distribution and signaling molecule density for δc = 3 × 10−4

cm6/(cells g day) and μ = 100 (N day)/cm2 and k = 10. Table 1 shows the values of the other parameters.
The left and right plots show the myofibroblasts and the signaling molecules, respectively

Fig. 5 Evolution of distributions and densities of the constituents for δc = 3×10−4 cm6/(cells g day) and
μ = 100 (N day)/cm2 and k = 10. Table 1 shows the values of the other parameters. The plots on the upper
left and right, and lower left and right, show the signaling molecules, the fibroblasts, the myofibroblasts
and collagen, respectively

The initial perturbed waves in the (myo)fibroblast distribution fade out within 4.5
days. Both distributions move toward the corresponding equilibria 104 cells/cm3 and
approximately 0.16 cells/cm3 (hence no cells), respectively. However, on days 63.5
and 65, for the fibroblasts andmyofibroblasts respectively, the distributionsmove away
from the equilibria. Only the collagen density is not affected by this setup until day
120, after which this density increases.

After the signaling molecule density decreases from day 215 on, the myofibroblast
distribution, the collagen density and the fibroblast distribution keep moving away
from their equilibria until days 230, 250 and 260, respectively. From the plot for
collagen, it takesmore time to fade out the initial perturbedwaves. From thesemoments
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(i.e., the days where maxima and minima are reached), the distributions and densities
of the constituents oscillate around a new equilibrium. At the end of the simulation of
1000 days the newequilibria in the center of themodeled skin are 4.245×10−11 g/cm3,
9723 cells/cm3, 76 cells/cm3, and 0.1348 g/cm3 for the signaling molecules, the
fibroblasts, the myofibroblasts, and collagen, respectively.

From a biological perspective, if there is an enhanced expression of signaling
molecules because of their reduced decay, a wound may heal properly at first. How-
ever, over time, persistent signalingwill lead to over-expressionof signalingmolecules,
resulting in excessive scarring and contraction. The excessive deposition of collagen is
reminiscent of keloids and hypertrophic scars, characterised by thicker collagen bun-
dles (Tuan andNichter 1998). In addition,myofibroblasts are abundant in hypertrophic
scars. Since aberrant TGF-β signaling in myofibroblasts is associated with the forma-
tion of hypertrophic scars (Zhang et al. 2020), it is likely that such a situation exists
precisely because of a lower decay rate of signaling molecules. Further, hypertrophic
scars are not immediately visible after injury. These scars develop in 1 to 2 months
after injury, whereas keloids developmonths to years after the initial injury, supporting
our results. Experimental evidence suggests that fibroblasts from hypertrophic scars
might represent a hyper-proliferative phenotype that can be reverted once the stimula-
tion, such as the overabundance of growth factors, is lifted (Tuan and Nichter 1998).
We verified this by setting the signaling molecule density to equilibrium on day 1000
and saw that this directly initiates the change of the (myo)fibroblast distributions and
collagen density toward the healthy equilibria. First, themyofibroblasts disappear after
100 days, then 350 days later, the collagen density reaches equilibrium, and finally 100
days after that, the fibroblast distribution reaches equilibrium. Hence, according to our
simulation, it takes about 1.5 year to reverse the process. To conclude this Section, the
model is stable under the condition that the decay rate of the signaling molecules is
not too far decreased to values below the stated bound δc ≥ kc/(aI

c ρ).

6 Conclusion and discussion

In this study, we investigate the stability of the one-dimensional model for intensity
of contraction and the formation of contractures in burn scars. The model presented
in this paper is the one-dimensional version of the morphoelastic model developed by
Koppenol. Thismodel is based on the theory and derivations developed byHall (2008).
In this model, four constituents are incorporated: fibroblasts, myofibroblasts, signaling
molecules, and collagen. Furthermore, we use equations for the displacement of the
dermal layer, the displacement velocity of the dermal layer, and the effective Eulerian
strain present in the dermal layer.

We presented a stability analysis for the model, for both the fully continuous and
the semi-discrete (where the spatial derivatives have been replaced with differences)
version of the problem. A surprising result was that we could derive the eigenvalues of
the matrix involved in the stability analytically. This is possible because the linearised
equations (11) leave out other variables after accounting for the equilibria values. As
a result, we could say that three of the six eigenvalues meet the stability constraints
independent of the chosen value for the parameters, given that the parameters involved
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are positive and realistic. We have shown that the equilibrium distribution of the
effective strain should should meet ε ≤ 1, and that the parameter that represents
the viscosity of skin should be greater or equal to a factor containing the total mass
density of dermal tissues, the Young’s Modulus and the equilibrium distribution of
the effective strain, to have monotonically behavior of the solution. Note that the
stability criterium of the effective strain is also a physical requirement, from Eq. (9).
Further, another important stability constraint states themodel is stable on the condition
that the decay rate of the signaling molecules is greater than a factor concerning
the maximum net secretion rate of the signaling molecules, the concentration of the
signaling molecules that causes half-maximum net secretion rate of the signaling
molecules, and the collagen equilibrium density.

We have shown that there is a consistency between the eigenvalues of the dis-
crete model which we used for the uniform grid based finite element approximation,
and the eigenvalues of the continuous model which is the ‘true’ model. We see
that if the equilibrium solution to the continuous problem is stable, then the equi-
librium to the semi-discrete problem is also stable under the current discretization
(that is, if we use the right discretization method). The convergence rate towards
the equilibrium is determined by the obtained eigenvalues of the system. In case
μ ≥ h

tan(πβh)

√
ρt E

√
ρ(1 − ε), convergence in the semi-discrete system is monotonic

for β = 1 and consistent for h → 0. For monotonic convergence in the continu-
ous system it must hold that μ ≥ 1

π

√
ρt E

√
ρ(1 − ε) ≥ h

tan(πβh)

√
ρt E

√
ρ(1 − ε),

β = 1, . . . , n − 1. Hence, monotonic convergence in the continuous system implies
monotonic convergence in the semi-discrete system. Conversely, convergence could
be monotonic in the semi-discrete system and not in the continuous system. We have
assessed the convergence of the numerical method experimentally, in which the order
of convergence is of order O(h2). Since the difference between the eigenvalues from
the continuous and semi-discrete problem is of the order O(h2), the convergence
rates towards the equilibrium differ by an order O(h2). This is in accordance with
the expectations since the discretization method should have local truncation errors of
order O(h2).

Using numerical simulations, we validated the stability constraints that we derived
from the analysis. In casewemeet stability criteria, themodel behaves absolutely stable
given these stable parameter values. Because of the initial perturbation, it takes some
time to rearrange the distribution of (myo)fibroblasts and the densities of signaling
molecules and collagen. First, the signaling molecule density increases in the center of
themodeled skin, after which local fibroblasts differentiate tomyofibroblasts, decreas-
ing the local fibroblast distribution and increasing the local myofibroblast distribution.
Because of the initial perturbation in the displacement velocity density, there are local
displacements. Because the displacement velocity density rearranges such that all val-
ues have the same sign, the mesh moves in one particular direction. Both the collagen
density and effective strain density gradually move toward the equilibrium. We con-
clude that a small perturbation of order O(10−15) g/cm3 in the signaling molecule
density and a few cells in the (myo)fibroblast distributions is already responsible for
initializing wound healing that takes more than a year time.
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In case we do not meet the signaling molecule stability condition δc ≥ kc/(aI
c ρ),

the model can numerically be unstable. Initially, the model seems stable. The sig-
naling molecule density and myofibroblast distribution seem to reach equilibria first,
after which the fibroblast distribution and the collagen density seem to reach equi-
libria as well. Shortly after this has happened, the signaling molecule density or
the myofibroblast distribution increase first, after which the fibroblast distribution
drops and the collagen density explodes. Although the signaling molecule density and
(myo)fibroblast distributions move back towards the equilibria, the collagen density
does not, and therefore the numerical method does not converge. Because of the lack
of convergence in the inner Picard iterations, the numerical method cannot attain a
solution.

We confirmed the model is stable if the eigenvalues are not real-valued. If the vis-
cosity is low, the figures show that the distributions and densities of the variables
reach their equilibrium densities. Though, in this case convergence is not monotonic,
but oscillates as seen in Fig. 3. Besides this conclusion, we point out that the larger
the number of initial perturbed waves, the faster the equilibria are reached and the
faster the initial oscillations fade out. Because of an initial increase in amplitude in,
and the oscillating behavior of, the displacement velocity density, the mesh moves
shortly after the start of the simulation back and forth to the left and right. After the
displacement velocity density stabilises, the distributions and densities of the con-
stituents move gradually toward the equilibria. In conclusion, we need real-valued
eigenvalues to prevent the model to increase the amplitudes of the initial perturbations
in the displacement velocity density. However, this does not induce instability in terms
of equilibria.

If we have δc < kc/(aI
c ρ) not too far below the bound, then the signaling molecules

move away from equilibrium and affect the distributions of the fibroblasts and the
myofibroblasts. All the constituents move away from the expected equilibria and oscil-
late around new equilibria. The collagen density still shows the initial waves of the
perturbations around day 260, while these waves already vanished in the other densi-
ties. We have linked this situation to real-life scar occurrences, namely hypertrophic
scars and keloids. By reverting the stimulation ofmatrix production and differentiation
to myofibroblasts by setting the signaling molecule density to (healthy) equilibrium,
we have provided experimental evidence, from a mathematical point of view, that
a disturbance in (myo)fibroblast cell and collagen densities can indeed be reverted.
Taken together, the numerical model fully reproduces the stability constraints.

It would interest to incorporate hypertrophy to this one-dimensional morphoelastic
model (Koppenol et al. 2017b), since hypertrophic scars can also develop contractures
and elevate above healthy skin levels. The beauty of the one-dimensional model is the
speed, hence incorporation of hypertrophy will quickly yield new results and therefore
insight. However, validating results from such amodel is a challenge since hypertrophy
depends highly on angiogenesis, which nowadays seems impossible to test in vitro.

An interesting direction is to model the boundaries of the wounded area as elastic
springs, sincewith the current setting the boundary of the domain of computation needs
to be sufficiently far away. We are planning on incorporating pulling and stretching
forces because of the growth of children and motility. A first attempt to incorporate the
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growth of children is to add terms to the right-hand side of Eq. (8) representing body
forces. Another attempt is to incorporate forces by adding new boundary conditions.

Considering the modeling choices, we could keep a linear growth rate and intro-
ducing a tune-able quadratic cell death term for fitting equilibrium, instead of with
the constant q in equation (3). We can also easily consider that myofibroblasts in
response to TGF-β move slower than fibroblasts (Thampatty and Wang 2006), and
that in vitro myofibroblasts can differentiate back to fibroblasts under the influence of
Prostaglandin E2 (PGE2) (Garrison et al. 2013).

If we study the stability of the multi-dimensional framework, we have to deal
with the skewed displacement velocity gradient tensor. We do not expect any limiting
problems in the model’s chemistry, to which we can easily apply the usual Fourier
transforms. Though we can prove that the strain tensor remains symmetric if the initial
strain is symmetric, the analysis of stability of the mechanical equations for higher
dimensionality can be a challenge because of the skewed parts in the evolution equa-
tion. The symmetry result simplifies the stability analysis. From a computational point
of view, the challenge is to optimize calculations in 2D and 3D because of the growing
number of elements, arbitrary geometries, and artificial negative concentrations. Paral-
lel computation, the use of isogeometric analysis (IGA) and flux correction techniques
can provide a solution for this.
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Appendices

Appendix 1: The derivation of the stability constraints for the continuous problem

First we substitute the variations (12) into the linearised equations (11). This yields
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ċc

j (t)e
2iπ j x + Dc

|Ω|
∞∑

j=−∞
(2π j)2cc

j (t)e
2iπ j x

+ N

|Ω|
[
δcρ − kc

aI
c

] ∞∑
j=−∞

cc
j (t)e

2iπ j x = 0,

1

|Ω|
∞∑

j=−∞
ċN
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ċM

j (t)e2iπ j x + DF N

|Ω|
∞∑

j=−∞
(2π j)2cM

j (t)e2iπ j x

+ δM

|Ω|
∞∑

j=−∞
cM

j (t)e2iπ j x − kF N

|Ω|
∞∑

j=−∞
cc

j (t)e
2iπ j x = 0,

1

|Ω|
∞∑

j=−∞
ċρ
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for the chemical part of the model, and
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for the mechanical part of the model. Multiplication by e−2iπkx gives
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for the mechanical part of the model. Integration over Ω gives the result, hence
Eqs. (13) and (14).

Appendix 2: The derivation of the stability constraints for the discrete problem

Substitution of the variations (19) in finite differences Eqs. (17) and (18) gives

λck = − Dc

h2

n−1∑
β=1

ĉβ

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

+N

[
δcρ − kc

aI
c

] n−1∑
β=1

ĉβe−2πβkhi ,
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λNk = − DF N

h2

n−1∑
β=1

N̂β

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

+χF N

h2

n−1∑
β=1

ĉβ

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

+
[
δN − rF N

q
((1 + q)(1 − κF N ) − κF N )

] n−1∑
β=1

N̂βe−2πβkhi

+rFκF N
1+q

n−1∑
β=1

M̂βe−2πβkhi

−N

[
rFrmax

F

aI I I
c

[1 − κF N ]N
q − kF

] n−1∑
β=1

ĉβe−2πβkhi ,

λMk = − DF N

h2

n−1∑
β=1

M̂β

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

+δM

n−1∑
β=1

M̂βe−2πβkhi − kF N
n−1∑
β=1

ĉβe−2πβkhi ,

λρk = δρρ2(ηI I − ηI )

n−1∑
β=1

M̂βe−2πβkhi

−δρρ2N

(
kmax
ρ

aI V
c

+ aI I
c

) n−1∑
β=1

ĉβe−2πβkhi + 2δρ Nρ

n−1∑
β=1

ρ̂βe−2πβkhi ,

for the chemical part of the model, and

λvk = − μ

ρt h2

n−1∑
β=1

v̂β

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

− E
√

ρ

ρt2h

n−1∑
β=1

ε̂β

{
e−2πβ(k+1)hi − e−2πβ(k−1)hi

}

− Eε

2ρt
√

ρ2h

n−1∑
β=1

ρ̂β

{
e−2πβ(k+1)hi − e−2πβ(k−1)hi

}

− ξρ

ρt (R2 + ρ2)2h

n−1∑
β=1

M̂β

{
e−2πβ(k+1)hi − e−2πβ(k−1)hi

}
,

λεk = (ε − 1)

2h

n−1∑
β=1

v̂β

{
e−2πβ(k+1)hi − e−2πβ(k−1)hi

}
+ ζεN

n−1∑
β=1

ĉβe−2πβkhi ,
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for the mechanical part of the model.
This must be true for arbitrary {cβ, Nβ, Mβ, ρβ, vβ, εβ}, hence each factor fol-

lowing {cβ, Nβ, Mβ, ρβ, vβ, εβ} in the sum should be zero. Subdivision by e−2πβkhi

gives

λck = − Dc

h2 ĉβ

{
e2πβhi − 2 + e−2πβhi

}
+ N

[
δcρ − kc

aI
c

]
ĉβ,

λNk = − DF N

h2 N̂β

{
e2πβhi − 2 + e−2πβhi

}

+χF N

h2 ĉβ

{
e2πβhi − 2 + e−2πβhi

}

+
[
δN − rF N

q
((1 + q)(1 − κF N ) − κF N )

]
N̂β

+rFκF N
1+q

M̂β − N

[
rFrmax

F

aI I I
c

[1 − κF N ]N
q − kF

]
ĉβ,

λMk = − DF N

h2 M̂β

{
e2πβhi − 2 + e−2πβhi

}
+ δM

n−1∑
β=1

M̂β − kF Nĉβ,

λρk = δρρ2(ηI I − ηI )M̂β − δρρ2N

(
kmax
ρ

aI V
c

+ aI I
c

)
ĉβ + 2δρ Nρρ̂β,

for the chemical part of the model, and

λvk = − μ

ρt h2 v̂β

{
e2πβhi − 2 + e−2πβhi

}
− E

√
ρ

ρt2h
ε̂β

{
e−2πβhi − e2πβhi

}

− Eε

2ρt
√

ρ2h
ρ̂β

{
e−2πβhi − e2πβhi

}

− ξρ

ρt (R2 + ρ2)2h
M̂β

{
e−2πβhi − e2πβhi

}
,

λεk = (ε − 1)

2h
v̂β

{
e−2πβhi − e2πβhi

}
+ ζεNĉβ,

for the mechanical part of the model. Using Euler’s formula and 2 − 2 cos(2πβh) =
4 sin2(πβh) gives the result, hence Eqs. (20) and (21).

Appendix 3: Absolute errors in convergence

The averaged errors in Table 2 show that the order of convergence in the numerical
method is O(h2). Shown are the averaged slopes of the errors that are defined in (29)
and by:

εL1(h) = h
n∑

i=1

∣∣zh/r (xi,n) − zh(xi,n)
∣∣ ,
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εL2(h) =
√√√√h

n∑
i=1

(
zh/r (xi,n) − zh(xi,n)

)2
,

where the grid-points xi,n correspond to the grid-points in the simulation with n nodes.

References

Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1989) The Molecular Biology of The Cell, 2nd
edn. Garland Publishing, Oxford

Barocas VH, Tranquillo R (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: the inter-
play among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J
Biomech Eng 119(2):137–145. https://doi.org/10.1115/1.2796072

Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) PERSPECTIVE ARTICLE:
Growth factors and cytokines in wound healing. Wound Repair Regener 16(5):585–601. https://doi.
org/10.1111/j.1524-475x.2008.00410.x

Baum CL, Arpey CJ (2006) Normal cutaneous wound healing: clinical correlation with cellular and molec-
ular events. Dermatol Surg 31(6):674–686. https://doi.org/10.1111/j.1524-4725.2005.31612

BoonW,Koppenol D, Vermolen F (2016) Amulti-agent cell-basedmodel for wound contraction. J Biomech
49(8):1388–1401. https://doi.org/10.1016/j.jbiomech.2015.11.058

Dallon J, Sherrat J, Maini P (1999) Mathematical modelling of extracellular matrix dynamics using discrete
cells: fiber orientation and tissue regeneration. J Theor Biol 199(4):449–471. https://doi.org/10.1006/
jtbi.1999.0971

Dallon J, Sherrat J, Maini P (2001) Modeling the effects of transforming growth factor-β on extracellular
matrix alignment in dermal wound repair. Wound Repair Regener 9(4):278–286. https://doi.org/10.
1046/j.1524-475X.2001.00278.x

DesmoulièreA,GeinozA,Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-
smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing
cultured fibroblasts. J Cell Biol 122(1):103–111. https://doi.org/10.1083/jcb.122.1.103

Dziuk G, Elliot C (2007) Finite elements on evolving surfaces. IMA J Numer Anal 27(2):262–292. https://
doi.org/10.1093/imanum/drl023

Enoch S, Leaper D (2008) Basic science of wound healing. Surgery (Oxford) 26(2):31–37. https://doi.org/
10.1016/j.mpsur.2007.11.005

Fletcher CAJ (1998) Computational techniques for fluid dynamics 1. Springer, Berlin. https://doi.org/10.
1007/978-3-642-58229-5

GarrisonG,Huang SK,OkunishiK, Scott JP, PenkeLRK, ScruggsAM, Peters-GoldenM (2013)Reversal of
myofibroblast differentiation by prostaglandin E2. Am J Respir Cell Mol Biol 48(5):550–558. https://
doi.org/10.1165/rcmb.2012-0262oc

Ghosh K, Pan Z, Guan E, Ge S, Liu Y, Nakamura T, Ren XD, Rafailovich M, Clark RA (2007) Cell
adaptation to a physiologically relevantECMmimicwith different viscoelastic properties.Biomaterials
28(4):671–679. https://doi.org/10.1016/j.biomaterials.2006.09.038

Goriely A, Amar MB (2006) On the definition and modeling of incremental, cumulative, and continuous
growth laws inmorphoelasticity.BiomechModelMechanobiol 6(5):289–296. https://doi.org/10.1007/
s10237-006-0065-7

Gosh K, Pan Z, Guan E, Ge S, Nakamura Lio Y, T., Ren, Z.D., Rafailovich, M., Clark, R. (2007) Cell
adaptation to a physiologically relevantECMmimicwith different viscoelastic properties.Biomaterials
28(4):671–679. https://doi.org/10.1016/j.biomaterials.2006.09.038

Grotendorst G (1992) Chemoattractants and growth factors. In: Cohen I, Diegelmann R, Lindblad W (eds)
Wound healing: biochemical and clinical aspects, Chap. 15, 1st edn. W.B. Saunders, Philidelphia, pp
237–246

Hall CL (2008) Modelling of some biological materials using continuum mechanics. Ph.D. thesis, Queens-
land University of Technology

Haugh JM (2006) Deterministic model of dermal wound invasion incorporating receptor-mediated sig-
nal transduction and spatial gradient sensing. Biophys J 90(7):2297–2308. https://doi.org/10.1529/
biophysj.105.077610

123

https://doi.org/10.1115/1.2796072
https://doi.org/10.1111/j.1524-475x.2008.00410.x
https://doi.org/10.1111/j.1524-475x.2008.00410.x
https://doi.org/10.1111/j.1524-4725.2005.31612
https://doi.org/10.1016/j.jbiomech.2015.11.058
https://doi.org/10.1006/jtbi.1999.0971
https://doi.org/10.1006/jtbi.1999.0971
https://doi.org/10.1046/j.1524-475X.2001.00278.x
https://doi.org/10.1046/j.1524-475X.2001.00278.x
https://doi.org/10.1083/jcb.122.1.103
https://doi.org/10.1093/imanum/drl023
https://doi.org/10.1093/imanum/drl023
https://doi.org/10.1016/j.mpsur.2007.11.005
https://doi.org/10.1016/j.mpsur.2007.11.005
https://doi.org/10.1007/978-3-642-58229-5
https://doi.org/10.1007/978-3-642-58229-5
https://doi.org/10.1165/rcmb.2012-0262oc
https://doi.org/10.1165/rcmb.2012-0262oc
https://doi.org/10.1016/j.biomaterials.2006.09.038
https://doi.org/10.1007/s10237-006-0065-7
https://doi.org/10.1007/s10237-006-0065-7
https://doi.org/10.1016/j.biomaterials.2006.09.038
https://doi.org/10.1529/biophysj.105.077610
https://doi.org/10.1529/biophysj.105.077610


   24 Page 34 of 35 G. Egberts et al.

Hillen T, Painter KJ (2008) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217.
https://doi.org/10.1007/s00285-008-0201-3

Ivanoff J, Talme T, Sundqvist KG (2005) The role of chemokines and extracellular matrix components in
the migration of T lymphocytes into three-dimensional substrata. Immunology 114(1):53–62. https://
doi.org/10.1111/j.1365-2567.2004.02005.x

Koppenol D (2017) Biomedical implications frommathematical models for the simulation of dermal wound
healing. Ph.D. thesis, Delft University of Technology

Koppenol DC, Vermolen FJ (2017) Biomedical implications from a morphoelastic continuum model for
the simulation of contracture formation in skin grafts that cover excised burns. Biomech Model
Mechanobiol 16(4):1187–1206. https://doi.org/10.1007/s10237-017-0881-y

Koppenol D, Vermolen F, Koppenol-Gonzalez G, Niessen F, van Zuijlen P, Vuik K (2017a) A mathematical
model for the simulation of the contraction of burns. J Math Biol 75(1):1–31. https://doi.org/10.1007/
s00285-016-1075-4

Koppenol D, Vermolen F, Niessen F (2017b) A mathematical model for the simulation of the formation
and the subsequent regression of hypertrophic scar tissue after dermal wounding. Biomech Model
Mechanobiol 16(1):15–32. https://doi.org/10.1007/s10237-016-0799-9

LindnerD, ZietschC,Becher PM, SchulzeK, SchultheissHP, TschöpeC,WestermannD (2012)Differential
expression of matrix metalloproteases in human fibroblasts with different origins. Biochem Res Int
2012:1–10. https://doi.org/10.1155/2012/875742

Maskarinec S, Franck C, Tirell D, Ravichandran G (2009) Quantifying cellular traction forces in three
dimensions. Proc Natl Acad Sci 106(52):22108–22113. https://doi.org/10.1073/pnas.0904565106

Mast BA, Schultz GS (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic
wounds. Wound Repair Regener 4(4):411–420. https://doi.org/10.1046/j.1524-475x.1996.40404.x

McDougall S, Dallon J, Sherrat J, Maini P (2006) Fibroblast migration and collagen deposition during
dermal wound healing: mathematical modelling and clinical implications. Philos Trans R Soc AMath
Phys Eng Sci 364(1843):1385–1405. https://doi.org/10.1098/rsta.2006.1773

Menon SN, Hall CL, McCue SW, McElwain DLS (2017) A model for one-dimensional morphoelasticity
and its application to fibroblast-populated collagen lattices. BiomechModelMechanobiol 16(5):1743–
1763. https://doi.org/10.1007/s10237-017-0917-3

Moulin V, Mayrand D, Laforce-Lavoie A, Larochelle S, Genest H (2011) Regenerative medicine and tissue
engineering–cells and biomaterials, Chapter 8. IntechOpen, Rijeka, pp 195–208

Murphy K, Hall C, Maini P, McCue S, MacElwain D (2012) A fibrocontractive mechanochemical model of
dermal wound closure incorporating realistic growth factor kinetics. Bull Math Biol 74(5):1143–1170.
https://doi.org/10.1007/s11538-011-9712-y

Olsen L, Sherratt J, Maini P (1995) A mechanochemical model for adult dermal wound contraction and the
permanence of the contracted tissue displacement profile. J Theor Biol 177(2):113–128. https://doi.
org/10.1006/jtbi.1995.0230

Overall C, Wrana J, Sodek J (1991) Transcriptional and post-transcriptional regulation of 72-kda Gelati-
nase/Type IV collagenase by transforming growth factor-beta in human fibroblasts. J Biol Chem
266(21):14061–14071

Postlethwaite AE, Keski-Oja J, Moses HL, Kang AH (1987) Stimulation of the chemotactic migration of
human fibroblasts by transforming growth factor beta. J Exp Med 165(1):251–256. https://doi.org/10.
1084/jem.165.1.251

Ramtani S (2004) Mechanical modelling of cell/ECM and cell/cell interactions during the contraction of
a fibroblast-populated collagen microsphere: theory and model simulation. J Biomech 37(11):1709–
1718. https://doi.org/10.1016/j.jbiomech.2004.01.028

Ramtani S et al (2002) Remodeled-matrix contraction by fibroblasts: numerical investigations. Comput Biol
Med 32(4):283–296. https://doi.org/10.1016/S0010-4825(02)00018-5

Roberts A, Sporn M, Assoian R, Smith J, Roche N, Wakefield L, Heine U, Liotta L, Falanga V, Kehrl J,
Fauci A (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in
vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci 83(12):4167–4171. https://
doi.org/10.1073/pnas.83.12.4167

Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J
Biomech 27(4):455–467. https://doi.org/10.1016/0021-9290(94)90021-3

RudolphR,VandeBerg J (1991)Themyofibroblast inDupuytren’s contracture. JHandClinics 7(4):683–692
(Discussion 693-4)

123

https://doi.org/10.1007/s00285-008-0201-3
https://doi.org/10.1111/j.1365-2567.2004.02005.x
https://doi.org/10.1111/j.1365-2567.2004.02005.x
https://doi.org/10.1007/s10237-017-0881-y
https://doi.org/10.1007/s00285-016-1075-4
https://doi.org/10.1007/s00285-016-1075-4
https://doi.org/10.1007/s10237-016-0799-9
https://doi.org/10.1155/2012/875742
https://doi.org/10.1073/pnas.0904565106
https://doi.org/10.1046/j.1524-475x.1996.40404.x
https://doi.org/10.1098/rsta.2006.1773
https://doi.org/10.1007/s10237-017-0917-3
https://doi.org/10.1007/s11538-011-9712-y
https://doi.org/10.1006/jtbi.1995.0230
https://doi.org/10.1006/jtbi.1995.0230
https://doi.org/10.1084/jem.165.1.251
https://doi.org/10.1084/jem.165.1.251
https://doi.org/10.1016/j.jbiomech.2004.01.028
https://doi.org/10.1016/S0010-4825(02)00018-5
https://doi.org/10.1073/pnas.83.12.4167
https://doi.org/10.1073/pnas.83.12.4167
https://doi.org/10.1016/0021-9290(94)90021-3


Stability of a one-dimensional morphoelastic model for… Page 35 of 35    24 

Sillman A, Quang D, Farboud B, Fang K, Nuccitelli R, Isseroff R (2003) Human dermal fibroblasts do not
exhibit directional migration on collagen i in direct-current electric fields of physiological strength.
Exp Dermatol 12(4):396–402. https://doi.org/10.1034/j.1600-0625.2002.120406.x

Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev
Biol 17(1):463–516. https://doi.org/10.1146/annurev.cellbio.17.1.463

Strutz F (2001) Tgf-β1 induces proliferation in human renal fibroblasts via induction of basic fibrob-
last growth factor (fgf-2). Kidney Int 59(2):579–592. https://doi.org/10.1046/j.1523-1755.2001.
059002579.x

Thampatty BP, Wang JHC (2006) A new approach to study fibroblast migration. Cell Motil Cytoskelet
64(1):1–5. https://doi.org/10.1002/cm.20166

Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002)Myofibroblasts andmechano-regulation
of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363. https://doi.org/10.1038/
nrm809

Tranquillo R, Murray JD (1992) Continuum model of fibroblast-driven wound contraction: inflammation-
mediation. J Theor Biol 158(2):135–172. https://doi.org/10.1115/1.2796072

Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med
Today 4(1):19–24. https://doi.org/10.1016/s1357-4310(97)80541-2

Van Kan J, Segal A, Vermolen F (2014) Numerical methods in scientific computing, 2nd edn. Academic
Press, Delft

Vande Berg J, Rudolph R, Poolman W, Disharoon D (1989) Comparative growth dynamics and actin
concentration between cultured humanmyofibroblasts fromgranulatingwounds and dermal fibroblasts
from normal skin. Lab Invest 61(5):532–538

Wang Y (2018) Burn injury: challenges and advances in burn wound healing, infection, pain and scarring.
Adv Drug Deliv Rev 123:3–17. https://doi.org/10.1016/j.addr.2017.09.018

WHO(2018)World health organisation, fact sheet, burns, 06-03-2018. https://www.who.int/en/news-room/
fact-sheets/detail/burns. Accessed on 04 Dec 2019

Wrobel L, Fray T, Molloy J, Adams J, Armitage M, Sparrow J (2002) Contractility of single human dermal
myofibroblasts and fibroblasts. Cell Motil Cytoskelet 52(2):82–90. https://doi.org/10.1002/cm.10034

Wrobel L, Fray T, Molloy J, Adams J, Armitage M, Sparrow J (2009) Anex a: Table a.1. Annals of the
ICRP Publication 110 39(2), 48–51

Young A,McNaught C (2011) Contractility of single human dermal myofibroblasts and fibroblasts. Surgery
(Oxford) 29(10):475–479. https://doi.org/10.1016/j.mpsur.2011.06.011

Zhang T, Wang XF, Wang ZC, Lou D, Fang QQ, Hu YY, Zhao WY, Zhang LY, Wu LH, Tan WQ (2020)
Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate
keloid and hypertrophic scar formation. Biomed Pharmacother 129: https://doi.org/10.1016/j.biopha.
2020.110287

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1034/j.1600-0625.2002.120406.x
https://doi.org/10.1146/annurev.cellbio.17.1.463
https://doi.org/10.1046/j.1523-1755.2001.059002579.x
https://doi.org/10.1046/j.1523-1755.2001.059002579.x
https://doi.org/10.1002/cm.20166
https://doi.org/10.1038/nrm809
https://doi.org/10.1038/nrm809
https://doi.org/10.1115/1.2796072
https://doi.org/10.1016/s1357-4310(97)80541-2
https://doi.org/10.1016/j.addr.2017.09.018
https://www.who.int/en/news-room/fact-sheets/detail/burns
https://www.who.int/en/news-room/fact-sheets/detail/burns
https://doi.org/10.1002/cm.10034
https://doi.org/10.1016/j.mpsur.2011.06.011
https://doi.org/10.1016/j.biopha.2020.110287
https://doi.org/10.1016/j.biopha.2020.110287

	Stability of a one-dimensional morphoelastic model for post-burn contraction
	Abstract
	1 Introduction
	2 The mathematical model
	2.1 Initial and boundary conditions

	3 Linear stability of the model
	3.1 Stability of the continuous problem
	3.2 Stability of the discrete problem

	4 Numerical method for validation
	5 Results
	6 Conclusion and discussion
	Acknowledgements
	Appendices
	Appendix 1: The derivation of the stability constraints for the continuous problem
	Appendix 2: The derivation of the stability constraints for the discrete problem
	Appendix 3: Absolute errors in convergence

	References




