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Closed formulas are presented for the field in the lens pupil for which the longitudinal electric
component at the focal point is larger than any other focused field with the same power. The full-
width-at-half-maximum of the squared amplitude of the maximum longitudinal component is 15% to 30%
less than that of the classical Airy spot.
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Introduction.—When a linearly polarized plane wave is
focused by a diffraction-limited lens of small numerical
aperture, the intensity distribution in the focal plane is the
normal Airy pattern. When the lens has high numerical
aperture, the rotation of polarization must be accounted for
using the vectorial diffraction theory of Ignatowsky [1]
(published already in 1919), and Richards and Wolf
[2,3], and then the vectorial Airy pattern is obtained. The
dominant field component in the focal plane of the vecto-
rial Airy pattern is as expected parallel to the incident
polarization. But for large numerical aperture the longitu-
dinal component of the electric field in the focal plane
becomes quite substantial, although it vanishes exactly at
the focal point itself.

Radially polarized beams are locally linearly polarized,
where the electric field in the entrance pupil is pointing in
the radial direction with respect to the optical axis. When
such a beam is focused, the longitudinal component attains
its maximum at the focal point. Moreover, for the same
numerical aperture, the distribution of the longitudinal
component can be considerably narrower than the Airy
pattern [4–7]. A small and appropriately shaped focused
spot is essential in many applications such as optical
recording, photolithography, and microscopy. New photo-
resists have already been proposed that bleach in response
to only one field component [8]. Materials with molecules
with fixed absorption dipole moments were applied in [9]
to probe field components individually. When this compo-
nent is the longitudinal component, a higher resolution can
thus be obtained than with the classical Airy pattern. The
narrow longitudinal component has also attracted a lot of
interest in areas such as the manipulation of single mole-
cules and particles, and material processing [9–12].

Often the amplitude distribution in the pupil plane of the
radially polarized beam is taken to be a doughnut shape or
a ring mask function [4,5]. But this does not give the largest
possible longitudinal component. In this Letter we present
closed formulas for the electric field in the lens pupil for
which the longitudinal electric field component in the focal
point is larger than for any other focused field with the

same power. The optimum pupil field is found to be
radially polarized; however, the amplitude is not of dough-
nut type but increases monotonically with distance to the
optical axis in a way that depends on the numerical aper-
ture. This pupil field is easy to realize using, for example,
liquid crystal-based devices [13–16]. The full-width-at-
half-maximum of the squared amplitude of the maximum
longitudinal component is, depending on the numerical
aperture, 15% to 30% less than that of the classical Airy
spot.

We first determine the plane wave amplitudes of the op-
timum field in the focal region, without considering the
lens. Then we derive the field in the pupil of the lens which,
according to the vectorial diffraction theory of Ignatovsky
and Richards and Wolf, yields the optimum field in the
focal region. The advantage of this procedure is that the
obtained optimum plane wave amplitudes are independent
of the vectorial diffraction model of the lens. With respect
to a coordinate system (x, y, z), we consider a time-
harmonic electromagnetic field E�r; t� � Re�E�r�e�i!t�,
H �r; t� � Re�H�r�e�i!t�, (with!> 0) in a homogeneous
unbounded medium in z > 0 with real refractive index n.
The plane wave expansion of the field consists of propa-
gating plane waves only, with numerical aperture NA:
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� 2�=�0 the
wave number in vacuum, and where NA � n sin#max,
with #max the maximum angle between the wave vectors
and the positive z direction. Note that apart from the
limitation on the numerical aperture, these plane wave
expansions are completely arbitrary. We shall use spherical
coordinates k, #, ’ in k space. The unit vectors of the
(positively orientated) basis are
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k̂ � sin# cos’x̂� sin# sin’ŷ � cos#ẑ;

#̂ � cos# cos’x̂� cos# sin’ŷ � sin#ẑ;

’̂ � � sin’x̂� cos’ŷ:

Since the electric field is free of divergence, the electric
field of the plane waves have only # and ’ components:

 A �’;#� � A#�’;#�#̂ � A’�’;#�’̂: (3)

The plane wave expansion (1) and (2) can then be written
as integrals over # and ’:
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We may assume that Ez�0� is real (if it is not real, apply a
time shift to make it real). In the optimization problem,
Ez�0� is considered as a functional of A# . By using
Plancherel’s formulas, the total time-averaged power flow
in the z direction through a plane z � const can be ex-
pressed as an integral over contributions of plane waves,
i.e., as an integral over kx and ky. By changing to integra-
tion variables #, ’ we get
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We shall write P�A#; A’� for the power flow. It is indepen-
dent of the plane z � const, as should be in a medium
without losses.

The optimization problem is to find the plane wave
amplitudes A � A##̂ � A’’̂ for which the amplitude of
the longitudinal electric field at the origin is maximum
among all fields with the same mean power flow P0, i.e.,

 maximize Ez�0�;

under the constraint P�A#; A’� � P0:

Since the object functional Ez�0� depends linearly on the
plane wave amplitudes and the energy constraint functional
P is quadratic in these amplitudes, the optimization prob-
lem is a classical quadratic problem. The Lagrange multi-
plier rule therefore yields a system of linear equations for

the optimum plane wave amplitudes. By using this system
of equations the optimum plane wave amplitudes can be
expressed in the Lagrange multiplier � and one finds

 A#�#;’� � �
tan#

�
; A’�#;’� � 0: (8)

The Lagrange multiplier is obtained by substituting (8) into
the constraint P�A#; A’� � P0. This gives
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The maximum value of Ez�0� is
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FIG. 1. (a) Normalized jEzj2 of the optimum field in the
z � 0 plane and (b) normalized electric energy distribution
jE�r�j2 in the focal plane of an x-polarized focused plane
wave. The total power flow is the same for both fields and
NA=n � 0:9.
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By substituting (8) into (4) and (5) and computing the
integrals over ’, we find for the optimum electromagnetic
field in a point r with cylindrical coordinates %, ’, z:

 E �r� � �2�i
n2

��2
0

�g1;2
1 �%; z�%̂� ig

0;3
0 �%; z�ẑ�; (11)
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where %̂, ’̂, and ẑ are the unit vectors of the cylindrical
coordinate system:

 %̂ � cos’x̂� sin’ŷ; ’̂ � � sin’x̂� cos’ŷ;

and where g�;�l is defined by
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(13)

The time-averaged Poynting vector is
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Since g�;�l are independent of ’, so is Ez. Furthermore,
for all points in the (focal) z � 0 plane, the Poynting vector
is parallel to the z direction. In Fig. 1(a) the (normalized)
jEzj2 is shown in the z � 0 plane for the field with maxi-
mum longitudinal component at the origin. For comparison
the normalized total electric energy density: jE�x; y; 0�j2 �
jEx�x; y; 0�j2 � jEy�x; y; 0�j2 � jEz�x; y; 0�j2, in the focal

z � 0 plane of a focused x-polarized plane wave [1–3] is
shown in Fig. 1(b). The fields have the same total power
flow in the z direction. In contrast to jEz�x; y; 0�j2, the
energy density of the focused linear polarized plane wave
has elliptical shape. Cross sections along the short and long
axes of the ellipse are shown in Fig. 2 forNA=n � 0:9. The
longitudinal component has smaller FWHM but also
stronger secondary maxima. In Fig. 3 the FWHM of the
optimum jEz�x; y; 0�j2 is compared to the FWHM in the
x and y directions of the electric energy density of the
focused x-polarized plane wave. Depending on the value of
NA, the FWHM of the optimum longitudinal component is
15%–30% smaller than that of the energy density of the
focused plane wave. Interestingly, the FWHM of the opti-
mum longitudinal component is for NA=n � 1 almost
identical to that of the longitudinal component in [5],
obtained by focusing a radially polarized beam using a
ring mask function (with radius 90% of the total pupil).
However, the side lobes are higher at the cost of the central
maximum compared to our longitudinal component. This
is of course not surprising because the longitudinal com-
ponent in [5] was not optimized for a high maximum on the
optical axis.
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for the Airy spot of the x-polarized focused plane wave, for
NA=n � 0:9.
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focused. The total flow of power is the same for both fields.
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In Fig. 4 the maximum longitudinal component (10) as a
function of NA=n is compared with jEx�0�j of the focused
x-polarized plane wave with the same power. Ez�0�max is
for most NA smaller than jEx�0�j but not much and for
NA � n, Ez�0�max is even larger than jEx�0�j.

By applying the vector diffraction theory for focusing by
a lens of high NA [1–3,17], the electric field Ep in the lens
pupil is determined which, according to this theory, yields
the field with optimum longitudinal component in the focal
plane. The field in a pupil point with polar coordinates %p,
’p, is linked to the field of the plane wave with angles #,’
such that

 %p � f sin#; ’p � ’� �; (14)

where f is the focal distance. The electric field in the pupil
is then [18]:
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k0n
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�����������
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1=4
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The factor
�����������
cos#
p

guarantees conservation of energy. The
optimum pupil field is thus rotational symmetric, linearly
polarized in the radial direction and all points of the pupil
are in phase. The amplitude is an increasing function of the
radial coordinate %p � fNA=n. A snapshot of the electric
field in the pupil is shown in Fig. 5 for NA=n � 0:9. In
Fig. 6 the intensity in the pupil (i.e., jE%j2) is shown as a
function of %p for several values of NA=n. The optimum
pupil field can be realized by using three spatial light
modulators in series.

In conclusion, we presented closed formulas for the
pupil field which, for given power, yields the largest pos-
sible longitudinal electric field component in the focal
point of the lens. The pupil field is radially polarized and
the electric amplitudes increases with distance to the opti-
cal axis. Depending on the numerical aperture, the distri-
bution of the longitudinal component is 15%–30%
narrower than the classical Airy pattern. In combination
with a polarization sensitive resist, the new longitudinal
spot thus yields considerable enhancement of resolution.
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FIG. 5 (color online). The electric field in the pupil that, when
focused, yields the field with maximum longitudinal component
at the focal point for NA=n � 0:9.
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