
 
 

Delft University of Technology

Fast C-shape grasping for unknown objects

Lei, Qujiang; Meijer, Jonathan; Wisse, Martijn

DOI
10.1109/AIM.2017.8014068
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings 2017 IEEE International Conference on Advanced Intelligent Mechatronics

Citation (APA)
Lei, Q., Meijer, J., & Wisse, M. (2017). Fast C-shape grasping for unknown objects. In M. Buss, & O.
Sawodny (Eds.), Proceedings 2017 IEEE International Conference on Advanced Intelligent Mechatronics :
AIM 2017 (pp. 509-516). IEEE. https://doi.org/10.1109/AIM.2017.8014068

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/AIM.2017.8014068
https://doi.org/10.1109/AIM.2017.8014068


  

                                 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.1. The goal of this paper. 

                                 

Table I. The five fastest grasping algorithms from literature study 
Grasping 

algorithms Baumgartl [1] Eppner [2] Lin [3] Ten Pas [4] Suzuki [5] 

Year 2012 2013 2014 2015 2016 

Hardware four cores with 
2.66GHz 

single core  
with 2.2GHz unknown four cores 

with 3.5GHz 
four cores 

with 2.5GHz 
Time 34ms 3s 2.352s 2.7s 4.2s 

Input RGB images A Partial 
point cloud 

A Partial 
point cloud 

A Partial 
point cloud 

A Partial 
point cloud 

Robot 
hand 

A parallel 
gripper 

A Barrett 
Hand 

A parallel 
gripper 

A parallel 
gripper 

A parallel 
gripper 

 

  

Abstract—Grasping of unknown objects with neither 
appearance data nor object models given in advance is very 
important for robots that work in an unfamiliar environment. 
In this paper, we propose an original fast grasping algorithm for 
unknown objects. The geometry of the under-actuated gripper 
is approximated as a C-shape, which is used to fit the point 
cloud of the target object to find a suitable grasp. In order to 
make the robot arm quickly execute the grasp found by the 
grasping algorithm, we made a comparison of the popular 
online motion planners. The motion planner with the highest 
solved runs, lowest computing time and the shortest path length 
is chosen to execute the grasp action. Simulations and 
experiments on a UR5 robot arm and an under-actuated gripper 
are used to examine the performance of the grasping algorithm, 
and successful results are obtained. 

I. INTRODUCTION 

A.  What is the goal of this paper? 

The goal of this paper is to design a fast and general 
grasping algorithm for unknown objects. The outline of this 
paper is shown as Fig.1. Specifically, this grasping algorithm 
is specially designed for under-actuated grippers shown as (a), 
explanation about why we choose such kind of under-actuated 
grippers will be given latter. After a suitable grasp is found as 
(b) shows, a comparison of motion planners (shown as (c)) is 
conducted in order to quickly execute the grasp. According to 
the current trend of motion planning, we compared all the 
motion planners available in MoveIt!. The motion planner 
with the highest solved runs, lowest computing time and the 
shortest path length is chosen to execute the grasp found by the 
grasping algorithm. An example of grasp execution is shown 
as (d). 

B.  Existing fastest grasping algorithms for unknown objects 

Table I shows the five fastest grasping algorithms of 
unknown objects from literature study. These fast grasping 
algorithms in table I from left to right are in chronologic order. 
We can find some interesting things: Except [2], the other four 
fast grasping algorithms are designed for parallel grippers. 
Only [1] uses RGB images as input of the grasping algorithm, 
the rest four grasping algorithms employ a partial point cloud 
as input. The above two findings inspired us to create a more 
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general and faster grasping algorithm for simple grippers by 
using a partial point cloud as input.  

[1] is a pretty fast grasping algorithm, which uses Hough 
transformation to find the edges of objects in a 2D image. A 
check has been done to see if the edges are long enough to be 
grabbed by the gripper and another check is followed to see if 
the parallel edges suit the gripper’s width. [3] uses the contact 
area of the grasping rectangle to find suitable grasps. If the 
contact area is too small, the grasp is likely to fail, and then a 
better grasp need to be picked. [5] uses principal axis and 
centroid of the object to synthesize a grasp. The above three 
fast grasping algorithms have a common character, that is, 
they all use the normal of the table plane as the grasp 
approaching direction, which can accelerate grasp searching. 
However, this kind of simplification cannot be widely used, 
because grasping from top is not applicable for most objects, 
for example, objects in fridges or shelves. 

In the work of Eppner [2], the point cloud is transformed 
into shape primitives (cylinder, disk, sphere and box). A 
pre-grasp (configuration of the hand) is chosen according to 
those shape primitives. This kind of shape primitives can 
greatly reduce the scope of grasp searching to achieve a fast 
grasping algorithm. However, this may result in lots of grasp 
uncertainty, which may lead to grasp failure.  

Ten Pas [4] tries to fit the shape of the parallel gripper on 
the point cloud of the objects. They use a detailed 
segmentation to be able to pick objects from dense clutters. 
This algorithm is very efficient. However, the parallel gripper 
is not good at flexibility comparing with dexterous hands and 
under-actuated grippers.  

To sum up, in this paper, we aim to design a more general 
and faster grasping algorithm than the above five fast grasping 
algorithms, Meanwhile, in order to make our grasping 
algorithm more flexible, we will adopt under-actuated 
grippers. 
C.  Why we choose under-actuated gripper? 

As we said before, among the five fast grasping 
algorithms, four of them choose to use parallel grippers 
because parallel grippers have simpler geometry shape and 
they are easier to control. One more thing is that parallel 
grippers are cheap so that their grasping algorithms can be 
widely used. But all of them ignore a kind of excellent robot 
hands, that is, under-actuated grippers. 
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Fig.3. The outline of fast C-shape grasping for unknown objects. (a) shows an 
example of an unknown object. (b) shows a robot arm equipped with a 3D 
camera and an under-actuated gripper. (c) and (d) show the inspiration of this 
paper, the under-actuated gripper is simplified as a C-shape. (e) shows an 
example grasp found by our algorithm. In order to choose a suitable online 
motion planner for grasp execution, we made a comparison of existing online 
motion planners in (f). A good example of motion path found by the motion 
planner is shown in (g). (h) demonstrates the grasp found in (e) is executed. 

 

 
Table II shows three popular robot hands, that is, a 

dexterous hand, an under-actuated gripper and a parallel 
gripper. Even though dexterous hands are very good at 
flexibility, but the high complexity and high price stop them to 
become popular in the research field of fast grasping of 
unknown objects. However, between the dexterous hands and 
the parallel grippers, there is a kind of grippers with high 
flexibility, low complexity and low price, which are 
under-actuated grippers. Under-actuated grippers are a very 
good tradeoff between dexterous hands and parallel grippers. 
Fig.2 shows three popular cheap commercial under-actuated 
grippers. 

 D.  Our fast grasping algorithm 
In this paper, we propose an original fast grasping 

algorithm for unknown objects. The outline of our fast 
grasping algorithm is shown as Fig.3. The under-actuated 
gripper is simplified as a C-shape cylinder (shown as Fig.3 (c) 
and Fig.3 (d)) with radius 1r  and 2r  respectively. The 
algorithm will perform C-shape searching on the partial point 
cloud of the target object to quickly synthesize an executable 
grasp. Specifically, Fig.3 (b) shows a setup consisting of a 
robot arm equipped with a 3D camera and an under-actuated 
gripper. A spray bottle in Fig.3 (a) works as an example of an 
unknown object. The gripper in Fig.3 (b) is described as a 
C-shape with radius 1r  and 2r . The C-shape is used to match 
with the partial point cloud of the target object to work out an 
executable grasp. Fig.3 (e) shows an example of executable 
grasps found by our grasping algorithm. The red points on the 
object stand for the corresponding grasp area. Fig.3 (h) shows 
the grasp execution for the spray bottle. Details about our 
grasping algorithm will be explained in section III. 
E.  Comparison of motion planners for grasping execution 

Typically not a lot of grasping algorithms give details 
about the actual motion planning of the robotic arm towards 
the object. Grasping algorithms seem to only focus on finding 
grasps on the object itself. Researchers and users that want to 
implement grasping algorithms have to fill the gap of motion 
planning. They have to study on many different available 
motion planning methods before implementing it, which is 
time consuming. In order to help future researchers and users 
quickly choose a suitable motion planner to execute grasp 

action, we will make a comparison of different online motion 
planners in this paper. 

F.  Organization of this paper 

The rest of this paper is arranged as follows: Section II 
shows the comparison of different motion planners. Section III 
contains a detailed explanation of our fast grasp grasping 
algorithm. Section IV demonstrates the simulation results. 
Section V is the experiment results and Section VI gives a 
discussion about our fast grasping algorithm and the other five 
popular fast grasping algorithms mentioned above. Section 
VII is the conclusion of this paper. 

II. COMPARISON OF DIFFERENT MOTION PLANNERS FOR 
GRASP EXECUTION 

Motion planning is a very important part for grasp 
execution. However, typically not a lot of grasping algorithms 
give details about the actual motion planning of the robotic 
arm. MoveIt! [6], a motion planning interface in ROS, is easy 
to use and therefore widely used for robot manipulation. In 
this part, we will discuss the choice of motion planner by 
looking at the available motion planning methods in MoveIt! 
and by evaluating benchmark data. 
A.  Motion planning using MoveIt! 

Performance of motion planning depends on the chosen 
motion planning algorithm. MoveIt! itself does not provide 
motion planning, but instead is designed to work with planners 
or planning libraries. Currently four main planners/planning 
libraries can be configured for use. 

OMPL (Open Motion Planning Library) [7] is a popular 
choice to solve a motion problem. It is an open-source motion 
planning library that houses many state-of-the-art sampling 
based motion planners. OMPL is configured as the default set 
of planners for MoveIt!. Currently 23 sampling-based motion 
planners can be selected for use.  

STOMP (Stochastic Trajectory Optimization for Motion 
Planning) [8] is an optimization-based motion planner. It is 

                                 

Table II. Three popular robot hands and a short comparison of them. 

Three 
popular 

robot hands 

   
Flexibility +++ + -- 

Complexity +++ - -- 
price +++ - -- 

 

                                 

 
(a) 

 
(b) 

 
(c) 

Fig.2. Three popular cheap commercial under-actuated grippers. 



  

                                 

 Fig.5. Comparison results of 23 motion planners in MoveIt!. 

 
 

designed to plan smooth trajectories for robotic arms. The 
planner is currently partially supported in MoveIt! 

CHOMP (Covariant Hamiltonian Optimization for Motion 
Planning) [9] mainly operates by using two terms. The 
dynamical quantity term describes the smoothness of the 
trajectory. The obstacle term is similar to potential fields. The 
planner is not yet configured in the latest version of MoveIt!. 

Search-Based Planning Library (SBPL) [10] consists of a 
set of planners using search-based planning that discretize the 
space. The library is not yet configured in the latest version of 
MoveIt!. 

Out of these four, OMPL has been chosen to use for 
performing motion planning in MoveIt!. OMPL gives us a 
wide variety of choice to solve a motion problem since it 
contains 23 planners. In the next part we attempt to choose one 
of these planners by conducting a benchmark. 
B.  Comparison of OMPL planners available in MoveIt! 

In order to compare the performance of the 23 motion 
planners available in MoveIt!, we created two benchmarks 
shown in Fig.4. The first benchmark resembles a grasp 
between obstacles, meaning that the planner has to solve a 
path through a narrow passage. The second benchmark 
resembles a long motion grasp.  

The planners are analyzed by looking at the solved runs, 
computing time and path length. Solved runs is expressed as a 
percentage of the amount of runs resulting in a valid path, 
presented in Fig.5 (a) as a bar plot (high is better). Computing 
time, the time it takes for the planner to produce a valid path, is 
presented as a boxplot in Fig.5 (b) (lower is better). Path 
length, the length of the created path in the configuration 
space, is presented as a boxplot in Fig.5 (c) (lower is better).   

For each planner, 30 runs are executed with a maximum 
computing time of 3s. In the two defined benchmarks, we find 
that BiTRRT [11] yields the best performance considering 
solved runs, computing time and path length. Therefore 
BiTRRT is chosen to produce paths for the UR5 robot in order 
to execute the final grasp in this paper. 

 
III. DETAILS OF FAST C-SHAPE GRASPING 

This section contains a detailed explanation of the fast 
C-shape grasping algorithm. 

A.  Math description of the C-shape 

As mentioned before, in this paper, we specially designed 
a fast and general grasping algorithm for under-actuated 
grippers. The under-actuated gripper is simplified as a 

C-shape. Then, the algorithm will do C-shape searching on the 
single point cloud of the target object to quickly synthesize an 
executable grasp.  

Fig.6 (a) shows the C-shape of the under-actuated gripper 
in Fig.3 (c), w is the width of the griper. From Fig.6 (b), we 
can find the space of the C-shape ( cC ) equals the outer 
cylinder space ( outC ) minus the inner cylinder space ( inC ) and 
the red space ( redC ), shown as equation (1). redC  can be 
approximated as }{ )0()()5.05.0( 211 ≤≤−∧≤≤−∧≤≤−= zrryrwxwCred . 

redinoutc CCCC −−=                           (1) 

 
In order to get the outer cylinder space ( outC ) and the inner 

cylinder space ( inC ), we need to know how to obtain the 
parametric equation of an arbitrary circle on an arbitrary plane 
in 3D space. If P ( 0x , 0y , 0z ) is the center of an arbitrary 
circle, the radius is r and its unit normal vector is N =( xn , 

yn , zn ) shown as the red arrow in Fig.6 (c). If the normal 
vector is projected to the XOY plane, XOZ plane and YOZ 
plane, we can get three project lines (shown as the three green 
lines). γ , β and a are used to respectively stand for the angles 
between the projected lines and the coordinate axes. Then the 
arbitrary plane can be obtained by transforming the XOY 
plane through the following transformation: rotating around 
the X axis by a ; rotating around the Y axis by β , then moving 
along the vector N to P  ( 0x , 0y , 0z ). The whole 
transformation can be summarized as equation (2). 

                                 

 
(a) 

 
(b) 

Fig.4. Simulation setting for comparison of different motion planners in 
MoveIt!. (a) is used to compare the performance under the circumstance of 
dense obstacles. (b) is used to compare the performance where the robot arm 
needs long motion path. 
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Fig.6. How to obtain the math description of the C-shape. 
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If ( )(tx , )(ty , )(tz ) are used to stand for an arbitrary points 
on the arbitrary circle, the parametric equation of the circle can 
be obtained by the equation (3). 
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Where t should satisfy π20 ≤≤ t . If { }),(),,(),,( tsztsytsx  is 
an arbitrary point on the cylinder, and the axis vector of the 
cylinder is )cos,cos,(cos γβ ′′′= aN , then parametric equations 
for an arbitrary cylinder in 3D space can be obtained using 
equation (4). 
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      ws ≤≤0 , w is the width of the griper. Using equation (4), 
we can get equations for outC  and inC , then we can obtain the 
math description of the C-shape using equation (1).  
B.  Obtaining the point cloud of the target object 

The raw point cloud from the 3D sensor contains the 
environment (for example the table plane). In order to quickly 
isolate the point cloud of the target object, down-sampling and 
distance filtering are firstly applied on the raw point cloud 
from the 3D camera to reduce the computing time and remove 
the points out of the reach of the robot arm. Then Random 
Sample Consensus (RANSAC) method is applied to remove 
the table plane, resulting in the isolated point cloud of the 
target object (shown as the green points in Fig.7 (b)). 

C.  Configuration of the C-shape 

In this subsection, we will explain how to configure the 
C-shape to find a suitable grasp and how to handle the unseen 
part of object because we cannot see the back side of the object 
when we only use a single-view point cloud.  

C.1  How to configure the C-shape efficiently 

If we want to locate a C-shape in 3D space, it means many 
possibilities. How to reduce the possibilities in order to save 
computing time? Normals of the target object are used to work 
as the approaching direction of the C-shape. Then the 
configuration of the C-shape can be simplified from SE(3) to 
SE(2). Fig.7 shows how to configure the C-shape. (a) shows 
an example of a C-shape. (b) shows a normal (the blue line). 
(c) is an enlarged image of (b). if a normal is chosen as the 
approaching direction of the C-shape, it means that the Z axis 
of the C-shape will align with the blue line in (b) and (c). Then 
the C-shape can only rotate around the normal, so we rotate 
the C-shape around the normal with an incremental angle δ
(shown as Fig.7 (c)). Every red line in (b) and (c) means a 
possible axis for the C-shape. The X axis of the C-shape will 

match with every red line to construct a potential grasp 
candidate. Fig.7 (d) shows an example of a potential grasp 
candidate corresponding to the black axis in (c). The red points 
in (d) mean the points of the object covered by the C-shape.  

 
C.2  How to deal with the unseen part 

If the C-shape is configured as Fig.8 (a), then the gripper 
will collide with the target object. Because we only use a 
single-view partial point cloud of the object in this paper, the 
unseen part of the target object will result in grasp uncertainty. 
Here, we propose to employ the boundary of the object to 
eliminate the uncertainty. Specifically, the point cloud in the 
camera coordinate system is used to work out the boundary 
points bΩ (shown as Fig.8 (b)). Fig.8 (c) shows our idea to deal 
with the unseen part. In detail, the two red points are on bΩ , the 
two orange lines are obtained by connecting the origin point of 
camera coordinate system and the two red points. The two 
orange dashed lines are obtained by extending the two orange 
lines. This method will go through all the points on the 
boundary, and then we can obtain a point cloud shown as Fig.8 
(d). Then the configuration space ( C space) of the target 
object ( objC ) is divided into two parts. '

objC  (the green points 

in (d)) and unseenC  (the orange points in (d)) are used to 
describe the configuration space after the unseen part is 
generated. It is shown as equation (5). 

unseenobjobj CCC += '                               (5) 

 
D.  Generation and down-sampling of normals 

Surface normals are important properties of a geometric 
surface, and are heavily used in many areas such as computer 
graphics applications. In this paper, normals are used to guide 
the continuation of the C-shape to accelerate grasp searching. 

D.1  Generation of normals 

The problem of determining the normal to a point on the 
surface is approximated by the problem of estimating the 
normal of a plane tangent to the surface, which in turn 
becomes a least-square plane fitting estimation problem. The 
solution for estimating the surface normal is therefore reduced 
to an analysis of the eigenvectors and eigenvalues of a 
covariance matrix created from the nearest neighbors of the 
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Fig.7. How to configure the C-shape efficiently. 

                                 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.8. How to deal with the unseen part of the target object to eliminate the 
grasp uncertainty. 



  

                                 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

(e) 
Fig.11. How to determine the center point of the C-shape. 

query point. Specifically, for each point iP , we assemble the 
covariance matrix C as follows:  

T
i

k

i
i PPPP

k
C )()(1

1

−⋅−= ∑
=

jjj VVC
CC

⋅=⋅ λ   }2,1,0{∈j  

Where K is the number of points in the neighborhood of 
iP , P  represents the 3D centroid of the nearest neighbors,     

jλ  is the j-th eigenvalue of the covariance matrix, and 
jV
C is the 

j-th eigenvector. The first eigenvector corresponding to least 
eigenvalue will be the normal at each neighborhood.  

But one normal has two possible directions (the red and 
green arrow lines) shown as Fig.9 (a), how to determine the 
right direction of the normal? Since the point cloud datasets 
are acquired from a single viewpoint, the camera view point 

cp  is used to solve the problem of the sign of the normal. The 
vector from the point ip to the camera view point cp is 

ici ppV −= , To orient all normals in
C consistently towards the 

viewpoint, they need to satisfy the equation: 0>⋅ ii Vn
C

. Using 
this equation can constrain all the normals towards the camera 
viewpoint to obtain all normals (shown as all the red lines in 
Fig.9 (a)) of the object. 

 
D.2  Down-sampling of normals 

Normals in Fig.9 (a) are pretty dense. In order to accelerate 
the speed of grasp searching, the normals need to be 
down-sampled. K-d tree is used to down-sample the normals. 

The green points in Fig.9 (b) stand for the original point 
cloud ( Ω ) that is used to compute the normal, Ω is first 
down-sampled to obtain the down-sampled point cloud dΩ

(shown as the red points in Fig.9 (b)). At each red point ( diP ) 
of dΩ , we use KNN search to find the nearest neighbor point (

iP ) in Ω  (shown as Fig.9 (c)). Then the corresponding normal 
( in ) of iP can be looked up in the dense normals obtained in 
section of D.1. All the corresponding noramls are put together 
to get the down-sampled normals shown as Fig.9 (d). 

E.  Determination of the first axis of the C-shape 
As mentioned in section of C.1, the C-shape axis is 

allocated around the normal with an incremental angle δ . 
Then a question comes out, that is, how to decide the first axis 
of the C-shape to increase the chance to find a suitable grasp? 

If δ is a big angle, for example o60  in Fig.10 (a) and (b), 
then we may get two totally different allocations of C-shape 
axis. In Fig.10 (a), the three cylinder axis will lead to no grasp 
found, because all the three C-shapes will collide with the 
object. However, the C-shape axis 1 in Fig.10 (b) corresponds 
to a very good grasp candidate (shown as Fig.10 (c)). The 

difference is generated because of the position of the first axis. 
In this paper, we propose to use the principal axis of the local 
point cloud to work as the first C-shape axis.  

 
F.  Determination of the center point of the C-shape 

As we mentioned in section of C.1, the under-actuated 
gripper will approach the object along the normal direction. 
Then a question comes out, that is, where to stop?  

Fig.11 is used to explain how to determine the center point 
of the C-shape. Fig.11 (a) shows a possible grasp candidate, 
the green points stand for the points covered by the C-shape. 
Fig.11 (b) is the abstracted point cloud, and the red arrow 
stands for the approaching direction of the C-shape. The two 
red points in Fig.11 (b) are two example center points of the 
C-shape. The two blue circles stand for the corresponding 
C-shape. It is obvious to find that the two example center 
points of the C-shape are not the best ones. The center point 
can go down further. (c), (d) and (e) are used to explain how to 
determine the center point of the C-shape. Specifically, the 
abstracted point cloud in (b) is first projected to the YOZ plane 
to get the projected point cloud (orange points shown as (c)). 
And then the convex hull of the projected point cloud is 
extracted shown as the green points in (c). The green point in 
Fig.11 (d) means one point of the convex hull obtained in (c). 
If we draw a circle with 1r as radius (shown as the green 
circle), we can obtain two intersects with Z axis (shown as the 
two purple points 1P  and 2P ). ),min( 21 ZZZ =  will work as 
the C-shape center. Using the method goes through all the 
green points in (c), we can get all the center points

),,,( 21 cnccc ZZZZ ⋅⋅⋅=  (shown as (e)). The maximal cZ is 
used as the final C-shape center (shown as the equation (6)). 
The maximal cZ  means the earliest contact point with the 
object when the C-shape tries to approach the object.  

),,,(max 21max_ cnccc ZZZZ ⋅⋅⋅=                   (6) 

G.  Collision judgement of the C-shape 
Fig.12 (a) shows an example of C-shape configuration. 

After the configuration of the C-shape is obtained, we need to 
judge whether this configuration will collide with object or 
not? If the C-shape will not collide with object, then it means 
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Fig.9. Generation and down-sampling of normals of the target object. 

                                 

 
(a) 

 
(b) 

 
(c) 

Fig.10. How to determine the first axis of the C-shape. 



  

                                 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) (f) 

 
(g) 

Fig.13. Choose the best grasp using force balance optimization. 

this configuration is possible to be an executable grasp 
candidate, otherwise this configuration should be ignored.  

In order to judge whether one figuration will collide with 
the object or not, points with X axis value between w5.0− and 

w5.0 are abstracted to form a point cloud ]5.0,5.0[ ww −−Ω  (shown 
as the red points in Fig.12 (a), w is the width of the gripper). If 
any points ip of ]5.0,5.0[ ww −−Ω  falls inside of the C-shape space 
(the math description of the C-shape is obtained in section A), 
that means the C-shape will collide with the object, then the 
grasp candidate ig should be removed, otherwise ig is 
reserved for following analysis. Using this method goes 
through all the C-shape configurations, we can get a vector 

)...,( 21 ngggG =  which is used to store all grasp candidates 
without collision with the object.  

 
H.  Local geometry analysis 

After finishing all above steps, the grasps left can ensure 
that the C-shape will not collide with the object, it means that 
the C-shape can envelope the object at this configuration. In 
this subsection, we will consider the local geometry of the 
points enveloped by the C-shape. Specifically, a grasp 
candidate is shown as Fig.12 (b), the local geometry shape will 
lead to uncertainty. Two grasp sides are abstracted shown as 
the red points in (c), then, the distance between one red point 
and the blue line is defined as id , 0 i n< ≤ , n  is the total 
number of the red points. All the distances are added together 

to get the variance v  of the grasp, 
1

i n

i
i

v d
=

=

= ∑ . If the variance is 

smaller than the threshold set by the system, the grasp is saved, 
otherwise, it is removed. 

I.  Force balance optimization 

All grasp candidates passed step G and step H form a new 
vector )...,( 21 jnjjj gggG = , all the grasps in this vector can be 
executed without collision with the object. If the lines 
1,2,3,4,5, 6 and 7 in Fig.13 (a) stand for the C-shape axis of  
the grasps in vector jG , we can find that all the grasps from 

1jg to 7jg  can be executed. How to choose the best grasp as 
the final grasp? 

We propose to use force balance optimization to select out 
the best grasp. Usually, the existing papers will employ the 
physic property to do force balance computation, for example, 
the friction coefficient. But in our case, we cannot know the 
physic property, because the objects for this paper are 
unknown. We propose to use the local geometry shape to do 
force balance computation. The blue points in Fig.13 (b) stand 
for the grasp candidate 1 ( 1jg ). It is projected to the XOY 

plane to get the projected point cloud shown as (c). The two 
grasp sides are abstracted to shown as the red points in (d). 
Two orange lines ( bkxy += ) can be fit out for the tow grasp 
sides. The angles between the two fit lines and X axis are 
defined as ξ and θ . (e) shows three cases of allocation of  ξ
and θ .The sum (σ ) of ξ and θ is used to evaluate the force 
balance quality of this grasp. σ can be obtained using

))(arctan())(arctan( ξθσ kfabskfabs += . The bigger σ is, the 
higher possibility that the grasp forces are vertical to the grasp 
sides, correspondingly more stable the grasp is. The vector

)...,( 721 ψψψψ = is used to stand for all the force balance 
coefficients for the grasp vector )...,( 721 jjjj gggG = . Fig.13 
(f) is a line graph of the vectorψ , the grasp with the largest ψ
is chosen as the final grasp. Fig.13 (g) shows the best grasp 
returned, which corresponds to the 4th grasp in (a) and (f).  

The above steps from subsection of C to I illustrate how 
the grasping algorithm work to find a suitable grasp at one 
normal of the target object. If the grasping algorithm cannot 
find a suitable grasp at one normal, another random normal 
will be used to repeat above steps until a suitable grasp is 
found.  

IV. SIMULATION 

In order to verify our grasping algorithm, simulations are 
performed using a personal computer (2 cores, 2.9GHz). 
Several objects with different geometry shapes are used in the 
simulation. All the tested objects can be seen in the second 
row of table III. The third row shows an example grasp found 
by the grasping algorithm. The fourth row shows the robot 
arm arrived at the grasp point by using BiTRRT as motion 
planner. The fifth row shows the number of points of the input 
partial point cloud. The last row shows the average computing 
time (10 trials for each object). From the simulation, we can 
find that the algorithm can quickly work out a suitable grasp 
within 2 seconds for each object.  

V. EXPERIMENTS 

The experiments are conducted using a robot arm UR5 and 
an under-actuated Lacquey Fetch gripper. An Xtion pro live 
sensor is used to acquire the partial point cloud of the target 
object. The whole experiment setup and the objects chosen to 
do experiments are shown as Fig.14. The results of 
experiments are shown as table IV. The second row shows the 
experiment setup for every object. The third row shows the 
example grasp found by the grasping algorithm. The fourth 
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(c) 

Fig.12. How to judge one grasp formed by a C-shape. 



  

Table III: Simulation results 
Object 
name 

Cleaner spray 
bottle Pistol Electric drill Table tennis 

racket Water bottle Telephone horn Milk carton Kinet Shampoo 
bottle 
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Points 8154 4394 7678 6384 7270 12458 4710 4965 5274 

Time (s) 1.95 0.89 1.83 1.31 0.87 1.86 0.73 0.92 0.58 
 row shows the robot arm arrives ate the grasp position by 
using BiTRRT as motion planner. The fifth row shows the 
grasp being executed. The sixth row shows the number of 
points of the input partial point cloud. The last row shows the 
computing time (10 trials for each object). The experiments 
proved the validation of our grasping algorithm. The main 
difference between the simulations and the experiments is that 
the point cloud in experiments may lose some points. For 
example, the coffee jar in the sixth column of table IV lost 
some points because the Xtion pro live sensor cannot detect 
transparent part. The neck of the coffee jar is transparent, so 
we cannot find the points for neck of the coffee jar. That is 
why we paint the wineglass in ninth column into white color. 
From Table IV, we can see that even though the partial point 
cloud of the object has large number of points, our algorithm 
can quickly work out a suitable grasp within 2 seconds. 
Comparing with the five fast grasping algorithms in table I, 
our algorithm shows much improvement at the speed of grasp 
searching.  

  
Fig. 14. Experiments setup and objects used for experiments. 

VI. DISCUSSION 

In this section, we will discuss the characteristics of our 
grasping algorithm compared with the grasping algorithms in 
table I.  

Grasp adaptiveness: Our grasping algorithm is specially 
designed for under-actuated grippers. Under-actuated grippers 
add compliance and dexterity without the need of adding 
additional actuators and sensors.  Through the careful design 
of the end effector’s mechanical makeup, under-actuated 
grippers have great advantages over parallel grippers.  
Therefore, our grasping algorithm is more adaptive than 
[1,3,4,5].  Meanwhile, the price of the under-actuated gripper 
is much cheaper than [2] which uses a barrett hand. 

Object complexity: The presented grasping approach is 
able to find grasp for complex objects like, teddy bear, 
elephant, electric drill and the cleaner spray bottle. This makes 
it better than [1,3,5], which only considers simple objects. [2] 
transforms the objects into simple shapes (cylinder, disk, 
sphere and box), which may result in loss of details of objects. 

Computing time: Our algorithm finds a suitable grasp 
for complex object within 2 seconds. This is similar to 
[2,3,4,5]. [1] is able to find a grasp faster since it only uses a 
RGB image at the cost of losing depth information of the 
object.  

Grasping direction: [1,3,5] only consider grasping from 
top, which can result in unreliable grasp, for example, picking 
up the wineglass. And in some cases, it is not allowed to grasp 
the target object from top, for example, objects in fridges or 
shelves. Our grasping algorithm considers the local geometry 
property of the object. We use the normal of the object to work 
as the approaching direction, which resembles a human-like 
grasp. 

Grasp execution: From the five fast grasp algorithms, 
only [4] considers grasp execution. However, no information 
was given about motion planning. We showed by performing 
a comparison that using BiTRRT for grasp execution would 
result in high solved runs, low computing time and short path 
length.  



  

                                 

Table IV: Experiment results 
Object 
name 

Cleaner spray 
bottle Electric drill Spray can Elephant Coffee jar Teddy bear Milk carton Wineglass Shampoo 

bottle 
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Points 10596 9929 7127 8044 4345 4857 5589 3503 5267 

Time (s) 1.74 1.56 0.91 1.96 0.68 1.82 0.64 0.53 0.67 
 

VII.  CONCLUSION 

In this paper, a novel algorithm of unknown object 
grasping is presented for under-actuated grippers. For the 
grasping algorithm, the gripper is simplified as a C-shape. In 
order to find suitable grasp, C-shape searching is performed 
on the partial point cloud of the target object. To accelerate 
the computing speed, this algorithm only uses a single view 
point cloud as input. Grasp candidates can be greatly reduced 
by using the normal line of the target object to guide the 
configuration of the C-shape. Moreover, we propose an 
original method to deal with the unseen part of the object to 
enhance the grasp security. For the robot arm to quickly 
execute the grasp found by the grasping algorithm, a suitable 
motion planner has to be selected. We made comparison of 
the motion planners available in MoveIt!. The motion planner, 
BiTRRT, is chosen for motion planning due to its high solved 
runs, low computing time and short path length. In order to 
verify the effectiveness of our algorithm, several objects 
commonly used by other grasping algorithms with different 
geometric shapes were used to do simulations and 
experiments. And successful results are obtained. 
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