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Summary

Multi-Scale Modeling of Gas Flows with Continuum-Rarefied Transitions

Giannandrea Abbate, Delft University of Technology

Several gas fluidic applications of current technological importance involve a gas jet
supersonically expanding into vacuum or into a low pressure environment. Examples
include: gas thruster nozzles and plume flows and processes of thin film deposition,
etching and passivation from expanding plasma or gas jets.
An interesting issue connected to this kind of flows is the transition from the contin-
uum to the rarefied regime. The gas in the jet is generally at relatively high pressure,
and then it rapidly expands into a low pressure environment. For this reason, the gas
first supersonically expands and then quickly compresses through a stationary shock
wave (Mach disk). In addition, the expansion zone is surrounded by a barrel shaped
shock (the so called barrel shock). Because of the low environment pressure and high
thermodynamic gradients in the shock region, the flow undergoes a spatial transition
from the low Knudsen number (Kn) continuum regime to the high Knudsen number
rarefied regime.
Although several studies have been devoted to supersonic expansion of gas jets in
vacuum or low pressure environment, full understanding of the processes governing
the flow has not been reached yet. In particular, it is still not completely clear how
important the influence of the rarefaction effects is on the dynamics of the flow. An-
other important question is whether the barrel shock, which becomes transparent to
background molecules due to rarefaction effects, still protects the supersonic part of
the flow.
Numerical simulation tools commonly used to study and design expanding gas jets
configurations, are generally based on continuum assumptions, and therefore cannot
accurately account for rarefaction effects.
Alternatively, DSMC (Direct Simulation Monte Carlo) has been used to simulate
these flows. Rather than solving the Navier-Stokes equations, DSMC attempts to
find approximate solutions to the Boltzmann equation by tracking the motion of
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large numbers of individual computational molecules. Thus, it can account for rar-
efaction effects in regions with high Knudsen numbers. However, due to computa-
tional restraints it is practically impossible to accurately perform DSMC simulations
in regions of low Knudsen numbers, i.e. where near-continuum conditions are present.
In order to accurately simulate the above types of gas flows, one needs to construct a
model that on the one hand accounts for the molecular nature of the gas flow where
needed, and on the other hand uses a continuum model where allowed. The work in
this thesis is a first step in fulfilling this requirement. The aim is: development, and
validation of a hybrid Navier-Stokes/DSMC simulation tool, capable of modelling gas
flows with spatial or temporal transitions from the continuum to the free molecular
regime, and its application to expanding gas jets as applied in thin film deposition
processes.
To this end, a simulation code named CROW (Continuum Rarefied flOW) was de-
veloped, in which a CFD solver for the compressible Navier-Stokes equations was
dynamically coupled to a DSMC solver for the rarefied regime. A Schwarz type over-
lapping method, with Dirichlet-Dirichlet boundary conditions, was employed for the
coupling. The overlap region is dynamically and automatically adjusted to cover the
zone where the flow undergoes continuum-rarefied transition (i.e. the zone around
the Kn ≈ 0.05 isosurface). The chosen coupling approach has several advantages
over other coupling methods, such as non-overlapping and flux-based models most
frequently used in literature. These advantages include less sensitivity the DSMC
statistical noise, and the possibility to decouple CFD and DSMC time steps.
The CFD and DSMC methods were validated against known analytical and numerical
solutions from literature, independently, and then together in the hybrid CFD/DSMC
coupled approach. The numerical results of the developed code were very satisfac-
tory in all cases, leading to the conclusion that the developed hybrid CFD/DSMC
approach in general, and the CROW code specifically, is a very promising tool for use
in continuum-rarefied flow transitions.
Finally, the developed code was used for the simulation of an expanding gas jet in a
low pressure reactor for thin film deposition. In this particular case two issues were
addressed: (i) to show the importance of rarefaction effects on the flow field and (ii)
the study of the presence in the supersonic region of particles coming from the sub-
sonic part through the shock. Due to rarefaction effects, the barrel shock becomes
transparent and does not preserve the supersonic part of the flow from the invasion of
particles present outside it in the subsonic region. These molecules could, therefore,
influence the supersonic region and its properties.
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Multi-scale modellering van gasstromingen met transities van het contin-
uum regime naar het ijle regime

Giannandrea Abbate, Delft University of Technology

Supersone gas- en plasmajets die expanderen van ongeveer atmosferische druk naar
een omgeving waarin een (zeer) lage druk heerst worden veelvuldig toegepast in de
techniek. Enkele voorbeelden zijn: voortstuwing via gasstoming door een straalbuis,
depositie van dunne films vanuit de gasfase, etsen en passificatie van oppervlakken
door middel van plasma- en gasjets.
Een interessant aspect van dit type stromingen is de transitie van continuum condities
naar ijle condities. Het gas in de jet expandeert eerst supersonisch, om vervolgens
snel gecomprimeerd te worden door middel van een stationaire schok (Mach disk).
De expansiezone is hierbij omringd door een tweede schok in de vorm van een holle
cilinder (de zogenaamde barrel shock). Vanwege de lage druk en hoge temperatuur-
gradiënten rond de schok neemt het Knudsen getal daar plotseling sterk toe en vindt
een transitie plaats van het continuum regime (lage Knudsen getallen, Kn< 0.01)
naar het ijle regime (hoge Knudsen getallen, Kn> 0.1).
Ofschoon er reeds vele studies zijn verricht naar dit soort supersoon expanderende
jets, ontbreekt nog een volledig begrip van de hydrodynamica. Met name is het niet
volledig duidelijk welke invloed de transitie naar ijle condities heeft op het dynamisch
gedrag van de stroming. Een andere belangrijke vraag is of onder dit soort condities
de barrel shock ondoordringbaar blijft voor langzame deeltjes in de omgeving van de
expansie, of dat deze deeltjes de expansie-zone door de schok kunnen binnendringen.
De numerieke simulatiemodellen die gebruikt worden om expanderende gasjets te
bestuderen en ontwerpen zijn meestal gebaseerd op continuumaannamen en kunnen
daarom het effect van ijlheid op de stroming niet goed in rekening brengen.
Een alternatief om dit type stoming te simuleren is het gebruik van de DSMC (Di-
rect Simulation Monte Carlo) methode. Door de beweging van grote aantallen discrete
deeltjes te simuleren geeft deze methode een benaderende oplossing van de Boltzmann
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vergelijking. Daarmee is de DSMC techniek bij uitstek geschikt voor het simuleren
van gasstromingen in gebieden met een hoog Knudsen getal. De aard van de methode
brengt echter met zich mee dat het een onrealistisch grote computerkracht vergt om
nauwkeurige DSMC simulaties uit te voeren in gebieden waar continuum condities
heersen en het Knudsen getal laag is.
Voor de nauwkeurige en effciënte simulatie van naar vacuum expanderende gasjets
moet dus een model geconstrueerd worden dat enerzijds – daar waar noodzakelijk –
het ijle karakter van de gasstroming in rekening brengt en anderzijds – daar waar
toegestaan – uitgaat van continuumaannames.
Dit proefschrift beschrijft de ontwikkeling van zo’n simulatiemodel. Het doel is: (1)
ontwikkeling en validatie van een hybriede Navier-Stokes/DSMC simulatiecode, die in
staat is om gasstromingen te modelleren waarin temporele en/of ruimtelijke transities
plaatsvinden van het continuum naar het ijle regime en (2) het gebruik van deze code
bij de bestudereing van de hydrodynamica van in vacuum expanderende gasjets zoals
die worden toegepast bij de depositie van dunne films. Hiertoe is de simulatiecode
CROW (Continuum Rarefied flOW) ontwikkeld, waarin een compressibele Navier-
Stokes solver dynamisch gekoppeld is aan een DSMC solver. Voor deze koppeling
is gebruik gemaakt van een overlapmethode van het Schwarz-type, met Dirichlet-
Dirichlet randvoorwaarden. De overlapzone wordt automatisch bepaald als het gebied
rond het Kn ≈ 0.05 isooppervlak, waarin de stroming een transitie ondergaat van con-
tinuum naar ijl of vise versa dekken en dynamisch aangepast aan verandereingen in
de stromingsconsities. Deze gekozen koppelingsmethode heeft verschillende voordelen
ten opzichte van andere, niet-overlappende of flux-gebaseerde, koppelingsmethoden
zoals die beschreven zijn in de literatuur. Zo is de in dit proefschrift beschreven
koppelingstechniek minder gevoelig voor statistische ruis in de DSMC simulaties en
kunnen voor de CFD en de DSMC simulaties verschillende tijdstappen worden ge-
bruikt. De ontwikkelde CFD en DSMC codes zijn allereerst onafhankelijk van elkaar
gevalideerd aan de hand van analytische en numerieke oplossingen uit de literatuur.
Vervolgens is de hybriede CFD/DSMC code gevalideerd. Uit deze validatiestudies is
geconcludeerd dat de ontwikkelde hybriede CFD/DSMC aanpak, en de CROW code
waarin deze is gëımplementeerd, veelbelovend zijn voor de simulatie van gasstomingen
met transities van het continuum naar het ijle regime.
Tenslotte is de ontwikkelde code gebruikt om de expansie te simuleren van een gasjet
die is gegenereerd bij ongeveer atmosferische druk en vervolgens expandeert in een
lage druk (20-100 Pa) reactor zoals gebruikt voor de depositie van dunne films. Twee
aspecten zijn specifiek bestudeerd: (1) het belang van ijlheidseffecten op het stro-
mingsveld en (2) de aanwezigheid van subsone deeltjes, afkomstig uit de omgeving,
in de supersone expansiezone. Geconcludeerd werd dat de barrelshock door ijlheid-
seffecten transparant wordt voor penetratie van subsone deeltjes. Deze kunnen daar-
door de supersone expansiezone binnedringen en aldaar de stroming en temperatuur
bëınvloeden.



1. Introduction

1.1 Project background

1.1.1 Numerical simulation of gas flow in different flow regimes

In many areas of science and industry, a very important tool for the design and op-
timization of equipment is the numerical simulation of gas flows. Most of the existing
gas flows can be simulated using the continuum transport equations (Navier-Stokes),
which describe the transport of mass, momentum and energy. These equations are
based on the hypothesis that the mean free path length λ of the gas molecules is very
small in comparison to a characteristic dimension L of the flow. This dimension can
be either a physical dimension, e.g. a pipe diameter, or a flow dimension, e.g. the
gradient length scale ( 1

φ
∂φ
∂x )−1 on which some flow property φ changes significantly.

The dimensionless Knudsen number Kn can be used to describe this situation:

Kn =
λ

L
(1.1)

When Kn < 0.01, gas molecules travel only a small distance (compared to the ge-
ometry and flow dimensions) between collisions. For internal flows this means that
molecules only very rarely collide with walls, and the flow is dominated by the char-
acteristics of the inter-molecular collisions. The flow can then be described as a
”continuum” flow, which means that we can safely ignore the fact that a gas consists
of many small particles. The continuum Navier-Stokes (N-S) transport equations (in-
cluding the continuum constitutive relations for the shear tensor and the heat flux)
can be used to calculate flow properties in this case.
However, there are situations in which Kn is not so small, e.g. flows at low pressure,
where λ becomes high, or flows with very small dimension L, e.g. microfluidics. The
high Kn number in these flows indicate that a molecule travels a significant distance
(compared to L) between collisions. For an internal flow, this implies that wall in-
teractions occur more frequently and become important in describing the flow. The
range where Kn is between ∼ 0.01 and ∼ 10 is called the ”rarefied” or ”transitional
regime”. In this regime, the flow can no longer be described as a continuum and the
well known transport equations, or more precisely, the relations for shear tensor and
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the heat flux, can no longer be used. In this regime, the particulate nature of the
gas becomes important and a different simulation method must be used. The math-
ematical model at this level is the Boltzmann equation [1]. It provides information
on the position, velocity and state of every molecule at all times. As a consequence
of its complexity, the Boltzmann equation is not amenable to analytical solution for
non-trivial problems.
In the continuum regime, numerical simulations can be done using (commercially
available) Computational Fluid Dynamics (CFD) codes based on partial differen-
tial equations describing the transport phenomena, e.g. the Navier-Stokes equations.
Especially for laminar flows, these codes can produce accurate results for Knudsen
numbers up to 0.01, but start deviating from reality for higher Kn. It is generally
accepted that the range of applicability of these continuum codes can be extended
into the rarefied regime up to Kn ≈ 0.1 by using special boundary conditions to take
into account the possibility of a velocity slip or temperature jump at a surface [2].
In this method, however, the precise formulation of the slip velocity and temperature
jump boundary conditions is strongly geometry dependent [3; 4; 5].
Gas flows with Kn > 10 are called ”free molecular flows”. In this regime, inter-
molecular collisions rarely occur and the flow is completely dominated by the inter-
action between the gas and the walls. Gas flows in the free molecular regime can be
simulated using Molecular Dynamics (MD) or ballistic models.
In the intermediate (0.01 < Kn < 10) or rarefied regime, both collisions with solid
surfaces and other gas molecules are important, and therefore have to be included
in the simulation to obtain an accurate result. The Direct Simulation Monte Carlo
(DSMC) method as developed by Bird [6] is the only practical engineering method
that can be used in the transitional regime. The DSMC method is also valid in free
molecular and continuum regimes, although the computational expenses become very
large in the latter case. Its computational expenses, in fact, scale with Kn−4 and
when the Knudsen number is less than ≈ 0.05, they become inadmissible.
In summary, one can simulate gas flows with Kn < 0.01 (or, with modifications of
boundary conditions < 0.1) using continuum based CFD models, and gas flows with
Kn > 0.05 with particle based DSMC methods. In many practical applications, how-
ever, gas flows undergo spatial and/or temporal transitions from low (< 0.05) to high
(> 0.05) Kn numbers, e.g. due to varying pressure or dimensions.
Different solutions have been proposed to compute flows undergoing such transitions.
The best method is to use a hybrid continuum/molecular model to couple continuum
solvers and molecular methods, for instance: MD and N-S equations [7], Boltzmann
and N-S equations [8], DSMC and Stokes equations [9], DSMC and incompressible
N-S equations [10], DSMC and Euler equations [11] and DSMC and N-S equations
[12; 13; 14; 15; 16].
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1.1.2 Thin film deposition based on an expanding thermal plasma

In the group of Prof. Van de Sanden at Eindhoven University of Technology, the
so called remote Expanding Thermal arc Plasma (ETP) source has been developed
[17]. A thermal plasma is generated at a relatively high pressure (Pin ≈ 0.1 − 0.6
bar). The plasma jet rapidly expands into a low pressure chamber (Pout ≈ 10 − 100
Pa). Starting from the plasma source, the plasma first supersonically expands and
then quickly compresses through a stationary shock wave (figure 1.1).

Figure 1.1: Reactor geometry.

Reactive precursor gas species are injected into the jet, that react with the ions and
electrons from the plasma to form radical species. Upon impact with the substrate
surface that is placed in the reactor, these radicals react to grow a thin solid film.
The application of plasma assisted deposition processes as described above has many
potential advantages, such as high deposition rates at low substrate temperatures
and good opportunities for ”in situ” doping. Therefore it is of great interest in micro-
electronics, coating technology and manufacture of LCD (Liquid Cristal Display)
screens.
In order to optimize the deposition process, one needs information about the gas
dynamic properties of the expanding jet flow. Although there been several studies
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devoted to supersonic plasma expansion [18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28],
full understanding of the processes governing the flow has not been reached jet.
In particular, it is not still completely clear how important is the influence of the
rarefaction effects on the dynamics of the flow and if they must be taken into account
in modelling the flow field. For example, it was supposed that, because of the rar-
efaction, the supersonic part of the flow is not protected by the shock that becomes
transparent to the background molecules. These molecules could, therefore, invade
the supersonic part of the jet, influencing the flow properties [21].
Computer simulations can be of great help to understand those phenomena, but con-
ventional fluid dynamics simulations cannot be applied here because of the transition
from continuum to rarefied flow.

1.2 Continuum-rarefied transition in supersonically expanding plasma

In order to better understand the flowfield inside the reactor, and most of all if
the flow undergoes to a transition from the continuum to the rarefied regime, some
preliminary calculations were performed with the commercial continuum CFD code
FLUENT [29]. The code is capable of solving both subsonic and supersonic problems.

1.2.1 The reactor

The experimental set-up in which the expanding thermal plasma jet is created has
been extensively described elsewhere [30]. Here only a short description is given. A
cascaded arc, operating at sub-atmospheric pressure (0.1− 0.6 bar), produces a ther-
mal Argon plasma (source temperature Ts ≈ 0.8 eV) that expands through a nozzle
into a vessel at low pressure, typically 10 − 100 Pa. The total power given to the
arc varies from 2 to 5 kW. The arc consists of four parallel insulated plates at some
distance from each other, each with a 3 mm diameter hole. In this way a channel
of 40 mm length is created. Three cathodes are positioned concentrically around the
channel. The last plate, in which the nozzle is placed, acts as the anode. The nozzle
has a straight channel with a diameter of 4 mm and a length of 10 mm. The last
part of the nozzle makes an angle of 45o with the channel. The deposition chamber
is a cylindrical stainless steel vessel with an inner radius Rcham = 16 cm and a length
L = 80 cm.

1.2.2 The model

The modelled geometry and assumptions are identical to those used by Selezneva
et al. [31; 32] with the exception that she was not considering the diverging part of
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the nozzle.
A 2D-axisymmetric flow was studied. The domain consists of two cylinders and a
truncated cone (figure 1.2).
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Figure 1.2: Reactor geometry and mesh. Overall geometry (a), zoom of the arc nozzle (b).

The first cylinder represents a part of the arc flow channel with radius of Rarc = 2 mm
and length Larc1 = 5 mm. The truncated cone represents the last diverging part of the
nozzle where the side walls makes an angle of 45◦ with the axis. The second cylinder
represents the expansion chamber, with radius Rcham = 16 cm and length L = 80 cm.
The pumping exit, which is in reality a circular hole, in our two-dimensional model
is represented as a circular slit in the reactor sidewall with a lout = 2 cm width at a
distance of Lout = 60 cm from the nozzle. The substrate is situated at Lsub = 35 cm
from the chamber inlet and its radius is Rsub = 5 cm.
At the nozzle inlet, a pressure inlet boundary condition with a temperature Tnozzle =
12000 K and a pressure Pnozzle = 0.2 atm is imposed. Because deposition processes
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are performed at a pressure ranging from 1 to 100 Pa, simulations were performed at
four different pressures Pout in the pressure outlet: 1, 10, 20 and 100 Pa. At the wall
a constant condition for the temperature was used (Tw = 300 K) and no-slip velocity
boundary conditions. This is because we were not focusing on the near-wall flow, and
so we did not set at the wall the physically more correct conditions of temperature
jump and velocity slip.
In this model it was assumed that the gas is composed only of Argon atoms, neglecting
the presence of electrons and ions. Also the effects of ionization and recombination
on the flowfield were neglected. Because of the fact that the plasma is quenched in
the expansion, both ionization and recombination are practically absent in the flow
[32].
Even if the flow is partly supersonic, because the supersonic region is very small com-
pared to the subsonic one, it was possible to solve the problem using a segregated
technique. Since the flow is compressible and non-isothermal, also the energy equation
was solved. The viscous heating is also taken into account. Temperature dependent
viscosities and thermal conductivities are computed from kinetic theory [33].
The maximum velocity in the chamber, according to previous studies [31; 32], is about
Vmax ≈ 3000 m/s. In the range of pressures considered (1 − 100 Pa), the Reynolds
number with respect to the chamber diameter is smaller than 1800 and the flow is
assumed to be laminar.
The mesh (figure 1.2) is a structured grid of 9540 quadrilateral cells. The cell size
depends on the position in the chamber: it is small in the supersonic part of the
expansion and within the high velocity jet region, and then it increases far from the
axis. The solver used is a first-order upwind scheme. Since the pressure around the
inlet quickly decreases from 20000 Pa down to 1 − 100 Pa, the simulation conditions
are very stiff and it was not possible to reach the convergence with a second-order
scheme. On the other hand we are interested now only in getting a preliminary solu-
tion and a qualitative view of the flow field and of the continuum-rarefied flow regime
transition. For this reason we can consider the first-order upwind scheme sufficiently
accurate for the moment. Convergence is supposed to be reached when residuals of
all the equations become less than 10−5. The use of a more strict convergence cri-
terion, with maximum residuals of 10−10, led to changes in the solution which were
below 5%. The computation was also repeated on a grid with 20947 cells that was
adaptively refined with respect to the density gradient; the difference in the results
was less than 3%.
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Figure 1.3: Static temperature (K) in the deposition chamber for 1 Pa (a), 10 Pa (b), 20 Pa
(c) and 100 Pa (d) chamber pressure.
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Figure 1.4: Velocity (m/s) in the deposition chamber for 1 Pa (a), 10 Pa (b), 20 Pa (c) and
100 Pa (d) chamber pressure.
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1.2.3 The flowfield

All the result shown in this section are in very good agreement with those reported
by Selezneva et al.[31; 32], the only difference noticed is that in our simulations FLU-
ENT predicted a higher maximum Mach number in the expansion. The reason of
that is that Selezneva et al. did not consider the diverging part of the nozzle, but
they modelled it as a straight nozzle. Because the Mach number at the inlet is M
≈ 1, the diverging part of the nozzle promotes the expansion, and so it is possible to
reach higher Mach numbers.
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Figure 1.5: Pressure contours (Pa) in the chamber (a) and in the expansion-shock region (b)
for the 100 Pa chamber pressure case.

Figures 1.3 and 1.4 show the temperature and velocity fields obtained for 1, 10, 20
and 100 Pa chamber pressures, respectively.
In all the cases, because of the low chamber pressure compared to the pressure in
the discharge tube, the gas strongly expands. This strong expansion leads to the



1.2. Continuum-rarefied transition in supersonically expanding plasma 9

z (m)

Te
m

pe
ra

tu
re

(K
)

0 0.1 0.2 0.3

2000

4000

6000

8000

(a)

z (m)

M
ac

h
nu

m
be

r

0 0.1 0.2 0.30

1

2

3

4

5

(b)

Figure 1.6: Temperature (a) and Mach number (b) profiles along z-axis at 1 Pa (− · ·−), 10
Pa (− · −), 20 Pa (– –), 100 Pa (—) chamber pressure.

formation of the jet structure with a supersonic barrel ended by a stationary normal
shock wave (Mach disk), which is followed by a subsonic mixing and relaxing region.
In order to better describe this structure, in figure 1.5, only for the 100 Pa chamber
pressure case, we also show the pressure field in the deposition chamber focusing es-
pecially on the expansion-shock region. In this picture both the supersonic barrel and
the Mach disk are clearly evident.
Comparing the four cases in figure 1.4 it is evident that the expansion becomes
stronger and stronger as the chamber pressure decreases. For this reason, the jet
thickness increases as the chamber pressure decreases until it fills the entire deposi-
tion chamber in the case at 1 Pa chamber pressure.
In figure 1.6 the temperature and Mach number profiles along the symmetry axis are
shown.
As we reduce the pressure in the outlet, the strength of the expansion increases, in-
creasing the maximum Mach number from almost 5 at 100 Pa to almost 5.4 at 1 Pa
chamber pressure (figure 1.6(b)). Because of rarefaction effects, flow gradients reduce
and consequently, the shock wave moves forward along the z-axis reducing its strength
and increasing its thickness from 2.4 cm at 100 Pa to almost 10 cm at 1 Pa chamber
pressure (figure 1.6(a)).
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1.2.4 The continuum-rarefied flow transition

In order to predict the transition from the continuum to the rarefied flow regime
it is necessary to evaluate the Knudsen number. In particular, in this analysis we use
the Kn number based on the temperature gradient length scale

KnT =
λ

T
|∇T | (1.2)
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Figure 1.7: Knudsen number in the deposition chamber for 1 Pa (a), 10 Pa (b), 20 Pa (c)
and 100 Pa (d) chamber pressure.

In figure 1.7 we report KnT in the entire domain for 1 Pa, 10 Pa, 20 Pa and 100
Pa chamber pressures. In the pictures we indicate in gray the region where it is not
correct to use continuum hypothesis (KnT > 0.05). It can be clearly seen how this
region grows as the chamber pressure decreases. At 100 Pa there is only a very tiny
non-continuum region close to the inlet. At 20 Pa while this first region starts to grow,
a second one starts to appear close to substrate. At 10 Pa both the non-continuum
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regions are already very big and, finally, they invade almost 2
3 of the entire domain

at 1 Pa. Thus, our conclusion is that, already at 20 Pa the non-continuum region is
big enough to possibly influence the flow field in the entire domain.
In figure 1.8 the KnT profiles along the z-axis are shown. Also from this picture it is
clear that, because the rarefied region grows when we reduce the pressure, it is not
possible to use a continuum model in the entire domain at low pressure conditions.
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Figure 1.8: Knudsen number KnT profiles along the z-axis at 1 Pa (− · ·−), 10 Pa (− · −),
20 Pa (– –), 100 Pa (—) chamber pressure.

1.3 Motivation and aim

The aim of the project described in this thesis was the development of a compre-
hensive simulation model for the gas flow dynamics in thin film deposition processes
based on the application of an expanding thermal plasma.
From the previous section it is clear that it is not possible to model those kind of
processes without taking into account the continuum-rarefied transition which the
flow undergoes.
This thesis describes, therefore, the development, validation and application to thin
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film deposition processes of a general purpose hybrid CFD/DSMC code thought to
handle every kind of flow regime from the continuum to the free molecular one.

1.4 Rarefied flow simulations in the Department of Multi-Scale Physics

Prof. Kleijn’s team at the Multi-Scale Physics Department (part of the Applied
Sciences faculty of the Delft University of Technology) is working on multi-scale,
multi-physics simulations of reactive flow systems, combining molecular and contin-
uum based modelling techniques into hierarchical models for the various physical and
chemical phenomena that interact at widely varying length and time scales. There is
a large expertise in modelling reactive gas flow dynamics, both in the rarefied, tran-
sitional and continuum regimes, through DSMC [34], and CFD [35] techniques. To
date, 4 PhD candidates have been working on the development of a DSMC code and
on the study of rarefied gas flow problems. This does not only include low pressure
simulations (e.g. vacuum equipment as used in Chemical Vapor Deposition applica-
tions), but also microfluidics applications (e.g. microthrusters).
The team is one of the relatively small number of groups worldwide that is involved
in research of internal rarefied gas flows and has also a worldwide reputation for its
modelling of thin film deposition processes [36; 37].

1.5 Thesis outline

The thesis is organized as follows.
Chapter 2 describes the details and the validation of the Navier-Stokes solver and the
DSMC method.
In chapter 3, the hybrid CFD/DSMC approach is presented and validated. More
specifically, in this chapter we describe how the models of the previous chapter 2 are
dynamically coupled through a Schwarz method. The description of its advantages
with respect to other methods, its limitations and a sensitivity analysis of the method
to various parameters are also presented.
In chapter 4 the multi-scale hybrid CFD/DSMC approach is used to simulate a super-
sonic gas expansion for thin film deposition processes. Two different test conditions
are considered. The comparison among hybrid simulation results, full CFD simula-
tions and experimental data demonstrates the influence of rarefaction effects on both
velocity and temperature fields. A full two-dimensional characterization of the super-
sonic gas expansion is presented.
Finally, in chapter 5 the most important conclusions from the thesis are summarized.
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2. Numerical methods

As described in the previous chapter, the aim of this thesis is to describe the de-
velopment, validation and application to thin film deposition processes of a general
purpose hybrid CFD/DSMC code thought to handle every kind of flow regime from
the continuum to the free molecular one.
In this chapter we first demonstrate how and under which conditions the Navier-
Stokes equations can approximate the Boltzmann equation in section 2.1. Then, we
describe a finite volume based scheme for explicit time integration of the compressible
Navier-Stokes equations in low Kn flows in section 2.2 and a discrete, particle based
Monte Carlo approach for solving the Boltzmann equations in high Kn flows in section
2.3.
The chapter has been partially published as chapter in ’Advanced Computational
Method in Science and Engineering’ [38], ’Hybrid Navier-Stokes/DSMC simulations
of gas flows with rarefied-continuum transitions’ by G. Abbate, B.J. Thijsse and C.R.
Kleijn.

2.1 From Boltzmann to Navier-Stokes

The Navier-Stokes equations can be derived from the Boltzmann equation. The
derivation can be found in most texts on kinetic theory, e.g. Bird [6], Chapman and
Cowling [39], Grad [40], Patterson [41]. For the sake of completeness, the discussion
is briefly repeated here.
Considering an ideal monatomic gas in the absence of external forces and assuming
the gas sufficiently dilute for binary collision to dominate, the Boltzmann equation
[1] reads

∂(nf)

∂t
+ ck

∂(nf)

∂xk
=

[

∂(nf)

∂t

]

coll

(2.1)

where n is the number density, f is the velocity distribution function, ck the molecular
velocity in an inertial frame, the repeated index k denotes a sum, and the right-hand
side represents the collision integral. Multiplying the Boltzmann equation by any
function of molecular velocity Q(ci) and integrating over velocity space, the moment
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equations are obtained

∂(n < Q >)

∂t
+

∂

∂xk
(n < ckQ >) = ∆[Q] (2.2)

In equation 2.2, the operators < Q > and ∆[Q] are defined by

< Q >=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

Qfdc1dc2dc3 (2.3)

and

∆[Q] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

Q
[∂(nf)

∂t

]

coll
dc1dc2dc3 (2.4)

Choosing one of the five collisional invariants QINV = m{1, ci, c
2/2}, with m the

molecular mass and c2 the square of the velocity magnitude, as the arbitrary function
of molecular velocity Q(ci), then the corresponding moment of the collision integral
is identically zero, i.e. ∆[Q] = 0. This general result is valid for any distribution
function f and for any molecular interaction law and it leads to the conservation laws
for gas dynamics

∂

∂t
(n < QINV >) +

∂

∂xk
(n < ckQINV >) = 0 (2.5)

Considering the collisional invariants in turn, the following set of equations can be
written

∂

∂t
(ρ) +

∂

∂xk
(ρ < ck >) = 0 (2.6)

∂

∂t
(ρ < ci >) +

∂

∂xk
(ρ < ckci >) = 0 (2.7)

∂

∂t
(ρ < c2/2 >) +

∂

∂xk
(ρ < ckc2/2 >) = 0 (2.8)

where ρ = mn is the mass density.
In terms of the thermal velocity components Ci = (ci − ui), where the mean or fluid
velocity is ui =< ci >, the central moments can be defined

Pij = ρ < CiCj > (2.9)

p = Pkk/3 (2.10)

τij = −Pij + pδij (2.11)

e =< C2/2 > (2.12)

qi = ρ < CiC
2/2 > (2.13)
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where Pij is the stress tensor, p is the pressure, τij is the viscous stress tensor, e is
the internal energy (translational) for a monoatomic gas, qi is the heat flux vector for
a monoatomic gas and δjk the Kronecker delta. Substituting equations 2.9-2.13 into
the equations 2.6-2.8, the conservation laws for gas dynamics can then be written in
the form

∂

∂t
(ρ) +

∂

∂xk
(ρuk) = 0 (2.14)

∂

∂t
(ρui) +

∂

∂xk
(ρukui − τki + pδki) = 0 (2.15)

∂

∂t

[

ρ
(

e +
u2

2

)

]

+
∂

∂xk

[

ρuk

(

e +
u2

2

)

− τkiui + pδkiui + qk

]

= 0 (2.16)

For axi-symmetric flows in cylindrical coordinates (r, θ, z), with uθ = ∂
∂θ = 0, the

equations 2.14-2.16 can be rewritten as

∂

∂t
(ρ) +

∂

∂r
(ρur) +

ρur

r
+

∂

∂z
(ρuz) = 0 (2.17)

∂

∂t
(ρur) +

∂

∂r
(ρu2

r + p − τrr) +
ρu2

r − τrr

r
+

∂

∂z
(ρuruz − τrz) +

+
τθθ

r
= 0 (2.18)

∂

∂t
(ρuz) +

∂

∂r
(ρuruz − τrz) +

ρuruz − τrz

r
+

∂

∂z
(ρu2

z + p − τzz) = 0 (2.19)

∂

∂t

[

ρ
(

e +
u2

2

)

]

+
∂

∂r

[

ρur

(

e +
u2

2

)

+ pur − τrrur − τrzuz + qr

]

+

+
1

r

[

ρur

(

e +
u2

2

)

+ pur − τrrur − τrzuz + qr

]

+
∂

∂z

[

ρuz

(

e +
u2

2

)

+

+puz − τrzur − τzzuz + qz

]

= 0 (2.20)

For polyatomic gases the above procedure is not valid anymore and, therefore, must
be modified. The problem is rather difficult, because it includes the question of what
equation replaces equation 2.1, and it becomes necessary to make use of a suitable
approximation.
The energy mc2/2 does not properly account for the amount of energy that is carried
by a particle with internal structure, and it must be replaced by (mc2/2 + ε), where
ε is the additional internal energy per particle. Therefore, the collisional invariants
become

QINV = {m,mci, (mc2/2 + ε)} (2.21)

Assuming that equation 2.1 continues to hold for the extended distribution function
f(ci, ε), when applying to both equations 2.3 and 2.4, an additional integral over
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ε is required. The quantities in equation 2.21 must continue to be conserved in a
collision, and consequently, equation 2.4 still evaluates to zero; thus, equation 2.5
remains unchanged.
Since integration over ε can be taken first and independently from the ci integration,
evaluating the left hand side of equation 2.5, identical results to those obtained for the
monoatomic gas will be found for all quantities that contain polynomials in ci alone.
Therefore equations 2.6 and 2.7 and, consequently, 2.14 and 2.15 are fully recovered.
The same conclusion also applies to the first term in the quantity (mc2/2 + ε) and
so, equation 2.8 is replaced by

∂

∂t
(ρ < c2/2 > +n < ε >) +

∂

∂xk
(ρ < ckc2/2 > +n < ckε >) = 0 (2.22)

The unknown term meint =< ε > is the additional internal energy. A simple ap-
proach is to assume that all internal molecular energy modes are in equilibrium, both
internally and with the translational degrees of freedom. Thus, eint can be expressed
in terms of the translational temperature T by the equilibrium relation

eint =
1

2

(5 − 3γ

γ − 1

)

RT (2.23)

with R the gas constant and where the additional internal energy is accounted for
through the introduction of the ratio of specific heats γ. Clearly, in the case of a
monoatomic gas the additional internal energy evaluates to zero, i.e. eint = 0.
If we substitute equations 2.9-2.13 into equation 2.5 we will get once again equations
2.14 and 2.15, but instead of 2.16 it will lead to

∂
∂t

[

ρ
(

e + eint + u2

2

)

]

+

+ ∂
∂xk

[

ρuk

(

e + eint + u2

2

)

+ Pkiui + qk + (n < Ckε >)

]

= 0
(2.24)

However, if we replace equation 2.12 with

e = (< C2/2 > +eint) (2.25)

and 2.13 with
qi = ρ < CiC

2/2 > +n < Ciε > (2.26)

we will recover equation 2.16 as well.
We conclude that, if definitions 2.25 and 2.26 are employed in the case where the
gas possesses internal structure and a state of equilibrium exists between the internal
modes and the translational degrees of freedom, equations 2.14-2.16 can be used.
The set of conservation equations 2.14-2.16 can be developed for any general fluid
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through the use of phenomenological arguments alone and, therefore, is more general
than the kinetic theory derivation would indicate. Since we are only interested in
treating an ideal gas flow, however, the kinetic theory approach is necessary because
it shows that the obtained set of equations is valid for any degree of translational
nonequilibrium, that is, for any translational velocity distribution function one cares
to consider. In case of the equilibrium distribution, namely the Maxwellian distribu-
tion fMax [2; 42], then the set becomes the Euler equations, because viscous stress and
heat flux are identically zero in this case. On the contrary if one chooses a Chapman-
Enskog (CE) distribution fCE [39; 43; 44], then the set becomes the Navier-Stokes
equations.
The CE distribution is an approximate solution of the Boltzmann equation (for a
simple gas) and is expressed as a product of a local Maxwellian and a polynomial
function of the thermal velocity components Ci

fCE = fMax(1 + φ1 + φ2) (2.27)

where

fMax = (2πRT )−3/2exp(−C2/2RT ) (2.28)

φ1 = −
( ρ

p2

)(

K(1) ∂T

∂xk

)

Ck(C2/5RT − 1) (2.29)

φ2 = −
( ρ

p2

)(

µ(1) ∂uj

∂xk

)

(CjCk − 1

3
C2δjk) (2.30)

with K(1) the coefficient of thermal conductivity, µ(1) the coefficient of viscosity as
determined by the first-order Chapman-Enskog procedure, C2 = Ck ·Ck, and δjk the
Kronecker delta. When fCE is chosen, the stress and the heat flux are given by the
corresponding Chapman-Enskog expressions

qCE
i = −K(1) ∂T

∂xi
(2.31)

τCE
ij = µ(1)

( ∂ui

∂xj
+

∂uj

∂xi

)

− 2

3
µ(1)

(∂uk

∂xk

)

δij (2.32)

For axi-symmetric flow, in a (r, θ, z) cylindrical reference system, equation 2.32 be-
comes

τrr = µ(1)
[

2
∂ur

∂r
− 2

3

(∂ur

∂r
+

ur

r
+

∂uz

∂z

)

]

(2.33)

τθθ = µ(1)
[2ur

r
− 2

3
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(2.34)

τzz = µ(1)
[
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τrz = µ(1)
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+
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)

(2.36)
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In summary, the conservation equations 2.14-2.16 are not the N-S equations until one
introduces fCE . In fact, one is free to choose any translational velocity distribution
function in the equation 2.5 or in the sets of equations 2.6-2.8 and 2.14-2.16, and
in this way the set becomes closed, as long as f is fully specified. Otherwise, if f
remains general, one is faced with a closure problem, because τij and qi are unknown
quantities.
Since fCE is an O(Kn) expansion of the exact solution of f , the resulting N-S equa-
tions are an accurate approximation for Kn << 1 only. For large Kn, solutions to
the N-S equations no longer accurately describe the real behavior of the gas. This is
most clearly visible through the occurrence of wall-slip and wall-temperature jumps
at high Kn, neither of which is found through N-S.

2.2 Finite volume scheme for compressible Navier-Stokes equations

The aim of this section is to describe a Navier-Stokes solver that will be coupled
to a DSMC (Direct Simulation Monte Carlo) algorithm, in order to create a hybrid
solver for gas flows with temporal and spatial transitions from continuum to rarefied
conditions.
The CROW-CFD (Continuum Rarefied flOW - CFD) code developed in this work
is a code for unsteady gas flow simulations based on a finite volume formulation in
compressible form; steady-state conditions are reached by integrating the transient
solution in time from t = 0 to the long-time steady solution. The code can solve 1-D,
2-D and 2-D axi-symmetric geometries. It uses an explicit, second-order, kinetic flux-
splitting, MUSCL scheme for the Navier-Stokes equations [45; 46; 47]. This choice
was based on the following arguments:

• Since DSMC has the characteristics of a time-dependent finite-volume scheme,
compatibility suggests the use of the same scheme for the N-S portion.

• An explicit time integration scheme was used because it is more accurate. Al-
though explicit schemes are generally more expensive than implicit schemes, it
is expected that the most time consuming part of the simulations will be in the
DSMC solver, and therefore the speed of the CFD solver is not critical.

• Because the DSMC method is based on kinetic theory, it is preferable that the
same would be used for the definition of the split fluxes.
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2.2.1 Finite volume discretization

Each of the five separate moment equations represented by either sets of equations
2.6-2.8 or 2.14-2.16 can be expressed through the form

∂U

∂t
+

∂Fk

∂xk
= 0 (2.37)

Using the notation of equation 2.5

U = n < QINV > (2.38)

is the state vector, and
Fn = n < cnQINV > (2.39)

the total flux vector, with cn the component of the molecular velocity normal to the
planar surface.
Finite volume integration of the above model equation over an arbitrary control vol-
ume V , and using Gauss’ divergence theorem leads to

∂

∂t

∫

V

UdV +

∫

S

FndS = 0 (2.40)

where S encloses the volume V and Fn is the projection of Fi onto the unit outward
pointing normal for the surface element dS.
Considering a Cartesian grid, equation 2.40 can be written as

∆V
∂~Uijk

∂t
= (−~F∆A)

∣

∣

∣

∣

i+1/2,j,k

i−1/2,j,k

+ (−~F∆A)
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∣

∣

∣

i,j+1/2,k

i,j−1/2,k

+ (−~F∆A)

∣

∣

∣

∣

i,j,k+1/2
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(2.41)

where e.g. (.)
∣

∣

∣

i+1/2,j,k

i−1/2,j,k
= (.)i+1/2,j,k − (.)i−1/2,j,k and x1, x2 and x3 are the spatial

coordinates in the directions i,j and k respectively, ∆V and ~U are the volume and
state variables averaged in the ith cell, ∆A and ~F are the area and the averaged total
flux on the relevant cell face.

2.2.2 Time discretization

The finite volume integration of equation 2.41 over a control volume V must be
augmented with a further integration over a finite time step ∆t. Considering a first
order accurate Euler forward time integration, the 1-D version of equation 2.41 reads

∆V (~Un+1
i − ~Un

i ) =

∫ t+∆t

t

(−~F∆A)
∣

∣

∣

i+1/2

i−1/2
dt (2.42)
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where n refers at time t and n + 1 at time t + ∆t. To evaluate the right hand side of
the above equation we need to make an assumption. We could use the values at time
t or at time t + ∆t to calculate the integral or, alternatively, a combination of both.
We may generalize the approach by means of a weighting parameter θ between 0 and
1 and write the integral with respect to time as

∫ t+∆t

t

(−~F∆A)
∣

∣

∣

i+1/2

i−1/2
dt = −∆t∆A

[

θ

(

~F
∣

∣

∣

i+1/2

i−1/2

)n+1

+ (1 − θ)

(

~F
∣

∣

∣

i+1/2

i−1/2

)n]

(2.43)

The exact form of the eventual discretized equation depends on the value of θ. When
θ is zero, only values at the old time t are used at the right hand side of the equation
2.42 to evaluate ~U at the new time; resulting in an explicit scheme. When 0 < θ < 1
values at the new time level are used on both sides of the equation; the resulting
schemes are called implicit. The extreme case of θ = 1 is termed fully implicit and
the case corresponding to θ = 0.5 is called Crank-Nicolson scheme. The latter scheme
is second-order accurate in time.
Here we considered a first-order explicit scheme in time which uses values at time t,
and so equation 2.42 becomes

~Un+1
i = ~Un

i − ∆t

∆V
∆A(~Fi+1/2 − ~Fi−1/2)

n (2.44)

2.2.3 The MUSCL discretization scheme

To solve equation 2.44 we must now evaluate the total flux on the relevant cell face
~Fi+1/2 (and similar for other cell faces), that will be a function of the state variables
U at the same cell interface

~Fi+1/2 = F (Ui+1/2) (2.45)

This means that we should estimate F (Ui+1/2) starting from state variables averaged

in the grid cells ~U . The flux spitting method consists in splitting the total flux in its
positive and negative parts

~Fi+1/2 = ~F+
i+1/2 + ~F−

i+1/2 (2.46)

where the positive and negative parts of the total flux will be functions of the state
variables respectively at the left or right of the cell interface (figure 2.1)

~F+
i+1/2 = F+(UL

i+1/2) (2.47)

~F−

i+1/2 = F−(UR
i+1/2) (2.48)
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Figure 2.1: MUSCL Scheme

In the second-order spatially accurate MUSCL (Monotone Upstream-centered Scheme
for Conservation Laws) scheme [48], the state variables left and right of the cell
interface are approximated by

UL
i+1/2 = ~Ui +

1

4

[

(1 − k)∆U−

i−1/2 + (1 + k)∆U+
i+1/2

]

(2.49)

UR
i+1/2 = ~Ui+1 −

1

4

[

(1 + k)∆U−

i−1/2 + (1 − k)∆U+
i+1/2

]

(2.50)

where

∆U−

i+1/2 = limiter(∆Ui+1/2, β∆Ui+3/2) (2.51)

∆U+
i+1/2 = limiter(∆Ui+3/2, β∆Ui+1/2) (2.52)

with
∆Ui+1/2 = ~Ui+1 − ~Ui (2.53)

and β is a compression parameter whose value is generally in the range

1 < β <
3 − k

1 − k
(2.54)

In equations 2.51-2.52, ”limiter” is a so-called flux-limiting function and it is used



24 Chapter 2. Numerical methods

in a second-order discretization scheme to control the amount of anti-diffusion on a
first-order upwind approximation [49]. In particular in our code a value of k = −1
was chosen and we fixed β = 1.5. As flux-limiting ”limiter” function in equations
2.51-2.52, the minmod function was implemented [49]

limiter(a,b) = minmod(a,b) =

{ a if |a| < |b|; a · b > 0
b if |a| > |b|; a · b > 0
0 if a·b < 0

(2.55)

2.2.4 Chapman-Enskog split fluxes

We need now to evaluate an expression for the one-side fluxes based on a fixed
interface. This is done in a way proposed by Chou and Baganoff [46] and by Lou et
al. [47]. The approach is briefly repeated here for the sake of completeness.
From equation 2.39, introducing a Cartesian coordinate system (n, t1, t2) with axes
normal to and in two tangential directions of an arbitrary fixed planar surface, and
replacing both the temperature gradient and the velocity-gradient tensor by the
Chapman-Enskog expression for stress and heat flux [33]

qCE
i = −K(1) ∂T

∂xi
(2.56)

τCE
ij = µ(1)

( ∂ui

∂xj
+

∂uj

∂xi

)

− 2

3
µ(1)

(∂uk

∂xk

)

δij (2.57)

we obtain

F±

mass = ρ
√

RT/2[(1 ± α1)Sn ± α2(1 − χ1)] (2.58)

F±

n−mom = p[(1 ± α1)(S
2
n +

1

2
(1 − τ̂CE

nn )) ± α2(Sn + q̂CE
n )] (2.59)

F±

t1−mom =
√

2RT [St1F
±

mass] +
1

2
p[−(1 ± α1)τ̂

CE
nt1 ± α2q̂

CE
t1 ] (2.60)

F±

tr−energy = p
√

RT/2[(1 ± α1)(Sn(
5

2
+ S2) + χ2) ±

±α2(2 + S2 + χ3)]) (2.61)

F±

int−energy = (∆q±Eucken + ρune±int) =
1

2
(
5 − 3γ

γ − 1
)RTF±

mass (2.62)

F±

energy = F±

tr−energy + F±

int−energy (2.63)
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where γ is the gas ratio of specific heats and

α1 = erf(Sn) (2.64)

α2 =
1√
π

e−S2

n (2.65)

χ1 = Snq̂CE
n +

1

2
τ̂CE
nn (2.66)

χ2 =
5

2
q̂CE
n − (Snτ̂CE

nn + St1τ̂
CE
nt1 + St2τ̂

CE
nt2 ) (2.67)

χ3 = St1q̂
CE
t1 + St2q̂

CE
t2 − χ1(1 + S2

t1 + S2
t2) − τ̂CE

nn (2.68)

Sn = un/
√

2RT (2.69)

S2 = S2
n + S2

t1 + S2
t2 (2.70)

τ̂CE
nn = τCE

nn /p (2.71)

q̂CE
n =

2

5
qCE
n /(p

√
2RT ) (2.72)

Since the individual component of Si, τ̂ij and q̂i along the axis of the defined Cartesian
coordinate system (n, t1, t2) are all nondimensionalized the same way, they are not all
listed. It is interisting to note that we refer to the speed ratio S = u/

√
2RT instead

of the Mach number as frequently in use in kinetic theory. It is simple to check that
if we sum the positive and negative parts, we will get once again the total fluxes

Fmass = ρun (2.73)

Fn−mom = ρu2
n + p − τCE

nn (2.74)

Ft1−mom = ρunut1 − τCE
nt1 (2.75)

Ftr−energy = ρun

(3

2
RT +

u2

2

)

+ pun −

−(τCE
nn un + τCE

nt1 ut1 + τCE
nt2 ut2) + qCE

n (2.76)

Fint−energy = (∆qEucken + ρuneint) =
1

2
(
5 − 3γ

γ − 1
)pun (2.77)

2.2.5 Boundary conditions

In order to solve the equations described in the previous section, boundary con-
ditions on the complete boundary of the simulated domain are needed. There are
two principal ways to impose boundary conditions: Dirichlet [50] and Neumann [51]
boundary conditions. The first consists of imposing to a variable φ its value φ0 on
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the boundary, whereas in the second the value of its gradient normal to the surface
is imposed as ∂φ/∂n = φ′

0.
By combining these two basic types of boundary conditions for pressure, velocity and
temperature, a wide variety of possible boundary conditions has been implemented

• Isothermal walls,

• Walls with Neumann heat flux boundary condition, including adiabatic walls,

• Sliding walls,

• Porous walls,

• Walls with velocity slip and temperature jump for transitional regime,

• Symmetry axis,

• Mass flow inlet,

• Pressure inlet,

• Pressure outlet.

2.2.6 Validation

The developed CFD code (CROW-CFD) has been validated against both theo-
retical results and numerical results obtained with the commercially available code
FLUENT [29].
The test cases have been chosen in order to validate and show the potentials of the
code for steady and transient, compressible and incompressible, one-dimensional and
multi-dimensional flows.

2.2.6.1 Sod’s problem

We apply the CROW-CFD code to a transient one-dimensional shock-tube prob-
lem, or, as it is also known in the literature, Sod’s problem [45; 48; 54; 55]. It is a
classical test case for the validation of unsteady compressible CFD methods.
We model the flow field inside a L = 1 m long tube linking two tanks of the same
fluid (air) under different thermodynamic conditions (figure 2.2). A membrane in the
middle of the tube divides the two regions where the fluid is in different conditions:
in the left region the gas is at a pressure P1 = 1 atm with a density ρ1 = 1 kg/m3,
while in the right region it is at a pressure P2 = 0.1 atm with a density ρ2 = 0.125
kg/m3. At time t = 0 the membrane breaks and the fluid can flow from one region
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Figure 2.2: Sod’s problem test case. The dashed line indicates the membrane which is broken
at the instant t = 0.

to the other. Three different waves will start travelling in the tube with three dif-
ferent velocities: a rarefaction or expansion wave moving from right to left, a shock
wave travelling from the left to the right and between them a contact discontinuity.
The rarefaction wave produces a gradual decrease of density and pressure of the gas
passing through it, while the shock wave produces a rapid increase of the density and
pressure. Through the third one, the contact discontinuity, the flow undergoes only
a density, and not a pressure, variation.
The grid is composed of 100 cells in the x direction and 1 cell in the y direction.
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Figure 2.3: Sod’s problem: pressure (a) and density (b) profiles in the tube. Theory (—),
CROW-CFD (�)
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The results of simulated pressure and density profiles along the tube are compared
with the theory in figure 2.3 at the instant where the shock wave moving to the right
has approximately reached x = 0.75 m. It is clear that both for the pressure and
density, the simulations profiles slightly differ from the theory. In the simulation pro-
files the two discontinuities are smoother than in the theory. The reason of these
differences is that the theoretical solution is valid for non-viscous flows, while our
code solves the Navier-Stokes equations and not the Euler equations. The effect of
viscosity is clearly to reduce the strength of the shocks making them smoother.
Considering this, it can be concluded that CROW-CFD performs very well in this
validation case.

2.2.6.2 Poiseuille flow

In this section, we use the CROW-CFD code to simulate a plane Poiseuille flow
(figure 2.4).

Figure 2.4: Poiseuille flow test case.

We consider a flow of Argon at a temperature T = 300 K in a channel of height
h = 0.001 m and length L = 100h. The pressure at the inlet is Pin = 1440 Pa and
at the outlet Pout = 1000 Pa. The wall temperature is Tw = 300 K. At a sufficiently
large distance from the inlet the flow is a Poiseuille flow: its solution is known and
characterized by a linear pressure decay in the x direction and a parabolic velocity
profile in the y direction [56; 57]. For the studied flow, with Reynolds number Re
≈ 100, the velocity profile will be fully developed for x

h > 0.04Re = 4. Because of
symmetry we limit the simulation domain to the upper half of the channel. The grid
is composed of 100 cells in the x direction and 10 cells in the y direction.
At the symmetry plane the velocity is

V0 =

(

h
2

)2

2µ

∆P

L
≈ 105 m/s (2.78)
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Figure 2.5: Poiseuille flow: pressure drop along the x axis (a) and velocity profile at x

h
= 80

(b). Theory (—), CROW-CFD (�)

with µ the viscosity of the fluid and ∆P = Pin − Pout.
As shown in figure 2.5(a) the pressure drop along the x direction predicted by the
CROW-CFD is in very good agreement with the theoretical linear pressure drop.
In figure 2.5(b) the velocity profile at x

h = 80 predicted by the CROW-CFD code is
compared to the Poiseuille flow parabolic analytical solution.
From figure 2.5 it can be concluded that CROW-CFD code was performing very well
also in this second test case.

Figure 2.6: Couette flow test case.
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2.2.6.3 Couette flow

Another classical test case is the incompressible Couette flow (figure 2.6) [58].
We consider a flow of Argon gas between two infinitely long parallel flat plates at
a mutual distance h = 0.005 m. The bottom plate is at rest, while the upper one
moves from left to the right with velocity V0 = 100 m/s. The plates are at the same
temperature of the gas Tw = T0 = 300 K.
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Figure 2.7: Couette flow: velocity profile at x = 0.025 m. Theory with no-slip BC (—),
theory with slip velocity BC at Kn = 0.05 (– –), CROW-CFD at Kn = 0.001 (�), CROW-
CFD at Kn = 0.05 (4)

We consider two different values of Kn with respect to the distance between the
plates h: Kn = 0.001 and Kn = 0.05. To vary Kn, two different conditions for the
gas pressure P0 are considered, respectively 500 Pa and 10 Pa. In the first case, the
mean free path is λ ≈ 5 ·10−6 m and, because we are in the continuum regime, no-slip
boundary conditions are imposed at the wall, whereas in the second case the mean
free path is λ ≈ 2.5 · 10−4 m and a slip velocity is imposed at the wall according to
[85]

Vslip = λ






du

dy






= λ

V0

h
= KnV0 ≈ 5 m/s (2.79)
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where u the velocity component in the x direction.
The computational domain is extended for a length L = 0.05 m = 10 h in the x di-
rection to avoid the influence of the boundaries at the center line x = 0.025 m = 5 h.
For this reason we expect to get a linear Couette flow velocity profile at this position.
The grid is composed of 50 cells in the x direction and 10 cells in the y direction.
In figure 2.7 the velocity profiles at x = 0.025 m for both Kn = 0.001 and Kn = 0.05
obtained by CROW-CFD are shown. In the same picture also the theoretical linear
profiles [58] for no-slip flow and for a slip flow at Kn = 0.05 are reported.
From figure 2.7 it is evident that both at Kn = 0.001 (with no-slip boundary condi-
tions) and at Kn = 0.05 (with velocity slip boundary conditions) the CROW-CFD is
in very good agreement with the theoretical solutions.

2.2.6.4 Jet expansion in a cylindrical chamber

In this section a comparison between CROW-CFD and the commercially available
code FLUENT [29] is presented.
We model an Argon jet expansion in a cylindrical chamber (figure 2.8).

Figure 2.8: Jet expansion geometry and flow conditions.
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An Argon jet with mass flow ṁ = 0.065 kg/(m2s) at a temperature of Tin = 1400 K
is injected from the top in a cylindrical chamber of height L = 0.8 m and diameter
d = 0.32 m through a circular hole of diameter din = 0.032 m. The pumping exit is
a circular slit in the chamber sidewall with a lout = 0.04 m width at a distance of
hout = 0.6 m from the nozzle where the pressure is kept at a value Pout = 100 Pa.
The walls of the chamber are at a temperature Tw = 700 K.
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Figure 2.9: Jet expansion: temperature (a) and velocity (b) profiles along the axis.
FLUENT(—), CROW-CFD (�)

Inside the chamber we suppose the flow to be 2-D axisymmetric, and because of that
only half of the flow field is simulated. The grid is composed of 100 cells in the axial
direction and 50 cells in the radial direction.
The gas pressure is computed from the ideal gas law, whereas its viscosity and ther-
mal conductivity are taken to be temperature dependent in a way as computed from
kinetic theory.
A comparison between the results of CROW-CFD and FLUENT can be seen in figures
2.9 and 2.10. In particular, the temperature and velocity axial profiles are shown in
figure 2.9, while in figure 2.10 the temperature and velocity radial profile at positions
z = 0.05 m, z = 0.1 m, z = 0.2 m and z = 0.4 m are presented.
The figures clearly show that the simulation results of CROW-CFD and FLUENT
are in very good agreement.
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Figure 2.10: Jet expansion: temperature (a) and velocity (b) radial profiles computed by
CROW-CFD at z = 0.05 m (�), z = 0.1 m (©), z = 0.2 m (4) and z = 0.4 m (O), compared
to results from FLUENT(—).

2.2.6.5 Concluding remarks

At the end of this section, it can be concluded that the CROW-CFD performs well
in all validation cases. The results given by the code match with analytical solutions
and results given by the commercial code FLUENT in all cases.
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2.3 Direct Simulation Monte Carlo scheme for rarefied gas flows

The aim of this section is to describe the basics of the CROW-DSMC (Continuum
Rarefied flOW - DSMC) code for numerical simulations of rarefied gas flows.
The Boltzmann equation can be solved analytically for some simple problems only.
Numerically, solutions can be obtained for a somewhat broader range of problems.
For engineering problems involving complex geometries, however, it is next to impos-
sible to solve the Boltzmann equation, even numerically. Another disadvantage of the
Boltzmann equation is the fact that its definition does not include the possibility for
chemical reactions.
The Direct Simulation Monte Carlo (DSMC) method [6], which is closely related to
the Boltzmann equation, does not suffer from these shortcomings, and it is therefore
the preferred method for simulations of engineering type rarefied gas flows. Rather
than solving continuum based partial differential equations like the Navier-Stokes
equations, the DSMC method aims at modeling gas flows by calculating the move-
ments and collisions of computational particles which represent molecules in the real
flow.
Like the Boltzmann equation [1], the DSMC method assumes a dilute gas and molec-
ular chaos. In a dilute gas, the molecules occupy only a small fraction of the total gas
volume. Consequently, the position and velocity distributions of two colliding parti-
cles are uncorrelated, which is the definition of molecular chaos. The DSMC method
is inherently transient, and steady state solutions are obtained by letting a transient
simulation evolve into the long-time, steady state. During the transient calculations,
the position, velocity and internal energy of the computational particles are stored
and updated each time step. It has been shown [59] that solutions obtained with
the DSMC method converge to solutions of the Boltzmann equation in the limit of
infinitely small cell size and time step, and infinite number of computational particles.
In addition to the two assumptions mentioned above, the DSMC method involves two
more main assumptions:

• It is not necessary to calculate the path of every real molecule, but a relatively
small statistical sample of N particles suffices. Typically, N = 105 − 107, which
may be compared to e.g. 1015 molecules in 1 mm3 of atmospheric air. The ratio
Fnum, which is defined as the ratio between the number of molecules in the real
flow and the number N of simulation particles, can be a very large number (e.g.
1010 − 1020). In a simulation with multiple species, each computational particle
thus represents Fnum particles of a certain (single) species in the real flow.

• The translation of the computational particles can be decoupled from their
collisions with other computational particles. This implies that each simulation
time step can be split into two steps:
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– A translation step in which all particles are displaced and interactions with
boundaries are computed;

– A collision step in which inter-particle collisions are modelled.

The translation step is purely deterministic, whereas the collision step involves
a Monte Carlo type approach, hence the name Direct Simulation Monte Carlo.

A typical DSMC calculation involves:

• Initialization,

• Particle movement,

• Particle collisions,

• Sampling.

They will be discussed in the following sections.
More specifically, the CROW-DSMC code, developed in this work, has the following
properties and features:

• 2D plane and axisymmetric,

• Pressure inlet and outlet; diffuse, specular and Cercignani-Lampis-Lord [61; 62;
63] walls and symmetry plane,

• VHS [64] and VSS [65; 66] collision models

• Radial weighting factors

These features are discussed in the present section.

2.3.1 Initialization

At the start of a computation, particles are generated in the flow domain ac-
cording to the prescribed initial conditions. These include the geometry of the flow
domain, the initial temperature T , the initial number density n, and the initial mass-
average velocity ~Vma. From the prescribed value of Fnum and the initial flow density
the number of computational particles is calculated. Each of these particles is then
assigned a location and a velocity. For the most common case of a uniform initial
density, the location of the particles is chosen such that they are evenly distributed
in the entire domain. The velocities of individual particles are usually sampled from
the Maxwellian distribution fMax (equation 2.28) belonging to the initial tempera-
ture. Alternatively, a Chapman-Enskog distribution can be used fCE (equation 2.27).
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2.3.2 Particle movement and boundary interaction

In each DSMC time step, the translation of all particles is calculated in a fully
deterministic way from the old location ~Xt and velocity ~V of the particle:

~Xt+∆t = ~Xt + ~V ∆t (2.80)

For one-dimensional flows, only one location variable is required to define the position
of a computational particle, and equation 2.80 reduces to a scalar equation. A similar
reasoning holds for two-dimensional flows. However, because of the requirements of
the inter-particle collision treatment, the particles velocities are in both cases treated
in three dimensions. Of these, only the relevant components are used in equation
2.80.

Figure 2.11: Schematic explanation of the displacement of a particle in 2D axisymmetric
flows. Shown is a cross section of the flow normal to the flow axis. (based on [34])

As schematically shown in figure 2.11 taken from [34], in the case of two-dimensional
axisymmetric flows the movement of a computational particle is first treated com-
pletely three-dimensionally in cartesian coordinates, and then the new location is
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transferred back to the two-dimensional axisymmetric plane.
The location of a computational particle in the computational plane (figure 2.11)
is described by only two position variables. According to equation 2.80, during the
movement phase a particle will move from a position ~xold to a location ~xtemp, thus
leaving the computational plane. It is then necessary to transfer the particle back to
the computational plane (position ~xnew) without changing neither its axial and radial
coordinates, nor its axial, radial and circumferential velocity components. Therefore,
the Cartesian velocity must be changed from ~vold to ~vnew.
If, during its displacement, the path of a computational particle intersects with a solid
surface, the interaction with this surface is calculated as fully diffuse, fully specular
[2] or using the Cercignani-Lampis-Lord [61; 62; 63] model. A symmetry plane is
treated identical to a specular surface.
In the diffusive model, the particle is reflected with a velocity sampled from the equi-
librium velocity distribution fMax (equation 2.28) with the surface temperature, thus
it is fully accommodated at the surface temperature. On the contrary, using a spec-
ular model, all particle properties remain equal, but the velocity component normal
to the wall is reversed. To overcome the limitations of these extreme and unrealistic
models, a Cercignani-Lampis-Lord (CLL) model [61; 62; 63] can be used, which is
intermediate between the specular and diffusive models, but far more general than a
simple combination of them. It allows for the independent specification of the accom-
modation coefficients for the normal and tangential momentums.

Figure 2.12: Buffer zone approach for inlet (outlet) boundary conditions.

During the movement phase of the calculation, new particles are also entered into
the domain through open boundaries. For the implementation of these boundaries,
a ”buffer zone” or ”particle reservoir” approach is used [67]. Some ”buffer cells”
are considered across the open boundary outside the simulation domain. Every time
step, a number of particles, according to the density ρBC at the boundary, are gen-
erated inside these buffer cells with an average temperature TBC and velocity ~VBC.
A Maxwellian (equation 2.28) or Chapmann-Enskog (equation 2.27) distribution is
used to create these particles. The created particles are then moved for one time step.
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Particles that remain in the buffer cells are deleted. The molecules that move into
the simulation domain are inserted in the simulation (figure 2.12).
For a pressure inlet, the temperature and pressure, and therefore the density, are
fixed while the velocity is unknown. For a pressure outlet, only the pressure is fixed
and the temperature and velocity are unknown. For each ”buffer cell” the unknown
variables are interpolated from the first cell in the flow nearest to the ”buffer cell”.

2.3.3 Particle collisions

For the purpose of calculating the collisions between computational particles through
a Monte Carlo type of approach, the simulation domain is divided into cells with max-
imum dimensions ∆x,∆y,∆z < λ/3. Here, λ is the particles’ mean free path length.
Typically, the total number of computational particles is chosen such that the average
number of particles in each cell is larger than ∼ 30.
In each time step, the collisions between the N computational particles in a cell can
be calculated using the number of pairs Nc and the collision probability P for each
pair:

Nc =
N(N − 1)

2
(2.81)

P = Fnum
∆tσT cr

V
(2.82)

The fraction ∆tσT cr

V is the probability that the computational particles will collide in a
time step, with σT the total collision cross-section of the two particles, cr their relative
speed, ∆t the time step and V the cell volume. By multiplying this probability with
the ratio Fnum between the number of real molecules and the number of computational
particles, the correct collision frequency for the real gas is obtained. The probability
P is evaluated for each pair and a collision is accepted or rejected by comparing P to
a random number.
This method of calculating collisions is not very efficient as the value of P is usually
very small. DSMC calculations therefore use an adapted method in which the number
of pairs is reduced such that the collision probability for a pair can be increased:

Nc =
1

2
N2Fnum

∆t(σT cr)max

V
(2.83)

P =
σT cr

(σT cr)max
(2.84)

The value of (σT cr)max is estimated at the start of a calculation, and is adjusted if
a higher value is found during the calculations. For FnumN large compared to unity,
the second method of calculating the collisions (equations 2.83 and 2.84) approaches
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the first (equations 2.81 and 2.82) and is therefore physically correct, while computa-
tionally much more efficient.
For each of the total number of pairs, a pair of computational particles is selected
from the cell at random. The colliding particles do not have to be close in physical
space (as long as they are within the same computational cell), nor do their paths
need to intersect. As long as the cell dimensions are smaller than λ/3, this does not
have a significant effect on the results. To further decrease the effect of separation,
a cell may be divided into sub-cells, and a pair is selected from the same sub-cell if
possible.

2.3.3.1 Collision models

In order to determine the collision cross-section σT and the post-collision velocities
and internal energies of the computational particles, various collision models can be
used.
The parameters of the collision model determine, macroscopically, the diffusion coef-
ficient, thermal diffusivity and viscosity of the gas and, microscopically, the collision
frequency of particles and the transfer of momentum and energy during a collision.
The most used collision models in DSMC are the one-parameter Variable Hard Sphere
(VHS) [64] model, and the two-parameters Variable Soft Sphere (VSS) [65; 66] model.
Both models calculate a collision cross section σT as

σT =
π

4
d2 (2.85)

with d the collision diameter

d = dref

[

(2kBTref

mrc2
r

)ω−
1

2 1

Γ
(

5
2 − ω

)

]
1

2

(2.86)

and, kB the Boltzmann constant, cr the relative velocity of the two molecules and mr

the reduced mass, defined as

mr =
m1 · m2

m1 + m2
(2.87)

The parameter dref is the diameter at a reference temperature Tref , and ω is the
viscosity-temperature exponent, viz. µ ∝ T ω.
The deflection angle χ in a collision is calculated as

cos
(χ

2

)

=
( b

d

)
1

α

(2.88)

from which

cos(χ) = 2
( b

d

)
2

α − 1 (2.89)
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where b is the miss distance or impact parameter and α is a VSS model parameter
(α = 1, for the VHS model). Since in DSMC the paths of the computational particles
do not cross during a collision, b is unknown. However, since for the selected pair of
particles the ratio ( b

d )2 is uniformly distributed between 0 and 1, the cosine of the
deflection angle χ can be calculated as

cos(χ) = 2
(

R
)

2

α − 1 (2.90)

with R a random number.
With the VHS model it is possible to accurately reproduce the temperature depen-
dence of the viscosity. The introduction of the parameter α in the VSS model allows
for the reproduction of the temperature dependence of (thermal) diffusivities as well.

2.3.4 Sampling

Due to the relatively low number of computational particles (compared to the
number of molecules in a physical system), DSMC results suffer from statistical noise.
The amount of noise is reduced by sampling the molecular properties during many
time steps (for a steady problem) or many ensembles (for an unsteady problem).
For steady state flow problems, sampling of the flow properties is performed inside the
time step loop and over many time steps once steady state has been reached. Because
two consecutive samples are usually highly correlated, sampling is usually done once
every ∼ 4 times steps. Flow properties are averaged over the same cells as used for
the collision routines. Within one cell and at one sampling time, the following particle
properties are accumulated:

• number of particles N ,

• the sum of their velocities
∑ ~Vi,

• the sum of the square of their velocities
∑

(~V · ~V )i

All relevant flow data such as the mass-average velocity ~Vma, the temperature T and
the density ρ can be calculated from these data.
The density is calculated as:

ρ = Fnum
Nm

V
(2.91)

The equation for the mass-average velocity is:

~Vma =

∑ ~Vi

N
(2.92)
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Finally, the temperature is determined as:

T =
m[

∑

(~V · ~V )i − ~Vma · ~Vma]

3kB
(2.93)

For unsteady flows, sampling during many time steps is not possible. In this case,
many ensembles are calculated, and the flow properties are derived by averaging over
all ensembles the samples taken at a specific time. This can be time and memory
consuming due to the large number of ensembles which are needed and the necessity
of storing sample data also as a function of time.

2.3.5 Radial weighting factors

In a simulation of a uniform two-dimensional axisymmetric flow with cells evenly
spaced in the radial direction the number of particles is very small in the cell at the
axis and very large in the cell furthest from the axis. Thus, in order to have a decent
statistical sample of the flow near the axis, we would need to use an unpractically
large number of particles at large radial position r. A classical approach to solve this
problem is the introduction of radial weighting factors.
When radial weighting factors are in use, each particle represents W real molecules
depending on its radial position r, according to

W =
r

rref
Fnum (2.94)

with rref a reference radius.
Using this approach we impose that a particle far away from the axis is representative
of a higher number of real molecules than a particle close to the axis. According to
that, a particle moving away from the axis has some probability to be removed from
the simulation and similarly a particle moving toward the axis has some probability
to be duplicated, depending on its old and new values of W.
The clear advantage of this approach is the even distribution of the particles over the
cells in the two-dimensional computational domain.
The use of radial weighting factors formally implies the necessity of changing the
collision routine. Due to the finite dimension of a cell in the radial direction even
particles within the same cell have different weights. However, it has been shown
[6], that the use of equal weighting for all particles within a cell and an unchanged
collision routine has a negligible effect on the flow.
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2.3.6 Validation

The developed CROW-DSMC code has been validated against both theoretical
results and numerical results coming from the DSMC1, DSMC1U and DSMC2 codes
by Bird [6], respectively for one-dimensional steady, one-dimensional transient and
two-dimensional flow simulations.
The test cases have been chosen in order to validate and show all the potentials of
the code for steady and transient, low and high Mach number, one-dimensional and
multi-dimensional flows.

2.3.6.1 Fluid between two flat plates at different temperature

As first test to validate our CROW-DSMC code a classical test case for rarefied
flow is considered [75; 76; 77; 78; 79; 80; 81].
We simulate Argon between two parallel plates of infinite dimension. The left plate
is at temperature Tw1

= 300 K and the right one is at Tw2
= 400 K. The gas is

macroscopically at rest. The pressure of the fluid is P = 0.1 Pa and the mean free
path is λ ≈ 0.025 m. In order to vary the Knudsen number (Kn = 0.01, Kn = 0.1 and
Kn = 1), we considered three different values for the distance L between the plates,
and respectively L = 2.5 m, L = 0.25 m and L = 0.025 m.
The grid is composed by 100 cells in the x direction and 1 in the y direction. The
VHS model was used for the collisions and the two plates were modelled as diffusive
walls.
We can define the dimensionless temperature as

T ∗ =
T − Tw1

Tw2
− Tw1

(2.95)

In the theoretical solution under continuum conditions (Kn = 0.01), T ∗ increases
linearly from zero at the left wall, to unity at the right one. On the contrary, in
rarefied conditions we expect on both walls a temperature jump. For Kn ≤ 0.1 the
temperature jump can be analytically calculated as

∆T = T − Tw = CT
dT

dn
(2.96)

with Tw the wall temperature, n the direction normal to the wall and CT the jump
length. Maxwell [2] estimated the jump length to be proportional to the mean free
path length λ:

CT =
15
√

π

16
λ (2.97)
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Figure 2.13: Dimensionless temperature of a fluid between flat plates. Theory (Kn ≤ 0.01)
(—), DSMC1 at Kn = 0.1 (- · -), DSMC1 at Kn = 1 (– –), CROW-DSMC at Kn = 0.01
(�), CROW-DSMC at Kn = 0.1 (4), CROW-DSMC at Kn = 1 (©)

In figure 2.13 we compare the dimensionless temperature T ∗ between the two plates
calculated by CROW-DSMC to the theoretical linear trend for Kn = 0.01 and to the
results obtained by DSMC1 by Bird [6] for Kn = 0.1 and Kn = 1. In the same picture
we also show the theoretically predicted temperature jumps on both walls for Kn
= 0.1. Please note that, since λ varies with T and therefore with x, the temperature
jump is not the same at both walls.
There is a very good agreement between predictions by the DSMC1 code by Bird
and CROW-DSMC for Kn = 1 and Kn = 0.1, and between CROW-DSMC and the
theoretical linear trend for Kn = 0.01. For Kn = 0.1, CROW-DSMC predicts the
same temperature jump on both walls as equation 2.96. Therefore from figure 2.13 it
is clear that CROW-DSMC is performing very well in this test case.



44 Chapter 2. Numerical methods

Figure 2.14: Impulsive piston test case.

2.3.6.2 The impulsive piston

In this section we will compare predictions by CROW-DSMC to predictions by
Bird’s DSMC1U code [6] for the ’impulsive piston’ problem (figure 2.14). This is a
classical test case for unsteady one-dimensional compressible gas flow simulations in
both continuum and rarefied conditions [6; 12; 82; 83; 84].
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Figure 2.15: Impulsive piston: temperature (a) and velocity (b) profiles after 1 × 10−9 s.
DSMC1U (�), CROW-DSMC (N).

We simulate a flow of Argon at initial density ρ0 = 1.8×10−3 kg/m3 and temperature
T0 = 273 K, moving at Mach M0 = 2 toward a wall held at a fixed temperature of
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Tw = 1000 K. This is equivalent to an impulsively started piston travelling at Mach
M0 into Argon initially at rest in the reference frame of the piston.
The grid contains 500 cells in the x direction and 1 cell in the y direction. The VHS
model was used for the collisions and the diffusive wall model was used for the piston.
The number of runs for the ensemble average is 50. Yet there still is quite some
statistical scatter in the results.
In figure 2.15 we compare the temperatures and velocities at t = 1× 10−9 s predicted
by CROW-DSMC to those obtained by DSMC1U. Within the bands of statistical
scatter, the results of both codes are in very good agreement also in this test case.

2.3.6.3 Rarefied Poiseuille flow

In this section, we use the CROW-DSMC code to simulate a rarefied low Mach
number plane Poiseuille flow (figure 2.16). The test case is very similar to the one
described in section 2.2.6.2, but we decreased the pressure in order to increase the
average Knudsen number to Kn = 0.15.

Figure 2.16: Rarefied Poiseuille flow test case.

We consider a flow of Argon at a temperature T = 300 K in a channel of height
h = 0.002 m and length L = 0.005 m. The pressure at the inlet is Pin = 30 Pa and
at the outlet Pout = 10 Pa. The wall temperature is Tw = 300 K. At a sufficient
distance from the inlet, the flow is a Poiseuille flow: its solution under continuum
conditions is known and characterized by a linear pressure decay in the x direction
and a parabolic velocity profile in the y direction [56; 57]. Because of symmetry, we
limit the simulation domain to the upper half of the channel. The grid is composed
by 50 cells in the x direction and 20 cells in the y direction. The VHS model was used
for the collisions and the diffusive wall model was used for the walls of the channel.
In figure 2.17(a) we compare the pressure drop along the x direction predicted by
the CROW-DSMC to results obtained by the DSMC2 code by Bird [6]. In the same
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picture also the theoretical linear pressure drop for continuum conditions is shown.
From the picture, it is clear that CROW-DSMC and DSMC2 are in good agreement
with each other and they both show the non linear pressure drop which is known to
prevail for rarefied Poiseuille flow [85; 86].
In figure 2.17(b) we show the fully developed velocity profile at the position x

h = 2,
normalized the maximum velocity V0 under continuum conditions

V0 =

(

h
2

)2

2µ

∆P

L
≈ 95 m/s (2.98)

with µ the viscosity of the fluid and ∆P = Pin − Pout.
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Figure 2.17: Rarefied Poiseuille flow: pressure (a) and velocity profile at x

h
= 2 (b). Theo-

retical continuum Poiseuille solution (—), DSMC2 (– –), CROW-DSMC (�)

The velocity profile predicted by the CROW-DSMC code is compared to the solution
obtained using DSMC2, to the parabolic analytical solution for continuum Poiseuille
flow, and to the theoretical slip flow velocity at the wall for Kn = 0.15 according to
equation 2.79. The CROW-DSMC and the DSMC2 give very similar results for the
velocity profile, and the computed slip velocity agrees very well with the theoretically
predicted value [85]. The slip effect increases the average velocity in the channel at
given total pressure drop and reduces the curvature of the velocity profile with re-
spect to the continuum solution [85]. It can be concluded that CROW-DSMC code
was performing very well also in this test case.
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2.3.6.4 Rarefied Couette flow

We apply the CROW-DSMC code to simulate the rarefied low Mach number plane
Couette flow (figure 2.6) in the test case already described in section 2.2.6.3, with a
value of the Knudsen number Kn = 0.05.
We consider a flow of Argon between two infinite parallel flat plates at a distance
h = 0.005 m. The bottom plate is at rest, while the upper one moves from left to the
right with velocity V0 = 100 m/s. The plates are at the same temperature of the gas
Tw = T0 = 300 K. The gas between the plates is at a pressure P0 = 10 Pa and the
mean free path is λ ≈ 2.5 · 10−4 m.
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Figure 2.18: Couette flow: velocity profile at x = 5h. Theory with no-slip BC (−), theory
with slip velocity BC at Kn = 0.05 (– –), CROW-CFD with no-slip BC (�), CROW-CFD
with slip BC at Kn = 0.05 (�), CROW-DSMC (4)

The computational domain is extended for a length L = 10h in the x direction to
avoid the influence of the boundaries. The grid is composed by 200 cells in the x
direction and 50 cells in the y direction.
In figure 2.18 the velocity profiles at x = 5h obtained by CROW-DSMC is compared
with the theoretical slip flow solution and the results of CROW-CFD with slip flow
boundary conditions. In the same picture also the theoretical linear profiles for no-slip
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flow and the results of CROW-CFD with no-slip boundary conditions are reported.
From figure 2.18 it is evident that the CROW-DSMC is in very good agreement with
the theoretical slip flow solution and the solution of CROW-CFD in the same condi-
tions and with slip boundary conditions.

2.3.6.5 Concluding remarks

At the end of this section, it can be concluded that the CROW-DSMC performs
well in all validation cases. The results given by the code match with analytical equa-
tions and results given by the DSMC1, DSMC1U and DSMC2 codes by Bird [6] in
all cases.



3. Development of a hybrid N-S/DSMC solver

In this chapter the hybrid CFD/DSMC approach is presented. We describe how the
models of the previous sections 2.2 and 2.3 are coupled through a Schwarz method
[10; 14]. The strategy implemented for coupling the Navier-Stokes based CFD code
and the DSMC code for steady flow simulations is presented in section 3.3, whereas
the approach for unsteady flow simulations is presented in section 3.4. In section 3.5
we present a validation and a sensitivity analysis of the method to various parameters.
Most of this chapter has been published in Advanced Computational Method in Sci-
ence and Engineering [38], Hybrid Navier-Stokes/DSMC simulations of gas flows with
rarefied-continuum transitions by G. Abbate, B.J. Thijsse and C.R. Kleijn, and as
’Validation of a Hybrid Navier-Stokes/DSMC Method for Multiscale Transient and
Steady-State Gas Flows’ by G. Abbate, B.J. Thijsse and C.R. Kleijn in the SMMS
2007 special issue of Int. J. Multiscale Comput. Eng. [101].

3.1 Introduction

As already highlighted in chapter 1, numerical simulations are an increasingly
important tool for the design, improvement and optimization of gas flow equipment.
Although in many interesting applications gas flows can be simulated solving the
Navier-Stokes equations, there is a wide set of cases where these equations are not
applicable.
From chapter 2 it is clear that the Navier-Stokes (N-S) equations give an accurate
description of the gas behavior as long as the Chapman-Enskog velocity distribution
fCE is a good approximation of the exact velocity distribution f for the particles
of the gas. Defining the Knudsen number (Kn) as the ratio between the mean free
path and a relevant macroscopic length scale, since fCE is an O(Kn) expansion of the
exact solution f , the N-S equations are an accurate model of the flow for Kn << 1
only.
Summarizing what has been already discussed in the previous chapters, a gas flow with
Kn < 0.01 (or, with modifications of boundary conditions < 0.1) can be simulated
using Navier-Stokes based Computational Fluid Dynamics (CFD) models, whereas
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gas flows with Kn > 0.05 can be simulated using particle based Direct Simulation
Monte Carlo (DSMC) methods. Since DSMC computational costs scale with Kn−4,
they become prohibitively large when Kn becomes lower than ≈ 0.05.
However, in many practical applications, gas flows undergo spatial and/or tempo-
ral transitions from low (< 0.01) to high (> 0.05) Kn numbers, e.g. due to varying
pressure or dimensions. Examples include: flow around vehicles at high altitudes, par-
ticularly re-entry of vehicles in a planetary atmosphere [96], flow through microfluidic
gas devices [9], small cold gas thruster nozzle and plume flows [97], and low pressure
thin film deposition processes from expanding plasma or gas jets [17].
To accurately and efficiently simulate such gas flows, it is necessary to construct a
model that on the one hand accounts for the molecular nature of the gas flow where
needed, and on the other hand uses a continuum model where allowed. Such a hybrid
model will provide sufficient accuracy at the molecular level, while being sufficiently
efficient to model large scale devices.
To compute these kind of flows, different hybrid models have been proposed to couple
different kind of continuum and atomistic approaches, for instance: Molecular Dy-
namics (MD) and Navier-Stokes (N-S) equations [7], Boltzmann and Euler equations
[87], Boltzmann and N-S equations [8; 88], Direct Simulation Monte Carlo (DSMC)
and Stokes equations [9], DSMC and incompressible N-S equations [10], DSMC and
Euler equations [10; 11; 89] and DSMC and N-S equations [12; 13; 14; 15; 16; 90; 91;
92; 93; 94].
In the current work we have decided to couple a compressible Navier-Stokes CFD
solver in the continuum region, because of its very wide range of applicability com-
pared to e.g. Euler and incompressible N-S equations, to a DSMC algorithm in the
rarefied region, because it is the only practical engineering method that can be used
in the rarefied regime.
It is interesting to note that the vast majority of the cited hybrid models can be ap-
plied only to steady-state gas flows [7; 8; 9; 13; 14; 15; 16; 87; 88; 90; 91; 92; 93; 94].
The most common coupling technique for unsteady gas flows [10; 11; 12; 89] is a flux-
based coupling method with no overlapping between the continuum and the DSMC
regions. This approach suffers from three mean disadvantages which reduce its effi-
ciency.
The first disadvantage is that using a flux-based coupling approach, it is not possible
to decouple the global (CFD) and molecular (DSMC) time scales [10]. Because the
fluxes at the interface between the two approaches must be exchanged every time
step, both CFD and DSMC must be run using the same time step, the size of which
is to be chosen as the smallest of the two allowed by the CFD solver and the DSMC
solver, ∆tCFD and ∆tDSMC respectively. Since in general ∆tDSMC << ∆tCFD, this
implies the necessity to run also the CFD solver with the same molecular time step,
thus reducing the efficiency of the method [10].
The absence of an overlapping region is a second disadvantage of the flux-based
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method. Since the exchange of information between the continuum and molecular
approaches takes place at the position of their interface, its exact location is impor-
tant [10; 15; 16]. Thus, in a flux-based coupling method, simulation results strongly
depend on the interface location.
The third disadvantage is connected with the DSMC statistical scatter involved in
determining fluxes, which is much higher than that associated with the macroscopic
state variables. As a result, it has been demonstrated that flux-based coupling meth-
ods require a high number of samples to reduce the DSMC statistical noise [10; 16].
In this chapter we propose a strategy to efficiently and accurately couple a compress-
ible N-S solver to a DSMC solver for steady and unsteady flows, using Dirichlet-
Dirichlet boundary conditions coupling with an overlapped Schwarz method [10; 14].
In section 3.5.1.1 we will show that this method overcomes most of the problems
described above. Thus, given the disadvantages of flux-based coupling methods with-
out overlap, our work is a clear step forward in the evolution of hybrid continuum-
molecular approaches.

3.2 Breakdown parameter

The first issue in developing a coupled N-S/DSMC method is how to determine the
appropriate computational domains for the DSMC and N-S solvers, and the proper
interface boundary between these two domains. As a criterion for discriminating the
continuum from the rarefied regime and for consequently selecting the proper solver,
the continuum breakdown parameter Knmax [98] is employed

Knmax = max[Knρ,KnV ,KnT ] (3.1)

where Knρ, KnV and KnT are the local Knudsen numbers based on density, velocity
and temperature length scales, according to

KnQ =
λ

Qref
|∇Q| (3.2)

Here, Q is a flow property (density, velocity or temperature) and λ is the local mean
free path length. Qref is a reference value for Q, which can either be its local value
(for temperature or pressure), or a typical value (for the velocity). In the region where
the continuum breakdown parameter Knmax exceeds a limiting value Knsplit, the N-S
equations cannot be applied to accurately model the flow, and DSMC has to be used.
In the following sections the two different strategies implemented for coupling the
Navier-Stokes based CFD code and the DSMC code will be described: The first can
be applied for steady state flow simulations, the second for unsteady flow simulations.
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Figure 3.1: Scheme of the coupling method for steady-state flows.
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Figure 3.2: Illustration of the Schwarz coupling method in a 2-D geometry.

3.3 Steady-state formulation

The proposed coupling method for steady flows is based on the Schwarz method
[10; 14] and it consists of two stages, as illustrated in figure 3.1.
The first stage is a prediction stage, where (1) the unsteady N-S equations are inte-
grated in time on the entire domain Ω until a steady state is reached. From this steady
state solution, (2) the continuum breakdown parameter Knmax is computed and its
values are used to split Ω in the subdomains ΩDSMC (Knmax > Knsplit−∆Kn), where
the flow field will be evaluated using DSMC, and ΩCFD (Knmax < Knsplit), where N-S
equation will be solved. For Knsplit a value of 0.05 was used. Between the DSMC
and CFD regions an overlap region (Knsplit −∆Kn < Knmax < Knsplit) is considered,
where the flow is computed with both the DSMC and the CFD solver (figure 3.2).
∆Kn is a value that was varied in order to vary the overlapping region size (section
3.5.1.1).
In the second stage, DSMC and CFD are run in their respective subdomains with their
own time steps (∆tDSMC and ∆tCFD, respectively), until a steady state is reached.
First DSMC is applied (3a); molecules are allocated to the DSMC subdomain, cre-
ated from a Chapman-Enskog velocity distribution, according to the density, veloc-
ity and temperature obtained from the initial CFD prediction. The grid is auto-
matically refined in the DSMC region in order to respect the DSMC requirements
(∆x,∆y,∆z < λ

3 ). At the CFD/DSMC interface S1 the boundary conditions to the
DSMC region come from the solution in the CFD region. As described in section
2.3.2 ”particle reservoir cells” are considered outside the overlap region. In these cells
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molecules are created according to the density, velocity, temperature and their gradi-
ents in the CFD solution with a Chapmann-Enskog velocity distribution.
After running the DSMC, (3b) the N-S equations are solved in the CFD region. The
boundary conditions to the CFD region at the CFD/DSMC interface S2 come from
the solution in the DSMC region, averaged over the initial CFD grid cells.
Once a steady state solution has been obtained in both the DSMC and N-S regions,
the continuum breakdown parameter Knmax is re-evaluated and a new boundary be-
tween the two regions is computed. This second stage (4) is iterated until in the
overlap region the relative difference between the DSMC and CFD solutions

maxoverlap

∣

∣

∣

∆Q

QDSMC

∣

∣

∣
= maxoverlap

∣

∣

∣

QCFD − QDSMC

QDSMC

∣

∣

∣
(3.3)

with Q a flow property (e.g. pressure or temperature), (5) is less than a prescribed
value ε (typically, ε ≈ 0.001 [9]).

3.4 Unsteady formulation

In the unsteady formulation, the coupling method described above is iterated every
coupling time step ∆tcoupling > ∆tCFD >> ∆tDSMC, starting from the solution at the
previous time step.
At the beginning of a coupling time step, the predicted DSMC region is compared
to the one of the previous coupling time step. In the cells that belong to both
the previous and the predicted DSMC regions, we consider the same molecules of
the previous coupling time step, whose properties were recorded. In these cells, it
is important to consider the same molecules of the previous time step rather than
sampling them from continuum variables (temperature, density and velocity) with
a Maxwellian or a Chapman-Enskog velocity distribution. This is a clear difference
with the procedure in [12], where every time step the molecules in the DSMC cells
are sampled from continuum variables with a Chapman-Enskog velocity distribution.
The use of a Maxwellian or a Chapman-Enskog velocity distribution presumes either
equilibrium or near-equilibrium conditions, which is not necessarily true in these cells.
Molecules that are in the cells that no longer belong to the DSMC region are deleted.
In cells that have changed from being a CFD cell into a DSMC cell, new molecules
are created with a Chapmann-Enskog velocity distribution, according to the density,
velocity and temperature of the CFD solution at the previous time step.
At the end of every coupling step, molecule properties are recorded to set the initial
conditions in the DSMC region for the next coupling step.
The first clear advantage of using a Schwarz method with Dirichlet-Dirichlet boundary
conditions, instead of the more common flux-based boundary conditions coupling
technique [10; 11; 12; 89], is the possibility to decouple the global (CFD) and molecular
(DSMC) time scales [10]. Since it is possible to couple the continuum and molecular
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approaches every coupling time step ∆tcoupling > ∆tCFD >> ∆tDSMC, in fact, CFD
and DSMC can both be run in their respective subdomains with their own time steps
(∆tDSMC and ∆tCFD, respectively), thus improving the efficiency of the method.
On the contrary, as already highlighted in section 3.1, in the flux-based methods
[10; 11; 12; 89], the continuum and molecular approaches must be coupled every
single time step, the size of which is to be chosen as the smallest one allowed by both
the CFD and the DSMC solver. Since the molecular time step is generally much
smaller than the continuum one, then ∆tcoupling = ∆tCFD = ∆tDSMC.
The second advantage of the Schwarz coupling approach is the use of an overlap region
to couple the CFD method to DSMC. Thus, the information exchange between the
two methods does not take place at the exact interface position between them, as for
the most common flux-based coupling approach [10; 11; 12; 89], but through the entire
overlap region. For this reason the simulation results are not strongly influenced by
the exact interface location.
The third advantage of using a Schwarz method with Dirichlet-Dirichlet boundary
conditions, instead of the more common flux-based boundary conditions coupling
technique [10; 11; 12; 89], is that the latter requires a much higher number of samples
in the DSMC region than the Schwarz method [10; 15; 16]. It has been shown [16]
that in a DSMC simulation the relation between the relative noise on fluxes Ef and
that on the state variables Esv is

Ef ∼ Esv

Kn
(3.4)

Since at the continuum-molecular interface Kn ≈ 0.01− 0.05, then Ef ≈ 10− 20 Esv

and a 10−20 times higher number of samples are necessary to reduce the DSMC sta-
tistical scatter in a flux-based coupling approach than in a Schwarz coupling method
with Dirichlet-Dirichlet boundary conditions.

3.5 Results and discussion

In this section we will apply our hybrid, dynamically coupled, CFD/DSMC solver
to one-dimensional and multi-dimensional, transient and steady-state flows, and we
will present a sensitivity analysis of the method to various parameters.

3.5.1 Unsteady shock-tube problem

The unsteady coupling method was applied to an unsteady shock tube test case
(figure 3.3).
We have simulated the flow field inside a 0.5 m long tube, connecting two infinitely
large tanks filled with Argon at different thermodynamic conditions. A membrane at
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Figure 3.3: Shock tube test case. The dashed line on the left indicates the membrane which
is broken at the instant t = 0.

the interface between the first tank and the tube divides the two regions where the
fluid is in different conditions. In the left tank it is at a pressure P1 = 30 Pa and at
a temperature T1 = 12000 K. In the right tank and in the tube it is at a pressure
P2 = 3 Pa and at a temperature T2 = 2000 K. These conditions imply that the mean
free path (which approximately scales with T 1.3/P ) is everywhere λ ≈ 0.01 m.
At the instant t = 0 the membrane breaks and the fluid can flow from one region
to the other. Two different waves will start travelling in the tube from the left to
the right with two different velocities: a shock wave and a contact discontinuity. The
shock wave produces a rapid increase of the temperature and pressure of the gas
passing through it, while through the contact discontinuity, the flow undergoes only
a temperature, and not a pressure, variation [48; 54; 55].
The thermodynamic conditions inside the infinitely large tanks remain constant. For
this reason the two tanks can be modeled with an inlet and an outlet boundary con-
dition.
Inside the tube, we suppose that the flow is one-dimensional. Upstream (left) from
the shock, the gas has a high temperature and relatively high pressure, and gradient
length scales are small. Downstream (right) from the shock, both temperature and
pressure are much lower, and gradient length scales are large. As a result, the contin-
uum breakdown parameter Knmax (using local values of Qref) is high upstream from
the shock, and low downstream of it. In the hybrid CFD/DSMC approach, DSMC is
therefore applied upstream, and CFD is applied downstream. For Knsplit a value of
0.05 was used. Rather than setting a value for ∆Kn, as discussed in section 3.3, the
size of the overlap region was set to 2λ. The initial grid is composed of 100 cells in
the x direction and 1 cell in the y direction, while the code automatically refines the
mesh in the DSMC region to fulfill its requirements.
The coupling time step was chosen as ∆tcoupling = 4.0 × 10−6 s and ensemble aver-
ages of the DSMC solution were made on 30 repeated runs. It is important to note
that, thanks to the time decoupling possibility of the Schwarz method, the CFD and
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Figure 3.4: Pressure (a), temperature (b), velocity (c) and continuum breakdown parameter
Knmax (d) in the tube after 1.5 × 10−5 s. CFD (�), DSMC (N), Hybrid (©).
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Knmax (d) in the tube after 3.0 × 10−5 s. CFD (�), DSMC (N), Hybrid (©).
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DSMC approaches were run with ∆tCFD ≈ 2.0 × 10−6 s and ∆tDSMC ≈ 4.0 × 10−7

s respectively. When time step decoupling would not have been possible, we should
also have run the CFD solver, and have coupled it to the DSMC solver, with a time
step of O(10−7) s.
In figures 3.4 and 3.5 the pressure (a), temperature (b), and velocity (c) inside the
tube after 1.5 × 10−5 s and 3.0 × 10−5 s, evaluated with the coupled CFD/DSMC
method, are compared to the results of a full DSMC simulation. The latter was fea-
sible because of the 1-D nature of the problem. Results obtained with a full CFD
simulation are shown as well. The full DSMC solution is considered to be the most ac-
curate of the three. In figures 3.4(d) and 3.5(d) the continuum breakdown parameter,
computed using the coupled method, is compared to that same parameter computed
with the full CFD simulation.
From the results shown in figures 3.4 and 3.5, it is clear that the full CFD approach
fails due to the high values of the local Knudsen number caused by the presence of
the shock. It predicts a shock thickness of ≈ 2 cm, which is approximately two times
the local mean free path (λ ≈ 1 cm) and therefore unrealistic since even in continuum
conditions the shock thickness is one order of magnitude greater than the mean free
path [99]. In the full DSMC approach, therefore, the shock is smeared over almost
10 cm. The results obtained with the hybrid approach are virtually identical to those
obtained with the full DSMC solver, but were obtained in less than one fifth of the
CPU time.
Comparing figures 3.4 and 3.5 it is also possible to see how the DSMC and CFD
regions adapt in time to the flow field evolution.

3.5.1.1 Sensitivity to numerical parameters

In this section, the sensitivity of the coupled approach to various numerical pa-
rameters is addressed for the 1-D shock-tube problem described in section 3.5.1. In
particular, the influence of the size of the overlap region, the DSMC noise, and the
Courant number, based on the time interval at which DSMC and CFD are coupled,
are analyzed.

Overlap region: The sensitivity of our method to the size and position of the over-
lap region is investigated.
Both DSMC and N-S equations are solved in the overlap region (figure 3.2).
The dependence of the results on the size of the overlap region is investigated
by considering various overlap sizes: λ/3, 2λ, 6λ, 12λ, where λ is the mean free
path length. In section 3.5.1 an overlap size of 2λ was used.
Figure 3.6 shows the evolution in time of respectively the shock velocity (a) and
the shock thickness (b), evaluated using the different overlap sizes. From this
picture it is clear that the overlap size does not strongly influence the results of
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Figure 3.6: Computed shock velocity (a) and shock thickness (b) as a function of time, for
different sizes of the overlap region. λ/3 (N), 2λ (∇), 6λ (�), 12λ (©).

the simulation.
During this analysis, for all the considered sizes of the overlap region, two cases
were tested: in the first, since the overlap was centered around the position
where Kn = 0.05, it could extend also into the Kn > 0.05 region, whereas in
the second the overlap was positioned such that it extended entirely in the Kn
6 0.05 region. It was noted that in the first case, if the overlap region is large,
it is important to use an asymmetric overlap that is bounded on one side by
the location where Kn = 0.1. Otherwise, if the overlap region would extend
into regions where Kn > 0.1, the program would solve the N-S equations in a
region where the continuum hypotheses are no longer valid. As a result, in-
stability problems appear (figure 3.7). The appearance of strong fluctuations
due to instability produces two effects: the establishment of incorrect boundary
conditions to both the CFD and DSMC solvers, and an increase of the local
gradients. The increase of the local gradients and the resulting reduction of the
gradient length scales implies an incorrect determination of the CFD/DSMC
interface. As a consequence, the CFD/DSMC interface rapidly moves into the
low Kn number region and together with the wrong boundary conditions pro-
duces the rapid propagation of the instability.
This section demonstrates an important advantage of the Schwarz coupling
with Dirichlet-Dirichlet boundary conditions. Because of the presence of an
overlap region, the information exchange between CFD and DSMC does not
take place just at one precise location, as in the flux-based coupling approaches
[10; 11; 12; 89]. For this reason as long as we ensure that we run the CFD
within its region of applicability (Kn . 0.1), the exact position and size of the
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Figure 3.7: Instability problems for an overlap region extending in the Kn > 0.1 region.
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overlap region is not crucial.

Number of repeated runs for the ensemble average: To analyze the effect of
the noise in the DSMC solution on the coupling method we considered different
number of repeated runs for the ensemble average: 5, 30 and 50 runs.
From a comparison (not shown) of the evolution of the shock velocity and thick-
ness, similar to the one in figure 3.6, it became clear that also the number of
repeated runs over which we average does not strongly influence the results of
the method.
The limited sensitivity of our method to the noise demonstrates a clear ad-
vantage of our Dirichlet-Dirichlet coupling method as compared to flux-based
coupling schemes [10; 11; 12; 89], which show a strong sensitivity to noise.

Courant number based on the coupling time step: In this section we study the
effect of varying the coupling Courant number defined as:

C = Cr
∆tcoupling

∆xCFD
(3.5)
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Figure 3.8: Computed shock velocity (a) and shock thickness (b) for different coupling
Courant numbers. C = 1.46 (�), C = 0.73 (4), C = 0.36 (H), C = 0.24 (♦), C = 0.15 (©).

where ∆xCFD is the size of CFD cells and Cr the most probable molecular ve-
locity.
In figure 3.8 we present the evolution in time of both the shock velocity (a) and
its thickness (b) for different coupling Courant numbers: 0.15, 0.24, 0.36, 0.73
and 1.46. In order to vary the Courant number, with Cr = 912 m/s, we fixed
∆xCFD = 0.005 m and we considered different values of the coupling time step
between 8.0×10−7 s and 8.0×10−6 s. In terms of multiples of the mean collision
time, which is approximately ∆tc ≈ 6.0 × 10−6 s, this corresponds respectively
to 0.13∆tc −1.3∆tc. Only in the case where the Courant number C = 1.46 > 1,
the solution is found to deviate from the other solutions. In this case in fact the
shock thickness is higher than for the other cases and the error is due to the
appearance of instability effects (figure 3.9).
In order to be sure about the Courant number effect, we also varied the Courant
number by varying ∆xCFD at fixed ∆tcoupling and fixed Cr, and by varying Cr

(through the temperature) at fixed ∆xCFD and ∆tcoupling.
In all cases, instabilities were found to arise when C > 1, as expected. It is
therefore necessary to keep the Courant number smaller than 1.
This section demonstrates a further advantage of our overlapped Dirichlet-
Dirichlet coupling method as compared to flux-based coupling schemes [10; 11;
12; 89]. In the flux-based coupling techniques the impossibility of decoupling
the continuum and molecular time scales imposes the necessity to run both the
CFD and the DSMC with the molecular time step ∆tDSMC, which should be
less than 0.1∆tc and to couple them with that same time step. The Schwarz
coupling, on the other hand, allows us to run the CFD and DSMC with their
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own time steps, and to couple them every coupling time step ∆tcoupling as long
as we respect the condition C < 1. In the present example this led to ∆tcoupling

up to 0.7∆tc, a gain of a factor ≈ 7 compared to ∆tDSMC = 0.1∆tc.
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Figure 3.9: Instability problems for Courant number C = 1.46.

3.5.2 Unsteady pressure-driven slit flow

To test our unsteady hybrid method in a multidimensional problem, it was ap-
plied to an unsteady pressure-driven slit flow test case (figure 3.10). The present test
case is very similar to the test case used by Roveda et al. to present their flux-based
without overlap hybrid Euler/DSMC method in [102].
We consider a jet of Argon as it evolves following its initial burst from a slit of height
h = 0.05 m in a wall at temperature Tw = 500 K. Before breaking, a membrane closes
the slit dividing two regions where the fluid is in different conditions. In the left tank
it is at a pressure P1 = 16 Pa and a temperature T1 = 500 K, and the mean free path
length is λ1 ≈ 3.0 · 10−4 m. In the environment (right) it is at a pressure P2 = 1.6 Pa
and a temperature T2 = 500 K, and the mean free path is λ2 ≈ 0.003 m.
At the instant t = 0 the membrane breaks, the gas can flow from left to right and a
complex jet structure begins to develop. It is important to note that for the chosen
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Figure 3.10: Pressure-driven slit flow. The dashed line on the left indicates the membrane
which is broken at the instant t = 0.
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pressure ratio P1−2 = P1/P2 = 10, a supersonic jet develops downstream the slit
[102].
Figure 3.11 shows the density field after 5.25 × 10−4 s, as evaluated by a full DSMC
simulation on a grid of 200×300 cells, with a time step ∆t = 5×10−7 s and ≈ 2×106

particles, illustrating the structure of the jet. In particular, one recognizes the initial
weak shock wave (B1), the jet front (S1), a normal shock (S2), a shear layer (SH) and
the starting evolution of an expansion region near the lips of the slit (E) according to
the description in [102].

Figure 3.12: Contours of the continuum breakdown parameter Knmax after 2.10×10−4 s (a)
and after 5.25 × 10−4 s (b), and CFD/DSMC domain splitting after 2.10 × 10−4 s (c) and
after 5.25 × 10−4 s (d).

From symmetry considerations we limit the simulation domain to the upper half of
the flow domain which extends for a length lx = 0.4 m in the x direction and ly = 0.5
m in the y direction.
The thermodynamic conditions inside the infinitely large left tank remain constant,
thus it can be modelled with an inlet boundary condition.
The initial grid is composed of 120 cells in the x direction and 60 cells in the y di-
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rection. The code automatically refines the mesh in the DSMC region to fulfill its
requirements. The coupling time step is ∆tcoupling = 2.0× 10−6 s, which corresponds
to a coupling Courant number C ≈ 0.75. The ensemble averages of the DSMC solu-
tion were made on 50 repeated runs.
In figure 3.12 the continuum breakdown parameter Knmax in the jet is shown after
2.10×10−4 s (a) and 5.25×10−4 s (b), together with the division between the DSMC,
CFD and overlap regions in the hybrid CFD/DSMC approach. Outside the jet, be-
cause of the absence of gradients, gradient length scales are large and Knmax (using
local values of Qref) is low. In the complex structure of the jet, Knmax is particularly
high in the expansion region E (where the mean free path is higher), in the shocks
(B1 and S2) and in the jet front (S1) because of the small gradient length scales
due to the high gradients. In the hybrid CFD/DSMC approach, CFD is therefore
particularly applied outside the jet, whereas the use of DSMC is especially required
in the expansion E and in the region of the jet front S1 and the shock S2. Comparing
figures 3.12(c) and 3.12(d), it is possible to see the adaptation of the DSMC and CFD
regions to the evolution of the flow field.
In figure 3.13 the density fields evaluated by the hybrid CFD/DSMC approach after
2.10 × 10−4 s and 5.25 × 10−4 s are compared to the results of full DSMC and CFD
simulations. The full DSMC solution is considered to be the most accurate of the
three.
Comparing figures 3.13(a), (b) and (c) to figures 3.13(d), (e) and (f) respectively,
one can see the evolution of the jet in time, predicted by the three methods. It is
interesting to note how the elements of the jet, that are not clearly distinguishable
after 2.10 × 10−4 s begin to have a clear shape and identity after 5.25 × 10−4 s.
In figure 3.13, the hybrid method results in much better agreement with the DSMC
than the full CFD simulations. The differences between the CFD and the other two
methods increase in time and after 5.25×10−4 s the jet predicted by the CFD method
covers a too wide region and the density after the shock S2 is too low if compared to
the DSMC results.
In order to have a more quantitative validation of the hybrid approach, figure 3.14
shows the density along the x direction for the hybrid method, the full CFD simu-
lation and the full DSMC simulation after 2.10 × 10−4 s (a) and 5.25 × 10−4 s (b).
While the results obtained with the hybrid approach are virtually identical to those
obtained with the full DSMC solver, significant differences, which increase in time,
can be observed between the full CFD and DSMC approaches. In particular in the
full CFD results the jet travels slightly faster and the density after the shock S2 is
lower.
Finally, the crucial fact to emphasize is that the hybrid results were obtained in ∼
1/10 of the CPU time needed by the full DSMC method.
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(a), hybrid simulations (b) and CFD (c), and after 5.25 × 10−4 s evaluated by DSMC (d),
hybrid simulations (e) and CFD (f).



3.5. Results and discussion 67

x (m)

D
en

si
ty

(1
0

K
g/

m
)

0 0.1 0.2 0.3

2

4

6

8

(a)

3
-5

CFDCFD

DSMCOverlap Overlap

x (m)
D

en
si

ty
(1

0
K

g/
m

)
0 0.1 0.2 0.3

2

4

6

8

(b)
3

-5

Overlap CFD

CFD

DSMCOverlap

Overlap

Figure 3.14: Density profile along the x direction after 2.10×10−4 s (a) and after 5.25×10−4

s (b). DSMC (©), Hybrid simulations (—), CFD (– –).

3.5.3 Rarefied Poiseuille flow

The steady-state coupling method in two dimensions was applied to a plane
Poiseuille flow (figure 3.15).

Figure 3.15: Rarefied Poiseuille flow.

We consider a flow of Argon at a temperature T = 300 K in a small channel of height
2h = 0.01 m and length L = 0.05 m. The pressure at the inlet is Pin = 40 Pa and
at the outlet Pout = 30 Pa. The average mean free path is approximately λ ≈ 10−4

m. The wall temperature is Tw = 300 K. At a sufficient distance from the inlet the
flow is a Poiseuille flow: its solution under continuum conditions is known and char-
acterized by a linear pressure decay in the x direction and a parabolic velocity profile
in the y direction. From symmetry considerations we limit the simulation domain to
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the upper half of the channel. The continuum grid is composed of 50 cells in the x
direction and 10 cells in the y direction.
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Figure 3.16: Rarefied Poiseuille flow: Contours of the continuum breakdown parameter
Knmax (a) and CFD/DSMC domain splitting (b)

In figure 3.16(a) the continuum breakdown parameter is shown. Since temperature,
pressure and density do not vary strongly throughout the domain, the continuum
breakdown parameter identifies with the Knudsen number based on the local velocity
gradient length scale (Knmax = KnV )

KnV =
λ

V0
|∇V | (3.6)

As a reference velocity, we used V0 at the symmetry plane under continuum conditions,
rather than the local velocity V , since the latter approaches zero near the wall

V0 =
h2

2µ

∆P

L
(3.7)

where µ is the viscosity of the fluid and ∆P = Pin − Pout.
The velocity gradient is small near the axis and large near the wall. This means that
the continuum breakdown parameter is high near the wall and low near the axis. In
figure 3.16(b), the resulting division between the DSMC, CFD and overlapping re-
gions is shown.
In figure 3.17(a) we compare the pressure drop along the x direction predicted by the
hybrid method to the pressure drop obtained from a full DSMC simulation. Results
obtained with a full CFD simulation with no-slip, as well as with velocity slip bound-
ary conditions, and the theoretical linear pressure drop for continuum conditions are
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also shown.
From figure 3.17(a), it is clear that while the full CFD approach with no-slip boundary
conditions predicts a linear pressure drop, the hybrid approach, the DSMC method
and the full continuum simulation with velocity slip boundary conditions show the non
linear pressure drop which is known to be present in rarefied Poiseuille flow [85; 86].
In figure 3.17(b) the velocity profile at x = 0.04 m from the hybrid CFD/DSMC
method is compared to the results of a full DSMC simulation, results obtained with
a full CFD simulation both with no-slip and with velocity slip boundary conditions,
and the theoretical solution for continuum Poiseuille flow.
The coupled CFD/DSMC method, the full DSMC simulation and the full CFD simu-
lations with slip boundary conditions give very similar results for the velocity profile,
describing a slip velocity at the wall. The computed slip velocity agrees very well
with the theoretical prediction [85]. It is also obvious that the slip effect increases the
average velocity in the channel at given total pressure drop and reduces the curvature
of the velocity profile with respect to the continuum solution [85].

3.6 Conclusions

In this chapter the development and validation of a hybrid continuum-rarefied
method for multiscale flow simulation was presented.
The method couples a compressible Navier-Stokes description of a macroscale contin-
uum gas flow with a molecular scale DSMC description of a rarefied gas flow in both
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steady-state and unsteady conditions.
Transient simulations of a one-dimensional shock-tube and a two-dimensional pressure-
driven slit flow with the proposed method were successfully validated against full
DSMC simulations. The same has been done for two-dimensional steady state simu-
lations of a rarefied Poiseuille flow.
The results of the method were found to be independent of the size of the overlap
region and the CFD/DSMC interface position as long as we ensure to run the CFD
in the limits of its applicability (Kn . 0.1). The method also has limited sensitivity
to noise, as demonstrated by its insensitivity to the number of DSMC runs for en-
semble averaging to reduce scatter. However, in order to avoid instability effects the
coupling time step and the CFD cell size should be chosen such, that the Courant
number based on these quantities and on the molecular most probable velocity is ¡ 1.
These validation studies illustrate the potential of the method for steady and tran-
sient, one-dimensional and multi-dimensional flows.



4. Influence of rarefaction on a supersonic hot gas

expansion

In this chapter the hybrid CFD/DSMC approach described and validated in the previ-
ous chapter is used to study the gas dynamics of a stationary hot gas jet supersonically
expanding into a low pressure environment. Our study demonstrates: (i) the neces-
sity of applying a molecular approach where rarefaction effects are present in order
to correctly model the flow, and (ii) an invasion of the supersonic part of the flow by
background particles.
Most of the chapter has been published as ’The influence of rarefaction on the flow
dynamics of a stationary supersonic hot gas expansion’ by G. Abbate, B.J. Thijsse, R.
Engeln, M.C.M. van de Sanden, D.C. Schram and C.R. Kleijn in Phys. Rev. E [104],
and as ’Multi-Scale Modelling of the two-dimensional Flow Dynamics in a Stationary
Supersonic Hot Gas Expansion’ by G. Abbate, B.J. Thijsse, and C.R. Kleijn in LNCS
[112].

4.1 Introduction

Several gas fluidic applications of current technological importance involve a gas
jet supersonically expanding into vacuum or into a low pressure environment. Ex-
amples include: gas thruster nozzles and plume flows [97] and processes of thin film
deposition, etching and passivation from expanding plasma or gas jets [105].
An interesting issue connected to this kind of flows is the transition from continuum
to rarefied regime. The gas in the jet is generally at relatively high pressure, and
then it rapidly expands into a low pressure environment. For this reason, the gas first
supersonically expands and then quickly compresses through a stationary shock wave
(the so called Mach disk). In addition, the expansion zone is surrounded by a barrel
shaped shock (the so called barrel shock) as depicted in figure 4.1. Because of the
low environment pressure and high thermodynamic gradients in the shock region, the
flow undergoes a spatial transition from the low Knudsen number (Kn) continuum
regime to the high Knudsen number rarefied regime.
Although several studies have been devoted to supersonic expansion of gas jets in
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vacuum or low pressure environment [18; 19; 20; 21; 22; 23; 24; 25; 26; 28; 31; 106;
107; 108; 109; 110; 111; 115], full understanding of the processes governing the flow
has not been reached yet. In particular, it is still not completely clear how important
the influence of the rarefaction effects is on the dynamics of the flow [31]. Another
important question is whether the barrel shock, which becomes transparent to back-
ground molecules due to rarefaction effects, still protects the supersonic part of the
flow [21]. We call background molecules the molecules that are present outside the
expansion-shock region. These background molecules could, therefore, invade the su-
personic part of the jet, influencing its properties. Already Fenn and Anderson in
1966 [106] and Campargue in 1970 [107] predicted this phenomenon, but a full un-
derstanding of it has not yet been given.
In the current chapter these last two issues will be addressed: (i) the importance of
rarefaction effects on the flow field and (ii) the study of the presence of background
particles in the supersonic region. These issues will be studied through detailed
numerical simulations of the flow, pressure and temperature distributions in the ex-
panding jet and its surroundings.
It has been shown [31] that, because of rarefaction effects, the continuum CFD (Com-
putational Fluid Dynamics) approach fails in predicting temperature and velocity
fields in the shock region. These can be correctly studied only with the help of kinetic
simulations accounting for rarefaction and non-equilibrium effects. For this reason,
in the past, DSMC (Direct Simulation Monte Carlo) has been used [31], but with a
too coarse mesh in the near-inlet region. However, because DSMC computational ex-
penses scale with Kn−4, it is practically impossible to fulfill the DSMC requirements
(e.g. the mesh size should be smaller than one third of the mean free path), especially
near the inlet, where the Knudsen number is quite low [31].
In order to overcome this problem and to accurately simulate the above types of gas
flows, one needs to construct a model that on the one hand accounts for the molecular
nature of the gas flow where needed, and on the other hand uses a continuum model
where allowed. In the past years several hybrid continuum/molecular models have
been proposed [7; 8; 10; 12; 14; 16; 101].
In particular in our work we use a hybrid coupled continuum-DSMC approach [101]
to model the problem; we apply the continuum CFD approach in the wide continuum
region in order to save computational time, and DSMC only in the expansion-shock
region where it is necessary in order to correctly model the rarefied nature of the flow.
In section 4.2 we first describe the studied configuration and experiments used to vali-
date our simulations. A brief explanation of the hybrid numerical simulation method,
already extensively described in the previous chapter, is given in section 4.3. The
results of our simulations of a stationary supersonic hot gas expansion are presented
in section 4.4 and compared against (published) experimental data [21; 113; 114; 115].
In particular in this section we focus on the rarefaction effects, and we show a nu-
merical demonstration of the invasion of the supersonic region by the background
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molecules.

4.2 Studied configuration and measurement technique

In order to have an experimental support to our conclusions, all our numerical
results will be validated by comparing them to experimental measurement by Engeln
et al. [21], Mazouffre et al. [113], Vankan et al. [114] and Gabriel et al. [115].
The measurements described in [21; 113; 114; 115] were performed on an expanding
thermal plasma jet. Nevertheless, because of the low ionization degree (< 0.1% due
to the admixture of a few % of H2 [20]), they can be used to validate our present
results on a neutral gas flow, composed only of Argon atoms, neglecting the presence
of H2, electrons and ions [21] and the effects of ionization and recombination on the
flow field. It has been shown, in fact, that ionization is practically absent in this
flow [21], and even if the recombination can be significant, it affects only the electron
temperature field and not the gas temperature and velocity fields [32].
The experimental set-up in which the expanding thermal plasma jet is created has
been extensively described elsewhere [30].
Two techniques, the Thomson-Rayleigh and the laser induced fluorescence spec-
troscopy (LIF), have been used to study the flow. The latter provided detailed,
two-dimensional information on the velocity field. A description of the two tech-
niques is given in [21; 114].
Although the LIF measurements are performed on Argon atoms in the metastable
and resonant states, it is argued in [21] that the velocity distribution of these atoms
reflects the velocity distribution of the ground state atoms.

4.3 Numerical simulation method

As already described in the previous chapters, in order to properly characterize
the various regimes in the gas flow, the Knudsen number Kn is defined as the ratio
between the mean free path and a relevant macroscopic length scale. When Knudsen
is small (Kn < 0.01), the gas may be treated as a continuum and the gas flow may
be modelled using CFD (Computational Fluid Dynamics). When Knudsen is large
(Kn> 10), the gas behavior is entirely molecular and may be modelled using Molecu-
lar Dynamics techniques. In the intermediate regime, the DSMC (Direct Simulation
Monte Carlo) approach is the most commonly used simulation technique. However,
its computational expenses scale with Kn−4, and become very time demanding for
Kn smaller than ≈ 0.05.
In order to overcome this dilemma and accurately solve the flow throughout the ex-
panding gas jet, we use the hybrid CFD/DSMC model presented in the previous
chapter, which takes into account the molecular nature of the gas flow where needed,
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and uses a continuum model where allowed.
In the CFD code, temperature dependent viscosities and thermal conductivities are
computed from kinetic theory [33]. The pressure is computed from the ideal gas law.
In the DSMC code, in order to accurately model viscous effects, the Variable Soft
Spheres (VSS) model is used to calculate particle cross sections. For the implemen-
tation of inlet or outlet boundary conditions, a ”buffer zone” or ”particle reservoir”
approach is used [67]. A Chapman-Enskog [44] distribution is used to create particles
in those reservoirs. The Chapman-Enskog distribution is obtained as an approxi-
mate solution of the Boltzmann equation and is expressed as a product of a local
Maxwellian and a polynomial function of the thermal velocity components. It has
been demonstrated that in a hybrid continuum-DSMC method a Chapman-Enskog
distribution, rather than a simple Maxwellian distribution, is required when the vis-
cous fluxes are taken into account [12; 100].
As discussed in section 3.2, an important issue in a hybrid continuum-DSMC simula-
tion is how to determine the appropriate computational domains for the DSMC and
continuum solvers, and the proper interface boundary between these two domains.
The continuum breakdown parameter Knmax [98] is employed in the present study as
a criterion for selecting the proper solver

Knmax = max[Knρ,KnV ,KnT ] (4.1)

where Knρ, KnV and KnT are the local Knudsen numbers based on density, velocity
and temperature length scales, according to

KnQ =
λ

Qref
|∇Q| (4.2)

Here, Q is a flow property (density ρ, velocity V or temperature T ) and λ is the
local mean free path length. Qref is a reference value for Q, which can either be its
local value, or a typical value. If the calculated value of the continuum breakdown
parameter in a region is larger than a limiting value Knsplit, then that region cannot
be accurately modelled using the continuum approach, and DSMC has to be used.
For Knsplit a value of 0.05 was used. The described Schwarz method has been found
to be rather insensitive to the precise CFD/DSMC interface location w.r.t. Knsplit,
as shown in the previous chapter.
Between the DSMC and CFD regions an overlap region is considered, where the flow
is computed with both the DSMC and the CFD solver. This overlap region is chosen
to be located entirely in the Knmax > Knsplit region.

4.3.1 Modelled geometry

The computational domain (figure 4.1) is a d = 32 cm diameter cylinder of length
L = 50 cm. From a circular hole of diameter din = 8 mm, on its top, a flow of 56 sccs of
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Figure 4.1: Scheme of the low pressure chamber. (Diagram not to scale).

Argon is injected at a temperature Tin = 8000 K. Uniform velocity and temperature
profiles are imposed at the inlet for two reasons. (i) It has been experimentally
observed that the hot plasma does experience slip at the nozzle wall [31]. (ii) Upstream
from the inlet, the flow passes through a channel of length l = 4 cm and diameter
d = 4 mm. Since the Reynolds number in the channel is Re ≈ 1500, the necessary
length to develop a parabolic profile is 0.04 Re d ≈ 24 cm � l. Therefore, we do not
expect to experience a parabolic profile at the inlet of the chamber.
The top and lateral walls are at a temperature Tw = 400 K, while the bottom wall,
which represents the substrate, is at a temperature Tsub = 600 K.
The pumping exit, which in reality is a circular hole, in our 2-D model has been
represented as a lout = 2 cm wide ring on the bottom of the cylinder at a distance
of Rout = 12 cm from the axis. Two different pressures Pout in the exit have been
considered, respectively 20 and 100 Pa, since for these outlet pressures a large amount
of experimental data is available [21; 113; 115].
Inside the chamber we suppose the flow to be 2-D axi-symmetric. The continuum grid
is composed of 100 cells in the radial direction and 200 cells in the axial direction.
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The cells are slightly stretched in the radial direction with a ratio of 1.65 between
the size of the last and the first cell. Grid independence has been tested by doubling
the continuum grid in each of the two directions, leading to variations in the solution
below 3%. The code automatically refines the mesh in the DSMC region to fulfill
its requirements as explained in chapter 2. The number of simulated particle in the
DSMC region is N ≈ 8 · 105.
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Figure 4.2: Number density (a) and pressure (b) distributions along z-axis in the expansion-
shock region. Hybrid approach at 20 Pa (—), Hybrid approach at 100 Pa (– · –), Theoretical
trend in the expansion (– –), Experimental number density distribution from [114] at 10 Pa
(•) and at 40 Pa (N), and from [113] at 100 Pa (�).

4.4 Results and discussion

4.4.1 General flowfield characteristics and rarefaction effects

In figure 4.2 the number density (a) and pressure (b) profiles along the z-axis in
the expansion-shock region, as evaluated by the hybrid approach for the two con-
sidered chamber pressure conditions (respectively 20 and 100 Pa) are shown. It is
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well known [116] that, in the expansion, the density decreases quadratically with the
distance z to the inlet (1/z2), whereas the pressure has a 1/z2γ dependence, where γ
is the specific heat ratio (for Argon γ = 1.67). In figure 4.2(a), the number density
profiles measured with the Thomson-Rayleigh technique by Mazouffre et al. [113]
at 100 Pa, and by Vankan et al. [114] at 40 and 10 Pa chamber pressures are also
presented. The present hybrid results are in very good agreement with experimental
data by Mazouffre et al. at 100 Pa [113], and even if no density measurements were
available at 20 Pa chamber pressure, the present hybrid results are exactly between
the experimental data at 40 and 10 Pa chamber pressures measured by Vankan et al.
[114].
In order to describe the effects of rarefaction on the flow field, it is important to
identify the region where these effects take place.
For this reason, in figures 4.3 and 4.4 we show the continuum breakdown parameter
Knmax in the chamber and the consequent division between the DSMC, continuum
and overlapping regions in our hybrid method, respectively for 20 and 100 Pa chamber
pressures.
In both 20 and 100 Pa chamber pressure cases, there are various counteracting effects
influencing the value of Knmax: as a result of the decrease in pressure, the mean free
path increases from the inlet to the exit of the chamber. As a result of the cooling of
the gas, the temperature decreases from the inlet to the exit of the chamber and the
opposite effect occurs. And finally, smaller local gradient length scales are present
near the inlet and in the shock, than in the rest of the chamber. The overall effect
is that the continuum breakdown parameter is small near the inlet, then it increases
becoming high in the expansion-shock region, and finally it becomes low again in the
rest of the chamber. Also near the substrate wall the continuum breakdown parameter
increases, due to steep velocity and temperature gradients, but not to values exceed-
ing Knsplit. This means that the flow first undergoes a continuum-rarefied transition
in the near-inlet region, and then a rarefied-continuum transition downstream of the
shock (figures 4.3(b) and 4.4(b)). By comparing figure 4.3(a) to figure 4.4(a), it is
also clear that, as expected, the overall values of the continuum breakdown parameter
decrease if we increase the pressure in the chamber. As a consequence of that, going
from 20 Pa to 100 Pa, the size of the region where the use of DSMC is necessary to
correctly model the flow is reduced (figures 4.3(d) and 4.4(d)).
Temperature and velocity fields obtained with the hybrid CFD/DSMC at 20 and 100
Pa chamber pressures are compared to results from a full continuum CFD simulation
in figures 4.5-4.7.
It should be noted that DSMC simulations intrinsically contain statistical scatter,
explaining why the contours in the hybrid simulations are less smooth than in the
continuum simulations. From an analysis of the figures, it is evident that far away
from the expansion-shock region, the continuum and hybrid methods give very similar
results (figure 4.5(a) and (c), and figures 4.6(a) and (c)). The use of DSMC in the
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hybrid method influences only the region where rarefaction effects are present. Far
away from the expansion-shock region, the influence of rarefaction effects is negligi-
ble. As expected, the continuum and hybrid approaches differ more at 20 Pa chamber
pressure than at 100 Pa, since stronger rarefaction effects are present at 20 Pa than
at 100 Pa.
For the case of 20 Pa chamber pressure, it was also possible to compare the results of
the present hybrid simulations to a detailed two-dimensional picture of the velocity
field in the expansion-shock region measured by Gabriel et al. [115], and to results
from full DSMC simulations by Selezneva et al. [31].
Figure 4.7(a) indicates the region where the comparison has been performed and
the division between the DSMC, continuum and overlapping regions in our hybrid
method. In figures 4.7(b)-(e) the comparison between experimental data from [115],
results from the present hybrid method, results from full DSMC simulations per-
formed by Selezneva et al. [31], and results from present continuum simulations for
the two-dimensional velocity field in the expansion-shock region are presented. The
velocity contours in figure 4.7(b) are the result of an interpolation of measured ve-
locities at various positions in the expansion-shock region [115]. The hybrid method
is in much better agreement with experimental data than the other approaches. The
reason why the hybrid approach predicts experimental data even better than the full
DSMC simulations is that, as discussed in section 4.1 and as already highlighted by
Selezneva et al. [31], in the full DSMC simulations it was not possible to respect
DSMC requirements in the near inlet region and a too coarse mesh had to be used.
If we first compare the experimental data from [115] (figure 4.7(b)) to the results of
the full CFD approach (figure 4.7(e)), the velocity predicted by the continuum ap-
proach in the expansion-shock region is significantly (200 − 500 m/s) lower than the
experimental one. Because of rarefaction, in fact, upstream of the shock the expan-
sion is stronger, reaching higher velocity values.
If we compare the experimental data from [115] (figure 4.7(b)) to the full DSMC sim-
ulations by Selezneva et al. [31] (figure 4.7(d)), we can notice that the DSMC predicts
correct velocity values in the expansion, but the maximum velocity along the z-axis
is moved ≈ 1 cm upstream with respect to the experimental data.
Finally, hybrid simulations (figure 4.7(c)) result in a very good agreement with the
experiments (figure 4.7(b)); The hybrid approach, in fact, was able to predict the
correct velocity values and the right position for the velocity peak in the expansion.
Summarizing, at 20 Pa the hybrid method predicts a stronger expansion compared
to the continuum method, reaching a lower temperature (figure 4.5(b)) and higher
velocity (figure 4.7). Also, compared to the full continuum simulation, the shock is
slightly moved downstream along the z axis in the hybrid simulation. Finally, after
the shock the temperature predicted by the hybrid method is significantly (500−1500
K) lower than the one calculated by the continuum approach.
At 100 Pa only small differences between the continuum and hybrid methods are
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Figure 4.6: Temperature field (K) in the entire chamber (a), and zoomed in to the expansion-
shock region (b) and velocity field (m/s) in the entire chamber (c), and zoomed in to the
expansion-shock region (d), for 100 Pa chamber pressure.
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Figure 4.7: CFD/DSMC domains splitting (a) and velocity field (m/s) zoomed in the
expansion-shock region at 20 Pa chamber pressure. Experimental data from [115] (b), present
hybrid simulations (c), DSMC data from [31] (d), present continuum simulations (e).

present in the temperature fields (figure 4.6(b)). The differences in the velocity fields,
on the contrary, are more significant (figure 4.6(d)); in the expansion, in fact, the
hybrid method reaches higher values of the velocity than the continuum approach.
The position of the shock is the same and both methods describe a further small
expansion and shock after the first stronger ones.
In order to further clarify the effects of rarefaction on the flow field, and to have a
more quantitative validation of the hybrid approach, figures 4.8 and 4.9 show, respec-
tively for the temperature and the velocity along the z axis, a comparison between the
present hybrid method, the present continuum simulation, results from full DSMC
simulations performed by Selezneva et al. [31], and experimental data from [21] at
both 20 Pa (a) and 100 Pa (b) chamber pressures. Although there is quite some
scattering in the experimental data, in all cases it is clear that the hybrid method
predicts the experimental data better than the other approaches.
If we first compare the results of the hybrid CFD/DSMC approach to those of the full
CFD approach, figure 4.8(b) shows that even at 100 Pa chamber pressure, the hybrid
approach follows much better than the continuum approach the experimental data in
the shock and after-shock region. As we reduce the chamber pressure (figure 4.8(a)),
we further increase the rarefaction effects. In the continuum approach the shock wave
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Figure 4.8: Temperature distribution along z-axis for 20 Pa (a), and 100 Pa (b) chamber
pressures. Continuum (– –), DSMC data from [31] (– · –), Hybrid (—), Experimental data
from [21] (•).

appears too early and the temperature after the shock is too high, whereas in the
hybrid approach the shock moves forward due to rarefaction and the temperature
after the shock is lower.
Figure 4.9 demonstrates that the continuum approach is unable to quantitatively
predict the velocity profile and maximum velocity in the expansion-shock region at
either 20 Pa (a) or 100 Pa (b) chamber pressures, and is quantitatively correct only
downstream of the expansion-shock region as already shown in [31]. Because of rar-
efaction, upstream of the shock the expansion is stronger, reaching higher velocity
values at both 20 and 100 Pa chamber pressure as predicted by the hybrid solution
in agreement with the experimental data.
If we compare the hybrid method to the full DSMC simulations by Selezneva et al.



84 Chapter 4. Influence of rarefaction on a supersonic hot gas expansion

z (m)

V
el

oc
ity

(m
/s

)

0 0.1 0.2 0.3 0.4 0.5

1000

2000

3000

(a)

z (m)

V
el

oc
ity

(m
/s

)

0 0.02 0.041000

2000

3000

z (m)

V
el

oc
ity

(m
/s

)

0 0.1 0.2 0.3 0.4 0.5

1000

2000

3000

(b)

z (m)

V
el

oc
ity

(m
/s

)

0 0.02 0.041000

2000

3000

Figure 4.9: Velocity profile along z-axis for 20 Pa (a), and 100 Pa (b) chamber pressures.
Continuum (– –), DSMC data from [31] (– · –), Hybrid (—), Experimental data from [21]
(•).

[31], we can notice that the results of the full DSMC simulations and the hybrid
method are almost equivalent in the shock and after shock regions. However, in the
near inlet and expansion regions, especially at 100 Pa chamber pressure, the hybrid
approach matches the experimental data better than the full DSMC approach.
We can notice that even if at 20 Pa chamber pressure, the temperature profiles pre-
dicted by the DSMC alone and by the hybrid approach are very similar and they both
accurately match the experimental data (figure 4.8(a)), increasing the chamber pres-
sure to 100 Pa, and therefore enlarging the continuum region, the differences between
the DSMC and the hybrid approach in the near inlet and expansion regions become
more significant (figure 4.8(b)). The DSMC alone cannot follow the experimental
data in the near inlet and expansion regions, and cannot predict the temperature
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peak after the shock, while the hybrid solution results are in a very good agreement
with experiments.
In an analogous manner, from figure 4.9 we can conclude that, because it was not
possible to respect DSMC requirements in the near-inlet region, the DSMC method
predicts a wrong velocity in this region that influences its solution also in the expan-
sion region. As a result, DSMC predicted a too low value of the maximum velocity
reached in the expansion at 100 Pa chamber pressures, whereas the hybrid approach
accurately predicts this maximum.

4.4.2 Invasion of the supersonic region by background particles

In order to study the possible invasion of the supersonic region by the background
molecules, during the simulations at 20 Pa chamber pressure, the particle velocity
distribution functions were recorded at the positions where they have been measured
experimentally by Engeln et al. [21].
In figures 4.10(a), (b) and (c), we compare the axial velocity distribution function
of our simulated particles at r = 0, and z = 26 mm, z = 59 mm and z = 100 mm
with the ones measured by Engeln et al. In the same way, in figures 4.10(d) and (e)
we compare Engeln’s radial velocity component distribution functions with our sim-
ulated ones at z = 50 mm and r = 0 and r = 22 mm. In [21], Engeln et al. expressed
the measured velocity distribution functions in terms of the intensity of the recorded
signal during the experiments and, therefore, the surface area below the experimental
data is not equal to 1. In order to be able to compare our numerical data with the
measured distributions, in figure 4.10 our curves were scaled by a factor equal to the
surface area under the experimental curves. From figure 4.10, it is clear that there is
a very good agreement between our current hybrid simulations and the experiments
from [21].
If we compare the axial and radial velocity distribution functions of our simulations
with a Maxwellian distribution (figure 4.10), we can affirm that downstream of z ≈ 30
mm there is a clear departure from equilibrium.
In this section we want to demonstrate that this non-equilibrium is due to the invasion
of background particles into the expansion-shock region. In continuum conditions,
because of the presence of the shock, these particles would not be able to enter the
supersonic region. However, we will show that, because of the rarefaction effects,
the shock becomes transparent and does not protect the supersonic region. There-
fore some particles may actually move into it from the subsonic part of the flow. To
demonstrate this hypothesis, it is necessary to know the origin of the particles present
in the supersonic region. For this reason, for the DSMC particles, two different labels
were used; one for the particles which, after entering the reactor chamber, have always
been in the supersonic region (the so called ”inlet particles”), and a different one for
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the background particles.
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In figure 4.11(a) we show the contribution of the background particles and the inlet
particles to the axial velocity distribution, at the position r = 0 and z = 59 mm,
where the departure from the equilibrium is most clear. The presence of background
particles in the supersonic region is evident. Once the background particles have pen-
etrated the supersonic region, they start colliding and interacting with the particles
that are already there, decelerating them and being accelerated by them. As a result,
the velocity distribution of the ”inlet particles” becomes non-Maxwellian.
In an analogous manner, in figure 4.11(b) the contribution of background and inlet
particles to the radial velocity distribution at the position r = 22 mm and z = 50
mm is shown. It is interesting to note that the peaks of the two contributions are
located on opposite sides of the zero velocity position. This means that while particles
coming from the inlet are moving away from the axis because of the expansion, the
background particles are penetrating into the supersonic region and moving toward
the axis.
In order to further prove the hypothesis of the presence of background particles in the
supersonic region and explain how they collide and interact with the local particles,
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Figure 4.12: Fractional concentration of background particles in the supersonic region (a),
average number of times that inlet particles have collided with background particles before
reaching the given location (b), and fractional concentration of inlet particles which have
never collided with background particles (c).

a study was performed, at the molecular scale, by tracking particles and collisions in
the supersonic region. The results of this study are presented in figure 4.12.
The background particles concentration in figure 4.12(a) further proves their presence
in the supersonic region.
In the expansion region, the velocity increases, reaching a maximum value on the
axis at a distance z ≈ 3 cm from the inlet (figure 4.9(a)), whereas density and pres-
sure decrease reaching a minimum (figure 4.2) at the same location. The invading
background particles are driven into the region of minimum pressure by favorable
pressure gradients. For the same reason, once they are there, it is difficult for them to
cross the Mach disk because of the adverse pressure gradient. Therefore, the invading
background particles concentrate in the region of minimum pressure, reaching values
of up to 25% of the total number of particles.
Figure 4.12(b) presents the average number of collisions with background particles
that an inlet particle has undergone before reaching its position. As expected, the
number of collisions increases along the z axis and it reaches the maximum value of
≈ 1.8 collisions. This is of course an averaged value, meaning that there are inlet
particles which did not collide, as well as inlet particles that have collided much more
than 1.8 times with background particles.
Finally, in figure 4.12(c) the fractional concentration of inlet particles which have
never collided with background particles is reported. As expected, the concentra-
tion of such particles decreases rapidly in the regions with a high concentration of
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background particles (along the axis and across the barrel shock). This clearly demon-
strates that the inlet particles do interact with the background particles that invaded
the supersonic region and influence the flow.
Experimental indications for the presence of background particles in the expansion-
shock region were also found by Engeln et al. in [21], Vankan et al. in [114] and
Gabriel et al. in [115]. Therefore, our study gives a numerical support to the hy-
pothesis of Engeln et al., Vankan et al. and Gabriel et al. that background particles
can penetrate the supersonic region and, by interacting with the inlet particles, can
influence the flow field.

4.5 Conclusions

The gas dynamics of a hot gas jet supersonically expanding into a low pressure
(20 − 100 Pa) chamber is studied by means of a hybrid coupled continuum-DSMC
method.
This method gives the possibility to save computational time using CFD in most of
the domain and to use DSMC only where it is necessary in order to correctly model
the flow.
Answers to two main questions about supersonic expansion in a low pressure environ-
ment have been found: the importance of taking into account rarefaction effects in
modelling the flow and the invasion of the supersonic region by background particles.
We have shown that, because of the presence of rarefaction effects, already at 100 Pa
chamber pressure the continuum approach is not suitable to model the flow, while a
hybrid continuum-DSMC method can be applied correctly and efficiently.
Through an analysis of the velocity distributions and the tracking of particles and
collisions in the supersonic region, we have demonstrated the presence of background
particles in this region, thus proving the invasion of the supersonic region by back-
ground particles passing through the barrel shock.
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5. Conclusions

The aim of the present work was the development of a comprehensive simulation
model for the gas flow dynamics in a complicated environment such as that encoun-
tered in thin film deposition processes based on the application of an expanding gas
jet.
From the preliminary study presented in chapter 1 it became clear that it is not
possible to model those kind of processes using commercially available software pack-
ages and/or commonly used methods (e.g. CFD and DSMC). This study showed the
presence of a continuum-rarefied regime transition which could strongly influence the
properties and characteristics of the flow.
For this reason a hybrid CFD/DSMC code, capable of handling gas flow regimes from
the continuum to the free molecular, has been developed, validated and applied to
simulate the flow field in the expanding gas jet thin film deposition process of interest.
Three main issues have been addressed in this work:

• CFD/DSMC coupling in steady-state and transient flows,

• Influence of rarefaction on expanding gas jet hydrodynamics,

• Supersonic region invasion by background particles in rarefied supersonic jet
expansion.

Each of these questions will be discussed separately in the next sections.

5.1 CFD/DSMC coupling in steady-state and transient flows

The first research question concerned the challenge of accurately coupling two
fundamentally different flow simulation approaches: the CFD (Computational Fluid
Dynamics) approach based on the solution of the compressible Navier-Stokes equa-
tions, and the particle based DSMC (Direct Simulation Monte Carlo) method, both
in steady-state and unsteady flow simulations.
Chapter 3 describes the two different strategies used for steady-state and unsteady
flows and discusses, through a sensitivity analysis of the method to various parame-
ters, the potentials and limitations of the method.
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From the discussion presented in chapter 3 it was clear that the coupling method
used (overlapped Schwarz coupling with Dirichlet-Dirichlet boundary conditions) was
showing only a weak sensitivity to various parameters, e.g. the exact position of the
CFD/DSMC interface, the size of the overlap region, and the DSMC noise.
The latter proved to be a clear advantage of the chosen coupling method over the
more commonly used flux-based coupling, both for steady-state and transient flows.
For transient flows, another clear advantage of the chosen coupling method was that
the CFD and DSMC time steps can be decoupled, and that in general a coupling time
step can be used which is much larger than the DSMC time step.
The study performed was also highlighting some limits of the method. For unsteady
flow simulations it was found to be necessary to keep the Courant number, based on
the coupling time step ∆tcoupling, the CFD cell size ∆xCFD and the molecular most
probable velocity Cr, below 1 in order to avoid instabilities.
Furthermore, it was found to be necessary to restrict the application of the CFD
approach to regions where Kn . 0.1. Not respecting this condition leads to the ap-
pearance of instabilities.
The hybrid Schwarz coupling method has been validated against theoretical and
DSMC results in chapter 3 and against theoretical and experimental results in chap-
ter 4. The validation showed the accuracy of the hybrid CFD/DSMC in various test
cases in predicting both macroscopic variables (e.g. pressure, temperature, velocity)
and microscopic characteristics of the flow (e.g. the particles velocity distribution,
particle’s collisions).
From our study it was clear that for the type of flows of interest the hybrid coupling
CFD/DSMC method is much more accurate than CFD, and it is also applicable in
conditions where the CPU expenses of full DSMC are inadmissible.

5.2 Influence of rarefaction on expanding gas jet hydrodynamics

The second research question we answered in this thesis concerns the effect of
rarefaction on gas jets expanding into (near) vacuum. In particular we analyzed the
necessity of taking into account the continuum-rarefied regime transition through a
molecular approach when simulating the flow field in such flows. This issue has been
studied in chapter 4.
The hybrid coupling method has been used to simulate the flow field in the geome-
try of a reactor for thin film deposition and in the conditions met during deposition
processes. A comparison between hybrid simulations, full CFD simulations and exper-
imental data provided insight into the influence of rarefaction effects on both velocity
and temperature fields.
It was clear that because of rarefaction the expansion predicted by the hybrid method
was stronger than that predicted by the continuum approach, reaching a lower tem-
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perature and higher velocity (approximately 200− 500 m/s higher) in the supersonic
region, in agreement with the experiments. The shock was moved downstream and
downstream from the shock the temperature predicted by the hybrid method, in
agreement with experimental observations, was significantly (500 − 1500 K) lower
than the one calculated by the continuum approach.
Since already at 100 Pa chamber pressure the full CFD simulations were in qualita-
tive and quantitative deviation from the experimental observations, the necessity of
a hybrid model (that on the one hand accounts for the molecular nature of the gas
flow where needed, and on the other hand uses a continuum model where allowed in
order to save computational time) was evident.
A further effect due to the rarefied flow conditions in the reactor is the phenomenon of
invasion of the supersonic part of the flow by background particles. This phenomenon
will be discussed in the next section.

5.3 Supersonic region invasion in rarefied supersonic jet expansion

In section 4.4.2 the invasion of background particles into the supersonic region of
a hot gas jet expansion was demonstrated. In continuum conditions, because of the
presence of the shock, the background particles, that are initially outside the super-
sonic region, would not be able to penetrate into it. However, we have demonstrated
that, because of rarefaction, the shock becomes transparent and does not protect the
supersonic region. Therefore, some particles may actually move into it from the sub-
sonic part of the flow.
In order to demonstrate this hypothesis, in our simulation of a near-atmospheric gas
jet expanding into a low pressure chamber at 20 Pa, two analyses of flow at the molec-
ular scale have been performed.
In the first analysis, the velocity distribution profiles of the molecules were recorded
in different positions in the supersonic region. This analysis showed a clear depar-
ture from thermodynamic equilibrium in this region. The possibility to discern the
contribution of the background particles to the velocity distribution confirmed the
hypothesis that they have an important role in generating the thermodynamic non-
equilibrium by penetrating the supersonic region, and by colliding and interacting
with the local particles.
A clear explanation of the reason why background particles can penetrate the super-
sonic region under rarefied conditions was given by the second analysis we performed.
Through the tracking of particles and collisions in the supersonic region it became
clear that they concentrate in the region of minimum pressure.
In the supersonic region, the velocity increases reaching a maximum value, whereas,
at the same location, density and pressure decrease reaching a minimum. The in-
vading background particles penetrate the supersonic region driven into the region of
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minimum pressure by favorable pressure gradients. Once they are there, because of
the adverse pressure gradient, it is difficult for them to cross the Mach disk and/or the
barrel shock. Therefore, the invading background particles concentrate in the region
of minimum pressure. At a background pressure of 20 Pa the invading background
particles concentration can reach values of up to 25% of the total number of particles
in the supersonic region.
By means of tracking particle collisions, it was also possible to demonstrate that the
invading background particles do interact with the local particles. At a background
pressure of 20 Pa, the average number of times that particles from the gas jet collided
with invading background particles was found to reach values up to ≈ 1.8 collisions.
This is of course an averaged value, meaning that there are jet particles which did
not collide as well as particles that collided much more than 1.8 times with back-
ground particles. This clearly proves that the background particles can invade the
supersonic region and, colliding and interacting with local particles, can produce non-
equilibrium, thus influencing the flow field.

5.4 General conclusions and outlook

The work presented in this thesis provides a solid basis for modelling gas flows
with continuum-rarefied transitions, such as for instance encountered in thin film
deposition processes based on near atmospheric pressure gas jets expanding into a
low pressure deposition chamber. The developed hybrid CFD/DSMC approach was
found to be flexible, robust and accurate, and to have several advantages over other
published hybrid approaches.
For the actual modelling of thin film deposition processes, the hybrid approach has
the possibility to apply the DSMC method in a thin zone above the deposition surface,
allowing one to account for non-equilibrium effects near that surface and facilitating a
further coupling to particle based surface models such as MD (Molecular Dynamics)
or Monte Carlo.
The modelling of thin film deposition processes will necessitate that the CFD and
DSMC parts of the developed CROW code, and their coupling, are extended by
multi-species and reaction capabilities. This is relatively straightforward [34; 117],
but was outside the scope of this thesis.



Bibliography

[1] L. Boltzmann, Sitzungsberichte Akademie der Wissenshaften Wien, 66 pp. 275–
370 (1872)

[2] J.C. Maxwell, Philos. Trans. R. Soc. London 170 pp. 231–256 (1879)

[3] B. Adler, Phys. A 240 pp. 193–195 (1997)

[4] N.G. Hadjiconstantinou, Phys. of Fluids 15 pp. 2352–2354 (2003)

[5] N.G. Hadjiconstantinou, 2nd Int. Conf. on Microchannels and Minichannels,
ed. S.G. Kandlikar, Rochester, New York, pp. 289–296 (2004)

[6] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation Monte Carlo,
Claredon Press, Oxford Univ. Press, Oxford (1998)

[7] N.G. Hadjiconstantinou, J. Comput. Phys. 154 pp. 245–265 (1999)

[8] P. Le Tallec, F. Mallinger, J. Comput. Phys. 136 pp. 51–67 (1997)

[9] O. Aktas, N.R. Aluru, J. Comput. Phys. 178 pp. 342–372 (2002)

[10] H.S. Wijesinghe, N.G. Hadjiconstantinou, Int. J. Multiscale Comp. Eng. 2 (2)
pp. 189–202 (2004)

[11] R. Roveda, D.B. Goldstein, P.L. Varghese, J. Spacecraft Rockets 35 pp. 258–265
(1998)

[12] A.L. Garcia, J.B. Bell, W.Y. Crutchfield, B.J. Alder, J. Comput. Phys. 154 pp.
134–155 (1999)

[13] C.E. Glass, P.A. Gnoffo, 8th AIAA/ASME Joint Thermophysics and Heat
Transfer Conference, AIAA Paper 2002–3099 (2002)

[14] J.S. Wu, Y.Y. Lian, G. Cheng, R.P. Koomullil, K.C. Tseng, J. Comput. Phys.
219 pp. 579–607 (2006)



96 BIBLIOGRAPHY

[15] T.E. Schwartzentruber, L.C. Scalabrin, I.D. Boyd, AIAA-2006-3602, June 2006,
San Francisco, CA.

[16] T.E. Schwartzentruber, I.D. Boyd, J. Comput. Phys. 215 (2) pp. 402–416 (2006)

[17] M.C.M. van de Sanden, R.J. Severens, J.W.A.M. Gielen, R.M.J. Paffen, D.C.
Schram, Plasma Sources Sci. Technol. 5 (2) pp. 268–274 (1996)

[18] M.C.M. van de Sanden, J.M. de Regt, D.C. Schram, Plasma Sources Sci. Tech-
nol. 3 pp. 501–510 (1994)

[19] M.C.M. van de Sanden, R. van de Bercken, D.C. Schram, Plasma Sources Sci.
Technol. 3 pp. 511–520 (1994)

[20] R.F.G. Meulenbroeks, R.A.H. Engeln, M.N.A. Beurskens, R.M.J. Paffen,
M.C.M. van de Sanden, J.A.M. van der Mullen, D.C. Schram, Plasma Sources
Sci. Technol. 4 pp. 74–85 (1995)

[21] R. Engeln, S. Mazouffre, P. Vankan, D.C. Schram, N. Sadeghi, Plasma Sources
Sci. Technol. 10 pp. 595–605 (2001)

[22] S. Mazouffre, M.G.H. Boogaarts, I.S.J. Backer, P. Vankan, R. Engeln, D.C.
Schram, Phys. Rev. E 64 (2) 16411 (2001)

[23] S. Mazouffre, M.G.H. Boogaarts, J.A.M. van der Mullen, D.C. Schram, Phys.
Rev. Lett. 84 pp. 2622–2625 (2000)

[24] J.J. Beulens, G.M.W. Kroesen, P.M. Vallinga, D.C. Schram, proc. Int. Symp.
Plasma Chemistry (ISPC-9), Pugnochiuso, Italy, ed. R.d’Agostino 1 pp. 302–
308 (1989)

[25] J.J. Beulens, D. Milojevic, D.C. Schram, P.M. Vallinga, Phys. Fluids B 3 pp.
2548–2557 (1991)

[26] K.T.A.L. Burm, W.J. Goedheer, D.C. Schram, Phys. Plasmas 6 pp. 2622–2627
(1999)

[27] G.M. Janssen, PhD Thesis University of Technology, Eindhoven, The Nether-
lands (2000)

[28] W.M.M. Kessels, A. Leroux, M.G.H. Boogaarts, J.P.M. Hoefnalels, M.C.M. van
de Sanden, D.C. Schram, J. Vac. Sci. Technol. A 19 pp. 467–476 (2001)

[29] FLUENT 5, User’s Manual, Fluent Inc., Lebanon (USA) (1998)

[30] M.C.M. van de Sanden, J.M. de Regt, G.M. Jansen, J.A.M. van der Mullen,
D.C. Schram, B. van der Sijde, Rev. Sci. Instrum. 63 pp. 3369–3377 (1992)



BIBLIOGRAPHY 97

[31] S.E. Selezneva, M.I. Boulos, M.C.M. van de Sanden, R. Engeln, D.C. Schram,
J. Phys. D: Appl. Phys. 35 pp. 1362–1372 (2002)

[32] S.E. Selezneva, M. Rajabian, D. Gravelle, M.I. Boulos, J. Phys. D: Appl. Phys.
34 pp. 2862–2874 (2001)

[33] J.O. Hirschfelder, C.F. Curtis, R.B. Bird, Molecular Theory of Gases and Liq-
uids, Wiley, New York, 4th edition (1954)

[34] R. Dorsman, PhD Thesis University of Technology, Delft, The Netherlands
(2007)

[35] M. Okkerse, C.R. Kleijn, H.E.A. Van Den Akker, M.H.J.M. De Croon, G.B.
Marin, J. Appl. Phys. 88 (7) pp. 4417–4428 (2000)

[36] C.R. Kleijn, Thin Solid Films 365 (2) pp. 294–306 (2000)

[37] C.R. Kleijn, R. Dorsman, K.J. Kuijlaars, M. Okkerse and H. van Santen, Journal
of Crystal Growth 303 (1) pp. 362–380 (2007)

[38] G. Abbate, B.J. Thijsse, C.R. Kleijn, Hybrid Navier-Stokes/DSMC simulations
of gas flows with rarefied-continuum transitions, In: Advanced Computational
Method in Science and Engineering, Chapter 1, Springer (2008)

[39] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases,
Cambridge Univ. Press, London (1960)

[40] H. Grad, Commun. Pure Appl. Math. 2 331 (1949)

[41] G.N. Patterson, Molecular Flow of Gases, Wiley, New York (1956)

[42] J.C. Maxwell, Philos. Trans. R. Soc. London, 157 pp. 49–88 (1867)

[43] W.G. Vincenti, C.H. Krueger Jr., Introduction to Physical Gas Dynamics, Wi-
ley, New York (1965)

[44] A.L. Garcia, B.J. Alder, J. Comput. Phys. 140 pp. 66–70 (1998)

[45] M. Manzini, A. Ticca, G. Zanetti, http://crs4.it (May 2001)

[46] S.Y. Chou, D. Baganoff, J. Comput. Phys. 130 pp. 217–230 (1997)

[47] T. Lou, D.C. Dahlby, D. Baganoff, J. Comput. Phys. 145 pp. 489-510 (1998)

[48] B. van Leer, J. Comput. Phys. 32 pp. 101–136 (1979)

[49] P.L. Roe, J. Comput. Phys. 43 pp. 357–372 (1981)



98 BIBLIOGRAPHY
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