
Delft University of Technology
Master’s Thesis in Embedded Systems

Enabling the Chaos Networking Primitive
on Bluetooth LE

Coen Roest

Enabling the Chaos Networking Primitive on
Bluetooth LE

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Coen Roest
c.roest@student.tudelft.nl

12th October 2015

mailto:c.roest@student.tudelft.nl

Author
Coen Roest (c.roest@student.tudelft.nl)
Title
Enabling the Chaos Networking Primitive on Bluetooth LE
MSc presentation
20th October 2015

Graduation Committee
Prof. Dr. K.G. Langendoen (Chair) Delft University of Technology
M. A. Zuniga Zamaloa, PhD. (Supervisor) Delft University of Technology
O. Landsiedel, PhD. (Daily Supervisor) Chalmers University of Technology
A. Bozzon, PhD. (External Member) Delft University of Technology

mailto:c.roest@student.tudelft.nl

Abstract

Cyber-Physical Systems (CPS) integrate physical processes, sensors, and
embedded computers to facilitate advanced control systems such as autonom-
ous cars and smart cities. Communication in CPS has tight constraints re-
garding reliability and latency, while traditional networking primitives can
not guarantee these constraints. We base our thesis on the Chaos networking
primitive which is a new paradigm that overcomes these limitations of tra-
ditional networking primitives. The current radio standard on which Chaos
relies, is used more in science and industry, but less in everyday devices. We
want to bring Chaos from the lab to the real world by porting the primitive
to Bluetooth Low Energy (BLE).
This thesis presents Chaos BLE: an implementation of the Chaos commu-

nication primitive on Bluetooth Low Energy. We characterised the capture
effect on BLE and achieved accurate time synchronisation among nodes
(< 2.5µs), both of which are key for the operation of the Chaos primitive.
We validated our design and implementation on a 25 node BLE testbed that
we have build at Delft University of Technology.

In order to improve the performance of Chaos BLE and to mitigate chan-
nel interference, we propose a multichannel approach. The Chaos Mul-
tichannel primitive enables the network to use multiple channels in parallel,
such that smaller sub-networks arise. Chaos Multichannel outperforms the
single channel primitive in terms of reliability and latency. It achieves reli-
abilities close to 100% while finding a consensus among the nodes up to 2
times faster, compared to the single channel approach.

iv

Acknowledgements
The work in this thesis was partly done at Chalmers University of Techno-
logy (Gothenburg, Sweden) in the Networks and Systems division, Depart-
ment of Computer Science and Engineering. It was funded by the IDEA
League student grant. Their cooperation is hereby gratefully acknowledged.

v

vi

Preface

This MSc. thesis reflects upon the work I performed in the last 9 months.
I spend the first 6 months at Chalmers University of Technology, Gothen-
burg, Sweden and the last three months at the Embedded Software group,
Delft University of Technology. Living, learning, and working in a differ-
ent country was an invaluable experience in which I grew personally and
professionally.
Research is like climbing a mountain covered in clouds: you have an idea
where the top is but you don’t know how to get there. Climbing this moun-
tain would not have been possible without the help of others. My earnest
gratitude goes out to my supervisor Olaf Landsiedel from Chalmers Univer-
sity of Technology. His positive attitude and intelligence made my period
in Sweden a great and enriching experience. The many discussions we had
sharpened my thinking, pushed me to go further, and encouraged me to ask
the right questions. Special thanks go out to my supervisor from Delft Uni-
versity of Technology: Marco Zuniga. His patience, knowledge and bird′s
eye view were immensely helpful while writing this thesis. I would also like
to thank Beshr Al Nahas for our discussions and the tips and tricks regard-
ing the practical part of this work.
Many thanks go out to my friends and colleagues for their company, dis-
traction, and input. I want to thank Rick Fransman for his friendship, his
humour, and for preventing me from writing all sorts of bad grammar. My
love, respect, and gratitude go out to my family and my parents, Martin
and Jacqueline, for all their support during my studies. Finally, I am very
grateful to my wonderful girlfriend Janneke for her caring, attention, and
love. Thank you for being there for me, in Sweden, The Netherlands, and
my life.

Coen Roest

Delft, The Netherlands
12th October 2015

vii

viii

Contents

Preface vii

1 Introduction 1
1.1 Limitations on Traditional Networking 1
1.2 A new Approach: Chaos . 2
1.3 Bringing Chaos from the Lab to the Real World 2
1.4 Challenges . 2
1.5 Thesis Contributions . 3
1.6 Thesis Organization . 3

2 Background 5
2.1 Networking Stacks in Low-Power Wireless 5
2.2 Bluetooth Low Energy . 6
2.3 Concurrent Transmissions . 8

2.3.1 Capture Effect . 8
2.3.2 Constructive Interference 9

2.4 Glossy: Time Synchronised Network Flooding 9
2.5 The Chaos Networking Primitive 10

3 Related Work 13
3.1 Communication Primitives using Concurrent Transmissions . 13
3.2 Bluetooth LE Based Sensor Networks 14
3.3 Parallel Channels . 15

4 Enabling Chaos on Bluetooth LE 17
4.1 Design . 18

4.1.1 Hardware Platform and Operating System 18
4.1.2 Characterising the Capture Effect on Bluetooth LE . . 18
4.1.3 Time Synchronisation 19

4.2 Implementation . 22
4.2.1 nRF51 Shortcuts . 23

ix

4.2.2 Busy Waiting . 24
4.3 Evaluation . 25

4.3.1 Capture Effect Characteristics 25
4.3.2 Concurrent Transmissions 28
4.3.3 Time Synchronisation Performance 29
4.3.4 Chaos BLE Performance 35

5 Chaos Multichannel 41
5.1 Design . 42

5.1.1 Chaos Multichannel 42
5.1.2 Chaos Multichannel with Channel Hopping 44

5.2 Implementation . 46
5.2.1 Chaos Multichannel Algorithm 46
5.2.2 Chaos Multichannel with Channel Hopping Algorithm 47

5.3 Evaluation . 48
5.3.1 Network Activity . 48
5.3.2 Impact of Transmission Power 49
5.3.3 Impact of Group Size 50
5.3.4 Impact of Channel Interference 52

5.4 Discussion . 54

6 Future Work 55
6.1 Density Detection . 55
6.2 Adaptive Channel Hopping 56

7 Conclusions 57

A Bluetooth LE Testbed 59
A.1 Hardware . 59
A.2 Software . 60
A.3 Setup . 60

B Glossary 63
List of Acronyms . 63

x

Chapter 1

Introduction

Our society is becoming more reliant on wirelessly connected devices that
operate without any human involvement. Typically, those devices are em-
bedded and consist of sensors, a low-power chip for processing, and a radio
module that can be used to communicate with other devices. These types
of systems are often called Cyber-Physical Systems (CPS) and are used to
sense, process, and communicate data in various environments. An example
of CPS is an autonomously driving car that needs to drive cooperatively
with other cars. At a crossroads, the cars have to decide real-time who gets
priority. Another example is a swarm of unmanned aerial vehicles (UAVs)
that work on a common task and need to ensure that they do not collide.

Many Cyber-Physical Systems are mission critical and have stringent re-
quirements regarding safety, availability, and efficiency. The different CPS
applications all have a common denominator: they all require a reliable,
low-latency, and energy efficient communication primitive.

1.1 Limitations on Traditional Networking

A typical operation in CPS is all-to-all communication. This communica-
tion scheme is used in situations where each node in the network makes a
decision based on information of every other node. Appointing a master
node or agreeing on the detection of an event are examples of this scheme.
Traditional systems achieve all-to-all communication by using three distinct
phases: data aggregation, computation, and data dissemination.

In the data aggregation phase, the measured sensor data from each node
is sent to a central node, called the sink. The sink processes the received
data in the computation phase. Finally, the sink sends the processed data
back to all the other nodes in the data dissemination phase. A downside of
this approach is that the sink is a single point of failure which can impair

1

the reliability of the system. The three-phase operation costs more time
thus it results in larger latencies and a higher energy consumption per node.
CPS require low latencies and traditional networking stacks can not always
ensure this.

1.2 A new Approach: Chaos
The Chaos communication primitive overcomes the limitations of traditional
networking stacks [12]. This new paradigm eliminates most of the commu-
nication layers and overhead of traditional networking primitives. Moreover,
wireless networks are dynamic: channels can have a varying quality, and
nodes can be mobile. Chaos embraces the dynamics of wireless networks
and handles them in an efficient way. The Chaos primitive provides all-to-
all communication and the ability to do in-network computation. Therefore,
data aggregation, computation, and dissemination can be done at the same
time, hence the latency and energy consumption are lower. A typical applic-
ation of Chaos is finding a network-wide agreement. Chaos finds a consensus
among 100 nodes within 100 ms [12]. The main mechanism behind Chaos
is the capture effect. We explain this effect in Section 2.3.1 and we discuss
the Chaos primitive and its operations in Section 2.5.

1.3 Bringing Chaos from the Lab to the Real World
The current implementation of Chaos operates on a specific radio standard
and hardware platform. This standard is used mostly in academic and
industrial settings but not in everyday consumer electronics. If we want
Chaos to have an impact, it should also be available on everyday products.
In contrast, Bluetooth and Bluetooth Low Energy (BLE) are standards

which are present in almost every mobile device. Total shipments of Bluetooth
capable devices are estimated to be 20 billion in 2017 [10]. Mobile phones
and laptops incorporate BLE, as well as many other devices that operate
autonomously include this standard. Examples of BLE enabled autonomous
systems are connected lighting systems, UAVs, and smoke detectors. Chaos
is a fast and reliable communication primitive for CPS and for that reason
we enable Chaos on Bluetooth LE platforms in this thesis.

1.4 Challenges
Chaos is currently restricted to one specific communication standard and
hardware platform. Chaos builds on top of two main pillars, the capture
effect and synchronous transmissions, which are tightly coupled with this
radio standard and hardware platform.

2

BLE has fundamental differences compared to the radio standard Chaos
currently uses and it poses more stringent constraints regarding the capture
effect. Additionally, due to the scale on which BLE devices are used, we
anticipate that more devices operate in a close range. This can result in
channel interference which impacts the performance of Chaos. This thesis
addresses the following challenges:

• Characterisation of the constraints for the capture effect on Bluetooth
Low Energy.

• Achieving precise time synchronisation (< 8µs) across all BLE nodes
in the network.

• Enabling the Chaos primitive on Bluetooth LE hardware and con-
trolling Chaos’ operations.

• Deriving new mechanisms to mitigate channel interference which im-
pairs Chaos’ performance.

Networking primitives such as Chaos are designed, implemented, and ana-
lysed on testbeds. However, there is as far as we know no multihop Bluetooth
LE testbed available yet, so we have build our own.

1.5 Thesis Contributions
This work delivers the following contributions:

• Chaos BLE: design, implementation, and evaluation of a Chaos adap-
tion for Bluetooth Low Energy (see Chapter 4).

• Chaos Multichannel: design, implementation, and evaluation of a
primitive using multiple parallel channels to improve the performance
of Chaos BLE (see Chapter 5).

• A 25 node Bluetooth Low Energy testbed that we use for the evalu-
ation of Chaos BLE (see Appendix A).

1.6 Thesis Organization
The rest of this thesis is organised as follows: Chapter 2 lays out the found-
ations on which this work builds. Chapter 3 describes other works related
to this thesis. I present the contribution regarding porting the Chaos prim-
itive to a Bluetooth Low Energy platform in Chapter 4. In Chapter 5, this
presents a multichannel approach to improve Chaos’ performance. I suggest
ideas for future work in Chapter 6 and present my conclusions in Chapter 7.

3

4

Chapter 2

Background

The background section presents the basic building blocks we need to under-
stand for this thesis. Section 2.1 explains the traditional networking stack
for low-power wireless networks. In this section we show the structure of
a traditional networking stack and how it relates to the Chaos network-
ing stack. Section 2.2 discusses the Bluetooth Low Energy (BLE) standard
and compares it with the current radio standard used by Chaos: the IEEE
802.15.4 standard.
In Section 2.3 we introduce the concept of concurrent transmissions on which
Chaos relies. There are two concepts that are important regarding concur-
rent transmissions: the capture effect and constructive interference. Sec-
tion 2.3.1 explains the capture effect which is fundamental to the Chaos
networking primitive. In order to enable Chaos on Bluetooth Low Energy
we need to characterise the capture effect for this radio standard.
Additionally, we discuss constructive interference in Section 2.3.2. A re-
cent work leverages constructive interference with time synchronised nodes
in order to perform fast network flooding. Chaos builds upon this work to
achieve accurate time synchronisation and we discuss this network flooding
protocol in Section 2.4. Finally, we explain the Chaos networking primitive
in more detail in Section 2.5.

2.1 Networking Stacks in Low-Power Wireless

Figure 2.1a shows the state of the art networking stack that low-power
wireless networks use. The layers provide an abstraction of communication
functions. Each layer is responsible for a subset of the communication func-
tions and each function adds some overhead, which they require for their
operation.
The highest and lowest layers shown in Figure 2.1a, the radio layer and
application layer, represent the radio hardware and the application respect-
ively. The main function of the radio duty-cycle (RDC) layer is to decrease

5

Radio Layer

RDC Layer

MAC Layer

Network Layer

Application Layer

Traditional WSN Stack
(a) WSN Stack

IEEE 802.15.4 PHY

Chaos Control

Chaos Application

(b) Chaos Stack

Bluetooth LE
Controller

Application

Bluetooth LE Host

(c) BLE Stack

Figure 2.1: An overview of the layers in the network stacks of dif-
ferent communication standards.

the energy consumption by switching the radio on only when it is needed.
The media access control (MAC) layer optimises the use of the wireless
channel and avoids colliding transmissions. The MAC layer performs clear
channel assessment, determines the link quality, and schedules the transmis-
sions per link between two nodes. The network layer is responsible for the
routing of a packet from one node to the other. Determining neighbours,
building and updating the topology, and finding an optimal route are all
part of the tasks of the network layer.

Figure 2.1b shows an overview of the Chaos networking stack. It does
not follow the traditional networking stack in order to increase reliability,
decrease latency, and optimise energy usage as we will show in Section 2.5.
Figure 2.1c presents the BLE stack and we explain it in the next section.

2.2 Bluetooth Low Energy

The first Bluetooth standard was introduced in 1999 and was designed to be
a low-power, short-range, and low-cost replacement for cables [10]. Ten years
after the first Bluetooth standard, Bluetooth Low Energy was introduced as
part of the Bluetooth 4.0 core specification [2]. BLE is less energy consuming
and has a lower latency compared to classic Bluetooth. It is designed as a
low-energy control and monitoring solution, in contrast to Bluetooth V3.0
which is more focussed on larger data transfers [8]. The new Bluetooth
stack introduced changes to each layer and older Bluetooth devices are not
compatible with the newer Bluetooth Low Energy standard.
The protocol stack is split into two parts: the Bluetooth LE Controller

consisting of the physical and link layer, and the Bluetooth LE Host which
consists of upper layer functionality (see Figure 2.1c). The main focus for the
Chaos BLE implementation is on the controller in general and the physical
layer in specific. Table 2.1 shows a comparison between the physical layers

6

Table 2.1: Physical layer comparison of Bluetooth Classic,
Bluetooth Low Energy and IEEE 802.15.4 (data from [8]). The
Bluetooth Low Energy physical layer is simplified compared to classic
Bluetooth and the IEEE 802.15.4 standard in order to save energy.

Bluetooth (Classic) Bluetooth LE IEEE 802.15.4

Modulation

GFSK (v1.2),
4-DQPSK/8DPSK
s(v2+EDR),
802.11 (v3+HS)

GFSK O-QPSK

Data Rate (kbps)
≤ 721 (v1.2),
3000 (v2+EDR),
≤ 24,000 (v3+HS)

1000 250

Bandwidth (MHz) 1 1 2
Channel Spacing (MHz) 1 2 5
Channels 79 40 16
Spreading Technique FHSS FHSS DSSS
Preamble Length (bytes) 9 1 5
Max. Message
Length (bytes) 127 47 358

of classic Bluetooth, Bluetooth Low Energy and the IEEE 802.15.4 standard
on which the current implementation of Chaos is build.

All three radio standards shown in Table 2.1 operate on the 2.4 GHz
Industrial Scientific Medical (ISM) band. The physical layer of BLE is
simplified compared to Bluetooth classic in order to save energy. The max-
imum packet length and preamble are shorter such that the radio has a lower
radio-on time and hence, less energy consumption. Bluetooth LE has less
channels with a wider spacing to reduce adjacent channel interference. A
simpler modulation technique is used compared to IEEE 802.15.4 and classic
Bluetooth, which allows a simpler hardware implementation and a smaller
chip size.

The current Chaos implementation is tightly coupled to the IEEE 802.15.4
radio standard [12], which differs in a number of ways from the Bluetooth
Low Energy radio standard. It is not possible to directly place the Chaos
controller functionality on top of the Bluetooth LE controller and this in-
troduces two challenges.

The first challenge is to characterise the BLE radio specifics required for
Chaos. The second challenge is to adapt the Chaos controller such that it
can operate on the BLE physical layer. We show this in Chapter 4.

7

Preamble Payload

Preamble Payload
✖

Preamble Payload

Preamble Payload
✔

Stronger

Weaker

Stronger

Weaker

Figure 2.2: Capture effect constraints. A stronger packet that is trans-
mitted concurrently within the preamble of the weaker packet can correctly
be decoded.

2.3 Concurrent Transmissions

Generally, when two transmitters are sending concurrently within range of
a single receiver, their packets will collide and the receiver will not be able
to properly decode a packet. However, under certain conditions the receiver
can still decode a signal. We distinguish two cases with different condi-
tions: the capture effect (see Section 2.3.1) and constructive interference
(see Section 2.3.2).
Chaos leverages the capture effect to perform concurrent transmissions

(see Section 2.5) and controlling this effect is crucial for porting Chaos onto
BLE. Constructive interference is the main mechanism behind the flooding
architecture of Glossy (see Section 2.4). Chaos builds on top of Glossy to
achieve accurate time synchronisation.

2.3.1 Capture Effect

The capture effect allows receivers to correctly decode a packet in the pres-
ence of interference [14]. The conditions under which this capture effect
takes place are two-fold. First, the signal-to-noise ratio (SNR) between the
stronger signal of interest and the interfering signal should be higher than
the capture ratio. This capture ratio is radio specific and is around 3dB for
the radio on which Chaos operates, the Texas Instruments (TI) CC2420 ra-
dio [26]. Second, the stronger signal may not come in later than the capture
window. The capture window for IEEE 802.15.4 is 160µs which is the on-air
time of the preamble [27].
Figure 2.2 is a graphical representation of the capture effect constraints.

If the stronger packet comes in after the preamble of the weaker packet, both
packets will collide and the receiver can not decode a signal. The collision
of both packets happens likewise in the situation in which the SNR of the
stronger packet is not higher than the capture threshold. However, if a new
packet comes in within the preamble of the weaker packet and if the SNR
is higher than the capture ratio, then the capture effect can take place.

8

2.3.2 Constructive Interference

Constructive interference is a baseband phenomena that can occur if the
synchronously transmitted packets are exactly the same. Furthermore, the
required synchronisation is much more stringent than for the capture effect.
Constructive interference makes multiple packets collide non-destructively
such that the superposition of the signals can be correctly decoded [5]. The
synchronous transmissions should occur within the chip period Tc in order
to have constructive interference [22]. This period is 0.5µs for IEEE 802.15.4
compatible receivers [4]. According to the authors, the number of concurrent
transmitters can be higher than 90, while still maintaining a packet reception
ratio (PRR) of 100% [4]. Constructive interference is used by Glossy to
decrease the time to flood a packet through the network. Chaos builds upon
Glossy and uses this flooding mechanism in the final stage of a Chaos round.

2.4 Glossy: Time Synchronised Network Flooding

Glossy is a flooding architecture that relies on concurrent transmissions and
exploits the constructive interference of baseband symbols. It allows the net-
work to rapidly flood a packet while having a probability higher than 99.99%
that a node will receive the packet [7]. The three pillars on which Glossy
builds, are concurrent transmissions, time synchronisation, and temporal
decoupling of the Glossy network flooding from all other network activities.
The network application schedules a Glossy flood and this flood is divided

into slots in which a node transmits or receives. The appointed initiator
starts the flood by broadcasting a packet in the first slot (see Figure 2.3).
Nodes receiving the packet in Slot 1 will rebroadcast this packet in Slot 2.
More nodes overhear the packet and rebroadcast it in the consecutive slot.
This cycle repeats itself until the maximum number of retransmissions is
reached.

Glossy relies on synchronous transmissions in order to make the packets
of the different nodes constructively interfere. This is achieved by syn-
chronising the network with the reference time based on the first packet
the initiator has sent out. In the next slot, the nodes must send out their
packets within 0.5µs to benefit from constructive interference. Ferrari et
al. show that the reliability is higher than 98% while having 10 concurrent
transmitters [7].

In order to have a tight synchronisation between the nodes, a small and
deterministic software delay is key. Glossy achieves this due to its radio-
driven execution model were the state of the nodes solely changes according
to activities of the radio. After sending a packet, the node goes back into a
waiting state until the radio signals that there is an incoming packet. The
processing during a Glossy round is minimised in order to have a small soft-

9

Initiator

Receivers

t
Tx

{
t

t

t

Tx

SW delay
Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

Idle listening

Rx

Rx Rx

RxRx

Tx

Rx

Rx

Rx Tx

Tx

Rx

Tx

Tx

Tx

Figure 2.3: A Glossy round in action. The flooded packet spreads
through the network. Due to constructive interference, concurrent trans-
mitted packets are correctly received by the receiving nodes.

ware delay. The variable interrupt delay is compensated such that the soft-
ware delay becomes deterministic and constructive interference is achieved.

2.5 The Chaos Networking Primitive
Chaos is a communication primitive for distributed systems that allows
all-to-all communication and in-network processing in a fast and efficient
way [12]. The three typical steps of all-to-all communication, i.e., data col-
lection, processing, and data dissemination are combined and executed in
parallel. The two key mechanisms in Chaos are synchronous transmissions
and user-defined merge operators. The merge operators define how new re-
ceived information should be merged with the known information, such as
taking the minimum or maximum value. Chaos leverages the idea of syn-
chronous transmissions used in Glossy, but is different since nodes transmit
packets with a varying payload instead of flooding the exact same packet.
This means that constructive interference can not occur and hence, Chaos
relies on the capture effect.

Terminology

The Chaos primitive schedules a round in which all participating nodes run
a specific Chaos application. The rounds are divided into multiple slots.
The nodes can use each slot to either transmit, listen or switch off. One
node, called the initiator, starts a round and the other nodes first need to
synchronise to the initiator to be able to transmit concurrently within each
slot.

10

C	

B	

A	

(a) All nodes are
in range of each
other.

−	
 −	
 X	
 25	

A	
 B	
 C	

−	
 X	
 −	
 22	

X	
 −	
 −	
 20	
 A	

B	

C	

Flags	
 Payload	

(b) The nodes
set their flags
and payload.

Tx	

Rx	

X	
 −	
 −	
 20	

X	
 −	
 −	
 20	

X	
 −	
 −	
 20	

Slot	
 1	

X	
 X	
 −	
 22	

X	
 −	
 X	
 25	

X	
 X	
 −	
 22	

Slot	
 2	

X	
 X	
 −	
 22	

X	
 X	
 −	
 22	

X	
 X	
 −	
 22	

Slot	
 3	

X	
 X	
 X	
 25	

X	
 X	
 X	
 25	

X	
 X	
 X	
 25	

Slot	
 4	

A	

B	

C	

(c) Initiator node A starts the round by transmitting a packet. Node B and C
receive the packet, merge their flags and payload, and transmit in the following
slot. Node A receives the packet from node B due to the capture effect and
replies with a merged packet. Node C has learned new information in Slot 4
and therefore transmits the merged information. The Chaos round ends at the
end of Slot 4 since all nodes have the maximum value in the network.

Figure 2.4: A basic Chaos application: find the maximum value
from all nodes (figures from [12]).

Basic Operation

Figure 2.4 shows the operation of Chaos when nodes look to determine the
maximum value in the network. Node A, B and C are in communication
range of each other. Each participating node in a Chaos round keeps track
of the nodes that contributed to the current answer by assigning a flag per
node (see Figure 2.4b). The initiating node A starts a Chaos round by
broadcasting a packet in Slot 1 (see Section 2.5). The receiving nodes B
and C merge their local flags with the received flags by performing a logical
OR-operation. The value received from node A was not higher than the
local value and hence, the nodes do not change their value. In Slot 2, both
node B and C concurrently transmit the merged packets since they have
received new information in the previous slot. Node A is able to receive the
packet of node B due to the capture effect. It merges the received packet
from node B, updates its flags and value, and transmits in Slot 3. Node
B has not learned anything new and thus listens in Slot 4. Node C learns
new information in Slot 3 and transmits in the consecutive slot. Finally,

11

everyone finds the maximum value based on the information of nodes A, B,
and C in Slot 4.

Transmission Policies

The nodes in a Chaos network decide in each slot whether to transmit or
not. The propagation policy used in Chaos never lets a node transmit in two
consecutive slots. A node only transmits in a slot if the node has received
new information in the previous slot. This ensures that the network does
not get congested with old information and that new information travels
fast through the network.
The transmitted packet contains the flags of the nodes that already contrib-
uted to the answer. This gives every node in the network an understanding
to what degree the Chaos round is completed.
A situation could occur in which none of the nodes transmit in a particular

slot. The nodes then stall because they do not have new information to
transmit. In order not to have a prematurely termination of the round, a
timeout policy is introduced. A node which has not received a packet in the
previous three slots will start transmitting again.
Finally, a termination policy is in place to have a fast completion of the

round as soon as one node has an answer based on the information of all
the nodes. Section 2.5 shows in Slot 4 that Node C has found the final
answer based on all nodes in the network. When a node has the final answer
according to the flags in the packet, it starts flooding this answer for a
number of times. Other nodes will pick up this information and rebroadcast
this packet as well. The packets in this stage of the round are identical
and thus constructive interference can occur. The final stage of a Chaos
round is therefore similar to a Glossy flood. This increases the probability
of completion at all nodes significantly while reducing the total radio on-time
and thus the energy consumption [12].

Results

Chaos is evaluated on three different testbeds and measured on four different
performance metrics: reliability, latency, radio on-time, and radio duty cycle.
Chaos shows that it performs reliably for different payload lengths, network
densities, and processing times. Chaos is compared to the state of the art
protocol Low-Power Wireless Bus (LWB) [6] and the combination of the
TinyOS’ Collection Tree Protocol and data dissemination protocol Drip.
Evaluations show that Chaos outperforms the state of the art by a factor
in the range of 3 − 23× in terms of energy efficiency while maintaining a
reliability close to 100%.

12

Chapter 3

Related Work

The related work chapter is structured into three parts. We first compare
Chaos with other communication primitives that leverage concurrent trans-
missions in Section 3.1. Thereafter we show wireless sensor networks that
use Bluetooth Low Energy in Section 3.2.
The Chaos Multichannel primitive we present in Chapter 5 uses multiple

parallel channels for communication. We show related work regarding the
use of this technique in Section 3.3.

3.1 Communication Primitives using Concurrent
Transmissions

While Leentvaar and Flint describe the capture effect as something that is
unwanted and should be suppressed [14], more recent works use the capture
effect to enable concurrent transmissions. Flash exploits the capture effect
for network flooding [16]. It shows that controlled concurrent transmissions
can reduce the latency of a network flood such that the theoretical min-
imum bound is approached. Whitehouse et al. leverage the capture effect
to detect collisions and to recover the collided packets [25]. Collocal pro-
poses a method based on the capture effect to reduce energy consumption
in beacon based indoor localisation systems [21]. The average listening time
of a mobile node can be reduced by sending out beacons concurrently while
the capture effect allows beacons to be decoded correctly.

Low-Power Wireless Bus exploits constructive interference to create the
wireless equivalent of a shared bus [6]. Each node in the network can com-
municate on this bus and this allows all-to-all communication as well as
all-to-one communication. Nodes in an LWB network may access the bus
according to a global communication schedule that is computed centrally on
a host node. The network floods the packets through the network by using
the Glossy mechanisms for concurrent transmissions of identical packets.

13

LWB makes the network function as one single device that runs on a single
clock. The host is a single point of failure in the network, but LWB intro-
duces a failover policy that enables other nodes to take over the host role
on a different channel. Furthermore, LWB computes the schedule based on
traffic demands and allocates slots in a fair way.
LWB provides all-to-all communication in a reliable, flexible, and energy ef-
ficient way compared to other state-of-the-art primitives [6]. However, LWB
is not able to do in-network processing like Chaos does. The nodes need to
exchange all the data first before they can process it. Comparing such a
situation with Chaos shows that LWB has a 23× higher latency [12].

Sparkle is another work that leverages Glossy for its ability to do syn-
chronised concurrent transmissions and providing a high reliability and a
low latency [28]. It focusses on Cyber-Physical Systems (CPS) in general
and one-to-one communications in CPS in specific. Glossy is not suitable
for one-to-one communication since it uses the complete network to flood
a packet from one point to the other. Sparkle picks a subset of nodes that
form a path between the source and destination. This allows nodes that are
not in the path to switch off and hence save energy.
Sparkle saves up to 84% in energy consumption compared to Glossy while
still satisfying reliability requirements. Moreover, Sparkle improves the com-
munication latency in the control loops of Cyber-Physical Systems. Sparkle
relies on the endpoints of the one-to-one communication for the processing
unlike Chaos, which provides a way to do in-network processing.

3.2 Bluetooth LE Based Sensor Networks

In most wireless sensor networks (WSN), IEEE 802.15.4 is the de facto radio
standard. However, new works attempt to enable Bluetooth Low Energy
(BLE) for these networks. In a typical wireless sensor networks, all nodes can
serve both as a master or slave. The Bluetooth Specification v4.0 forces each
node in a piconet to be either master or slave [2]. However, this restriction
is let loose in the newer Bluetooth Specification v4.1. A connection between
piconets can now be setup to form a multi-hop scatternet and nodes from
different piconets can communicate with each other.
Guo et al. propose an on-demand scatternet formation and multi-hop

routing protocol [9]. The work uses the full BLE stack and nodes can dy-
namically join or leave the scatternet since the routing is done on demand.
To find a route between two nodes, the sender initiates a route discovery
process. The piconet master searches in its slave list for the requested des-
tination. When the destination is not found in the list, the master forwards
the route request to slaves that are also part of another piconet. The pos-
sible routes are returned to the destination which chooses then the shortest

14

path.
Results show that the average delay to send a data packet of 128 bytes to
a destination in a scatternet is large. It takes up to 1 second for the trans-
mission of the packet with 5 nodes and two hops and almost 5 seconds for
a 9 node scatternet with four hops. Due to the on-demand nature of the
routing, it takes a long time to route a packet from one node to the other.
All-to-all communication would introduce even larger delays. Chaos does
not follow this traditional approach on communication and thus can achieve
lower delays.
Lin et al. study BLE as a technique to use in intra-vehicular wireless

sensor networks (IVWSN) [15]. Currently, the sensors and electronic control
units (ECUs) in a car are connected through wires. Since more sensors are
added to modern cars, this results in more cables and thus a higher cost and
extra weight. This can be overcome by switching to wireless sensors and the
authors do a feasibility study of BLE for this purpose. The work evaluates
the packet reception ratio (PRR) of BLE for different locations in the car
and BLE achieves over 95% in different scenarios.
The authors show that BLE is a promising technique for IVWSN. How-

ever, challenges remain regarding the MAC layer in order to facilitate high
reliability and low latency for multiple sensors. The Chaos communication
primitive shows that it can achieve a high reliability and a low latency on
IEEE 802.15.4 compliant motes. We contributed a Chaos BLE port which
can bring low latency and high reliability to Bluetooth Low Energy compli-
ant motes and present this in Chapter 4.

3.3 Parallel Channels

Most multichannel communication primitives introduce frequency spreading
by using channel hopping [24], [20], [1]. However, The Chaos Multichannel
solution we propose in Chapter 5 uses multiple channels in parallel. This is
a fundamentally different technique and we discuss two works that use such
parallel channels.
McMAC is a parallel MAC protocol that uses multiple channels to avoid

control channel congestion [19]. It focusses on improving the rendezvous
phase performance by using multiple channels. Multiple pairs of nodes can
agree simultaneously on using a channel for their communication. McMAC
also makes the nodes estimate the relative clock speeds of their neighbours
to ensure time synchronisation. It achieves a time synchronisation between
neighbours within 200µs.

Another MAC protocol that uses a multichannel approach is Y-MAC [11].
Y-MAC is contention-based and only uses multiple channels under heavy
traffic. Nodes communicate on a base channel and nodes switch to other

15

channels when traffic bursts occur. Only one node is allowed to transmit on
the base channel in a single slot. Y-MAC is TDMA-based and achieves a
time synchronisation of 51µs.
Y-MAC [19] only enables multichannel under heavy traffic and McMAC [11]

uses multichannel solely for rendezvousing. Chaos Multichannel uses a dif-
ferent approach by adding multichannel to Chaos BLE. Chaos does not
follow the traditional network stack and hence does not need to do rendez-
vousing, or account for traffic bursts. We present the Chaos Multichannel
primitive in Chapter 5.

16

Chapter 4

Enabling Chaos on
Bluetooth LE

We present the design, implementation, and evaluation of the Chaos imple-
mentation on Bluetooth Low Energy (BLE) in Chapter 4. Figure 4.1 shows
the various components of Chaos BLE. We present our design for charac-
terising the capture effect of Bluetooth LE (1) and the time synchronisation
mechanisms (3) in Section 4.1. Section 4.2 shows the implementation de-
tails of the radio control (2) and the time synchronisation (3). We evaluate
the capture effect (1) and the time synchronisation performance (3) in Sec-
tion 4.3. This section also presents the evaluation of the overall Chaos BLE
performance using a maximum aggregation application (5). We achieve fur-
ther improvements in the performance using a multichannel approach (4)
which we will present in Chapter 5.

Chaos Control

Bluetooth LE PHY

Radio control

Capture effect characterisation

Time synchronisation

Chaos Application

Maximum aggregation

Multichannel

2.

1.

3.

4.

5.

Figure 4.1: Overview of Chaos BLE and its components. Chapter 4
presents components 1− 3 and 5. We discuss component 4 in Chapter 5.

17

4.1 Design

We present the hardware platform we use for the design of Chaos BLE
in Section 4.1.1. The design of Chaos BLE focusses on two parts: character-
isation of the capture effect on Bluetooth Low Energy in Section 4.1.2 and
achieving accurate time synchronisation in Section 4.1.3.

4.1.1 Hardware Platform and Operating System

Porting Chaos to a new radio standard also involves porting it to a different
chip and hardware platform. The hardware platform we use for this thesis
is the Nordic Semiconductor nRF51822. It is an ARM Cortex M0 System
on a Chip (SoC) with a BLE compliant radio. The CPU runs on a 16MHz
clock and it has a 32 bit timer available. Many BLE connected devices use
this platform for all sorts of applications since it is a low-power, low-cost
SoC with a small footprint.
The current Chaos implementation operates on the TMote Sky hardware

platform. The main difference with the nRF51 is that our platform is a SoC
and thus combines the CPU and the radio in a single chip. This results in our
case in less control on the operation of the radio by the CPU of the nRF51.
The original Chaos networking primitive uses Contiki, an operating system
for low-power wireless embedded systems. We also build Chaos BLE using
Contiki such that Chaos applications can run on both platforms without
any adaption.

4.1.2 Characterising the Capture Effect on Bluetooth LE

Chaos relies for its operations on the capture effect [12]. The first step in
porting Chaos on a Bluetooth Low Energy hardware platform is thus to get
insight in the capture effect on BLE. Collocal shows that the capture effect
is present in Bluetooth Low Energy compliant radios [21]. However, the
authors do not specify details about the required power ratio threshold for
capture or the maximum time window in which the capture effect can take
place. The comparison of the required thresholds for capture on BLE and
IEEE 802.15.4 gives us an insight on the differences between the two radio
standards.
The nodes in the network should send synchronously in order to increase

the probability of capture. The time window required for capture on BLE,
gives a margin in which the nodes should synchronously transmit. If the
nodes transmit concurrently outside this margin, the packets will collide
and can not be correctly decoded. Hence, the time window gives a max-
imum bound on the required time synchronisation between the nodes in the
network. We propose a procedure to characterise the capture threshold and
the maximum time window required for capture in Bluetooth Low Energy.

18

Initiator

Node A
(stronger)

t
Tx

t

t

Rx

Rx

Rx Tx

TxNode B
(weaker)

Rx

Rx Tx

Tx Rx Tx

SNR

SNR

SNR

SNR SNR calculation

∆T ∆T

∆T Preset delay

✖ ✔SNR

SNR

SNR

Figure 4.2: Procedure for the capture effect characterisation. The
stronger transmitter node A sends out the packets with a preset delay. The
steps to determine the SNR between the transmitters are consolidated for
clarity.

The procedure uses a small network with 3 nodes that are in communic-
ation range of each other. An initiator node starts the run and acts as the
receiver where the capture effect should take place. First we determine the
received signal strength indicator (RSSI) of node A and B at the initiator
side and calculate the signal-to-noise ratio (SNR) from this (see Figure 4.2).
Thereafter, the initiator sends out a packet which node A and B receive and
they both reply with some delay. Node A transmits a packet with an extra
preset delay compared to node B and with a higher output power such that
it is considered stronger by the receiver. We then log if the initiator received
the packet and what the SNR and difference in delay are. We determine the
SNR before every run since a small movement of a node can already result
in a variation in the SNR.

4.1.3 Time Synchronisation

As we will show in Section 4.3.1, Bluetooth Low Energy has tighter con-
straints regarding the capture effect compared to IEEE 802.15.4. BLE nodes
should be able to transmit synchronously within 8µs compared to 160µs for
IEEE 802.15.4 nodes [3]. This is mostly due to the fact that the preamble
of BLE is 1 byte compared to the 5 byte preamble of IEEE 802.15.4. Fur-
thermore, the on-air data rate of BLE is four times higher than the rate of
IEEE 802.15.4 (see Table 2.1). This results in a time window which is 20×
smaller than in the original Chaos implementation.
One of the main features of Chaos is its ability to do in-network pro-

cessing. Nodes merge the received information with their local information
and compute an answer, e.g, what the maximum value is. This means inher-

19

ently that the different packets have different processing times. However,
the transmissions in a slot need to overlap sufficiently in order to exploit
the capture effect and to have a reliable communication. We need to ensure
that the time between two consecutive transmissions is constant while the
processing times vary. This is the key reason why we require accurate time
synchronisation between nodes.
Chaos already incorporates synchronisation mechanisms but these are

radio and platform specific. We need to adapt those mechanisms to the
Bluetooth Low Energy platform and tune them to achieve the required syn-
chronisation. We divide the design for time synchronisation into two parts:
the reference time to which every node synchronises and the mechanisms to
keep in sync with the reference.

Reference Time

The Chaos IEEE 802.15.4 implementation builds the synchronisation mech-
anisms around the start of frame delimiter (SFD) of the transmitted and
received frame. The IEEE 802.15.4 receiver listens to incoming signals and
searches for the SFD byte in the frame. When this byte is received, the ra-
dio locks onto this incoming transmission and fills its buffer with the packet.
The CPU timestamps the detection of an SFD and uses this as the refer-
ence time for further transmissions. This timestamp, combined with the slot
number in the packet, determines when the next slot is scheduled and when
the actual round began. The next SFD should be timestamped exactly one
slot length later than the previous one.
In contrast, Bluetooth Low Energy has a short and simplified frame lay-

out and lacks a SFD. Thus, we need to find another reliable reference point
for incoming and outgoing packets. The radio needs to signal to the CPU
when it should timestamp the packet. The first byte in a BLE packet is the
preamble which is used by the receiver to lock onto the incoming packet. [2].
After the preamble is received, the radio reads the following four bytes con-
taining the BLE radio address. The radio of the nRF51 generates a trigger
after it decoded the address in the frame (see Figure 4.3). We use this trigger
to timestamp the packet and this provides us the same functionality as the
SFD detection in IEEE 802.15.4 radios. However, the internal workings of
the nRF51 radio are opaque. It is uncertain if the trigger after the address
decoding has a constant and low latency as the SFD trigger in the IEEE
802.15.4 radios that the original Chaos primitive uses.

Synchronisation Control

The initiator sends out a first packet and the other nodes use this as the
reference time on which they base the synchronisation. We define a constant
slot length such that the nodes in the network can determine their next

20

Address Decoded Trigger

1 byte 4 bytes 1 byte 0 … 254 bytes 3 bytes

Preamble Address Payload CRCLength

Figure 4.3: Bluetooth Low Energy packet layout. The radio reports a
trigger after the address in a transmitted or received packet is decoded.

Preamble Address Payload Wait loopCRC Processing

Timestamp

NOP Radio
Ramp-up

TimestampConstant Slot Length

Preamble Address Payload

Start TransmissionPacket 1 (Rx) Packet 2 (Tx)

Figure 4.4: Detailed view of a Chaos BLE slot. The first packet is
received by the node and the second is transmitted. The processing time is
variable and need to be compensated for by two phases of waiting.

transmission time based on this length and the reference time. Figure 4.4
shows a more detailed view of a slot in Chaos BLE.
The node timestamps the incoming packet after it decodes the address.

The radio keeps listening for the remaining part of the packet and checks
its validity. After the packet is correctly received, the node processes the
packet and decides whether or not it should transmit in the next slot. In
order to meet the next deadline for transmitting a packet, we need a very
precise control over the start of a transmission. The remaining time before
the transmission starts, is filled with a wait loop with a coarse granularity
and no operations (NOPs) with a fine granularity. We use the coarse wait
loop to wait for the major part of the waiting time and we use the NOPs
for the remaining smaller part.

Equation (4.1) shows the relation between the different durations of each
element in a slot. The total slot length must be kept constant while the
processing time is variable. The duration for the various parts of a packet
is constant. The preamble, address, payload, and CRC all have fixed sizes
which gives them a fixed duration. The radio ramp-up that follows after the
start of the transmission in Figure 4.4 is the time the radio needs to startup
and tune in to the used frequency. In Section 4.2.1 we show how we ensure a
constant ramp-up time. The processing time is variable and thus we fill the
time that is left over with waiting in two different phases: Twait and TNOP .

21

Section 4.2.2 goes more into detail about these waiting phases.

Tslot︸︷︷︸
Constant

= Tramp−up + Tpreamble + Taddress + Tpayload + TCRC︸ ︷︷ ︸
Constant

+

Variable︷ ︸︸ ︷
Tprocessing +

Variable︷ ︸︸ ︷
Twait +

Variable︷ ︸︸ ︷
TNOP︸ ︷︷ ︸

Constant

(4.1)

Note that interrupts are switched off during a Chaos round. The sole task
of a node during a Chaos round is to process incoming packets and to achieve
an accurate synchronisation. Energy saving measures, such as switching to
a sleep mode after processing the packet, are not desirable. Accurate timers
are switched off during sleep mode and this will result in decreased precision
and missed deadlines.

Deadline Adjustment

When a node expects to receive a packet in a particular slot, the radio starts
listening to the channel some time earlier. The Chaos synchronisation mech-
anism incorporates some flexibility to deal with packets that are received a
bit earlier or later than the exact deadline. When a node correctly receives
a packet with some offset, it adjusts the next deadline to this offset. This
flexibility enables the network to compensate for the clock drift or mul-
tipath effects that can occur during a round. However, rigid deadlines are
more desirable in a larger multi-hop network since clocks drift independently
from each other. A node adjusts its deadlines to the incoming packets of
its neighbours. In larger networks it can happen that nodes do not share
any neighbours. Two nodes that are multi-hops separated from each other
could thus end up with very different deadlines due to the adjustments of
the deadlines. We added the time synchronisation mechanism with rigid
deadlines to Chaos BLE and we evaluate the different types of deadline ad-
justment in Section 4.3.3.

We showed the design for porting the Chaos primitive to Bluetooth Low
Energy in the previous section. Section 4.2 goes into the details of the
implementation and Section 4.3 shows the evaluation of Chaos BLE.

4.2 Implementation
In this section we discuss the implementation of Chaos BLE. We structure
this into two parts. First we look into the specific implementation details
of the nRF51 hardware platform in Section 4.2.1. Thereafter, we go into

22

more detail on the busy waiting method of the time synchronisation in Sec-
tion 4.2.2.

4.2.1 nRF51 Shortcuts

In order to make the time synchronisation more accurate, we need to have
deterministic timings in the nRF51. The radio should always send out a
packet with a fixed delay after we executed a start command. Furthermore,
the time-stamping of a packet should happen immediately or with a fixed
delay that we can account for. The Nordic Semiconductor nRF51822 allows
different parts of the SoC to communicate with each other without inter-
ception of the CPU. Such a connection is called a shortcut and minimises
the delay between a task and an event of one or multiple peripherals. We
explain the two most important shortcuts used in Chaos BLE.

Time-stamping

The time synchronisation mechanism uses time-stamped packets for its op-
erations. The timer should capture the time at which a packet is trans-
mitted or received such that it can be used for further processing. It is
not desirable to let the CPU handle this task. The timestamp can have a
variable offset due to the interrupt and processing delays of the CPU. We
timestamp the packets by using the address decoded event of the radio.
The radio triggers this event after it decodes an address in the incoming
or outgoing packet. The timers in the nRF51 can capture the current time
by triggering a capture task. The time synchronisation mechanism then
uses this captured time. We configured the nRF51 such that the address
decoded event of the radio directly triggers a capture task of the timer.
This shortcut is faster and more constant than using interrupts to notify the
CPU which can then trigger the timer to capture the current time.

The timings in the time synchronisation mechanism are based on the 32bit
timer of the nRF51. We need the highest precision in order to have a reliable
time synchronisation and thus we register every clock tick with the timer.
This gives us 232

16Mhz ≈ 268s, i.e., more than four minutes before the timer
does a wrap-around. The probability of a wrap-around occurring during a
round is low since Chaos is aimed at having a low duty cycle. However, if the
wrap-around occurs during a slot, this will only affect that particular slot.
The node misses its deadline but resynchronises on the following received
packet.

Transmission Sequence

The time between the transmission start command and the time-stamping
of a packet should be deterministic to ensure accurate time synchronisation.

23

Before the radio of the nRF51 can transmit or receive a packet over the air,
it needs to go through a ramp-up cycle. In the ramp-up cycle, the radio
tunes into the specific frequency of the channel used for the communication.
Preliminary experiments have shown that the time to ramp-up the radio is
held constant by the nRF51. After the ramp-up, the radio sets an event
register to notify that the radio is ready for transmission. An interrupt
could then notify the CPU to handle this event and start the actual trans-
mission. This processing delay can be variable due to interrupt priorities
and the current state of the CPU. We can not account for variable delays
that occur after we started a transmission. We overcome this by creating a
shortcut between the ramp-up cycle and the start of a transmission by the
radio. This ensures that there is always a fixed delay between triggering
a transmission and time-stamping the on-air packet. Since the complete
transmission sequence from the start to end is now deterministic, we can
account for these delays and ensure accurate time synchronisation.

4.2.2 Busy Waiting

The synchronisation control of Chaos BLE incorporates a waiting loop to
compensate for the variable processing delays (see Figure 4.4). We show a
more detailed view of the busy waiting method in Figure 4.5. The waiting
loop is divided into two phases in order to have a high granularity of timing
control. The first phase is the wait loop which is implemented by a while()
loop. This loop compares the current time with the goal start time for
sending a packet. If the current time approaches the goal time closely it
escapes the while() loop. However, the loop alone is too coarse to achieve
high precision. The comparison and the loop itself cost instructions and
thus clock ticks. This can result into overshoots and therefore decreased
precision.
To compensate for the overshoot, we check how much the overshoot is and

we execute a number of NOPs afterwards such that the exact deadline can
be met. Adding NOPs during the execution of the source code introduces
extra delays. Hence, we put a maximum number of NOPs in the source
code. The unnecessary NOPs are skipped by adding the required number
of NOPs to the program counter. Chaos directly triggers the transmission
sequence after escaping the fine grained waiting loop.

The transition from the first waiting phase to the second waiting phase
happens as soon as the pre-deadline is met. Equation (4.2) shows how the
mechanism sets the pre-deadline at a specific time before the actual deadline
for the start of the transmission sequence. There are three delays that we
considere: the calculation time of a jump (i), the jump execution time (ii),
and the time a no operations instruction costs (iii).

24

Coarse
grained
waiting

Fine
grained
waitingTcurrent ≥ Tpre-deadline

Tcurrent < Tpre-deadline Tcurrent < Tdeadline

Tx

Tcurrent ≥ Tdeadline

Wait Loop NOPs

Figure 4.5: Schematic view of the two-phased waiting loop. The
coarse grain waiting is done with a while() loop, the fine grained waiting
is done by executing a number of NOPs.

Tpre−deadline = Tdeadline − 2×NOPmax − Tjump−calculation − Tjump−execution
(4.2)

Calculating the amount of NOPs the fine grained waiting loop requires,
costs a fixed time: Tjump−calculation. The execution of a jump by adding a
value to the program counter costs: Tjump−execution. The pre-deadline is set
with some room for small overshoots. The maximum overshoot is mostly
determined by the maximum number of NOPs placed in the source code:
NOPmax. A NOP instruction in the ARM architecture takes two clock cycles
and thus we multiply it by two.

4.3 Evaluation

We perform the evaluation of the Chaos BLE primitive in four parts. First
we evaluate the capture effect on Bluetooth Low Energy, then we evalu-
ate the capture effect performance for multiple synchronous transmitters.
Thereafter we have a look at the synchronisation performance of Chaos
BLE. Finally, we do a complete evaluation of the performance of Chaos
BLE on a Bluetooth Low Energy testbed.

4.3.1 Capture Effect Characteristics

The capture effect allows receivers to correctly decode a packet while mul-
tiple transmitters concurrently send a packet. Chaos uses this to allow
concurrent transmissions while still being able to correctly receive a packet.
The important characteristics regarding the capture effect are the capture
threshold in dB’s and the maximum time window in which the capture ef-
fect can take place. The capture threshold is the required SNR between

25

the signal of interest and the interferers. The time window is the maximum
delay between concurrently transmitted packets.

Methodology

In order to determine the capture threshold, we use the setup and procedure
presented in Section 4.1.2. We first set a preset delay and then we perform
20 test runs. The test runs give us information about the measured SNR and
the packet reception ratio (PRR). To determine the lower bound for which
the capture effect does occur, we increase the SNR between the packets until
we reach a PRR of almost 1. We determine the lower bound by decreasing
the SNR until the PRR is almost 0. To increase or decrease the SNR we
adjust the transmission powers of transmitters and we change the distance
between the nodes.
We repeat this procedure for multiple preset delays to find the maximum

time window in which the capture effect can take place. The preset delays
define the time difference between the start of the interfering packet and
the signal of interest such that the stronger signal of interest comes in later.
We pick the first four delays to see how the capture effect on Bluetooth
Low Energy behaves when a stronger packet comes in during the preamble.
The capture effect on IEEE 802.15.4 radios does not occur when a stronger
packet comes in after the preamble and the packets will collide. We use
delays 5 and 6 to investigate what happens in such a situation on BLE.
Delays 7 to 9 can give us more insight on a situation in which the stronger
packet arrives during the transmission of the payload.

Results

Figure 4.6 shows the required SNR for capture against the preset delay
between the weaker and the stronger packet. The green bars in the graph
show for which SNR we achieve a packet reception ratio close to 1. The red
bars show at which SNR no packet can be correctly decoded by the receiver.
The grey area denotes the SNRs where both the correct reception of the
signal of interest or packet collisions can occur.

Finding 1. The capture threshold is more than 4dB higher for BLE than
for IEEE 802.15.4

The capture threshold for IEEE 802.15.4 compliant radios is ≈ 3dB [26].
The graph shows that when the packets come in at the exact same time (1),
the required SNR for a good reception is around 7dB. For larger delays the
capture threshold rises between 10 and 11 dB and packets will get lost if the
SNR is below 5dB.

26

1: Simultaneously

2: Half Preamble

3: 75% Preamble

4: End of Preamble

5: Half byte after Preamble

6: 1 byte after Preamble

7: After Address

8: Middle of Payload

9: 1 byte before CRC

0

5

10

15

20
S

N
R

(d
B

)
PRR > 0.9
PRR < 0.1

1 byte 4 bytes 1 byte 0 … 254 bytes 3 bytes

Preamble Payload CRCLength

1 2 3 4

Address

5 6 7 8 9

Figure 4.6: The required signal-to-noise ratio in order to receive a
packet in the presence of the capture effect vs the delay between
the weaker and stronger packet. The required threshold for capture in
BLE is 7dB while it is 3dB for IEEE 802.15.4.

Finding 2. The nRF51 radio allow message-in-message (MiM) capture.

We define the PHY-capture region for delays within the preamble (1− 4
in Figure 4.6). Thereafter we distinguish a second region (5 − 9). This re-
gion shows that the nRF51 allows MiM capture. With regular PHY-capture,
packets with a sufficient SNR that come in after the preamble will result in
a collision since the receiver is already locked to the first incoming packet.
In contrast, if the radio supports MiM-capture, it can disengage from an on-
going signal reception and engage to a newer stronger signal. The required
capture threshold for MiM-capture is higher than for PHY-capture and the
second region follows this behaviour [18]. The capture threshold is higher for
delay 9 which makes the stronger signal come in right before the CRC. The
radio can not always timely disengage from the weaker signal and engage to

27

the stronger signal. This results in the corruption of the CRC and thus a
higher threshold for the capture effect.
WiFi compliant radios allow MiM-capture [13] while IEEE 802.15.4 compli-
ant radios do not support it. The Bluetooth Core Specification [2] does not
specify MiM-capture capabilities. One explanation could be that this is a
side-effect of an nRF51 radio design choice but this is outside the scope of
this work.

4.3.2 Concurrent Transmissions

The tests in Section 4.3.1 give insight into the SNR threshold required for the
capture effect. However, in a typical Chaos round more than two nodes are
transmitting concurrently and this decreases the SNR. When the decreased
SNR falls below the capture threshold, this will result in packet loss and
this can affect the Chaos operation. We give some insight into the number
of concurrent transmitters for which packets can still be correctly decoded.

Methodology

We use the 15 node testbed described in Appendix A for this evaluation. The
nodes set their transmission power to +4dB in order to have a single-hop
network where all nodes are in connection range of each other. An initiator
sends out a packet and every node that correctly receives this packet can
then reply. We add some randomisation in order to vary the number of
nodes that concurrently send a packet back to the receiver. The initiator
finally checks if a packet was received correctly or if the packets collided and
calculates the PRR. We average the results of four runs with four different
initiators and 29109 data points.

Results

Figure 4.7 shows the results for BLE and compares it with a similar eval-
uation on a different testbed that was done for IEEE 802.15.4 compliant
nodes [12]. These measurements were averaged over four different receivers
and 16126 data points. We find that:

Finding 3. The PRR drops faster with more concurrent transmitters for
BLE than for IEEE 802.15.4.

The PRR for Bluetooth Low Energy drops rapidly for more concurrent
transmitters. From a PRR of 0.65 for two concurrent transmitters, to a PRR
of 0.08 for 8 concurrent transmitters. This is a very steep decline compared
to the behaviour of IEEE 802.15.4. Every extra synchronous transmitter de-
creases the SNR such that it is less likely that the required capture threshold
is met and therefore the perceived PRR drops. The number of concurrent

28

1 2 3 4 5 6 7 8 9
Number of synchronous transmitters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
a
ck

e
t

re
ce

p
ti

o
n
 r

a
te

IEEE 802.15.4
Bluetooth Low Energy

Figure 4.7: The PRR against the number of synchronous trans-
mitters in a BLE and IEEE 802.15.4 testbed. The probability of
receiving a packet drops faster with more transmitters for BLE than for
IEEE 802.15.4.

transmitters in a Chaos round needs to be restricted in order to have more
successful receptions. We propose a solution to this problem in Chapter 5.
Note that the inter-node distances are different and the maximum transmis-
sion powers are higher for the BLE measurements compared to the IEEE
802.15.4 measurements. This introduces some uncertainty about the com-
parison between the two different evaluations of BLE and IEEE 802.15.4.
However, Section 4.3.1 showed that the capture threshold for BLE is 4dB
higher than for IEEE 802.15.4. Future results in Section 4.3.4 will also
confirm the more harsh constraints for the capture effect and concurrent
transmitters on BLE.

4.3.3 Time Synchronisation Performance

Chaos relies on the capture effect to enable concurrent transmissions. The
transmitting nodes need to send the packets synchronously to allow the
receiving nodes to benefit from the capture effect. The basic operation of
Chaos takes place in rounds that consist of multiple slots (see Section 2.5).
In every slot, each node decides if it transmits or listens and hence, the
concurrent transmissions appear in consecutive slots during a Chaos round.
This means that accurate time synchronisation must be achieved during

29

Slot Deadline

Address Payload

Timestamp

Transmitter

Receiver

TxSD

Address Payload

Timestamp
RxSD

Figure 4.8: The difference between the timestamp and the actual
deadline. TxSD is the delay the transmitter causes, RxSD is the delay the
receiver observes.

each Chaos round and in each slot. The slot length is fixed and this gives
the time difference between two consecutive time-stamped packets. After
the nodes receive the first packet, they automatically have a deadline for
the following incoming or outgoing packet.
We showed in Section 4.3.1 that a smaller delay between two concurrently

transmitted packets results in a lower capture threshold. Hence, the nodes
must meet the deadline of each slot as close as possible to increase the
probability of capture. We evaluate the Chaos BLE time synchronisation
mechanisms in this section using the following methodology.

Methodology

In every slot, the nodes have a deadline at which they should timestamp
the incoming or outgoing packet. We compare the deadlines for each packet
with the actual time at which the corresponding packets were transmitted
or received (see Figure 4.8). The difference between the deadline and the
actual timestamp is the metric on which we evaluate the time synchron-
isation. We call this difference the timestamp difference and differentiate
between the time difference for the packet reception (reception timestamp
difference or RxSD) and transmission (transmission timestamp difference
or TxSD). The time difference is expressed in 16MHz clock ticks: the clock
frequency on which the Nordic Semiconductor nRF51822 operates.

We perform a test runs using six nodes that are all in communication
range of each other. An initiator transmits in the first two slots of a round
such that the other nodes can synchronise with the round. In the following
slots each node transmits in its appointed slot while the other nodes can
receive the packet. This helps us to answer the following questions:

30

• Can nodes keep in sync with the network during rounds?

• Is there a difference between the TxSD and RxSD?

• How accurate is the time-stamping mechanism?

• Does switching between receiving and transmitting affect the syn-
chronisation performance?

• How does clock drift affect the synchronisation?

First Attempt: an Offset Affecting Synchronisation

We perform a test run containing 30 rounds with 40 slots in each round.
Figure 4.9 shows the RxSD and TxSD for each slot during those 30 rounds.
The different coloured lines represent the different nodes. The TxSD is
constantly -1 across all nodes and during all slots and thus the lower graph
shows only one coloured line that overlaps the others. According to the TxSD
graph, the transmitting nodes send out the packets close to the deadline and
hence, these nodes achieve a very accurate time synchronisation.

The upper graph shows the RxSD of the receiving nodes. This is the time
difference the receiving nodes observe between the deadline of a slot and the
timestamp of an incoming packet. The behaviour of the RxSD is similar
in every node during each one of the 30 rounds. The RxSD takes on three
distinct values as we will show in Table 4.1. We observe that the nodes have
a RxSD of 0 clock ticks at the beginning of each round and thereafter the
RxSD of each receiving node is much larger.
While comparing the graph of the TxSD with the graph of the RxSD, we

find that there is a large difference between the TxSD that the transmitting
nodes measure and the RxSD that the receiving nodes measure. This means
that the transmitting node in a slot regards itself on time although the
receiving nodes measure a difference between the goal and the actual time-
stamp of an incoming packet. According to the receiving nodes, there is no
accurate time synchronisation even though the transmitting nodes believe
there is. Because of this difference, we do not achieve a consistently accurate
time synchronisation in the network and this will affect the performance of
Chaos BLE.

Analysis and Solution

Due to the scale of Figure 4.9, it only shows the time synchronisation per-
formance over the full test run. To pinpoint the cause of the difference
between the RxSD and the TxSD, we analyse the log files of the nodes. The
log files show a very specific RxSD and TxSD pattern. This pattern with
these particular values occurred in every round and in every slot which we

31

Figure 4.9: The RxSD and TxSD in 16 MHz clock ticks for multiple
rounds. The receiving nodes perceive a RxSD while the transmitting nodes
perceive a very small TxSD.

summarise in Table 4.1. The nodes that transmit in a particular slot meas-
ure a TxSD and the nodes that receive packets measure a RxSD.
Node 1 transmits in Slot X and observes a TxSD of 0 clock ticks. The other
nodes receive the packet from node 1 and they all observe a RxSD of 89
ticks.

In the following slot, node 2 transmits and the other nodes receive the
packet. Nodes 3 to 6 again observe a RxSD of 89 ticks while node 1 measures
a RxSD of 178 ticks. The slot thereafter shows that node 3 transmit with
a TxSD of 0 while node 1 and 4 to 6 have a RxSD of 89. We observe that
node 3, which transmitted in the previous slot, measures a RxSD of 178
ticks in the slot directly after its transmission. We account this doubling in
ticks to the deadline adjustment of the time synchronisation mechanism we
discussed in Section 4.1.3.
Due to this deadline adjustment on the receiver side, the next deadline

gets shifted 89 clock ticks later in time. However, this shift does not happen
at the transmitting node. This results in a RxSD of 178 ticks for the node
that transmitted in the previous slot.
We now have appointed the reason for the jump from 89 ticks to 178 ticks

to the deadline adjustment method of the time synchronisation. This still
does not explain the 89 tick difference between the RxSD and the TxSD.
We suspect we can find the reason for this offset in the internal architecture
of the radio. The time synchronisation mechanisms of Chaos BLE generate
time-stamps based on the address decoded event of the radio (see Sec-

32

Table 4.1: Measured RxSD and TxSD in ticks for an arbitrary set of
slots. Nodes adjust their next deadline based on the RxSD. This results on
a doubled RxSD for the previously transmitting node that did not adjusted
its deadline.

Slot X Slot X + 1 Slot X + 2 Slot X +3
TxSD RxSD TxSD RxSD TxSD RxSD TxSD RxSD

Node 1 0 - - 178 - 89 - 89
Node 2 - 89 0 - - 178 - 89
Node 3 - 89 - 89 0 - - 178
Node 4 - 89 - 89 - 89 0 -
Node 5 - 89 - 89 - 89 - 89
Node 6 - 89 - 89 - 89 - 89

tion 4.2.1). The radio most likely generates the address decoded event
before it starts transmitting the actual packet.
The logs show that the 89 ticks difference between the RxSD and TxSD is
constant. Our solution for this offset is to trick the transmitting node into
sending the packet 89 ticks earlier. Hence, we compensate for the delay that
the transmitting side of the radio hardware introduces.

Second Attempt: Validation of Offset Compensation Method

In order to validate the compensation method for the difference between
RxSD and TxSD, we perform another longer test run with the same 6 nodes.
Figure 4.10 shows the RxSD and the different colours denote the different
nodes. We have not included the TxSD since it shows the exact same be-
haviour as in Figure 4.9. The TxSD is constantly -1 for every node and in
every slot of the test run. We find that:

Finding 4. We achieve accurate time synchronisation on every node in
the network for many consecutive rounds and slots.

We observe that receiving nodes now have a smaller RxSD between -3 and
5 clock ticks. The RxSD is between these two boundaries for every node,
during every round and in each slot. Both the receiving nodes and the
transmitting nodes now measure a small RxSD and TxSD. This means that
the transmitting nodes meet the deadline of the slots and the receiving nodes
receive the packets when they expect them. Switching from transmission
to reception and vice-versa does not affect the RxSD or TxSD anymore.
The remaining RxSD can be accounted to variations between the clocks of
each node and multipath effects. The difference between the nodes is at a

33

Figure 4.10: The RxSD in 16 MHz clock ticks for multiple rounds
after timing adjustment in the transmitter. The RxSD of each node
is low and constant for consecutive rounds.

maximum of 8 clock ticks in the 16MHz clock and thus we achieve the time
synchronisation required for the capture effect.

Time Synchronisation without Deadline Adjustments

We used the time synchronisation mechanism with deadline adjustments in
the evaluations above. The timestamp of the last successfully received packet
determines the deadlines for the next slots. The receivers thus compensate
for small delays caused by multipath or clock drift. We described this at the
end of Section 4.1.3 and noted that this flexibility could cause that nodes,
which are multiple hops apart from each other, end up with very different
slot deadlines. Accordingly, in this section we evaluate the performance of
the time synchronisation mechanisms with rigid deadlines for each slot. We
perform a test run with six nodes, and we use rounds consisting of 100 slots
with a duration of 6ms. Figure 4.11 shows the RxSD during the test run
while the TxSD shows the same behaviour as in Figure 4.9. The different
colours in Figure 4.11 denote the nodes in the network. We find that:

Finding 5. Time synchronisation with rigid deadlines exposes the clock
drifts of the nodes.

In the beginning of each round, the nodes set their deadlines according to
the first transmitted packet of the initiator. The nodes do not adjust their
deadlines to the received packets during the consecutive slots in a round.
The rigid deadlines per slot are based on the slot length in clock ticks of
the 16MHz clock. However, different nodes have different clocks which will
all have a small deviation. The same slot length defined in clock ticks will
result in a different slot length in seconds for each node. The receiving nodes
expect a packet at the deadline but they receive the packet before or after

34

Figure 4.11: The RxSD in 16MHz clock ticks for multiple rounds
without adjustment of deadlines. The RxSD of each nodes drift away
from each other. They re-adjust at the beginning of each new round.

the deadline. The clock drift becomes more conspicuous over time since the
clocks drift further apart.
Figure 4.11 shows that the deviation between two nodes has a maximum

of 40 clock ticks per round of 0.6 seconds. The frequency tolerance for the
16 MHz crystal on which the clocks are based, is specified as ±40ppm [17].
For the time period of 0.6 seconds, a maximum deviation of 768 clock ticks
is tolerated and thus we can account these deviations to clock drift.

Discussion

We achieved a synchronisation between the nodes of less than 8 clock ticks
of 16MHz with the time synchronisation mechanism that adjusts its dead-
lines. The time synchronisation without deadline adjustments achieves a
synchronisation performance of 40 clock ticks or less. This results in an
accuracy between 0.5µs and 2.5µs. We showed in Figure 4.6 that a smaller
delay results in a lower threshold required for the capture effect. The cap-
ture threshold is 7dB when the packets arrive simultaneously and it is 10dB
if the stronger packet arrives within the 8µs of the preamble. While evaluat-
ing the overall Chaos BLE performance in Section 4.3.4, we will use the time
synchronisation with deadline adjustments due to its increased accuracy.

4.3.4 Chaos BLE Performance

In this section we first show the network behaviour of the nodes in the
network during a typical Chaos BLE round. Thereafter, we evaluate the
impact on the key performance indicators, reliability and latency for dif-
ferent parameters. We show how different network sizes and transmission
powers impact the performance. Finally, we show the impact of an interfered
channel on the Chaos performance.

35

Methodology

We evaluate the Chaos BLE performance on the 15 node Bluetooth Low
Energy testbed (see Appendix A). We use a Chaos application in which the
nodes look to find the maximum value in the network and run this applic-
ation for five minutes. A new Chaos round starts every two seconds and
each round stops after a maximum of 120 slots. The network is considered
static, i.e., nodes do not join or leave the network. At the beginning of a
round, each node prepares a packet with its own flag set and its node ID as
payload. The goal of a round is to make all nodes agree on the maximum
node ID.
The performance indicators on which we evaluate Chaos BLE are reli-

ability and latency. We define latency as the amount of slots it takes for
all nodes to find the maximum value. The last node that finds this max-
imum thus determines the latency. We define reliability as the percentage of
rounds during a run in which all the nodes complete and find the maximum
value. If only one node does not complete in a single round and we run 100
rounds, this results in a reliability of 99%. This stringent definition of reli-
ability is required since Chaos is designed for mission critical Cyber-Physical
Systems.

Network Activity

Figure 4.12a shows the activity of each node per slot during a typical Chaos
BLE round with 15 nodes. The different colours denote what the activity
of a node in a particular slot is. We distinguish three different receiving
activities: Rx delta, Rx no delta and Rx none. When a node correctly
receives a packet in a slot and this packet contains different information than
it has locally, we denote this with Rx delta. If the received information is
the same then we denote this slot with Rx no delta. Rx none represents a
collided packet or no packet reception at all. Additionally, we distinguish
two transmission activities: Tx and Timeout. Tx is the transmission of a
packet after a Rx delta in the previous slot. A timeout occurs when a node
has not received a packet for some slots due to collisions. The timeouts
prevent the Chaos round from terminating prematurely [12].
Node 1 is the initiator and starts the round by transmitting a packet in the

first slot. Almost every node receives this packet due to the dense testbed
setup. The nodes that receive the packet have learned new information and
hence reply with a packet containing their own information merged with the
new information. Many nodes transmit concurrently and this decreases the
probability of a correct reception in the receiving nodes.

Figure 4.12b shows the cumulative activity of all the nodes in the net-
work during this typical Chaos BLE round. It shows that the majority of

36

10 20 30 40 50 60 70 80 90
Slot

0

2

4

6

8

10

12

14

N
o
d
e
 I
D

Tx

Rx
delta

Rx
none

Rx no
delta

Timeout

(a) Activity of individual nodes.

0 10 20 30 40 50 60 70 80 90
Slot

0

2

4

6

8

10

12

14

C
o
u
n
t

Rx none

Rx no delta

Rx delta

Tx

Timeout

(b) Activity across all nodes.

Figure 4.12: Activity of the nodes in a typical Chaos BLE round on
the 15 node testbed

the nodes has the same activity in the same slot and this results in the steep
peaks around Slot 2, 4, 21, and between Slot 60 and 70. Due to the dense
setup of the testbed, the nodes receive the same packet and reply concur-
rently which causes collisions at the receiving nodes. A timeout restarts the
network operations which again causes many receiving nodes to reply in the
next slot, e.g., in Slot 21.
Moreover, we observe that towards the end of the round less nodes receive

new information which is denoted by Rx delta. The rate of new information
gradually decreases towards the end of a round. The nodes do not receive
new information after Slot 65 and thus the nodes have completed. Each
node retransmits the final answer five times to ensure that other nodes will
complete as well.

Impact of Network Size

We evaluate the Chaos BLE performance for different network sizes. We
use the 15 node testbed for this evaluation and use the first 4, the first 8 or
all 15 nodes. Figure 4.13 shows the reliability and latency for a five minute
test run with a Chaos round every two seconds. We find that:

Finding 6. Smaller networks perform better in terms of reliability and
latency.

The reliability is higher and the latency is lower for smaller networks. This
is expected since less nodes in a network means less information to exchange.

37

0

20

40

60

80

100
R

e
lia

b
ili

ty
 (

%
)

4 Nodes
8 Nodes
15 Nodes

(a) Reliability against network size
0

10

20

30

40

50

60

70

80

90

La
te

n
cy

 (
sl

o
ts

)

4 Nodes
8 Nodes
15 Nodes

(b) Latency against network size

Figure 4.13: Impact of network size. Smaller networks have a lower
latency as well as a higher reliability compared to larger networks.

The nodes find the final answer faster, hence the decreased latency. As
stated before, the reliability is defined as the percentage of rounds in which
all nodes complete. This means that if a single node does not complete, the
round is invalid. For smaller networks this means that there are less nodes
that can impair the reliability and hence, the performance is improved.

Impact of Transmission Power

Figure 4.14 shows the impact of the transmission power on the reliability
and latency of Chaos BLE in the 15 node testbed. The transmission power
of a node increases the connectivity between nodes and thus can result in
a lower average hop count and vice-versa. We calculate the reliability and
latency over three 5 minute test runs, in which a Chaos round starts every
3 seconds. We find that:

Finding 7. The transmission power has little impact on the reliability
and the latency appears to be independent from it.

The latency is variable but is on average 67 slots over the different trans-
mission powers. The reliability increases on average for higher transmission
powers. Differences exist between the runs and the reliability and latency
give the appearance that they are independent from the transmission power.
The Chaos IEEE 802.15.4 primitive benefits from spatial diversity and is
designed for a large number of nodes [12]. The small BLE testbed we use,
can not provide this. Additionally, the constraints for the capture effect are
harsher in BLE. We account the highly variable results in Figure 4.14 to the

38

-16 -12 -8 -4 0 4
Tx power (dBm)

50

55

60

65

70

75

80

85

90

95
R

e
lia

b
ili

ty
 (

%
)

(a) Reliability against
transmission power

-16 -12 -8 -4 0 4
Tx power (dBm)

30

40

50

60

70

80

90

La
te

n
cy

 (
sl

o
ts

)

(b) Latency against
transmission power

Figure 4.14: Impact of network properties.

combination of these two difficulties. In Chapter 5 we present our solution
to improve the performance of Chaos BLE and to make it less variable.

Impact of Channel Interference

Bluetooth Low Energy is a radio standard that is used on a larger scale
than IEEE 802.15.4. This increases the probability of interference by other
BLE devices. Therefore, we evaluate how channel interference impacts the
reliability and latency of Chaos BLE. We define three types of channels:

• Good: a channel without any major interferer.
• Medium: a channel on which three Bluetooth Low Energy nodes
transmit a constant carrier wave.
• Bad: a channel with BLE interference and WiFi downloading.

We perform the evaluation on the 15 node testbed with 5 minute runs
in which a Chaos round starts every two seconds. Figure 4.15a shows the
reliability and latency for the three different channels. We find that:

Finding 8. Channel Interference has a high impact on the Chaos BLE
performance.

The BLE constant carrier interference already impairs the reliability sub-
stantially. The rounds that are able to complete have a higher latency. Even
if one node is affected by the BLE interference and can not complete, this
results in a lower reliability due to our strict definition. During the test run
with BLE and WiFi interference, some nodes could not synchronise with the
network and therefore the rounds did not complete. This results in a reliab-
ility of 0%. We present our solution to the problem of channel interference
in Chapter 5.

39

0

20

40

60

80

100
R

e
lia

b
ili

ty
 (

%
)

No Interference
BLE Interference
BLE & WiFi Interference

(a) Reliability against channel quality
0

20

40

60

80

100

120

La
te

n
cy

 (
sl

o
ts

)

No Interference
BLE Interference

(b) Latency against channel quality

Figure 4.15: Impact of channel quality. Using a channel with interference
results in unsynchronised nodes which makes none of the rounds completing.

Discussion

We ported Chaos on the popular nRF51 Bluetooth Low Energy platform.
We characterised the capture effect on BLE and we achieved accurate time
synchronisation between nodes in a network. We evaluated Chaos BLE on a
BLE testbed. Chaos BLE achieves a reliability of 80% at an average latency
of 67 slots for 15 nodes.
Due to the dense setup of the testbed, the average hop count in the net-

work is low. Many nodes receive new information in the same slot and they
will all reply in the next slot. As shown in Section 4.3.2, the probability
of receiving a packet decreases rapidly as the number of concurrent trans-
mitters increases. This impairs the operations of Chaos BLE and leads to
a higher latency and a lower reliability. Moreover, we showed that channel
interference has a high negative impact on the Chaos BLE performance.
We exposed new challenges in this chapter regarding too many concurrent

transmitters and channel interference. In Chapter 5 we solve these challenges
and we improve the performance of Chaos BLE.

40

Chapter 5

Chaos Multichannel

We enabled the Chaos primitive on Bluetooth Low Energy in Chapter 4.
The evaluation of Chaos BLE showed that it does not accomplish perform-
ance that is comparable to the performance of the original Chaos networking
primitive. This degradation has two specific causes:

Problem 1. High density networks affect the Chaos BLE performance.

In a dense network with little multi-hop behaviour there are on average
too many concurrent transmitters. Section 4.3.2 shows that the packet re-
ception ratio (PRR) decreases rapidly with more concurrent transmitters.
The probability of the capture becomes less and this is not desirable for
the operations of Chaos. Therefore, the number of concurrent transmitters
needs to be decreased in order to have a better flow and to increase the
Chaos performance.

Problem 2. Channel interference impacts the Chaos BLE performance.

We showed in Figure 4.15 that channel interference negatively impacts
the overall Chaos BLE performance. We need to make Chaos BLE more
resilient against interference since real world scenarios with more devices are
likely to cause interference.

Solution. Use multiple channels for the operation of Chaos BLE.

We propose to make Chaos go multichannel during rounds in order to
limit the number of transmitters on a single channel. Additionally, Chaos
becomes less dependent on a single channel that may be interfered. We
explain the multichannel design in Section 5.1 and we show implementation
details in Section 5.2. We present the results in Section 5.3 and we discuss
our results in Section 5.4.

41

5.1 Design

Dense networks such as our deployed testbed (see Appendix A) can have
a clique-like topology: each node is in communication range of every other
node. During a Chaos round, this means that many nodes will learn new
information in a slot and then all reply in the next slot. The channel gets
congested and no packet can be correctly decoded by the few nodes that are
listening.
We could limit the number of concurrent transmissions by adopting a dif-

ferent transmission policy. The current transmission policy of Chaos makes
a node solely transmit if there is a difference between the received informa-
tion and the local information. A new policy could be to only allow a node
to transmit when this difference is larger than a certain threshold. However,
this could stall the network unnecessarily if nodes that have new information
do not spread this further. We require a different solution that does not limit
nodes from transmitting new information but that does limit the number
of concurrent transmitters. Therefore, we propose Chaos to go multichannel.

Section 4.3.4 shows that a higher reliability and a lower latency can be
achieved in smaller networks. We propose to divide the larger network into
sub-groups which then can benefit from the smaller size. Each group operates
on a different channel such that it does not interfere with the other groups.
However, the group composition should not be fixed during a round. Fixed
compositions result in nodes finding their local group’s answer but not the
global answer based on all nodes in the network. Hence, we need to create
group diversification such that the network can still operate in an all-to-all
way.

Each group operates on a different channel and this results in frequency
diversification. The network does not rely on a single channel for its op-
erations, thus one bad channel will have less impact. This makes Chaos
more resilient against interference on a single channel. We discuss Chaos
Multichannel in Section 5.1.1.
Whenever the chosen subset of channels contains one or more interfered

channels, this can still result in degraded performance. To overcome this, we
propose to vary the assigned channel of each group in every slot of a Chaos
round. Section 5.1.2 shows our solution that combines Chaos Multichannel
and channel hopping.

5.1.1 Chaos Multichannel

We show our design for Chaos Multichannel in this section. We first discuss
the basic operation, then we explain the group selection method and finally
we discuss the relation between BLE channels and groups.

42

H

G

B
I

A

J

C

F

E

D

(a) Slot 1: bootstrapping
with initiating node A

H

G

B
I

A

J

C

F

E

D

(b) Slot n: random group
selection

H

G

B
I

A

J

C

F

E

D

(c) Slot n + 1: another
random group selection

Figure 5.1: A topology overview for different slots with the Chaos
Multichannel primitive.

Basic Operation

Figure 5.1 shows the basic operation of Chaos Multichannel. All the nodes
in the network use a main channel for bootstrapping and synchronising
(see Figure 5.1a). The initiator starts a round and all other nodes listen for
a packet on this main channel. At the end of the slot, each node decides to
either stay on the main channel or join another group with an associated
channel (see Figure 5.1b). The nodes that all picked the same group operate
on the same associated channel, hence they can communicate with each
other.

The key insight to overcome the problem of nodes that solely find their
local group answer, is to make the decision of changing groups random. The
correlation between group compositions in consecutive slots will be low and
thus nodes can learn new information. The random decision happens at the
end of each slot until the round ends (see Figure 5.1c). Every node will
switch back to the main group at the end of a round in order to overhear
the start of a new round.

Group Selection

Dividing the network in smaller groups limits the number of possible con-
current transmitters and this benefits the PRR (see Section 4.3.2). The
selection of a group happens randomly such that the group compositions
are different in each slot. This allows nodes to learn new information in
each slot while nodes can also spread new information to other nodes. Fur-
thermore, the number of groups must be limited such that nodes do not
end up unaccompanied in a group. In order to optimise the performance
of Chaos Multichannel, the number of groups should be defined with the
network size and density in mind. However, in Section 5.3.3 we show that
the conservative approach of two multichannel groups already achieves a
significant improvement in performance.
A larger network requires more groups such that the number of group

members and thus concurrent transmitters is limited. In a large network

43

with a low density, the expected group sizes can be larger. Nodes may not
be in communication range of each other and hence, more nodes can use the
same channel and reside in the same group.

Channel Selection

Each group is associated with a single channel in the basic Chaos Multichan-
nel approach. Nodes that operate on the same channel, belong inherently to
the same group and vice versa. Theoretically, the groups could be associated
to channels that are adjacent to each other. However, wide-band interfer-
ence will interfere multiple channels and thus multiple groups. Accordingly,
we introduce a spacing between channels to avoid this.

chproposed = chmain + group ·∆ch (5.1)

ch = chproposed − chmax

⌊
chproposed

chmax

⌋
(5.2)

Equation (5.1) and Equation (5.2) show the relation between the group
and the BLE channel. The main channel on which the nodes bootstrap
and synchronise with the network is chmain. The channels that belong to
each group have a spacing between them and is denoted by ∆ch. Bluetooth
Low Energy is limited to 40 channels which is denoted by chmax . The group
number is in the range of [0 ... groupsmax − 1].

5.1.2 Chaos Multichannel with Channel Hopping

We showed in Section 4.3.4 that channel interference has a negative impact
on the performance of Chaos BLE. Chaos Multichannel can solve this prob-
lem by using multiple channels and thus increasing the frequency diversity.
However, if interference free channels were picked initially, this does not
guarantee that the channels will remain of good quality. An interferer can
come within range of the network or the channel could degrade over time
due to multipath fading [23]. A technique that is widely used to decrease
the probability of operating on a bad channel is channel hopping [24]. This
effectively decreases the duration for which the network operates on an in-
terfered channel. It requires the nodes in a network to be time synchronised
such that the nodes can all switch at the same time to a different channel.
We propose to incorporate channel hopping to Chaos Multichannel to in-

crease the frequency diversity even more. Instead of using a subset of the
Bluetooth Low Energy channels, our multichannel approach uses all 40 BLE
channels. Channel hopping limits the time for which a group operates on a
single channel and thus it decreases the probability of being affected by an
interfered channel [24].

44

A
B
C
D
E
F
G
H
I
J

Slots →

5
5
5
5
5
5
5
5
5
5

Node
6
11
16
16
11
6
6

16
16
11

7
17
12
17
7
7

12
17
12
17

18
18
8

13
13
18
13
18
13
8

14
19
14
9

14
19
19
9

13
9

39
34
4

34
4

39
4

39
34
39

…

Group 0 (BLE channel 8)8

13

18

Group 1 (BLE channel 13)

Group 2 (BLE channel 18)

Figure 5.2: Schematic slot layout for Chaos Multichannel with
Channel Hopping.
The channel depends on the chosen group and the current slot and round.

Basic Operation

We incorporate the same group selection procedure as described in Sec-
tion 5.1.1. In each slot, the nodes randomly decide in which group they will
communicate. The difference lays in the fact that the associated channels
of each group are not fixed. Equation (5.3) and Equation (5.2) describe the
relation between the groups and BLE channels.

chproposed = chmain + slot+ round+ group ·∆ch (5.3)

The associated channel is now time-dependent due to the incorporation
of the slot and round number. The channel hopping mechanism itself is
called blind channel hopping [24] and it uses all channels evenly. Figure 5.2
shows the schematic group and channel usage for a round. In the first slot,
all the nodes use group 0 that operates on BLE channel 5 for that slot and
round. In the next slot, all nodes randomly pick a group and switch to
the associated channel. Even though node A, F, and G stay in group 0,
they switch to another BLE channel since the slot number is changed. The
group and channel switching continues for the remaining slots in the round.
The nodes switch back to group 0 at the end of a round such that they can
overhear the initiator at the start of the next round.

Bootstrapping

Synchronising all the nodes in the network can take up a long time. The
node willing to join the network needs to listen for some time to pick up
a signal on the channel they are listening to. Our Chaos Multichannel

45

approach increases the probability for such a node to overhear a packet.
Chaos Multichannel uses multiple channels simultaneously in a slot, and
this can decrease the waiting time. When nodes receive a packet, they
will learn what the current round and slot numbers are. The nodes will
then know what the next hopping pattern is and thus can operate in the
consecutive slots and rounds.

5.2 Implementation
The previous section proposed the design of Chaos Multichannel. In this
section we present the algorithms behind this multichannel primitive. First
we show the Chaos Multichannel algorithm in Section 5.2.1. Thereafter we
do this for Chaos Multichannel with Channel Hopping in Section 5.2.2

5.2.1 Chaos Multichannel Algorithm

The nodes in a network running Chaos Multichannel need to decide inde-
pendently in which group they will operate during a slot. As we discussed in
the previous section, the nodes randomly decide to operate in a particular
group. We show in Algorithm 1 when a synchronised node chooses a group
and the associated channel.
At the beginning of each round (line 6), a node operates in the default

group and on the default channel (line 7 and 8) such that it can overhear
the initiator in the first Chaos slot (line 11). After the first slot, the node
picks a random group number out of the predefined set of groups in the
range of [0 - GroupMaximum] (line 12). The node uses the GroupToChannel
function to find the associated channel of the chosen group (line 13). The
DefaultChannel and ChannelSpacing are predefined variables such that every
node that chooses the same group, ends up on the same channel (line 2).
ChannelMaximum denotes the maximum number of channels which is 40 for
Bluetooth Low Energy.

The slot number increases at the end of every slot (line 14) until it reaches
the maximum number of slots (line 10). The random selection of a group and
channel happens after every slot until the round ends (line 16). The nodes
now wait until a new round starts in which they will run this algorithm as
well.

46

Algorithm 1 Chaos Multichannel Round
1: function GroupToChannel(group)
2: channel ← (DefaultChannel + group ∗ ChannelSpacing) mod
ChannelMaximum

3: return channel
4: end function
5:
6: round(): . Chaos round starting point
7: group ← DefaultGroup
8: channel ← DefaultChannel
9:

10: for slot ≤ slotMaximum do
11: ChaosSlot() . Transmission or reception
12: group ← RandomGroup . Range [0 - GroupMaximum]
13: channel ← GroupToChannel(group)
14: slot ← slot + 1
15: end for
16: end round

5.2.2 Chaos Multichannel with Channel Hopping Algorithm

Section 5.1.2 presented the Chaos Multichannel with Channel Hopping vari-
ant. Besides changing groups in a slot, the nodes will also change the asso-
ciated channels per slot. The nodes that operate in the same group, use a
different channel for every round and slot. We show in Algorithm 2 when
the nodes pick a group and change channels. The algorithm for the Chaos
Multichannel with Channel Hopping primitive is similar to Algorithm 1. We
highlight the main differences between the two algorithms.
At the beginning of a round, all the nodes operate in the default group

(line 9). However, the channel associated with this default group does now
also depend on the slot and round number (line 1). The default channel may
be interfered and therefore we change its associated channel every round and
slot (line 10). At the end of a slot, the nodes randomly pick a group (line
14) and switch to the associated channel (line 15). We use blind channel
hopping such that the nodes cycle evenly over all 40 BLE channels (line 2).
The associated channel wraps around when the proposed channel is higher
than the maximum number of channels.

47

Algorithm 2 Chaos Multichannel + Channel Hopping Round
1: function GroupToChannel(group, slot, round)

2:
channel← (DefaultChannel + round+ slot+
(group ∗ ChannelSpacing)) mod ChannelMaximum

3: return channel
4: end function
5:
6: round(): . Chaos round starting point
7: slot ← 1
8: round ← RoundNumber
9: group ← DefaultGroup

10: channel ← GroupToChannel(DefaultGroup, slot, round)
11:
12: for slot ≤ slotMaximum do
13: ChaosSlot() . Transmission or reception
14: group ← RandomGroup . Range [0 - GroupMaximum]
15: channel ← GroupToChannel(group, slot, round)
16: slot ← slot + 1
17: end for
18: end round

In this section we showed when each node randomly picks a group with
an associated channel. This associated channel depends in the case of the
channel hopping primitive not only on the group number, but also on the
current round and slot numbers. In Section 5.3 we evaluate the performance
of Chaos Multichannel and Chaos Multichannel with Channel Hopping and
we discuss these results in Section 5.4.

5.3 Evaluation
Section 5.3 structures the Chaos Multichannel evaluation into four parts.
First, we discuss the network behaviour of the nodes in the network during a
typical Chaos Multichannel round in Section 5.3.1. Thereafter, we evaluate
the impact of the transmission power on the performance in a 15 node
testbed in Section 5.3.2. Section 5.3.3 shows the impact of the group size
for Chaos Multichannel in a 15 and 25 node testbed. Finally we have a look
at the impact of interference on Chaos Multichannel and Chaos Multichannel
with Channel Hopping in Section 5.3.4.

5.3.1 Network Activity

Figure 5.3a shows the activity of each node during a typical Chaos Mul-
tichannel round on the 25 node testbed (see Appendix A). We run the

48

maximum aggregation application and try to find the maximum node id in
the network. The nodes operate with a transmission power of −8dBm while
using five groups with five associated channels. We have chosen the channels
such that they are free from substantial WiFi interference.
Node 1 initiates the round in the first slot and every node in the test-

bed receives the information. The nodes switch randomly to one of the five
channels in the next slot and transmit their merged information. Node 1
listens in Slot 2 because it transmitted in the previous one. In the Chaos
BLE single channel variant, the 24 concurrently replying nodes would over-
crowd the channel such that Node 1 can not correctly decode a packet. The
separation of the nodes into groups results in less concurrent transmitters
in a channel and hence, Node 1 receives a packet in Slot 2. Node 1 trans-
mits its merged information in Slot 3 and Node 3, 7, 15, 20, and 23 receive
the packet because they all have randomly chosen the same group. These
nodes transmit in the next slot and they randomly pick a different group.
The new information spreads through the network and through the different
groups. This behaviour continues for the consecutive slots until the nodes
have completed. The last node that learns new information is Node 18 in
Slot 38. This means that all nodes found the maximum node id and hence,
the latency for this round is 38 slots.

The cumulative activity in Figure 5.3b shows how the total network be-
haves during a round. Compared to the single channel approach in Fig-
ure 4.12b, the activity is more balanced across the nodes. There are only
two slots, Slot 1 and 2, in which most nodes have the same activity. In
Slot 1, all nodes except for the initiator receive new information and they
all transmit in Slot 2. The maximum number of timeouts in a slot is now
3 in a 25 node testbed compared to 7 concurrent timeouts in the 15 node
testbed (see Figure 4.12b). This means that the Chaos operation sustains
better and does not need to be restarted by a timeout in order to continue.

5.3.2 Impact of Transmission Power

We evaluate Chaos Multichannel on the 15 node testbed for different trans-
mission powers. Figure 5.4 shows a comparison between the single channel
Chaos variant and Chaos Multichannel for different group sizes. We cal-
culate the reliability and latency over three 5 minute test runs, in which a
Chaos round starts every 2 seconds. We find that:

Finding 9. Chaos Multichannel performs significantly better and more
constant than the single channel variant.

Figure 5.4a shows the reliability against the transmission power for dif-
ferent group sizes. Note that the y-axis ranges from 40% to 100%. The

49

10 20 30 40 50
Slot

0

5

10

15

20

25

N
o
d
e
 I
D

Tx

Rx
delta

Rx
none

Rx no
delta

Timeout

(a) Activity of individual nodes.

0 10 20 30 40 50
Slot

0

5

10

15

20

25

C
o
u
n
t

Rx none

Rx no delta

Rx delta

Tx

Timeout

(b) Activity across all nodes.

Figure 5.3: Activity of the nodes in a Chaos Multichannel round.

reliability is higher and less dependent on the transmission power. We ob-
serve a reliability between 80% and 100% for Chaos Multichannel while the
single channel variant has a reliability between 40% and 85%.

Figure 5.4b presents the latency against the transmission power for differ-
ent group sizes. The latency is lower for each transmission power and it has
less variability across the different transmission powers. The average latency
is around 37 slots for different transmission powers and group sizes in the
case of Chaos Multichannel. This is 67 slots for the Chaos single channel
variant.

5.3.3 Impact of Group Size

In this section we further evaluate of the impact of the number of groups and
different group sizes. We do this in the 15 node and 25 node testbed setup
and we compare the different number of groups on reliability and latency.
The nodes all transmit with a transmission power of −8dBm and use chan-
nels free of substantial WiFi interference. We calculate the reliability and
latency over three 5 minute test runs, in which a Chaos round starts every
2 seconds. We find that:

Finding 10. Increasing the number of groups results in a higher reliabil-
ity in the 15 node testbed, while the 25 node testbed has an optimal reliability
at 4 to 6 groups.

Figure 5.5a shows us the reliability agains the number of multichannel

50

-16 -12 -8 -4 0 4
Tx power (dBm)

40

50

60

70

80

90

100

R
e
lia

b
ili

ty
 (

%
)

Single

Multi (2 groups)

Multi (3 groups)

Multi (4 groups)

Multi (5 groups)

(a) Reliability against
transmission power

-16 -12 -8 -4 0 4
Tx power (dBm)

0

20

40

60

80

100

120

140

160

La
te

n
cy

 (
sl

o
ts

)

Single

Multi (2 groups)

Multi (3 groups)

Multi (4 groups)

Multi (5 groups)

(b) Latency against
transmission power

Figure 5.4: Impact of the transmission power for different Chaos
Multichannel group sizes in a 15 node testbed.

groups. Note that the y-axis ranges from 60% to 100%. We observe that
the reliability of the single channel variant is on average 85%, while the
introduction of Chaos Multichannel increases the reliability above 98% for
2, 3, 4 and 5 multichannel groups.
The reliability of Chaos Multichannel in the 25 node testbed does not

solely increase with an increasing number of groups. Less than 4 groups
results in more nodes on average per group and thus too many concurrent
transmitters. More than 6 groups results in too little nodes on average per
group and hence this results in nodes that can not complete the round.
Hence, the reliability is optimal at 4 to 6 multichannel groups and Chaos
Multichannel achieves a reliability higher than 98.5% for these group sizes.
Figure 5.5b presents the latency against the number of multichannel groups.
We find that:

Finding 11. Increasing the number of groups results in lower latencies
in both testbeds.

The latency drops drastically when we introduce Chaos Multichannel with
two groups in the 15 node testbed. Adding more groups decreases the latency
further but it stabilises around 30 slots. In the case of the 25 node testbed,
we observe that the latency decreases for each added group. The latency
stabilises with more than 6 groups and settles around 38 slots.
If we look at both the reliability and latency for the two testbeds we find

that the 15 node testbed has the best overall performance for 5 multichannel

51

1 2 3 4 5 6 7 8
of Multichannel Groups

60

65

70

75

80

85

90

95

100
R

e
lia

b
ili

ty
 (

%
)

15 Node Testbed
25 Node Testbed

(a) Reliability against number
of groups

1 2 3 4 5 6 7 8
of Multichannel Groups

0

10

20

30

40

50

60

70

La
te

n
cy

 (
sl

o
ts

)

15 Node Testbed
25 Node Testbed

(b) Latency against number
of groups

Figure 5.5: Impact of the number of groups in the 15 and 25 node
testbed. The 15 node testbed shows the best overall results for 5 mul-
tichannel groups, the 25 node testbed shows this for 6 groups.

groups. The 25 node testbed operates at best with 6 multichannel groups.
Hence, we conclude that the optimal group size with this density is between
4 and 7 nodes per group.

5.3.4 Impact of Channel Interference

Finally, we evaluate the impact of channel interference on the Chaos Mul-
tichannel primitive. We run the tests on the 25 node testbed for 5 minutes
with a Chaos round every two seconds. The nodes operate with a transmis-
sion power of −8dBm. Chaos Multichannel uses BLE channel 11 as the main
channel and channels 15, 19, 23, and 27 as the four sub-channels. Chaos
Multichannel with Channel Hopping uses all 40 available BLE channels. We
evaluate the Chaos Multichannel primitive in the presence of three types of
interference:

• Light: interference on 3 sub-channels by BLE nodes which are spread
out over the testbed.
• Medium: interference on all 5 channels by BLE nodes which are
spread out over the testbed.
• Heavy: interference on all 5 channels by BLE nodes which are placed
close to a single node.

BLE nodes generate the interference by transmitting a constant carrier onto
each one of the interfered channels. The heavy interference is more obstruct-
ive since the interferers are concentrated around one node, which will suffer
the most from the interference. A Chaos round can only complete when all
nodes in a network complete. We define the reliability such that a Chaos

52

round is only valid if all nodes have the information of every other node.
Hence, obstructing a single node impairs the overall performance of the net-
work. Figure 5.6 shows the results and we find that:

Finding 12. Light and medium interference have little impact on Chaos
Multichannel while heavy interference results in impaired performance.

Figure 5.6a shows the reliability and Figure 5.6b presents the latency
for six different situations. We use the Chaos Multichannel performance
from Section 5.3.3 as the base case with no interference. Light interference
results in a slightly lower reliability and a slightly higher latency for Chaos
Multichannel. However, the latencies in completed rounds vary more under
light interference.
In the case of medium interference, the reliability is marginally lower while

the latencies in the completed rounds still have a larger variation. Chaos
Multichannel with Channel hopping has a comparable reliability under me-
dium interference, while the latencies of the rounds are more constant.
Heavy interference has a significant impact on the performance of Chaos

Multichannel. The obstructed node can not synchronise with the network
and can not contribute to the maximum aggregation application. This res-
ults in a reliability of 0% and thus there are no completed rounds. Chaos
Multichannel with Channel Hopping attenuates the impact of the heavy in-
terference. Up to 50% of the rounds can complete with a latency that is
comparable to Chaos Multichannel without interference. The reliability is
lower due to the fact that nodes under interference can lose synchronisation
with the network. The nodes need to listen for some time to resynchronise
again and this can take some rounds in which the network can not complete
the maximum aggregation.

53

0

20

40

60

80

100

R
e
lia

b
ili

ty
 (

%
)

MC - No Interference
MC - Light Interference
MC - Medium Interference
MC - Heavy Interference
MC+CH - Medium Interference
MC+CH - Heavy Interference

(a) Chaos Multichannel reliability
under interference

0

10

20

30

40

50

60

La
te

n
cy

 (
sl

o
ts

)

MC - No Interference
MC - Light Interference
MC - Medium Interference
MC - Heavy Interference
MC+CH - Medium Interference
MC+CH - Heavy Interference

(b) Chaos Multichannel latency
under interference

Figure 5.6: Impact of channel interference on Chaos Multichannel.

5.4 Discussion
The performance of Chaos BLE that we showed in Section 4.3.4 has room
for improvement. Therefore, we proposed a solution that enables Chaos
BLE on multiple parallel channels. By dividing the network into smaller
groups, we limit the number of concurrent transmitters and we can increase
the average PRR. Chaos Multichannel makes each node randomly pick
one of the channels in every slot such that the group compositions change
constantly. We added channel hopping in order to increase the frequency
diversity even further and to suffer less from channel interference.

The evaluation shows that Chaos Multichannel outperforms the single
channel variant in terms of reliability and latency. While running Chaos
Multichannel on the 25 node testbed, we observe that the network finds a
consensus within 38 slots. It costs the single channel variant 67 slots to find
a consensus between 15 nodes.
We show that Chaos Multichannel is more resilient against interference

due to the increased channel diversity. However, Chaos Multichannel can
not operate under heavy interference. Adding channel hopping to Chaos
Multichannel ensures that almost 50% of the rounds can complete at a
latency of 40 slots.

54

Chapter 6

Future Work

In this section we propose future work regarding Chaos Multichannel and
Chaos Multichannel with Channel Hopping. We suggest a way to make
Chaos Multichannel aware of the density of the network in Section 6.1.
Section 6.2 discusses the possibility of making the channel hopping adaptive.

6.1 Density Detection

The number of groups in Chaos Multichannel currently must be set with the
network properties in mind. However, in a real world situation, the topo-
logy may changes due to mobility of the nodes and hence, a fixed parameter
setting would not be optimal. Furthermore, density is not homogenous in
most WSN deployments and depends on the location in the network. Chaos
Multichannel can be adapted to support a variable number of groups.

The density can be detected in two ways: by the use of statistics during
Chaos rounds or with a maintenance round once every few rounds. With the
first method, each node keeps statistics of the number of different transmit-
ters it received packets from in one hop. However, this can take some rounds
before the nodes have an accurate view on the density. The advantage is
that the information can be obtained without extra overhead.
The maintenance round method gives every node in the network an ap-

pointed slot in which they can transmit. The nodes that receive the packet
correctly can add the transmitting node to their neighbour list and thus
detect the local density. A disadvantage is that this method adds overhead
and that the maintenance round should be scheduled regularly to have an
accurate density detection.
Subsequently, the information from the density detection mechanism can

help to make a decision on the maximum number of groups in the network.
This maximum could be set to the same value for each node in the network
or variable according to the node density. Figure 6.1 shows what a topology

55

1

G

M I

7

J

C

2

3

D
X

N

Y

A

B

R

T
4

5

Z

K

E

F
L Q

H

O

V

U

W

P

S

Figure 6.1: Topology overview for Chaos Multichannel with differ-
ent group sizes.
Nodes that are in a denser part of the network should have more group
diversity than nodes in a less denser part of the network.

overview looks like when density detection is added. The nodes in the denser
areas have set their maximum number of groups higher such that there is
more group diversity in a small area. The nodes in the middle have a low
density and will use only one or two groups in order not to lose connectivity
with the network.

6.2 Adaptive Channel Hopping
The current Chaos Multichannel with Channel Hopping implementation
makes use of blind hopping. This means that all 40 BLE are evenly used
to decrease the probability of operating on an interfered channel. How-
ever, systematically interfered channels should be avoided. Watteyne et al.
show that whitelisting of channels on a link-by-link basis improves the es-
timated transmission count and network churn [24]. Since Chaos does not
do any routing, whitelisting on a link-by-link basis is not suitable. Mean-
while, whitelisting locally is relevant because channel interference could also
appear in a part of the network.
Bad channels can be detected by keeping statistics during the Chaos

rounds. Channels that have a far worse packet reception ratio (PRR) com-
pared to other channels should be blacklisted. A moving average could
account for the temporal properties of the interference.
After the good and bad channels are found, the nodes in the network must

agree onto which channels they will operate in the consecutive rounds. The
Chaos network can then use its own mechanisms to make all nodes agree on
the channels that should be used.

56

Chapter 7

Conclusions

The Chaos communication primitive does not follow the traditional ap-
proach on networking. It leverages the capture effect and concurrent trans-
missions to enable all-to-all communication and in-network processing in
an efficient and reliable way. Chaos is currently implemented on the IEEE
802.15.4 radio standard. This radio standard is used more in science and
industry, but less in everyday devices. We want to bring Chaos to the real
world and therefore, evaluate the feasibility of Chaos on Bluetooth Low
Energy
We did this by first characterising one of the foundations of Chaos, the

capture effect on BLE. We ported Chaos onto a commonly used Bluetooth
Low Energy platform and we achieved a time synchronisation of less than
2.5µs. This enables concurrent transmissions and increases the probability of
capture. We build a Bluetooth Low Energy testbed and we evaluated Chaos
BLE on it. A reliability of 80% at a 67 slot latency was achieved for 15 nodes.
This is rather weak compared to the original Chaos implementation and we
account this due to the fact that the capture characteristics are much harsher
on BLE than on the IEEE 802.15.4 standard. Channel interference and too
many concurrent transmitters result in impaired Chaos BLE performance
on our testbed.

We proposed a multichannel approach for Chaos in order to divide the
network into smaller groups and limit the number of concurrent transmitters.
Our multichannel primitive increases the frequency diversity and lowers the
probability of operating solely on an interfered channel. Furthermore, we
added channel hopping to our Chaos Multichannel primitive to improve
resilience against interference. The evaluation of Chaos Multichannel shows
significant improvements in terms of reliability and latency. We achieve a
reliability over 98% with a latency of 38 slots on a 25 node testbed. Future
work regarding this thesis is to make the channel hopping adaptive and make
Chaos Multichannel aware of the network density to improve performance.

57

58

Appendix A

Bluetooth LE Testbed

In order to perform the evaluation of Chaos BLE, we setup a testbed with
25 Bluetooth Low Energy (BLE) compatible nodes. We discuss the testbed
in this section, which is structured as follows. Appendix A.1 discusses the
used hardware, Appendix A.2 the software, and Appendix A.3 presents the
setup of the testbed.

A.1 Hardware

The hardware we use for this testbed, are the Bluetooth Low Energy com-
pliant RedBearLabs BLE Nano boards. The BLE SoC is a Nordic Semi-
conductor nRF51822 as we described in Section 4.1.1. The RedBearLabs
BLE Nano boards contain an extra ARM Cortex M4 that makes the nodes
programmable through USB. The ARM CMSIS-DAP protocol allows us to
copy a binary file to the USB board which is flashed automatically on the
nRF51. Each node is connected to a central server through USB extension

Figure A.1: Closeup of the Bluetooth Low Energy hardware that
we use for the evaluation of Chaos BLE.

59

cords and USB hubs. The USB connection powers the devices and is used
to log data onto the central server.

A.2 Software
The nodes are connected to a central server running Xubuntu 14.04. The
server is responsible for uploading the binaries to the nodes and logging the
data. We made it possible in the server that nodes are always connected
to a specific device name by using the USB serialnumber. This allows us
to program the binary files for particular nodes always onto the same node.
Moreover, the UART must be connected to the same serial adapter to con-
nect the log files to a specific node. We use the USB serialnumbers for this
as well.
After compiling the Chaos BLE code to a binary, it needs to be modified

before the server can upload it to a specific node. The binary does not yet
incorporate a Node ID and hence, we make 15 or 25 different binaries with
the specific node IDs using tos-set-symbols. This open-source software
replaces a default value in the binary with the Node ID.
While performing a Chaos test run on the testbed, we gather logs through

the UART connection between the nodes and the server. The central server
saves these logs on its hard drive and we process them after the run, using
a Python script. This script parses the logs and plots various graphs such
as statistics on the time synchronisation and a timeline of the finished run.

A.3 Setup
Figure A.2 shows the schematic layout of our testbed. It is deployed in a
small office space and nodes are placed on the wall, windows, and table. We
use the nodes that are coloured red for the 15 node testbed setup. We add
the 10 remaining black coloured nodes for the 25 node testbed.

60

12

13

11

10

9

21

19

18

23
14

2220
24 16

15

25

17

8 7 2 3

5
4

6

1

3
m

et
er

4 meter

6 meter

Figure A.2: Schematic layout of the Bluetooth Low Energy testbed.
The red nodes constitute the 15 node testbed. The 25 node testbed combines
the red nodes with the black nodes.

61

62

Appendix B

Glossary

List of Acronyms
BLE Bluetooth Low Energy

CPS Cyber-Physical Systems

DSSS direct-sequence spread spectrum

FHSS frequency-hopping spread spectrum

GFSK Gaussian frequency-shift keying

IEEE Institute of Electrical and Electronics Engineers

LWB Low-Power Wireless Bus

MiM message-in-message

NOPs no operations

nRF51 Nordic Semiconductor nRF51822

O-QPSK off-set quadrature phase-shift keying

PRR packet reception ratio

RSSI received signal strength indicator

SFD start of frame delimiter

SNR signal-to-noise ratio

SoC System on a Chip

TI Texas Instruments

WSN wireless sensor networks

63

64

Bibliography

[1] Beshr Al Nahas, Simon Duquennoy, Venkatraman Iyer, and Thiemo Voigt.
Low-power listening goes multi-channel. In Distributed Computing in Sensor
Systems (DCOSS), 2014 IEEE International Conference on, pages 2–9. IEEE,
2014.

[2] Bluetooth SIG. Bluetooth core specification version 4.0. Specification of the
Bluetooth System, 2010.

[3] Behnam Dezfouli, Marjan Radi, Kamin Whitehouse, Shukor Abd Razak, and
Hwee-Pink Tan. Cama: Efficient modeling of the capture effect for low-power
wireless networks. ACM Trans. Sen. Netw., 11(1):20:1–20:43, Aug. 2014.

[4] Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike Liang,
and Andreas Terzis. Design and evaluation of a versatile and efficient receiver-
initiated link layer for low-power wireless. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, pages 1–14. ACM, 2010.

[5] Prabal Dutta, Razvan Musaloiu-e, Ion Stoica, and Andreas Terzis. Wireless
ack collisions not considered harmful. In Proceedings of the 7th ACM Workshop
on Hot Topics in Networks (HotNets-VII), pages 1–6, 2008.

[6] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Low-
power wireless bus. In Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems, pages 1–14. ACM, 2012.

[7] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network flooding
and time synchronization with glossy. In Information Processing in Sensor
Networks (IPSN), 2011 10th International Conference on, pages 73–84, April
2011.

[8] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evaluation
of bluetooth low energy: An emerging low-power wireless technology. Sensors,
12(9):11734–11753, 2012.

[9] Zonglin Guo, Ian G Harris, Lih-feng Tsaur, and Xianbo Chen. An on-demand
scatternet formation and multi-hop routing protocol for ble-based wireless
sensor networks. In Wireless Communications and Networking Conference
(WCNC), 2015 IEEE, pages 1590–1595. IEEE, 2015.

[10] Naresh Gupta. Inside Bluetooth low energy. Artech house, Norwood, MA,
USA, 2013.

[11] Youngmin Kim, Hyojeong Shin, and Hojung Cha. Y-mac: An energy-efficient
multi-channel mac protocol for dense wireless sensor networks. In Proceed-
ings of the 7th international conference on Information processing in sensor
networks, pages 53–63. IEEE Computer Society, 2008.

65

[12] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. Chaos: Versatile
and efficient all-to-all data sharing and in-network processing at scale. In Pro-
ceedings of the 11th ACM Conference on Embedded Networked Sensor Systems,
page 1. ACM, 2013.

[13] Joonsoo Lee, Young-myoung Kang, Suchul Lee, and Chong-kwon Kim. Op-
portunities of mim capture in ieee 802.11 wlans: analytic study. In Proceedings
of the 5th International Conference on Ubiquitous Information Management
and Communication, page 66. ACM, 2011.

[14] K. Leentvaar and J. Flint. The capture effect in fm receivers. Communications,
IEEE Transactions on, 24(5):531–539, May 1976.

[15] Jiun-Ren Lin, Timothy Talty, and Ozan Tonguz. On the potential of bluetooth
low energy technology for vehicular applications. Communications Magazine,
IEEE, 53(1):267–275, 2015.

[16] Jiakang Lu and K. Whitehouse. Flash flooding: Exploiting the capture effect
for rapid flooding in wireless sensor networks. In INFOCOM 2009, IEEE,
pages 2491–2499, April 2009.

[17] Nordic Semiconductor. nrf51822 product specification 3.1, 2014.
[18] Naveen Santhapuri, Justin Manweiler, Souvik Sen, Romit Roy Choudhury,

Srihari Nelakuduti, and Kamesh Munagala. Message in message (mim): A case
for reordering transmissions in wireless networks. In Seventh ACM Workshop
on Hot Topics in Networks, 2008.

[19] Wilson So, Jean Walrand, Jeonghoon Mo, et al. Mcmac: A parallel rendezvous
multi-channel mac protocol. In Wireless Communications and Networking
Conference, 2007. WCNC 2007. IEEE, pages 334–339. IEEE, 2007.

[20] Andrew Tinka, Thomas Watteyne, and Kris Pister. A decentralized scheduling
algorithm for time synchronized channel hopping. In Ad Hoc Networks, pages
201–216. Springer, 2010.

[21] Joost Van Velzen and Marco Zuniga. Let’s collide to localize: Achieving indoor
localization with packet collisions. In Pervasive Computing and Communic-
ations Workshops (PERCOM Workshops), 2013 IEEE International Confer-
ence on, pages 336–339. IEEE, 2013.

[22] Yin Wang, Yuan He, Xufei Mao, Yunhao Liu, and Xiang-Yang Li. Exploiting
constructive interference for scalable flooding in wireless networks. Network-
ing, IEEE/ACM Transactions on, 21(6):1880–1889, Dec 2013.

[23] Thomas Watteyne, Steven Lanzisera, Ankur Mehta, and Kristofer SJ Pister.
Mitigating multipath fading through channel hopping in wireless sensor net-
works. In Communications (ICC), 2010 IEEE International Conference on,
pages 1–5. IEEE, 2010.

[24] Thomas Watteyne, Ankur Mehta, and Kris Pister. Reliability through fre-
quency diversity: why channel hopping makes sense. In Proceedings of the 6th
ACM symposium on Performance evaluation of wireless ad hoc, sensor, and
ubiquitous networks, pages 116–123. ACM, 2009.

[25] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. Exploiting
the capture effect for collision detection and recovery. In Embedded Networked
Sensors, 2005. EmNetS-II. The Second IEEE Workshop on, pages 45–52, May
2005.

[26] Matthias Wilhelm, Vincent Lenders, and Jens B Schmitt. On the reception
of concurrent transmissions in wireless sensor networks. Wireless Communic-
ations, IEEE Transactions on, 13(12):6756–6767, 2014.

66

[27] Dingwen Yuan and Matthias Hollick. Let’s talk together: Understanding con-
current transmission in wireless sensor networks. In Local Computer Networks
(LCN), 2013 IEEE 38th Conference on, pages 219–227. IEEE, 2013.

[28] Dingwen Yuan, Michael Riecker, and Matthias Hollick. Making âĂŸ-
glossyâĂŹnetworks sparkle: Exploiting concurrent transmissions for energy
efficient, reliable, ultra-low latency communication in wireless control net-
works. In Wireless Sensor Networks, pages 133–149. Springer, 2014.

67

	Preface
	Introduction
	Limitations on Traditional Networking
	A new Approach: Chaos
	Bringing Chaos from the Lab to the Real World
	Challenges
	Thesis Contributions
	Thesis Organization
	Background
	Networking Stacks in Low-Power Wireless
	Bluetooth Low Energy
	Concurrent Transmissions
	Capture Effect
	Constructive Interference

	Glossy: Time Synchronised Network Flooding
	The Chaos Networking Primitive
	Related Work
	Communication Primitives using Concurrent Transmissions
	Bluetooth LE Based Sensor Networks
	Parallel Channels

	Enabling Chaos on Bluetooth LE
	Design
	Hardware Platform and Operating System
	Characterising the Capture Effect on Bluetooth LE
	Time Synchronisation

	Implementation
	nRF51 Shortcuts
	Busy Waiting

	Evaluation
	Capture Effect Characteristics
	Concurrent Transmissions
	Time Synchronisation Performance
	Chaos BLE Performance

	Chaos Multichannel
	Design
	Chaos Multichannel
	Chaos Multichannel with Channel Hopping

	Implementation
	Chaos Multichannel Algorithm
	Chaos Multichannel with Channel Hopping Algorithm

	Evaluation
	Network Activity
	Impact of Transmission Power
	Impact of Group Size
	Impact of Channel Interference

	Discussion

	Future Work
	Density Detection
	Adaptive Channel Hopping

	Conclusions
	Bluetooth LE Testbed
	Hardware
	Software
	Setup
	Glossary
	List of Acronyms

