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S U M M A R Y 

Magnetotelluric (MT) data inversion seeks to recover resistivity models of the subsurface. 
Solving the inversion problem is a non-trivial task, as multiple plausible solutions can be 
recovered due to the nonlinearity of the problem. To reduce this nonlinearity, we propose a 
data-driven approach where a 1-D cumulative resistance model is estimated from MT data via 
a direct data transformation. We define the cumulative representation of layered models as the 
weighted sum of layer thickness divided by resistivity from surface to any depth level, which 

is the cumulative conductance. Its inverse, cumulative resistance, is directly related to the real 
part of the impedance computed from MT data. We train a neural network to transform the 
MT impedance into a resistance model. The corresponding 1-D resistivity model is obtained 

without a priori information. We validate our approach using synthetic and real data, opening 

the discussion for future developments of this new perspective. 

Key words: North America; Magnetotellurics; Inverse Theory; Neural networks, fuzzy logic. 
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 I N T RO D U C T I O N  

he magnetotelluric method (MT) is a passive geophysical tech-
ique based on the measurement of the components of the electric
nd magnetic fields generated by an electromagnetic wave that trav-
ls through the structure of the Earth, and on the processing and
nversion of these data to retrieve the resistivity distribution in the
ubsurface. For a layered Earth, Tikhonov ( 1965 ) derived the fun-
amentals of MT inversion theory by showing how the frequency
ependence of the surface impedance determines the underlying
onductivity structure. Afterwards, the theoretical uniqueness of
T 1-D inversion was demonstrated by Bailey ( 1970 ) for mea-

urements in a continuum frequency space where no errors are
resent in the data. However, in reality, MT data measurements
an be inaccurate and incomplete, which turns the inversion prob-
em ill-posed and highly non-unique. To tackle this problem, two

ain approaches were proposed. The first was designed to retrieve
he resistivity model directly from the data by using a data trans-
orm (Niblett & Sayn-Wittgenstein 1960 ; Jones & Foster 1986 )
xploiting the concepts of apparent resistivity and skin depth to
rovide a rough, first-approximation 1-D model of the subsurface.
he second approach solved the inversion problem by an iterative

orward modelling process (Constable et al. 1987 ; Zhang & Paul-
on 1997 ; Grandis et al. 1999 ; Trainor-Guitton & Hoversten 2011 ;
ang et al. 2022 ; Rodriguez et al. 2023 ), which typically relies on
 priori constraints to reduce the solution space; fur ther more, these
C© The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
echniques can be susceptible to convergence issues, particularly in
he presence of noise or limited prior information. To address these
imitations, recent studies for other geophysical methods (Socco &
omina 2015 ; Socco et al. 2017 ; Florio 2018 ) have solved the in-
ersion problem by transforming the data directly into a cumulative
odel of the subsurface. 
Inspired by this idea, in this work, our objective is to create a
ethod for the direct transformation of MT data into a 1-D cumu-

ative resistance model of the subsurface. By transforming the 1-D
ayered resistivity model into a 1-D cumulative resistance model we
ncorporate the influence of overlying layers into the model of the
ubsurface, a concept that is closely related to the nature of the geo-
hysical measurements, which are inherently cumulative. We then
etrieve a relationship between the cumulative model and the data
n a fully data-driven approach without the need for concepts of ap-
arent resistivity or skin depth. Once this relationship is established
he MT data are transformed into a 1-D resistance model and an
nterval 1-D resistivity model is retrieved by applying the discrete
erivative of the equation used to create the cumulative resistance
odel. 
In this work we will focus on the 1-D case. Starting from MT

ata along with a cumulative 1-D resistance model, we established
 model-data relationship that was used to train a mapping neural
etwork to directly transform MT data into 1-D resistivity models.
fterwards, the trained network was used to directly transform un-

een synthetic and real MT data into cumulative resistance models
oyal Astronomical Society. This is an Open Access
https://creativecommons.org/licenses/by/4.0/), which
the original work is properly cited. 1
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Figure 1. Data and model matching for a given data point (a), frequency-depth pairs for all m data points and the mapping function � between data and model 
(b). the rescaled data in the resistance domain (c), the interval and true resistivity models (d). 
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and then into interval resistivity models, validating the approach for 
the direct transformation of MT data into 1-D resistivity models. 

2  M E T H O D  

To outline the method, we simulated synthetic MT data from a 1-D 

resistivity model (Fig. 1 d, blue) by using the forward modelling 
routine empymod provided by Werthmüller ( 2017 ). 

In the 1-D case of the MT method from one simulated horizontal 
component of the magnetic field transformed to the frequency do- 
main, for example Hy ( f ) , and the corresponding orthogonal electric 
field component, Ex ( f ) , we may obtain the plane wave impedance 
Zxy ( f ) as 

Zxy ( f ) = Ex ( f ) 

Hy ( f ) 
. (1) 

To relate the computed impedance data to the model of the sub- 
surface we used a cumulative model starting from a layered re- 
sistivity model, the concept of cumulative resistance R( z) is used 
and computed from the longitudinal conductance S( z) to arrive at a 
monotonically decreasing resistance model function of depth z. This 
cumulative formulation of the layered model allows a one-to-one 
correspondence with the impedance data. In contrast, the concept 
of apparent resistivity does not allow a unique mapping as a given 
apparent resistivity value may be located at multiple depths. The 
cumulative resistance, R( z) is given by 

R( z) = 1 

S( z) 
, (2) 

where 

S( z) =
n ∑ 

i= 1 

hi 

ρi 
+ ( z − zn ) 

ρi+ 1 
for zn < z < zn + 1 (3) 

with ρi being the resistivity of layer i , hi the thickness of layer i
and i = 1 , ..., N where N is the number of layers in the model. 

For each point in the simulated data, using the real component of 
the complex impedance � (Zxy ( fi ) ) and the resistance model R( z) , 
we search in the cumulative model for the point in depth at which 
� (Zxy ( fi ) ) is equal to the cumulative resistance R( z) as 

zi = arg 
z 

[
R( z) = � ( Zxy ( fi ))

]
(4) 

(Fig. 1 a), which required interpolating the resistance model to en- 
sure a mapping for all data points. This process associates each 
data frequency fi with a corresponding depth zi leading to m data–
model pairs ( fi , zi ) that define the mapping function � (Fig. 1 b) that 
directly rescales the MT data measured at a given frequency to its 
corresponding point in depth in the resistance model as ˆ z = � ( f ) , 
where ̂  z denotes the rescaled depth. 

If the mapping function � is known, it can be applied to the 
impedance data to rescale them into a cumulative resistance model 
by mapping the impedance values from the data domain ( f ) to the 

art/ggaf425_f1.eps
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Figure 2. Proposed architecture for our custom neural network model. 
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Table 1. Parameters of the training data set. 

Model parameters 
Number of layers: 4–10 
Resistivity range ( �m ): 1 × 10−1 – 5 × 103 

Thickness range (m): 5 × 102 –1 × 104 

Survey parameters 
Frequency band (Hz): 1 × 10−4 – 1 × 103 

Number of samples: 50–500 
Type of f spacing: Lin–Log 
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odel domain ( z) (Fig. 1 c). Once the data has been rescaled into a
esistance model the interval resistivity model is retrieved (Fig. 1 d)
y differentiating eq. ( 2 ) as 

i = hi 

1 
R( zi ) 

− 1 
R( zi−1 ) 

= zi −
∑ i−1 

j= 1 h j ∑ i 
j= 1 

h j 

ρ j 
− ∑ i−1 

j= 1 
h j 

ρ j 

. (5) 

he resistivity model retrieved from the discretization of the
escaled resistance model is referred to as Interval Resistivity Model
o differentiate it from the resistivity model used to simulate the MT
ata. 

To compute the � function from the data, we designed a custom
onvolutional–long short term memory (CNN-LSTM) neural net-
ork (Wei et al. 2021 ; Liao et al. 2022 ; Maiti & Chiluvuru 2024 )

rained to generalize the behaviour of the model–data relationship.
he rescaling process was defined as 

ˆ z = ˆ � 

(� (Zxy ( f )) , φ( f ) , f
)

with � (Zxy ( f )) = R( z) , (6) 

aking as input parameters the real part of the 1-D impedance data
 (Zxy ( f )) , the phase of the data φ( f ) and the frequency at which

he data were measured f and the output parameter was defined
o be the rescaled depth ˆ z . Although the mapping function � was
stablished using only the real component of the impedance data,
he network receives the full complex impedance, represented by
ts real and phase components, encoding the information present in
he data. ˆ � denotes the rescaling process performed by the neural
etwork. The general structure of the network is shown in Fig. 2 . 

Within the residual CNN block depicted in Fig. 2 each convolu-
ional block was designed to include padding to preserve the size
f the input features and a ReLU activation function was used for
ach residual CNN block. The results of the bidirectional LSTM and
ully connected layers were used without imposing further activation
unctions. For our custom CNN-LSTM network we implemented a
ustom weighted loss function and used Adam as optimizer. Our
oss function was defined as 

 =
√ ∑ m 

i= 1 wi ( yTrue i − yPred i )
2 ∑ m 

i= 1 wi 
, (7) 

here the weight wi is calculated based on the number of points per
ach decade in depth as 

i = 1 

nd( i) 
(8) 

ith n being the number of points in the current decade and d( i)
he decade corresponding to point i . 

For training and validation of the network, we generated a data set
f 20 000 random resistivity models; where the parameters of each
odel could vary randomly according to Table 1 ; for each resistivity
odel we defined a set of survey parameters that varied according to
able 1 and simulated the MT data using the aforementioned Python
outine. Subsequently, for each model-data pair, we recovered the
escaled depth ̂  z when � (Zxy ( f )) = R( z) . 

In the training phase, the data set was randomly divided into
wo subsets, the training set which contained 80 per cent of the
riginal 20 000 models and the validation set which contained the
emaining 20 per cent. The training phase took 12 hr for 819 epochs
sing an AMD EPYC 7742 CPU and a Nvidia A100 GPU, while
he rescaling of the validation data set using the trained network
ook 7.5 min with an AMD Ryzen 7 3800H CPU and a Nvidia RTX
060 GPU. 

 R E S U LT S  

.1 Synthetic MT data 

o assess the rescaling capabilities of the trained network for unseen
ata; we rescaled the MT data of the validation data set and retrieved
he interval resistivity model by applying eq. ( 5 ). To evaluate the
oodness of the results we computed the mean absolute percentage
rror (MAPE). We use it for the true and rescaled resistance models,
he true and retrieved interval resistivity models and the real com-
onent of the impedance data � ( Zxy ( f )) , referred to as measured
ata and the impedance data simulated using the retrieved interval
esistivity model. The MAPE error is defined as 

APE per cent = 1 

n 

n ∑ 

i 

| yTrue − yPred | 
yTrue 

· 100 per cent , (9) 

here yTrue corresponds to the true value and yPred corresponds to
he value retrieved from the method. 

For comparison with a 1-D inversion, we trained a second neural
etwork ( ̂  � ) using the architecture depicted in Fig. 2 to solve a
lassical inversion problem for MT data. This inverting network ˆ �

which results will be referred to as inverted ) was trained using the
ame 20 000 model data set giving as input parameters � (Zxy ( f )) ,
( f ) and f and setting as output parameters the resistivity model
 ρ, z) with a number of layers equal to the number of data points
 in each profile. Additionally, for comparison with known data-

riven inversions, we computed the Niblett–Bostick transformation
referred to as N-B ) and the updated version of Niblett–Bostick

art/ggaf425_f2.eps
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Figure 3. Rescaling, inversion results from the same network architecture and direct data transformation results for three synthetic MT data profiles randomly 
selected from the validation data set. 
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derived by Jones & Foster ( 1986 ) (referred to as Jones ) for the MT 

data in the validation data set. 
In Fig. 3 we present the comparison between the results re- 

trieved by our method (red), the results retrieved by the invert- 
ing network ˆ θ (pink) and the true model (blue) as follows; the 
first row compares the rescaled resistance model (red), the resis- 
tance model computed from the inverted resistivity model (pink) 
and the true resistance model (blue). The second row presents 
the interval resistivity model, the inverted resistivity model and 
the true resistivity model. The third row presents the compari- 
son between the interval resistivity model and the resistivity mod- 
els retrieved by the N-B (orange) and Jones (light green) trans- 
formations with the true resistivity model. The fourth row dis- 
plays the simulated data computed from the interval resistivity 
model, the simulated data computed from the inverted resistivity 
model, and the measured data computed using the true resistivity 
model. 

The results show that it is possible to rescale synthetic 1-D MT 

data into a resistance model, which can then be turned into an 
interval resistivity model. The overall misfit for the validation data 
set was as follows: the MAPE for the rescaled resistance model 
varies from 0.1 per cent to 5 per cent and the interval resistivity has 
an overall misfit between 1 and 20 per cent compared to the real 
resistivity model. The MAPE for the simulated data computed from 

the interval resistivity model ranges from 0.01 per cent to 3 per cent, 
which implies that the recovered interval resistivity models can be 
considered valid solutions of the inverse problem. Fur ther more, the 
results show that even if the data and the cumulative resistance 
model are smooth, the transformation of the rescaled resistance 
model into an interval resistivity model recovers a blocky layered 

art/ggaf425_f3.eps
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odel. In the retrieved interval resistivity model, the position and
hickness of the layers are estimated with good accuracy, the true
esistivity is also estimated quite well in the portion of the model
here the data are sensitive enough to model parameters. Hence,

ow resistivity layers are retrieved with greater accuracy than the
igh resistivity layers. Highly accurate results are obtained without
he need of introducing a-priori information like, for example, the
umber of layers or the expected resistivity range of the model. 

The rescaling neural network ˆ � , results are shown to be signifi-
antly better than those obtained with the inverting network, ˆ � . The
se of cumulative models seems to reduce the nonlinearity of the
nverse problem. The rescaling network � retrieves the cumulative
esistance model and we compute the interval resistivity model from
t. The inverting network retrieves the interval resistivity model, and
e can compute the cumulative resistance model from it. Both mod-
ls from the rescaling network have significantly lower error than
hose from the inverting network. Fur ther more, the data fit is con-
iderably better by using the rescaling neural network. When using
he interval resistivity recovered from the rescaled resistance model
o simulate the MT data, the misfit between measured and simulated
ata is in the order of 0.01 per cent to 3 per cent; whereas, it is the
ange between 0.1 per cent to 20 per cent when using the inverted
esistivity model for the validation data set. 

The third row in Fig. 3 shows the resistivity models retrieved
y direct data transformations based on apparent resistivity and
kin depth. The resistivity models retrieved by N-B and Jones are
lmost equal; however, differences between these two approaches
rise when transitioning to layers with higher resistivities because
he Jones transformation was built to compensate for the diminished
ensitivity of the MT data when transitioning to higher resistivities.
onetheless, the results show that both transformations replicate the
ehaviour of the apparent resistivity as function of depth, whereas
he results retrieved by the cumulative resistance model approach of
he rescaling neural network ˆ � provide realistic models with high
esolution, without imposing assumptions on the data. 

.2 COPROD2 Data set 

o evaluate the practical applicability of our method for measure-
ents collected in the field, we used the COPROD2 data set (Jones

993 ) which comprises 35 stations along a 400 km east–west pro-
le that crosses the North American Central Plains (NACP) con-
uctivity anomaly in Saskatchewan and Manitoba, Canada. The
OPROD2 data set, available on the site MTNet, serves as a bench-
ark for new methodologies in MT processing and inversion due to

ts complex geological settings that generate important 2-D features
n MT data. Although, the proposed method is at the present stage
-D, we applied it to the COPROD2 data with the aim of defining
he overall resistivity distribution and to compare it with the wide
et of models retrieved with classical local and global search inver-
ion methods. The resistivity model is characterized by a conductive
ayer (1–10 �m ) in the first 2–3 km, overlying a more resistive layer
10–1000 �m ) down to a depth of 10–20 km. The NACP is ex-
ected at 10–15 km below stations E4-13 and the resistivity values
f the NAPC anomaly, associated with graphitic sheets in highly
etamorphosed rocks, are expected to be in the range 0.1–10 �m

ccording to what has been described by Jones et al. ( 2005 ). 
Like other works, we used only 20 stations that belong to the

entral part of the profile in which the NACP can be located. We
hose not to remove the high frequency part of the measurements,
ontrary to what was suggested by Jones ( 1993 ) to reduce the
imensionality of the 2-D inverse problem. Since the training of
ur network was carried out with a minimum number of 50 data
oints, we interpolated the TE mode data such that we had 50 fre-
uency samples for every station and then rescaled the data into
umulative resistance models which were discretized into interval
esistivity models. As with the synthetic test, we assessed the quality
f the rescaled profiles by simulating the data for each station using
he retrieved interval resistivity model as input. We then computed

APE of the simulated TE mode data using the computed interval
ayered model. 

Fig. 4 (a) presents the retrieved resistivity section as a sequence
f the retrieved 1-D resistivity models. The highly conductive layer
s clearly visible in the first 3 km of the section. In the 2-D inversion
esults presented in literature, this layer is usually assumed as a pri-
ri information retrieved by the 1-D inversion of the high frequency
ata that was subsequently removed from the data (Degroot-Hedlin
 Constable 1993 ; Pace et al. 2021 ). Fur ther more, a low-resistivity

nomaly is present at 20 km below stations 01–13 which is in agree-
ent with the results described by several authors (e.g. Pace et al.

021 ; Song et al. 2022 ; Peng et al. 2024 ). The MAPE of the data
isfit for the computed impedance from the data and the data sim-

lated from the interval resistivity models, has an average value
f 7.7 per cent, which is in agreement with the results retrieved
y Degroot-Hedlin & Constable ( 1993 ). In general, our resistivity
odel aligns well with other models obtained through 2-D inver-

ions (Degroot-Hedlin & Constable 1993 ; Pace et al. 2021 ; Peng
t al. 2024 ), despite its limitation in resolving the detailed structure
f the NACP conductive anomaly. Fur ther more, our model is con-
istent with the expected 1-D anomalies described by Jones ( 1993 ).
he results obtained for the COPROD2 data set were retrieved in
.83 s using the same equipment as for the rescaling of the vali-
ation data set, highlighting the efficiency and low computational
ost of our method compared to other inversion processes. Given
he minimal running time required to retrieve a plausible resistivity

odel, our interval resistivity models are well-suited to be used as
ata-driven reference models for 2-D or 3-D inversion processes,
xpecting to reduce the solution space and convergence time. 

In general, the results show that even though the rescaling net-
ork was trained with a limited number of samples and only on
0 000 models it can produce accurate interval resistivity models.
owever, re-training is recommended if the expected resistivities or

he frequency band of the data extend beyond those covered by the
raining data set (Table 1 ). Fur ther more, the rescaling capabilities
f the network are constrained to the training data set used and
he appropriateness of the 1-D medium assumption. These intrinsic
imitations can be overcome by widening the model space of the
raining data set and finding an adequate mapping procedure in two
imensions. 

 C O N C LU S I O N S  

e have demonstrated that we can rescale MT impedance data into
 1-D cumulative resistance model by a mapping function � in a
eural network between the � (Zxy ( f )) , φ( f ) and f of MT data
nd a model. This approach is fully data driven, without the need
f a-priori information. The results show that by using cumulative
odels the nonlinearity of the inversion problem seems reduced

ompared with a conventional inversion. This was demonstrated
y using two networks that have the same architecture and that
re trained with the same data set. Fur ther more, our method pro-
ides more accurate results compared to other direct data transform
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Figure 4. The resistivity section recovered by rescaling the data of all the stations with the mean MAPE for the simulated complex impedance for each station 
(a), the simulated and measured real and imaginary parts of the computed impedance for station 35 (b,c) and for station E1 (d,e). 
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approaches that rely on the concept of apparent resistivity and skin 
depth. 

The field data results show features that agree with the anomalies 
expected in the area. However, due to the intrinsic 1-D nature of our 
method, our resistivity model fails to recover the fine details of the 
NACP anomaly. Nevertheless, the data misfit between the measured 
and predicted data show that the error is within the same range 
of the data fitting of published 2-D inversion results, indicating 
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hat our model can be regarded as a valid representation of the
ubsurface. 

Overall, our method represents a promising tool for MT stud-
es where 1-D features are to be expected. Moreover, the interval
esistivity models retrieved by our method can be used as initial
odels for 2-D or 3-D inversions that are purely data-driven. Fur-

her research will focus on developing a 2-D approach of the method
escribed in this work. 
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ATA  AVA I L A B I L I T Y  

he python routine empymod used to simulate the synthetic MT
ata for 1-D resistivity profiles provided by Werthmüller ( 2017 ) is
ublicly available, detailed instructions on the use of the routine can
e found at https://empymod.emsig.xyz/en/stable/index.html . 

The COPROD2 data set (Jones 1993 ) is publicly available and
an be downloaded from the MTnet site: https://www.mtnet.info/d
ta/coprod2/coprod2.html . 

The specific architecture of the neural network is publicly avail-
ble in Zenodo at https://doi.org/10.5281/zenodo.15480937 . 
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