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SUMMARY

Magnetotelluric (MT) data inversion seeks to recover resistivity models of the subsurface.
Solving the inversion problem is a non-trivial task, as multiple plausible solutions can be
recovered due to the nonlinearity of the problem. To reduce this nonlinearity, we propose a
data-driven approach where a 1-D cumulative resistance model is estimated from MT data via
a direct data transformation. We define the cumulative representation of layered models as the
weighted sum of layer thickness divided by resistivity from surface to any depth level, which
is the cumulative conductance. Its inverse, cumulative resistance, is directly related to the real
part of the impedance computed from MT data. We train a neural network to transform the
MT impedance into a resistance model. The corresponding 1-D resistivity model is obtained
without a priori information. We validate our approach using synthetic and real data, opening
the discussion for future developments of this new perspective.

Key words: North America; Magnetotellurics; Inverse Theory; Neural networks, fuzzy logic.

1 INTRODUCTION

The magnetotelluric method (MT) is a passive geophysical tech-
nique based on the measurement of the components of the electric
and magnetic fields generated by an electromagnetic wave that trav-
els through the structure of the Earth, and on the processing and
inversion of these data to retrieve the resistivity distribution in the
subsurface. For a layered Earth, Tikhonov (1965) derived the fun-
damentals of MT inversion theory by showing how the frequency
dependence of the surface impedance determines the underlying
conductivity structure. Afterwards, the theoretical uniqueness of
MT 1-D inversion was demonstrated by Bailey (1970) for mea-
surements in a continuum frequency space where no errors are
present in the data. However, in reality, MT data measurements
can be inaccurate and incomplete, which turns the inversion prob-
lem ill-posed and highly non-unique. To tackle this problem, two
main approaches were proposed. The first was designed to retrieve
the resistivity model directly from the data by using a data trans-
form (Niblett & Sayn-Wittgenstein 1960; Jones & Foster 1986)
exploiting the concepts of apparent resistivity and skin depth to
provide a rough, first-approximation 1-D model of the subsurface.
The second approach solved the inversion problem by an iterative
forward modelling process (Constable et al. 1987; Zhang & Paul-
son 1997; Grandis ef al. 1999; Trainor-Guitton & Hoversten 2011;
Wang et al. 2022; Rodriguez et al. 2023), which typically relies on
a priori constraints to reduce the solution space; furthermore, these

techniques can be susceptible to convergence issues, particularly in
the presence of noise or limited prior information. To address these
limitations, recent studies for other geophysical methods (Socco &
Comina 2015; Socco et al. 2017; Florio 2018) have solved the in-
version problem by transforming the data directly into a cumulative
model of the subsurface.

Inspired by this idea, in this work, our objective is to create a
method for the direct transformation of MT data into a 1-D cumu-
lative resistance model of the subsurface. By transforming the 1-D
layered resistivity model into a 1-D cumulative resistance model we
incorporate the influence of overlying layers into the model of the
subsurface, a concept that is closely related to the nature of the geo-
physical measurements, which are inherently cumulative. We then
retrieve a relationship between the cumulative model and the data
in a fully data-driven approach without the need for concepts of ap-
parent resistivity or skin depth. Once this relationship is established
the MT data are transformed into a 1-D resistance model and an
interval 1-D resistivity model is retrieved by applying the discrete
derivative of the equation used to create the cumulative resistance
model.

In this work we will focus on the 1-D case. Starting from MT
data along with a cumulative 1-D resistance model, we established
a model-data relationship that was used to train a mapping neural
network to directly transform MT data into 1-D resistivity models.
Afterwards, the trained network was used to directly transform un-
seen synthetic and real MT data into cumulative resistance models
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Figure 1. Data and model matching for a given data point (a), frequency-depth pairs for all m data points and the mapping function E between data and model
(b). the rescaled data in the resistance domain (c), the interval and true resistivity models (d).

and then into interval resistivity models, validating the approach for
the direct transformation of MT data into 1-D resistivity models.

2 METHOD

To outline the method, we simulated synthetic MT data from a 1-D
resistivity model (Fig. 1d, blue) by using the forward modelling
routine empymod provided by Werthmiiller (2017).

In the 1-D case of the MT method from one simulated horizontal
component of the magnetic field transformed to the frequency do-
main, for example H,,( /'), and the corresponding orthogonal electric
field component, E,( f), we may obtain the plane wave impedance

Zy(f) as

Ex(f)
H,(f)

To relate the computed impedance data to the model of the sub-
surface we used a cumulative model starting from a layered re-
sistivity model, the concept of cumulative resistance R(z) is used
and computed from the longitudinal conductance S(z) to arrive at a
monotonically decreasing resistance model function of depth z. This
cumulative formulation of the layered model allows a one-to-one
correspondence with the impedance data. In contrast, the concept
of apparent resistivity does not allow a unique mapping as a given
apparent resistivity value may be located at multiple depths. The

Zo(f) = (D

cumulative resistance, R(z) is given by

1
R(z) = 2
&) 50 @
where
S(z):ZE-kw for z, <z <z,4 3)
Pi Pi+1

i=1
with p; being the resistivity of layer i, /; the thickness of layer i
andi =1, ..., N where N is the number of layers in the model.
For each point in the simulated data, using the real component of
the complex impedance M(Z,,(f;)) and the resistance model R(z),
we search in the cumulative model for the point in depth at which
M(Zy,(f7)) is equal to the cumulative resistance R(z) as

2 = arg [R(z) = W(Zo, (/)] @)

(Fig. 1a), which required interpolating the resistance model to en-
sure a mapping for all data points. This process associates each
data frequency f; with a corresponding depth z; leading to m data—
model pairs ( f;, z;) that define the mapping function E (Fig. 1b) that
directly rescales the MT data measured at a given frequency to its
corresponding point in depth in the resistance model as Z = E(f),
where z denotes the rescaled depth.

If the mapping function E is known, it can be applied to the
impedance data to rescale them into a cumulative resistance model
by mapping the impedance values from the data domain ( /) to the
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Figure 2. Proposed architecture for our custom neural network model.

model domain (z) (Fig. 1c). Once the data has been rescaled into a
resistance model the interval resistivity model is retrieved (Fig. 1d)
by differentiating eq. (2) as
h; Zi — le_:ll hj
L B B T ®)
Re) ~ RGn  2j=l g T 2=l o

The resistivity model retrieved from the discretization of the
rescaled resistance model is referred to as Interval Resistivity Model
to differentiate it from the resistivity model used to simulate the MT
data.

To compute the E function from the data, we designed a custom
convolutional-long short term memory (CNN-LSTM) neural net-
work (Wei et al. 2021; Liao et al. 2022; Maiti & Chiluvuru 2024)
trained to generalize the behaviour of the model—data relationship.
The rescaling process was defined as

2= E(RZo (N b, f)  with R(Zy (/) = REG), (6)

taking as input parameters the real part of the 1-D impedance data
N(Z,,(f)), the phase of the data ¢( /) and the frequency at which
the data were measured f and the output parameter was defined
to be the rescaled depth z. Although the mapping function E was
established using only the real component of the impedance data,
the network receives the full complex impedance, represented by
its real and phase components, encoding the information present in
the data. & denotes the rescaling process performed by the neural
network. The general structure of the network is shown in Fig. 2.

Within the residual CNN block depicted in Fig. 2 each convolu-
tional block was designed to include padding to preserve the size
of the input features and a ReL U activation function was used for
each residual CNN block. The results of the bidirectional LSTM and
fully connected layers were used without imposing further activation
functions. For our custom CNN-LSTM network we implemented a
custom weighted loss function and used Adam as optimizer. Our
loss function was defined as

\/ Z:ﬂ 1 Wi (VTrue; —

llwl

VPred; )2

: ™)

where the weight w; is calculated based on the number of points per
each decade in depth as

1

Ry

w; = ®)
with n being the number of points in the current decade and d(7)
the decade corresponding to point i.

For training and validation of the network, we generated a data set
of 20 000 random resistivity models; where the parameters of each
model could vary randomly according to Table 1; for each resistivity
model we defined a set of survey parameters that varied according to
Table 1 and simulated the MT data using the aforementioned Python

Table 1. Parameters of the training data set.

Model parameters
Number of layers: 4-10
Resistivity range (Q2m): 1 x 107! =5 x 103
Thickness range (m): 5 x 10>~1 x 10*
Survey parameters
Frequency band (Hz): 1 x 107* —1 x 103
Number of samples: 50-500
Type of f spacing: Lin—Log

routine. Subsequently, for each model-data pair, we recovered the
rescaled depth z when R(Z,,(f)) = R(z).

In the training phase, the data set was randomly divided into
two subsets, the training set which contained 80 per cent of the
original 20 000 models and the validation set which contained the
remaining 20 per cent. The training phase took 12 hr for 819 epochs
using an AMD EPYC 7742 CPU and a Nvidia A100 GPU, while
the rescaling of the validation data set using the trained network
took 7.5 min with an AMD Ryzen 7 3800H CPU and a Nvidia RTX
3060 GPU.

3 RESULTS

3.1 Synthetic MT data

To assess the rescaling capabilities of the trained network for unseen
data; we rescaled the MT data of the validation data set and retrieved
the interval resistivity model by applying eq. (5). To evaluate the
goodness of the results we computed the mean absolute percentage
error (MAPE). We use it for the true and rescaled resistance models,
the true and retrieved interval resistivity models and the real com-
ponent of the impedance data N(Z;,(f)), referred to as measured
data and the impedance data simulated using the retrieved interval
resistivity model. The MAPE error is defined as

1 “ rue — JYPre
L Z w - 100 per cent, )
n YTrue

MAPE per cent =

i
where yry,e corresponds to the true value and yp.q corresponds to
the value retrieved from the method.

For comparison with a 1-D inversion, we trained a second neural
network (©) using the architecture depicted in Fig. 2 to solve a
classical inversion problem for MT data. This inverting network ©
(which results will be referred to as inverted) was trained using the
same 20 000 model data set giving as input parameters R(Z,,(f)),
¢(f) and f and setting as output parameters the resistivity model
(p, z) with a number of layers equal to the number of data points
m in each profile. Additionally, for comparison with known data-
driven inversions, we computed the Niblett—Bostick transformation
(referred to as N-B) and the updated version of Niblett—Bostick
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Figure 3. Rescaling, inversion results from the same network architecture and direct data transformation results for three synthetic MT data profiles randomly

selected from the validation data set.

derived by Jones & Foster (1986) (referred to as Jones) for the MT
data in the validation data set.

In Fig. 3 we present the comparison between the results re-
trieved by our method (red), the results retrieved by the invert-
ing network 6 (pink) and the true model (blue) as follows; the
first row compares the rescaled resistance model (red), the resis-
tance model computed from the inverted resistivity model (pink)
and the true resistance model (blue). The second row presents
the interval resistivity model, the inverted resistivity model and
the true resistivity model. The third row presents the compari-
son between the interval resistivity model and the resistivity mod-
els retrieved by the N-B (orange) and Jones (light green) trans-
formations with the true resistivity model. The fourth row dis-
plays the simulated data computed from the interval resistivity
model, the simulated data computed from the inverted resistivity

model, and the measured data computed using the true resistivity
model.

The results show that it is possible to rescale synthetic 1-D MT
data into a resistance model, which can then be turned into an
interval resistivity model. The overall misfit for the validation data
set was as follows: the MAPE for the rescaled resistance model
varies from 0.1 per cent to 5 per cent and the interval resistivity has
an overall misfit between 1 and 20 per cent compared to the real
resistivity model. The MAPE for the simulated data computed from
the interval resistivity model ranges from 0.01 per cent to 3 per cent,
which implies that the recovered interval resistivity models can be
considered valid solutions of the inverse problem. Furthermore, the
results show that even if the data and the cumulative resistance
model are smooth, the transformation of the rescaled resistance
model into an interval resistivity model recovers a blocky layered
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model. In the retrieved interval resistivity model, the position and
thickness of the layers are estimated with good accuracy, the true
resistivity is also estimated quite well in the portion of the model
where the data are sensitive enough to model parameters. Hence,
low resistivity layers are retrieved with greater accuracy than the
high resistivity layers. Highly accurate results are obtained without
the need of introducing a-priori information like, for example, the
number of layers or the expected resistivity range of the model.

The rescaling neural network &, results are shown to be signifi-
cantly better than those obtained with the inverting network, ©. The
use of cumulative models seems to reduce the nonlinearity of the
inverse problem. The rescaling network E retrieves the cumulative
resistance model and we compute the interval resistivity model from
it. The inverting network retrieves the interval resistivity model, and
we can compute the cumulative resistance model from it. Both mod-
els from the rescaling network have significantly lower error than
those from the inverting network. Furthermore, the data fit is con-
siderably better by using the rescaling neural network. When using
the interval resistivity recovered from the rescaled resistance model
to simulate the MT data, the misfit between measured and simulated
data is in the order of 0.01 per cent to 3 per cent; whereas, it is the
range between 0.1 per cent to 20 per cent when using the inverted
resistivity model for the validation data set.

The third row in Fig. 3 shows the resistivity models retrieved
by direct data transformations based on apparent resistivity and
skin depth. The resistivity models retrieved by N-B and Jones are
almost equal; however, differences between these two approaches
arise when transitioning to layers with higher resistivities because
the Jones transformation was built to compensate for the diminished
sensitivity of the MT data when transitioning to higher resistivities.
Nonetheless, the results show that both transformations replicate the
behaviour of the apparent resistivity as function of depth, whereas
the results retrieved by the cumulative resistance model approach of
the rescaling neural network & provide realistic models with high
resolution, without imposing assumptions on the data.

3.2 COPROD2 Data set

To evaluate the practical applicability of our method for measure-
ments collected in the field, we used the COPROD?2 data set (Jones
1993) which comprises 35 stations along a 400 km east—west pro-
file that crosses the North American Central Plains (NACP) con-
ductivity anomaly in Saskatchewan and Manitoba, Canada. The
COPROD?2 data set, available on the site MTNet, serves as a bench-
mark for new methodologies in MT processing and inversion due to
its complex geological settings that generate important 2-D features
in MT data. Although, the proposed method is at the present stage
1-D, we applied it to the COPROD2 data with the aim of defining
the overall resistivity distribution and to compare it with the wide
set of models retrieved with classical local and global search inver-
sion methods. The resistivity model is characterized by a conductive
layer (1-10 m) in the first 2-3 km, overlying a more resistive layer
(10-1000 2m) down to a depth of 10-20 km. The NACP is ex-
pected at 10—15 km below stations E4-13 and the resistivity values
of the NAPC anomaly, associated with graphitic sheets in highly
metamorphosed rocks, are expected to be in the range 0.1-10 Qm
according to what has been described by Jones ef al. (2005).

Like other works, we used only 20 stations that belong to the
central part of the profile in which the NACP can be located. We
chose not to remove the high frequency part of the measurements,
contrary to what was suggested by Jones (1993) to reduce the

MT data transform into 1D resistivity models 5

dimensionality of the 2-D inverse problem. Since the training of
our network was carried out with a minimum number of 50 data
points, we interpolated the TE mode data such that we had 50 fre-
quency samples for every station and then rescaled the data into
cumulative resistance models which were discretized into interval
resistivity models. As with the synthetic test, we assessed the quality
of the rescaled profiles by simulating the data for each station using
the retrieved interval resistivity model as input. We then computed
MAPE of the simulated TE mode data using the computed interval
layered model.

Fig. 4(a) presents the retrieved resistivity section as a sequence
of the retrieved 1-D resistivity models. The highly conductive layer
is clearly visible in the first 3 km of the section. In the 2-D inversion
results presented in literature, this layer is usually assumed as a pri-
ori information retrieved by the 1-D inversion of the high frequency
data that was subsequently removed from the data (Degroot-Hedlin
& Constable 1993; Pace et al. 2021). Furthermore, a low-resistivity
anomaly is present at 20 km below stations 01—13 which is in agree-
ment with the results described by several authors (e.g. Pace ef al.
2021; Song et al. 2022; Peng et al. 2024). The MAPE of the data
misfit for the computed impedance from the data and the data sim-
ulated from the interval resistivity models, has an average value
of 7.7 per cent, which is in agreement with the results retrieved
by Degroot-Hedlin & Constable (1993). In general, our resistivity
model aligns well with other models obtained through 2-D inver-
sions (Degroot-Hedlin & Constable 1993; Pace et al. 2021; Peng
et al. 2024), despite its limitation in resolving the detailed structure
of the NACP conductive anomaly. Furthermore, our model is con-
sistent with the expected 1-D anomalies described by Jones (1993).
The results obtained for the COPROD?2 data set were retrieved in
7.83 s using the same equipment as for the rescaling of the vali-
dation data set, highlighting the efficiency and low computational
cost of our method compared to other inversion processes. Given
the minimal running time required to retrieve a plausible resistivity
model, our interval resistivity models are well-suited to be used as
data-driven reference models for 2-D or 3-D inversion processes,
expecting to reduce the solution space and convergence time.

In general, the results show that even though the rescaling net-
work was trained with a limited number of samples and only on
20000 models it can produce accurate interval resistivity models.
However, re-training is recommended if the expected resistivities or
the frequency band of the data extend beyond those covered by the
training data set (Table 1). Furthermore, the rescaling capabilities
of the network are constrained to the training data set used and
the appropriateness of the 1-D medium assumption. These intrinsic
limitations can be overcome by widening the model space of the
training data set and finding an adequate mapping procedure in two
dimensions.

4 CONCLUSIONS

We have demonstrated that we can rescale MT impedance data into
a 1-D cumulative resistance model by a mapping function E in a
neural network between the R(Z,,(f)), ¢(f) and f of MT data
and a model. This approach is fully data driven, without the need
of a-priori information. The results show that by using cumulative
models the nonlinearity of the inversion problem seems reduced
compared with a conventional inversion. This was demonstrated
by using two networks that have the same architecture and that
are trained with the same data set. Furthermore, our method pro-
vides more accurate results compared to other direct data transform
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Figure 4. The resistivity section recovered by rescaling the data of all the stations with the mean MAPE for the simulated complex impedance for each station
(a), the simulated and measured real and imaginary parts of the computed impedance for station 35 (b,c) and for station E1 (d,e).

approaches that rely on the concept of apparent resistivity and skin

depth.

The field data results show features that agree with the anomalies
expected in the area. However, due to the intrinsic 1-D nature of our

method, our resistivity model fails to recover the fine details of the
NACP anomaly. Nevertheless, the data misfit between the measured
and predicted data show that the error is within the same range
of the data fitting of published 2-D inversion results, indicating
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that our model can be regarded as a valid representation of the
subsurface.

Overall, our method represents a promising tool for MT stud-
ies where 1-D features are to be expected. Moreover, the interval
resistivity models retrieved by our method can be used as initial
models for 2-D or 3-D inversions that are purely data-driven. Fur-
ther research will focus on developing a 2-D approach of the method
described in this work.
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The python routine empymod used to simulate the synthetic MT
data for 1-D resistivity profiles provided by Werthmiiller (2017) is
publicly available, detailed instructions on the use of the routine can
be found at https://empymod.emsig.xyz/en/stable/index.html.

The COPROD?2 data set (Jones 1993) is publicly available and
can be downloaded from the MTnet site: https://www.mtnet.info/d
ata/coprod2/coprod2.html.

The specific architecture of the neural network is publicly avail-
able in Zenodo at https://doi.org/10.5281/zenodo.15480937.
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