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DISTRIBUTED GAUSSIAN PROCESS HYPERPARAMETER OPTIMIZATION
FOR MULTI-AGENT SYSTEMS

Peiyuan Zhai, Raj Thilak Rajan

Signal Processing and Systems, Delft University of Technology, The Netherlands

ABSTRACT

Gaussian Process (GP) is a flexible non-parametric method
which has a wide variety of applications e.g., field estimation
using multi-agent systems. However, the training of the hy-
perparameters suffers from high computational complexity.
Recently, distributed hyperparameter optimization with prox-
imal gradients has been proposed to reduce complexity, how-
ever only for a network with a central station. In this work,
exploiting edge-based constraints, we propose two fully-
distributed algorithms pxADMMfd and pxADMMfd,fast for
a network of multi-agent systems, which do not rely on a
central station. In addition, asynchronous versions of the
algorithms are also proposed to reduce the synchronization
overhead in heterogeneous networks. Simulations are con-
ducted for a field estimation problem, using both artificial,
and real-world datasets, which show that the proposed fully-
distributed algorithms successfully converge, at the cost of an
increased number of iterations.

Index Terms— Gaussian Process, Multi-agent Systems,
ADMM, Field estimation,

1. INTRODUCTION

A multi-agent system (MAS) consists of identical agents that
are able to measure, compute and communicate, and can be
deployed for various applications, e.g., source seeking [1, 2],
environmental monitoring [3, 4], geographical information
systems modeling [5, 6], signal strength mapping [7], etc. In
general, the problem can be modeled as learning an unknown
function based on noisy measurements of underlying signal,
for which a parametric model is hard to be established. As a
non-parametric Bayesian model, Gaussian Process (GP) is ca-
pable of modeling unknown functions relying on a large num-
ber of measurements. However, the application of a large-
scale GP regression (GPR) is prohibitive because of its high
computational complexity of O(N3), where N is the num-
ber of measurements. The problem can be alleviated through
either low-rank approximation [8] or distributed computing
[9]. In the case of distributed computing using a MAS of M

This work is partially funded by the European Leadership Joint Under-
taking (ECSEL JU), under grant agreement No 876019, the ADACORSA
project - ”Airborne Data Collection on Resilient System Architectures.”

agents, the computational complexity is reduced to O(N3

M2 ),
by evenly dividing the dataset among the agents.

The performance of GPR is optimized by choosing the
appropriate kernel function and hyperparameters that reflect
the characteristic of the underlying function, where Bayesian
model selection (BMS) [10] can be applied. Early distributed
GP models were either trained with full dataset [11] or en-
tirely in computing center [12]. In [13], the computational
load is distributed to multiple agents by formulating the
problem as consensus optimization problem, which is solved
by alternated direction methods of multipliers (ADMM).
The state of the art algorithm proposed by Xie et al. [14]
adopts a proximal ADMM (pxADMM) approach [15], which
minimizes the computational complexity by replacing exact
gradient with first-order approximation. However, pxADMM
still relies on networks with central stations, which makes
it not fully-distributed, and limits the overall network-wide
computation speed to the speed of the slowest agent.

In this work, we propose a fully-distributed algorithm
pxADMMfd based on the pxADMM-based algorithm, that
does not rely on the assistance of a central station. The pro-
posed algorithm adopts edge-based constraints that can be
computed in local agent pairs, thus eliminating the need for a
central station and increasing the scalability. By introducing
extra auxiliary variables, we also propose pxADMMfd,fast that
shows faster experimental convergence than pxADMMfd. In
addition, the asynchronous versions of the aforementioned
algorithms are also proposed to ensure a fully-distributed
solution, for an unsynchronized MAS. The structure of this
paper is as follows. In Section 2, the basics of GPR and state
of the art hyperparameter optimization algorithms are intro-
duced. In Section 3, the fully-distributed and asynchronous
algorithms are proposed. Numerical simulations are shown
in Section 4, followed by conclusions in Section 5.

2. HYPERPARAMETER OPTIMIZATION

2.1. Gaussian Process Regression

Gasussian Process (GP) models the underlying function
f : Rd → R by a prior mean function and kernel func-
tion k(x,x′), where x and x′ are two input vectors. With-
out loss of generality, we assume a zero mean function,IC
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and subsequently GP is typically modelled as f(x) ∼
GP(0, k(x,x′)). Gaussian Process Regression (GPR) learns
the underlying function based on a noisy training dataset
D = {(xn, yn)}Nn=1 with N input and output pairs (xn, yn).
The noisy measurement yn is obtained under regression
model y = f(x) + w, where f(x) is assumed to be a GP
and w ∼ N (0, σ2

n). To predict the function value y∗ at point
x∗, a predictive distribution p(y∗|x∗,X,y) should be found,
where X = [x1, · · · ,xN ]T and y = [y1, · · · , yN ]T are the
input and output respectively. The posterior distribution is a
Gaussian distributionN (K∗K

−1y,K∗∗−K∗K
−1KT

∗ ). The
(m,n)th element ofN×N covariance matrix K is [K]m,n =
k(xm,xn), where xm and xn are the input vectors in the
training dataset. The cross-covariance and auto-covariance
matrices are given by K∗ = [k(x∗,x1), · · · , k(x∗,xN )] and
K∗∗ = k(x∗,x∗), respectively. A commonly used kernel
function is the radial basis function (RBF), which is given by

k(x,x′) = σ2
f exp

(
−αTα/2

)
+ σ2

nδ(x− x′), (1)

where α = Σ−1(x − x′), signal variance σ2
f indicates the

output range of signals, Σ = diag(l1, l2, · · · , ld) is a d × d
diagonal matrix which contains the characteristic lengths of
the d input dimensions [10] . These hyperparameters can be
collectively denoted by hyperparameter set θ = {σf ,Σ, σn}.
To estimate the hyperparameters, an ML estimator can be ap-
plied to maximize the likelihood p(y|X,θ), which is equiv-
alent to minimizing the negative log-likelihood (NLL) given
by l(θ) = yTK−1(θ)y + log |K(θ)| [10]. The NLL can be
directly minimized by gradient-based methods, e.g. gradient
descent [14]. We now briefly summarize the state of the art
solution to estimate the hyperparameters using a distributed
approach.

2.2. pxADMM-based hyperparameter optimization

In a MAS of M agents, the training dataset is divided into
M non-overlapping local datasets {Dm}Mm=1, where Dm =
{Xm,ym} contains the input and output vectors at agent m.
The centralized NLL is approximated by the summation of
M local NLLs {lm(θm)}Mm=1 based on local datasets and hy-
perparameters. For simplicity, NLL is also used to denote the
summation of local NLLs. The distributed optimization prob-
lem is

P1 : min
{θm},z

M∑
m=1

lm (θm)

s.t. ∀ θm = z, m = 1, 2, . . . ,M,

(2)

where lm(θm) = yT
mK−1m (θm)ym + log |Km(θm)|, θm is

the local set of hyperparameters which is maintained at agent
m, and z is an auxiliary variable maintained at the central
station. The constraints indicate that a unique GP is enough
to model the underlying function. The augmented Lagrangian

of (2) is given by

L ({θm} , z, {λm}) =
M∑

m=1

(
lm (θm) + 〈λm,θm − z〉+ ρ

2
‖θm − z‖22

)
,

(3)

where λm contains the dual variables at agent m, and ρ > 0
is a predetermined penalty term [13]. The update of θm at the
tth iteration is

θt+1
m = argmin

θm

(
lm (θm) + θTmλt

m +
ρ

2

∥∥θm − zt+1
∥∥2
2

)
.

(4)
Note that the exact update of θm in (4) is not in closed-form
and requires multiple examinations of gradient ∇lm(θm),
each of which has a computational complexity of O(N3).
The pxADMM-based algorithm proposed in [14], further
replaces lm(θm) with first-order approximation lm (θm) ≈
lm (z) + ∇lm (z) (θm − z), and thus the closed-form θm
update is

θt+1
m = zt+1 −

(
∇lm(zt+1) + λt

m

)
/(ρ+ L), (5)

where L satisfies ‖∇lm (θm) − ∇lm (θ′m) ‖ ≤ L‖θm −
θ′m‖, ∀ θm,θ

′
m. Note that a central station is needed to

maintain the global variable z, a limitation we overcome with
our proposed algorithms in the next section.

3. FULLY DISTRIBUTED OPTIMIZATION

In this section, by reformulating problem P1, we propose two
versions of fully-distributed pxADMM.

3.1. Fully-distributed pxADMM (pxADMMfd)

Inspired by [16], we introduce edge-based auxiliary variables
zmn and replace the constraints in problem P1 by edge-based
constraints, which leads to the following problem P2

P2 : min
{θm},{zmn}

M∑
m=1

lm (θm)

s.t. θm = zmn, ∀(m,n) ∈ E ,

(6)

where the edge set E contains all the edges in the MAS.
The modified edge-based constraints require that each pair of
agents shares the same hyperparameter value. The augmented
Lagrangian for the mth agent is then given by

L ({θm} , {zmn,λmn}) =
M∑

m=1

(
lm (θm)

+
∑

n∈N (m)

(
〈λmn,θm − zmn〉+

ρ

2
‖θm − zmn‖22

))
,

(7)

where λmn contains the dual variables associated with edge
(m,n) and is stored at agent m, and neighborhood N (m) is
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the set of agents which are directly connected to agent m.
Subsequently, the θm update is given by

θt+1
m =argmin

θm

(
lm (θm)+∑

n∈N (m)

(
θT
mλt

mn +
ρ

2

∥∥θm − zt+1
mn

∥∥2
2

))
.

(8)

To reduce the computational complexity, we apply a first-
order approximation of lm(θm), which gives

lm (θm) ≈ lm
(
θt
m

)
+∇lm

(
θt
m

) (
θm − θt

m

)
, (9)

where lm (θm) is approximated around the local hyperparam-
eters θm from latest iteration. The update equations at itera-
tion t are

zt+1
mn =

1

2

(
ρ−1

(
λt
mn + λt

nm

)
+ θt

m + θt
n

)
, (10a)

θt+1
m =

∑
n∈N (m)

(ρzmn − λmn) + Lθt
m −∇lm (θt

m)

L+ ρ |N (m)|
,

(10b)

λt+1
mn = λt

mn + ρ
(
θt+1
m − zt+1

mn

)
, (10c)

where ρ and L satisfy the same conditions as those from (5).

3.2. Faster fully-distributed pxADMM (pxADMMfd,fast)

In pxADMMfd, lm(θm) is approximated around the most
recent θm because the global auxiliary variable z used
in pxADMM-based algorithm is not accessible in fully-
distributed networks. To overcome this impediment, we
propose another fully-distributed pxADMM-based hyperpa-
rameter optimization algorithm by approximating the likeli-
hood around the local auxiliary variables {ζm}Mm=1, which is
inspired by the approximation around global auxiliary vari-
able in [15]. This algorithm shows faster convergence in
simulations, and is denoted as pxADMMfd,fast. ζm at agent m
is constructed, and is updated as

ζt+1
m =

1

1 + |N (m)|

(
ζt
m +

∑
n∈N (m)

zt+1
mn

)
, (11)

which is a temporally smoothed moving average of zmn, n ∈
N (m). Simulation results that auxiliary {Λm}Mm=1 also need
to be introduced to replace λmn in (5), otherwise the algo-
rithm can not converge. Λm is constructed and maintained
as

Λt+1
m =

Λt
m + ρ

(
θt+1
m − ζt+1

m

)
+

∑
n∈N (m)

λt+1
mn

1 + |N (m)|
.

(12)

With the auxiliary variables, the update equation of θm is de-
rived as

θt+1
m = ζt+1 − 1

ρ+ L

(
∇lm(ζt+1) + Λt

m

)
. (13)

The update iterations of zmn and λmn follows (10a) and
(10c). In the tth iteration, the update of ζt+1

m performs an
extra step towards the consensus values of the auxiliary vari-
ables zt+1

mn . Since the most recent information from neighbor
agents is stored in ζt+1

m , this leads to an improved approxi-
mation as compared to θt

m from the previous iteration, and
thus leads to a faster convergence. In the following simula-
tion section, pxADMMfd,fast shows faster convergence than
pxADMMfd, under the same stop criteria.

To ensure these algorithms operate for an unsynchronized
network of MAS, we apply two strategies, partial barrier
and bounded delay [17], to introduce the fully-distributed
asynchronous algorithms. The partial barrier introduces
asynchronous behavior by allowing incomplete variables
exchange. An agent m with faster computation capacity can
start the next local iteration immediately after receiving up-
dates from at least 1 ≤ S ≤ |N (m)| agents. The bounded
delay is applied to allow each agent to wait for updates from
neighbors who have not communicated with the agent for
τ ≥ 1 local iterations, which introduce a certain level of
alignment that ensures a pattern of convergence across the
network. Both pxADMMfd and pxADMMfd,fast can adopt
the asynchronous strategies, and are respectively named as
pxADMMafd and pxADMMafd,fast.

4. SIMULATIONS

We conducted experiments with both artificial and real-world
datasets to study the performance of the proposed algorithms
in fully-distributed networks. For each simulation, a total
number of N = 4000 measurements are randomly gen-
erated, and then equally distributed to M = 16 agents.
The simulated algorithms include pxADMM, pxADMMfd,
pxADMMfd,fast, pxADMMafd and pxADMMafd,fast. The cen-
tralized ADMM is not compared since the state of the art
pxADMM is already the baseline. pxADMM is simulated
in a MAS with a central station, and the others are simu-
lated in connected random networks. For all the simula-
tions, the stop criteria for convergence is met when step size
‖θt+1

m − θt
m‖2 ≤ 10−4,∀m ∈ {1, · · · ,M}. Parameters used

are ρ = 400, L = 4000, S = 2 and τ = 10. Matlab code
can be accessed at https://github.com/hantyou/Distributed-
GP-Hyperpar-Optim.

4.1. 2D-GP dataset

Figure 1(a) shows an example 2D GP field generated with
a RBF kernel and the following predefined hyperparameters
{σf = 5, l1 = 1, l2 = 1, σn = 0.316}. All the algorithms are
initialized with {σf = 3, l1 = 2, l2 = 2, σn = 1}. The con-
verged values of the simulated algorithms are listed in Table
1. The plots of step size and NLL, against iterations for the
algorithms are compared in Figure 2.
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The results show that all the algorithms converge to the
expected values. The conventional pxADMM with a central
station converges the fastest, which is expected. Our proposed
fully-distributed algorithms pxADMMfd and pxADMMfd,fast
converge, and are approximately 6.8 and 2.7 times slower
than pxADMM for the given experimental setup. This per-
formance is expected in fully-distributed networks since more
iterations are needed for agents to exchange information with-
out the assistance of a central station. The proposed asyn-
chronous extensions have similar performance, as their syn-
chronous counterparts.

(a) 2D-GP (b) GHRSST

Fig. 1. The red nodes and lines respectively indicate the agent
positions and communication links.

Table 1. Results of hyperparameters optimization
Methods {σf , l1, l2, σn} Iterations
pxADMM [14] {5.078, 1.007, 1.031, 0.317} 433
pxADMMfd {4.934, 0.999, 1.024, 0.316} 2952
pxADMMfd,fast {5.070, 1.012, 1.034, 0.316} 1098
pxADMMafd {4.949, 1.000, 1.025, 0.316} 2624
pxADMMafd,fast {5.076, 1.012, 1.034, 0.316} 1112

Table 2. Results of hyperparameters optimization
Methods {σf , l1, l2, σn} Iterations
pxADMM [14] {8.234, 1.331, 0.652, 0.535} 1860
pxADMMfd {7.546, 1.301, 0.640, 0.534} 6574
pxADMMfd,fast {8.179, 1.337, 0.656, 0.537} 3962
pxADMMafd {7.634, 1.305, 0.641, 0.534} 8276
pxADMMafd,fast {8.214, 1.338, 0.657, 0.537} 4484

4.2. Real-world dataset - GHRSST

The Group for High Resolution Sea Surface Temperature
(GHRSST) [18] is a dataset containing high resolution daily
global sea surface temperature maps. The region in longitude
[145.0, 150.5] and latitude [37.0, 40.0] is cropped from the
map collected on 2nd April, 2022 as the underlying field.
Since the true hyperparameters are unknown, the results of
pxADMM are used as the baseline that the proposed algo-
rithms should converge to. Convergence plots are omitted
since they follow similar patterns as those in Figure 2. We
present the final converged valued achieved by the proposed
fully-distributed algorithms in Table 2, where we notice that

Fig. 2. Convergence curves with 2D-GP dataset. The upper
plot shows the hyperparameter step size curve in terms of it-
erations. The lower plot shows the NLL value curves.

our proposed solutions converge to the expected hyperparam-
eters obtained by pxADMM. The results are also consistent
with the field pattern shown in Figure 1(b), where the tem-
perature changes slower in the horizontal direction than the
vertical direction.

5. CONCLUSION

In this paper, we proposed two fully-distributed hyperpa-
rameter optimization algorithms based on pxADMM through
applying edge-based constraints. The proposed pxADMMfd
approximates the local likelihood around the local hyperpa-
rameters, while pxADMMfd,fast approximates the likelihood
around local auxiliary variables. We also propose corre-
sponding asynchronous algorithms, which adopt partial bar-
rier and bounded delay strategies. Simulation results show
that pxADMMfd and pxADMMfd,fast successfully converge
to the expected values in a fully-distributed MAS, at the cost
of more iterations, as compared to conventional pxADMM
which uses a central station. The theoretical proof for the con-
vergence of the proposed algorithms is ongoing, which we
aim to present in our follow up work. Further investigation on
distributed Bayesian [19] and sparsity-aware hyperparameter
optimization [20] can be explored for more resource efficient
solutions, in addition to positioning the proposed solutions in
the larger context of distributed online learning with kernels
[21].
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