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Ideally, a multitude of steps has to be taken before a commercial implementation of a pedestrian model is used in practice.
Calibration, the main goal of which is to increase the accuracy of the predictions by determining the set of values for the model
parameters that allows for the best replication of reality, has an important role in this process. Yet, up to recently, calibration has
received relatively little attention within the field of pedestrian modelling. Most studies focus only on one specific movement base
case and/or use a single metric. It is questionable how generally applicable a pedestrian simulationmodel is that has been calibrated
using a limited set of movement base cases and one metric. The objective of this research is twofold, namely, to (1) determine the
effect of the choice of movement base cases, metrics, and density levels on the calibration results and (2) to develop a multiple-
objective calibration approach to determine the aforementioned effects. In this paper a multiple-objective calibration scheme is
presented for pedestrian simulation models, in which multiple normalized metrics (i.e., flow, spatial distribution, effort, and travel
time) are combined bymeans of weighted summethod that accounts for the stochastic nature of themodel. Based on the analysis of
the calibration results, it can be concluded that (1) it is necessary to use multiple movement base cases when calibrating a model to
capture all relevant behaviours, (2) the level of density influences the calibration results, and (3) the choice ofmetric or combinations
of metrics influence the results severely.

1. Introduction

The creation and implementation of a commercial pedestrian
simulation will, ideally, consist of multiple steps. One of
those steps is calibrating the model whereby the goal is to
increase the accuracy of the model predictions by obtaining
the parameter set that results in the best replication of reality.
As such, calibration is an important step.

Yet, up to recently, calibration has received relatively little
attentionwithin the field of pedestrianmodelling [1, 2]; this is
mainly attributed to the lack of data [1, 3–5] especially at high
densities. Despite this issue, there are many studies in which
authors calibrate a pedestrian model (e.g., [6–10]) usually by
using a fundamental diagram [11] or trajectories. However, as
multiple authors mention, the calibration attempts in these
studies are limited and mostly focus on only one or a few

aspects [1, 4, 5, 11, 12]. Most studies focus on one specific
movement base case (e.g., a bidirectional flow in a straight
corridor), use only one metric, or do not look at various
population compositions.

It is questionable how generally applicable a pedestrian
simulation model is that has been calibrated using a limited
set of movement base cases. Campanella, Hoogendoorn, and
Daamen [13] and Duives [14] show that using different flow
situations leads to different optimal parameter values.That is,
both studies identify that for general usage (i.e., using a single
model for many different applications) one needs to calibrate
a pedestrian simulation model using multiple movement
bases to capture all relevant behaviours. The effect of using
different metrics during the calibration has been investigated
by Duives [14] in relation to pedestrian dynamics and among
others [15–17] in relation to vehicular traffic. These studies
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illustrate that different combinations ofmetrics clearly lead to
different calibration results. Wolinski et al. [18] also calibrate
a number of models using different metrics. Though they
do not show the effect of using different metrics on the
resulting optimal parameter set, the results show clearly
that the model fit to the data depends on the metric used.
Furthermore, Hänseler, Bierlaire, Farooq, and Mühlematter
[19] also note differences between the optimal parameter sets
obtained using different metrics or a combination of them
when calibrating their macroscopic model.

To overcome the problem of obtaining different results
when using different movement base cases and/or metrics,
three multiple-objective calibration frameworks have been
proposed in recent years which try to take a more inclusive
approach.Wolinski et al. [18] propose a frameworkwhich can
potentially incorporate multiple objectives. However, during
their benchmarking tests they only apply combinations of
one movement base case and one metric. Campanella et al.
[13] show how a microscopic model can be calibrated using
multiple movement base cases and how this compares to
calibrating the model with only one movement base case.
This study still only uses one metric during the calibration.
The work by Duives [14] uses multiple movement base cases
with multiple metrics and furthermore includes different
combinations of weights in the objective function and is
thus the most extensive of the three. However, except for the
spatial distributionmetric, the study does not show the results
for the other individual metrics. Hence, it is not possible to
exactly determine the effect the different individual metrics
have on the resulting optimal parameter set.

So, even though these works illustrate that the choice of
the combinations of movement bases and metrics will influ-
ence the optimal parameter set obtained during calibration,
all three studies have their limitations. For example, they do
not explicitly examine the effect of the level of density which
might be a relevant factor given that work by Campanella
et al. [13] shows that poorness of data can affect calibration
results and work by [20] also shows some differences in
the obtained parameter sets for a low and high density case
of a bidirectional flow. Furthermore, the effects of using
different metrics are also still poorly understood. And, as
work by Campanella, Hoogendoorn, and Daamen [21] shows
that using multiple objectives during the calibration will
lead to a better validation score for general usage, it is clear
that increased insights into which objectives to use during
calibration can improve model validity.

Given these observations the objective of this research
is twofold. Firstly, the objective is to determine the effect
of the choice of movement base cases, metrics, and density
levels on the calibration results. Secondly, the objective is to
develop a multiple-objective calibration method for pedes-
trian simulation models to determine the aforementioned
effects, taking into account the stochastic nature common to
many microscopic pedestrian models.

This study aims to add value to the current body of
literature by means of a more extensive study of the impact
of calibration framework setup on the validity of a pedestrian
simulation model. This extension provides, among other
things, novel insights into the effect of the level of density of

the movement base case and more detailed insights into the
effect of using a range of metrics in the calibration process.
Furthermore, this study features a different type ofmodel (i.e.,
vision-based model [22]) than the previous most extensive
studies (i.e., [13, 14]), which both calibrated NOMAD. Thus,
this study also illustrates the replicability of their results and
the conclusions of those previous studies.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes themicroscopic pedestrian simulation
model. Section 3 shortly introduces the methodology of the
sensitivity analysis and presents the results of the analysis.
In Section 4 the calibration methodology is elaborated upon.
This is followed by the presentation of the results of calibrat-
ing the model using a single objective in Section 5. Section 6
presents the results of the multiobjective calibration. Finally,
this paper closes of with a discussion of the results, conclu-
sions, and the implications of this work for practice.

2. Brief Introduction to Pedestrian Dynamics

This section introduces pedestrian dynamics (PD), a micro-
scopic pedestrian simulation model developed by INCON-
TROL Simulation Solutions. It offers a user the ability
to model the movement behaviour of pedestrians at all
three behavioural levels (strategic, tactical, and operational).
Though, in this research pedestrians only have one activity,
namely, to walk from their origin to their destination via a
single route, and hence there is no need to model the activity
choice, the activity scheduling or the route choice.Themodel
featuring the operational walking dynamics is discussed in
more detail underneath.

The operational behaviour of the INCONTROL model
consists of two parts, i.e., route following and collision
avoidance, which together determine the acceleration of a
pedestrian at every time step. PD determines the acceleration
of a pedestrian by the combination of ‘social forces’ and a
desired velocity component. The pedestrian itself is repre-
sented by a circle with a radius 𝑟. At every time step the
acceleration of a pedestrian is determined as follows:

𝑑→V 𝑖𝑑𝑡 = →V des;𝑖 − →V 𝑖𝜏 + ∑
𝑗

→𝑓 𝑖;𝑗 + ∑
𝑊

→𝑓 𝑖;𝑊 [m/s2] (1)

where →V des;𝑖 and
→V 𝑖 are, respectively, the desired and current

velocity of pedestrian 𝑖. →𝑓 𝑖;𝑗 and →𝑓 𝑖;𝑊 are the physical forces
that occur on contact with another pedestrian or a static
obstacle. And lastly, 𝜏 is the relaxation time. Furthermore,
in case the speed of the pedestrian drops below a certain
threshold (i.e., the minimal desired speed parameter) the
pedestrian does not move until the next time step when the
resulting speed is higher than the threshold.

The desired velocity is determined according to the
method proposed by Moussäıd et al. [22]. The method uses
a vision-based approach to avoid collisions. This approach
combines the collision avoidance with the preferred speed
and the desired destination to determine the desired velocity.
Thedesired velocity is determined bymeans of two heuristics,
namely,
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(1) A pedestrian chooses the direction that results in the
most direct path to its desired destination given the
presence of both static and dynamic obstacles.

(2) A pedestrian chooses the speed that, in case there is
an obstacle in the preferred direction, results in the
lowest time-to-collision whereby this time is always
larger than 𝜏.

The pedestrian only takes into account obstacles that are
within its field of vision ([−𝜙, 𝜙]), which is determined by
the current orientation of the pedestrian, the viewing angle𝜙, and the viewing distance 𝑑max. The desired direction is
determined by minimizing (2).

𝑑 (𝛼) = 𝑑2max + 𝑓 (𝛼)2 − 2𝑑max𝑓 (𝛼) cos (𝛼0 − 𝛼) ,
for 𝛼 ∈ [−𝜙, 𝜙] (2)

where 𝑓(𝛼) is the distance to the closest expected obstacle
in the direction of 𝛼, which is equal to 𝑑max if there are
no obstacles within the viewing range. 𝛼0 is the angle
towards the desired destination. The desired speed is given
by Vdes = min(V0𝑖 , 𝑑ℎ/𝜏) where V0𝑖 is the preferred speed of
the pedestrian and 𝑑ℎ is the distance between the pedestrian
and the first expected collision in the desired direction. 𝑑ℎ is
determined as follows:

𝑑ℎ =
{{{{{{{{{

𝑑𝑖;exp:col − 𝑑𝑖;pers If the expected collision is with another

pedestrian travelling in the same direction

𝑑𝑖;exp:col Otherwise

[m] (3)

where 𝑑𝑖;exp:col is the distance to the first expected collision
in the desired direction 𝛼 of pedestrian 𝑖 and 𝑑𝑖;pers the
personal distance of pedestrian 𝑖. The personal distance is
the distance a pedestrian wants to keep between itself and
another pedestrian.

There are two important notes regarding the implemen-
tation of this method in PD, namely: (1) Regardless of the
settings for the viewing angle and viewing distance, themodel
will only take into account the four closest pedestrians (who
are within the field of vision) when determining the desired
velocity. (2)Not all parameters can be adapted by the user; the
parameters governing the physical forces (i.e.,

→𝑓 𝑖;𝑗 and →𝑓 𝑖;𝑊)
are, namely, not user-adaptable.

The desired destination of each pedestrian is determined
using the Indicative RouteMethod proposed by Karamouzas,
Geraerts, and Overmars [23]. This desired destination is
influenced by two (user-adaptable) parameters which are the
“Preferred clearance”, which influences the minimal distance
a pedestrian wants to keep between its desired destination
and a static obstacle, and the “Side preference update factor”,
which influences the strength of the desired destination
location changes given the current position of the pedestrian
and the current deviation from the originally planned path.

As is the case for many pedestrian models, PD is
stochastic by nature (i.e., two simulations with exactly the
same parameters and input but with different seeds result
in different outcomes). In this study there are three main
causes for this stochasticity, namely, the preferred speed,
the initial destination point, and the exact point of origin.
The first contributes to the stochasticity due to the fact that
every pedestrian is randomly assigned a preferred speed from
a given distribution. The latter two causes of stochasticity
are points whose location influences the desired destination
and whose exact position is a randomly determined location
within a respective origin or destination area. The fact that
the model is stochastic by nature has to be taken into account

during the calibration and is discussed in more detail in the
next section.

3. Sensitivity Analysis

A sensitivity analysis is performed to determine to which
particular parameters the model is sensitive. This section
describes the methodology of the sensitivity analysis and
presents the results of this analysis.The results of the sensitiv-
ity analysis are used to determine which parameters should
be incorporated in the calibration process, as recalibrating
all model parameters is not feasible within the time frame
of this study. How the results are used to determine the
calibration search space andwhy it is not feasible to include all
parameters is explained in more detail in Section 4.5, Search
Space Definition.

3.1. Methodology of the Sensitivity Analysis. The goal of the
sensitivity analysis is to determine which of the 7 model
parameters of the INCONTROL model (see Table 1) that
influence the operational behaviour most affect the model’s
results. The authors expect that the sensitivity depends on
the scenario. Thus, the analysis is performed for all seven
scenarios used in the calibration. These scenarios are as
follows: A high density bidirectional flow, a high density
corner flow, a high density t-junction flow, a bottleneck flow
and low density variants of the bidirectional, corner, and t-
junction flows. For a detailed description of the scenarios, see
Section 4.1.

The distribution of the instantaneous speeds of all pedes-
trians is used as the sole metric.This distribution contains all
instantaneous speeds of all pedestrians and all replications.
This metric is chosen because the distribution of the speeds
is able to give insight into both the efficiency of the flow (a
higher mean speed indicates a more efficient flow) and into
the underlying behaviour (e.g., a high variance can indicate
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Obtain speed 
distribution for 
default value

Obtain speed 
distribution for 
±25% deviation

Obtain speed 
distributions for all 
points in between

Significantly 
different 

compared 
to default

Yes

No Model not 
sensitive to the 

parameter

Curve 
describing 

model sensitivity

Figure 1: Overview of the sensitivity analysis methodology. The process depicted in the figure is performed for all combinations of the 7
scenarios and 7 parameters.

Table 1: The seven parameters included in the sensitivity analysis.

Route following: Preferred clearance
Side pref. update factor

Collision avoidance: Relaxation time
Viewing angle

Viewing distance
Min. desired speed
Personal distance

that interactions are not solved efficiently causing pedestrians
to change their speed a lot).

The Anderson-Darling test [24] is used to determine if
enough replications have been performed to allow for the
comparison of two distributions of the instantaneous speed.
This statistical test determines whether a distribution has
converged (for more details see Section 4.6).

To limit the amount of simulations only first-order effects
are investigated. Note that the number of replications is
already extensive due to the incorporation of seven scenarios
and a vast number of replications to account for model
stochasticity. Figure 1 depicts the process which is applied
to every combination of a scenario and a parameter. The
remaining text in this subsection describes the process and
its steps in more detail. For every scenario, the first step is
to obtain the speed distribution using the defaults values.
This distribution serves as the base line. Accordingly, for all
combinations of the 7 parameters and 7 scenarios, the value
of the parameter in question is increased by 25%. After which
the distribution of the speeds is again obtained. The same
procedure is followed for a decrease of the parameter values
by 25%. The limit of 25% is chosen as the INCONTROL
model already has undergone some basic calibration and
hence it is assumed that the optimal values will not deviate
much from the current default values.

For all these new distributions of speeds accordingly the
following two checks are identified: (a) is the new distribution
significantly different from the default distribution according
to the Anderson-Darling test and (b) are the differences
between the means and standard deviations of the distribu-
tions larger than one would expect based on the influence

of the stochasticity (for more details see [25]). The second
check provides insight into the magnitude of the difference
and, thus, the degree of the sensitivity of the model to
changes in this parameter. If both these conditions hold (i.e.,
significant differences are found between the new and old
distributions) all distributions between the 25% boundary
and the default value, using a precision of 1% point, are
obtained to gain insight into how the model’s sensitivity
changes as the deviation from the default value increases.

For a more detailed description of the methodology the
reader is referred to [25].

3.2. Results of the Sensitivity Analysis. Based on the method-
ology described above the following results are obtained.
Firstly, the model is not sensitive to changes in the “Preferred
clearance” parameter and changes in the “Viewing distance”
parameter. Even in high density cases the model is not
sensitive to changes in the viewing distance parameter. This
is most likely the result of the fact that PD only takes into
account the four closest pedestrians within the viewing field,
which might all reside well within this radius.

In general, the model is not sensitive to changes in the
“Personal distance”, the “Side pref. update factor”, and the
“Min. desired speed”. In the case of the “Personal distance”,
the model is slightly sensitive to changes in this parameter in
the case of the bottleneck scenario. In the case of the “Side
pref. update factor”, the model is slightly sensitive to the t-
junction high density scenario. The model is also slightly
sensitive to changes in the “Personal distance” for both
scenarios. However, as the maximum differences between
the means and the standard deviations are at most 2%,
we conclude that within the ±25% range changes in these
parameters will not affect the model results much.

The only parameter to which the model is sensitive in
all seven scenarios is the relaxation time. The model is,
furthermore, sensitive to the viewing angle in all four high
density scenarios. Figure 2 presents that, for both parameters
and the seven scenarios, the differences between the mean
and the standard deviation of the distributions are obtained
using an increased or decreased parameter value. From
this figure a number of observations can be made. Firstly,
the figure clearly shows that the model is more sensitive
to changes in the relaxation time than to the changes in
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Figure 2: Results of the sensitivity analysis.

the viewing angle. Secondly, clear differences between the
scenarios can be identified. For example, the model is more
sensitive to changes in the parameters when simulating high
density scenarios. And thirdly, in many cases, an asymmetry
can be observed between the slope and shape of the curve left
from the default value (i.e., the decreased parameter values)
and the one on the right. Overall, we conclude that the effect
of changing a parameter’s value differs a lot between the two
parameters and the seven scenarios.

In conclusion, overall the INCONTROLmodel is not very
sensitive to changes in many of the parameters given the±25%boundaries.Themodel is primarily sensitive to changes
in the relaxation time, whose value influences the outcome of
the simulation in all seven scenarios, and the viewing angle,
in the case of the high density scenarios.

4. Methodology
This section presents the reasoning behind the newly devel-
oped calibration methodology. Figure 3 depicts the multiple-
objective calibration methodology and its parts. In line with

previous research, the methodology uses multiple scenarios
and multiple metrics. For every combination of a scenario
and a metric an objective value is obtained which represents
the difference between the simulation and the reference data
for the given parameter set. These objective values are then
combined into a single objective value which in turn is used
by the optimization method to determine if the current
parameter set is optimal. In case the current parameter set is
deemedoptimal, the calibration stops and the next stepwould
be to validate the model (which is not part of this study).
Alternatively, in case the parameter set is not deemed optimal
a new parameter set is created and the calibration process
continues.

All of these parts are discussed in more detail in this
section. First the scenarios are identified. Accordingly, the
metrics and the objective function are presented.This section
furthermore elaborates on the optimization method and the
manner that the stochasticities of the pedestrian simulation
model are handled.
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Figure 3: Overview of the multiple-objective methodology where 𝑆1 to 𝑆𝑛 are the used scenarios, 𝑀1 to 𝑀𝑘 the used metrics, 𝜖1 to 𝜖𝑘 the
individual errors, and 𝐸𝑖 the combined error for scenario 𝑖, 𝜖 the combined error and 𝜃 the parameter set.

4.1. Scenarios. Contemporary, several datasets are available
that feature the movement of pedestrians in multiple move-
ment base cases and a similar population of pedestrians,
among others [26–28]. Since the experiments within the
HERMES project represent the most comprehensive set of
movement base cases featuring a similar population and
different levels of density, this dataset will be used in this
calibration procedure. Based on this dataset seven scenarios
are constructed whereby every scenario contains a single
movement base case and a single density level. Four move-
ment base cases are studied; these are a bidirectional flow,
a unidirectional corner flow, a merging flow at a t-junction,
and a bottleneck flow. All base cases have both a low and
high density variant except for the bottleneck which only
has a high density variant. Figure 4 shows the layout of the
four simulated movement base cases. For a more detailed
overview of the experimental setup within the HERMES
project the reader is referred to [27]. Care is taken to ensure a
similar flow pattern over time, speed distribution, and route
choice; details on the exact simulation setup of the seven
scenarios in PD are mentioned in [25].

4.2. Metrics. In this multiple-objective framework four dif-
ferent metrics are used to identify how different metrics
impact the calibration results. In this research the choice is
made to use twometrics at themacroscopic level, the flow and
the spatial distribution, and two at the mesoscopic level, the
travel timedistribution and the effort distribution.Thesemet-
rics are chosen because, on both levels, they describe different
aspects of the walking behaviour. Microscopic metrics, i.e.,
trajectories, are not used for three reasons. Firstly, calibration
based on trajectories requires a different approach than
calibrating based on macroscopic and mesoscopic metrics.
It would require many more simulations to use both micro-
scopic and mesoscopic and/or macroscopic metrics and due

to time limits this was not considered to be viable within
this study. Secondly, the current approaches for calibrating
based on trajectories do not deal with the stochastic nature
of the model. Lastly, since pedestrian simulation models
are mostly used to approximate the macroscopic properties
of the infrastructure (e.g., capacity, density distribution)
[21] and given that calibrating based on microscopic met-
rics does not necessarily result in a macroscopically valid
model [11],macroscopic andmesoscopicmetrics take priority
over microscopic metrics. The four metrics adopted in this
research to calibrate PD are discussed in more detail below.

Flow. The flow is chosen as a macroscopic metric to check
to what extent the model can reproduce the throughput in
different situations. In all seven scenarios the average flow is
measured along a certain cross-section (see Figure 4) during
a certain measurement period. The average flow is calculated
as follows:

𝑞𝑖 = 𝑁𝑖Δ𝑡 × 𝑙 [ped/s/m] (4)

where 𝑁𝑖 is the number of unique pedestrians with main
travel direction 𝑖 that passed the line in the direction equal
to the main travel direction and during the measurement
period (Δ𝑡). The flow is normalized to a flow per meter of
measurement line, whereby 𝑙 is the length of themeasurement
line, in order to allow for comparisons between scenarios.

Distribution over Space. Reference [14] showed that micro-
scopic models might not always be able to accurately repro-
duce the spatial distribution patterns. Hence, it is essential
to check whether a model performs well with respect to
this property. The distribution over space measures how
the pedestrians are distributed over the measurement area.
A grid of 0.4 x 0.4 m, which is approximately the size of
one pedestrian during a high density situation, overlays the
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Figure 4: Overview of the layout of the four movement base cases used during the calibration. (a) Bidirectional flow. (b) Unidirectional
corner flow. (c) Merging t-junction flow. (d) Bottleneck. In the figure the hatched areas indicate the measurement areas; the dashed lines the
location where the flow is measured and in the case of the bottleneck the grey area indicates the waiting area at the start of the simulation.

measurement area and for every cell the percentage of the
time it is occupied is determined by (5).

𝐹𝑗 = 𝑁occ;𝑗

𝑁steps
[−] (5)

where 𝑁occ;𝑗 is the number of time steps cell 𝑗 is occupied
by one or more pedestrians (based on the centre point of the
pedestrians) and 𝑁steps is the number of time steps taken into
account.

Travel Time. The travel time is the time it takes a pedestrian
to traverse the measurement area as determined by (5).

𝑇𝑇𝑘 = 𝑡end − 𝑡start𝑙ref [s/m] (6)

where 𝑡start and 𝑡end are, respectively, the time pedestrian 𝑘
first which entered the measurement area and time pedes-
trian 𝑘 which left the area. 𝑙ref is the average length of the
path in themeasurement area, as obtained from the reference
data. The travel time is normalized in order to simplify
the comparison of the goodness-of-fit of different scenarios
with different average path lengths. Note that this metric
approximates the realized pace of each individual. That is, if

an individual makes a detour at a very high speed it will not
affect its travel time, but it will influence the effort required to
get to its destination.

Only the travel times of those pedestrians who suc-
cessfully traversed the whole measurement area during the
measurement period are included in the distribution of the
travel times.

Effort. Several studies have identified the difficulty of smooth
interactions between simulated pedestrians in bidirectional
flows. In order to ensure realistic interaction behaviour the
effort metric is introduced, which captures how much effort
it takes a pedestrian to traverse the measurement area. The
effort for pedestrian k is defined as the average change in
velocity per time step (see (7)).

𝑒𝑘 = ∑𝑛−1 (V𝑥 (𝑡) − V𝑥 (𝑡 − 1) + V𝑦 (𝑡) − V𝑦 (𝑡 − 1))𝑛 − 1 ,
[m/s]

(7)

V𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡 − 1)
Δ𝑡 , [m/s]

V𝑦 (𝑡) = 𝑦 (𝑡) − 𝑦 (𝑡 − 1)
Δ𝑡 , [m/s]

(8)
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Table 2: Normalization values.

Mnorm
Flow 1.0
Spatial distribution 0.18994
Travel time-mean 0.99107
Travel time-std 0.20728
Effort-mean 0.04345
Effort-std 0.00953

where V𝑥(𝑡) and V𝑦(𝑡) are, respectively, the speed in the x and
y-direction at time step 𝑡 and 𝑛 the number of time steps.
The speeds are obtained by differentiating the current and
previous positions of pedestrian 𝑘 (see (8)), where 𝑥(𝑡) and𝑦(𝑡) are, respectively, the x and y-position at time step 𝑡 andΔ𝑡 is the duration of the time step. The effort measurements
of all pedestrians are combined into one distribution.

4.3. Objectives. In this research multiple objectives are com-
bined into a single objective using the weighted sum method
[29]. This is in line with research by Duives [14]; the
only example in literature using both multiple metrics and
scenarios to calibrate a pedestrian model.

In order to make a fair comparison between objectives,
normalization is necessary, as the metrics have different
units and different orders of magnitude. Table 2 shows the
normalization values used during calibration. The adopted
normalization method is based on two main assumptions.
Firstly, it is assumed that for a single metric a deviation
of 1 unit (for example, 1 ped/m/s is case of the flow) in
one scenario is equally wrong as a deviation of 1 unit in
another scenario (i.e., an absolute error is used instead of
a relative error). Secondly, it is assumed that, for every
metric, a deviation of 1 ped/m/s in the flow is equal to a
deviation equal to the average ratio between the values of
flow and the respective metric in the reference data (i.e.,(1/𝑆𝑛) ∑𝑠∈𝑆(𝑦𝑚;𝑠/𝑞𝑠), where 𝑆 is the set of scenarios, 𝑆𝑛 is
the number of scenarios, 𝑞𝑠 is the average flow of scenario𝑠, and 𝑦𝑚;𝑠 is the value for metric 𝑚 for scenario 𝑠). This
method is chosen because it does not explicitly assume a
bias towards any of the metrics or scenarios which is deemed
appropriate for this study given its goal. However, this might
not necessarily be the case if one intends to calibrate a model
for a specific intended use. For amore detailed explanation of
this method and an underpinning of the choice to specifically
use this method, the reader is referred to [25].

The objective function for a given metric and scenario
is given by the normalized Squared Error (SE) which for
the macroscopic metrics is determined by (9) and for the
mesoscopic metrics is determined by (10).

𝑆𝐸norm (𝜃) = 1
𝑚∑
𝑗

(∑𝑖𝑀sim;𝑖;𝑗 (𝜃) /𝑛 − 𝑀ref ;𝑗

𝑀norm
)
2

(9)

𝑆𝐸norm;meso (𝜃) = 1
2 (𝑀sim;𝜇 (𝜃) − 𝑀ref ;𝜇

𝑀norm;𝜇
)
2

+ 1
2 (𝑀sim;𝜎 (𝜃) − 𝑀ref ;𝜎𝑀norm;𝜎

)
2

(10)

where 𝑀sim is the metric’s value according to the simulation,𝑀ref the reference value according to the data, 𝑀norm the
value used for the normalization, and 𝜃 the vector of model
parameters. In the case of (9) 𝑛 is the number of replications
and 𝑚 is the number of travel directions in case of the flow
and the number of cells in case of the spatial distribution.
In the case of the mesoscopic metrics (10) shows that the
difference between the distributions is approximated by
taking both the error in the mean (𝜇) and the standard
deviation (𝜎). These distributions contain the measurements
of all replications.

The objective functions for a given set of metrics and
scenarios are combined into a single objective function as
follows:

𝑂 (𝜃) = 1
𝑁𝑠 ∗ 𝑁𝑚∑

𝑠

∑
𝑚

𝑆𝐸norm;𝑠;𝑚 (𝜃) (11)

where 𝑆𝐸norm;𝑠;𝑚(𝜃) is the value of the objective function of
scenario 𝑠 and metric 𝑚 for the parameter set 𝜃 and 𝑁𝑠 and𝑁𝑚 are, respectively, the number of scenarios and metrics in
the set. A likelihood method, which multiplies probabilities,
might not work in this case, as this method will always
attempt to fix the worst parameter first. In an additive scheme
weights can be applied to prioritize certain combinations of
scenarios and metrics over other combinations. However, as
this research studies the effects of the different choices of
scenarios and metrics, in this research all combinations are
considered to be of equal importance andhence equalweights
are used.

4.4. Optimization Method. In this research a grid search is
used to obtain the optimal parameter set, as it provides the
researcher with more insight into the shape of the surface
of objective space. The disadvantage of using a grid search
is that other optimization methods, e.g., Greedy and Genetic
algorithms, can potentially be faster. However, thesemethods
do run the risk of getting stuck in a localminimumanddo not
necessarily give a good insight into the shape of surface of the
objective space. As can be derived from (11), smaller values
of the objective function represent a better goodness-of-fit
(GoF) and hence the goal of the optimization is to minimize
the objective value.

4.5. Search Space Definition. Rudimentary calibration of
PD has already been performed by the company. Thus,
instead of calibrating all model parameters, the presented
calibration method will be used in this research to identify
the correctness of the variables with respect to which this
model is most sensitive, namely the relaxation time and the
viewing angle. Even though the model is less sensitive with
respect to the radius, this parameter will also be included in
the calibration as initial tests of the implementation of the
scenarios illustrated that in the case of the bidirectional high
density scenario the default radius of this model produced
problematic results. The search space is defined as follows:

(i) The upper and lower boundaries of the relaxation
time and viewing angle are determined by a deviation
of −0.24 ∗ 𝜃def < 𝜃 < 0.24 ∗ 𝜃def with respect to the
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default parameters. The step size is 3% of the default
value. The resulting ranges are [0.380s−1-0.620s−1]
for the relaxation time and [57.00∘-92.00∘] for the
viewing angle.

(ii) For the radius the upper boundary is equal to the
default value, the lower bound has a deviation of−0.40∗𝜃def and the step size is 4% of the default value.
This results in a range of [0.14340m-0.23900m].

As this research focuses on the effect of density levels, the
metrics that are part of the objective function and movement
base cases, the search space is not continuous and has been
restricted in order to create reasonable computation times
and a reasonably good insight into the shape of the objective
function.

4.6. Dealing with Stochasticity in Pedestrian Simulation Mod-
els. Similar to most pedestrian simulation models, PD is
stochastic in nature.Therefore, it is essential to determine the
minimum amount of replications one would need in order
to assure that statistical differences are due to differences
in model parameters instead of stochasticity in the model
realization.

In this research the required number of replications is
determined using a convergence method similar to [30]
whereby the distribution of speeds is used as the sole
metric. To determine if two subsequent distributions can be
considered to be samples drawn from the same distribution
the Anderson-Darling test is used [24]. Equation (12) shows
that if b subsequent distributions are considered to be
similar according to the Anderson-Darling test (i.e., the test
return a p-value greater than 𝑝threshold indicating that the
null hypothesis that the two samples come from the same
distribution can be rejected at the 𝑝threshold significance level)
the distribution has converged.

𝐴𝐷 (𝑆𝑛, 𝑆𝑛−1) > 𝑝threshold

∀ 𝑛 ∈ [𝑚 − 𝑏 + 1, 𝑚 − 𝑏 + 2, . . . , 𝑚] (12)

whereby 𝑆𝑛 is the speed distribution containing all instan-
taneous speed measurements of all pedestrians for all time
steps they spent within the infrastructure for all 𝑛 subsequent
replications.

Tests showed that regardless of the chosen values for 𝑏
and 𝑝threshold the required number of replications depends
on the exact seeds that are used and their order. Therefore,
a predefined seed set was used during the calibration of
PD to ensure that any differences between simulations using
different parameter sets were not caused by the stochastic
nature of the model. Using this predefined set, a value of
10 for 𝑏 and a value of 0.25 for 𝑝threshold, it was determined
that the required number of replications was a 100 for
the bidirectional scenarios, 50 for the corner high density
scenarios, 40 for the t-junctions and corner low density
scenarios, and 30 for the bottleneck scenario. For a more
detailed discussion of the method and the choice for the
values of 𝑏 and 𝑝threshold, the reader is referred to [25].

5. Calibration Results Based on
Single Objectives

In this section the results of the individual objectives (a
combination of a single scenario and a single metric) are
discussed. Figures 5(a)–5(d) show boxplots of the objective
values, determined by (11), per individual objective con-
taining the objective values of all 3179 points of the search
space. These plots provide insight into the distribution of
the objective values. More importantly, these figures show
the order of magnitude of the minimal objective value if the
model would be calibrated using a single metric/objective.
Here, smaller objective values represent a better fit of the
model results to the reference data.

These plots provide insight into how the objective values
are distributed but primarily show the order of magnitude of
the minimal objective value if the model would be calibrated
using only a single objective. The smaller the objective values
the better the model results fit the reference data. By using
a logarithmic scale the figure clearly illustrates how well the
model fits to the data (when the optimal parameter set is
used) and how this differs between the different scenarios and
metrics.

Figures 5(e)–5(j) show boxplots of the nonnormalized,
nonsquared errors and these provide insight into the size of
the errors and how they are distributed. Here it is the case, the
closer to zero the values are, the smaller the error between the
simulation and the reference data is. Due to the linear scale
these plot provide a better insight into how the value of the
parameters influences the error and therefore the objective
value.

Figures 5(a) and 5(e) show that for all scenarios themodel
can reproduce the flows well given both the small errors
and the low minimal objective values. Furthermore, one can
observe that on average the lowdensity scenarios have a lower
objective value but that theminimal objective value is smaller
for the high density scenarios.

Figures 5(b) and 5(f) show that the model cannot repro-
duce the spatial patterns very well given the high errors and
the large minimal objective values. The low density scenarios
both have a lower objective value on average and a lower
minimal objective value. Furthermore, especially for the high
density case of the t-junction scenario the performance is
relatively bad compared to the other scenarios.

Figures 5(d), 5(h), and 5(j) show that, except for the
bidirectional high and t-junction high density scenarios,
the travel time distribution can be reproduced well by the
model. In the case of the bidirectional high and t-junction
high density scenarios the figures show that the model can
reproduce the mean and the standard deviation of the travel
time distribution well individually but apparently not when
they are combined. Also, similar to the spatial distribution,
the low density scenarios have a lower objective value on
average as well as a lower minimum objective value.

In the case of the effort metric Figures 5(c), 5(g), and
5(i) show that for most scenario the model cannot reproduce
the effort distribution very well. The two exceptions are the
bottleneck and t-junction high density scenarios. In these
cases the model can reproduce the effort distributions well.
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(b) Spatial distribution
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(c) Travel time
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(d) Effort
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Figure 5: Results of calibrating the model using a single objective. Graphs (a)-(d) show, per combination of metric and scenario, how the
objective values (calculated according to (11)) are distributed. Graphs (e)-(j) show the nonnormalized, nonsquared errors (i.e.,𝑀sim(𝜃)−𝑀ref )
which give insight into size and the distribution of the errors. The flow scenarios are identified by their acronyms (i.e., B-H = bidirectional
high, B-L = bidirectional low, B = bottleneck, C-H = corner high, C-L = corner low, T –H = T-junction high, and T-L = T-junction low).

Generally, the same pattern can be observed as the flow
regarding the difference between the high and low density
scenarios. That is, the high density scenarios generally have a
lower minimum objective value but the low density scenarios
generally have a lower objective value on average.

All figures show that both the size of the minimal objec-
tive value and the distribution of the errors depend on the

particular combination of scenario and metric. Furthermore,
the figure illustrates that the model can generally reproduce
the metrics related to the performance of the infrastructure
(the flow and travel time) better than those more related
to the underlying microscopic and macroscopic pedestrian
dynamics (spatial distribution and the effort). However,
regarding the difference between the performances of the
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model on the different metrics, three things have to be
noted.

Firstly, as Liao, Zhang, Zheng, and Zhao [31] show, even
though the flow of their calibrated model is similar to the
flow in the data, the underlying fundamental diagrams differ
slightly. Regarding the results of this study, a quick review
of the average velocities and average densities illustrates that
differences exist between the reference data and the data
obtained during the calibration. This finding suggests that
the model and the data have slightly different underlying
fundamental diagrams. Furthermore, it also suggests that,
within the given search space, there does not seem to exist
a parameter set that aligns the model’s fundamental diagram
to the data. This may in part explain why especially for the
spatial distribution and effort metrics the model fit is worse
than compared to the flow.

Secondly, as pointed out by Benner, Kretz, Lohmiller,
and Sukennik [32], also a lack of detailed information about
the boundary conditions (e.g., the exact distribution of the
desired speeds and the order in which pedestrians enter the
infrastructure) might negatively influence a model’s capabil-
ity to fit the data. Again, this lack of detailed information is
likely to have the smallest impact on the flow as this is the
most aggregated metrics of the four.

Lastly, some metrics might be more sensitive to changes
in parameters of the pedestrian simulationmodel that are not
taken into account in this study than the parameters included
in the search space of the calibration. The sensitivity to these
‘other’ parameters is due to two things. First, the sensitivity
analysis was performed before the choice of metrics for this
calibration. Second, the speed distribution was used in the
sensitivity analysis to determine significant differences in
model result. Thus, this suggests that it is not only important
to include multiple scenarios in the sensitivity analysis but
also multiple metrics. This would ensure enhanced insight
into the model’s sensitivity and hence also better insight into
which are the most important parameters to include in the
search space during calibration.

This research aims to determine how different choices
regarding scenarios andmetrics influence the calibration and
not calibration of the InControl model.Therefore, differences
between the simulation model results and the data are not
investigated in more detail in this paper.

6. Differences in Performance between
Calibration Strategies

In this section the results of different calibration strategies
are discussed. First, a general analysis of the results is
performed based on the obtained optimal parameter sets
for all of the 16 combinations. Afterwards, the results of
different strategies are compared to determine the influence
of movement base cases, density levels and metrics. Table 3
identifies 16 different calibration strategies whereby the table
indicateswhich scenarios andmetrics are included during the
calibration according to a certain strategy.

Table 4 presents the optimal parameter sets for all 16
strategies. The results in the table show three notable things.
Firstly, given the large variance in optimal parameter sets, it

is clear that the choice of scenarios and metrics does affect
the results of the calibration. Secondly, the optimal objective
values in Table 4 are notably higher than those found in
Figure 5 which indicates that a combination of objectives
decreases the fit of the model with respect to the data. Next to
that, for all 16 strategies, the optimal viewing angle is smaller
than the default and in many cases equal to the lower limit
(57 degrees). Given that PD only takes into account the four
closest pedestrians, the results of the calibration indicate that
it is more important to take those pedestrians into account
who are in front rather than those who are more to the side.
Furthermore, in the case of the relaxation time the parameter
value also frequently lies on the boundary of the search space.
Due to time constraints it was not possible to extent the search
space. However, an analysis is performed to ascertain the
likely effects changing the search space, this includes both
extending it and increasing the precision, would have on the
location of the optimal parameter sets.

6.1. Precision of the Grid Search and the Values on the Search
Space Boundaries. The search space is limited both by its
boundaries and by its precision. To obtain insight into the
likelihood that the results would change significantly (i.e., the
location of the optimal parameter set changes significantly)
an analysis is performed. The analysis is based on visual
inspection of two types of graphs.

Figure 6 provides insight into how likely it is that the
location of the optimal parameter changes significantly if the
precision of the search space in increased. It is considered
likely that the location of the optimal parameter set can
change significantly if the search space contains points with
a very similar objective value, compared to the minimal
objective value, which are located in a significant different
part of the search space.Thegraphs show the relation between
the decrease in GoF and the distance from the optimal
parameter set. The decrease in GoF is calculated by (14),
whereby a small decrease in the GoF equals a small difference
between the objective value of a given parameter set and the
minimal objective value. The distance is calculated by

𝐷 (𝜃, 𝜃∗) = √𝑁𝜏 (𝜃, 𝜃∗)2 + 𝑁𝜙 (𝜃, 𝜃∗)2 + 𝑁𝑟 (𝜃, 𝜃∗)2 (13)

where 𝑁𝜏(𝜃, 𝜃∗), 𝑁𝜙(𝜃, 𝜃∗) and 𝑁𝑟(𝜃, 𝜃∗) are, respectively,
the number of step-sizes between the optimal parameter
set 𝜃∗ and the parameter set 𝜃 for the relaxation time, the
viewing angle, and the radius. So 𝑁𝜏(𝜃, 𝜃∗) = 2 means
that the relaxation time of parameter set 𝜃 is 2 step-sizes
removed from the relaxation time of the optimal parameter
set.Themaximumdistance is 24.74 (√162 + 162 + 102) which
is the distance between one corner of the search space to the
opposite corner of the search space.

Figure 6(a) shows that for the bidirectional low case there
are many points that have a fairly similar GoF and that many
of them are in significantly different parts of the search space
(i.e., are at a large distance from the optimal parameter set).
Hence, it could be likely that a change in the precision of the
search space would lead to a significant different location of
the optimal parameter set.
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Table 3: Tested combination of scenarios and metrics, where the acronyms identify the metrics (i.e., Q = flow, SD = spatial distribution, Eff
= effort, and TT = travel time) and the scenarios (i.e., B-H = bidirectional high, B-L = bidirectional low, B = bottleneck, C-H = corner high,
C-L = corner low, T-H = T-junction high, and T-L = T-junction low).

Combination Metrics Scenarios
Q SD TT Eff B-H B-L C-H C-L T-H T-L B

1. Bidirectional high (B-H) x x x x x
2. Bidirectional low (B-L) x x x x x
3. Corner high (C-H) x x x x x
4. Corner low (C-L) x x x x x
5. T-junction high (T-H) x x x x x
6. T-junction low (T-L) x x x x x
7. Bottleneck (B) x x x x x
8. Flow (Q) x x x x x x x x
9. Spatial distribution (SD) x x x x x x x x
10. Travel time (TT) x x x x x x x x
11. Effort (Eff) x x x x x x x x
12. High density scenarios (HD) x x x x x x x x
13. Low density scenarios (LD) x x x x x x x
14. All scenarios - Macro (Macro) x x x x x x x x x
15. All scenarios - Meso (Meso) x x x x x x x x x
16. All combined (All) x x x x x x x x x x x

Table 4: Calibration results, where 𝑂(𝜃) represents the optimal value of the objective function. The cells in italic font indicate that the value
is at the upper or lower boundary of the search space.

Combination O(𝜃)[-] Relaxation
time [1/s] Viewing angle[degree] Radius[m]

1. Bidirectional high 0.1329 0.620 57.00 0.15296
2. Bidirectional low 0.0588 0.620 57.00 0.19120
3. Corner high 0.0561 0.395 57.00 0.23900
4. Corner low 0.0742 0.380 61.50 0.23900
5. T-junction high 0.1190 0.590 57.00 0.21998
6. T-junction low 0.0468 0.380 68.25 0.23900
7. Bottleneck 0.1093 0.395 68.25 0.20076
8. Flow 0.0146 0.380 59.25 0.20076
9. Spatial distribution 0.2015 0.575 59.25 0.21988
10. Travel time 0.1814 0.620 59.25 0.15296
11. Effort 0.1798 0.500 57.00 0.23900
12. High density scenarios 0.2647 0.575 57.00 0.21032
13. Low density scenarios 0.0722 0.500 57.00 0.23900
14. All scenarios - Macro 0.1444 0.545 59.25 0.21988
15. All scenarios - Meso 0.2012 0.620 59.25 0.15296
16. All combined 0.1814 0.575 57.00 0.21032

Figure 6(b) shows that this is not the case for the bot-
tleneck case. Figures 6(c) and 6(d) show a few points whose
GoF is similar to that of the optimal point but whose distance
to the optimal point is rather large (see the red rectangles).
For these cases it is determined which parameter(s) is/are
the main contributor to this large distance. In both examples
here, it is found that primarily the viewing angle changes. So,
in these cases it is likely that, even if the precision of the search
space is increased, the location of the optimal parameter set

will not change significantly in relation to both the relaxation
time and the radius.The location regarding the viewing angle
is less certain though.

The main conclusion of the visual inspection of these
graphs for all 16 combinations is that for most of the low
density cases, the exception is theT-junction low case, and the
flow case it is likely that the location of the optimal parameter
set could change significantly if the precision of the search
space in increased. For all other cases this is not the case.
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(a) Bidirectional low
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(b) Bottleneck
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Figure 6: The deviation from optimal GoF versus the distance to the optimal parameter set.

Figure 7 shows how the objective value changes over the
search space for two examples. These graphs provide insight
into the question if it is likely that an extension of the search
space would cause the optimal parameter to be located in a
significantly different part of the search space in relation to
the parameter whose value is on the search space boundary.

For example, Figures 7(a)–7(c) show no discernible pat-
tern. Hence one cannot state with a high degree of certainty
that if the search space is extended the relaxation time will be
equal to or larger than the current value and that the viewing
angle will be equal to or smaller than its current value.

Figures 7(d)–7(f), on the other hand, do show a clear
pattern. In this case it is likely that an extension of the search
space will result in an optimal parameter set whose viewing
angle is equal to or smaller than the current optimal viewing
angle. The patterns shown in the graphs also make it likely
that the optimal radius and relaxation time will be fairly
similar to the current optimal values.

Performing this analysis for all 16 combinations yields
the conclusion that, for all cases where the previous analysis
did conclude that an increase in the precision is unlikely
to change the results, an extension of the search space is
likely to increase the differences between the cases instead of
decreasing it.

Overall, the analysis shows that for some cases the loca-
tion of the optimal parameter set could change significantly
if the search space if changed. However, it also shows that
the large differences between the optimal parameter sets,
currently found, are also likely to be found if the search space

is adapted. Hence, the authors expect that an extension of the
search space results in even larger differences in the optimal
parameter sets than the differences identified in this paper.

6.2. Identification of Differences in Performance between
Calibration Procedures. In order to illustrate the differences
between the optimal parameter sets a cross-comparison of the
goodness-of-fit is performed. These comparisons are based
on the difference between the optimal GoF of combination A
and the GoF of combination A when the optimal parameter
set of combination B is used (see (14)).

Δ𝐺𝑜𝐹A;B = − (𝑂A (𝜃∗B) − 𝑂A (𝜃∗A)) (14)

where 𝑂A(𝜃∗A) is the value of the objective function of
combination A when its optimal parameter set 𝜃∗A is used.𝑂A(𝜃∗B) is the value of the objective function of combination
A if the optimal parameter set of combination B is used. As
stated in the methodology section, an increase in the value
of the objective function equals a decrease in the GoF, hence
the minus value equation (14). Thus, the larger the decrease
in GoF, the worse the fit of the model to the data is if the
given parameter set is used instead of the optimal parameter
set. In the remainder of this section the effects the choice of
movement base case, the density level andmetrics on theGoF
are discussed in more detail.

6.3. Effect of Movement Base Case on Multiple-Objective Cali-
bration Results. Figure 8 presents the results of a comparison
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(f) 𝜙 = 93.00

Figure 7: Examples of surface plots showing how the objective value changes over the search space. The green dot identifies the location of
the optimal parameter set.
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between different calibration strategies, in which the differ-
ence in goodness-of-fit is depicted. All comparisons aremade
between (combinations of) scenarios of the same density
level, in order to exclude the possibility that differences are
caused by a difference in the level of density and not by a
difference in movement base case.

The figure shows the distribution of the objective values
for the differentmovement base cases.Themarkers depict the
objective value if the optimal parameter set obtained using
another movement base case is used. The difference between
the location of the marker and the minimal objective value,
as indicated by the boxplot, indicates the difference in GoF.

The boxplots show that, generally, the low density cases
have a higherGoF and that they are less sensitive to changes in
the parameter set regarding their fit to the data. Furthermore,
for both the low and high density cases the corner scenarios
seem least sensitive to changes in the parameter set.The data,
moreover, illustrates that in all cases theGoF of the individual
movement base cases decreases when the parameter set
based on another movement base case or a set of movement
base cases is used. However, the size of the decrease clearly
depends on the scenario as well as which scenario’s optimal
parameter set is used. A few notable observations can be
made regarding the decreases in GoF.

Firstly, in the case of the high density bidirectional
scenario (B-H) all other optimal parameter sets from the
other high density combinations lead to a similar decrease
in GoF. This is also the case for the low density bidirectional
scenario (B-L). However, in this case the optimal parameter
set obtained when combining all three low density scenarios
results in a far smaller decrease in GoF indicating that the
bidirectional scenario has a strong influence on the objective
function of this combination. Overall, both observations
indicate that the bidirectional movement base case contains
behaviours which are not well captured by other movement
base cases.

Secondly, the high density t-junction scenario (T-H) also
seems to contain behaviours which are not captured well
by other high density movement base cases. Furthermore,
as the decrease of GoF is clearly smallest for the optimal
parameter set obtained using a combination of all four high
density scenarios, it is clear that the objective function of this
combination is strongly influenced by the t-junction scenario.

Thirdly, in the cases of the low density corner (C-L) and
t-junction scenarios (T-H, T-L) the decrease in GoF is very
small when the optimal parameter set of the other scenario
is used. Table 4 furthermore identifies that the optimal
parameter sets for these two scenarios are very similar. This
indicates that at low densities the t-junction movement base
case effectively reduces to a corner movement base case as
the densities are so low that there is probably little merging
behaviour.

Overall, based on this analysis we conclude that different
movement base cases contain different behaviours which are
not necessarily captured when the model is calibrated using
other movement base cases. The exceptions are the corner
and t-junction base cases at low densities (C-L, T-L). Using
an optimal parameter set obtained by combining multiple
movement base cases mitigates this problem somewhat.
However, this still results in clear decreases in the GoF for
all movement base cases.

6.4. Effect of Density Level on Multiple-Objective Calibration
Results. In Figure 9 the results of the comparison between
the GoF’s for different density levels are presented. The data
shows that in all three cases the decrease in the GoF is smaller
when the optimal parameter set of the high density case is
used in the low density case than vice versa. However, there
are clear differences to be observed between the movement
base cases. In the case of the corner movement base case
the level of density does not have a clear effect as using the
optimal parameter set of the other density level only leads to
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a very small decrease in the GoF. This is also the case when
the optimal parameter set of the high density bidirectional
scenario is used for the low density bidirectional scenario.
However, vice versa it is not the case. For the t-junction
scenarios, the figure clearly shows that in both cases using the
optimal parameter set of the other density level results in a
large decrease in the GoF.

The data also illustrates that the decrease in GoF of the
combination of high density scenarios is larger when the
optimal parameter set of the combination of low density
is used than vice versa. This remains the case even if the
bottleneck scenario is omitted from the high density set, such
that the high density set contains exactly the samemovement
base case as the low density set. In this case the decrease in
GoF for the high density set becomes even larger.

Overall, it can be concluded that the level of density of the
scenario does influence the calibration results.Therefore, it is
concluded that it is more important to include the high den-
sity scenarios than the low density scenarios. Furthermore,
depending on themovement base case, it can even be the case
that the low density variant can be omitted as it will not add
any value.

6.5. Effect of the Metrics on the Multiple-Objective Calibration
Results. In Figure 10 a comparison is visualised between the
influences of the different parameter sets on the performance
of the metrics. There seems to be a correlation between the
distribution of the effort and the spatial distribution (i.e.,
SD, Eff, Meso, and all). When the model is calibrated using
only one of them, the decrease in the GoF of the other is
small. Besides that, both the use of the spatial distribution
and the use of the distribution of the effort result in a far
worse prediction of the flow compared to the distribution
of the travel times. That is, the decrease in GoF of the
flow is far larger in case the optimal parameter set of the
spatial distribution or the use of the distribution of the
effort is used. Lastly, the optimal parameter sets obtained
using combinations of metrics are more heavily influenced

by certain metrics. When only the macroscopic metrics are
applied, the spatial distribution clearly has a larger impact
on the location of the optimal parameter set given the
lower decrease in GoF. When solely using the mesoscopic
metrics, the distribution of the travel time has a larger impact
compared to the distribution of the effort.

These results show that the choice of metrics does
influence the results of the calibration. Depending on the
choice of metric or combination of metrics, different optimal
parameter sets are found which in turn lead to different
results regarding the GoF.

7. Conclusions, Discussion, and
Implications for Practice

The findings of this research regarding the influence of the
movement base cases are found to be consistent with both
[13, 14]. Similar to those studies, this research finds that (1)
it is necessary to use multiple movement base cases, when
calibrating a model, to capture all relevant behaviours and(2) the GoF of the individual movement base cases decreases
when the parameter set based on multiple movement base
cases is used.

Hence, this research confirms that one needs to use
multiple movement base cases when calibrating a model
intended for general usage. However, when the intended
use of the model is more limited (i.e., it does not need to
accurately replicate all movement base cases and or metrics),
it might be preferred to use a limited set of movement base
cases during the calibration, in particular, given the fact that
the GoF of the individual movement base case decreases
when multiple movement base cases are used during the
calibration.

The level of density also influences the calibration results.
Thus, depending on the intended use of the model different
density levels should be taken into account during the
calibration. Furthermore, this study concludes that it is more
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important to incorporate high density scenarios. As a result,
one can omit some of low density scenarios, in particular the
bidirectional and corner low density scenarios.

This study also finds that the calibration results depend on
the choice of metric or combinations of metrics. Depending
on the combination of metrics, also the choice of objective
function and normalization method influences the results.
Consequently, depending on the usage of the model, one
should decide which metric or metrics are most important
and how to reflect the difference in importance of these
metrics when combining multiple objectives into one.

The results also show that the relaxation time is the only
parameter to which the model is sensitive to in all scenarios.
Its exact value thus has a large impact on how well the
simulations fit the data. Reference [33] found similar results
for a different model, though they only studied a bottleneck.
Furthermore, it is also the only parameter where the optimal
value can lie on both sides of the search space depending
on the used combination of scenarios and metrics. This can
possibly be explained by the fact that the relaxation parameter
has multiple roles as is described in [34]. As Johansson et
al. [34] conclude, this indicates that the models may be too
simplistic.

A number of things have to be noted when reflecting on
the method of handling the multiple objectives. In light of
the goal of this study, the method presented in this study was
chosen to assure as little as possible bias towards any of the
metrics or scenarios. However, if one calibrates amodel given
a certain type ofmodel usage, onemight use different weights
or even different optimization method. For example, one
can search for the Pareto optimal solution [29] or combine
multiple objectives using the 𝜖-constraint method [29]. Both
the choice of the optimization method and its influence on
the calibration results are relevant topics for future research.

Though this study is more extensive than previous
studies, it still has a number of limitations. Firstly, due
to limitations of the available dataset, this study did not
include a crossing movement base case. So, it is unclear
whether and to what extent the crossing movement base
case contains behaviours which are not captured by other
movement base cases. More research, in which also effects of
the intersecting movement base cases are included, is needed
to create a comprehensive overview of the effect the choice of
movement base cases has on the calibration. Secondly, only
one microscopic model was used in this study. Therefore, as
such, it is unclear to what extent the current findings can be
generalized and whether the conclusions of this study also
hold for other microscopic models. The fact that the results
are consistent with [13, 14] and the fact that these studies
used another microscopic model does indicate that this is
the case. Lastly, as already reflected upon, this study did not
look into the effects of the chosen calibration methodology.
Insights into these effects could be relevant when deciding on
the calibration methodology for a microscopic model with a
certain intended use.

All in all, the results show two important things. Firstly,
the optimal parameter set obtained using a single or limited
amount of objectives does not always provide an accurate fit
of the model to the data for other combinations of scenarios

and metrics. Besides that, using multiple objectives (e.g.,
using multiple high density scenarios) to calibrate the model
decreases the GoF of the model to the data for all the
individual objectives. These two conclusions imply that the
intended use of the model should be taken into account
when deciding which scenarios, metrics, objective functions
and method for combining multiple objectives one should
use. These results also raise an important question. Is the
implicit assumption that the behaviour of the pedestrians is
independent of the flow situation, which is at the foundation
of most pedestrian simulation models, valid? This research
cannot answer this question because of, among other, its
limitations on the number of parameters included in the
search space. Hence it is an interesting topic for future
research.

Lastly, these results show that a model only provides
accurate results for scenarios and metrics that the model
has been calibrated and validated on. Using the model for
predictions of other scenarios and metrics is likely to result
in large inaccuracies. Hence, it is essential that calibration or
validation attempts include multiple scenarios and multiple
metrics.
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[5] M. Davidich and G. Köster, “Predicting pedestrian flow: A
methodology and a proof of concept based on real-life data,”
PLoS ONE, vol. 8, no. 12, Article ID e83355, 2013.
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