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Abstract

The paper presents a generative design process based on topology optimization methodology for
configuring masonry structures. In this approach, structures consisting of stackable interlocking blocks
are modelled as discrete elements using the Discrete Element Method, approximating their mechanical
behaviours. A process is devised to result in funicular structures that can be built using a limited set of
modular masonry blocks with the aim to lower the environmental costs in terms of embodied carbon,
monetary costs, and construction labour. Additionally, this process aims to increase the reuse and
reconfigurability potential of the stackable blocks by seeking utmost modularity in the topological design
of the underlying 3D tiling/tessellation.

Topology optimization is widely known as a methodology for generating geometrically elaborate
structures, which typically minimize the use of the material. These approaches typically use the Finite
Element Method to formulate and solve the governing di↵erential equations for computing their objective
functions, assuming that the structure to be designed is a virtually continuous distribution of material
that is refinable within a continuum. However, at a more general level, the idea of topology optimization
can also be applied to inherently discrete problems by creating algorithms based on the Discrete Element
Modelling approach (O’Sullivan, 2011), or a particle system at a quasi molecular level. The proposed
approach is applicable in the design of funicular structures, with the potential for form-finding of waste-
free and reconfigurable, structural geometries that are constructible using a limited stock of modular
blocks.

The paper introduces a discrete topology optimization process in three steps: 1) defining a space-
filling 3D tiling/tessellation consisting of interlocking blocks as a graph colouring of a voxel grid; 2)
defining the objective function of a topology optimization problem based on a Discrete Element Modeling
approach; 3) assembling a topology optimization algorithm using the gradient-based Optimality Criteria
method adapted to work with the DEM-based governing equations, deriving an objective function and
related gradient equations(O’Shaughnessy et al., 2021).

The proposed methodology allows designers to find static equilibrium configurations for funicular
structures defined by their desired space by minimizing potential energy between blocks. The method
is validated for simply designing space discretized as interacting particles, whose optimum solutions
compare to those from a typical continuum-based algorithm(Bendsøe & Sigmund, 2004).
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1. Research framework

1.1 Introduction

This chapter gives an overview of the research by illustrating its framework, motivation, and the methods
used concerning the formulated problem and research questions derived from it. It also delineates the
boundaries of the research focusing primarily on the topics of computational design, structural mechanics
and architectural design.

1.2 Background and necessity

According to International Energy Agency and the United Nations Environment Programme (2021),
global material extraction, waste production and greenhouse gas emissions from the building sector
(full life cycle) are more than 35% (UNEP, 2021). In such a state of a↵airs, the construction industry
is irresponsibly using natural resources, and the way of construction is depleting those. Also, when
considering where building materials come from, all these materials are initially taken from the earth but
had to go through complex processes to become building products which further increase the pollutions
to air, soil and water.

The world population will increase by at least 2.1 million in the next thirty years. With the popu-
lation growth, the demand for resources by the building industry is predictable growing. The way we
are designing and constructing will lead to further material extraction, extensive energy consumption,
waste production and environmental degradation. After realizing the impacts, the building industry is
transitioning to reduce destruction.

Figure 1

Stewart Brand’s six layers of building which age at di↵erent rates.(Brand, 1994)

In "how building learns", StewartBrand (1994) introduced the six layers of the building, which age
at di↵erent rates. The strategies to every layer have long-term economic, social, and environmental
implications. As part of the building elements, the structure’s life is typically most extended and is
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statics, compared to other sectors. Moreover, when looking into weight distribution in a building, 3/4
of the weight of the building is in its structure. Therefore, designing and constructing structures more
sustainably becomes an urgent topic. To achieve this, Philippe Block (2020) proposed three strategies:

- reducing structural volume by having a better structural geometry to achieve carbon emissions-
reducing.
- addressing resources depletion through the funicular form, which means compression-only form.
- finding waste-free e�cient, economically viable strategies by digital tools toward structural geometries
to decrease building material waste.

This research will explore the possibility toward these three objectives.

1.3 Problem Statement

The previous section discussed that current approaches to design and construct structure lack the ability
to model and fabricate waste-free e�cient prototypes. This section will further define the problems.

When focusing on reducing structural volume, topology optimization is an e�cient and common
means to generate geometrically precise structures which highly optimize sti↵ness and minimize the use
of the material in relatively short periods of time. However, this technique is typically used on small
objects such as connections, hinges and beams. When it comes to building scale, di↵erent methods might
be needed to implement topology optimization.

Figure 2

Topology optimization applied in building scale (example) (van Dijk, 2020)

The strategy behind topology optimization in generating architectural structures is to assign force-
dependent loads to voxels (or pixels). However, these approaches assume that such structures are
successively defined, neglecting their compositions. When these apply to the funicular structure, which
means the compression-only structure, the created algorithm can only be used in the early stage of
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form-finding instead of configuring and fabricating buildings.

In addition, the objective function is computed multiple times when solving a discretized topology
optimization problem, typically using the Finite Element Method (FEM). The FEM is highly e�cient for
linear elastic analyses but becomes problematic when applied to inherently discrete problems, such as
masonry structure analyses, fragmentation and structural collapse.

Overall, current topology optimization approaches are not applicable in funicular structures as part
of the modelling and fabricating, resulting in material waste and structurally non-e�cient geometries.

1.4 Scope and limits

The research involves in three scientific fields, including architectural design, mechanics engineering
and computer science. The intersection of three disciplines shown in figure 2. The following statements
describe the self-limitations of the methods and tools used to achieve the above research objectives within
these three disciplines.

- Structural Topology Optimization
- Numerical analysis
- Compression-only structure
- Statics equilibrium
- 3D tessellation

Specifically, the three-dimension tessellation is a combination between the space-filling system and
structural mechanics, which requires computer science to be integrated.

Limits:

- The structural loads and safety factors will be based on Eurocode standards.
- Mortar or other connections between two blocks will not be taken into account for formulating and

structural analysis.
- Stress tensor will not be discussed in this research.
- The structural analysis will be a linear static analysis so that the sti↵ness matrix will be constant, and

the solving process is relatively short compared to a nonlinear analysis on the same model.
- The material of masonry blocks is considered as idealized isotropic material.

1.5 Research objective

The main objective of this research is to propose a methodology to implement discrete building blocks
into the topology optimization process to generate funicular structures for architecture that is applicable
for construction. The proposed method aims to enhance element optimization (shaping, configuring) of
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Figure 3

Scope of the research

material properties relative to their structural performance. In addition, to improve the relation between
modelling, analysis, and construction processes by providing a more e�cient and integrated workflow.

When applying topology optimization to masonry architecture, the first insight is how to configure
the blocks. In other words, a space-filling grid that di↵ers from the typical voxel grid is needed to provide
a sound structural performance. As the focus is on masonry architecture, this three-dimension grid has to
well perform under compression-only structures.

The second sub-objective is implementing this 3D grid to the topology optimization process. As
mentioned in the previous section, the objective function is typically the Finite Element Method, which
will become problematic when solving inherently discrete problems. Therefore how to formulate the
objective function would be explored in this research.

This research will be performed mainly in Python. Abaqus is used as a structural simulation tool,
which can cooperate with Python to do the structural verification.

1.6 Research questions

The main research question is:
How to implement discrete building blocks into the topology optimization to design funicular structures
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for architecture applicable for later construction processes?

For this, several sub-questions arise:
- How does topology optimization work, including mathematical methodology and optimization algo-

rithms?
- What kinds of topology optimization methods have been applied to solve inherently discrete prob-

lems?
- How can we shift the current voxel system in topology optimization to a grid system with a more

e�cient load path for compression-only structures? This is related to a three-dimension tessellation in
space.

1.7 Methodology

The research and design consist of five steps based on the literature study achievements. A visual
framework of the research is shown in Figure 3.

Figure 4

Research and design framework

Background
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This research is based on the literature study of mainly scientific background, such as Scopus, Google
Scholar, Web of Science, Researchgate and the repository of TU Delft. The queries were formulated
with keywords derived from three major concepts (discrete method, structural topology optimization,
masonry architecture) subdivided into research terms (synonyms for each concept). The results were
evaluated based on their relevance and reliability. Also, the essential background knowledge required for
the thesis is being learned through online open courses, including Numerical modelling, Matrix method
in data analysis and Dynamic mechanics.

Analysis

This step includes theoretical reflection and concept development. The broad study of literature within
the scope is done in the previous step, and the topic can break down into several subproblems.

Design

At this stage, a feasible space-filling grid will be developed. Also, the concept of mathematical model
and algorithm design about how to implement this grid and the load case to topology optimization
process will be proposed.

Verification

Verification will be done by using existing simulation software to analyze the test case’s output.
Moreover, make the comparison with typical generated results.

Conclusion

This step includes a summary and reflection of the design and the developed methodology.

1.8 Planning and organization

The planning and organization (Figure 4) of this research was divided into 5 phases, corresponding to
the project presentation dates.

-The P1 phase entails literature study and acquisition of relevant resources to be used for the research,
after which the objective and main research question are established.

-The P2 phase is reserved for literature study, analyzing relevant cases and gaining mathematical
knowledge, which might be necessary for this project. Also, the research framework and design
methodology concept are established at this stage.

-The way to formulate topology optimization problem need to be finalize at this stage and start with
python coding for both 2D and 3D TO algorithm.

-The P4 phase of this research focuses on performing Structural Topology Optimization simulations
on various 2D and 3D TOY problems, before progressing to the application on a building.
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Figure 5

Graduation planning

- The P5 phase is reserved for finalizing the script, its code, and the report.
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2. Literature study

2.1 Introduction

As mentioned in design methodology, the design consists of three steps: space-filling grid system design,
mathematical design, and optimization algorithm design. This chapter will review literature based on the
research question, clarify some theoretical concepts and introduce desktop design results.

2.2 Discrete element modelling

This section aims to give an overview of the Discrete Element Method. Also, as mentioned in the design
methodology, the first step before the topology optimization process is to redefine the grid system. It is
essential to understand the general tessellation in three-dimensional space and di↵erent approaches to
discretize space.

2.2.1 Discretizing space

Tessellation

The term tessellation describes the division of the space with no overlaps and no gaps. These tessella-
tions can also generalize in three-dimensional space. Certain polyhedra can fill three-dimensional space,
including the cube, the rhombic dodecahedron, the truncated octahedron, and triangular, quadrilateral,
and hexagonal prisms, among others (Branko, 1977).

Approaches to discretize space

There are two main ways to discretize space, which are the Lagrangian method and the Eulerian
method. In Eulerian models, the di↵erential equation and integral calculus are related to stress and
strain via constitutive equation. Node and element need to be defined within a fixed grid. In contrast,
the representation of the Lagrangian model is a connected mesh or cloud of particles, where Newton’s
classical mechanics dominate each particle. The distinct element method is within this group and is
widely used to model the granular materials discretely.

2.2.2 Discrete Element Method

P. A. Cundall (1979) first formulates the Discrete Element Method. In the absence of the damping,
the DEM algorithms are concerned with solving the equilibrium equations for the system of particles
(O’Sullivan Catherine, 2004).

Ma + K�x = � f

where M is the mass matrix, K is the sti↵ness matrix, � f is the incremental force vector, and �x is the
incremental displacement vector. This equation is similar to the global sti↵ness matrix as in the finite
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Figure 6

comparison of the Eulerian method and the Lagrangian method

element analysis.

DE modelling is typically applied in arch structures simulation to understand the mechanical behaviour
of masonry structures. To formulate masonry blocks within DEM, four features need to be understood,
including the element, the contacts, the displacement and loads.

Element

The elements in DEM can be rigid or deformable. In masonry block analysis, the element can behave
rigidly or deformable, although rigid and FEM-subdivided elements are more common (V. Sarhosis,
2019). According to J. V. Lemos (2007), experimental evidence has confirmed that assuming blocks act
as rigid bodies is justified. A reference point is chosen typically at the centre of gravity of the body to
describe the behaviour. The degrees of freedom of a rigid element cooperate with the translation vector
and the rotation vector.

Contacts

Duran (2000) divided the numerical technique used in DEM into soft-sphere models and hard-sphere
models. The significant di↵erence between the two approaches is whether the particle can be considered
deformation or penetration or not.

Both types of methods are time-dependent or transient. After identifying neighbours, two blocks are
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Figure 7

Rigid and deformable polyhedral block (J. Lemos, 1998)

Figure 8

“Hard Sphere” and “Soft Sphere” approaches to DEM (O’Sullivan, 2011)

tested for contact by the contact detection algorithms. When a common plan between two blocks occurs,
subcontacts are created with the help of the nodes being located on the block face. Based on the contact
logic described above, two sets of subcontacts are formed in parallel when two blocks come together,
each carrying subcontact forces.

Figure 9

(A) Block-to-block contact; (B) interactions at contact. (V. Sarhosis, 2019)
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The mechanical behaviour of contacts is modeled by considering the contact sti↵ness defined in both the
normal and shear directions. The behaviour is governed by the joint normal and shear sti↵ness within the
elastic range:

8>><
>>:
�Fn = �kn · �Un · Ac

�Fs = �ks · �Us · Ac

where �Fn; �Fs is the normal and the shear force increment (resultant for the subcontact); kn; ks is the
joint normal and the joint shear sti↵ness; �Un; �Us is the normal and the shear displacement increments
belonging to the subcontact; and Ac is the subcontact area.

The maximum shear force is related to the normal force and the angle of friction.

Fs
max = Fn · tan(')

Displacement

The DEM techniques based on the sti↵ness matrix of the system, which is mentioned at the beginning of
this section, is not applied in masonry modelling (V. Sarhosis, 2019). The current time-stepping method
starts from an initial state and through a series of small, finite time intervals. The equation can be written
as:

M(t) · a(t) = f (t, u(t), v(t))

where M is the inertia matrix, and f is the generalized force vector with time points, displacements and
velocities.

Loads

Loads in DEM can be several types of loads, including external and internal loads.

2.2.3 Static equilibrium as constraints

Whiting et al. (2012) present a method to compute the gradient for the stability of a structure composed
of rigid blocks and optimize masonry structures. Although the proposed methodology is for analyzing
and optimizing existing structures, the way they formulate feasible constraints can be a reference.

To be structurally feasible, the force in a structure must satisfy static equilibrium, friction constraints,
and additional constraints dependent on the material.

Static equilibrium

Static equilibrium conditions require that net force and net torque for each block equal zero, accounting



17

Figure 10

Model of contact forces at interfaces between blocks. (Wei, 2012)

for self-weight of the structure and external applied loads. The equation that combines equilibrium
constraints for each block within a linear system is (Livesley, 1978),

Aeq · f + w = 0

where w is a vector containing the self weights of each block, external forces can also be added using
w; vectors f is the vector of interface forces, and Aeq is the matrix of coe�cients for the equilibrium
equations. The explanation of static equilibrium matrix can refer to the Appendix D.

Compression Constraint

According to limit analysis of masonry, the material can be assumed to have zero tensile strength. The
condition can be expressed as:

f i
n � 0,8i 2 inter f ace vertices

Friction constraint

A friction constraint is applied at all vertices of the block interfaces. For each forces f i
n, f i

t1 , f i
t2 the two

in-plane forces are constrained within the friction coe�cient times the normal force.

��� f i
t1

��� ,
��� f i

t2

���  ↵ f i
n,8i 2 inter f ace vertices

where ↵ is the coe�cient of static friction, and typically equal to 0.7.

Combining friction constraints over the entire assemblage of blocks in the structure gives a sparse
linear system of inequalities:

Af r · f  0

To summarize, the constraints for static equilibrium can be described as above.
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2.3 Topology optimization

This section of the report will follow the mathematical methodology in topology optimization.

2.3.1 What is structural optimization

To understand topology design methods for structural optimization, the first thing to do is have an idea
about structural optimization. Structural optimization aims to maximize the utility of a fixed quantity
of resources to fulfil a given objective. There are three di↵erent types of optimization approaches under
the head of structural optimization: size optimization, shape optimization, and topology optimization
(Sigmund, 2001).

Figure 11

Three categories of structural optimization. a) Sizing optimization, b) shape optimization, c) topology optimization (Bendsøe
& Sigmund, 2004)

In Size optimization, the final shape of structure is prescribed, and the method is to optimize the size
of the components for that structure, while in Shape optimization, the form is unknown. The shape or
boundary is represented as either an equation or control points that can move (Querin, Victoria, Alonso,
Ansola, & Martíh, 2017).In both cases, the number of elements stays still.

On the other hand, in Topology optimization, which is also considered the most general form of
structural optimization (G. I. Rozvany, 1995), part of the structure will be deleted and generate a new
shape. The inputs of this method are the design space, support conditions and the applied load.. It
achieves the optimal by minimizing the design variants. This method generally uses the finite element
method (FEM) as the meshing ease to find the members to be removed.

2.3.2 Topology optimization methods

As an optimization algorithm, topology optimization methods can be grouped into two categories,
including the gradient-based Optimality Criteria method and the non-gradient-based Heuristic method.
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Optimality Criteria are more mathematically rigorous. They satisfy a set of criteria concerning the
structure behaviours. These methods are suitable for problems with a large number of design variables
and a few constraints (Querin, Victoria, Alonso, Ansola, & Martíh, 2017). The Heuristic methods are
often inspired by the process of natural selection, which are easier to understand and provide various
solutions. However, these also result in challenges to guarantee global optimality. The table below lists
the methods within these two groups. In this research, the main focus will be lied in Optimality Criteria
methods.

Figure 12

Topology optimization methods according to Querin, Victoria, Alonso, Ansola, and Martíh (2017)

2.3.3 Topology optimization methods using discrete elements

Another common classification of methodologies suggested by Kentli (2020) is if its discrete elements
are used or not. As the design will consider masonry blocks as discrete elements, the research regarding
mainly used methods in topology optimization will focus on those using discrete elements.

The main methods that use discrete elements include:

-Ground structure method(GSM),
-Solid isotropic material with penalization method (SIMP),
-Homogenization method (HM),
-Evolutionary structural optimization (ESO),
-Level-set method (LSM),
-Meshless methods.

After a broad study of related papers, several conclusions can be drawn, and details can be found
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in Appendix A.

The most common application for using GSM is to solve discrete truss topology problems. The Homog-
enization method solves shape optimization problems where the topology is made from microscale voids
that produce a porous structure(Querin, Victoria, Alonso, Ansola, & Martí, 2017). The applications
related to masonry blocks using HM mainly optimize thermomechanical (Matteo Bruggi, 2013) or
structural performance within a single block, resulting in hollow masonry blocks(Gabriele Milani, 2017).

The concept of the homogenization approach has developed in several di↵erent directions, and the
direct consequence was the development of the SIMP method (Bendsøe & Sigmund, 2004), which is also
known as the density approach. Gabriele Milani (2017) analyzed multistory masonry walls by using this
approach; Whiting et al. (2012) developed an approach to formulate masonry blocks and modify their
geometry; O’Shaughnessy et al. (2021) combined the Discrete element method with SIMP for topology
optimization of discrete elements(disks) by minimizing interaction energy.

Instead of local density variables, the level set method and the meshless method operate with the
boundaries, which also be coined the Lagrangian (boundary follow mesh) approach. As the focus of this
research, these two methods will not be discussed.

Based on the above study, this report will first elaborate on the Solid isotropic material with penalization
method (SIMP) and compare it with the Discrete Element Topology Optimization method, which is
developed established on SIMP.

2.3.4 SIMP-based Topology optimization

SIMP-based Topology Optimization is currently the most commonly used technique and is simplified
by Sigmund (2001). Multiple design variables, constraints, and objectives can be included in the
methodology.

The first step of a numerical TO problem is to define the design space, external loads and supports. The
void area also needs to be determined within the design boundary. The design space is discretized into
individual elements (pixel in 2D and voxel in 3D), and each member is associated with design variable
xe 2 [0; 1], which represent material density at that point. 1 represent full solid at the member, while 0
means the material is deleted.

The general set-up for the topology optimization problem is actually a material distribution problem,
object to minimize compliance. The objective function can be written as (Sigmund, 2001):

min
x

C(x) = UT KU =
NX

e=1

ue
T keue

where K is the global sti↵ness matrix, U is the global displacement vectors, and F is the global force
vectors. N is the number of elements, which equal to (nelx ⇥ nely). ke is the element sti↵ness matrix, and
it depends on xe as a power law (typically p = 3).
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ke = (xe)pk0

Eq 1. can only be solved when the following constraints are satisfied.

sub ject to :

8>>>>><
>>>>>:

V(x)
V0
= fvol f rac

KU = F
0 < xmin  x  1

The first constraint determines the solid target volume, where V(x) is the target material volume; V0 is
the whole design domain with x = 1 for each element; fvol f rac is the preset volume fraction and f 2 (0, 1).
The second constraint is a basic formula to calculate the displacement in each node, using sti↵ness and
the forces work on this node, which is also known as Finite element analysis. The third constraint set
a range for xe between xmin and 1. To avoid singularity, xmin can be very small but not equal to zero
(normally xmin = 10�3).

Numerous methods can solve the topology optimization problem, and this report focuses on the
Optimality Criteria(OC) method. In this method, an updating scheme for design variables is used to find
the new values of xnew (Bendsøe, 1995).

xnew
e =

8>>>>><
>>>>>:

i f xeB⌘e  max(xmin, xe � m), max(xmin, xe � m)
i f max(xmin, xe � m) < xeB⌘e < min(1, xe + m), xeB⌘e

i f min(1, xe + m)  xeB⌘e, min(1, xe + m)

In here, m is a positive move=limit, ⌘(= 1/2) is a numerical damping coe�cient to improve convergence
and Be can be found from the following optimality condition.

Be = �
@C(x)
@xe

(�
@v(x)
@xe

)�1

where � is a Lagrangian multiplier, that is related to constraint v(x) and changes at every step of the
optimization process.

The expression of the sensitivity analysis is partial di↵erential that obtained by the combination of
cost function and penalization scheme.

@c
@xe
= �p(xe)p�1uT

e k0ue

The integrated e↵ect of equations 4, 5 and 6 is to eliminate material from less dense areas and move the
design towards a solid-void only solution (Masoero et al., 2021). The procedure flowchart can refer to
Figure 13.
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2.3.5 Discrete Element Topology optimization method

Commonly, TO tools do not comprise nonlinear material behavior by default (Nadine Stoiber, 2021).
However, to solve the discrete problem in TO, a Discrete Element Topology optimization method is
developed by O’Shaughnessy et al. (2021). The proposed approach is based on the established framework
of SIMP Topology optimization to achieve a system with Discrete Element Modelling (DEM), and the
method only address performance at static equilibrium.

The Discrete element method is a numerical approach describing a discrete, interacting particles
system, first formulated by P. A. Cundall (1979). More details about this technique can refer to section
2.2. In this section, only the essential functions related to this method are shown. Functions of the
interaction force between particles i and j emerging from a harmonic potential are:

Ui j =
1
2

ki j(ri j � r0)2

Fi j = �ki j(ri j � r0)

where ki j is the sti↵ness of the spring, ri j is the inter-particle distance, and r0 is the equilibrium distance.

Instead of minimizing the displacement, the objective of the DEM-based method is to minimize
the interaction energy. Also, the basic grid di↵ers from the FEM-based method, which is the hexagonal
lattice. Comparing the procedure of DETO with SIMP method, some steps are changed to apply it to
DEM system. First of all, the design variable and the cost function is changed. To minimize the total
interaction energy, where Utot =

P
i, j Ui, j, the optimization problem becomes:

min
x

C(x) =
1
2

NX

i=1

NX

j>i

ki j(ri j � r0)2

sub ject to :

8>><
>>:

V(x)
V0
= fvol f rac

0 < xmin  xi  1

Instead of individual elements, the cost function features the pairs of particles. The penalization scheme
is also changed since ki j is associated with pairs of particles under the DEM context. The sensitivity
expression is still written by combining the definition of cost function with the penalized ki j.

ki j = xp
i xp

j k0

@c
@xi
=
X

j,i

�p(xi)p�1xp
j k0(ri j � r0)2

Above equations together complete the basic formulation of DEM-based Topology optimization. The
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Figure 13

Implemented elements, goal and procedure of SIMP method (left) and Discrete Element Topology Optimization method (right).

proposed methodology of Discrete Element Topology Optimization provides an idea of how to formulate
to address the optimization on discrete problems.
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Appendix

Appendix A: Topology optimization methods using discrete elements



The classification is based on the mainly used methods using discrete 
elements

 Main method Application Methods Authors

Ground structure method (GSM) 
Dorn et al. (1964) 

multi-load truss systems with linear programming Sokol and Rozvany (2013)

truss systems with simulated annealing Zhang et al. (2017)

tensegrity structures  
with mixed integer linear 
programming Xu et al. (2017)

large-scale pin-jointed 
frames Sokol (2011)

materials’ nonlinear 
behavior Ramos and Paulino (2014)

skyscraper and arch bridge Zhang et al. (2016)

truss systems 
with particle swarm 
optimization (PSO) 
algorithm

Shakya et al. (2017)

multi-material
using discrete filtering 
scheme Zhang et al. (2017)

Solid isotropic material with 
penalization method (SIMP) 

Bendsøe(1989)

3D printing applications  with BESO Shao (2019)

a continuum-type problem  Lógó  (2012)

eliminate gray areas with simulated annealing Garcia-Lopez et al. (2011)

3D stress-constrained 
topology optimization 
problems  

Gebremedhen et al. (2019)

a multiobjective 
conductivity problem  

with finite volume method 
(FVM) to solve the energy 
equation 

Marck et al. (2012)

structure problem of mold 
(short-fiber-reinforced 
polymer material)

with projected gradient 
method 

Ospald and Herzog (2017)

a MBB beam & a cantilever 
beam (lightweight cellular 
material)

with BESO Qiao et al. (2018)

flywheel rotor  Tsai and Cheng (2012)

an electric vehicle body  Yang et al. (2011)

control the length scale of 
structural members  Zhang et al. (2014)

cellular structures with 
multiple types of 
microstructures   

Zhang et al. (2018)

multiple materials   

introduce power functions 
with scaling and translation 
coefficients and the cost 
properties 

Zuo and Saitou (2016)

enhance thermal insulation 
of masonry blocks

Rational Approximation of 
Material Properties (RAMP) Bruggi and Taliercio (2013)

 Main method



discrete problems with DEM Connor et al. (2021)

multistories masonry wall Milani and Bruggi (2018)

variations of the geometry 
(3D masonry buildings) Whiting et al. (2012)

Homogenization method (HM) 
Bendsøe and Kikuchi (1988)

structure (periodically 
perforated material) Allaire et al. (2019)

metamaterials   
Nonlinear homogenization 
at finite strains 

Zhang and Khandelwal 
(2019)

magnetic composite 
materials   asymptotic HM (nonlinear) Lee et al.  (2019)

hyperbolic acoustic 
metamaterials   

with a level-set-based 
method Noguchi et al. (2019)

optimal truss and frame  
(discrete structure) Larsen et al. (2019)

masonry wall
with an adaptive meshing 
algorithm Milani and Bruggi (2018)

reinforced masonry wall Milani and Bruggi (2015)

microstructures with 
auxetic behavior 

with evolutionary 
algorithms Kaminakis et al. (2015)

optimal masonry blocks 
(structural and thermal 
performance)

Vantyghem et al. (2016)

Evolutionary structural 
optimization (ESO)                       

Xie and Steven (1993) 

fluid dynamics analogy  BESO Daróczy and Jármai (2014)

trusses
with simultaneous topology 
and size optimization 

Tomšič and Duhovnik (2014)

smoothing truss
with XFEM, isoline design 
approach

Abdi et al. (2014)

die components   with Abaqus FEM software  Azamirad and Arezoo (2014)

water distribution network 

multiobjective real-code 
population-based 
incremental learning 
(RPBIL) and a hybrid 
algorithm of RPBIL with 
differential evolution (DE)

Bureerat and Sriworamas  
(2013)

the rotary lobe of root 
vacuum pumps Chen et al. (2013)

plate structure under 
harmonic loading Chen (2014)

cable-truss structure

combination of ground 
structure approach, 
nonlinear finite element 
analysis, and quantum-
inspired evolutionary 
algorithms

Finotto et al. (2012)

PBC made of two-phase 
composites  BESO Huang et al. (2012)

Application Methods Authors Main method



hinge-free compliant 
mechanisms BESO Li et al. (2014)

vibration problems of 
acoustic-structure systems   BESO Picelli et al. (2015)

a cantilever composite 
laminate under uniform in-
plane pressure  

BESO Sun et al. (2011)

constrained layer damping 
plates Wang et al. (2014)

automatic hole generation   
bidirectional evolutionary 
level-set method Zhu et al. (2015)

multiple constraints of 
displacement and 
frequency 

BESO Zuo et al.(2011)

Level-set method (LSM)  

local mesh modifications  Allaire et al. (2013)

geometric uncertainty and 
related problems

shape and topology 
optimization Chen and Chen (2011)

a third dimension for 2D 
problems to adjust new hole 
positions 

shape and topology 
optimization, hole insertion 
method

Dunning and Alicia Kim 
(2019)

stress-related topology 
optimization problems 

Guo et al. (2011)

minimized mass under 
stress constraints Lagrangian approach

Emmendoerfer and 
Fancello (2014)

a light-scattering layer for 
solar cell applications Otomori et al. (2014)

irregular shape problems
with a body-fitted, 
nonuniform finite element 
mesh 

James and Martins (2012)

structural shape and 
topology optimization 
problems 

with XFEM, Lagrangian 
approaches and combined 
shape and topology 
optimization

Wei et al. (2010)

reduction in the vibration of 
structure Shu et al. (2011)

structural-acoustic system  Shu et al. (2014)

elliptic boundary value 
problems

with projection Lagrangian 
method, shape and topology 
optimization

Zhu et al. (2011)

3D isotropic 
microstructures discrete approach Challis et al (2008)

mimic leaf venation 
with element-free Galerkin 
method Lin et al. (2019)

meshless shape
meshless Galerkin level-set 
method Wang and Luo (2011)

multi-material optimization 
problems 

with SIMP and using EFG 
method Cui et al. (2017)

Application Methods Authors Main method



Meshless methods  

geometrically nonlinear 
structures

density variable approach 
with EFG He et al. (2014)

continuum structures with EFG Yang et al. (2017)

free vibrating continuum 
structures with EFG and SIMP Zheng et al. (2012)

same mesh can be used for 
both finite element 
calculations and shape 
representation

Lagrangian approaches and 
combined shape and 
topology optimization

Christiansen et al. (2014)

nonlinear hyperelastic 
structures with EFG Zhang et al. (2018)

geometrically nonlinear 
continuum structures with EFG Zheng et al. (2015)

Application Methods Authors Main method
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Appendix B: Wind load calculation and related Eurocode



Location Paris
Terrain category IV

z0 [m] 1
zmin [m] 10

ce(z) 1.2

Zone A
cpe1 -1.4

qp(ze)=ce(z) × qb [kN/m2] 0.42

we=qp(ze) ×cpe1 [kN/m2] 0.588

Wind load calculation
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Appendix C: Abaqus results of two modular blocks
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