
Delft University of Technology
Master of Science Thesis in Embedded Systems

Pallas: Novel Sound Classification at the
Edge

Max Groenenboom

Networked
Systems

Pallas: Novel Sound Classification at the Edge

Master of Science Thesis in Embedded Systems

Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

Max Groenenboom

February, 2023

mailto:
mailto:

Author
Max Groenenboom ()
()

Title
Pallas: Novel Sound Classification at the Edge

MSc Presentation Date
February 27, 2024

Graduation Committee
Dr. M. A. Zúñiga Zamalloa Delft University of Technology
Dr. Kaitai Liang Delft University of Technology

mailto:
mailto:

Abstract

Sound pollution is becoming an increasingly pressing issue in today’s world.
To effectively address it, it must be measured. To this end, Serval was developed,
an edge-ai powered sound recognition solution. Its lack of accuracy, however,
makes it difficult to deploy. This thesis examines the potential for improving
this solution while staying within its technical limitations in order to raise the
accuracy to satisfactory levels.
Multiple aspects of Serval were evaluated and compared to the current state-

of-the-art: its data augmentation, the embedding it uses, and the hardware it
runs on. Alternatives for each of these components were evaluated and each
aspect was optimized.
The results show that after these improvements, the single-label F1-score

increased from 0.60 to 0.76, and the single- and multi-label combined F1-score
increased from 0.64 to 0.67. Finally, power consumption has been reduced by
14%, partially thanks to the usage of specialized hardware.
One issue that has yet to be adequately addressed is the size of the dataset.

By increasing the number of samples, the accuracy could be further improved.

Preface

I present the master thesis Pallas: Novel Sound Classification at the Edge, about
the development of an improved sound recognition sensor within time and device
constraints. It is inspired by Serval, as developed and provided by SensingClues
and OpenEars.

I want to thank Marco for his extended help and patience, and Michiel from
AMS Institute for providing the OpenEars hardware and the Google Coral TPU.
Furthermore I want to thank my parents for proofreading and practicing the
presentations with.
Finally I want to thank my cat for offering emotional support throughout the

process.

Max Groenenboom

Delft, The Netherlands
29th February 2024

i

Contents

Preface i

1 Introduction 1
1.1 Research Questions . 2
1.2 Report structure . 2

2 Project inspiration: Serval 3
2.1 Serval . 3
2.2 Problems with Serval . 5
2.3 Proposed solutions: Pallas . 6

3 Required background and related work 9
3.1 Acoustic Event Detection . 9
3.2 Machine learning . 10
3.3 Data augmentation . 11
3.4 Embedding . 11

4 Data augmentation 13
4.1 Serval cross-label sample combining 15
4.2 Improved sample combining . 17
4.3 Noise sample augmentation . 18
4.4 Hybrid data augmentation . 20
4.5 Evaluation . 21
4.6 Results . 23

5 Embedding 25
5.1 VGGish . 25
5.2 OpenL3 . 27
5.3 Pallas . 30
5.4 Evaluation . 30
5.5 Results . 33

6 Neural Networks in Embedded Systems 35
6.1 OpenEars . 35
6.2 Pallas device code . 36
6.3 TensorFlow Lite . 38
6.4 Edge TPU . 39
6.5 Evaluation . 39
6.6 Results . 42

iii

7 Conclusion 47
7.1 Process . 48
7.2 Future work . 49

Bibliography 51

List of terms and acronyms 55

iv

Chapter 1

Introduction

Sound pollution has been a problem for humanity since ancient times, but with
the rapid urbanization today, its scale and impact are growing. It is a major
source of discomfort in both urban and rural areas. Recently, the Netherlands
has seen an increase in the perception of sound pollution. In the capital city
of Amsterdam, the measured noise levels are rising1, while in the harbor city
of Rotterdam, the airport is producing more noise than it is allowed to2. In
both cities, traffic enforcement cameras are being developed 34 to monitor noise
levels. Similar research is also taking place in numerous other countries56.

To address a problem, it is necessary to measure it. The most straightforward
way is to measure actual sound levels in the environment. A more advanced
approach is to identify the source of the sound; knowing the source of sound
pollution makes it easier to combat. This can be done by using sound classi-
fication. Sound classification can be done most easily using machine learning,
of which a popular branch is neural networks. Sound classification with neural
networks is a relatively new field [19] with a broad range of applications. These
networks are used for speech recognition, sound classification, and other similar
tasks.

This thesis builds upon Serval, a sound recognition model being developed
by SensingClues. It uses the OpenEars hardware platform to monitor nature
reserves and assist in wildlife protection. For instance a detected gunshot may
signify poachers in the area while similar natural sounds be distinguished as
well. A side project was launched to test Serval in an urban jungle environment,
specifically in the city of Amsterdam. This project requires a different dataset
than the one used in a nature reserves, however it is imbalanced: some classes
it is able to correctly recognize close to 100% of the times, while other classes
do not get close to 60%. This can be caused in part by an imbalance in the
dataset used, more about this in chapter 4.

Another aspect that keeps this project behind is its dated dependencies. It
is built in TensorFlow 1, which is deprecated, and the embedding used has

1https://www.parool.nl/ws-b3b0d9f2
2https://www.rijnmond.nl/nieuws/1550124
3https://www.parool.nl/ws-b43e01fc
4https://nos.nl/artikel/2382573
5https://www.bbc.com/news/uk-48564995
6https://www.nyc.gov/site/dep/news/22-005/

1

https://www.parool.nl/ws-b3b0d9f2
https://www.rijnmond.nl/nieuws/1550124
https://www.parool.nl/ws-b43e01fc
https://nos.nl/artikel/2382573
https://www.bbc.com/news/uk-48564995
https://www.nyc.gov/site/dep/news/22-005/

also been preceded by more modern variants. chapter 5 focuses on this aspect.
Changing any of these aspects may cause the hardware to be insufficient to run
the updated code. To overcome this problem, chapter 6 explores software and
hardware possibilities that may be necessary to run the updated code.

1.1 Research Questions

For this thesis, we can formulate the following research questions:

• Can we reduce the class imbalance and improve the accuracy of the Serval
model without changing the dataset?

• Is changing the embedding enough to reduce imbalance or improve the
accuracy of a model?

• Can we get a model better than the Serval model while staying within
computational and timing restraints?

1.2 Report structure

This thesis builds upon Serval, which has multiple problems. Its main draw-
back is its low accuracy, making it difficult to deploy in its intended scenario.
Chapter 2 describes Serval and its components in-depth, and a number of op-
tions for improving it.
Because this thesis builds upon a number of existing solutions and research,

chapter 3 explains the methods and research that made this thesis possible. It
describes the main problem that Serval and this thesis aim to solve and provides
an introduction into data augmentation, machine learning, and embeddings that
may be necessary to understand this thesis.
The main workload can be divided into three main topics. The first of these

topics is data augmentation. Serval already employs data augmentation in its
pipeline, however fine-tuning their approach may improve the quality of the
input data and the trained model. Chapter 4 explores different methods of data
augmentation, and we find that a method that combines an improved version
of Serval’s data augmentation with a novel approach improves the accuracy of
the final model.
The second major topic is the embedding that Serval uses. Serval uses an em-

bedding to facilitate the training of a model, which would otherwise be a rather
costly and slow task due to the size and complexity of the model. Chapter 5 ex-
plores an alternative embedding and its possible configurations, and we discover
that an unexpected configuration yields the best results.
Thirdly we explore the software and hardware platform OpenEars. As the

alternative embedding mentioned above is a lot larger and slower compared to
Serval’s original embedding, the platform and the software may need adapting
in order to run in real-time. chapter 6 explores the different considerations that
may need to be taken to run a larger model in real time on the same hardware.
Finally the thesis concludes with a conclusion in chapter 7. Here we review

everything we learned, reflect on the process of writing and working on this
thesis, and conclude with some options for future work.

2

Chapter 2

Project inspiration: Serval

This thesis is based on Serval1(Sound Event Recognition-based Vigilance for
Alerting and Localization), a product currently being developed by SensingClues2:
a Dutch foundation that develops smart solutions for nature conservation and
wildlife protection, in collaboration with Sensemakers3: an Amsterdam-based
community that focuses on IoT and smart city solutions. The purpose of Serval
is to help with wildlife monitoring in remote areas. This chapter explains what
Serval is and what can be improved. In addition, it presents potential concrete
improvements that we propose.

2.1 Serval

Serval4 is an algorithm for training a sound recognition model. It is being de-
veloped in conjunction with OpenEars5, a software + hardware platform to
deploy smart microphones and a server with a dashboard that displays the
measurements and predictions of these sensors. One of these devices is shown
in Figure 2.1. These sensors are intended to be used in wildlife reserves to track
wildlife behavior - particularly elephants’ - and human presence in the form
of chainsaws, engine sounds, and gunshots. Sounds travel much further than
visuals, making it possible to map large areas with relatively few and relat-
ively inexpensive sensors. Mapping wildlife behavior is invaluable in scenarios
where such wildlife needs to to be protected. Measuring human presence en-
ables rangers to identify early on where poachers and illegal loggers are active,
allowing them to more effectively combat them.

Serval is based on the Youtube-8M Tensorflow Starter Code6 repository, a
demo for using the Youtube8M[2] dataset. This demo and Serval are powered
by Tensorflow 1[1], a machine learning framework for Python. Serval also uses
data augmentation to reduce the class imbalance in the dataset and increase the
overall amount of samples. Finally the embedding VGGish[13] is used to extract

1https://sensingclues.org/news/category/Serval+Sensor
2https://sensingclues.org/
3https://www.sensemakersams.org/
4https://github.com/SensingClues/serval
5https://github.com/SensingClues/OpenEars
6https://github.com/google/youtube-8m

3

https://sensingclues.org/news/category/Serval+Sensor
https://sensingclues.org/
https://www.sensemakersams.org/
https://github.com/SensingClues/serval
https://github.com/SensingClues/OpenEars
https://github.com/google/youtube-8m

Figure 2.1: An opened OpenEars device

RNN layer
(10 LSTM cells)

Frames

Gates
(Fully connected)

Experts
(Fully connected)

Softmax Sigmoid

Hadamard product

Class probabilities

Frame-level model

Video-level model

Figure 2.2: The layers that the Serval model and the Youtube8M model
consist of

4

features from audio segments, facilitating the training of the Serval model. The
precise layout and nature of VGGish is detailed in chapter 5.
The Serval model consists of two sub-models as shown in Figure 2.2: a frame-

level model that runs on the variable-length list of frames of which the video
(or audio) consists and a video-level model that runs on the output of the
frame-level model. The frame-level model is a long short-term memory (LSTM)
model consisting of 1 layer of 10 LSTM cells and the video-level model consists
of a Mixture of (Logistic) Experts (MOE) model as proposed by Jordan and
Jacobs [15]. This MOE model is implemented as two fully connected layers that
are multiplied by each other. The model is intended to recognize which sound
classes can be heard in the sample. To do this it calculates the probabilities
that a given class is featured in the sample, after which this is compared with
a predetermined threshold to decide whether this class will be considered to be
present or not.
OpenEars is powered by a Raspberry Pi 4 Model B Rev 1.1 7 and is being

developed by SensingClues and Sensemakers. It uses a UMIK-1 omnidirectional
USB microphone8. The software is based on devicehive9, an open source IoT
data platform, and communication is done using MQTT, a lightweight mes-
saging protocol.
Additionally, Serval is coupled with an urban sound dataset collected by Waag

Society and Sensemakers in the city of Amsterdam. The main goal of Sense-
makers is to gain insight into the intensity and sources of noise pollution and
signs of criminal activity while further developing the wildlife sensor in an easier
environment.

2.2 Problems with Serval

Serval has some issues that need to be addressed. It is based on the Youtube-
8M demo code, which is rather outdated (the most recent updates date back to
2019) and is powered by Tensorflow 1, which is no longer supported.
A mayor issue with Serval itself is caused by its structure. Serval is com-

posed of 12 Jupyter (A web based interactive coding environment)[16] note-
books. These notebooks are great for interactive and collaborative work, but
a lot harder to use from the command line or in an automated environment.
Furthermore, a copy of the configuration is stored in duplicate in each notebook,
making it difficult and prone to errors to change a single configuration or path,
as these need to be changed in every file.
Finally, the accuracy of the model is inadequate, making it impossible to

deploy the system in the real world, making this the most pressing problem to
solve.

7https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
8https://www.minidsp.com/products/acoustic-measurement/umik-1
9https://github.com/devicehive/devicehive-audio-analysis

5

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.minidsp.com/products/acoustic-measurement/umik-1
https://github.com/devicehive/devicehive-audio-analysis

Amsterdam
dataset

Serval cross-label
sample combining

Various Pallas data
augmentation options

Embed with VGGish Embed with VGGish
or OpenL3

Train Serval network Train Pallas network

Data
augmentation

Embedding

Training

Run with OpenEars
device code on

OpenEars device

Run with Pallas
device code on

OpenEars device

Device code

Figure 2.3: Serval’s components on the left compared to Pallas’ com-
ponents on the right

2.3 Proposed solutions: Pallas

In order to address both the issue of being outdated and the issues with its
structure, the entire codebase must be rewritten. This new codebase goes by the
name of Pallas. Pallas still uses Jupyter notebooks, but functions and constants
are moved to separate Python files to enhance usability. Pallas is powered by
Tensorflow 2 and a single configuration is used by all other functions and scripts.

To improve the accuracy of the model, several aspects must be revised. First,
the data augmentation part of Serval is improved. Since the dataset is im-
balanced and does not accurately reflect the final objective of the model, the
dataset is augmented before being used to train the model. As this is a critical
step in Serval, the data augmentation method used by Serval is evaluated and
improved.
Also, the embedding is replaced with L3-Net[3], or specifically OpenL3[10],

an open-source Python library that makes L3-Net much easier to use. This
helps to improve the model’s accuracy. The downside of this change is that
OpenL3 and the embeddings it generates are a lot larger than VGGish and its
embeddings.
Finally, the OpenEars code is powered by TensorFlow 1 as well. As Pallas

6

is powered by TensorFlow 2, certain work is necessary to run this new code on
the device. Also, the device software and hardware must be optimized to ensure
the much heavier OpenL3 model is able to run in real-time.
All components of Serval and their updated components in Pallas can be

found in Figure 2.3.

7

Chapter 3

Required background and
related work

3.1 Acoustic Event Detection

Serval can be seen as a potential answer to the acoustic event detection (AED),
or specifically the environmental sound classification (ESC) problem: recogniz-
ing and categorizing sound events. These solutions are designed to constantly
monitor sounds from the environment and detect and classify certain sound
types. In the case of Serval, these are either urban or natural sounds, depend-
ing on the dataset used to train the model.

Comparable projects have been implemented around the world to measure
noise pollution. Recently, researchers from New York University[6] worked on
a similar sensor network deployed in New York City, called SONYC – Sounds
of New York City. Both SONYC and Serval focus on measuring and analyz-
ing environmental sounds. The main difference between these projects is that
SONYC defines a complete framework that not only measures and analyses en-
vironmental sounds, but also visualize it and even formulate ways to actuate on
it. Serval and Pallas on the other hand focus on (autonomous) hardware that
analyses data on the edge, and reports to a client.

Another earlier project is the IDEA (Intelligent Distributed Environmental
Assessment) project [7] from Flanders in Belgium, IDEA can be seen as a stand-
ard sensor network. The main difference in the sensors is that the sensors do not
do any analysis but transmit the data to a server. Connected to this server are
autonomous agents doing various kinds of analysis. Serval and Pallas of course
do this analysis on the edge, to minimize the amount of data sent and reduce
the privacy impact. Finally this approach requires a massive data collection
and storage server, serving not only multiple sensors but also multiple analysis
agents. Serval and Pallas on the other hand do not require such a server. For
these only a small server would suffice.

A final project that was examined is MESSAGE[5] (Mobile Environmental
Sensing System Across Grid Environments) from Newcastle University, deployed
in the UK and Palermo, Italy. Again, this project has a rather different focus
compared to Serval and Pallas. This project focuses on two parts. First focus
point is on the hardware. An inexpensive autonomous mote was developed, in

9

order to make it cheaper and more attractive to deploy. Serval is still in its
development phase, using a prototyping platform for its development. Further-
more, these motes do not support sound recognition, only sound pressure levels
are recorded. The second focus is on clustering the sound pressure levels recor-
ded depending on their environments: The type of road they are placed at, as
well as the presence of objects such as schools, traffic lights and bus stops, and
the effect of wind strength and wind direction compared to the street direction.
The aim of Serval is the opposite, to sense at larger scales, to detect wildlife
and human presence, and not local effects.
Of course, there are many more projects that focus on this problem. A handful

of promising and differing solutions was chosen for comparison, while there may
be more similar solutions.

3.2 Machine learning

Machine learning is a broad field with even broader application. It uses statistics
and generalization to train models that are able to do a plethora of tasks, includ-
ing classification, segmentation, and recently even content generation. Serval
uses it both in its embedding, VGGish, which is a deep convolutional neural net-
work (DCNN), and the downstream model, a long short-term memory, which
is a type of recurrent neural network (RNN).
One of the earliest researches into ESC with DCNN was done by Piczak[20] in

2015. He considered that while DCNN has shown promising results in multiple
fields already, including sound analysis such as speech recognition and music
analysis, no attempt was made yet to apply DCNN to ESC. This research shows
promising results, especially considering its datedness.
Another relatively new type of RNN is the attention-based model. This model

is able to focus on different weights, depending on the context. Zhang et al.[28]
used this method to accurately do ESC, albeit with a limited dataset. This
method shows promise however, especially when considering the size of the
model. Attention might be an interesting option to explore apart from using an
LSTM.
Jatturas et al.[14] compare older feature-based methods with newer DCNN

methods, comparing support vector machine (SVM) and multilayer perceptron
(MLP) methods with a method consisting of a DCNN model for its feature
extraction with fully connected layers as the classifier. The latter is similar
to what Serval and Pallas are doing, using an external DCNN model as its
embedding to do the feature extraction. The main difference with this paper is
that Serval and Pallas use an LSTM instead of simply fully connected layers,
although fully connected layers are still used for classification after the LSTM.

10

3.3 Data augmentation

In order to train any machine learning model, one must have training data. This
data can be either labelled or unlabelled, depending on the type of machine
learning. Depending on the complexity of the problem, it may be necessary to
increase the amount of data or diversify the existing data. Data augmentation
is a technique to modify existing training data or generate new training data.

This method can be applied to both image and audio data. The audio data
is usually converted to a visual representation, a spectrogram, and then data
augmentation can be applied to the spectrogram. This allows one to use image
data augmentation methods on audio data. Many data augmentation tech-
niques exist for images, with differing effectiveness and efficiency, as shown by
Shorten and Khoshgoftaar[23]. These techniques include basic transformations
such as flipping, rotation, panning, cropping, and noise injection. Other options
include altering the brightness of the image, or any other color space transform-
ations when using colored images, if possible in the problem context. Finally
more complex techniques may randomly mix images, cut parts out, or even use
specialized neural networks for generating completely new data.

When dealing with audio, there are more options besides image data augment-
ation on the spectrogram. One option is to combine multiple samples together.
This can be done in multiple ways: Takahashi et al. [26] propose that combining
samples of the same class yields new samples of that class: A sample containing
two (different) cars should be tagged as a sample with cars. In multi-label clas-
sification, samples from different classes can be combined to yield multi-label
samples: A sample containing both a car and a gunshot should be tagged as
having both car sounds and a gunshot in it, in a multi-label classification task.
This is a novel type of data augmentation that Serval uses. Other options in-
clude injecting noise into the samples, performing a time shift on the samples,
or changing the speed, pitch or volume of samples, as discussed by Salamon and
Bello [22].

Serval uses data augmentation to achieve two goals: first of all to rebalance
the dataset, and secondly to get multi-label samples that are not present in the
original dataset. This technique and other options will be evaluated to improve
the final accuracy.

3.4 Embedding

Training a deep neural network to complete a complex task such as acoustic
event detection (AED) requires a large dataset and a lot of computing power. An
embedding is a relatively new solution that can be used when these requirements
are not met. It consists of a model that extracts features from an input that can
be used to complete the AED task. An example of this is a model that extracts
facial features for face recognition. When using such an embedding, one only
needs to train a model to complete the AED task using the features as input.

There are numerous examples of embeddings that have recently been de-
veloped. An early example is SoundNet, developed by Aytar et al.[4] in 2016 at
Massachusetts Institute of Technology. It uses a student-teacher model to train
a deep convolutional neural network to extract features from samples, which are
validated by a one-layer SVM (Support Vector Machine), a machine learning

11

algorithm.
Concurrently at Google, Hershey et al.[13] developed VGGish (Named after

VGG[24], which itself is named after the Visual Geometry Group of the Uni-
versity of Oxford). This was an experiment to show that deep convolutional
neural network developed for image recognition are also excellent at recognizing
sounds in spectrograms. This model was further adapted to an embedding and
released to be used as such.
Meanwhile, Arandjelović et al.[3] developed L3-net through a novel approach

to train both a sound and video embedding: the correspondence between video
and audio was used to train a network to predict whether an audio and a video
segment are from the same video. This yields two sub-networks - one for video
and one for audio. The audio sub-network proved to be an excellent embedding
for sound recognition, almost on par with human sound recognition. While it
is a much more complicated and large model, it is an excellent candidate to
improve Serval’s model accuracy.

12

Chapter 4

Data augmentation

The most obvious way to train a model is through supervised learning with a
labelled dataset. However training a model for acoustic event detection (AED)
is a challenge due to the need for large amounts of training data and the high
cost of labeling such data.
As presented in section 3.3, data augmentation is one possible solution. Also,

Serval already employs data augmentation, so exploring the different options
here feels like a promising option. Furthermore data augmentation can be used
as a way to eliminate or mitigate class imbalances. Serval is able to recognize
multiple classes at the same time. If a sample contains both car noises and a
gunshot, Serval is able to classify both of these sounds at the same time. This
requires a dataset with multi-label samples, samples with sounds from multiple
classes occurring at the same time or shortly after each other. However, data
augmentation can be applied to a dataset with single-label samples to generate
multi-label samples, which is necessary to train a model to do this.
As we can see in Figure 4.1, Serval’s dataset suffers from heavy class imbal-

ance: for each motor sample there are almost 17 gunshot samples. Furthermore
with 3413 samples the amount of samples seems to be rather small for a modern
dataset, considering the amount of samples in commonly used or even dated au-
dio datasets as seen in Table 4.2. Furthermore, not all samples are in the same
samplerate. This is evident in Table 4.1. While this should not be a prob-
lem for VGGish as it uses 16KHz input, OpenL3 uses 48KHz input which may
compromise the improvements gained from using the newer embedding.
This chapter explores multiple possible data augmentation techniques. Sec-

tion 4.1 details the data augmentation technique that Serval uses, while sec-
tion 4.2 explores an improvement upon this method. Section 4.3 explores a
method using noise to differentiate samples and finally section 4.4 details a
method combining multiple of the mentioned methods to achieve a hybrid type
of augmentation.

13

876

812
634

536

217
164

Gunshots

Mopeds

Loud people

Terrace noise

Car horns

Slamming car doors

Amplified music

Motors

Moped alarms

Figure 4.1: The amount of samples in the dataset for each class. The
imbalance between classes can clearly be seen.

16000 44100 48000 Total

Gunshots 0 876 0 876
Moped alarms 0 0 23 23

Mopeds 0 0 812 812
Car horns 85 0 132 217

Slamming car doors 0 0 164 164
Loud people 0 0 634 634

Motors 0 0 51 51
Terrace noise 0 0 536 536

Amplified music 66 0 34 100

Table 4.1: The amount of samples per sample rate in the dataset for
each class.

Dataset Year of introduction # of Samples # of classes

ESC-50[21] 2015 2000 50
ESC-10[21] 2015 400 10

SoundNet[4] 2016 2140000 N/A (unlabelled)
Audio Set[11] 2017 1789621 632

Serval 2020 3413 9

Table 4.2: Different audio datasets with their amount of samples and
amount of classes listed.

14

Resampled,
dampened & time
shifted samples

Train

Test

0.5

0.5
Samples

Combined train
samples

x3 Augmented Samples

Figure 4.2: Serval cross-label sample combining. First samples are res-
ampled from their original frequency to 16KHz. These samples are
then dampened by 6 and 12 dB. Then they are split 50%/50% in a
train and a test set. Finally the training samples are combined to
generate a larger and more balanced training set. For each combina-
tion a sample is combined with a softer sample of a different class.

Gunshots

Mopeds

Gunshots -6dB Gunshots -12dB

Mopeds -12dB

Gunshots +
Mopeds -6dB

Gunshots +
Mopeds -12dB

Gunshots -6dB +
Mopeds -12dB

Mopeds -6dB

Original samples

Dampened samples

Multi-label
combined samples

Figure 4.3: Serval cross-label sample combining detail with only two
classes. For each class, dampened samples are created. The original
and dampened samples are combined with samples from other classes.
The primary class is the class of the loudest sample used for the
combination.

4.1 Serval cross-label sample combining

A particular data augmentation technique that is interesting to us is is the
technique employed by Serval, which involves combining samples with samples
with a different label, yielding new multi-label samples. This technique will
be referred to as Serval cross-label sample combining in the remainder of this
thesis.

Figure 4.2 shows the steps in this data augmentation and Figure 4.3 illustrates
the data augmentation process in detail with two example classes. If we take
only the gunshots and mopeds classes, first all gunshot samples are time-shifted:
they are cut in half at a random place and then wrapped around. Do note that
this may cut in the middle of the relevant event, however this may happen in
real time recordings as well and may improve the model’s ability to correctly
recognize in such cases. Then they are resampled to 16000 kHz (the frequency
used by the embedding VGGish) and copies dampened by 6 dB and by 12 dB
are created. These dampened samples will be referred to as gunshots -6dB and
gunshots -12dB from now on. This is done for all classes. Half of these samples
are reserved for validation.

15

1 2 3 4 5 6 7 8 9

Gunshots (1) 1236
Mopeds (2) 1493 1266

People noise (3) 1497 1497 966
Terrace noise (4) 1493 1494 1491 753

Car horns (5) 1484 1493 1482 1482 291
Slamming car doors (6) 1486 1488 1483 1484 1447 204

Amplified music (7) 1478 1486 1476 1470 1422 1413 156
Motors (8) 1463 1460 1455 1438 1361 1326 1280 81

Moped alarms (9) 1403 1424 1407 1382 1220 1118 1056 767 36

Total primary 13033 11608 9760 8009 5741 4061 2492 848 36
Total 13033 13101 12754 12487 11682 11449 11237 10631 9813

Table 4.3: The amount of samples per class combination after cross-
label sample combination and the total amount of samples per class.
Horizontally are the primary labels, vertically the secondary labels.
The total primary counts all samples where the primary class is the
given class. The total either counts all samples where the given class
is present–either as primary or as secondary label.

Subsequently, a number of samples are created by combining gunshot samples
with softer moped samples. This results in three new multi-label sample sets:
gunshots combined with mopeds -6dB, gunshots combined with mopeds -12dB,
and gunshots -6dB combined with mopeds -12dB. These samples have gunshots
as their primary label and mopeds as their secondary label, as the gunshot
sample was louder than the moped sample. No other combinations are made
as the moped samples may not be louder than the gunshot samples due to the
gunshot samples being earlier in the order of classes. This seemingly arbitrary
decision will be addressed in section 4.2. For each possible combination allowed
by these rules, by default 500 samples are created. Finally, all dampened single-
class samples are also included in the dataset.

Why does Serval use this data augmentation? First of all, this is an effect-
ive way to rebalance the classes. As previously seen in Figure 4.1, there is a
significant imbalance between the amount of samples of classes. The augmen-
ted dataset in Table 4.3 demonstrates that this imbalance has been completely
eliminated, and the number of samples has been significantly increased. Addi-
tionally, this data augmentation technique allows the model to be trained for
multi-label classification without requiring a multi-label annotated dataset.

It can also be observed that the single-label samples on the diagonal are still
highly imbalanced and few compared to the multi-class samples. This may
compromise the model’s ability to accurately label classes that contain only a
single sample. Moreover, combinations above the diagonal are omitted. These
are samples where the ’later’ occurring class has a higher volume. This results
in the moped alarms class having only dampened samples in the augmented
dataset, which may compromise the model’s ability to recognize this class.

Additionally, dampening is done before doing a train test split. This results
in samples and their dampened variants being in both of the sets. For example
if we take a random sample, the original volume sample may be in the train
set, with the dampened variant in the test set. These samples may be too
similar causing the test metrics to be unreliable by making it harder to detect
overfitting.

16

Train

Test

0.8

0.2
Samples

Combined samples
Resampled,

dampened & time
shifted samples

Resampled samples

x3

Figure 4.4: Improved sample combining. Similar to Serval cross-label
sample combining, however some of the flaws were fixed. First of
all the train/test split was done before the dampening. Furthermore
no uncombined samples are added, instead single-label samples are
combined samples as well

Gunshots

Mopeds

Gunshots -6dB Gunshots -12dB

Mopeds -12dB

Gunshots +
Mopeds -6dB

Gunshots +
Mopeds -12dB

Gunshots -6dB +
Mopeds -12dB

Mopeds -6dB

Gunshots + Gunshots
-6dB

Gunshots -6dB +
Gunshots -12dB

Gunshots + Gunshots
-12dB

Mopeds -6dB +
Mopeds -12 dB

Mopeds + Mopeds
-12 dB

Mopeds + Mopeds -6
dB

Gunshots -6dB +
Mopeds dB

Gunshots -12dB +
Mopeds dB

Gunshots -12dB +
Mopeds -6dB

Original samples

Dampened samples

Single-label
combined samples

Multi-label
combined samples

Serval combinations

Figure 4.5: Improved sample combining detail with only two classes.
For each class, dampened samples are created. Highlighted are the
sample combinations shown in Figure 4.3. Combinations where mo-
peds are louder than gunshots are now additionally created, as well
as single-label combinations of two different volume gunshot samples

4.2 Improved sample combining

The most straightforward way to improve the data augmentation technique
mentioned in section 4.1, is to allow the omitted combinations mentioned in the
same section. This is illustrated in Figure 4.5. First the samples on the diagonal,
which are single-class samples, can be combined samples as well; Takahashi et
al. [26] proposed that two same-class samples can also be combined to create a
new sample, thus balancing the classes better. Second, the samples above the
diagonal are omitted in Serval’s data augmentation. This causes the augmented
dataset to remain imbalanced. This also can be improved to yield a more
balanced augmented dataset.

Concretely this means that while Serval would not generate samples from
gunshots -12dB and mopeds -6dB, because here the moped samples are louder
than the gunshots samples, this improved method fixed this problem and also
generates samples of gunshots -12dB combined with mopeds -6dB. Applying
this change yields us the combinations table shown in Table 4.4. This method

17

1 2 3 4 5 6 7 8 9

Gunshots (1) 750 750 750 750 750 750 750 750 750
Mopeds (2) 750 750 750 750 750 750 750 750 750

People noise (3) 750 750 750 750 750 750 750 750 750
Terrace noise (4) 750 750 750 750 750 750 750 750 750

Car horns (5) 750 750 750 750 750 750 750 750 750
Slamming car doors (6) 750 750 750 750 750 750 750 750 750

Amplified music (7) 750 750 750 750 750 750 750 750 750
Motors (8) 750 750 750 750 750 750 750 750 750

Moped alarms (9) 750 750 750 750 750 750 750 750 750

Total primary 6750 6750 6750 6750 6750 6750 6750 6750 6750
Total 12750 12750 12750 12750 12750 12750 12750 12750 12750

Table 4.4: The amount of samples per class combination after improved
sample combination and the total amount of samples per class.

will be referred to as Improved cross-label sample combining.

Because this effectively means we get over 2 times as many samples, the
amount of samples per possible combination is halved from 500 to 250 to get ap-
proximately the same total amount of samples as with Serval cross-label sample
combining.

A second change is the shift from a 50%/50% train/test split to a 80%/20%
train/test split, as illustrated in Figure 4.4. This is a more standard balance
between the train and test sets, and it should allow of a better model at the
cost of less reliable accuracy metrics. Because the Serval training code does
not use a validation set and because of the size of the dataset, I opted to do
a train/test split just like the Serval cross-label sample combining technique.
An important difference however is that the train/test split is done before any
dampening. This ensures that a sample does not have similar (dampened or
original) samples in the other set, and that the test samples are unmodified
instead of potentially dampened.

As shown in the new table, all classes now have an equal amount of primary-
labelled samples. This eliminates the possible imbalance due to classes lacking
‘easier’ samples. Furthermore, this modified data augmentation technique now
also generates single-label combined samples (samples gained by combining two
samples with the same class), while Serval only generates multi-label combined
samples (samples gained by combining two samples with different classes). This
eliminates the class imbalance in single-class samples.

4.3 Noise sample augmentation

The most basic rebalancing technique is to simply train with samples from un-
derrepresented classes multiple times. This rebalances the dataset but could
introduce major overfitting in the underrepresented classes. One way to avoid
overfitting is to add a layer of noise to the samples as proposed by Salamon and
Bello [22]. Depending on the level of noise, this may differentiate the samples
sufficiently to eliminate the overfitting. While Salamon and Bello use back-
ground noises such as street and park ambient noise, I opted to use generated
pink noise, which, according to Szendro et al. can be regarded as the most
natural type of noise[18]. It is also approximately the sound generated by wa-

18

Train

Test

0.8

0.2
Samples

Noise augmented
samples

Resampled and time
shifted samples

Resampled samples

Figure 4.6: Noise sample augmentation. A layer of pink noise is added
to the resampled and time shifted samples. This only happens to train
samples. Because no combinations are being made, the dampening is
not necessary and is skipped.

10000 20000 30000 40000 50000 60000 70000 80000
0.0

0.2

0.4

0.6

0.8

1.0

(a) Without noise

10000 20000 30000 40000 50000 60000 70000 80000
0.0

0.2

0.4

0.6

0.8

1.0

(b) With noise

Figure 4.7: Spectrogram of a sample before and after adding noise

terfalls. As shown in Figure 4.6, no dampening is done as these were necessary
for the combinations.

The main advantage of using this technique is that it is fast and easy to
implement. The samples are also easier to train on and are more similar to the
samples in the test set. This should speed up training compared to the methods
mentioned earlier. Additionally training the model to cope with noise should
help it to recognize sounds in noisier environments and in harsher conditions
such as during rain or storm. It could possibly even compensate for lower quality
hardware.
However one should wonder if adding noise to the samples provides enough

differentiation to avoid overfitting completely. When added to a waveform, noise
seems to alter it dramatically, but if we look at the associated spectrograms, it
only looks ’brighter’ compared to the original sample–with details being washed
out as a result. This is illustrated in Figure 4.7. This may compromise the
quality of using this data augmentation type.
Finally this method does not generate multi-label samples and thus will not

help in training a model to recognize multiple classes at the same time.

19

Train

Test

0.8

0.2
Samples

Combined samples
Resampled,

dampened & time
shifted samples

Resampled samples
Noise augmented

samples

Augmented Samples

x3

Figure 4.8: Hybrid data augmentation. The augmented datasets ob-
tained through improved sample combining and noise sample aug-
mentation are combined into a new augmented dataset.

1 2 3 4 5 6 7 8 9

Gunshots (1) 1451 750 750 750 750 750 750 750 750
Mopeds (2) 750 1451 750 750 750 750 750 750 750

People noise (3) 750 750 1451 750 750 750 750 750 750
Terrace noise (4) 750 750 750 1451 750 750 750 750 750

Car horns (5) 750 750 750 750 1451 750 750 750 750
Slamming car doors (6) 750 750 750 750 750 1451 750 750 750

Amplified music (7) 750 750 750 750 750 750 1451 750 750
Motors (8) 750 750 750 750 750 750 750 1451 750

Moped alarms (9) 750 750 750 750 750 750 750 750 1451

Total primary 7451 7451 7451 7451 7451 7451 7451 7451 7451
Total 13451 13451 13451 13451 13451 13451 13451 13451 13451

Table 4.5: The amount of samples per class combination after hybrid
data augmentation and the total amount of samples per class.

4.4 Hybrid data augmentation

With different data augmentation techniques explored in the previous sections,
we see that each technique has their own advantages and disadvantages. The
best way to harness the advantages of both the improved cross-label sample
combination in section 4.2 and noise augmentation section 4.3 is to combine the
augmented datasets to get a new, more varied augmented dataset. As illustrated
in Figure 4.8, both the combined samples and noise augmented samples are
generated separately, and then joined in a new dataset.

This hybrid data augmentation technique should benefit from the advant-
ages of both techniques mentioned. The improved sample combining ensures
a model is prepared for multi-label input, and the noise sample augmentation
creates balanced single-label samples. As shown in Table 4.5, the input dataset
is almost perfectly balanced. It consists of single-label uncombined samples (ori-
ginal samples with pink noise added), single-label combined samples (samples
gained by combining two samples with the same class) and multi-label combined
samples (samples gained by combining two samples with different classes).

20

Model DA technique Training samples DA duration
None None 2734 0:00:24
Naive Naive rebalance 6309 0:00:38
Serval Serval cross-label sample combining 49898 3:01:53
Improved Improved sample combining 60750 0:03:50
Noise Noise sample augmentation 6310 0:01:35
Hybrid Hybrid data augmentation 67060 0:04:43

Table 4.6: All trained models with the amount of training data and
the time taken by data augmentation. Models None and Naive are
baseline models. Serval is trained on Serval cross-label sample com-
bining as mentioned in section 4.1, Improved is trained with Improved
sample combining from section 4.2, Noise was trained with the Noise
sample augmentation described in section 4.3, and finally Hybrid was
trained on Hybrid data augmentation as mentioned in section 4.4

4.5 Evaluation

To test our hypotheses, all mentioned techniques were used to train a model.
Additionally, as a baseline, a model was trained without any data augmentation,
and a ”naive rebalance” technique was used, wherein the samples are rebalanced
without sample modification, thus serving identical samples multiple times. All
techniques and their respective time taken on data augmentation and training
can be found in Table 4.6.
From the table it can be derived that all techniques using sample combin-

ation take less time per sample than techniques that do not employ sample
combination. Furthermore, we can see that the ”Serval cross-label sample com-
bining” technique takes dramatically longer than all other methods. This can
be explained partially by implementation details and the choice of library: as
shown in Figure 4.9, the Serval code for resampling files is dramatically slower
compared to the new methods, taking around 60 times as long. Serval uses
the Librosa[17] Python library for loading samples, the resampy library for res-
ampling samples, and the soundfile library - based on libsndfile - for writing
samples. The new methods on the other hand use the scipy[27] library for both
loading and writing files, and the audioop library for resampling. Finally, the
new methods are optimized to not do any resampling when the sample rate is
already the target rate, however in the making of Figure 4.9, it was ensured
that resampling is happening.
All models are trained using the Serval training code. This is a good baseline

as other parts of Serval will be looked at in other chapters–if those parts are
changed as well we cannot compare just the data augmentation results anymore.
The model trained is a default Serval model with 10 long short-term memory
(LSTM) cells.
Unfortunately Serval does not do any validation, only testing. This makes it

impossible to know during training whether a model is overfitting or underfitting
or if it is training just right. This can be estimated after training by comparing
the model predictions on both the validation and the training sets. Furthermore
Serval does not report training accuracy either, making it even harder to rate
how well a model in training is performing.
Finally, some augmentation parameters still need to be decided. Serval’s ori-

21

Seconds per file

Read

Resample

Write

0.0001 0.001 0.01 0.1

Serval Pallas

Figure 4.9: Time taken for read, resample, and write operations for
Serval cross-label sample combining and for all other data augment-
ation methods

ginal parameters will not be changed, so in Serval cross-label sample combining,
samples are resampled in 16000 Hz as required by VGGish, and dampened by
0dB, -6dB, and -12dB compared to the original samples. For each valid combin-
ation, up to 500 samples are created–sometimes the same random samples are
picked and a new sample is not created, and some classes feature so few samples
that 500 unique combinations cannot be created.

Improved sample combining uses the same resampling and dampening para-
meters, but creates only 250 samples per valid combination. This is because
twice as many combinations are considered valid, so this results in roughly the
same total number of samples.

In Noise sample augmentation, samples are also resampled to 16000 Hz, but
no dampening takes place. Instead, pink noise is added to the sample with a
signal-to-noise ratio of a random value between 40 and 60. For each class 701
new samples are created–the maximum amount of training samples in a class.

Finally in Hybrid data augmentation, the data sets generated by Improved
sample combining and Noise sample augmentation are combined together in
one dataset. The parameters used here are the same as mentioned above in the
respective paragraphs.

Now, the accuracy of the models needs to be measured. As mentioned before,
Serval does not test during its training loop, so the test samples will be used for
evaluation. Recall that the goal of the network is not only to predict classes in
single-label samples, and we have only single-label samples in the evaluation set,
as no data augmentation has been run on these samples. In order to still measure
multi-label capabilities of the networks, a second validation set is generated in a
similar fashion to the data augmentation in section 4.2, however, no time-shift
is done and the volumes of the samples are unchanged.

22

Model ID

F1
-s

co
re

0.4

0.5

0.6

0.7

None Naive Serval Improved Noise Hybrid

Single-label F1 Multi-label F1 Combined F1

Figure 4.10: F1 scores for each model and each validation set

For each of the 36 class combinations, a number of multi-label test sample are
generated so that the total amount of multi-label samples matches the amount of
single-label samples. For the new methods this means 19 samples are generated
for each combination, while for Serval 146 samples are generated. For Serval,
more test samples are generated as Serval has more test samples due to the
early dampening and the 50%/50%/ train/test split, however this also means
that these test samples are modified and not necessarily unique: some of them
may have been used for training.

For each model and each validation set, we now predict the labels, and we take
the average of the F1 scores of all classes – the harmonic mean of precision and
recall as shown in Equation 4.1. This is a good metric for imbalanced datasets.
Furthermore we measure the individual F1 scores for each class.

F1 =
2PR

P +R
(4.1)

4.6 Results

In Figure 4.10 we can see the results of the experiments mentioned in sec-
tion 4.5. In terms of single-label F1 scores, the model trained with hybrid data
augmentation seems to work best, closely followed by the model trained without
any data augmentation. One would expect the naive and noise data augment-
ations to show improved single-label F1 scores as well however this does not
seem to happen. Interestingly, the naive data augmentation does improve the
multi-label F1 score compared to doing no augmentation. This does make sense
however if we consider that the single-label test dataset is as imbalanced as
the original dataset, while the multi-label dataset is perfectly balanced. This
causes the single-label F1 score to decrease when the model is more balanced

23

0

0.25

0.5

0.75

1

None Naive Serval Improved Noise Hybrid

Gunshots

Mopeds

Loud people

Terrace noise

Car horns

Slamming car doors

Amplified music

Motors

Moped alarms

Figure 4.11: F1 scores for each model per sample with the combined
single and multi-label test dataset

– causing over represented classes to achieve a lower F1 and under represented
classes to achieve a higher F1. In the (balanced) multi-label test dataset, the F1

may increase depending on how much the under represented classes accuracy
increase.
Furthermore we see that Serval’s data augmentation apparently does not do

well with single-label samples, but scores a lot higher with multi-label samples.
This can be attributed to the heavy focus of the data augmenatation on the
combinations. This result causes the F1 score for the combined dataset to be
rather low as well. The same could be expected from the improved sample
combining, but this technique scores much higher on single-label samples and
comparable on multi-label samples. I cannot explain why this happens.
Finally, when looking at all scores overall, the hybrid data augmentation

appears to yield the best scores over all metrics. This is remarkable as the noise
data augmentation by itself yields rather low results, but this combination shows
no weakness whatsoever. This underscores the hypotheses stated in section 4.4.
Next, Figure 4.11 shows the F1 scores achieved by each model with the com-

bined test dataset. It shows clearly that indeed the naive data augmentation is
much more balanced compared to doing no data augmentation, however the gain
of using noise augmentation is much more subtle. Furthermore Serval appears
to somehow only increase the imbalance between classes. Finally the improved
sample combining data augmentation scores better on most classes compared to
doing no data augmentation and the Serval data augmentation, and the hybrid
data mostly improves upon this with the lower-accuracy classes. Only amplified
music appears to be much harder to recognize compared to other methods. This
could partly be blamed by this being a rather messy class, with lots of samples
featuring speech and car noises that are not labelled as such.

24

Chapter 5

Embedding

Even with an augmented dataset, training a model on a complex task such as
acoustic event detection requires a large network and a lot of processing power.
This type of training may take multiple hundreds of hours using multiple high-
end GPUs[13, 10]–both of which I don’t have available.

One solution is to avoid training the convolution layers of the network by using
existing weights from an existing model. This is essentially what an embedding
is: we use the convolution layers of a deep convolutional neural network (DCNN)
to extract the features, which facilitate the final decision making process of the
model. In this chapter we look at two embeddings that can be used to train
and run a neural network in much more reasonable time and with much less
expensive hardware.

5.1 VGGish

As explained in section 2.1, Serval uses the embedding VGGish to facilitate its
training and execution. VGGish is an embedding developed by researchers at
Google[13], based on the image recognition network VGG[24]. This model was
obtained by training a DCNN based on VGG with log-mel spectrograms derived
from audio samples.

VGGish is a DCNN trained using supervised training on the Youtube-8M
dataset. Just like VGG it uses 6 sets of a series of convolutional layers and max
pooling layers, as shown in Figure 5.1a. Next are three fully connected layers
and finally a soft-max layer. The model produces an embedding of 128 features.

In Figure 5.2 we can see what the data used and generated by VGGish looks
like. Due to the low sample rate, we see in Figure 5.2a that the highest frequency
visible in the spectrogram is only 8 KHz. Compare this to the nominal maximum
audible frequency in humans: 20 KHz. In Figure 5.2b one of the 10 spectrogram
windows created by VGGish’ preprocessing is shown. Note that this is not
a linear spectrogram but a mel spectrogram window. Mel spectrograms are
further explained in section 5.2. These mel-spectrogram windows are then used
as input for the actual VGGish model, resulting in the embedding shown in
Figure 5.4c. For each window, 128 features are generated as shown in the
figure.

The main advantage of using VGGish is that it is relatively small, compared

25

(a) VGGish network. Derived from
the source code, which does not de-
scribe the same model as the paper

(b) OpenL3 network

Figure 5.1: Diagrams of the VGGish and OpenL3 networks. If no
activation function is mentioned, a ReLU (Rectified Linear Unit) is
used

26

2 4 6 8
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y
(H

z)

(a) A complete spectrogram of a 16 KHz sample

0 20 40 60 80
Frames

0

10

20

30

40

50

60

M
el

 b
in

s

(b) One of the 10 spectrogram
windows that VGGish uses

0 2 4 6 8
Windows

0

20

40

60

80

100

120

Fe
at

ur
es

(c) A complete VGGish em-
bedding of a sample

Figure 5.2: Samples of the data that VGGish generates and (internally)
uses

Option Possible values

Input representation linear mel128 mel256
Training content type music environmental
Frontend librosa kapre
Embedding size 512 6144

Table 5.1: Options to configure OpenL3 and their possible values

to alternatives, and thus easier to run on simple hardware, such as a raspberry
pi. It is also the embedding employed by Serval already, so we know that it
is able to run on the hardware. However as Serval’s accuracy is insufficient,
changing the embedding to a more modern variant could improve the model
accuracy.

5.2 OpenL3

An alternative proposed by Sensemakers is an embedding called OpenL3[10].
OpenL3 is a research based on L3-net[3], evaluating the impact of a number
of design choices and alternatives, such as the choice of input representation
and training domain. An overview of these options can be found in Table 5.1.
An eponymous library was released allowing these alternatives to be set as
configurations. OpenL3 should be able to boost the accuracy by 4 to 6 percent
point[3] compared to VGGish, depending on the dataset and task difficulty.

27

0 25 50 75 100 125 150 175
Frames

0

50

100

150

200

250
M

el
 b

in
s

(a) linear spectrogram

0 25 50 75 100 125 150 175
Frames

0

20

40

60

80

100

120

M
el

 b
in

s

(b) mel128 spectrogram

0 25 50 75 100 125 150 175
Frames

0

50

100

150

200

250

M
el

 b
in

s

(c) mel256 spectrogram

Figure 5.3: Spectrograms of the different types of input representations

L3-net was trained by exploiting the natural Audio-Visual Correspondence
(AVC) that can be observed in most video’s: Because the audio and the visuals
are produced by the same source, thus events are often observed at the same
moment in both data types. For example an explosion in a video normally is
accompanied by both a bright flash in the visuals, and a loud noise at roughly
the same time in the audio. Arandjelovic et al. trained a model to determine
whether an audio and a muted video fragment are from the same video fragment.

The OpenL3 model itself is a DCNN, much like the VGGish model. Fig-
ure 5.1 shows the VGGish and OpenL3 models next to eachother. As shown
in Figure 5.1b, the OpenL3 model is much simpler compared to the VGGish
network.

With the input representation (input rep) one can choose how the input
spectrogram has been formatted. The linear spectrogram–the input used by
the original L3-net–is a basic spectrogram with both a linear time and a linear
frequency domain. The mel128 and mel256 options represent a Mel-frequency
log-magnitude spectrogram with respectively 128 and 256 Mel bands. This
type of spectrogram was designed[25] to better and more efficiently relay the
frequencies that are most audible to humans. While it makes sense that using
this spectrogram improves the performance of speech recognition or models
designed for music, it remains to be seen if this applies to our urban environment
as well. In Figure 5.3 we can see a spectrogram of each input representation.

A second option that was evaluated was the domain of the training dataset
(content type). The original L3-net was trained on a musical dataset under
the assumption that musical videos are easier to train on through Audio-Visual
Correspondence. Cramer et al.[10] hypothesized that using an environmental
dataset should improve the model performance, considering the downstream
task is focused on environmental sounds as well. While the choice of training
domain didn’t seem to positively impact the model performance in their case,
this may be different in our specific dataset and use-case.

It is also possible to change which library OpenL3 uses to do the prepro-
cessing. One can choose between the librosa library[17]–a python package for au-
dio analysis–and Kapre (Keras Audio Preprocessors)[8], a library that provides
certain often used audio processing functions in the form of Keras layers. This
includes the STFT and Melspectrogram functions. As these two methods pro-
duce functionally equal spectrograms, one should not expect any difference in
performance from this choice, though a difference in timing could be noticeable.
As Librosa is easier to use and does not require TensorFlow 2 to run, it is used
throughout the rest of the thesis.

28

2 4 6 8
Time (s)

0

5000

10000

15000

20000

Fr
eq

ue
nc

y
(H

z)

(a) A complete spectrogram of a 48 KHz sample

0 25 50 75 100 125 150 175
Frames

0

50

100

150

200

250

M
el

 b
in

s

(b) One of the 96 spectrogram
windows that Openl3 uses

0 20 40 60 80
Windows

0

100

200

300

400

500

Fe
at

ur
es

(c)A complete Openl3 embed-
ding of a sample

Figure 5.4: Samples of the data that Openl3 generates and (internally)
uses. The OpenL3 parameters used are a mel256 input representa-
tion, environmental content type, librosa frontend and an embedding
size of 512 features. The same audio sample was used as for Fig-
ure 5.2.

Finally OpenL3 allows an alternative embedding size. L3-net uses a 32 ∗ 24
pooling layer as its last layer, producing an embedding of 512 dimensions–4
times as many features as a VGGish embedding. OpenL3 allows the use of an
alternative 8 ∗ 8 pooling layer instead, producing a 6144-D embedding, which
is 48 times as many features as a VGGish embedding. While this allows for
a much more detailed feature set, it also dramatically increases the size of the
embedded dataset and of the downstream model. Preliminary tests shows that
the training of a VGGish model takes about 2 hours and of a 512-D OpenL3
model around 6 hours, so it is expected that a 6144-D training session would
take 96 hours–4 days–in total. Furthermore, with the large size of the 512-D
embeddings on the disk in mind (See Table 5.2), the 6144-D embeddings would
take over 4 TB to store, not even taking into account the extra experiment(s)
needed to test these embeddings. For these reasons, this option is not evaluated.

The method of using OpenL3 and VGGish is essentially the same, however
the model and preprocessing parameters differ a lot. Figure 5.4 shows the data
used and generated by OpenL3, in a similar fashion to Figure 5.2. OpenL3 and
L3-net are designed to use 48 KHz samples, compare this to the 16 KHz samples
used by VGGish. This means that a higher sound fidelity is achieved along with
a 4 times as high maximum frequency, as shown in Figure 5.4a. From Figure 5.4b
it is clear that OpenL3’s preprocessing creates 4 times as many frequency bins
as VGGish does, although this does depend on the input representation chosen.

29

Finally running the OpenL3 model with these spectrogram windows as input
produces the embedding. As shown in Figure 5.4c, 512 features are produced
for all of the 96 spectrogram windows. Compare this to the VGGish embedding
which consists of 128 features over 10 windows: OpenL3 produces almost 40
times as much data for training or testing on.

Using OpenL3 has multiple obvious advantages. First of all, as it is a larger
and more recent embedding compared to VGGish, it allows for a more precise
output and thus a more accurate network. Remember that depending on the
embedding size used, OpenL3 produces 40 to 1920 times as many features as
VGGish does, allowing for higher detail for the downstreammodel. Additionally,
the configurable options shown in Table 5.1 allow it to be configured such that
it fits this domain best.

The source of its main advantage may also be its disadvantage: it is larger and
heavier than VGGish. While not a big problem in itself, it may prove to be hard
or impossible to run on the Raspberry Pi. The larger amount of features also
increases the size of the downstream model dramatically, increasing memory
usage, as well as training and prediction times. This problem will be addressed
in chapter 6.

5.3 Pallas

Testing the OpenL3 embeddings will be not done with Serval, as it seems to fail
to train on OpenL3 embeddings: no convergence was witnessed. To this end I
present Pallas. Pallas is a neural network much like Serval, albeit depending on
TensorFlow 2 and allowing for more configuration and different embeddings.

The Pallas model is similar to the Serval model as described in section 2.1:
it features a long short-term memory (LSTM) layer as its first layer. However
recall that while Serval uses a MOE model as its following layer, Pallas uses a
simple fully connected layer.

Remember from section 4.5 that Serval does not do validation. Pallas is able
to do validation, however because of the small amount of samples for some of
the classes in the dataset, it was chosen not to use a separate validation set.
Instead, Pallas uses its test set to get its test accuracy after every epoch. When
the train accuracy is still increasing but the test accuracy starts to decrease, the
model is considered to be overfitting. At this stage, the training will be aborted
to avoid overfitting. Thus no hyperparameter tuning is done with this test set.

5.4 Evaluation

To compare the embeddings, the dataset obtained with Combined data aug-
mentation as described in section 4.4 is embedded with each chosen configur-
ation. These embeddings are then used to train a long short-term memory
(LSTM) network. Two VGGish embeddings are created as well as a baseline.
One VGGish embedding is created using the Serval codebase, and the second one
using the Pallas codebase. These baselines allow for determining the difference
in performance between Serval and Pallas and between VGGish and OpenL3.
In the case of an OpenL3 embedding, a Pallas network is trained instead. This
is done because the OpenL3 embedding does not seem to work properly with the

30

Serval code, producing garbage networks with very low (∼ 30%) accuracy, while
the Pallas codebase is able to train proper networks with both the VGGish and
the OpenL3 embedding. All OpenL3 configuration combinations mentioned in
section 5.2 and displayed in bold in Table 5.1 are tested, along with a Serval
network trained using the VGGish embedding, which should yield the same res-
ults as in chapter 4 and a Pallas network trained using the VGGish embedding.
All tested embeddings and their configurations can be found in Table 5.2.
Because OpenL3 embeddings are many times larger compared to VGGish

embeddings, the downstream model and its training parameters have to be
scaled to be able to use this abundance of data. Both the Serval and the Pallas
model contain an LSTM layer as the first layer. The VGGish-based models
contain 1 layer of 10 LSTM cells, which is Serval’s default setting. In contrast
the OpenL3-based models contain 1 layer of 100 LSTM cells. Furthermore
testing proved that using OpenL3 instead of VGGish requires changing the
learning rate as well: the OpenL3-based models use a learning rate of 0.0001
instead of Serval’s default learning rate of 0.001.
In order to compare the different embeddings, we first need to define the

metrics used to compare them. The first metric is the most obvious one–like
in section 4.5, the average of the F1 scores per class. Also the time taken by
each step in the prediction pipeline is measured: the loading time (time taken
by reading samples), preprocessing time, embedding time, predicting time, and
saving time (time taken by saving the predicted logits on the drive).
Furthermore we are interested in the size and speed difference between the two

embeddings. To gain an insight in this the total file size of the produced embed-
dings, and the time taken to produce them is reported. Finally the difference
in size and speed between Serval and Pallas, and likewise between VGGish-
based and OpenL3-based models is reported, as well as the speed difference in
predicting with these models. These data can be read from the file system as
well.
To test the performance of the resulting networks, all networks are used to

predict the labels on identical test sets. The testing code and the test sets used
are identical to the code and samples mentioned in section 4.5.
We expect the following results in the next section:

1. All OpenL3-based models perform better than the VGGish-based models.

2. The OpenL3 embeddings are around 40 times as massive and take around
40 times as long to embed compared to the VGGish embeddings.

3. The same size and speed difference can be observed in both predicting
with and training the OpenL3-based and VGGish-based networks.

4. Networks trained with an environmental embedding perform similar or
worse compared to networks trained with a musical embedding.

5. Networks trained with a mel embedding perform better than networks
trained with a linear embedding.

31

OpenL3 configuration Embedding Training Testing
Embedding ID Codebase Embedding Input rep Content type Size Duration Size Duration Duration

0 Serval VGGish 96.4 MB 5:03:56 1.44 MB 4:19:28 0:00:37
1 Pallas VGGish 342.4 MB 1:22:24 793 KB 7:20:22 0:00:32
2 Pallas OpenL3 Linear Music 14.0 GB 18:43:14 3.5 MB 6:18:12 0:13:49
3 Pallas OpenL3 Mel128 Music 14.0 GB 1:2:48:53 3.5 MB 6:20:31 0:29:15
4 Pallas OpenL3 Mel256 Music 14.0 GB 1:7:36:46 3.5 MB 6:12:21 0:40:36
5 Pallas OpenL3 Linear Env 14.0 GB 11:22:47 3.5 MB 6:05:18 0:15:31
6 Pallas OpenL3 Mel128 Env 14.0 GB 1:3:35:36 3.5 MB 6:11:27 0:38:46
7 Pallas OpenL3 Mel256 Env 14.0 GB 1:7:00:52 3.5 MB 6:13:42 0:56:02

Table 5.2: Tested embeddings and their configurations

Model ID

F1
-s

co
re

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7

Single-label F1 Multi-label F1 Combined F1

(a) F1 metrics for each embedding on each test set.
The model ID’s refer to the same model ID’s found
in Table 5.2

Time taken (s)

M
od

el
 ID

0

1

2

3

4

5

6

7

0 1000 2000 3000

Loading Preprocessing Embedding Predicting Saving

(b) Time taken by each model in each step in the
prediction timeline. The model ID’s refer to the
same model ID’s found in Table 5.2

Figure 5.5: F1 and timing metrics for tested embeddings

32

5.5 Results

The embedding metrics in Table 5.2 clearly show that OpenL3 is a much larger
embedding. At 14 GB’s the embedding is much larger than VGGish’ 342 MB’s.
This means the OpenL3 embeddings are over 40 times as large as the VGGish
embeddings. This seems to align with the expected difference. The difference
between Serval’s VGGish size and Pallas’ VGGish size can be explained by
VGGish quantizing the data to 8-bit integers while OpenL3 does not do this.
Creating an OpenL3 embedding also takes a lot longer compared to a VGGish

embedding, and the input representation used seems to have a large impact
on the duration of the embedding as well. This shows that converting the
spectrograms to mel spectrograms requires a lot more computation time than
running the OpenL3 model itself.
The size of the OpenL3-based models appears to be about 4.5 times larger

compared to the VGGish-based models. This can be explained by the OpenL3
embeddings having an embedding size 4 times as large as the VGGish embed-
dings. LSTMmodels are designed to have a list as input so the 9.6 times increase
in the time dimension is not reflected in the model size. However do note that
the amount of LSTM cells is also 10 times as large in the OpenL3-based mod-
els compared to the VGGish-based models. I cannot explain why this change
does not seem to impact the model size any further, nor why the OpenL3-based
models take less time to train compared to the VGGish-based models.
Figure 5.5a shows the embedding metrics such as embedding duration and

embedding size. All OpenL3 models outscore the VGGish results in single-
label and combined F1-scores, but the difference between the embeddings at
the multi-label F1-score is less clear. When looking at which OpenL3-based
model performs best, the model trained on embedding number 2 – Pallas with
an OpenL3, music-based embedding with a linear spectrogram as input – has
the highest combined F1-score, which is the most important metric given that
any sample may contain any amount of labels.

It is interesting to note that the embeddings trained on a musical dataset
fare better than the embeddings trained on an environmental dataset, even if
the downstream task is an environmental one. Also interesting is the fact that
the embeddings using a mel-spectrogram as its input seem to fare slightly worse
compared to their linear spectrogram counterparts.
The testing duration appears to be heavily dependent on the embedding used

and the chosen embedding parameters. This is evident in Figure 5.5b. From
this graph two things are immediately evident: firstly it is obvious that the
VGGish embedding is magnitudes faster to compute. Both the preprocessing
and the embedding itself take much longer when using the OpenL3 embedding.
Secondly preprocessing and embedding time in OpenL3 heavily depend on the
embedding parameters used. Specifically using a mel-spectrogram as input type
may multiply the time taken by the preprocessing by 4 to 6 times, but reduce
the embedding time up to 50%.
Finally when looking at the VGGish-based models, Pallas seems to fare worse

on multi-label and better on single-label samples compared to Serval. This can
be explained by the difference in model layout compared to the Serval model.
Furthermore, Pallas does not do the quantization and the principal component
analysis that Serval does, in which a dataset is transformed and scaled based
on its means and variances.

33

Looking back on the hypotheses in section 5.4 we can say the following about
each hypothesis:

1. All OpenL3-based models perform better than the VGGish-based models.

This appears to be the case. Looking at Figure 5.5a we can safely say that
this hypothesis has been met.

2. The OpenL3 embeddings are around 40 times as massive and take around
40 times as long to embed compared to the VGGish embeddings.

This appears to be true for the embedding size, but not for the embedding
duration: embedding duration takes only between 8 and 23 times as long
as VGGish. This is probably due to the overhead of running a lot of
smaller operations, which is what happens with VGGish.

3. The same size and speed difference can be observed in both predicting with
and training the OpenL3-based and VGGish-based networks.

This is partly true. The size difference can be seen in Table 5.2, but the
speed difference was not as apparent. This can probably be attributed to
tensorflow and memory overhead.

4. Networks trained with an environmental embedding perform similar or
worse compared to networks trained with a musical embedding.

Networks trained with an environmental embedding seemed to perform
slightly worse compared to networks trained with a musical embedding,
so this hypothesis appears to be true.

5. Networks trained with a mel embedding perform better than networks trained
with a linear embedding.

Finally this hypothesis appears to be false. Networks trained with an
embedding using a mel-spectrogram seem to perform worse when con-
sidering final network accuracy and take a lot more time compared to
networks trained with an embedding using linear spectrograms. This is
interesting as it contradicts the findings by Cramer et al.[10]. This could
be due to the dataset’s focus on environmental sounds that are often not
designed for human listening or alerting, thus these sounds do not bene-
fit from a transformation that highlights human-audible frequency bands.
Also, Cotton and Ellis [9] found that mel-frequency features perform very
poorly when samples contain a lot of noise. This is of course the case for
many samples and classes in our urban-centered dataset.

34

Chapter 6

Neural Networks in
Embedded Systems

When using a neural network in an embedded system, new problems arise.
Neural networks may require large amounts of memory and processing capacity.
Most embedded systems do not have these specifications as they are designed
to be as inexpensive and energy efficient as possible.
One solution to this problem is running as much as possible in the cloud, how-

ever this requires sending large amounts of identifiable information to a remote
server. This data could be partially anonymized by running the pre-processing
on the edge, but with audio networks one may find that the pre-processing takes
more time than running the neural network itself. Some solutions have been
devised to train and run networks with obfuscated data in the cloud; however,
these typically diminish accuracy of the models. More recent solutions with
noise injection however produce near-perfect models[12] compared to regular
models.
Another solution is to use TensorFlow Lite1 to run the models on the device

instead of full TensorFlow. This library is adapted for use on mobile and edge
devices and may prove more feasible to run thanks to its lower memory and
computational footprint.
A final solution is to accelerate the embedded system with a Tensor Pro-

cessing Unit (TPU). This would mean adding a peripheral computation device
optimized for working with tensors. Tensors are the building blocks of neural
networks and the namesake of TensorFlow. These TPU’s are able to compute
tensor calculations magnitudes faster and more efficient compared to CPU’s and
GPU’s. The downside of using a TPU is that it requires adding this potentially
costly device to each deployed device.

6.1 OpenEars

The hardware used by Serval is called OpenEars2. OpenEars is an open source
project based on devicehive3 and is being developed by SensingClues and Sense-

1https://www.tensorflow.org/lite
2https://github.com/sensemakersamsterdam/OpenEars
3https://github.com/devicehive/devicehive-audio-analysis

35

https://www.tensorflow.org/lite
https://github.com/sensemakersamsterdam/OpenEars
https://github.com/devicehive/devicehive-audio-analysis

Figure 6.1: An opened OpenEars device with the Coral TPU added

makers AMS. Its hardware consists of a Raspberry PI 4b and USB microphone
– a UMIK-14. Furthermore, MQTT is used to communicate with a Grafana
Dashboard server. A Coral TPU5 can be connected to improve its tensor com-
putational abilities. An OpenEars device with such a Coral TPU added is shown
in Figure 6.1.

6.2 Pallas device code

Pallas uses the same hardware as Serval, however, all device code is rewritten to
improve coding standards and to upgrade its Python and Tensorflow versions.
As shown in section 6.6, the pre-processing step and the embedding step take
roughly the same amount of time. Especially if the embedding is done on a
TPU, these two steps can very well be run in parallel. This is why Pallas uses
a multi-threaded pipeline to improve prediction speed. A flow chart of this
pipeline can be found in Figure 6.2.
From this flowchart is it clear that the Pallas codebase is designed with back-

wards compatibility and modularity in mind. For the input a file system loading
thread can be used, while the microphone thread uses live recorded sound data
as its input. Both threads allow setting the target sample rate, and produce a
waveform and its sample rate. The loading thread optionally allows retrieving
the true label if a true label is given.
Preprocessing for Pallas can be done with the Librosa library and with Kapre.

As described in section 5.2, OpenL3 can use both Librosa and Kapre as its
front-end. VGGish requires its own specific preprocessing implemented by the
VGGish preprocess thread.
As for the embedding, Pallas allows creating VGGish and OpenL3 embed-

dings. The VGGish embedding can then be used with both Serval and Pallas,
while the OpenL3 embedding can only be used with Pallas. These prediction
threads then produce a logit (also called log-odds) for each trained class: the

4https://www.minidsp.com/images/documents/Product%20Brief%20-%20Umik.pdf
5https://coral.ai/static/files/Coral-USB-Accelerator-datasheet.pdf

36

https://www.minidsp.com/images/documents/Product%20Brief%20-%20Umik.pdf
https://coral.ai/static/files/Coral-USB-Accelerator-datasheet.pdf

WaveformSample
rate

Librosa
thread

OpenL3
Spectrogram

OpenL3
thread

OpenL3
Embedding

Pallas
thread

Logits

Loading
thread

Microphone
thread

Saving
thread

MQTT
thread

Display
threadOutput threads

Prediction threads

Embedding threads

Preprocessing
threads

Input threads

Kapre
thread

VGGish
thread

Serval
thread

VGGish
Spectrogram

VGGish
Embedding

True
label

VGGish preprocess
thread

Figure 6.2: The pipeline pallas uses with the threads (in the boxes) and
the data exchanged between threads (in the circles). Note that most
threads are interchangable with alternative threads, like the loading
thread and the microphone thread.

37

logarithm of the odds that a sample contains a given class. These logits are
finally used in the output threads. The exact behavior depends on the thread:
The saving thread saves the logits and optionally the true labels and system
performance statistics to the file system. The MQTT thread sends the logits
and some system performance statistics to the configured MQTT host. Finally
the display thread calculates the predicted classes using an optimal threshold
attained through testing with labelled samples. These predicted classes and
some system performance statistics are displayed in a console and/or saved to
a log file for offline usage.

6.3 TensorFlow Lite

As mentioned, one option for improving operation speed and power usage is to
use TensorFlow Lite models. To do this, the models first need to be converted
using the built-in TensorFlow Lite converter. Additionally, this converter allows
for a number of optimizations such as quantization, pruning, and clustering.
Quantization reduces the precision and size of the model’s variables, allowing for
a smaller network size and faster computation, while compromising accuracy.
Pruning and clustering only reduce model download size with no benefit to
computation speed, so these optimizations are left aside.

TensorFlow Lite’s quantization has a few configuration options, of which some
can be used concurrently. However, due to TensorFlow Lite’s complexity and
many experimental options, a TensorFlow Lite guide6 is used to determine some
types of quantization that can be tried. The most obvious optimization is to
change the datatype to a smaller and simpler datatype. By default TensorFlow
models use 32-bit floating point number to store weights and biases. Using
the TensorFlow Lite Converter, the variables can be converted to 16-bit floating
point, 16-bit integer, and 8-bit integer. Finally an experimental option is present
that allows storing activations as 16-bit integers, weights as 8-bit integers and
biases as 64-bit integers. This method should improves accuracy compared to
other optimizations and only slightly increase the size of the model.

Converting 32-bit floating point values to 16-bit floating point is a trivial
operation: nominal values found in our neural networks are well within the
range of both 32-bit and 16-bit floats. However this conversion will negatively
affect the precision of the model. Converting to integer numbers is not as trivial,
as converting floating point numbers to integers in general comes with a penalty
in accuracy. To mitigate this by using the full available range of integers, the
value is normalized to the full range of the target datatype. In order to do this,
TensorFlow determines the range of the variables dynamically using sample
inputs. Integer operations are much faster on most hardware, so this conversion
should yield a model that is both smaller and faster.

Running a TensorFlow Lite model is straightforward: the model is loaded
into a TensorFlow Lite Interpreter. This object manages the tensors and the
operation of the model. If the input of the model is quantized, one has to
quantize the input before calling the interpreter.

6https://www.tensorflow.org/lite/performance/post_training_quantization

38

https://www.tensorflow.org/lite/performance/post_training_quantization

6.4 Edge TPU

Another option involves using a Tensor Processing Unit (TPU). These devices
considerably speed up the operation of a neural network, but before a model
can be deployed on one, it needs to be compiled first. Google’s Coral TPU offers
a compiler for TensorFlow Lite models. Not all TensorFlow Lite models can be
compiled for the Coral TPU, as it only supports 8-bit integer operations. In
section 6.3 it was described how an 8-bit integer quantized model can be created.
This model can then be compiled to yield a Coral-compatible TensorFlow Lite
model.
Running such a Coral-compiled model is slightly more cumbersome than run-

ning a regular TensorFlow Lite model. First there are some additional software
dependencies that must be installed. The compiled TensorFlow Lite model can
then be loaded into the interpreter. To ensure this interpreter attempts to
run on the Coral TPU, the Coral TPU library is passed to the interpreter as
a so-called ”delegate”. These delegates allow the interpreter to use hardware
acceleration through internal or external libraries.

6.5 Evaluation

To find out what optimizations are necessary to run Pallas on the embedded
device, we need to measure the performance of all optimization options. As
some optimizations may incur a penalty in model accuracy, both the model
accuracy and the time and resource performance must be measured.
As shown in section 5.5, running the Pallas model takes a negligible amount of

time compared to the preprocessing and embedding steps. As the preprocessing
happens in a secondary library, it cannot be accelerated using TensorFlow Lite,
so only the OpenL3 model will be converted to TensorFlow Lite.
Running OpenL3 on the Raspberry Pi takes much longer compared to running

it on a PC, at almost two minutes per 10-second sample, compared to half a
second on a PC. This renders running the full test dataset infeasible, considering
it consists of 1363 such samples, bringing the total time taken for running the
entire test dataset up to around two days. Thus, running multiple experiments
would take too long. To avoid this, a smaller dataset was created consisting of
only 54 samples. If an experiment proves to run fast enough, it can be repeated
with the full dataset to yield a better comparison with earlier experiments.
All experiments can be seen in Table 6.1. These experiments will be ran and

timed. The same timing statistics and F1-scores as in section 5.4 are produced.
All experiments that run fast enough to run in real-time, i.e. that finish in at
most 540 seconds will be run again with the complete test dataset to compare the
accuracy of all models. These models will then be compared against the accuracy
of Serval and the accuracy of Pallas when using an unoptimized OpenL3 model.
Finally for both Serval and Pallas the power consumption is measured. This

is done using a BASETech EM-30007. The full setup used can be seen in Fig-
ure 6.3. The BASETech EM-3000 has a power consumption of up to 1W and a
precision of 2%. This means it is not the highest precision device available for

7Datasheet downloaded at 7 February 2024 from https://asset.conrad.com/media10/

add/160267/c1/-/gl/001611632ML01/gebruiksaanwijzing-1611632-basetech-em-3000-

energiekostenmeter-kostenprognose.pdf

39

https://asset.conrad.com/media10/add/160267/c1/-/gl/001611632ML01/gebruiksaanwijzing-1611632-basetech-em-3000-energiekostenmeter-kostenprognose.pdf
https://asset.conrad.com/media10/add/160267/c1/-/gl/001611632ML01/gebruiksaanwijzing-1611632-basetech-em-3000-energiekostenmeter-kostenprognose.pdf
https://asset.conrad.com/media10/add/160267/c1/-/gl/001611632ML01/gebruiksaanwijzing-1611632-basetech-em-3000-energiekostenmeter-kostenprognose.pdf

Figure 6.3: The setup for measuring power consumption. A BASETech
EM-3000 is placed between the power outlet and the Raspberry PI
power adapter, measuring power usage of the device.

this scenario. To remedy this, power consumption is measured over at least 24
hours. Because the own power consumption of the BASETech EM-3000 is not
clear, it is included in the measured values.

We can formulate the following hypotheses:

1. Integer models are faster than Floating point models.

We expect that the TensorFlow Lite models using integer variables are
faster than the TensorFlow Lite models using floating point variables.
Furthermore, the TensorFlow Lite models using floating point variables
are expected to be faster than the original model by a small margin.

2. The TPU-compiled model is faster than all other OpenL3 models.

Models running on the TPU may both be faster and slower compared
to their original models running on the CPU. OpenL3 is not the largest

40

Model ID Optimization Model size Optimization duration

0 None 17.9 MB N/A
1 TFLite 17.8 MB 4s
2 Dynamic range 4.5 MB 4s
3 Full integer 4.5 MB 3317s
4 16-bit float 8.9 MB 3s
5 16x8 int 4.5 MB 6637s
6 Full integer TPU 4.5 MB 3310s

Table 6.1: Experiments and their optimization types, compiled model
size and time taken by the optimization process itself

model so we expect the TPU-compiled TensorFlow Lite model to be faster
than all other OpenL3 optimizations and the original.

3. The accuracy of TensorFlow Lite optimized models (models 2 to 6) is less
than the original model by a small margin.

The trade-off for faster models is less accurate models, so it is to be ex-
pected that the faster a model is, the less accurate it is.

4. TensorFlow Lite optimized models require less computational resources
compared to the original model.

TensorFlow Lite is optimized to use fewer resources compared to the ori-
ginal model. Especially the TPU-compiled model is expected to use less
resources as the model will run on the TPU, freeing up resources on the
CPU and in the RAM.

5. Running with a TPU requires less power than running without TPU.

As the TPU-compiled model requires less resources on the CPU, and the
TPU requires a fraction of the power a CPU or a GPU requires for running
neural networks, it is expected that running a large model on the TPU is
much more energy efficient compared to running the same model - or even
a smaller model - on the CPU.

41

Model ID

C
P

U
 u

sa
ge

R
A

M
 u

sa
ge

0 %

25 %

50 %

75 %

100 %

0.0 GB

1.0 GB

2.0 GB

3.0 GB

4.0 GB

0 1 2 3 4 5 6

CPU usage Ram usage

Figure 6.4: CPU and RAM usage for each model. The CPU usage
measured is the average combined core usage, so 100% means all cores
have 100% usage. The RAM usage is the maximum RAM usage seen
during execution for the relevant python processes. The total amount
of RAM available on the OpenEars device is 4 GB.

6.6 Results

From Figure 6.4 it appears that while most models still show high CPU-usage,
RAM usage is reduced in all optimized models. This can partially be explained
by the original OpenL3 model requiring the full TensorFlow library, while the
optimized models only require the TensorFlow Lite runtime. Also note that
the 5th model and the 6th model do not fully use the CPU. In the case of the
6th model this makes sense, as this model mostly runs on the TPU instead of
the CPU. However, for the 5th model, this could only be attributed to how
TensorFlow Lite runs this model. As the 5th method uses an experimental
optimization it may be the case that its execution was not optimized yet, or
it was unable to run multi-threaded (its slightly-more-than 25% CPU usage
corresponds to a single core of the four available cores being used).

In Figure 6.5 it is clear that single-label performance did not suffer from
the optimizations, however the multi-label F1-scores appear to be drastically
reduced for the integer-based models (3, 5 and 6) while the float-based models
(0, 1, 2, and 4) do not show any difference. This shows that integer quantization
indeed impacts the model accuracy, while using reduced-accuracy floating-point
variables barely impacts accuracy at all. Interestingly enough the performance
hit only seems to be apparent for single-label samples. Possibly these single-
label samples are easier to recognize and thus do not suffer from the integer
quantization.

Regarding the timings found in Figure 6.6, it appears that the integer-quantized
models (3, 4, and 6) are much faster than the floating point models (0, 1, and 2),

42

Model ID

F1
-s

co
re

0.550

0.575

0.600

0.625

0.650

0.675

0 1 2 3 4 5 6

Single-label F1 Multi-label F1 Combined F1

Figure 6.5: Final metrics for each model on each test set in experi-
ment 1. The model ID’s correspond to the same model ID’s found
in Table 6.1. Do note that these results were made with the slim
dataset, so they cannot be compared to other F1-score results.

Time taken (s)

M
od

el
 ID

0

1

2

3

4

5

6

1 10 100 1000 10000

Loading Preprocessing Embedding Predicting

Figure 6.6: Time taken by each model in each step in the prediction
timeline during experiment 1. The model ID’s refer to the same
model ID’s found in Table 6.1

43

except for the 16x8 integer model (model 5). Furthermore, the TPU-compiled
model (model 6) is much faster than its alternatives and is able to run in real
time. This means this is the only model that will actually be tested in the next
experiment with the large dataset.
Running the Serval model with VGGish, Pallas with the original OpenL3

model and Pallas with the TPU-compiled OpenL3 model on the full dataset
mentioned in section 5.4 produces the results shown in Figure 6.7. As shown
in this graph, the TPU-compiled model actually outperforms both the Pallas
model with the original OpenL3 and the Serval model with VGGish.
Finally as shown in Figure 6.8, the power usage of the different experiments

does not differ much. Serval uses only slightly more power in parallel than
it does in serial usage, however in Pallas we see a larger difference. This is
probably due to the smaller embedding used by Serval and thus less overhead
due to queuing and serialization necessary for parallel execution. Also clear
is that Pallas in serial usage uses less power than Serval in serial. This can
be attributed to Pallas running its embedding on the optimized TPU device
instead of on the CPU.
Looking back at the hypotheses formulated in section 6.5 we can conclude the

following about them:

1. Integer models are faster than Floating point models.

From Figure 6.5 we can conclude that indeed most integer models are
faster than floating point models. Only the 16x8 integer model fails to run
in reasonable time. Considering that this is an experimental optimization,
we can conclude that it was probably not designed yet to run efficiently.

2. The TPU-compiled OpenL3 model is faster than all other OpenL3 vari-
ants.

This model indeed outperforms all other variants based on OpenL3. Only
the Serval model, which uses VGGish, is still a lot faster.

3. The accuracy of TensorFlow Lite optimized models (models 2 to 6) is less
than the original model by a small margin.

In Figure 6.5 it is shown that the models using TensorFlow Lite’s integer
quantization indeed score lower F1-scores compared to their floating point
quantization counterparts, however in Figure 6.7 this dip in accuracy can-
not be seen. On the contrary, the TPU-compiled OpenL3 model appears
to score a slightly higher F1 score compared to the original OpenL3 model.

This difference could be explained by the size of the smaller dataset: in
such a small set, artifacts are more probable due to the random selection
of samples from the full set, the difference shows that the selection may
happen to contain mostly more difficult samples.

4. TensorFlow Lite optimized models require less computational resources
compared to the original model.

As shown in Figure 6.4, the integer quantized models are much faster and
use less ram compared to the float-quantized models. However, the 5th
model is an exception to this: It appears that it was unable to fully use
the computational resources the device has to offer, causing it to be much
slower compared to all other models.

44

Model ID

F1
-s

co
re

0.55

0.60

0.65

0.70

0.75

0.80

Serval Pallas Pallas TPU

Single-label F1 Multi-label F1 Combined F1

Figure 6.7: Final metrics for each model on each test set in the second
experiment. Note that these results were obtained from testing the
full test dataset.

Process

U
sa

ge
 (W

)

4.75

5.00

5.25

5.50

5.75

Idle Serval serial Serval parallel Pallas serial Pallas parallel

Figure 6.8: Power usage of the Raspberry Pi in different usage scenarios

45

The float-quantized models do not show much better performance com-
pared to the original model.

Regarding RAM usage, all optimized models perform much better than
the original model, sometimes requiring less than half the RAM usage the
original model does.

5. Running with a TPU requires less power than running without TPU.

It is clear from Figure 6.8 that Pallas when running in serial and avoiding
parallelization overhead is much more efficient compared to Serval doing
the same thing.

46

Chapter 7

Conclusion

This thesis describes the process of improving an existing sound recognition
sensor, while exploring and applying the state of the art. As described in sec-
tion 2.2, Serval was based and built on rather outdated code. Furthermore
the data augmentation technique used is not a common method and does not
produce a well balanced dataset.
This is why first the data augmentation technique was revised in chapter 4. As

shown in section 4.1, the method used shows some flaws. Multiple methods were
tested of which a hybrid data augmentation technique using both an improved
method based on Serval’s, and a novel data augmentation technique using pink
noise to differentiate samples are combined. As shown in section 4.6, this hybrid
method achieves the best F1 scores for each test set: single-label samples, multi-
label samples and the combined single and multi-label samples dataset.
In chapter 5, Serval’s embedding, VVGish, was tested against multiple config-

urations of a more modern embedding, OpenL3. As shown in section 5.5, not all
configurations have the same impact. It is clear that using an OpenL3 embed-
ding that was trained on a musical dataset outperforms OpenL3 embeddings
trained on environmental data, which is surprising given our environmental
dataset. The difference in performance between embeddings with different in-
put representations is not as clear. However when considering the amount of
extra time required for the mel-spectrogram embeddings, the linear spectrogram
embeddings outperform the mel-embeddings. Thus the best OpenL3 configura-
tion to use would be one trained on a musical dataset with linear spectrograms.
Finally chapter 6 shows us that running OpenL3 is not as easy as running

VGGish. On my PC, an experiment using OpenL3 takes about 31 times as long
to run as the same experiment with VGGish. On the Raspberry Pi, this ratio is
as high as 110 times as long. Unfortunately this makes it impossible to run the
sensor with OpenL3 in real-time. To remedy this, this chapter explores different
options to speed up OpenL3 execution. As shown in section 6.6, when running
an embedding that was optimized for usage on an auxiliary device, the time
required to run is reduced significantly to a point where running in real-time is
possible. Furthermore power usage is decreased and the F1 scores are slightly
increased.

47

In section 1.1, I posed several research questions. Here we reiterate them and
try to answer them.

• Can we reduce the class imbalance and improve the accuracy of the Serval
model without changing the dataset?

In chapter 4 we learn that different data augmentation techniques may
improve both the accuracy and the balance of the model. In particular
the hybrid data augmentation shows higher accuracy for almost all classes
and lower variance between class accuracies.

• Is changing the embedding enough to reduce imbalance or improve the
accuracy of a model?

We saw that switching VGGish to OpenL3 alone increases the accuracy
of the downstream model considerably. Unfortunately this could not be
a full comparison as Serval does not train on OpenL3 embeddings, but it
appears that a Pallas model trained on an OpenL3 embedding performs
much better than a Pallas model trained on a VGGish embedding.

• Can we get a model better than the Serval model while staying within
computational and timing restraints?

After changing the embedding used to OpenL3, it required a number of
optimizations as detailed in chapter 6, but in the end Pallas runs with
better accuracy and lower power usage compared to Serval. This did
however require a hardware upgrade.

In conclusion, I think this thesis answers the posed research questions well
and shows a good insight in which methods were evaluated and why these were
chosen. Some chapters could benefit from extended research, such as evaluating
more data augmentation techniques and combinations in chapter 4 and more
embeddings in chapter 5. Because of uncertainties in the workload of the latter
parts and lack of time, and the chapters being sufficiently clear, they were
wrapped up in their current state.

7.1 Process

When I started working on this thesis, I started researching the Serval code-
base. I quickly found that there were lots of inconsistencies and design choices
that made the codebase hard to understand. Furthermore, my relative lack of
a machine learning background did not help in understanding Serval and in
developing the Pallas.
After developing a basic framework for Pallas, containing alternative data

augmentation methods, support for embedding with VGGish and OpenL3, and
training the alternative Pallas network, I started writing the paper. Concur-
rently I started work on upgrading the device code. I quickly found that OpenL3
could not run fast enough on the Raspberry Pi, and that the code could run
much faster when running different parts in parallel. Rewriting OpenEars to
a parallel version would take as much time as starting from scratch, so this is
when I started work on the new multi-threaded Pallas device code.
While working on the paper I found that I did not explore enough data

augmentation methods and OpenL3 configurations. After adding the new data

48

augmentation methods mentioned in chapter 4 and OpenL3 configurations men-
tioned in chapter 5, I found that my original methods were worse than these
new methods. After running all steps again I got the final results as shown in
the paper.
Remaining now is only the paper. During the last part of the thesis I only

worked on the paper and multiple presentation opportunities. After some iter-
ations I present to you the final version of this paper.
In hindsight the biggest problems were my lack of a solid machine learning

background and the somewhat rash approach at the start of the thesis. This
forced me multiple times to redo or rerun parts of previously done work. If I
had started with this breadth-first approach starting with data augmentation
and working from that on, instead of this depth-first approach of trying to get
everything working and then fine-tuning every part, a lot of time could have
been saved.

7.2 Future work

As stated before, some parts of the thesis are not perfect yet at the end. This
section details which steps can be taken to improve upon this work.
First of all, a large part of this thesis is focused on working around class

imbalance. Furthermore this class imbalance in the dataset makes it hard to
use the usual 80%/10%/10% train/validation/test split, as 10% of the 23 moped
alarms samples would come down to having only 2 test and 2 validation samples
for this class. This does not give us a representative accuracy. These problems
are solved when the class imbalance is not as apparent in the used dataset.
Finally there are certain classes that may be added to avoid false positives or
for further interest, such as fireworks (to avoid false positives with gunshots),
wind or rain noise, airplanes and vehicle sirens.
Chapter 4 about data augmentation evaluates multiple data augmentation

options, and concludes that a hybrid data augmentation technique using mul-
tiple data augmentations shows the best potential. However, many promising
options could be evaluated, as well as more combinations of multiple techniques.
Finally a pipeline approach was not tested, where, for example, noise is added
to each combined sample. These approaches could be considered for future
exploration.
In chapter 5, VGGish was tested against some configurations of OpenL3. No

comparison was made with other embeddings due to time constraints. Testing
an embedding is not that simple. These embeddings were chosen because they
are readily available and easy to use, but for other embeddings this may not be
the case. Nevertheless other embeddings may show promising results, and these
could be taken in consideration.
As mentioned in section 5.3, the Pallas model is a simplified version of the

Serval model. This approach was chosen partly because of my lack of a machine
learning background and due to time considerations. However this model may
be improved by using additional layers, for example the MOE layer that Serval
uses. Furthermore layers can be added that assist in training, such as noise or
dropout layers. Finally many loss and optimizer functions were tried. Better
results may be achieved after applying more fitting loss, optimizer and activation
functions.

49

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vas-
udevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George
Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan.
Youtube-8m: A large-scale video classification benchmark. In arXiv: Com-
puter Vision and Pattern Recognition, 2016.

[3] Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In
2017 IEEE International Conference on Computer Vision (ICCV), pages
609–617, 2017.

[4] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learn-
ing sound representations from unlabeled video. In Proceedings of the
30th International Conference on Neural Information Processing Systems,
NIPS’16, page 892–900, Red Hook, NY, USA, 2016. Curran Associates Inc.

[5] Margaret Carol Bell and Fabio Galatioto. Novel wireless pervasive sensor
network to improve the understanding of noise in street canyons. Applied
Acoustics, 74(1):169–180, 2013.

[6] Juan P. Bello, Claudio Silva, Oded Nov, R. Luke Dubois, Anish Arora,
Justin Salamon, Charles Mydlarz, and Harish Doraiswamy. Sonyc: A sys-
tem for monitoring, analyzing, and mitigating urban noise pollution. Com-
mun. ACM, 62(2):68–77, jan 2019.

[7] Dick Botteldooren, Timothy Van renterghem, Damiano Oldoni, Dauwe
Samuel, Luc Dekoninck, Pieter Thomas, Weigang Wei, Michiel Boes, Bert
De Coensel, Bernard De Baets, and Bart Dhoedt. The internet of sound
observatories. Proceedings of Meetings on Acoustics, 19(1):040140, 06 2013.

51

[8] Keunwoo Choi, Deokjin Joo, and Juho Kim. Kapre: On-gpu audio prepro-
cessing layers for a quick implementation of deep neural network models
with keras. In Machine Learning for Music Discovery Workshop at 34th
International Conference on Machine Learning. ICML, 2017.

[9] Courtenay V. Cotton and Daniel P. W. Ellis. Spectral vs. spectro-temporal
features for acoustic event detection. In 2011 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WASPAA), pages 69–72,
2011.

[10] Aurora Linh Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo
Bello. Look, listen, and learn more: Design choices for deep audio embed-
dings. In ICASSP 2019 - 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 3852–3856, 2019.

[11] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio
set: An ontology and human-labeled dataset for audio events. In 2017
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), page 776–780. IEEE Press, 2017.

[12] Rishabh Gupta, Ishu Gupta, Deepika Saxena, and Ashutosh Kumar Singh.
A differential approach and deep neural network based data privacy-
preserving model in cloud environment. Journal of Ambient Intelligence
and Humanized Computing, 2022.

[13] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke,
Aren Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saur-
ous, Bryan Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin Wilson.
Cnn architectures for large-scale audio classification. In 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
page 131–135. IEEE Press, 2017.

[14] Chinnavat Jatturas, Sornsawan Chokkoedsakul, Pisitpong Devahasting Na
Avudhva, Sukit Pankaew, Cherdkul Sopavanit, and Widhyakorn Asdorn-
wised. Feature-based and deep learning-based classification of environ-
mental sound. In 2019 IEEE International Conference on Consumer Elec-
tronics - Asia (ICCE-Asia), pages 126–130, 2019.

[15] M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the
em algorithm. In Proceedings of 1993 International Conference on Neural
Networks (IJCNN-93-Nagoya, Japan), volume 2, pages 1339–1344 vol.2,
1993.

[16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla,
and Carol Willing. Jupyter notebooks – a publishing format for repro-
ducible computational workflows. In F. Loizides and B. Schmidt, editors,
Positioning and Power in Academic Publishing: Players, Agents and Agen-
das, pages 87 – 90. IOS Press, 2016.

52

[17] Brian McFee, Matt McVicar, Daniel Faronbi, Iran Roman, Matan Gover,
Stefan Balke, Scott Seyfarth, Ayoub Malek, Colin Raffel, Vincent Lostan-
len, Benjamin van Niekirk, Dana Lee, Frank Cwitkowitz, Frank Za-
lkow, Oriol Nieto, Dan Ellis, Jack Mason, Kyungyun Lee, Bea Steers,
Emily Halvachs, Carl Thomé, Fabian Robert-Stöter, Rachel Bittner, Ziyao
Wei, Adam Weiss, Eric Battenberg, Keunwoo Choi, Ryuichi Yamamoto,
CJ Carr, Alex Metsai, Stefan Sullivan, Pius Friesch, Asmitha Krishnaku-
mar, Shunsuke Hidaka, Steve Kowalik, Fabian Keller, Dan Mazur, Alexan-
dre Chabot-Leclerc, Curtis Hawthorne, Chandrashekhar Ramaprasad, My-
ungchul Keum, Juanita Gomez, Will Monroe, Viktor Andreevitch Morozov,
Kian Eliasi, nullmightybofo, Paul Biberstein, N. Dorukhan Sergin, Romain
Hennequin, Rimvydas Naktinis, beantowel, Taewoon Kim, Jon Petter Åsen,
Joon Lim, Alex Malins, Daŕıo Hereñú, Stef van der Struijk, Lorenz Nickel,
Jackie Wu, Zhen Wang, Tim Gates, Matt Vollrath, Andy Sarroff, Xiao-
Ming, Alastair Porter, Seth Kranzler, Voodoohop, Mattia Di Gangi, Helmi
Jinoz, Connor Guerrero, Abduttayyeb Mazhar, toddrme2178, Zvi Baratz,
Anton Kostin, Xinlu Zhuang, Cash TingHin Lo, Pavel Campr, Eric Se-
meniuc, Monsij Biswal, Shayenne Moura, Paul Brossier, Hojin Lee, and
Waldir Pimenta. librosa/librosa: 0.10.0.post2, March 2023.

[18] G. Vincze P. Szendro and A. Szasz. Bio-response to white noise excitation.
Electro- and Magnetobiology, 20(2):215–229, 2001.

[19] Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Re-
current neural networks for polyphonic sound event detection in real life
recordings. CoRR, abs/1604.00861, 2016.

[20] Karol J. Piczak. Environmental sound classification with convolutional
neural networks. In 2015 IEEE 25th International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6, 2015.

[21] Karol J. Piczak. Esc: Dataset for environmental sound classification. In
Proceedings of the 23rd ACM International Conference on Multimedia, MM
’15, page 1015–1018, New York, NY, USA, 2015. Association for Computing
Machinery.

[22] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks
and data augmentation for environmental sound classification. IEEE Signal
Processing Letters, 24(3):279–283, 2017.

[23] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):60, Jul 2019.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition, 2015.

[25] S. S. Stevens, J. Volkmann, and E. B. Newman. A Scale for the Measure-
ment of the Psychological Magnitude Pitch. The Journal of the Acoustical
Society of America, 8(3):185–190, 06 2005.

[26] Naoya Takahashi, Michael Gygli, Beat Pfister, and Luc Van Gool. Deep
Convolutional Neural Networks and Data Augmentation for Acoustic Event
Recognition. In Proc. Interspeech 2016, pages 2982–2986, 2016.

53

[27] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[28] Zhichao Zhang, Shugong Xu, Shunqing Zhang, Tianhao Qiao, and Shan
Cao. Attention based convolutional recurrent neural network for environ-
mental sound classification. Neurocomputing, 453:896–903, 2021.

54

List of terms and acronyms

Acronyms

AED acoustic event detection. 9, 11, 13, 25

DCNN deep convolutional neural network. 10–12, 25, 28

ESC environmental sound classification. 9, 10

LSTM long short-term memory. 5, 10, 21, 30

MOE Mixture of (Logistic) Experts. 5, 30, 49

RNN recurrent neural network. 10

TPU Tensor Processing Unit. 35, 39

Glossary

overfitting (In machine learning) This happens if the model is too large for the
input data. Basically, the model does not learn to recognize the features
that define a class, but it remembers the input data. 18

spectrogram (In audio) A visual representation of the amplitudes versus time
and frequency. 19

55

	Preface
	Introduction
	Research Questions
	Report structure

	Project inspiration: Serval
	Serval
	Problems with Serval
	Proposed solutions: Pallas

	Required background and related work
	Acoustic Event Detection
	Machine learning
	Data augmentation
	Embedding

	Data augmentation
	Serval cross-label sample combining
	Improved sample combining
	Noise sample augmentation
	Hybrid data augmentation
	Evaluation
	Results

	Embedding
	VGGish
	OpenL3
	Pallas
	Evaluation
	Results

	Neural Networks in Embedded Systems
	OpenEars
	Pallas device code
	TensorFlow Lite
	Edge TPU
	Evaluation
	Results

	Conclusion
	Process
	Future work

	Bibliography
	List of terms and acronyms

