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Abstract. Evaporation (E) and transpiration (7') respond dif-
ferently to ongoing changes in climate, atmospheric compo-
sition, and land use. It is difficult to partition ecosystem-scale
evapotranspiration (ET) measurements into E and 7', which
makes it difficult to validate satellite data and land surface
models. Here, we review current progress in partitioning E
and T and provide a prospectus for how to improve the-
ory and observations going forward. Recent advancements in
analytical techniques create new opportunities for partition-
ing E and T at the ecosystem scale, but their assumptions
have yet to be fully tested. For example, many approaches
to partition £ and T rely on the notion that plant canopy
conductance and ecosystem water use efficiency exhibit op-
timal responses to atmospheric vapor pressure deficit (D).
We use observations from 240 eddy covariance flux towers
to demonstrate that optimal ecosystem response to D is a
reasonable assumption, in agreement with recent studies, but
more analysis is necessary to determine the conditions for
which this assumption holds. Another critical assumption for
many partitioning approaches is that ET can be approximated
as T during ideal transpiring conditions, which has been
challenged by observational studies. We demonstrate that T
can exceed 95 % of ET from certain ecosystems, but other
ecosystems do not appear to reach this value, which sug-
gests that this assumption is ecosystem-dependent with im-
plications for partitioning. It is important to further improve
approaches for partitioning £ and 7, yet few multi-method
comparisons have been undertaken to date. Advances in our
understanding of carbon—water coupling at the stomatal, leaf,
and canopy level open new perspectives on how to quantify
T via its strong coupling with photosynthesis. Photosynthe-
sis can be constrained at the ecosystem and global scales
with emerging data sources including solar-induced fluores-
cence, carbonyl sulfide flux measurements, thermography,
and more. Such comparisons would improve our mechanistic
understanding of ecosystem water fluxes and provide the ob-
servations necessary to validate remote sensing algorithms
and land surface models to understand the changing global
water cycle.

1 Introduction

Some 70000 km?> of water leaves terrestrial ecosystems and
enters the atmosphere through evapotranspiration (ET) every
year (Jung et al., 2019; Oki and Kanae, 2006). Despite its
importance, we are unsure whether global ET has been in-
creasing over time (Brutsaert, 2013, 2017; Brutsaert and Par-
lange, 1998; Zeng et al., 2018; Zhang et al., 2016) such that
the water cycle is accelerating (Ohmura and Wild, 2002) or
decreasing and causing more river discharge (Gedney et al.,
2006; Labat et al., 2004; Probst and Tardy, 1987). Global ET
volumes from reanalyses, upscaled estimates, and land sur-
face model (LSM) outputs disagree (Mueller et al., 2013) by
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up to 50 % (Mao et al., 2015; Vinukollu et al., 2011). LSMs
also struggle to simulate the magnitude and/or seasonality
of ET at the ecosystem scale (Fig. 1), suggesting fundamen-
tal gaps in our understanding of the terrestrial water cycle.
These issues need to be resolved to effectively manage wa-
ter resources as climate continues to change (Dolman et al.,
2014, Fisher et al., 2017).

Along with technological and data limitations, we ar-
gue that a fundamental challenge in modeling ET at the
global scale is difficulty measuring transpiration (7°) through
plant stomata and evaporation (E) from non-stomatal sur-
faces at the ecosystem scale (Fisher et al., 2017; McCabe
et al., 2017). LSMs and remote sensing algorithms (see Ap-
pendix A) rely on a process-based understanding of E and T
to estimate ET, but it is not clear how to guide their improve-
ment without accurate ground-based E and T observations at
spatial scales on the order of a few kilometers or less (Talsma
et al., 2018) and temporal scales that capture diurnal, sea-
sonal, and interannual variability in water fluxes. Recent sta-
tistical ET partitioning approaches (Rigden et al., 2018) are
similarly limited by the lack of direct £ and T observations
for evaluation. Interest in partitioning E and T from ecosys-
tem ET measurements has grown in recent years (Anderson
et al., 2017b), and many new measurements and modeling
approaches seek to do so but often rely on assumptions that
need further testing. We begin with a brief research review
that notes recent updates to our theoretical understanding of
ET and outlines the challenges in measuring £ and T at the
ecosystem scale. We then describe current and emerging in-
novations in partitioning E and 7 (Table 1) and use observa-
tions to challenge some of the assumptions upon which these
approaches rely. We finish with an outlook of how carefully
designed ecosystem-scale experiments can constrain models
of E and T to improve our understanding going forward.

2 Background

2.1 Vegetation plays a central role in evaporation and
transpiration partitioning

The ratio of transpiration to evapotranspiration (7 /ET) at
annual timescales is related to aridity (Good et al., 2017)
but appears to be relatively insensitive to annual precipita-
tion (P) (Schlesinger and Jasechko, 2014). T /ET is sensi-
tive to ecosystem characteristics, namely the leaf area index
(LAI) (Berkelhammer et al., 2016; Fatichi and Pappas, 2017,
Wang et al., 2014; Wei et al., 2015), especially on sub-annual
timescales (Li et al., 2019; Scott and Biederman, 2017), not-
ing that LAI is related to P at longer timescales. A higher
LAI favors T and E from intercepted water (E;) at the ex-
pense of E from soil (Ee) such that LAI explains some
43 % of the variability of annual 7' / ET across global ecosys-
tems (Wang et al., 2014). Upscaling this relationship results
in a global estimate of terrestrial annual 7 / ET of 0.5740.07

www.biogeosciences.net/16/3747/2019/
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Figure 1. The mean monthly latent heat flux (A E) — the energy used for evapotranspiration — from eddy covariance measurements from four
research sites (“MEASURED”) and 13 ecosystem models from the North American Carbon Program Site-Level Interim Synthesis (Schwalm
et al., 2010). Sites: CA-Cal (Schwalm et al., 2007), CA-Obs (Griffis et al., 2003; Jarvis et al., 1997), US-Hol (Hollinger et al., 1999), US-
Me?2 (Thomas et al., 2009). Models: BEPS (Liu et al., 1999), CAN-IBIS (Williamson et al., 2008), CNCLASS (Arain et al., 2006), ECOSYS
(Grant et al., 2005), ED2 (Medvigy et al., 2009), ISAM (Jain and Yang, 2005), ISOLSM (Riley et al., 2002), LOTEC (Hanson et al., 2004),
ORCHIDEE (Krinner et al., 2005), SIB (Baker et al., 2008), SIBCASA (Schaefer et al., 2009), SSIB2 (Zhan et al., 2003), TECO (Weng and

Luo, 2008). Data are available from Ricciuto et al. (2013).

(Wei et al., 2017). Other observational studies suggest that
annual 7 /ET averages nearly 2/3 globally (0.61 £+0.15,
Schlesinger and Jasechko, 2014; 0.64 +0.13, Good et al.,
2015; and 0.66 £0.13 across some FLUXNET sites, Li et
al., 2019). Intercomparison studies agree on the large un-
certainty surrounding these estimates, with reported global
terrestrial annual 7 /ET ratios ranging from 0.35 to 0.90
(Coenders-Gerrits et al., 2014; Fatichi and Pappas, 2017,
Young-Robertson et al., 2018). Approaches that use stable
isotopes tend to produce higher annual 7 /ET values due
to assumptions regarding isotopic fractionation (Jasechko et
al., 2013; Sutanto et al., 2014). Some LSM estimates of an-
nual 7 /ET arrive at larger values on the order of 0.70£0.09
(Fatichi and Pappas, 2017; Paschalis et al., 2018), while other
LSMs suggest smaller 7'/ ET; for example, 7'/ ET from the
IPCC CMIP5 intercomparison ranges from 0.22 to 0.58 (Wei
et al., 2017). Constraining these model results with observa-
tions results in an estimate similar to observational studies
but with reduced uncertainty: 0.62 +0.06 (Lian et al., 2018).
A number of recent studies suggest that a major cause of
the discrepancies between observations and LSM predictions

www.biogeosciences.net/16/3747/2019/

of T /ET is the treatment of lateral flow in models (Chang
et al., 2018). Explicitly adding lateral flow and groundwa-
ter dynamics is critical for accurate 7 estimation (Maxwell
and Condon, 2016), and realistic lateral flow results in lower
E (Chang et al., 2018; Ji et al., 2017). Simulating sub-grid
water partitioning is often of particular importance during
drought (Ji et al., 2017; Shrestha et al., 2018), as is a realistic
representation of plant water stress parameters (Fang et al.,
2017). In addition to challenges in simulating 7' / ET across
space, we also need to measure and model 7' / ET correctly at
the ecosystem scale across all timescales over which it varies
from minutes or less to multiple years or more. For this, an
understanding of ecosystem water transport and biological
responses to micrometeorological forcing is necessary (Bad-
gley et al., 2015).

2.2 Turning theory into practice

Measuring and modeling water fluxes from the surface to
the atmosphere at the ecosystem scale across multiple scales
in time is a nontrivial challenge. The pools in which wa-
ter is stored in ecosystems span spatial scales from soil

Biogeosciences, 16, 3747-3775, 2019
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Table 1. A summary of recent approaches for estimating transpiration (7") and/or for partitioning evapotranspiration (ET) into evaporation (E)
and T at the ecosystem scale. The reader is referred to Kool et al. (2014) for a comprehensive review of E and 7 measurement methodologies.

Approach

Advantages

Disadvantages

Selected references

Flux—variance
similarity

Uses high-frequency eddy covari-
ance data; open-source software is
available

Necessary terms rarely computed
and/or high-frequency data to cal-
culate terms are rarely shared; sen-
sitive to water use efficiency as-
sumptions

Scanlon and Kustas (2010), Scan-
lon and Sahu (2008), Skaggs et al.
(2018)

Analyses of
half-hourly to
hourly eddy
covariance data

Use widely available eddy covari-
ance data

Often rely on assumptions regard-
ing water use efficiency and the
maximum value of the T /ET ratio

Berkelhammer et al. (2016), Lin et
al. (2018), Li et al. (2019), Scott
and Biederman (2017), Zhou et al.
(2016)

Solar-induced
fluorescence

Measurements are available at
ecosystem to global scales

Relies on an empirical relationship
between T and gross primary pro-
ductivity; mechanistic link not yet
understood; uncertainty in SIF re-
trieval

Damm et al. (2018), Lu et al.
(2018), Shan et al. (2019)

Carbonyl sulfide
(COS) flux

Can be measured using eddy co-
variance techniques to estimate
canopy conductance

COS flux can also arise from non-
stomatal sources

Whelan et al. (2018), Wohlfahrt et
al. (2012)

Surface evaporative

Based on the theory of Eq;j and can

Applies only to Eggj;

Or and Lehman (2019)

capacitance be estimated using remote sensing

pores to forest canopies. Liquid and gaseous water trans-
port occurs through pathways in the soil, xylem, leaves, and
plant surfaces that exhibit nonlinear responses to hydrocli-
matic forcing, which is itself stochastic (Katul et al., 2007,
2012). These complex dynamics of water storage and trans-
port impact the conductance of water between ecosystems
and the atmosphere (Mencuccini et al., 2019; Siqueira et
al., 2008), and these conductance terms are central to the
Penman—Monteith equation, which combines the thermody-
namic, aerodynamic, environmental, and biological variables
to which ET (ms~!) responds to represent the mass and en-
ergy balance of water flux between the land surface and the
atmosphere (Monteith, 1965; Penman, 1948):

ET = LS(RH -G) +panDga. )
2 +y (1 + ﬁ)

8surf

In the Penman—Monteith equation, A is the latent heat of va-
porization (Jkg™!), p is the density of water (kgm™>), s is
the slope of the saturation vapor pressure function (PaK~1),
R, is the surface net radiation (W m~2), G is the ground heat
flux (Wm™2), p, is dry air density (kgm™3), cp is the spe-
cific heat capacity of air Jkg~' K~!), D is the vapor pres-
sure deficit (Pa), y is the psychrometric constant (PaK~!),
ga 1s the conductance of the atmosphere, and ggyf iS sur-
face conductance to water vapor flux (both ms™h). Zsurf 18
a spatially upscaled effective parameter that includes canopy
conductance from stomatal opening (g.) associated with T,
conductance related to soil evaporation (gsoi1) associated with

Biogeosciences, 16, 3747-3775, 2019

Ei1, and conductance related to plant-intercepted evapora-
tion (g;) associated with Ej. The combination of E; and
E; results in ecosystem-scale E. The biological drivers that
alter g. impact T, but physical drivers impact both E and
T. In practice, the Penman—Monteith equation is commonly
simplified because of the challenge of correctly simulating
all relevant conductances (Maes et al., 2019; Priestley and
Taylor, 1972).

The micrometeorological drivers of the Penman—Monteith
equation vary within and across plant canopies and land-
scapes (Jarvis and McNaughton, 1986), as do the turbulent
structures that transport water into the atmosphere by which
ET can be measured using eddy covariance. Because ET
is commonly measured above plant canopies with eddy co-
variance, micrometeorological variables are commonly mea-
sured above plant canopies as well. These measurements
do not necessarily reflect micrometeorological conditions at
evaporating and transpiring surfaces. For example, character-
istic profiles of water vapor concentration in the atmosphere
measured above the plant canopy are different from D at the
canopy, leaf, and soil levels (De Kauwe et al., 2017; Jarvis
and McNaughton, 1986; Lin et al., 2018). Furthermore, the
fundamental assumption that D reflects the difference be-
tween atmospheric water vapor pressure and saturated condi-
tions within the leaf is challenged by studies demonstrating
that leaf vapor pressure need not be saturated (Cernusak et
al., 2018). Radiation, temperature, and wind speed also vary
throughout plant canopies with consequences for modeling

www.biogeosciences.net/16/3747/2019/
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T from the canopy and E from the soil and other ecosystem
surfaces. The space—time variability of environmental drivers
within plant canopies should therefore ideally be measured
or simulated to understand how they impact £ and 7', and
ecosystem modelers must decide if this canopy-resolved de-
tail is important to simulate in diverse ecosystems (Boulet et
al., 1999; Medvigy et al., 2009; Polhamus et al., 2013).
Modeling ET at the ecosystem scale is challenging enough
before noting that ongoing changes to the Earth system im-
pact all of the biotic and abiotic variables that determine it.
The decline in incident radiation across some regions of the
world due largely to anthropogenic aerosols (“global dim-
ming”) and subsequent increase since about 1990 (“global
brightening”) have changed incident radiation and thus R, at
the land surface (Wild et al., 2005). The observed decrease
in wind speed (“global stilling”) (McVicar et al., 2012a, b)
is partly due to increases in surface roughness owing to in-
creases in LAI (Vautard et al., 2010) and has decreased g,,
which is a function of wind speed (Campbell and Norman,
1998). Atmospheric heating changes the terms in Eq. (1) that
involve temperature, namely R, (via incident longwave ra-
diation), A, y, and s, through the Clausius—Clapeyron rela-
tion. A warming climate also increases D in the absence of
changes in specific humidity, but specific humidity has in-
creased across many global regions (Willett et al., 2008),
resulting in complex spatial and temporal changes in D
(Ficklin and Novick, 2017). g. is controlled by soil mois-
ture availability (Porporato et al., 2004), plant hydrodynam-
ics (Bohrer et al., 2005; Matheny et al., 2014), and envi-
ronmental variables including D that result in stomatal clo-
sure (Oren et al., 1999) (Fig. 2), which is critical for mod-
els to accurately simulate (Rogers et al., 2017). This depen-
dency on D is predicted to become increasingly important
as global temperatures continue to rise (Novick et al., 2016),
but D is also highly coupled to soil moisture (Zhou et al.,
2019), and both depend on ET itself through soil-vegetation—
atmosphere coupling. Increases in atmospheric CO, concen-
tration tend to decrease stomatal conductance at the leaf scale
(Field et al., 1995) and have been argued to decrease g. on
a global scale (Gedney et al., 2006). However, elevated CO;
often favors increases in LAI (e.g., Ellsworth et al., 1996),
thus leading to an increase in transpiring area that can sup-
port greater g.. Atmospheric pollutants including ozone also
impact g, with important consequences for vegetation func-
tion (Hill et al., 1969; Wittig et al., 2007). Water fluxes from
the land surface impact atmospheric boundary layer pro-
cesses including cloud formation, extreme temperatures, and
precipitation (Gerken et al., 2018; Lemordant et al., 2016;
Lemordant and Gentine, 2018), which feeds back to land sur-
face fluxes in ways that are inherently nonlinear and difficult
to simulate (Ruddell et al., 2013). In addition to these highly
nonlinear dynamics of the soil-vegetation—atmosphere sys-
tem, ongoing land use and land cover changes impact vege-
tation structure and function with important implications for
the water cycle. In brief, we need to correctly simulate how

www.biogeosciences.net/16/3747/2019/
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Figure 2. The relationship between above-canopy vapor pressure
deficit (D) and evapotranspiration (ET in millimeters per half hour,
hh) visualized using kernel density estimation (Botev et al., 2010)
for more than 1.5 million half-hourly eddy covariance observations
with a solar zenith angle less than 60° from 241 eddy covariance
research sites in the La Thuile FLUXNET database that included
ecosystem type and soil heat flux measurements described in Stoy
et al. (2013).

E and T respond to a range of biotic and abiotic variability
for predictive understanding. To do so, we need to accurately
measure E and T in the first place.

3 Measuring and estimating evaporation and
transpiration

There are multiple established methods to measure ecosys-
tem E and T, including leaf gas exchange, plant-level
sap flow, lysimeters, soil, leaf, and canopy chambers, pho-
tometers, soil heat pulse methods, and stable and radioiso-
topic techniques. Ongoing efforts to synthesize measure-
ments of ecosystem water cycle components — for example,
SAPFLUXNET (Poyatos et al., 2016) — are a promising ap-
proach to build an understanding of different terms of the
ecosystem water balance across global ecosystems. Multi-
ple reviews and syntheses of £ and 7" measurements have
been written (e.g., Abtew and Assefa, 2012; Anderson et al.,
2017b; Blyth and Harding, 2011; Kool et al., 2014; Shut-
tleworth, 2007; Wang and Dickinson, 2012) and have pro-
vided the key insights that ecosystem models use to simulate
ecosystem—atmosphere water flux (De Kauwe et al., 2013).
Rather than reiterate the findings of these studies, we focus
on existing and emerging approaches to partition E and T at
the ecosystem scale on the order of tens of meters to kilome-
ters at temporal resolutions on the order of minutes to hours,
with a particular emphasis on new observational and method-
ological techniques. We do so to align ecosystem-scale ob-
servations of £ and T with satellite-based algorithms that

Biogeosciences, 16, 3747-3775, 2019
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can scale E and T from ecosystem to region to globe (Ap-
pendix A).

ET is commonly approximated as the residual of the water
balance at the watershed scale in hydrologic studies — espe-
cially when the change in water storage can be assumed to
be negligible — but can now be measured using eddy covari-
ance at the ecosystem scale (Wilson et al., 2001). Other ap-
proaches including scintillometry (Cammalleri et al., 2010;
Hemakumara et al., 2003), surface renewal (Snyder et al.,
1996), and the Bowen ratio energy balance method provide
important complements to eddy covariance techniques for
measuring ecosystem-scale ET. Such syntheses follow on-
going efforts to compile ET measured by eddy covariance
via FLUXNET and cooperating consortia (Chu et al., 2017),
which synthesize half-hourly to hourly eddy covariance flux
measurements that have been used to partition ET into E and
T with mixed success.

3.1 Partitioning ET using half-hourly eddy covariance
observations

An early attempt to partition £ and T directly from eddy co-
variance measurements assumed that ET is comprised solely
of E in the absence of canopy photosynthesis (gross primary
productivity, GPP) due to the coupled flux of carbon and wa-
ter through plant stomata (Stoy et al., 2006). It was further
assumed that Eqj dominated ET during these times and that
Eoil could be modeled by simulating solar radiation attenua-
tion through grass, pine forest, and deciduous forest canopies
in the Duke Forest, NC, USA. T was subsequently approxi-
mated as the difference between measured ET and the model
for Eg during times when photosynthesis was active. An-
nual 7 /ET values from this approach varied from 0.35 to
0.66 in the grass ecosystem (US-Dk1) across a 4-year period
and between 0.7 and 0.75 in the pine (US-Dk3) and hard-
wood (US-Dk2) forests, somewhat higher than global syn-
theses (Schlesinger and Jasechko, 2014), remote sensing es-
timates from PT-JPL (see Appendix A) for the Duke pine
forest (Fig. 3), and sap-flow-based measurements from the
deciduous forest (Oishi et al., 2008). These discrepancies
arose in part because Ej was considered negligible but can
be considerable (see Sect. 3.6). The model for Egy; could
also not be directly validated using measurements from the
forest floor alone with available observations.

An under-explored approach for partitioning Ege from
ecosystem ET uses concurrent above- and below-canopy
eddy covariance measurements in forest and savanna ecosys-
tems (Misson et al., 2007). Subcanopy eddy covariance mea-
surements have proven useful for measuring below-canopy
ET, often assumed to be comprised largely of Ej in ecosys-
tems with poor understory cover (Baldocchi et al., 1997;
Baldocchi and Ryu, 2011; Moore et al., 1996; Sulman et
al., 2016). However, such measurements are not yet widely
adopted for ET partitioning studies due to a limited under-
standing of their performance (Perez-Priego et al., 2017);
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Figure 3. The Priestley—Taylor Jet Propulsion Lab (PT-JPL) esti-
mate of transpiration (7') in energy flux units compared against
T estimated using eddy covariance measurements and models of
soil evaporation in a loblolly pine forest for 2001-2005 from Stoy
et al. (2006). Measurements were taken at 10:30 Eastern Standard
Time (UTC—5h).

most work to date has used below-canopy eddy covariance
to partition canopy GPP and soil respiration (Misson et al.,
2007). Several recent studies demonstrated the additional
value of concurrent below-canopy measurements for quan-
tifying the coupling and decoupling of below- and above-
canopy airspace to accurately apply the eddy covariance
technique in forested ecosystems (Jocher et al., 2017, 2018;
Paul-Limoges et al., 2017; Thomas et al., 2013), arguing
that below-canopy eddy covariance measurements should be
more widely adopted. Other eddy-covariance-based parti-
tioning methods take a different approach and use the rela-
tionship between 7' and GPP to partition ecosystem-scale E
and 7.

Scott and Biederman (2017) assumed that 7 is linearly re-
lated to GPP at monthly timescales over many years such
that

T = mwugrGpep, 2)

where mwyg is the inverse of the marginal water use
efficiency (the change, A, in ET per change in GPP:
AET/AGPP), and r is the ratio between the inverse of the
transpirational water use efficiency (AT /AGPP) and the
marginal ecosystem water use efficiency, which is assumed
to be unity. It follows that the intercept E’ of the relationship
ET = mgpp + E’ is an estimate of average monthly E. This
approach is favored in semiarid ecosystems in which there is
a close coupling of ET and GPP and E makes up a consider-
able amount of monthly ET.

Several recently developed methods for partitioning eddy-
covariance-measured ET are based on the optimality theory
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assumption that plants minimize water loss per unit of CO,
gain (e.g., Hari et al., 2000; Katul et al., 2009; Medlyn et
al., 2011; Schymanski et al., 2007). An outcome of this ap-
proach is that plant water use efficiency WUE, defined here
as GPP/T, scales with D%5 from which a relationship be-
tween GPP and T can be derived (Katul et al., 2009). Berkel-
hammer et al. (2016) noted that ET follows a linear relation-
ship to GPP x D% and further assumed that the 7' / ET ratio
intermittently approaches 1. They then separated ET mea-
surements from eddy covariance into GPP classes for which
a minimum ET, min (ET) |gpp, can be defined. T /ET can
then be calculated using

ET
T/ET=———— (3

~ min(ET) |gpp’

Applying this approach to different forests revealed consider-
able synoptic-scale variability in 7 / ET that was dampened
at seasonal timescales and compared well against isotopic ap-
proaches (Berkelhammer et al., 2016).

Zhou et al. (2016) built upon earlier work (Zhou et al.,
2014) and assumed that an ecosystem has an actual underly-
ing water use efficiency (uWUE,, where WUE in this case is
defined as GPP/ET), which is maximal or reaches its poten-
tial underlying water use efficiency (uWUE,) when T /ET
approaches unity. 7 / ET can thus be calculated from the ra-
tio of actual to potential uWUE using optimality assumptions
for both:

GPP~/'D
UWUE, = —= @)
T
and
GPP~/D
uWUE, = —. (®)]
ET

Again, assuming that 7 /ET intermittently approaches 1 in
sub-daily eddy covariance measurements, the uWUE,, can be
estimated empirically using 95th quantile regression to find
the upper boundary of the relationship between measured ET
and GPP x D>, uWUE, can be calculated using eddy co-
variance observations, and 7' estimates using this approach
compare well against independent sap flow measurements
(Zhou et al., 2018) and expected responses to drought (Han
et al., 2018). A semiempirical model based on the uWUE
concept by Boese et al. (2017) included radiation and was
able to outperform the Zhou et al. (2016) approach, on aver-
age, consistent with the notion that T is also driven by radi-
ation (Eq. 1) (Pieruschka et al., 2010). It is important to note
when applying WUE-based approaches that there are impor-
tant discrepancies between WUE measurements at the leaf
and canopy scales that still need to be resolved (Medlyn et
al., 2017; Medrano et al., 2015) and also that GPP estimates
from eddy covariance observations may have considerable
uncertainty.
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In a more sophisticated attempt to partition ET utilizing
optimality theory, Perez-Priego et al. (2018) utilized a big-
leaf canopy model in which parameters were optimized using
half-hourly data in 5-day windows. Uniquely, the marginal
carbon cost of water was factored into the cost function dur-
ing parameter estimation, so the parameters for each 5-day
window maximized the fit between modeled and observed
GPP and also minimized water loss per carbon gain. T was
then calculated using g. from the model, and E was calcu-
lated as the residual (ET — T).

A modified (in this case binned) parameter optimization
approach was used by Li et al. (2019) to estimate g, which
follows the model proposed by Lin et al. (2018):

GPP
8surt = 80 + 81— (6)
L

Here, go (assumed to correspond to soil conductance), gi
(assumed to correspond to vegetation conductance), and m
are optimized parameters, Dy, is the inferred leaf-level D,
and ggurf 1s estimated by inverting Eq. (1) and is assumed to
represent ecosystem conductance to water vapor flux. Rather
than optimizing using a moving window over time, data were
binned using independent soil moisture data associated with
the eddy covariance site, with go, g1, and m optimized in
each bin to account for changes due to water limitations. Par-
titioning was then calculated as

T _ & ™
ET  gourf

and

E _ % . @)
ET  gsuf

The Perez-Priego et al. (2018) and Li et al. (2019) meth-
ods both circumvent the assumption that 7 /ET approaches
unity at some periods by estimating ecosystem conduc-
tances directly. The transpiration estimation algorithm (TEA)
from Nelson et al. (2018) utilizes a nonparametric model
and thereby further limits assumptions made about how the
ecosystem functions. However, TEA must make the assump-
tion that 7 /ET approaches 1, which it does by removing
observations when the surface is likely to be wet. In a vali-
dation study that utilized model output as synthetic eddy co-
variance datasets in which E and T are known, TEA was able
to predict T / ET patterns in both space and time but showed
a sensitivity to the minimum modeled E. Overall, TEA was
able to predict temporal patterns of T across three different
ecosystem models and provides an important basis for com-
parison because the model for 7 is agnostic to underlying
ecosystem function.

3.2 Partitioning ET using high-frequency eddy
covariance observations

Scanlon and Kustas (2010) (see also Scanlon and Sahu,
2008) developed a partitioning approach for £ and T us-
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ing high-frequency eddy covariance measurements based on
the notion that atmospheric eddies transporting CO, and wa-
ter vapor from stomatal processes (7 and net primary pro-
duction; NPP = GPP — aboveground respiration by the au-
totrophic canopy) and non-stomatal processes (E and soil
respiration) independently follow flux—variance similarity as
predicted by Monin—Obukhov similarity theory. In brief,
there are two end-member scenarios for a parcel of air trans-
ported from a surface: one without stomata and one with
stomata. An eddy transported away from a surface that is
respiring CO, and evaporating water through pathways other
than stomata will have deviations from the mean CO, mix-
ing ratio (¢’) and water vapor mixing ratio (¢’) that are posi-
tively correlated. An eddy of air transported by a surface with
stomata will have a negative relationship between ¢’ and ¢’
due to CO, uptake and T during daytime, whose ratio can
also be described by a unique WUE at the leaf level. This
leaf-level WUE is thereby used to establish a functional rela-
tionship between the variance of CO, due to stomatal uptake
(oczp) and the correlation between stomatal and non-stomatal
CO; exchange processes (0Ocp,cr). Subsequently, ET can be
partitioned into its 7 and E components by matching the
observed correlation of ¢" and ¢’ (p4,c) to the correspond-
ing value of pcp ¢ (Scanlon and Sahu, 2008). The original
approach applied wavelet filtering to remove large-scale at-
mospheric effects that impact the validity of underlying flux—
variance relationships and was shown to realistically repro-
duce T /ET relationships over the growing period of a corn
(maize) crop (Scanlon and Kustas, 2012).

Subsequent work by Skaggs et al. (2018) noted that there
is an algebraic solution to terms that had previously been
solved using optimization (namely 0C2p and pcp,cr; Palatella
et al., 2014) and created an open-source Python module,
fluxpart, to calculate £ and T using the flux—variance sim-
ilarity approach. The first applications of the flux—variance
similarity approach used a leaf-level WUE formulation fol-
lowing Campbell and Norman (1998); fluxpart allows leaf-
level WUE to vary as a function of D or take a con-
stant value. Leaf-level WUE varies throughout the canopy
and in response to other environmental conditions. Using
high-frequency measurements above the canopy rather than
leaf-level observations to estimate it results in uncertainties
(Perez-Priego et al., 2018). These uncertainties in leaf-level
WUE can be addressed in part by using outgoing longwave
radiative flux density observations to estimate canopy tem-
perature (Klosterhalfen et al., 2019a, b). A careful compari-
son of flux—variance partitioning results against fluxes simu-
lated by large eddy simulation revealed that it yields better re-
sults with a developed plant canopy with a clear separation of
CO; and water vapor sources and sinks (Klosterhalfen et al.,
2019b). It is also possible to separate E and T using condi-
tional sampling of turbulent eddies (Thomas et al., 2008); the
performance of the conditional sampling method is a func-
tion of canopy height and leaf area index, and the perfor-
mance of the flux—variance similarity method is related to
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the ratio between sensor height and canopy height (Kloster-
halfen et al., 2019a), suggesting that different methods may
deliver better results in different ecosystems with differing
measurement setups.

It should also be noted that flux—variance similarity can
be used directly with (half-)hourly flux data if the wavelet
filtering step is negligible (necessary variables of each time
period are the CO;, and water vapor flux, their respective
variances (acz, aqz), Pq,c» and an estimated leaf-level WUE),
but in practice high-frequency eddy covariance data are re-
quired because the necessary terms are rarely computed and
saved. Of course, all eddy-covariance-based ET partition-
ing approaches need to (i) take decoupling between atmo-
sphere, canopy, and subcanopy into account (e.g., Jocher et
al., 2017); (i1) critique the energy balance closure of the ob-
servations (Leuning et al., 2012; Stoy et al., 2013; Wohlfahrt
et al., 2009), especially in closed-path eddy covariance sys-
tems that are prone to water vapor attenuation in the inlet
tube (Fratini et al., 2012; Mammarella et al., 2009); and
(iii) acknowledge the uncertainty of eddy-covariance-based
GPP estimates. An advantage of eddy-covariance-based ap-
proaches to partition £ and T is that they can be comple-
mented by other new approaches that measure or estimate E
and T at temporal scales that align with the common half-
hourly or hourly eddy covariance averaging period and spa-
tial scales that align with the eddy covariance flux footprint.

3.3 Solar-induced fluorescence (SIF)

GPP and T are coupled through stomatal function, and stud-
ies of GPP have recently been revolutionized by space-
and ground-based observations of solar-induced fluorescence
(SIF) (Frankenberg et al., 2011; Gu et al., 2018; Kohler et al.,
2018; Meroni et al., 2009), the process by which some of the
incoming radiation that is absorbed by the leaf is reemitted by
chlorophyll. SIF emission is related to the light reactions of
photosynthesis, but GPP estimation also requires information
on the dark reactions and stomatal conductance such that the
remote sensing community is currently challenged by how to
use SIF to estimate GPP. New studies also propose that SIF
might be used to monitor 7', possibly in combination with
surface temperature measurements, acknowledging the close
link between GPP and T due to their joint dependence on
stomatal conductance and common meteorological and envi-
ronmental drivers (Alemohammad et al., 2017; Damm et al.,
2018; Lu et al., 2018; Pagéan et al., 2019; Shan et al., 2019).
While SIF is related to the electron transport rate (Zhang
et al., 2014), T primarily depends on stomatal conductance
such that SIF and T are linked empirically but not mechanis-
tically. This link is expected if GPP and T are tightly coupled.
SIF has also been proposed to predict the ecosystem-scale
WUE (i.e., GPP/T) (Lu et al., 2018), a critical component
of many of the £ and T partitioning algorithms based on the
eddy covariance ET measurements described above. Shan et
al. (2019) showed that T' can be empirically derived from SIF
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in forest and crop ecosystems, with explained total variance
ranging from 0.57 to 0.83, and to a lesser extent in grasslands
with explained variance between 0.13 and 0.22. The authors
suggested that the decoupling between GPP and T during
water stress hampered the use of SIF to predict T', partic-
ularly in grasslands, noting that 7' can occur without GPP
under periods of plant stress (Bunce, 1988; De Kauwe et al.,
2019). There is a strong empirical link between the ratio of
T over potential evaporation and the ratio of SIF over PAR,
and the relationship depends on the atmospheric demand for
water, with larger transpiration for the same SIF when poten-
tial evaporation is higher (Alemohammad et al., 2017; Damm
et al., 2018; Lu et al., 2018; Pagén et al., 2019; Shan et al.,
2019). These ratios vary with assumptions regarding the po-
tential evaporation calculation as well (Fisher et al., 2010).
SIF can be measured at multiple spatial and temporal scales
(Kohler et al., 2018), including the scale of the eddy covari-
ance flux footprint (Gu et al., 2018), and this information
can in turn be incorporated into remote-sensing-based ap-
proaches for estimating ET using remote sensing platforms
(see Appendix A) following additional mechanistic studies
of its relationship with T'.

3.4 Carbonyl sulfide (COS) flux

Other approaches to estimate GPP and g. use independent
tracers such as carbonyl sulfide (COS). When plants open
their stomata to take up CO; for photosynthesis, they also
take up COS (Campbell et al., 2008), a trace gas present in
the atmosphere at a global average mole fraction of ~ 500 ppt
(Montzka et al., 2007). The leaf-scale uptake of COS, Fcos
(pmol m~2 s~ 1), can be calculated using

1 1 1\!
Fcos = —Ccos| — + +—1 . 9
&  &.C0S &

where Ccps (pmol mol~!) is mole fraction of COS and
gb, 8s.cos, and g; represent the leaf-scale boundary layer,
stomatal, and internal conductances (here molm~2s~1) to
COS exchange (Sandoval-Soto et al., 2005; Wohlfahrt et al.,
2012). The latter lumps together the mesophyll conductance
and the biochemical “conductance” imposed by the reaction
rate of carbonic anhydrase, the enzyme ultimately respon-
sible for the destruction of COS (Wehr et al., 2017). Equa-
tion (9) also makes the common assumption that, because the
carbonic anhydrase is highly efficient in catalyzing COS, the
COS mole fraction at the diffusion end point is effectively
zero (Protoschill-Krebs et al., 1996). Provided appropriate
vertical integration over the canopy is made, Eq. (9) can be
used to describe canopy-scale Fcos (Wehr et al., 2017).
Because COS and CO; share a similar diffusion pathway
into leaves and because the leaf exchange of COS is gener-
ally unidirectional, COS has been suggested (Sandoval-Soto
et al., 2005; Seibt et al., 2010; Wohlfahrt et al., 2012) and
demonstrated (Wehr et al., 2017; Yang et al., 2018; Spiel-
mann et al., 2019) to present an independent proxy for esti-
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mating GPP. Motivated by the common boundary layer and
stomatal conductances, there has been recent interest in using
measurements of the COS exchange to estimate the canopy
stomatal conductance to water vapor and by extension T
(Asaf et al., 2013; Wehr et al., 2017; Yang et al., 2018). Solv-
ing for g5 cos from Eq. (9) requires measurements of Fcos
(e.g., by means of eddy covariance; Gerdel et al., 2017) and
Ccos, while gy and gj are typically estimated based on mod-
els.

With g (and by canopy scaling g.) determined this way
and an estimate of aerodynamic conductance (the canopy
analog to the leaf boundary layer conductance; Eq. 1), T
may be derived by multiplication with the canopy-integrated
leaf-to-air water vapor gradient. The first and to date only
study to attempt this was conducted by Wehr et al. (2017),
who demonstrated excellent correspondence with g. esti-
mated from ET measurements in a temperate deciduous for-
est. While stomata dominated the limitation of the COS up-
take during most of the day, co-limitation by the biochemical
“conductance” imposed by carbonic anhydrase was observed
around noon. This finding is consistent with leaf-level studies
by Sun et al. (2018) and suggests that g; in Eq. (9) may not
generally be negligible, even though Yang et al. (2018) found
the bulk surface conductance of COS (i.e., all conductance
terms in Eq. 9 lumped together) to correspond well with the
surface conductance for water vapor inferred from ET. As
soils may both emit and take up COS, ecosystem-scale COS
flux measurements need to account for any soil exchange,
even though typically the soil contribution is small (Maseyk
et al., 2014; Whelan et al., 2018). One notable exception
for larger soil Fcos fluxes occurs in some agricultural sys-
tems (Whelan et al., 2016) due in part to the relationship of
Fcos with soil nitrogen (Kaisermann et al., 2018). Clearly,
further studies are required in order to establish whether the
complexities of and uncertainties associated with inferring gg
from Eq. (9) and non-stomatal fluxes make COS observations
a sensible independent alternative for estimating canopy 7 .

3.5 Advances in thermal imaging

Thermal remote sensing measures the radiometric surface
temperature following the Stefan—Boltzmann law. ET can
be estimated using thermal remote sensing by applying an
ecosystem energy balance residual approach: AE = Ry,—G —
H (Norman et al., 1995). Quantifying the available energy
term (R, — G) is difficult from space, and the radiometric
surface temperature measured by infrared sensors is different
from the aerodynamic surface temperature that gives rise to
sensible heat flux (H) (Kustas and Norman, 1996). Despite
these challenges, thermal remote sensing for ET has been
widely used with multiple satellite platforms including Land-
sat, MODIS, Sentinel, and GOES (Anderson et al., 2012;
Fisher et al., 2017; Semmens et al., 2016). One of NASA’s
newest missions is ECOSTRESS, mounted on the Interna-
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tional Space Station, which produces thermally derived ET at
70 m resolution with diurnal sampling (Fisher et al., 2017).

Advances in thermal imaging (thermography) have made
it possible to make radiometric surface temperature obser-
vations at increasingly fine spatial and temporal resolutions
(Jones, 2004), on the order of millimeters or less, such
that £ and T can be measured individually from the sur-
faces from which they arise. Thermography has been used
to estimate Egu (Haghighi and Or, 2015; Nachshon et al.,
2011; Shahraeeni and Or, 2010) and T from plant canopies
(Jones, 1999; Jones et al., 2002), often in agricultural set-
tings (Ishimwe et al., 2014; Vadivambal and Jayas, 2010).
Researchers are increasingly using tower and UAV-mounted
thermal cameras to measure the temperatures of different
ecosystem components at high temporal and spatial resolu-
tion (Hoffmann et al., 2016; Pau et al., 2018), which could
revolutionize the measurement of 7 from plant canopies
(Aubrecht et al., 2016) or even individual leaves in a field
setting (Page et al., 2018). Such measurements need to con-
sider simultaneous E; and T from wet leaf surfaces.

3.6 The challenges of measuring evaporation from
canopy interception

E; from wet canopies can return 15 %—-30 % or more of inci-
dent precipitation back into the atmosphere annually (Crock-
ford and Richardson, 2000), and models struggle to simulate
it accurately (De Kauwe et al., 2013). Although interception
has been studied for over a century, the underlying physi-
cal processes, atmospheric conditions, and canopy charac-
teristics that affect it are poorly understood (van Dijk et al.,
2015). Accurately estimating E; from wet canopies is criti-
cal for the proper simulation of interception loss (Pereira et
al., 2016). However, E; predicted by the Penman—Monteith
equation (Eq. 1) during rainfall is often a factor of 2 or more
smaller than the E; derived from canopy water budget mea-
surements (Schellekens et al., 1999). A recent study using
detailed meteorological measurements from a flux tower in-
dicates that the underestimated E; by the Penman—Monteith
equation might be attributed to the failure in accounting
for the downward sensible heat flux and heat release from
canopy biomass, which can be major energy sources for wet-
canopy E (Cisneros Vaca et al., 2018). Storm characteris-
tics (e.g., amount, storm duration, and intensity) and canopy
structural information (e.g., canopy openness, canopy stor-
age capacity) are all important parameters for modeling E;
(van Dijk et al., 2015; Linhoss and Siegert, 2016; Wohlfahrt
et al., 2006). To partition total ET into 7, Ey, and Ej, it
is necessary to simulate the dynamics of canopy wetness be-
fore, during, and after each storm so that models can be ap-
plied to the dry and wet portions of the canopy, respectively
(Liu et al., 1998), a process that can be implemented using
a running canopy water balance model (Liu, 2001; Rutter et
al., 1971; Wang et al., 2007). Understanding the sources of
water is therefore useful for quantifying differences among
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T, Egoil, and Ej, and information from water isotopes can be
helpful to do so.

3.7 Isotopic approaches

The hydrogen and oxygen atoms of water molecules exist in
multiple isotopic forms, including 2H and '30, which are sta-
ble in the environment and can be used to trace the movement
of water through hydrologic pathways (Bowen and Good,
2015; Gat, 1996; Good et al., 2015; Kendall and McDon-
nell, 2012). Because heavier atoms preferentially remain in
the more condensed form during phase change, evaporation
enriches soils in 2H and 80 (Allison and Barnes, 1983),
while root water uptake typically removes water from the soil
without changing its isotope ratio (Flanagan and Ehleringer,
1991). This difference in the isotope ratio, R = [2H] / ['H]
or [180] / [1°0], of Egil compared with the isotope ratio of
water moving through plants is the basis for the isotopic par-
titioning of ET. If ET consists of two components, E and T,
with distinct isotopic composition — Rg for soil evaporation
and Rt for plant transpiration — then the bulk flux, RgT, can
be incorporated into a simple mass balance of the rate iso-
tope (i.e., ReTET = REE + RtT), which can be rearranged
as (Yakir and Sternberg, 2000)

T  Rer—Re

i . 10
ET RT — Rg 10

Thus, knowledge of the isotopic ratio of each flux compo-
nent, Rg and R, as well as the total bulk flux isotope ratio,
REgT, is sufficient to estimate the fraction that passes through
plants.

Techniques to measure Rgr have diversified since the
widespread deployment of laser-based integrated cavity out-
put spectroscopy (ICOS) systems, which currently monitor
atmospheric stable isotope ratios, Ra, at a wide number of
sites (Wei et al., 2019; Welp et al., 2012). Vertical profiles
and high-frequency measurements of R are used to deter-
mine Rgr using multiple methods, all of which are associ-
ated with potentially large uncertainty (Griffis et al., 2005,
2010; Keeling, 1958). Propagation of uncertainties through
Eq. (10) demonstrates that errors in RgT, Rt, and Rg, as
well as differences between Rg and Rr, strongly influence
the final partitioning estimate (Good et al., 2014; Phillips
and Gregg, 2001). The isotopic approach becomes uninfor-
mative as Rg approaches Rt. Furthermore, as E; adds an-
other source term to the isotope mass balance, Eq. (10) can
be implemented over short periods only when the canopy
is dry. If Ej is incorporated as a third source, its magni-
tude and isotope ratio must be specified, and these assump-
tions can strongly influence any final isotope-based partition-
ing estimates (Coenders-Gerrits et al., 2014; Schlesinger and
Jasechko, 2014).

The value of Rg is derived from the soil water isotope
ratio, Rs, as well as the temperature and humidity condi-
tions under which evaporation happened (Craig and Gordon,
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1965). The destructive extraction of water from soil cores
can be used to estimate Rg, though recent studies have high-
lighted discrepancies between methodologies (Orlowski et
al., 2016a, b). In situ monitoring of Rg obtained by pump-
ing soil vapor through ICOS systems has been demonstrated
(Gaj et al., 2016; Oerter et al., 2016; Volkmann and Weiler,
2014) and recently applied to ET partitioning to provide con-
tinuous updates on soil isotope ratios (Quade et al., 2019).
Eddy covariance measurements of >H and 80 are now pos-
sible (Braden-Behrens et al., 2019). However, identifying Rs
remains challenging, and the bulk soil moisture composition
(Mathieu and Bariac, 1996; Soderberg et al., 2013), depth
(Braud et al., 2005), and soil physical composition (Oerter et
al., 2014) at which evaporation occurs can alter the Rg to Rg
relationship.

If water entering the plant is isotopically the same as tran-
spired water, known as the isotopic steady-state assumption,
then Rt = Rs. However, preferential uptake at the root—soil
interface, differences between plant internal water pools in
time, and mixing along the water pathways within plants will
invalidate the steady-state assumption (Farquhar and Cer-
nusak, 2005; Ogée et al., 2007). Finally, variability between
and within plant species and plant—soil microclimates of an
ecosystem will move the system away from the simple two-
source model used in Eq. (10). Accurate knowledge of the
isotope ratio within various water reservoirs of a landscape,
including the planetary boundary layer (Noone et al., 2013),
and how these translate into distinct water fluxes is required
to advanced isotope-based partitioning approaches.

3.8 Statistical approaches

In addition to modeling gg,f as the sum of g¢, gsoil, and
gi, daily geurf can also be well-approximated using emer-
gent relationships between the atmospheric boundary layer
and land surface fluxes, as demonstrated by the Evapotran-
spiration from Relative Humidity in Equilibrium (ETRHEQ)
method (Rigden and Salvucci, 2015; Salvucci and Gentine,
2013). The ETRHEQ method is based on the hypothesis that
the best-fit daily gg,f minimizes the vertical variance of rela-
tive humidity averaged over the day. Estimates of ET from
this approach compare favorably to eddy covariance mea-
surements (Gentine et al., 2016; Rigden and Salvucci, 2016),
and the method can be applied at weather stations due to
its primary dependence on meteorological observations. Rig-
den et al. (2018) recently developed a statistical approach
to decompose estimates of ggurf from ETRHEQ into g, and
gsoil, allowing ET to be partitioned to 7 and E. The parti-
tioning approach is based on the assumption that vegetation
and soil respond independently to environmental variations
and utilizes estimates of ggur at ~ 1600 US weather stations,
meteorological observations, and satellite retrievals of soil
moisture. Estimates of 7' from this statistical approach show
strong agreement with SIF and realistic dry-down dynamics
across the US (Rigden et al., 2018); however, the method
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lacks evaluation with £ and T observations directly. For-
tunately for many of the techniques discussed above, new
large-scale methods for estimating E.j based on theory have
recently been developed and applied at large scales.

3.9 Novel approaches for estimating soil evaporation

Eoi is conventionally measured using lysimeters (Black et
al., 1969), with some promising results from carefully de-
signed chamber approaches that seek to minimize the im-
pacts of the rapidly humidifying within-chamber atmosphere
on evaporation (Raz-Yaseef et al., 2010; Yepez et al., 2005).
Eoi has received extensive theoretical treatment (e.g., Brut-
saert, 2014) that has resulted in models that align well with
observations on ecosystem scales (e.g., Perez-Priego et al.,
2018; Lehmann et al.,, 2018; Merlin et al., 2016, 2018).
Lehmann et al. (2018) defined a new model for soil evap-
orative resistance that correctly describes the transition from
stage-I evaporation (non-diffusion limited) to stage-II evapo-
ration (diffusion limited). The model was able to correctly
describe the soil moisture dependence of Egyj across dif-
ferent soil types. This approach was extended by Or and
Lehmann (2019), who developed a conceptual model for soil
evaporation called the surface evaporative capacitance (SEC)
model for Ej. Briefly, the transition between stage-1 evapo-
ration of a drying soil with capillary flow from deep moisture
sources and stage-II evaporation characterized by water va-
por diffusion is modeled using an evaporation characteristic
length that differs by soil type (Lehmann et al., 2008, 2018).
The SEC model accurately simulated Eq;j datasets from dif-
ferent global regions, and adding global maps of precipita-
tion and soil properties creates spatially distributed Egoj es-
timates to model global E;. The SEC model can be used in
combination with other remotely sensed ET estimates (e.g.,
GLEAM; Appendix A) to partition ET.

4 Critiquing the assumptions of ET partitioning
methods

4.1 Do ecosystems exhibit optimal responses to D?

Many WUE-based approaches for partitioning E and T
(Sect. 3.1 and 3.2) hinge on the notion that g. follows an op-
timal response to D. Recent data-driven studies have argued
that g. measured using eddy covariance is “slightly subopti-
mal”, averaging between D' and D% with a mean of D%>3
rather than D% (Lin et al., 2018), or is “nearly optimal” and
scales with GPP x D95 (Zhou et al., 2015). Here, we test the
assumption that plant canopies exhibit optimal responses to
D by assuming that it serves as a constraint on WUE follow-
ing an implication of optimality theory that 1 minus the ratio
of leaf-internal CO; (cj) to atmospheric CO3 (ca), 1 — ¢j/ca,
also scales with D% (see Eq. 18 in Katul et al., 2009). Us-
ing the definition of WUE as GPP /T, expanding GPP and
T using Fick’s law, and excluding differences in mesophyll
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conductance,

GPP 8c€Cqy (1 — ;—;) 1"
T = 2D . (11)

In this equation, g. cancels and ¢ is the relative diffu-
sivity of HoO and CO; molecules. If (1 —cj/c,) scales
with D93, eddy-covariance-estimated WUE (i.e., GPP /ET)
should therefore scale with D=0 if it can be assumed that
measured ET approaches 7. We tested this notion using mi-
crometeorological and eddy covariance data from 240 sites
that include ecosystem type and ecosystem energy balance
measurements in the La Thuile FLUXNET database follow-
ing Stoy et al. (2013). We assumed that E is a trivial com-
ponent of ET when WUE values exceed 95 % of observa-
tions (Zhou et al., 2016) and use a boundary line analysis
commonly used in studies of leaf and canopy conductance
(Schifer, 2011) to describe this 95 % threshold. We then took
the mean of the upper 95 % of eddy covariance WUE obser-
vations in 0.3 kPa bins of D and fit an exponential model
to these observations using nonlinear least squares (Fig. 4a)
rather than fitting a linear model following log transforma-
tion for values that approach zero. Using this approach, we
arrive at a mean (= standard deviation) exponential term of
—0.53 £ 0.17 from the 240 sites (Fig. 4b), which is not sig-
nificantly different from —0.5 using a one-sample ¢ test. Re-
peating this analysis with the FLUXNET2015 dataset reveals
a mean exponential term of —0.49 £0.15, which is likewise
not different from —0.5.

Land surface models struggle to simulate this emergent
property of ecosystems. Models for the ecosystems shown in
Fig. 1 tend to dramatically overpredict the magnitude of the
exponential term with a mean value of —2.9 (Table 2). The
exponential term of the BEPS model was —0.54 £0.06, sim-
ilar to observations. Combined, these results suggest that an
optimal canopy response to D may be a reasonable assump-
tion despite the challenges of leaf-to-ecosystem scaling and
despite the use of above-canopy rather than Dy here, but the
considerable variability of the calculated exponential terms
suggests that more research is necessary to understand con-
ditions under which optimality is a reasonable assumption
and when it is not. The discrepancy in calculated exponen-
tial terms between measurements and models further empha-
sizes the importance of improved carbon and water coupling
in ecosystem models.

4.2 Does T /ET approach unity?

Also central to many E and T partitioning approaches is the
notion that 7' /ET intermittently approaches 1 (Berkelham-
mer et al., 2016; Nelson et al., 2018; Zhou et al., 2016; Wei
et al., 2017), as suggested by modeling analyses and mea-
surements (Wei et al., 2015, 2018). This assumption was cri-
tiqued by Perez-Priego et al. (2018), who demonstrated that
T /ET was rarely greater than 0.8 in a Mediterranean ecosys-
tem, even during dry periods when surface soil moisture was
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Figure 4. (a) An example of a boundary line analysis to quantify
the relationship between vapor pressure deficit (D) and ecosys-
tem water use efficiency defined as gross primary productivity
(GPP) divided by evapotranspiration (ET) for the case of a single
ecosystem in the La Thuile FLUXNET database, in this case Viel-
salm, Belgium (BE-Vie), using GPP/ET values that represent the
95th percentile of 0.3kPa D bins, shown as red dots. The model
GPP/ET = kD™, fit using nonlinear least squares, is shown as a red
line. The value of m for BE-Vie is —0.53; the values m = —0.5 fol-
lowing Medlyn et al. (2011) and m = —1 following Leuning (1995)
are shown for reference with the same fitted value of k. Individual
half-hourly eddy covariance measurements are shown in light gray.
(b) The distribution of the best-fit exponential parameter (m) for
240 sites in the La Thuile FLUXNET database that contained the
full energy balance measurements and ecosystem type information
used in Stoy et al. (2013).

less than 0.2m3 m—3, and that E scaled with time=%> fol-
lowing Brutsaert (2014) (see also Boese et al., 2019, and
Li et al., 2019). These findings of a sustained evaporation
component and nonzero E/ET even during dry conditions
were also supported by lysimeter measurements in a semi-
arid grassland (Moran et al., 2009) and partly confirmed by a
recent study based on isotopes in shrubs and a steppe ecosys-
tem (Wang et al., 2018). The maximum daily 7 /ET found
by Scanlon and Kustas (2012) in a maize agroecosystem was
also about 0.8, but Rana et al. (2018) found daily values that
intermittently exceeded 0.9 in wheat and fava bean fields,
and multi-method comparisons suggest that 7 /ET often ap-
proaches 0.85 (Rafi et al., 2019). Anderson et al. (2017a)
found that T /ET routinely exceeded 0.9 in sugarcane, with
maximum daily values above 0.95, and Li et al. (2019) also
found values greater than 0.9 for other crops. We can critique
the notion that 7 /ET approaches 1 by applying the flux—
variance similarity partitioning approach to a wheat canopy
from central Montana, USA, measured by Vick et al. (2016).
Wheat has a characteristically high surface conductance (Bo-
nan, 2008) and approaches an ideal transpiring surface dur-
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Table 2. The exponential term (m) of the model WUE =kD™ fit
using nonlinear least squares to the 95th percentile of WUE values
in 0.3 kPa bins of D (see Fig. 4). Sites: CA-Cal (Schwalm et al.,
2007), CA-Obs (Griffis et al., 2003; Jarvis et al., 1997), US-Hol
(Hollinger et al., 1999). Models: BEPS (Liu et al., 1999), CAN-
IBIS (Williamson et al., 2008), CNCLASS (Arain et al., 2006),
ECOSYS (Grant et al., 2005), ED2 (Medvigy et al., 2009), ISAM
, ISOLSM (Riley et al., 2002), LOTEC (Hanson et al., 2004), OR-
CHIDEE (Krinner et al., 2005), SIB (Baker et al., 2008), SIBCASA
(Schaefer et al., 2009), SSIB2 (Zhan et al., 2003), TECO (Weng and
Luo, 2008). Data are available from Ricciuto et al. (2013).

Model CACal CAObs USHol
BEPS —0.6 -0.5 -0.5
CAN-IBIS —4.8 2.5 —4.7
CNCLASS —-3.3 —4.1 —-3.3
ECOSYS -2.3 —1.6 -0.7
ED2 2.1 -2.4 —-34
ISAM —4.8 -0.9 —-1.3
ISOLSM —4.7 —-0.8 —1.4
LOTEC —4.7 -2.2 —4.4
ORCHIDEE —2.3 -39 —4.5
SIB —-3.6 -2.8 -2.3
SIBCASA —4.5 -2.9 -3.6
SSIB2 —4.7 3.1 —4.1
TECO —4.1 -3.3 —-1.8
Measurements —0.5 —-0.4 —0.5

ing the main growth period (Bonan, 2008; Priestley and Tay-
lor, 1972). The dryland wheat crops studied here draw wa-
ter from depth such that surface soils are often dry (Vick
et al., 2016), minimizing E.. Applying the flux—variance
similarity method of Scanlon and Kustas (2010) to the wheat
crop and allowing the algorithm to estimate water use effi-
ciency suggests that 7 /ET frequently exceeds 0.95 during
daytime periods when the algorithm converges (Fig. 5a). Re-
peating this analysis for a winter wheat crop near Sun River,
Montana, USA, using the flux—variance similarity algorithm
of Skaggs et al. (2018) confirms this finding with an even
higher proportion of T /ET values (20 %) that exceed 0.95
when allowing the algorithm to estimate water use efficiency.
T /ET, however, exceeded 0.95 in less than 2 % of measure-
ments using the approach of Perez-Priego et al. (2018) in a
Mediterranean savanna ecosystem (Fig. 6). These observa-
tions suggest that the notion that 7 /ET approaches 1 is a
good assumption in some ecosystems, perhaps in ecosystems
with high LAI, with implications for flux partitioning by the
methods that rely on this assumption.

5 Research imperatives

Few field experiments have sought to constrain ecosystem E
and T estimates using multiple observations to quantify their
response to environmental variability and to test the assump-
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Figure 5. Distribution of the fraction of evapotranspiration arising
during daytime hours from transpiration (7') and evaporation (E)
estimated using the flux—variance similarity approach of Scanlon
and Kustas (2010) from (a) a winter wheat field near Moore, MT,
USA, described in Vick et al. (2016) using a version of the origi-
nal algorithm. (b) A winter wheat field near Sun River, MT, using
fluxpart (Skaggs et al., 2018).
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Figure 6. The distribution of the 7'/ ET ratio for half-hourly obser-
vations from the partitioning approach of Perez-Priego et al. (2018)
for the Majadas de Tietar (ES-Lma), Spain, research site.

tions of partitioning approaches (Perez-Priego et al., 2017,
2018). Those that have note large discrepancies in T / ET es-
timates from different techniques (Quade et al., 2019). De-
spite these challenges, a multi-measurement approach is nec-
essary to understand different ecosystem water flux terms (Li
et al., 2018), but most multi-method ecosystem-scale experi-
ments using eddy covariance measurements seek to constrain
the carbon cycle rather than the water cycle to which it is cou-
pled (Hanson et al., 2004; Williams et al., 2009). Here, we
outline the basics of an ecosystem-scale experiment designed
to address uncertainties in £ and T measurements (Fig. 7).
It would be best to introduce such an experiment in an
ecosystem with a relatively simple species distribution and
a clear separation of above- and below-canopy E and T
sources to apply flux—variance approaches (Klosterhalfen et
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Figure 7. A schematic of an ecosystem experiment designed to measure transpiration and evaporation from soil and intercepted water using

multiple complementary measurement approaches.

al., 2019b; Williams et al., 2004) before addressing more
complex ecosystems with multiple canopy layers (Fu et al.,
2018; Santos et al., 2016). Observations should occur on
timescales commensurate with satellite remote sensing over-
passes (see Appendix A); the half-hourly time step used in
most eddy covariance observations is likely sufficient to ap-
proximate conditions captured by polar-orbiting satellites.
For example, MODIS has a morning local overpass time for
TERRA and afternoon overpass for AQUA; GOME2 makes
SIF observations in the morning, and OCO-2 flies over in the
early afternoon. There will be more opportunities to study
diurnal patterns in E and 7 with the forthcoming and on-
going OCO-3, ECOSTRESS, and Geostationary Carbon Cy-
cle Observatory (GeoCarb) missions. There are also under-
explored opportunities to study ET partitioning using geo-
stationary satellites like GOES (Bradley et al., 2010), which
compromises a temporal resolution on the order of minutes
with a spatial resolution from the distant geostationary orbit
on the order of kilometers. These length scales may be well-
captured by scintillometry, and ET partitioning approaches
that employ scintillometry are largely lacking to date. A short
measurement time step to align with satellite overpasses is
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possible for chambers, lysimeters, and sapflux measurements
but not some isotopic approaches (Fig. 7). Critically, ther-
mography, SIF, and COS flux can also be measured at these
timescales. An ideal £ and T partitioning experiment would
make them both above and below plant canopies, in con-
junction with below-canopy eddy covariance, to isolate Egq;
(Fig. 7). For full water balance accounting, observations of
drainage from the rooting zone using drainage lysimeters,
soil moisture at multiple soil levels spanning the root zone,
the flow of water down plant stems (stemflow), leaf wetness
sensors, measurements of the amount of water held in plants
themselves, and of course multiple precipitation gauges are
required. Such a multi-measurement approach would also
create an opportunity to compare the performance of emerg-
ing technologies like distributed temperature sensing from
fiber-optic cables (Schilperoort et al., 2018), modeling cos-
mic ray neutron fields for soil water source estimation (An-
dreasen et al., 2016), and global navigation satellite system
reflectometry (GNSS-R) for soil moisture estimation (Zribi
et al., 2018). It remains difficult to assimilate £ and T mea-
surements into models using conventional data assimilation
techniques because observations may contain substantial bias
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error yet still provide valuable information (Williams et al.,
2009). Emerging approaches from machine learning in the
Earth and environmental sciences may therefore be particu-
larly useful for combining the best information from different
measurement techniques into a mass- and energy-conserving
model of the surface—atmosphere exchange of water (Reich-
stein et al., 2019). Regardless of the specifics of the multi-
measurement approach for constraining £ and 7 measure-
ments, we advocate more investment into the study of ET,
“green water”, given its central importance in provisioning
resources to an increasingly resource-scarce planet (Schyns
et al., 2019).

6 Conclusion

New measurement techniques and analytical approaches for
partitioning £ and T at the ecosystem scale provide critical
opportunities to improve land surface models, remote sens-
ing products, and ultimately our understanding of the global
water cycle. Ecosystem-scale experiments that measure E
and T using multiple approaches are needed to understand
how E and T respond differently to climate variability and
change across different global ecosystems and also to cri-
tique the assumptions made by ET partitioning approaches
to improve their skill. By strengthening our focus on the wa-
ter cycle in studies of coupled carbon and water fluxes, our
understanding of the role of the land surface in the climate
system can only improve.

www.biogeosciences.net/16/3747/2019/

Data availability. The terrestrial biosphere model and aggre-
gated flux data can be found in Ricciuto et al. (2013;
https://doi.org/10.3334/ORNLDAAC/1183). Data from the winter
wheat field near Moore, MT, are available as Ameriflux site US-
Mjl at https://ameriflux.Ibl.gov/sites/siteinfo/US-Mj1 (last access:
29 September 2019). Data from the winter wheat field near Sun
River, MT, will be submitted to Ameriflux with the site name US-
Msr.
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Appendix A

For completeness we briefly describe common algorithms
used by remote sensing platforms for estimating E, T, and
ET, noting that additional approaches exist and are under de-
velopment (El Masri et al., 2019). Many widely used algo-
rithms including SEBAL (Bastiaanssen et al., 1998), MET-
RIC (Allen et al., 2007; Su, 2002), and SEBS (Su, 2002) use
an energy balance approach that does not explicitly seek to
separate T from E but remain highly valuable for water re-
source management and hydrology.

Al PT-JPL

The Priestley—Taylor Jet Propulsion Lab (PT-JPL) global ET
remote sensing retrieval algorithm (Fisher et al., 2008) is
based on the potential evapotranspiration (PET) formulation
of Priestley and Taylor (1972), which replaces the adiabatic
terms in Eq. (1) with a parameter, apr, that takes a value of
1.26 under ideal evaporating conditions:

s(Ry,—G)

PET =«
P s+y

(AD)

To reduce PET to ET, Fisher et al. (2008) introduced eco-
physiological constraint functions ( f functions, unitless mul-
tipliers between 0 and 1) following Jarvis (1976). These are
based on D, relative humidity (RH), the normalized differ-
ence vegetation index (NDVI), and the soil-adjusted vegeta-
tion index (SAVI; Huete, 1988). PT-JPL calculates T, Ej,
and FEj explicitly using

ET =T + Esi + Ei, (A2)
s (Rye — G)
T = (1~ fwe)) fofremp fMotpT ————, (A3)
s+y
S (Rps — G)
Esoil = (fwet + fsm (1 — fwer)) apr ————, (A4)
s+y
5 (Roc — G)
Ei = fye@tpr————, (AS)
s+y

where fwet 1S relative surface wetness (RH4), fg is green
canopy fraction, fremp is a plant temperature constraint, fy
is a plant moisture constraint, and fsy is a soil moisture
constraint. Ry and Rps are net radiation absorbed by the
canopy and soil, respectively. PT-JPL has been tested against
measured ET from hundreds of FLUXNET sites worldwide,
with a monthly average r> of 0.90 across all sites and a
slope / bias of 1.07 using in situ data (Fisher et al., 2008,
2009). The PT-JPL model forms the core ET retrieval algo-
rithm in the ECOSTRESS mission (Fisher et al., 2017; Hul-
ley et al., 2017) onboard the International Space Station. New
applications of the PT-JPL algorithm have included canopy
indices derived from CubeSats (Aragon et al., 2018).
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A2 PM-MOD16

The PM-MODI16 algorithm estimates ET at 8-day inter-
vals at 1km? pixels across the global terrestrial surface
with MODIS observations following Mu et al. (2011) using
Eq. (A2). The PM-MOD16 algorithm follows the Penman—
Monteith model (Eq. 1) rather than the Priestley—Taylor
model (Eq. Al) by modeling conductance terms (or resis-
tance terms as the inverse of the conductance terms in Eq. 1)
rather than including f functions as in the PT-JPL algorithm.
It explains ca. 86 % of the variability in eddy-covariance-
observed ET from 46 sites in North America (Mu et al.,
2011).

A3 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM)
(Miralles et al., 2011a, b) also uses a Priestley—Taylor ap-
proach (Eq. Al) to estimate ET. It employs the Gash (1979)
analytical model for canopy rainfall interception and
semiempirical stress functions that vary between 0 and 1
(similar to the f functions of the PT-JPL model) to reduce
PET to T for canopies with different characteristics. For T,
this stress function is calculated based on the content of wa-
ter in vegetation and the root zone. The former is approxi-
mated based on microwave vegetation optical depth and the
latter is calculated using a multilayer soil model driven by
observations of precipitation and updated through the assim-
ilation of microwave surface soil moisture. Validation studies
against eddy covariance data at daily timescales show aver-
age correlations typically ranging 0.81-0.86 (Martens et al.,
2017).

A4 DTD

The dual-temperature difference (DTD) model follows the
notion that diurnal changes in air and radiometric surface
temperatures are related to surface—atmosphere heat flux
(Norman et al., 2000). It has since been applied to MODIS
observations to estimate ET (Guzinski et al., 2013) and to
partition E and T using a Priestly—Taylor scheme described
in Song et al. (2018). DTD estimates of E and T compared
well to estimates derived using the flux—variance similarity
algorithm of Skaggs et al. (2018).

AS ALEXI-DisALEXI

Atmosphere—-Land Exchange Inverse (ALEXI) is a multi-
scale surface energy balance modeling system building on
the two-source energy balance (TSEB) land surface represen-
tation of Norman et al. (1995). The TSEB partitions the com-
posite radiometric surface temperature, Tempy,q, into soil
and canopy temperatures, Temps and Temp,, based on the
local vegetation cover fraction apparent at the thermal sensor
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view angle, f(0):
Temp,,q = f (6) Temp, + (1 — f (6)) Temps,. (A6)

With information about Temp;ag, LAI, and radiative forc-
ing, the TSEB evaluates the soil (subscript “s”) and canopy
(“’c”) energy budgets separately by computing system and
component fluxes of R,, H, and ET (i.e., ET from soil and
canopy), as well as G. Because angular effects are incor-
porated in Eq. (A6), the TSEB can accommodate thermal
data acquired at off-nadir viewing angles by geostationary
satellites. The TSEB has a built-in mechanism for detecting
thermal signatures of stress in the soil and canopy. An ini-
tial iteration assumes that 7' is occurring at a potential (non-
moisture-limited) rate, while Egy is computed as a resid-
ual to the system energy budget. If the vegetation is stressed
and transpiring at significantly less than the potential rate,
T will be overestimated and the residual Egy; will become
negative. Condensation onto the soil is unlikely midday on
clear days, and therefore Ej < O is considered a signature
of system stress. Under such circumstances, T is iteratively
down-regulated until Ey = 0, noting that this assumption
has been challenged by recent observations in some ecosys-
tems (Perez-Priego et al., 2018).

www.biogeosciences.net/16/3747/2019/

For regional-scale applications of the TSEB, air temper-
ature boundary conditions are difficult to specify with ad-
equate accuracy due to localized land—atmosphere feedback.
To overcome this limitation, the TSEB has been coupled with
an atmospheric boundary layer (ABL) model, thereby simu-
lating land—atmosphere feedback internally. In ALEXI (An-
derson, 1997; Anderson et al., 2007), the TSEB is applied at
two times during the morning ABL growth phase (between
sunrise and local noon) using thermal infrared observations
from geostationary satellites. Energy closure over this inter-
val is provided by a simple slab ABL model (McNaughton
and Spriggs, 1986), which relates the rise in air temperature
in the mixed layer to the time-integrated influx of H from the
land surface. As a result, ALEXI uses only time-differential
temperature signals, thereby minimizing flux errors due to
absolute sensor calibration and atmospheric and emissivity
corrections (Kustas et al., 2001). For local-scale applications
on length scales similar to many flux footprints on the order
of 100 m, the coarse-scale flux estimates can be spatially dis-
aggregated using the DisALEXI technique (Norman et al.,
2003). DisALEXI uses air temperature diagnosed by ALEXI
at a nominal blending height along with high-resolution LAI
and land surface temperature data from polar-orbiting satel-
lites to estimate fluxes at finer scales.
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