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A B S T R A C T

Estimating the spatial distribution of hydromechanical properties in the investigated subsoil by defining an 
Engineering Geological Model (EGM) is crucial in urban planning, geotechnical designing and mining activities. 
The EGM is always affected by (i) the spatial variability of the measured properties of soils and rocks, (ii) the 
uncertainties related to measurement and spatial estimation, as well as (iii) the propagated uncertainty related to 
the analytical formulation of the transformation equation. The latter is highly impactful on the overall uncer-
tainty when design/target variables cannot be measured directly (e.g., in the case of piezocone Cone Penetration 
Test–CPTu measurements). This paper focuses on assessing the Propagated Uncertainty (PU) when defining 3D 
EGMs of three CPTu-derived design/target variables: the undrained shear resistance (su), the friction angle (φʹ), 
and the hydraulic conductivity (k). We applied the Sequential Gaussian Co-Simulation method (SGCS) to the 
measured profiles of tip (qc) and shaft resistance (fs), and the pore pressure (u2), measured through CPTus in a 
portion of Bologna district (Italy). First, we calculated 1000 realizations of the measured variables using SGCS; 
then, we used the available transformation equations to obtain the same number of realizations of su, φʹ, and k. 
The results showed that PU is larger when the transformation equation used to obtain the design/target variable 
is very complex and dependent on more than one input variable, such as in the case of k. Instead, linear (i.e., for 
su) or logarithmic (i.e., for φʹ) transformation functions do not contribute to the overall uncertainty of results 
considerably.

1. Introduction

The reliability assessment of the subsoil geological model for mining 
and engineering purposes is a pressing issue in designing duty (Phoon 
and Tang, 2019) and public reports by mining companies (McManus 
et al., 2021). Due to the risks related to building (infra)structures, 
mining activities, as well as their environmental impact, the quantifi-
cation of the uncertainty affecting the modeling of the continuous sub-
surface volume in the Engineering Geological Model (EGM) from sparse 
spatial datasets of different nature is an urgent need (Baynes and Parry, 
2022). EGMs mostly consist of heterogeneous geological bodies, whose 
hydro-mechanical properties are described by qualitative and quanti-
tative variables. These variables are assessed or measured through 
various geological, geophysical, and geotechnical investigations. These 
include both point-based methods (e.g., borehole logging, penetration 
tests, in-hole geophysical tests) and 2D/3D methods (e.g., indirect 
geophysical methods, geological survey).

EGM of estimated design/target variables are always more uncertain 
than measured ones because they suffer from both measurement error of 
input data (Cherubini et al., 2007) and model uncertainty (Zhao et al., 
2022), whose combination can be referred to as “prediction uncer-
tainty”. Phoon and Tang (2019) highlighted the need to quantify the 
degree of confidence in EGM by additionally considering its spatial 
variability.

Most of the quantitative design/target are calculated through 
transformation equations, which convert field measurements into 
hydro-mechanical subsoil properties (Robertson and Cabal, 2014). The 
uncertainty introduced by empirically derived deterministic equations 
from the literature is often unknown, especially because in most cases 
they have not been validated. Hence, the prediction uncertainty, 
together with the natural spatial variability of subsoil hydro-mechanical 
properties, propagates through the transformation equations. Assessing 
this “propagated uncertainty” (PU) is crucial in geo-engineering and 
engineering geology (Erharter et al., 2024), as it is a fundamental 
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requirement for the upcoming revised version of Eurocodes (Lesny et al., 
2017) and the Joint Ore Reserves Committee guidelines (JORC, 2012).

Several methods exist to assess the uncertainty in hydro-mechanical 
characterization quantitatively (McManus et al., 2021; Zhang et al., 
2023). Among them, one of the most used is Monte Carlo Simulation 
(Pownuk, 2018), which assumes the independence of the observations. 
Another widely used approach is the Bayesian approximation (Savoy 
et al., 2017; Wang et al., 2016, 2022; Zhan et al., 2023), which is often 
used in combination with the Monte Carlo Markov Chain and Gibbs 
sampling (Rahman et al., 2016; Hsu et al., 2022). However, these 
methods are sensitive to (i) the number of variables, (ii) their non- 
Gaussian distribution, and (iii) the high spatial correlation (Lee and 
Chen, 2009; McManus et al., 2021; Shao et al., 2023). In geo- 
engineering and environmental analysis (Phoon, 2020; Di Curzio 
et al., 2021; Kokkala and Marinos, 2022), machine learning techniques, 
such as the Bayesian ones (Wei and Wang, 2022; Phoon, 2023; Zhao 
et al., 2023), represent an important class of data-driven models able to 
quantify the uncertainty of an inference. Nevertheless, Heuvelink and 
Webster (2022) remarked that machine learning approaches play an 
increasingly relevant role due to the availability of large datasets and 
data fusion, but they are in essence non-spatial. They operate on a 
“regression matrix” that stores paired observations of the dependent (i. 
e., target) and independent variables, regardless of their spatial co-
ordinates. This implies that there are many situations in which machine 
learning is less effective, such as (i) in the case of relatively small sets of 
observations for reliable calibration, (ii) when available environmental 
variables are only weakly related to design/target variables, and (iii) 
when data are spatially correlated.

In most of these approaches, the spatial correlation of data represents 
a clear limitation, whereas geostatistics have always represented a suite 
of methods able to explicitly and effectively handle the spatial correla-
tion, since its early time (Matheron, 1962). Several methods have been 
developed to deal with non-Gaussian distributions, auxiliary covariates, 
geographic trends, and external drift, and specifically used in estimating 
the natural variability of subsoil volumes (Gao et al., 2018; Vessia et al., 
2020a, 2020b; Heuvelink and Webster, 2022; Lachérade et al., 2023; 
Liang et al., 2024). Among these, stochastic simulation approaches have 
been increasingly used to investigate properly the uncertainty associ-
ated with the prediction rather than just the estimation itself, because 
these methods can reproduce the actual spatial variability (Castrignanò 
and Buttafuoco, 2004; Castrignanò et al., 2008; ASTM International, 
2018, Heuvelink and Webster, 2023). Simulation methods are not 
weakened by large uncertainty, enabling the prediction of every type of 
data, both stationary and non-stationary, and it is truly data-driven 
(Lilla Manzione et al., 2021). According to Delbari et al. (2009), 
Emery and Peláez (2011), and Nussbaumer et al. (2018), the Sequential 
Gaussian Simulation technique is one of the most widely used condi-
tional parametric simulation methods and it performs even better in 
multivariate cases, such as the Sequential Gaussian Co-Simulation 
(Emery and Peláez, 2011).

In the previous studies, stochastic simulation has always been used to 
quantify local estimation uncertainty; however, it has never been 
applied to quantitatively assess how prediction uncertainty (i.e., input 
uncertainty) propagates through the transformation equations used to 
estimate design/target hydro-mechanical variables. Therefore, this 
paper proposes for the first time a rationale to quantitatively assess 
propagated (PU) in subsoil characterization. We applied the Conditional 
Sequential Gaussian Co-Simulation method (SGCS) to the measured 
profiles of tip (qc) and shaft resistance (fs), and the pore pressure at 
shoulder position (u2) from piezocone Cone Penetration Tests (CPTu) 
and used specific equations to estimate three key hydro-mechanical 
variables (i.e., the undrained shear resistance su, the friction angle φʹ, 
and the hydraulic conductivity k) in a 3D EGM. The set of equiprobable 
realizations obtained for the input variables with SGCS was used to 
calculate the same number of realizations of the design/target variables, 
allowing the direct investigation of the propagated uncertainty.

2. Material and methods

2.1. Study area and dataset

The considered study area is located in Emilia Romagna Region 
(Italy), in the Po plain eastwards of Bologna, where hundreds-of-meter 
of alluvial deposits are present. They consist of undifferentiated fine 
silty-sandy deposits (i.e. flooding plain), characterized by coarser (i.e. 
alluvial fans and paleo-channels) and finer (i.e. lacustrine lenses) 
geological bodies (ISPRA, 2009). From a lithological point of view, these 
are sandy, gravelly, and silty-clayey soils (Fig. 1). More details about the 
geological features of this area can be found in Vessia et al. (2020b), and 
Di Curzio and Vessia (2021).

The dataset used in this research consists of 182 CPTus performed 
across an area with an extension of 900 km2 and investigating a volume 
of 92 km3 (with a depth of 30 m). These CPTu profiles were collected in a 
comprehensive database by the Regional Office for Territorial Protec-
tion and Development of the Emilia-Romagna region (http://geoportale. 
regione.emilia-romagna.it/it), and subsequently made available by Di 
Curzio and Vessia (2021).

2.2. Sequential Gaussian co-simulation

To assess PU in the process of obtaining design/target hydro- 
mechanical variables from input measurements by using trans-
formation equations, the Sequential Gaussian Co-Simulation (SGCS) 
method was adopted (Goovaerts, 1997; Webster and Oliver, 2007; 
Chilès and Delfiner, 2012). This advanced geostatistical technique rep-
resents a multivariate version of Sequential Gaussian Simulation 
approach (SGS), which is one of the most straightforward and used 
among Conditional Simulation methods (Delbari et al., 2009; Emery and 
Peláez, 2011; Nussbaumer et al., 2018).

Since SGCS assumes a multi-Gaussian behavior, the variables that do 
not follow the Gaussian distribution, such as the input variables 
considered in this work (i.e., qc, fs and u2), were transformed into 
Gaussian ones through the Gaussian Anamorphosis (Chilès and Delfiner, 
2012). It consists in estimating a function converting a standardized 
Gaussian variable (Y) into a non-Gaussian one (Z = Φ(Y)), through a 
Hermite polynomial expansion (Hi(Y)) truncated at a finite number of 
terms: 

Φ(Y) =
∑

ΨiHi(Y) (1) 

Fig. 1. Map showing the location and main geological features of the study 
area as well as the CPTu distribution within the selected domain. In legend: 1) 
alluvial deposits; 2) bedrock; 3) urban areas; 4) geostatistical domain; 5) 
CPTu locations.
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where, Ψi are the coefficients of the Hermite polynomials to be esti-
mated. Once defined the Gaussian Anamorphosis function, the trans-
formation from a raw variable into the standardized gaussian one was 
performed by inverting the function, as follows: 

Y = Φ− 1(Z) (2) 

As in other multivariate geostatistical approaches (e.g., Co-Kriging), 
SGCS relies on the fitting of a Linear Model of Coregionalization (LMC) 
to the matrix of direct (i.e., diagonal) and cross- (i.e., non-diagonal) 
experimental variograms of the considered input variables 
(Wackernagel, 2003; Castrignanò et al., 2015; Di Curzio et al., 2019, 
Vessia et al., 2020a): 

Γ(h) =
∑NS

u=1
Bugu(h) (3) 

where, gu(h) is the spatial structure standardized to unit sill, and u is the 
spatial scale, Bu is the Coregionalization matrix of the LMC partial sills 
corresponding to the scale u, which is symmetric and semi definite 
positive, Γ(h) is the n x n matrix with direct variograms (i.e., diagonal 
elements) and cross-variograms (i.e., non-diagonal elements) modeled 
as a linear combination of NS basic variogram functions, being NS total 
number of spatial scales, and h is the lag.

The conditional sequential Gaussian simulation algorithm (Deutsch 
and Journel, 1998) was used to generate the simulations. This algorithm 
entails defining a randomly spaced grid covering the region of interest 
and a path through the grid that visits each node only once. Ordinary 
kriging estimator is used at each unsampled location to estimate the 
expected value of the multi-Gaussian probability distribution function 
based on data values that have been approximately normal score con-
verted. Next, a random value is selected randomly from the cumulative 
probability distribution function, and the variable’s corresponding value 
is taken to be one plausible simulated value at that particular location in 
space. The procedure is repeated at the simulated value and added to the 
conditioning data set. This process is repeated many times by different 
random seeds and paths crossing all nodes of the grid only once. As a 
result, several equiprobable representations of the spatial distribution of 
the considered variable are obtained, namely realizations. These re-
alizations provide a statistical distribution at each node of the grid, 
instead of one estimated value and the corresponding error (i.e., as in 
kriging methods). Furthermore, their recurrence offers a quantitative 
and visual indicator of spatial uncertainty (Goovaerts, 1996).

In this paper, we calculated 1000 realizations, considering a simu-
lation domain with a cell size equal to 500x500x0.5 m, which allowed 
describing the spatial variability of hydro-mechanical variables at a 
regional scale effectively. Even though the optimal number of re-
alizations is equal or more than 500 (Szatmári et al., 2021; Angelini 
et al., 2023), we used the Error Variance (i.e., average squared differ-
ences between the measured and predicted values; Cressie, 2015) to 
select the best set of realization among several options (i.e., 200, 400, 
600, 800, and 1000 realizations, respectively). By using the LMC 
described above in the SGCS method, it was possible to obtain 1000 
three-dimensional realizations of the Gaussian transformed input vari-
ables, which were then back-transformed into the original units by the 
Gaussian Anamorphosis function. Subsequently, we applied the trans-
formation equations described in Section 2.3 to the 1000 realizations of 
the input variables (i.e., qc, fs, and u2) to calculate 1000 realizations of 
each of the design/target variables considered in this study (i.e., su, ϕʹ, 
and k). Hereinafter, we define the expected values “optimized” values 
when they are calculated through the stochastic simulation according to 
ASTM International (2018).

All the geostatistical analyses were performed using Isatis 2018, 
whose results have then been visualized through Isatis.neo 
(Geovariances, 2021).

2.3. Transformation equations

Starting from the set of 1000 equiprobable realizations of qc, fs, and 
u2, we calculated the considered design/target variables: the undrained 
shear resistance (su), the friction angle (φʹ), and the hydraulic conduc-
tivity (k). We selected the most appropriate transformation equations 
available in the literature to calculate the selected design/target vari-
ables, based on authors’ prescriptions and according to the qualitative 
features of the investigated soils.

Since both su and φʹ are valid only for certain lithotypes, it was first 
necessary to calculate the normalized Soil Behavior Type Index (ISBTn; 
Robertson, 2009). This index allows identifying the litho-technical 
behavior of the investigated soils: 

ISBTn =
[
(3.47 − log(Qtn) )

2
+ (logFR + 1.22)2

]0.5
(4) 

where, Qtn =

(
qt − σv0

Pa

)

•

(
Pa

σ́ v0

)n 
is the normalized tip resistance, FR =

fs
qt − σv0

• 100% is the friction ratio, qt = qc − u2(1 − a), coefficient a equal 

to 0.8 (i.e., average value), and n = 0.381 • Ic + 0.05 •

(
σʹ

v0
Pa

)

− 0.15, Ic is 

the non-normalized Soil Behavior Type Index (Robertson, 1990): 

Ic =

[(

3.47 − log
(

qc

pa

))2

+

(

log
(

fs

qc
• 100

)

+ 1.22
)2

]0.5

(5) 

whereas σ’v0 and σv0 are the effective and total lithostatic stresses at 
each depth, respectively. The non-normalized Soil Behavior Type Index 
(Eq. (5)) was only used to estimate the coefficient n, needed for the tip 
resistance normalization.

Table 1 shows the relation between ISBTn ranges of values and the 
classes of lithotypes, which are characterized by specific prevalent soil 
fractions.

This classification was used to obtain 1000 equiprobable configura-
tions of lithotypes starting from the sets of realizations for qc, fs, and u2. 
Then, it was possible to extract the optimized model of ISBTn providing 
the reference lithotype distribution used to classify the simulation 
domain cell by cell.

For finer lithotypes (i.e., SBT classes 4, 5, and 6), the undrained shear 
strength (su, in MPa) was derived through the formula (Robertson and 
Cabal, 2014): 

su =
qt − σv

Nkt
(6) 

Typically, the cone factor, Nkt, varies from 10 to 18; in this study, we 
decided to use the average value, which is equal to 14 as recommended 
by Robertson and Cabal (2014) when the cone diameter is not specified.

For sand-like soils (i.e., SBT classes 3, and 4), Robertson and Cam-
panella (1983) suggested Eq. (6) to estimate the peak friction angle (φʹ, 
in ◦) for uncemented, unaged, moderately compressible, predominately 
quartz sands, based on calibration chamber test results: 

tan(φʹ) =
1

2.68

[

log
(

qc

σ́ vo

)

+0.29
]

(7) 

Table 1 
Soil behavior type classes as defined by Robertson (2009), with the corre-
sponding ISBTn values.

Soil Behavior Type ISBTn Class

Gravelly sand to dense sand < 1.31 SBT2
Sands – clean sand to silty sand 1.31–2.05 SBT3
Sand mixtures – silty sand to sandy silt 2.05–2.60 SBT4
Silt mixtures – clayey silt to silty clay 2.60–2.95 SBT5
Clays – silty clay to clay 2.96–3.60 SBT6
Organic soils – clay > 3.60 SBT7
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The lithotype defined by the SBT5 class (Table 1) was considered to 
have an intermediate mechanical behavior; thus, it was considered in 
the estimation of both su and φʹ.

In addition to providing the reference lithotype model used to decide 
where to calculate either su or φʹ, the 1000 configurations of ISBTn were 
used to obtain the hydraulic conductivity (k, in m/s) for all the lith-
otypes in Table 1, as follows (Robertson and Cabal, 2014): 

k =

{
10(0.952− 3.04•Ic) when 1.00 < ISBTn 3.27

10(− 4.52− 1.37•Ic) when 3.27 < ISBTn < 4.00
(8) 

2.4. Uncertainty evaluation indicators

To quantify the propagated uncertainty, we defined the limits of the 
68 % (that is the expected value plus or minus one standard deviation) 
confidence intervals by extracting from the 1000 realizations the values 
corresponding to their lower (LL; 16th quantile) and upper (UL; 84th 
quantile) limits by post-processing the simulation (i.e., qc, fs, and u2) and 
transformation (i.e., su, φʹ, and k) results.

From all the LL and UL values, the Underestimation (UE%) and 
Overestimation (OE%) percentages were calculated (Vessia et al., 
2020a, 2020b), according to the following equations: 

UE(x)% =
|z(x) − LL(x) |

z(x)
% (9) 

OE(x)% =
|z(x) − UL(x) |

z(x)
% (10) 

These indicators measure the distance between the expected value of 
the predictions (z(x)) and the limits of the corresponding confidence 
interval at each location, enabling the quantification and mapping of the 
local uncertainty of prediction, both in underestimation and 
overestimation.

To investigate the lithotype-dependent contribution to the PU, we 
proposed the Coefficient of Variation (CV) to compare the mean vari-
ability and the total variability of the 1000 realizations of both input and 
design/target variables, for each SBT class identified in the considered 
within the 3D subsoil model. The first CV is hereafter named “CV mean” 
whereas the second is named “CV realizations” (Lachérade et al., 2023). 
In addition, the Coefficient of Quartile Variation–CQV (Bonnet, 2006) 
was even calculated for each SBT class. This latter measure of relative 
dispersion is preferred when the variables are nonnormal distributed: 

CQV =
Q3 − Q1

Q3 + Q1
(11) 

3. Results and discussion

3.1. Dataset description

Table 2 shows the basic statistics related to the raw CPTu measure-
ments used in this work. In this table Q1, Q2, and Q3 are the first 
quantile (15 %), the second (50 %), and the third quantile (75 %), 
respectively. As typically observed for soils similar to the investigated 
ones (Lunne et al., 2002), qc is generally two to three orders of magni-
tude larger than fs (i.e., means equal to 2.54 and 0.093 MPa, respec-
tively), while u2 mean is equal to 0.33 MPa.

All the measured variables exhibited a non-Gaussian distribution, as 
suggested by the significant differences between mean and median 

values, the skewness and kurtosis values (i.e., consistently, > 0 and > 3, 
respectively), as well as the very large differences between Q3 and 
maximum values. Similar positively skewed, leptokurtic statistical dis-
tributions suggest the measured variables may refer to soils behaving 
hydro-mechanically in different ways, in terms of, e.g., cohesion, soil 
structure, grain size, and saturation. In a geological context as the one 
investigated in this paper, the presence of both finer and coarser in-
clusions within the predominant lithotype may explain these skewed 
distributions.

The use of the SGCS method then required the preliminary trans-
formation of such non-Gaussian distributed variables through the 
Gaussian Anamorphosis function, during the pre-processing stage.

3.2. Modeling local uncertainty and its propagation

The experimental direct and cross-variograms calculated from the 
previously Gaussian transformed variables (i.e., gqc, gfs, and gu2) were 
fitted with the Linear Model of Coregionalization, whose features are 
shown in Table 3 and Fig. 2.

This LMC used in the SGCS to obtain 1000 realizations of each of the 
input variables was modeled in a previous paper as a zonal anisotropy 
(Di Curzio and Vessia, 2021). The horizontal variability (i.e., spatial 
structures for the X and Y directions were considered the same according 
to a superficial isotropic assumption) was modeled through two spher-
ical structures with ranges equal to 1200 and 12,000 m, respectively; the 
anisotropic vertical variability was modeled by three spherical struc-
tures with ranges equal to 2, 6, and 12 m, likely attributable to three 
different depositional structures. To reproduce the vertical trend 
observed in all three variables (Fig. 2) and be able to use a stationary 
geostatistical method like SGCS, we adopted a long-range (i.e., 100,000 
m beyond the investigated depth) K-Bessel structure. The presence of 
this local trend at the extent of study depth is caused by the increasing 
lithostatic stress that influences the measured mechanical parameters 
along depth.

The LMC performances were tested through a cross-validation 
(Cressie, 2015), and the results are reported in Di Curzio et al. (2021).

Fig. 3 shows the 3D models (i.e., expected values of the 1000 re-
alizations per variable) of both the input and design/target variables. To 
help refer the volumetric distributions of all the variables to the geo- 
lithological features of the investigated subsoil, we calculated the 
model of the ISBTn index, describing the spatial distribution of lithotype 
classes. The predicted subsoil geometries were consistent with the 
literature (ISPRA, 2009).

Table 2 
Descriptive statistics of the three variables measured through CPTus and used as inputs in SGCS.

Variable Unit Count Mean Median St. Dev. Q1 Q3 Min Max Skewness Kurtosis

qc MPa 187,705 2.54 1.79 3.27 1.35 2.4 0.02 68.22 5.944 52.53
fs MPa 187,634 0.093 0.086 0.057 0.053 0.119 0.007 0.917 1.726 9.323
u2 MPa 166,057 0.33 0.26 0.28 0.09 0.52 0.01 2.73 1.018 4.075

Table 3 
Features of the Linear Model of Coregionalization (LMC) related to the Gaussian 
transformed variables.

Variables Horizontal LMC structures Range (m)

gqc, gfs, gu2
Spherical 1200
Spherical 12,000

Variables Vertical LMC structures Range (m)

gqc, gfs, gu2

Spherical 2
Spherical 6
Spherical 12
K-Bessel 100,000
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As a result, the highest estimated values of both the tip (qc) and shaft 
resistance (fs), correspond to the ISBTn ranges referring to sand and sand 
mixtures (i.e., SBT3, and SBT4; Table 1). In this area these lithotypes are 
present as inclusions (i.e., alluvial fans, and paleochannels, as in the 
southeastern portion of the study area) within the finer deposits (i.e., silt 

mixtures of the SBT5 class), from about 10 m depth downward (Fig. 3). 
On the contrary, the shallowest coarse deposits, which likely describe 
the topsoil, do not show the same inverse correlation between both qc 
and fs and the ISBTn values. The fact that deeper sediments typically have 
a higher density because of the increasing lithostatic stress with depth is 

Fig. 2. LineModel of Coregionalization used in SGCS and referring to a) the horizontal (i.e., X and Y; red solid lines) and b) vertical (blue solid lines) directions, fitted 
to the experimental (cross-)variograms (green circles) calculated from the Gaussian transformed CPTu measurements (i.e., gqc, gfs, and gu2). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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well known.
Comparing the 3D spatial variability of the pore pressure (u2) and the 

3D lithotype model, it appears clear that u2 and ISBTn are generally 
positively correlated, meaning that the highest u2 values are typical of 
finer lithotypes (i.e., SBT5, and SBT6). In this area, the alluvial deposits 
host aquifers (Zuccarini et al., 2024), and the groundwater flow is 
usually more active in sands and sand mixtures than in silts and clays. 

This effect is mostly evident for the lithotype described by the SBT3 class 
(ISBT value varying from 1.31 to 2.05). On the other hand, the typically 
high volume of water stored in fine deposits with a high clayey fraction 
is not free water but adsorbed.

As can be seen from Fig. 3, both the undrained shear resistance (su) 
and the friction angle (φʹ) were estimated only in some portions of the 
investigated subsoil. su values were calculated only in those areas where 

Fig. 3. 3D models of the input (i.e., qc, fs, and u2) and design/target variables (i.e., su, φʹ, and k), compared to the spatial distribution lithotypes, as defined by the 
ISBTn in Table 1.
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fine deposits (i.e., SBT5, and SBT6) or lithotypes likely containing a 
significant fraction of fine soils (i.e., SBT4) are present. Conversely, φʹ 

was estimated only for granular lithotypes, described by SBT classes 3 
and 4. Consequently, the number of cells in both su and φʹ model is less 
than that of the variables estimated across the entire model grid. 
Moreover these design/target variables appear linked to the combined 
effect of mechanical properties of the considered lithotypes and local 
conditions.su is inversely proportional to ISBTn, meaning that the finer 
the grain size the lower is the resistance of the considered deposits. 
Interestingly, however, the shallowest granular sediments containing a 
finer fraction (i.e., SBT4) – and likely describing the topsoil – show a 
higher variability and values similar to classes SBT5 and SBT6. A 
possible explanation can be either the higher content of organic matter 
and fine fraction or a lower density due to a very low lithostatic stress. φʹ, 
instead, is coherently higher where the granular fraction is predominant 
(i.e., with peak values above 40◦), as in the sandy deposits described by 
the class SBT3, whereas it ranges between 25◦ and 40◦ elsewhere.

Regarding the hydraulic conductivity (k), its values are in the range 
of 10− 4–10− 3 m/s where lithotypes with a prevalent granular fraction (i. 
e., SBT3, and SBT4) are predominant, typical of sandy aquifers. 

Differently, k decreases below 10− 8 m/s in the case of clayey deposits (i. 
e., SBT6), identifying impervious geological bodies, which act as aqui-
clude in these kinds of porous aquifer. The SBT5 class describing the silty 
mixtures is characterized by intermediate values of k (i.e., in the order of 
10− 7–10− 5 m/s), which describe a typical hydrogeological behavior as 
‘aquitard’.

Figs. 4 and 5 show the spatial distribution of the local uncertainty for 
the input (i.e., qc, fs, and u2) and design/target (i.e., su, φʹ, and k) var-
iables, expressed in terms of underestimation (UE%) and overestimation 
(OE%) percentages, considering the 68 % confidence interval. The 
choice of displaying the uncertainty similarly comes from the necessity 
to take into account the experimental statistical distribution of the 
measured data, which was non-Gaussian (Table 2). Thus, this asym-
metry needed to be included in the uncertainty analysis, and the UE% 
and OE% indexes offer such an opportunity.

As can be seen in Fig. 4, the distribution of the uncertainty associated 
with the input variables are significantly different. qc shows UE% and 
OE% ranging between 12.5 and 37.5 % in those subsoil portions char-
acterized by the presence of fine deposits (i.e., SBT5, and SBT6). How-
ever, the uncertainty increases significantly in the presence of coarse 

Fig. 4. Spatial distribution of the local uncertainty of the 1000 realizations of the input variables (i.e., qc, fs, and u2), described by the Underestimation (UE%) and 
Overestimation (OE%) percentages and related to the 68 % confidence interval.
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deposits, displaying values above 62.5 % for both UE% and OE%. For fs, 
UE% and OE% values are less variable and consistently in the range 
37.5–62.5 %, regardless of the lithotype. This discrepancy in the spatial 
patterns of the uncertainty between qc and fs can be attributed to the fact 
that mixtures of coarse alluvial deposits (i.e. lithotypes SBT3 and SBT4) 
provide more variable cone tip resistance readings because of the local 
presence of larger grains of gravel or even boulders. This effect is less 
relevant for fs because the readings are acquired through the lateral 
shaft, which provides more average measurements and is less sensitive 
to occasional pebbles. Instead, u2 resulted the most uncertain i.e., UE% 
and OE% mostly above 75 %) because of the temporal variability of 
hydraulic condition on this input variable.

The accuracy associated with the predictions of the design/target 
variables (Fig. 5) results from the combination of the spatial variability 
of the input variables, and on the reliability of the considered trans-
formation equations. It should be emphasised that in our approach we 
can only estimate the uncertainty of the design/target variables derived 
from the uncertainty of the input variables transformed by trans-
formation equations. The linear dependence between su and qt (i.e., a 
corrected version of qc) introduced by Eq. (5) resulted in similar patterns 

of both UE% and OE% in lithotypes SBT4, 5 and 6, with values in the 
same range as qc. Although qt depends on both qcand u2, the variability 
of su is much more influenced by qc due to the lower values of u2. In the 
case of φʹ, values of both UE% and OE%, calculated for coarse deposits (i. 
e., SBT3 and SBT4), are less variable and always below 25 %. The fric-
tion angle is linked to qc by a logarithmic transformation function (Eq. 
6), which keeps the level of uncertainty very low. Instead, the hydraulic 
conductivity k shows a very high uncertainty, both in underestimation 
and overestimation. UE% values are higher than 75 % throughout the 
entire domain, while and OE% has relatively low values in the case of 
coarse deposits. In addition to the considerably high values of both UE% 
and OE%, the overall spatial distribution of the uncertainty of k is rather 
scattered. This behavior is attributable to the combination of functions 
used to obtain hydraulic conductivity values. First, the 1000 realizations 
of qc, fs, and u2 are combined in Eq. (4) to calculate Ic realizations; then, 
they are used in the exponential equation Eq. (7) to obtain the 1000 
realizations of k. In addition, the fact that OE% values are higher for fine 
deposits can be interpreted as an effect of the limited reliability of the 
function to estimate k for ISBTn values larger than 3.27. However, even 
considering PU values relating to the 68 % confidence interval (Fig. 5), 

Fig. 5. Spatial distribution of the local uncertainty of the expected values of the design/target variables (i.e., su, φʹ, and k), described by the Underestimation (UE%) 
and Overestimation (OE%) percentages and related to the 68 % confidence interval.
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the estimated su, φʹ, and k fall into the observed hydro-mechanical value 
ranges from the literature (Vessia and Di Curzio, 2018). This evidence is 
also confirmed for the very uncertain hydraulic conductivity values. In 
this case, UE% and OE% larger than 100 % will still keep the estimated 
values somewhat within the same order of magnitude, which is the 
highest precision possible with the traditional methods for field mea-
surements (Elhakim, 2016).

3.3. Lithotype-dependent propagation uncertainty

As already pointed out in the previous section, PU can vary 
depending on the type of deposits. For this reason, we divided the 
simulation results according to the SBT class and calculated the Coeffi-
cient of Variation (CV) for both the specific lithotype and the 1000 re-
alizations. In the first case, the CV values represent the inherent spatial 
variability within a specific lithotype; in the second case, CV also in-
corporates the uncertainty over the whole investigated volume. Asso-
ciated with the estimates, which is the spatial variability for the input 
variables and a comparison of spatial variability and the propagated 
uncertainty for the design/target variables.

Fig. 6 and Table 4 compare the two CV values. Due to the propagated 
uncertainty, CV values for qc, fs, and u2 increase by a percentage in the 
range 35–240 %, which depends on the volumetric size and/or inherent 
spatial variability of each lithotype in the considered portion of subsoil, 
and the actual number of measurements.

Since su and φʹ are both mostly dependent on qc, the CV values 
increased by the same percentages, even though the absolute CV values 
diverge by about one order of magnitude. In the case of SBT4, the in-
crease of the realizations’ CV of φʹ was less relevant that the one 
observed for qc. this evidence confirmed that the transformation equa-
tions used to calculate both su and φʹ do not add PU. On the contrary, Eq. 
(7) tends to reduce the effect of the model uncertainty because of its 
logarithmic form, as observed for sandy mixtures. This means that the 
use of Eq. (6) and (7) provides reliable results for geotechnical designing 
purposes, as they do not contribute to the overall uncertainty with sig-
nificant PU. Instead, the hydraulic conductivity k, whose calculation is 
achieved by a two-fold exponential transformation combining the un-
certainty of all the three input variables, shows the largest difference 
between the two types of CV values. The CV increase is in the order of 
700–800 % for coarse deposits and even higher for fine deposits (i.e., it 
increases by more than one order of magnitude). This difference be-
tween coarse and fine deposits is in line with what was already observed 
previously, confirming that the reliability of Eq. (8) is even lower when 
it comes to SBT5 and SBT6. However, k spatial variability is always very 
difficult to grasp, as the measurements are usually performed through 
pumping or slug tests. This means that measurements are either too 
averaged values, or are too local, or both (Elhakim, 2016) to provide a 
reliable spatial distribution of the subsoil hydraulic conductivity. Thus, 
although the use of Eq. (8) exposes to high level of PU, the vertical 
density of CPTu measurements can be beneficial to catch the 

Fig. 6. Comparison between the inherent variability of the optimized 3D models (i.e., mean model) of both input and output variables and the total uncertainty (i.e., 
inherent variability, plus model and transformation uncertainty) related to the 1000 realizations, using the Coefficient of Variation (CV) as the selected reference 
statistical indicator.
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heterogeneity of k spatial distribution, which for instance is known to be 
a critical factor in the reactive transport of contaminants in groundwater 
(Thouement and Van Breukelen, 2020; Wu et al., 2024) and the corre-
sponding risk assessment (Høyer et al., 2019; Locatelli et al., 2019).

Finally, Figs. 7 and 8 show the comparison between the values of the 
indicators CV and CQV, which take into account just the inherent vari-
ability of the variables (i.e., CV mean and CQV mean) and the PU related 
to the 1000 realizations (i.e., CV realizations and CQV realizations), 
respectively. It is worth noticing that the mean values of the indicators 
do not greatly differ but for k values. However, PU increases CV values of 
realizations (Fig. 8), which are significantly larger than the CQV ones, 
especially for k variable. This means that the distributions of the derived 
variables are far from being symmetrical. Furthermore, CV values of 
realizations are greatly affected by outliers and tails of the distributions 
compared to the CQV ones. The clearest example is the hydraulic con-
ductivity k, for which these indicators differ by more than one order of 

magnitude. This implies that dispersion indicators that are able to 
consider the effect of asymmetrical distribution and filter out the effect 
of outliers, such as CQV, should be preferred when investigating PU for 
design purposes or risk assessment. Moreover, the variability of PU 
among the SBT classes points out that equations can affect estimation 
reliability differently. Thus, it is recommended to assess PU with a 
lithotype/based approach.

4. Conclusions

The application of the Sequential Gaussian Co-Simulation method to 
CPTu data through fitting a Linear Model of Coregionalization enabled 
assessing the uncertainty propagation through empirical transformation 
equations, used to derive design/target variables (i.e., su, φʹ, and k) from 
the measurements qc, fs, and u2.

The obtained results showed that the propagation uncertainty 

Table 4 
CV values describing the inherent variability of the optimized 3D models of both input and output variables and the total uncertainty related to the 1000 realizations.

Mean Realizations

SBT class qc fs u2 su ϕ’ k qc fs u2 su ϕ’ k

3 0.64 0.64 0.65 0.05 1.43 1.04 0.90 1.26 0.10 11.73
4 0.63 0.59 0.40 0.61 0.07 1.01 1.43 0.80 1.07 1.40 0.12 8.99
5 0.56 0.27 0.31 0.53 0.94 1.52 0.67 0.91 1.46 16.39
6 0.34 0.22 0.37 0.30 1.30 1.15 0.61 0.75 1.12 27.89

Fig. 7. Comparison between the inherent variability of the optimized 3D models (i.e., mean model) of both input and output variables using the Coefficient of 
Variation (CV) and the Coefficient of Quantile Variation (CQV) indicators.

D. Di Curzio et al.                                                                                                                                                                                                                              Engineering Geology 352 (2025) 108064 

10 



strongly depends on the spatial variability of the measured variables. 
Additionally, depending on the design/target variable of interest, some 
lithotypes are more prone to be affected by larger propagation uncer-
tainty. Thus, the propagation uncertainty is affected by the heteroge-
neous spatial distribution of hydro-mechanical soil properties and might 
be taken into account through 3D spatial structure models.

Despite the significant level of uncertainty associated with su, φʹ, and 
k 3D models, the Sequential Gaussian Co-Simulation certainly proved to 
be a method for quantitatively assessing the reliability of Engineering 
Geological Models. It effectively described the spatial variability of 
hydro-mechanical subsoil properties, predicting subsoil geometries and 
values consistent with the literature. Thus, this model serves as a cred-
ible starting point for more detailed, smaller-scale investigations within 
the selected study area. Evidently, in such cases, denser measurement 
locations are needed to improve model accuracy.

As a result, the same geostatistical approach can be used to quanti-
tatively assess the uncertainty propagation for other critical design/ 
target variables and provide three-dimensional models of subsoil hydro- 
mechanical properties (i.e., Engineering Geological Models), which are 
generally obtained using empirical transformation equations applied to 
raw measured data. Therefore, further studies should investigate how 
the uncertainty of the measured variables used in transformation 
equations translates into the design/target variables’ uncertainty, as this 
can significantly affect the reliability of outcomes.

Overall, this study underlines that the use of transformation equa-
tions to calculate relevant design/target variables might affect how 

uncertainty propagates and offers a reliable rationale to quantitatively 
assess this propagated uncertainty to enhance the reliability of risk 
assessment, hazard mapping, geotechnical design, and mining.
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