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Abstract
Safety is critical to broadening the real-world use of
reinforcement learning (RL). Modeling the safety
aspects using a safety-cost signal separate from
the reward is becoming standard practice, since it
avoids the problem of finding a good balance be-
tween safety and performance. However, the to-
tal safety-cost distribution of different trajectories
is still largely unexplored. In this paper, we propose
an actor critic method for safe RL that uses an im-
plicit quantile network to approximate the distribu-
tion of accumulated safety-costs. Using an accurate
estimate of the distribution of accumulated safety-
costs, in particular of the upper tail of the distri-
bution, greatly improves the performance of risk-
averse RL agents. The empirical analysis shows
that our method achieves good risk control in com-
plex safety-constrained environments.

1 Risk-Averse Constrained RL
Traditional expectation-based safe RL methods maximize the
return under the premise that the average performance is safe.
In this way, RL agents are not aware of the potential risks be-
cause of the randomness in cost-return, which is generated by
the stochastic policy and the dynamics of the environment. In
safety-critical domains, the optimal policies are expected to
be more robust, i.e., to have a lower risk of hazardous events
even for stochastic or heavy-tailed cost-return.

In this paper, we consider the discounted return and dis-
counted cost-return, accumulated discounted rewards and
costs, respectively, from (s, a) as

Zr
π(s, a) =

∞∑
t=0

γtr(st, at) | s0 = s, a0 = a, and

Zc
π(s, a) =

∞∑
t=0

γtc(st, at) | s0 = s, a0 = a.

(1)

We will refer to the cost-return Zc
π(s, a) as C whenever π, s

and a are clear from the context. So, we have Qr
π(s, a) =

E[Zr
π(s, a)], and Qc

π(s, a) = E[Zc
π(s, a)] = E[C].

Considering the probability distribution of cost-returns
pπ(C) induced by the aleatoric uncertainty of the environ-
ment and the policy π, we model the safety-constrained

RL problem in a more risk-averse way than the traditional
expectation-based formulation. We focus on the α-percentile
F−1
C (1−α), where FC is the CDF of pπ(C | s, a), so we can

get the Conditional Value-at-Risk (CVaR) [Rockafellar and
Uryasev, 2000]:

Γπ(s, a, α)
.
= CVaRα

π(C) = E
pπ
[C | C ≥ F−1

C (1− α)], (2)

where a positive scalar α ∈ (0, 1] is used to define the risk
level. A smaller α (α→ 0) is expected to be more pessimistic
and risk-averse. Conversely, a larger value of α leads to a
less risk-averse behavior, with α = 1 corresponding to the
risk-neutral case. The following definition gives us a new
constraint to learn risk-averse policies, which differs from the
traditional constraint.
Definition 1 (Safety based on CVaR). Given the risk level α,
a policy π is safe if it satisfies Γπ(st, at, α) ≤ d ∀t, where
(st, at) ∼ Tπ and s0 ∼ ι.

Now we can generalize the maximum entropy RL with the
above risk-sensitive safety constraints. That is, the optimal
policy in a constrained RL problem might be stochastic there-
fore it is reasonable to seek a policy with some entropy. So,
the policy is optimized to satisfy

max
π

E [Zr
π] s.t.

{
CVaRα

π(C) ≤ d
E

(st,at)∼Tπ

[− log(πt(at | st))] ≥ h ∀t.

(3)
With (3) it is possible to solve safe RL problems using the
Soft Actor Critic (SAC) framework, maintaining a minimum
expected entropy [Haarnoja et al., 2018].

2 Worst-Case Soft Actor Critic
The risk-averse constrained RL problem (3) can be solved by
Worst-Case Soft Actor Critic (WCSAC) algorithm [Yang et
al., 2021]. WCSAC generalizes SAC-Lag [Ha et al., 2020],
regarded as WCSAC with α = 1, such that Γπ(s, a, 1) =
Qc

π(s, a) (2). WCSAC use a separate Gaussian safety critic
(parallel to the reward critic for the return) to estimate the dis-
tribution of C instead of computing a point estimate of the ex-
pected cost-return, as the SAC-Lag algorithm. We will refer
to the WCSAC with a Gaussian safety critic as WCSAC-GS
in the following parts of the paper. To obtain the cost-return
distribution, pπ(C | s, a) is approximated with a Gaussian,

Zc
π(s, a) ∼ N (Qc

π(s, a), V
c
π (s, a)), (4)
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Figure 1: Unreliability of Gaussian approximation. The top curve
depicts the true cost distribution, while the bottom curve depicts the
estimated Gaussian distribution, based on the correct mean and stan-
dard deviation. In this case, the (1− α)-quantile and corresponding
CVaR are underestimated.

where V c
π (s, a) = Epπ [C2 | s, a] − (Qc

π(s, a))
2 is the vari-

ance of the cost-return.
At each iteration, Qc

π(s, a) and V c
π (s, a) can be estimated.

Since the Gaussian distribution results in a closed form es-
timation for CVaR [Khokhlov, 2016; Tang et al., 2020], the
new safety measure for risk level α is computed by

Γπ(s, a, α)
.
= Qc

π(s, a) + α−1ϕ(Φ−1(α))
√

V c
π (s, a), (5)

where ϕ(·) and Φ(·) denote the probability distribution func-
tion (PDF) and the cumulative distribution function (CDF) of
the standard normal distribution.

For a certain risk level α, WCSAC optimizes the policy π
until it satisfies the safety criterion Γπ(st, at, α) ≤ d ∀t ac-
cording to Definition 1. In the policy improvement step, the
policy is updated towards the exponential of the new policy
evaluation Xπ

α,ω(s, a) = Qr
π(s, a) − ωΓπ(s, a, α), where an

adaptive safety weight ω is used to manage a trade-off be-
tween safety and performance. The role of safety changes
over the training process. As the policy becomes safe, the in-
fluence of the safety term wanes, then the return optimization
will play a greater role in our formulation.

3 Safety Critic With Quantile Regression
Although the Gaussian approximation leverages distribu-
tional information to attain more risk-averse policies, only
an additional variance is estimated compared to regular con-
strained RL methods. This means the information of the ex-
periences collected are only used to a limited extent. Thus,
the Gaussian approximation does not possess the general ad-
vantages of distributional RL algorithms.

Besides, it is not always appropriate to approximate the
cost-return by a Gaussian distribution, as shown in Figure 1,
since the contribution from the tail of the cost distribution
might be underestimated. In this case, the agent might con-
verge to an unsafe policy, according to (3). In this section,
we present a distributional safety critic modeled by an im-
plicit quantile network (IQN) [Dabney et al., 2018], which
provides a more precise estimate of the upper tail part of the
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Figure 2: Overview of the safety critics. The traditional safety critic
only estimates the average of the cost-return distribution QC , while
the critics of the WCSAC-GS algorithms keep track of the full dis-
tribution by a Gaussian approximation. WCSAC-IQN models the
distributional safety critic by IQN.
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Figure 3: Trajectory analysis in StaticEnv [Ray et al., 2019; Yang et
al., 2021]. With a higher risk level α (IQN-0.9), WCSAC-IQN can
attain risk-neutral performance similar to expectation-based (IQN-
1.0) methods. WCSAC-IQN algorithms can become more risk-
averse by setting lower risk level α.

distribution. Henceforth, we refer to WCSAC with a safety
critic modeled by IQN as WCSAC-IQN. This is an extended
abstract of our journal paper [Yang et al., 2022].

We model the cost-return distribution by an IQN (safety-
IQN), regarded as the safety critic. Safety-IQN maps the sam-
ples from a base distribution (usually τ ∼ U([0, 1])) to the
corresponding quantile values of the cost-return distribution.
In theory, by adjusting the capacity of the neural network,
safety-IQN can fit the cost-return distribution with arbitrary
precision, which is essential for safety-critical problems.

We denote F−1
C (τ) as the quantile function for the cost-

return C and, for clarity of exposition, we define Cτ =
F−1
C (τ). We use θC to parameterize the safety-IQN. The ap-

proximation is implemented as Ĉτ (s, a) ← fIQN (s, a, τ |
θC), which also takes the quantile fraction τ as the input of
the model, so that it uses the neural network to fit the entire
continuous distribution. When training fIQN , two quantile
fraction samples τ, τ ′ ∼ U([0, 1]) at time step t are used to
get the sampled TD error:

δτ,τ
′

t = ct + γCτ ′
(st+1, at+1)− Cτ (st, at). (6)

The quantile values of safety-IQN are learned based on the
Huber quantile regression loss [Huber, 1964]:

ρκτ (δ) = |τ − I{δ < 0}|Lκ(δ)

κ
, (7)

where

Lκ(δ) =

{
1
2δ

2, if |δ ≤ κ|
κ(|δ − 1

2κ|), otherwise , (8)
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Figure 4: Performance of the algorithms during training in terms of mean (solid lines) and ±1 standard deviation (shaded area) of the runs
within an epoch. The black dashed lines indicate the safety thresholds. In the Safety Gym environment [Ray et al., 2019], both WCSAC-
GS and WCSAC-IQN get more risk-averse performance with lower risk-level α. With benefits from the quantile regression to enhance
exploration and avoid overfitting, WCSAC-IQN has the best performance in safety compared to all the baselines.

where κ is the threshold to make the loss within an interval
[−κ, κ] quadratic but a regular quantile loss if outside the in-
terval. Then, we can get the loss function for safety-IQN, i.e.,

JC(θC) = E
(st,at,ct,st+1)∼D

IC(st, at, ct, st+1 | θC), (9)

where
IC(st, at, ct, st+1 | θC)

=
(a)

N∑
i=1

E
BπC

[ρκτi(B
πC(st, at)− Cτi(st, at))]

=
(b)

N∑
i=1

E
C
[ρκτi(ct + γC(st+1, at+1)− Cτi(st, at))]

.
=
(c)

1

N ′

N∑
i=1

N ′∑
j=1

ρκτi(ct + γCτ ′
j (st+1, at+1)− Cτi(st, at))

=
(d)

1

N ′

N∑
i=1

N ′∑
j=1

ρκτi(δ
τi,τ

′
j

t ).

(10)

In (10): (a) indicates that the total loss of all the target
quantiles τi, i = 1, · · · , N is computed at once, and ap-
plies the distributional Bellman operator B [Bellemare et al.,
2017], (b) expands the Bellman operator, taking an action for
the next state sampled from the current policy at+1 ∼ π(· |
st+1), (c) introduces τj to estimate the TD target, and (d) uses
(6). Since we base our estimate of the distribution of cost-
return on a quantile-parameterized approximation, we ap-
proximate the CVaR based on the expectation over the values
of the quantile τ as Γπ(s, a, α)

.
= Eτ∼U([1−α,1]) [C

τ
π(s, a)] .

This allows us to estimate Γπ(s, a, α) at each update step us-
ing K i.i.d. samples of τ̃ ∼ U([1− α, 1]):

Γπ(s, a, α)
.
=

1

K

K∑
k=1

C τ̃k
π (s, a). (11)

Our method efficiently estimates the CVaR using a sampling
approach. This can attain higher accuracy due to the quantile
regression framework. We also highlight that this method still
estimates the full distribution, sampling τ, τ ′ from U([0, 1])
to compute the safety critic loss. We use (11) only when

estimating the CVaR to compute the Lagrangian safety loss.
Based on the new safety measure, we refer the reader to [Yang
et al., 2021] for the policy optimization.
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