]
TU Delft

Augmented Reality Water Effects Visualization
by
EGE DUMANLI

Supervisor(s): MARK WINTER, BEREND BAAS

A Dissertation
Submitted to EEMCS faculty Delft University of Technology;,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

June 20, 2022

Abstract

Simulating visually compelling water is difficult espe-
cially in Augmented Reality environments where the wa-
ter has to interact with the user’s surroundings. In this
paper, implementations of reflections, refractions and
transparency effects that are physically inaccurate but
result in visually compelling water simulation in Aug-
mented Reality environments are presented and tested.
There are many works on simulating water efficiently;
however, they focus on doing this in a scene that is fully
virtual. The contribution of this paper is to extend some
of these effects so that they also work in Augmented Re-
ality environments which are non-virtual.

The effects are tested by measuring the frames per
second. In the end, the methods described in the paper
make the water look aesthetically pleasing at around 26
frames per second. It is important to mention that the
application is locked at 30 frames per second. This means
the water shader is improved with the visual effects for
the cost of 4 frames. The frames were measured on an
OPPO mobile phone with the model CPH2195.

1 Introduction

Simulating fluids is a fascinating and well-studied subject
that started at around 1996 [12] and is still being studied
and improved upon today. There are several algorithms
for simulating the motion of fluids and the effect of light
interacting with such fluids especially used in media such
as video-games and movies. However, generally in these
cases, the environment is fully virtual. Meaning that the
scene with the fluid simulation and the objects inside that
scene can be modified such that it works realistically with
effects such as refraction and reflection caused by the
fluid. This research focuses on Augmented Reality(AR)
technology where the environment will be in the control
of the user navigating the camera. The research aims to
find a performant yet visually compelling way to simulate
water and its interaction with light on a mobile platform
using AR where the environment is non-virtual.

Water rendering and simulation in interactive appli-
cations is a difficult balance between physical fidelity
and efficiency. This can be even more challenging in the
constrained hardware of AR mobile applications and the
non-virtual environments. Consequently, more research
in this area is needed. The effects described in this paper
can be applied to any AR/VR application that wants to
simulate visually compelling water.

The team behind "Sailing+" focuses on implementing
an AR application where sailing races can be projected
onto a surface by using AR technology. This application
is being developed using the Unity Game Engine and its
Universal Render Pipeline.

The basic approach taken in this paper is to extend
the water effect implementations such as reflection and

refraction such that they also work in AR environments.
This is important because AR technology is becoming
more widely available every day [10] and visually pleasing
water simulation should be accessible to all platforms.

The questions that were explored and answered to ar-
rive at optimal water visualizations are as follows:

e What types of water effect implementations are ef-
ficient and effective for AR environments? As water
simulations involve intensive calculations, this will
have to be explored in regards to mobile hardware.

e What water effects can be used to enhance the AR
experience? The effects could be divided into two
categories: the immediately noticeable and the not
so immediately noticeable. This could be used to
prioritize implementations.

e How will the refraction and reflection effects on flu-
ids be implemented to work with AR environments?
The reflection and refraction will have to be based on
what the mobile device’s camera sees. This means
that there will be objects in the scene that are not
in our control.

The next section mentions the works that are related
to this research. Afterwards, Section 3 explains how the
water effects were chosen and details the methods behind
their implementations. Then, in Section 4, the results of
the research are shown. Section 5 discusses these results
and how they relate to the research questions. Finally
Section 6 provides a summary of the paper, and men-
tion several points for further research. The appendix A
mentions some aspects of responsible research concerned
with this paper.

2 Related Work

As briefly mentioned in Section 1, fluid simulations is
a well explored topic within the domain of computer
graphics. This research paper gathers ideas from dif-
ferent works, combines and extends upon them. This
section will describe these works for the effects that they
were used in.

Water flow and still movement

The idea for using texture distortion as the basic move-
ment for the water simulation was described by Alex Vla-
chos in the SIGGRAPH2010 presentation Water Flow in
Portal 2 [4]. This technique is implemented in this paper
as described in this presentation.

Reflections

The main work used for ideas on reflection was the Boat
Attack Demo [14] made by Unity Technologies them-
selves. This demo shows reflection probes and planar
reflections as two methods of implementing reflections.

The planar reflections implementation was extended in
this paper by combining it with the texture received from
the user’s mobile camera to reflect the user’s environ-
ment. This is further explained in Section 3.

Refractions

The idea for using the screen texture and jittering it was
described by Jasper Flick in his Flow Tutorial [8] series.
In this paper, Flick’s idea was built upon by using the
screen space UV coordinates of the water plane. This
made it so that only the parts of the texture received
from the user’s mobile camera that were occluded by the
water were subjected to jittering.

Caustics

A way to fake caustics is described in the book GPU
GEMS [2]. It involves tracing a minuscule amount of
rays assuming that the sun is shining from directly above.
The extension to this method is the use of incorporating
the alpha cutoff. Since there is no ground material to put
the caustics shader on, a plane is created on the ground
level. Then alpha cutoff is used to only display parts that
are bright.

3 Methodology

In this section, the methods of finding the right effects
and their details will be discussed.

The first step in approaching the questions was to de-
cide on what makes a water visually compelling. In order
to arrive at answers, several images of rivers, seas and
oceans were observed.

Decreased viéfbﬂity
in deeper ports—

e

Figure 1: The refraction of the light entering the wa-
ter distorts the view of the poles underwater. Also, the
deeper parts of the poles are less visible because of the
absorbed light. Courtesy of Kanenori [6].

Figure 2: The reflection of the boat is visible on the
water. The reflected boat appears jittery. Courtesy of
Marvin R. Molin [9].

Figure 1 does a good job at showing the effect of re-
fraction and transparency while Figure 2 does a good job
at showing the effect of reflection.

Reflection, refraction and transparency were decided
to be the most crucial ones as they were the most present
and apparent in pictures. Caustics and foam effects were
decided to be treated as additional details which would
be looked at if time permitted. As many mobile phones,
including the one used in this paper do not support the
Depth API, the caustic effect was given more importance
compared to the depth based transparency.

For the above-mentioned visual effects to work, there
needs to be a water shader that they could be added
on top of. This shader should consist of the two basic
motions of fluids: directional flow and still movement. In
order to write a shader that could do these motions, a
method called texture distortion [4] was followed.

3.1 Movement Water Shader

In this subsection, the details behind the texture distor-
tion implementation are discussed.

The distortion of the normals used in this approach is
essential for the water effects to look visually compelling.
This is because the normals of the water surface are used
in all of the visual effects to position them correctly along
the water plane and to give them the jittery effect caused
by the movement of the water.

Texture distortion method can be cleanly separated
into two parts, the directional flow and the still move-
ment.

3.1.1 Directional Flow

The directional flow part makes use of a flow map which
is a 2D texture that describes how the UV coordinates
should be manipulated. An example of a flow map can
be seen in Figure 3

Figure 3: A flow map with the R(red) channel represent-
ing the U component and the G(green) channel repre-
senting the V component of the UV. Courtesy of Jasper
Flick [§].

When a flow map is used in combination with a dy-
namic value such as time, it can be used to distort the
UV coordinates of the water plane, creating the effect of
flow. The resulting texture is shown in Figure 4

SNETeiiE

AT

b
ST

Figure 4: A UV texture being distorted in both directions
via the flow map.

3.1.2 Still Movement

The still movement part makes use of a UV jump. In or-
der to simulate still movement, an identical second tex-
ture can be sampled. Then, its UV’s are offset from the
first textures UV. Finally they are blended together. A
UV jump is when the offset between two UVs jump to
a different value in order to avoid the offset looking di-
rectional. Figure 5 shows this effect nicely where two
different square tiles can be seen being blended.

Figure 5: The blending between two sampled textures.
Two different sets of square tiles can be seen changing
colors.

3.2 Water Effects Shader

With the water movement shader handled, this section
discusses the implementation of the reflection, refraction
and caustics effects. Every effect will be discussed in
two parts: the base implementation, and the AR specific
extensions. All implementations in this section assume
that there exists no depth information on the AR envi-
ronment.

Before the effects are explored further, it is important
to mention that an accurate implementation of all of the
effects in this section would require the usage of ray-
tracing. Since ray-casting is not performant on mobile
hardware [5] and since ray-tracing is not commonly sup-
ported on mobile hardware, a method that results in a
convincing effect should be utilized instead of a physi-
cally correct one.

3.2.1 Reflection

To understand this subsection, the word reflection, as it
is used in this paper, should first be defined. Reflection
is when the light ray hits a surface and changes direction
while not changing medium. This is shown in the Figure
6.

mirror
N\
P N\
N\
N\
normal 92 0
0, N
N\
N\
Q N\
N

Figure 6: A light ray is sent from point P to point O.
The reflected ray is the line from point O to point Q.
The angles represent the angle between the ray and the
normal of the surface. Courtesy of Johan Arvelius [13].

To fake real-time reflections, there are few methods.
One such method is planar reflections. Since the sur-
face of the water can be approximated as a plane, and
since this method works with dynamic environments, it
was chosen over the others. This approximation is ac-
ceptable in this paper because physical accuracy of the
water visualisation is not the main concern. Some other
methods result in more realistic reflections however, they
are either too expensive to run or not applicable to a dy-
namic environment. The AR specific extensions section
of the reflection effect will mention some of these and

explain why they were not chosen.

Base Implementation

In order to understand how planar reflections work, it is
useful to think in terms of mirrors. When an observer
looks in the mirror, they see their image as if they were
looking through the other side of the mirror. This is
visually shown in Figure 7.

Figure 7: The image on the mirror can be seen as if the
camera(black) was reflected to the other side of it(gray).

In the same way displayed in Figure 7, the camera
could be reflected around the water plane in order to
simulate convincing reflections. To reflect a point about
a plane that does not go through the origin, an affine
transformation matrix M [15] seen in equation 1 is used.

Plane = ax +by+cz+d =0,

1—2a2 —2ab —2ac —2ad
—2ab 1—2b%> —2bc —2bd
M = —2ac —2bc 1—2¢*> —2cd (1)
0 0 0 1

But this introduces a problem. There may be an object
on the opposite side which is blocking the view of the
reflected camera. This problem is visualised in Figure 8.

Figure 8: The reflected camera(grey) is being blocked by
the black rectangle.

This problem can be tackled in two ways. Firstly, a
custom shader could be written which disposes of the
pixels that lay under the water plane. This is an efficient
way of doing it. However, there is even a more efficient
method called the oblique view frustum clipping which
makes use of the fact that the clipping stage is always
going to take place [1]. Oblique view frustum clipping
describes the necessary transformations in order to make
the near clipping plane any arbitrary plane. This means
that by using the water plane as the near clipping plane,
anything under can be clipped for free, without the use
of any shaders. This method is visualized in Figure 9.
The transformation matrix required is given in equation
2. In this equation, M is the initial projection matrix.
M; represents the i-th row of the matrix M. C and Q
can be seen in Figure 9.

b---
<

Near Planc

o

Before the transformation of the near

Figure 9:
plane(Left) and after the transformation of the near
plane(Right). C is an arbitrary plane and O is the origin.
The gray part is the part which is not clipped. Courtesy
of Eric Lengyel [1].

M,

M,
—21(%@0 — M,

My

(2)

Implementing the planar reflections result in a con-
vincing reflection effect that can be seen in Figure 10.

Now that the virtual world can be reflected on the water
plane, reflections in the real world need to be handled.

Figure 10: The water shader with planar reflections. The
boat, cube and the capsule are all being reflected.

AR Specific Extensions

The base implementation described above works for ob-
jects that were defined in the scene. But for AR envi-
ronments, the user’s environment needs to be reflected.
Since the assumption is that there is no depth informa-
tion, simulating an accurate reflection of the real world
environment is not feasible. Considering this constraint,
two different solutions that would result in inaccurate yet
visually compelling reflections were arrived at.

The first solution takes place in the fragment shader.
The output of the user’s mobile camera is retrieved, lets
call this the background texture. The background tex-
ture is treated as if it lies in the scene an arbitrary dis-
tance away from the water plane. Let’s call this imagi-
nary plane, the background plane. Then, for every visible
pixel of the water plane, a line is drawn from the scene
camera to that pixel and the reflected line is calculated.
After that, if reflected the line intersects with the back-
ground plane, the color value of the intersection point it
used. If it does not intersect, black color is used.

The second solution makes use of the previously ex-
plained planar reflections implementation. Instead of the
first solution where the background texture is treated as
an imaginary plane in the world space, it can be made
into an actual plane mesh and the background texture
can be drawn on it. This plane is placed an arbitrary dis-
tance away from the water plane. Now, since the plane
is in world space, the general planar reflection code will
also reflect it. But this plane is currently sitting in one
position instead of moving with the camera. In essence,
the plane should always face the camera as it is used to
reflect what the user can see. A basic implementation
would involve applying any transformation on the cam-
era also to the plane. This is the parenting approach.
There are several problems with this approach. One of
them is that the background plane can now coincide with

the water plane if the user moves away from the water
plane because each position change of the camera is ap-
plied to the background plane. Another problem is that
if the position of the camera along the y axis changes,
then so does the background plane’s. This results in the
reflections constantly moving up and down with the cam-
era which is an undesired effect.

Figure 11: From above, the water plane (blue square)
and the circle representing the possible positions the
background plane can move to. The plane moves tan-
gent to the circle. The radius of the circle should be
bigger or equal to half the length of the water plane’s
diagonal.

A better approach would be to allow the background
plane to move in a circle around the water plane with the
radius set as the arbitrary distance mentioned before.
This circle is visualized in Figure 11. The background
plane is then moved on this circle by only applying the
camera’s rotations on the y axis to the circle. This way,
the background plane is always the same distance away
from the water plane and at the same height but still
faces the camera. This plane is shown together with the
camera and the ground plane in Figure 12. The only
thing left to do is to configure the main camera so that it
does not render this background plane that was created.

Figure 12: The background plane always faces the scene
camera. It can only move along the circle that is shown
in Figure 11.

The second solution was chosen over the first because
it works out of the box with the planar reflection imple-
mentation. A screenshot showing this effect on a mobile
phone can be seen in Figure 13.

Figure 13: The reflections working in an AR environment
without any water texture applied. The boats reflections
are seen right below them. The cabinet on the left of the
screen is being reflected as well.

As mentioned before, there are other reflection imple-
mentations such as reflection probes and screen space re-
flections but both are not suitable for AR. Screen space
reflections is an expensive dynamic post processing effect
which Unity itself states "it is not recommended to be
used on mobile." [7] Reflection probes rely on informa-
tion from the environment and store it in a cubemap;
however, this also is not feasible when the output of the
user’s camera is the environment because it is not a static
scene.

3.2.2 Refraction

Before explaining this effect further, the word refraction,
as it is used in this paper, should be defined. Refraction is
the light changing direction as it enters from one medium
to another. This is visualized in Figure 14.

n, index
v, velocity

normal

Figure 14: The light ray is shot from point P towards
point O. The refracted ray is the line from point O to
point Q. The angles represent the angles of the rays to the
normal of the surface. Courtesy of Cristan and Sawims
[11].

Base Implementation

The constant movement and shifting of the water plane’s
normals make faking the refraction effect easier. This is
because the water surface will be jittery and distorted.

Each frame, the rendered scene is sampled by using the
screen-space UV coordinates of the water plane. This ef-
fectively renders the rendered scene onto the water plane.
For AR, this rendered scene will instead be the texture
retrieved from the user’s mobile camera.

AR Specific Extensions

Lets call the texture retrieved from the user’s mobile
camera the background texture. The refraction should
only affect the part of the background texture occluded
by the water plane. In order to do this, the screen space
UV coordinates of the water plane need to be calculated.
The screen space coordinate is a four dimensional vector
with variables z, y, z and w. Since the UV coordinates
are needed which is two dimensional the x and y vari-
ables will be used. One last thing to do before moving
on is to divide the z and y by the w. This is called homo-
geneous divide and it is used to get from homogeneous
coordinates to 3 dimensional space [3]. If the world space
normals are then added to the screen space UV’s, the re-
fractions become jittered with the water plane’s normals.
This means that the incident ray, the line PO in Figure
14, is completely disregarded and the refracted ray, OQ
in Figure 14, is approximated by the normal of the wa-
ter surface at point O. The world space normals can be
multiplied by a value before the addition if the intensity
of the refraction needs to be controlled. By using these
new UV coordinates to sample the background texture,
only the parts that are occluded by the water plane will
be rendered and jittered. A screenshot of this effect can
be seen in Figure 15.

Figure 15: My hand under the water plane distorted
because of the refraction effect.

3.2.3 Caustics

As the light gets refracted, some points on the ground
underwater get hit by more rays resulting in brighter
sections.

Base Implementation

To fake this effect, a section from the book GPU GEMS
describes an ingenious approach. The approach assumes
that the sunlight is coming from directly above the water
plane. Therefore, the map shown in Figure 16 can be
used as a representation of how the sun would look like
when it is directly above.

Figure 16: The texture used to simulate sun that is di-
rectly above.

Then, to determine where a ray, shot from the ground
plane towards to water surface, lands on the sun map, a
calculation is computed. This calculation includes calcu-
lating the line plane intersection to find the point where
the ray, shot from the ground plane, lays on the water
plane, and then uses the normal at that point to find the
final ray.

Figure 17: The caustic texture. Fully opaque.

AR Specific Extensions

The method described in the base implementation results
in a texture where the caustic lines are white and the
rest are black. This is shown in Figure 17. If the ground
plane had a texture, this could be added onto the final
color. However, since the ground in the AR environment
is not an object in the scene, a plane on the same level
as the ground needs to be created. Then, the texture is
applied to this planes material. However, the resulting

plane is not transparent like caustics are supposed to be.
To fix this, the red, green and blue values of the pixel
can be added in the fragment shader. If the sum is equal
to 0, this means that the pixel is a black pixel. Then,
the alpha value of the black pixel is set to 0 in order
to make it fully transparent. A trick that can be used
here to avoid conditional statements in the shader code
is that the red, green and blue values can be summed
up and clamped between 0 and 1. Consequently, the
clamped value can be used directly as the alpha value.
The resulting texture can be seen in Figure 18.

Figure 18: The caustic texture with correct alpha values.
The grey background is the sky box, which means that
the black parts seen in Figure 17 are now transparent.

4 Results

This section will show how the final water shader looks
like and compare the frames per second(fps) before and
after the implementations detailed in this paper. Since
fps will vary from system to system, the exact machine
used in the testing will also be mentioned.

First of all, lets see the final result which combines re-
flections, refractions, caustics and the movement shader
by looking at Figure 19.

Figure 19: Reflection, refraction and caustics shown all
together.

These images and the frame tests were handled on an
OPPO A54 5G mobile phone with the model CPH2195
running ColorOS version V11.1 with Android version
11. It should be mentioned that AR applications are
capped to 30 fps because of the camera’s capture rate.
The initial water shader that existed before my work
is visualized in Figure 20. The application with this
water shader ran at 30 fps without any frame drops.
After the implementation of the shader detailed in
this paper, the application dropped to an average of
26 fps. With this shader, the lowest fps value was
24 and the highest was 30. The lowest value was
observed when moving away from the water plane which
causes the camera to render everything. The highest
was observed when the camera was close to the water
plane. Table 1 displays the minimum, maximum and
the average frames per second for each effect individually.

Effects Min fps | Max fps | Average fps
Reflection 24 30 27
Refraction 26 30 29
Caustics 28 30 30
Texture Distortion 27 30 29

Table 1: Fps for individual effects.

Figure 20: The water shader before this paper.

5 Discussion

The water shader detailed in this paper is specific in
terms of the environment it can be used in. A lot of
previous work on water shaders focus on different envi-
ronments other than AR/VR. This paper can be seen as
small steps into the territory of water shaders in these
environments.

The most apparent limitation is the lack of use of depth
information. Many of the effects can be improved to look
better if depth textures were used. For example, the an-
gle of refraction could be estimated by the depth texture
which would result in different amount of distortion for
objects laying in different distances. Or the reflections
could be made so that only the parts with depth value
higher than the water plane are reflected. These imple-
mentations would not work as simple extensions to the

current implementation and would most likely require a
rewrite of them.

One limitation concerns the reflection effect. As the
user starts looking down at the water plane, the reflected
background displays parts that are below the water and
should not be reflected. This is because the effect is faked
without the use of depth information.

Another limitation with the reflection effect is that the
reflection of objects appear right below them. For exam-
ple, in Figure 19, the reflection of the hand should have
been further away from the camera.

A limitation with the refraction effect is that every ob-
ject is distorted the same amount regardless of the angle
they are looked at. Since in this paper aesthetic beauty
was prioritized over physical fidelity, this was expected.
Moreover, the constant movement of the water surface
hides this well.

Finally another limitation with the reflection effect is
that as two cameras are being used, one main and one
for reflections, the scene is rendered twice. This intro-
duces some overhead. However, it can be reduced by
rendering the reflections in a lower resolution. I chose
to render the reflections in quarter of the main cameras
render resolution. It is acceptable to do this since the
reflection is distorted by the water plane’s normals and
the quality change won’t be as noticeable as it would be
on a smooth, clear plane.

6 Conclusion and Future Research

The effects caused by reflection, refraction and caustics
were implemented as they were deemed to be the most
noticeable. As seen in Section 4, the new water shader
looks visually compelling and interactive while the old
shader looks basic and bland.

Every effect in this paper is implemented without
depth information. This is because the water should look
visually compelling even on mobile phones that do not
support this feature. The reflection, refraction and caus-
tics could be improved if depth information was used for
them.

There are several ideas that are worth exploring if a
further research was to be held. These will now be men-
tioned with no order of importance.

To improve the reflections, the user could be asked to
take pictures of all 6 directions of their environment or
to scan their room with photogrammetry. This could
be mapped to a cubemap texture and used in combina-
tion with reflection probes to calculate reflections which
would look more accurate than the current implementa-
tion. However, this approach would not reflect anything
dynamic such as the user’s hand. This was not imple-
mented because it includes a new step in the setup part
of the application for a single visual effect and it does
not allow for dynamic interaction.

To improve the caustics, rays could be traced back-
wards from the ground towards the light source. This
would reduce the amount of rays to trace because it is
known that these rays are the ones that hit the ground.

Maybe as mobile GPUs continue to evolve, an ap-
proach using ray-tracing would become feasible, allowing
us to enter the domain of hyper realistic mobile simula-
tions.

A Responsible Research

Every method shown in this paper is reproducible by any-
body with an access to a computer and a mobile phone
supporting AR. Each effect mentioned in Section 3 was
detailed with figures. Parts which were short can be un-
derstood better by following the resources given either in
Section 2 or in the References. These parts are generally
the base implementations that this paper has extended
upon therefore they can be learned in their respective
sources if the reader desires to get a deeper understand-
ing.

References

[1] E. Lengyel, “Oblique view frustum depth projec-
tion and clipping”, J. Game Dev., vol. 1, pp. 1-16,
2005.

[2] J. Guardado and D. S. Crespo, “Rendering wa-
ter caustics”, in GPU gems: Programming Tech-
niques, Tips, and tricks for real-time graphics, R.
Fernando, Ed. Addison-Wesley, 2007, pp. 31-44.

[3] E. Lengyel, “Projection matrix tricks”, GDCO07,
2007. [Online|. Available: http://wuw.terathon.
com/gdc07_lengyel.pdf.

[4] A. Vlachos, Water flow in portal 2, URL: https:
/ / cdn . cloudflare . steamstatic . com /
apps / valve / 2010 / siggraph2010 _ vlachos _
waterflow.pdf, Jul. 2010.

[5] W.-J. Lee, Y. Shin, J. Lee, et al., “A novel mo-
bile gpu architecture based on ray tracing”, in 2013
IEEE International Conference on Consumer Elec-
tronics (ICCE), 2013, pp. 21-22. por: 10.1109/
ICCE.2013.6486777.

[6] Kanenori, Transparent turquoise water, 2017. [On-
line]. Available: https://pixabay . com/photos/
water-transparent-turquoise-2328294/.

[7] U. Technologies, Screen space reflection - unity
manual, May 2017. [Online]. Available: https :
//docs . unity3d . com/ es /2017 . 4 / Manual /
PostProcessing-ScreenSpaceReflection.html.

[8] J. Flick, Unity flow tutorials, Jun. 2018. [Online].
Available: https://catlikecoding.com/unity/
tutorials/flow/.

19]

[10]

[11]

[12]

[13]

[14]

[15]

M. R. Molin, Boat on the sea of sabang, calabanga,
camarines sur, 2018. [Online|. Available: https :
// commons . wikimedia . org/wiki/File : Boat _
on_the_Sea. jpg.

M. Boland, Mobile ar users approach 600 mil-
lion, Nov. 2020. [Online]. Available: https : //
arinsider.co/2020/09/10/mobile-ar-users-
approach-600-million/.

W. Commons, File:snells law.svg — wikimedia
commons, the free media repository, [Online; ac-
cessed 14-June-2022], 2021. [Online]. Available:
%5Curl %, 7Bhttps : / / commons . wikimedia . org/
w/index . php?title=File : Snells_law.svg&
01did=560690761%7D.

Wikipedia contributors, Fluid animation —
Wikipedia, the free encyclopedia, https://en .
wikipedia . org/w/index . php?title=Fluid_
animation&o0ldid=1058057758, [Online; accessed
27-May-2022], 2021.

W. Commons, File:reflection angles.svg — wikime-
dia commons, the free media repository, [Online;
accessed 14-June-2022], 2022. [Online]. Available:
%5Curl? 7Bhttps : / / commons . wikimedia . org/
w/index.php?title=File:Reflection_angles.
svg&oldid=636381280%7D.

U. Technologies, Boat attack: Demo project using
the universal rp from unity3d, https://github.
com/Unity-Technologies/BoatAttack, 2022.

Wikipedia contributors, Transformation matriz
— Wikipedia, the free encyclopedia, https : //
en . wikipedia . org / w/ index . php ? title =
Transformation _ matrix & oldid = 1089725131,
[Online; accessed 27-May-2022], 2022.

