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ARTICLE INFO ABSTRACT

Johann Sienz In this contribution, a finite element scheme to impose mixed boundary conditions without intro-
ducing Lagrange multipliers is presented for hyperbolic systems described as port-Hamiltonian
systems. The strategy relies on finite element exterior calculus and domain decomposition to in-
terconnect two systems with dual input-output behavior. The spatial domain is split into two

Keywords:
Port-Hamiltonian systems
Finite element exterior calculus

Mixed boundary conditions parts by introducing an arbitrary interface. Each subdomain is discretized with a mixed finite
Geometrically exact beams element formulation that introduces a uniform boundary condition in a natural way as the input.
Mechanical vibrations In each subdomain the finite element spaces are selected from a finite element subcomplex to
Shear locking obtain a stable discretization. The two systems are then interconnected together by making use

of a feedback interconnection. This is achieved by discretizing the boundary inputs using appro-
priate spaces that couple the two formulations. The final systems include all boundary conditions
explicitly and do not contain any Lagrange multiplier. Time integration is performed using the
implicit midpoint or Stormer-Verlet scheme. The method can also be applied to semilinear sys-
tems containing algebraic nonlinearities. The proposed strategy is tested on different examples:
geometrically exact intrinsic beam model, the wave equation, membrane elastodynamics and the
Mindlin plate. Numerical tests assess the conservation properties of the scheme, the effectiveness
of the methodology and its robustness against shear locking phenomena.

1. Introduction

To simulate, design and analyze modern engineering technologies, modular modeling tools are of great importance, as they allow
to simplify validation and verification, speed up prototyping and encapsulate complexity. Paradigms based on a modular description
of systems are implemented in many widespread libraries like SIMULINK' or DIMOLA?. In many cases, a reliable description of a
complex technological devices is achieved by using coupled systems of partial differential equations (PDE) where different physics
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$\Omega \subset \mathbb {R}^d$


$\phi (t): \Omega \times [0, T_{\mathrm {end}}] \rightarrow \mathbb {R}$


\begin {equation}\label {eq:irr_wave} \partial _{tt}^2 \phi - \div \grad \phi = 0,\end {equation}


\begin {equation}\label {eq:dirbc_wave} \phi |_{\partial \Omega } = g(t).\end {equation}


\begin {equation*}H = \frac {1}{2} \int _\Omega (\partial _t \phi )^2 + ||\grad \phi ||^2 \; \rm {d}\Omega .\end {equation*}


\begin {equation}\alpha := \partial _t \phi , \qquad \bm {\beta } = \grad \phi . \label {Xeqn3-3}\end {equation}


\begin {equation}\label {eq:mix_wave} \begin {pmatrix} \partial _t \alpha \\ \partial _t \bm {\beta } \end {pmatrix} = \underbrace {\begin {bmatrix} 0 & \div \\ \grad & 0 \\ \end {bmatrix}}_{J} \begin {pmatrix} \alpha \\ \bm {\beta } \end {pmatrix}, \qquad \alpha |_{\partial \Omega } = \partial _t g:= u.\end {equation}


$J$


$\grad ^*= -\div $


$u$


\begin {equation*}H = \frac {1}{2} \int _\Omega \alpha ^2 + ||\bm \beta ||^2 \mathrm {d}\Omega , \qquad \qquad \delta _{\alpha } H = \alpha , \quad \delta _{\bm \beta } H = \bm \beta ,\end {equation*}


$\delta _\alpha $


$\delta _\beta $


\begin {equation}\label {eq:wave_power_balance} \begin {aligned} \dot {H}(\alpha ,\bm \beta ) &= \int _\Omega \delta _\alpha H \cdot \partial _t \alpha + \delta _{\bm \beta } H \cdot \partial _t \bm {\beta } \; \mathrm {d}\Omega , \\ &= \int _\Omega \alpha \cdot \div \bm {\beta } + \bm \beta \cdot \grad {\alpha } \; \mathrm {d}\Omega , \\ &= \int _\Omega \div (\alpha \; \bm {\beta }) \; \mathrm {d}\Omega = \int _{\partial \Omega } \alpha \; \bm {\beta } \cdot \bm {n} \; \mathrm {d}\Gamma , \end {aligned}\end {equation}


$\bm {n}$


\begin {equation*}\dot {H} = \int _{\partial \Omega } u y\; \mathrm {d}\Gamma \end {equation*}


$y$


\begin {equation}y := \bm {\beta } \cdot \bm {n}|_{\partial \Omega } = \grad \phi \cdot \bm {n}|_{\partial \Omega } \label {Xeqn6-6}\end {equation}


$\Omega \subset \mathbb {R}^d$


$d\in \{1,2,3\}$


$\partial \Omega =\overline {\Gamma }_1\cup \overline {\Gamma }_2$


$\Gamma _1\cap \Gamma _2=\emptyset $


$\bm {x}=\{\bm {\alpha },\bm {\beta }\}$


$\bm {\alpha }(t) \in L^2(\Omega ; \mathbb {A})$


$\bm {\beta }(t) \in L^2(\Omega ; \mathbb {B})$


$\mathbb {A}, \; \mathbb {B}$


$\mathcal {L} :L^2(\Omega ; \mathbb {A})\rightarrow L^2(\Omega ; \mathbb {B})$


$\bm {u}\in C_0^\infty (\Omega ,\mathbb {A})$


$\bm {v}\in C_0^\infty (\Omega ,\mathbb {B})$


$\Omega $


$\mathcal {L}$


$\mathcal {L}:L^2(\Omega ; \mathbb {A})\rightarrow L^2(\Omega ; \mathbb {B})$


$\mathcal {L}$


$\mathcal {L^*}:L^2(\Omega ; \mathbb {B})\rightarrow L^2(\Omega ; \mathbb {A})$


\begin {equation}\innerproduct {\mathcal {L}\bm {u}}{\bm {v}} = \innerproduct {\bm {u}}{\mathcal {L}^*\bm {v}}. \label {Xeqn7-7}\end {equation}


$\innerproduct {f}{g} = \int _\Omega f \cdot g \, d{\Omega }$


$\mathcal {L}$


$\mathcal {L}^*$


$H^\mathcal {L}$


$H^{\mathcal {L}^*}$


\begin {equation}\begin {split} H^\mathcal {L}(\Omega ) &= \{\bm {u} \in L^2(\Omega ,\mathbb {A})|\; \mathcal {L}\bm {u} \in L^2(\Omega ,\mathbb {B})\}, \\ H^{\mathcal {L}^*}(\Omega ) &= \{\bm {v} \in L^2(\Omega ; \mathbb {B})|\; \mathcal {L}^*\bm {v} \in L^2(\Omega ; \mathbb {A})\}. \end {split} \label {eq:Spaces-H^L-H^L*}\end {equation}


$\bm {e}_\alpha \in {H}^{\mathcal {L}}(\Omega ), \; \bm {e}_\beta \in {H}^{\mathcal {L}^*}(\Omega )$


\begin {equation}\label {eq:abstract_intbyparts} \innerproduct {\mathcal {L}\bm {e}_\alpha }{\bm {e}_\beta } = \innerproduct {\bm {e}_\alpha }{\mathcal {L}^*\bm {e}_\beta } + \boundaryproduct {\mathcal {T}_{\alpha }\bm {e}_\alpha }{\mathcal {T}_{\beta }\bm {e}_\beta },\end {equation}


$\mathcal {T}_\alpha $


$\mathcal {T_\beta }$


$\boundaryproduct {f}{g} = \int _{\partial \Omega } f \cdot g \, d\Gamma $


$\mathcal {L}:= \mathrm {grad}$


$\mathcal {L}^* = -\mathrm {div}$


$f \in H^1(\Omega ), \; \bm {v} \in H^{\mathrm {div}}(\Omega )$


\begin {equation}\innerproduct {\grad f}{\bm {v}} = - \innerproduct {f}{\div \bm {v}} + \boundaryproduct {f}{\bm {v} \cdot \bm {n}}. \label {Xeqn10-10}\end {equation}


\begin {equation}\begin {pmatrix} \partial _t{\bm {\alpha }} \\ \partial _t{\bm {\beta }} \end {pmatrix} = \begin {bmatrix} 0 & -\mathcal {L}^* \\ \mathcal {L} & 0 \end {bmatrix} \begin {pmatrix} \delta _{\bm {\alpha }} H\\ \delta _{\bm {\beta }} H \end {pmatrix}. \label {eq:energy_co-energy-system}\end {equation}


$H$


$\delta _{\bm {\alpha }} H, \delta _{\bm {\beta }} H$


\begin {equation}H = \frac {1}{2}\innerproduct {\bm {\alpha }}{\mathcal {Q}_\alpha \bm {\alpha }} + \frac {1}{2}\innerproduct {\bm {\beta }}{\mathcal {Q}_\beta \bm {\beta }}, \label {eq:linearHamiltonian}\end {equation}


$\mathcal {Q}_\alpha $


$\mathcal {Q}_\beta $


\begin {equation}\bm {e}_\alpha := \frac {\delta H}{\delta \bm {\alpha }} = \mathcal {Q}_\alpha \bm {\alpha }, \qquad \qquad \bm {e}_\beta := \frac {\delta H}{\delta \bm {\beta }} = \mathcal {Q}_\beta \bm {\beta }. \label {eq:co-energy-variables}\end {equation}


\begin {equation*}\bm {\alpha }=\mathcal {M}_\alpha \bm {e}_\alpha , \qquad \bm {\beta } = \mathcal {M}_\beta \bm {e}_\beta ,\end {equation*}


$\mathcal {M}_\alpha :=\mathcal {Q}_\alpha ^{-1}, \; \mathcal {M}_\beta :=\mathcal {Q}_\beta ^{-1}$


\begin {equation}H = \frac {1}{2}\innerproduct {\bm {e}_\alpha }{\mathcal {M}_\alpha \bm {e}_\alpha } + \frac {1}{2}\innerproduct {\bm {e}_\beta }{\mathcal {M}_\beta \bm {e}_\beta }. \label {eq:co-energyHamiltonian}\end {equation}


\begin {equation}\label {eq:co-energy-system} \begin {split} \begin {bmatrix} {\mathcal {M}}_{\alpha } & 0 \cr 0 & {\mathcal {M}}_{\beta } \end {bmatrix} \begin {pmatrix} {\partial }_t {\bm e}_{\alpha }\\ {\partial }_t {\bm e}_{\beta } \end {pmatrix} &= \begin {bmatrix} 0 & -{\mathcal {L}}^* \\ {\mathcal {L}} & 0 \end {bmatrix} \begin {pmatrix} {\bm e}_{\alpha } \\ {\bm e}_{\beta } \end {pmatrix}, \qquad \begin {aligned} {\bm e}_{\alpha } \in H^{\mathcal {L}}(\Omega ), \\ {\bm e}_{\beta } \in H^{\mathcal {L}^*}(\Omega ), \end {aligned}\\ \begin {pmatrix} \bm {u}_{\partial , 1} \\ \bm {u}_{\partial , 2} \\ \end {pmatrix} &= \begin {bmatrix} {\mathcal {T}}_{\alpha }{\vert }_{\Gamma _1} & {0} \cr {0} & {\mathcal {T}}_{\beta } {\vert }_{\Gamma _2} \end {bmatrix} \begin {pmatrix} {\bm e}_{\alpha } \\ {\bm e}_{\beta } \end {pmatrix}, \\ \begin {pmatrix} {\bm y}_{\partial , 1} \\ {\bm y}_{\partial , 2} \\ \end {pmatrix} &= \begin {bmatrix} 0 & {\mathcal {T}}_{\beta }{\vert }_{\Gamma _1} \\ {\mathcal {T}}_{\alpha } {\vert }_{\Gamma _2} & 0 \end {bmatrix} \begin {pmatrix} {\bm e}_{\alpha } \\ {\bm e}_{\beta } \end {pmatrix}. \end {split}\end {equation}


$\bm {u}_{\partial , i}$


$\bm {y}_{\partial , i}$


$\bm {u}_{\partial , i}$


\begin {equation*}\dot {H} = \boundaryproduct [\Gamma _1]{\bm {u}_{\partial , 1}}{\bm {y}_{\partial , 1}} + \boundaryproduct [\Gamma _2]{\bm {u}_{\partial , 2}}{\bm {y}_{\partial , 2}}.\end {equation*}


$\mathcal {T}_\alpha \vert _{\Gamma _i}, \; \mathcal {T}_\beta \vert _{\Gamma _i}, \; i=\{1, 2\}$


$\bm {v}=\{\bm {v}_\alpha ,\bm {v}_\beta \}$


$\Omega $


\begin {equation}\begin {split} \innerproduct {\bm {v}_\alpha }{\mathcal {M}_\alpha \partial _t\bm {e}_{\alpha }} &= -\innerproduct {\bm {v}_\alpha }{\mathcal {L}^*\bm {e}_\beta }, \\ \innerproduct {\bm {v}_\beta }{\mathcal {M}_\beta \partial _t\bm {e}_{\beta }} &= \innerproduct {\bm {v}_\beta }{\mathcal {L}\bm {e}_\alpha }. \end {split} \label {Xeqn16-16}\end {equation}


$\bm {u}_{\partial , 1}$


$\bm {u}_{\partial , 2}$


$\bm {\lambda }_{\partial ,i}$


$\bm {u}_{\partial , 1}$


$\bm {u}_{\partial , 2}$


$\bm {e}_{\alpha } \in L^2(\Omega ; \mathbb {A})$


$\bm {e}_{\beta } \in H^{\mathcal {L}^*}(\Omega )$


\begin {equation}\begin {aligned} \innerproduct {\bm {v}_{\alpha }}{\mathcal {M}_\alpha \partial _t\bm {e}_{\alpha }} &= -\innerproduct {\bm {v}_{\alpha }}{\mathcal {L}^*\bm {e}_{\beta }}, \\ \innerproduct {\bm {v}_{\beta }}{\mathcal {M}_\beta \partial _t\bm {e}_{\beta }} &= \innerproduct {\mathcal {L}^*\bm {v}_{\beta }}{\bm {e}_{\alpha }} + \boundaryproduct [\Gamma _1]{\mathcal {T}_{\beta }\bm {v}_{\beta }}{\bm {u}_{\partial , 1}} + \boundaryproduct [\Gamma _2]{\mathcal {T}_{\beta }\bm {v}_{\beta }}{\bm {\lambda }_{\partial , 2}}, \\ \mathcal {T}_{\beta }|_{\Gamma _2} \bm {e}_{\beta } &= \bm {u}_{\partial , 2}, \\ \bm {y}_{\partial , 1} &= \mathcal {T}_\beta |_{\Gamma _1} \bm {e}_{\beta }, \\ \bm {y}_{\partial , 2} &= \bm {\lambda }_{\partial , 2}. \end {aligned} \qquad \begin {aligned} \text {for all } \bm {v}_{\alpha } \in L^2(\Omega ; \mathbb {A}), \\ \text {for all } \bm {v}_{\beta } \in H^{\mathcal {L}^*}(\Omega ), \\ {} \\ {} \\ {} \end {aligned} \label {eq:weak_conforming_L}\end {equation}


$\bm {u}_{\partial , 2}$


$\bm {y}_{\partial , 1}$


$\bm {u}_{\partial , 2}$


$\bm {u}_{\partial , 1}$


$\bm {e}_{\alpha } \in H^\mathcal {L}(\Omega ), \; \bm {e}_\beta \in L^2(\Omega ; \mathbb {B})$


\begin {equation}\begin {aligned} \innerproduct {\bm {v}_{\alpha }}{\mathcal {M}_\alpha \partial _t\bm {e}_{\alpha }} &= -\innerproduct {\mathcal {L}\bm {v}_{\alpha }}{\bm {e}_{\beta }} + \boundaryproduct [\Gamma _1]{\mathcal {T}_{\alpha }\bm {v}_{\alpha }}{\bm {\lambda }_{\partial , 1}} + \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\bm {v}_{\alpha }}{\bm {u}_{\partial , 2}}, \\ \innerproduct {\bm {v}_{\beta }}{\mathcal {M}_\beta \partial _t\bm {e}_{\beta }} &= \innerproduct {\bm {v}_{\beta }}{\mathcal {L}\bm {e}_{\alpha }}, \\ \mathcal {T}_{\alpha }|_{\Gamma _1}\bm {e}_{\alpha } &= \bm {u}_{\partial , 1}, \\ \bm {y}_{\partial , 1} &= \bm {\lambda }_{\partial ,1}. \\ \bm {y}_{\partial , 2} &= \mathcal {T}_\alpha |_{\Gamma _2} \bm {e}_{\alpha }. \\ \end {aligned} \qquad \begin {aligned} \text {for all } \bm {v}_{\alpha } \in H^\mathcal {L}(\Omega ), \\ \text {for all } \bm {v}_{\beta } \in L^2(\Omega ; \mathbb {B}), \\ {} \\ {} \\ {} \end {aligned} \label {eq:weak_conforming_L18}\end {equation}


$i$


$i=\{1, 2\}$


\begin {equation}\begin {aligned} \bm {v}_{\alpha , i} &\approx \sum _{k=1}^{n_{\alpha , i}}\chi _{\alpha , i}^k(\bm {x})v_{\alpha , i}^k, & \bm {v}_{\beta , i} &\approx \sum _{k=1}^{n_{\beta , i}}\chi _{\beta , i}^k(\bm {x})v_{\beta , i}^k, & \bm {u}_{\partial , i} &\approx \sum _{k=1}^{n_{\partial , i}}\chi _{\partial , i}^k(\bm {x})u_{\partial , i}^k(t), \\ \bm {e}_{\alpha , i} &\approx \sum _{k=1}^{n_{\alpha , i}}\chi _{\alpha , i}^k(\bm {x})e_{\alpha , i}^k(t), & \bm {e}_{\beta , i} &\approx \sum _{k=1}^{n_{\beta , i}}\chi _{\beta , i}^k(\bm {x})e_{\beta , i}^k(t), & \bm {\lambda }_{\partial , i} &\approx \sum _{k=1}^{n_{\partial , i}}\chi _{\partial , i}^k(\bm {x})\lambda _{\partial , i}^k(t), \end {aligned} \label {eq:BasisFunction}\end {equation}


$\chi _{\alpha , i}, \; \chi _{\beta , i}, \; \chi _{\partial , i}$


$n_{\alpha , i}, \; n_{\beta , i}$


$\bm {e}_{\alpha }, \bm {e}_{\beta }$


$\Omega _i$


$\bm {e}_{\alpha , i}, \; \bm {e}_{\beta , i}$


\begin {equation}V_{\alpha , i} = \mathrm {span}\{\chi _{\alpha , i}\}, \qquad V_{\beta , i} = \mathrm {span}\{\chi _{\beta , i}\}, \qquad i=\{1, 2\}. \label {Xeqn20-20}\end {equation}


\begin {equation}V_{\alpha , 1} \subset L^2(\Omega ; \mathbb {A}), \quad V_{\beta , 1} \subset H^{\mathcal {L}^*}(\Omega ), \qquad V_{\alpha , 2} \subset H^{\mathcal {L}}(\Omega ), \quad V_{\beta , 1} \subset L^2(\Omega ; \mathbb {B}). \label {Xeqn21-21}\end {equation}


$V_{\alpha , i}, \; V_{\beta , i}$


$\{H^k, \mathcal {L}^k\}_{k \in \mathbb {Z}}$


$H^k$


$\mathcal {L}^k: H^k \to H^{k+1}$


$\mathcal {L}^{k+1} \circ \mathcal {L}^k = 0$


$k \in \mathbb {Z}$


\begin {equation}\begin {aligned} H^1(\Omega ) \xrightarrow {\grad } H^{\curl }(\Omega ) \xrightarrow {\curl } H^{\div }(\Omega ) \xrightarrow {\div } L^2(\Omega ) \end {aligned} \label {Xeqn22-22}\end {equation}


\begin {equation}\begin {aligned} L^2(\Omega ) \xleftarrow {\div } \mathring {H}^{\div }(\Omega ) \xleftarrow {\curl } \mathring {H}^{\curl }(\Omega ) \xleftarrow {\grad } \mathring {H}^1(\Omega ) \end {aligned} \label {Xeqn23-23}\end {equation}


$V_{\alpha , i}, \; V_{\beta , i}$


$\{H^k, \mathcal {L}^k\}_{k \in \mathbb {Z}}$


$\{V^k \subseteq H^k\}_{k \in \mathbb {Z}}$


$\mathcal {L}^k(V^k) \subseteq V^{k+1}$


$k \in \mathbb {Z}$


$V^k$


$H^k$


$\mathcal {L}^k$


$V^k$


$V^k$


$V^{k+1}$


\begin {equation}\label {eq:spaces_inclusion} \mathcal {L}^*(V_{\beta , 1}) \subset V_{\alpha , 1}, \qquad \qquad \mathcal {L}(V_{\alpha , 2}) \subset V_{\beta , 2}.\end {equation}


\begin {equation*}V_{\alpha , 2} \xrightarrow {\mathcal {L}} V_{\beta , 2}, \qquad \qquad V_{\beta , 1} \xrightarrow {\mathcal {L}^*} V_{\alpha , 1}.\end {equation*}


$V_{\partial , i} = \mathrm {span}\{\chi _{\partial , i}\}$


$V_{\partial , i}$


$\Gamma _i$


$V_{\beta , 1} \subset H^{\mathcal {L}^*}(\Omega )$


$V_{\alpha , 2} \subset H^{\mathcal {L}}(\Omega )$


\begin {equation}\label {eq:boundary_basis_boundary} \begin {aligned} \mathrm {span}\{\chi _{\partial , 1}\} &:= \mathrm {span} \{\mathrm {\mathcal {T}_\alpha |_{\Gamma _1}\chi _{\alpha , 2}}\}, \\ \mathrm {span}\{\chi _{\partial , 2}\} &:= \mathrm {span} \{\mathcal {T}_\beta |_{\Gamma _2} \chi _{\beta , 1}\}. \end {aligned}\end {equation}


\begin {equation}\begin {aligned} \begin {bmatrix} \mathbf {M}_{\alpha , 1} & 0 & 0\\ 0 & \mathbf {M}_{\beta , 1} & 0 & \\ 0 & 0 & 0 \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1} \\ \bm {\lambda }_{\partial , 2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\mathcal {L}^*} & 0 \\ \mathbf {D}_{\mathcal {L}^*}^\top & 0 & (\mathbf {T}_\beta ^{\Gamma _2})^\top \mathbf {M}^{\Gamma _2} \\ 0 & -\mathbf {T}_{\beta }^{\Gamma _2} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1} \\ \bm {\lambda }_{\partial , 2} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_\beta ^{\Gamma _1} & 0 \\ 0 & \mathbf {I} \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial , 1} \\ \mathbf {u}_{\partial , 2} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial , 1} \\ \mathbf {y}_{\partial , 2} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_\beta ^{\Gamma _1} & 0 \\ 0 & 0 & \mathbf {I} \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1}, \\ \bm {\lambda }_{\partial , 2} \end {pmatrix}, \end {aligned} \label {eq:systemL*}\end {equation}


\begin {equation}\begin {aligned} &[\mathbf {M}_{\alpha , 1}]_{mn} =\innerproduct {\chi _{\alpha , 1}^m}{\mathcal {M}_\alpha \chi _{\alpha , 1}^n}, \\ &[\mathbf {M}_{\beta , 1}]_{pq} = \innerproduct {\chi _{\beta , 1}^p}{\mathcal {M}_\beta \chi _{\beta , 1}^q}, \\ \end {aligned}\qquad \begin {aligned} &[\mathbf {D}_{\mathcal {L}^*}]_{mp} = \innerproduct {\chi _{\alpha , 1}^m}{\mathcal {L}^*\chi _{\beta , 1}^p}, \\ &[\mathbf {M}^{\Gamma _2}]_{rs} = \boundaryproduct [\Gamma _2]{\chi _{\partial , 2}^r}{\chi _{\partial , 2}^s}, \end {aligned} \qquad \begin {aligned} &[\mathbf {B}_\beta ^{\Gamma _1}]_{pl} = \boundaryproduct [\Gamma _1]{\mathcal {T}_\beta \chi _{\beta , 1}^p}{\chi _{\partial , 1}^l}, \\ &{} \end {aligned} \label {eq:Operational-matrices_1}\end {equation}


$(m,n) \in \{1, \dots , n_{\alpha , 1}\}, \; (p,q) \in \{1, \dots , n_{\beta , 1}\}, \; (r,s) \in \{1,\dots , n_{\partial , 2}\}, \; l \in \{1,\dots , n_{\partial , 1}\}$


\begin {equation}[\mathbf {T}_{\beta }^{\Gamma _i}]_{kp} = \begin {cases} 1, \quad \text {if} \quad \mathcal {T}_\beta \chi _{\beta , 1}^p \not \equiv 0 \quad \text {on } \Gamma _i, \quad i=\{1,2\}, \\ 0, \quad \text {otherwise}, \end {cases} \label {Xeqn28-28}\end {equation}


$k=1, \dots , \mathrm {dim} \{\mathcal {T}_\beta \chi _{\beta , 1}^i \not \equiv 0\}_{i=1}^{n_{\beta , 1}}$


$\Gamma _i$


$\mathbf {B}_\beta ^{\Gamma _1}$


\begin {equation*}\mathbf {B}_\beta ^{\Gamma _1} = (\bm {\Psi }^{\Gamma _1} \mathbf {T}_\beta ^{\Gamma _1})^\top , \quad \text {where } \quad [\bm {\Psi }^{\Gamma _1}]_{lj}:= \boundaryproduct [\Gamma _1]{\chi _{\partial , 1}^l}{\chi _{\partial , 2}^j}.\end {equation*}


\begin {equation}\begin {aligned} \begin {bmatrix} \mathbf {M}_{\alpha , 2} & 0 & 0\\ 0 & \mathbf {M}_{\beta , 2} & 0 \\ 0 & 0 & 0 \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha , 2} \\ \mathbf {e}_{\beta , 2} \\ \bm {\lambda }_{\partial , 1} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_\mathcal {L}^\top & (\mathbf {T}_{\alpha }^{\Gamma _1})^\top \mathbf {M}^{\Gamma _1} \\ \mathbf {D}_\mathcal {L} & 0 & 0 \\ -\mathbf {T}_{\alpha }^{\Gamma _1} & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 2} \\ \mathbf {e}_{\beta , 2} \\ \bm {\lambda }_{\partial , 1} \end {pmatrix} + \begin {bmatrix} 0 & \mathbf {B}_\alpha ^{\Gamma _2} \\ 0 & 0 \\ \mathbf {I}& 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial , 1} \\ \mathbf {u}_{\partial , 2} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial , 1} \\ \mathbf {y}_{\partial , 2} \end {pmatrix} &= \begin {bmatrix} 0 & 0 & \mathbf {I} \\ \mathbf {T}_\alpha ^{\Gamma _2} & 0 & 0 \\ \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 2} \\ \mathbf {e}_{\beta , 2} \\ \bm {\lambda }_1 \end {pmatrix}. \end {aligned} \label {eq:systemL}\end {equation}


\begin {equation}\begin {aligned} &[\mathbf {M}_{\alpha , 2}]_{mn} = \innerproduct {\chi _{\alpha , 2}^m}{\mathcal {M}_\alpha \chi _{\alpha , 2}^n}, \\ &[\mathbf {M}_{\beta , 2}]_{pq} = \innerproduct {\chi _{\beta , 2}^p}{\mathcal {M}_\beta \chi _{\beta , 2}^q}, \\ \end {aligned}\qquad \begin {aligned} &[\mathbf {D}_\mathcal {L}]_{pm} = \innerproduct {\chi _{\beta , 2}^p}{\mathcal {L}\chi _{\alpha , 2}^m}, \\ &[\mathbf {M}^{\Gamma _1}]_{rs} = \boundaryproduct [\Gamma _1]{\chi _{\partial , 1}^i}{\chi _{\partial , 1}^k}, \\ \end {aligned} \qquad \begin {aligned} &[\mathbf {B}_\alpha ^{\Gamma _2}]_{pl} = \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\chi _{\alpha , 2}^p}{\chi _{\partial , 2}^l}, \\ {} \end {aligned} \label {eq:Operational-matrices_2}\end {equation}


$(m,n) \in \{1, \dots , n_{\alpha , 2}\}, \; (p,q) \in \{1, \dots , n_{\beta , 2}\}, \; (r,s) \in \{1,\dots , n_{\partial , 1}\}, \; l \in \{1,\dots , n_{\partial , 2}\}$


$\mathbf {e}_{\beta , 2}$


\begin {equation}[\mathbf {T}_{\alpha }^{\Gamma _i}]_{ki} = \begin {cases} 1, \quad \text {if} \quad \mathcal {T}_\alpha \chi _{\alpha , 2}^i \not \equiv 0, \quad \text {on } \partial \Omega ,\\ 0, \quad \text {otherwise} \end {cases} \label {Xeqn31-31}\end {equation}


$\mathbf {B}_\alpha ^{\Gamma _2}$


\begin {equation*}\mathbf {B}_\alpha ^{\Gamma _2} = (\mathbf {T}_\alpha ^{\Gamma _2})^\top \bm {\Psi }^{\Gamma _2}, \quad \text {where } \quad [\bm {\Psi }^{\Gamma _2}]_{lj}:= \boundaryproduct [\Gamma _2]{\chi _{\partial , 1}^l}{\chi _{\partial , 2}^j}.\end {equation*}


$\Gamma _{\rm int}$


$\Omega =\Omega _1\cup \Omega _2$


$\Omega _1\cap \Omega _2=\emptyset $


$\partial \Omega _1=\overline {\Gamma }_1\cup \overline {\Gamma }_{\rm int}$


$\partial \Omega _2=\overline {\Gamma }_2\cup \overline {\Gamma }_{\rm int}$


$\Omega _1$


$\Omega _2$


$\Gamma _{\rm int}$


\begin {equation}\begin {aligned} \begin {bmatrix} \mathbf {M}_{\alpha ,1} & 0 \\ 0 & \mathbf {M}_{\beta ,1} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\mathcal {L}^*} \\ \mathbf {D}_{\mathcal {L}^*}^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_{\beta }^{\Gamma _1} & \mathbf {B}_{\beta }^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,1} \\ \mathbf {u}_{\partial ,1}^{\Gamma _{\rm int}} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,1} \\ \mathbf {y}_{\partial ,1}^{\Gamma _{\rm int}} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_{\beta }^{\Gamma _1} \\ 0 & \mathbf {T}_{\beta }^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1} \end {pmatrix}. \end {aligned} \label {eq:pH-system-L*}\end {equation}


\begin {equation}\begin {aligned} \begin {bmatrix} \mathbf {M}_{\alpha , 2} & 0 \\ 0 & \mathbf {M}_{\beta ,2} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\mathcal {L}}^\top \\ \mathbf {D}_{\mathcal {L}} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} + \begin {bmatrix} \mathbf {B}_{\alpha }^{\Gamma _2} & \mathbf {B}_{\alpha }^{\Gamma _{\rm int}} \\ 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,2} \\ \mathbf {u}_{\partial ,2}^{\Gamma _{\rm int}} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,2} \\ \mathbf {y}_{\partial ,2}^{\Gamma _{\rm int}} \end {pmatrix} &= \begin {bmatrix} \mathbf {T}_{\alpha }^{\Gamma _2} & 0 \\ \mathbf {T}_{\alpha }^{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix}. \end {aligned} \label {eq:pH-system-L}\end {equation}


$\Omega _1$


\begin {equation}\label {eq:input_ouput_1} \begin {pmatrix} \bm {u}_{\partial , 1} \\ \bm {u}_{\partial , 1}^{\Gamma _{\rm int}} \end {pmatrix} = \begin {bmatrix} \mathcal {T}_{\alpha }\vert _{\Gamma _1} & 0 \\ \mathcal {T}_{\alpha }\vert _{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \bm {e}_\alpha \\ \bm {e}_\beta \end {pmatrix}, \qquad \begin {pmatrix} \bm {y}_{\partial ,1} \\ \bm {y}_{\partial ,1}^{\Gamma _{\rm int}} \end {pmatrix} = \begin {bmatrix} 0 & \mathcal {T}_{\beta }\vert _{\Gamma _1} \\ 0 & \mathcal {T}_{\beta }\vert _{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \bm {e}_\alpha \\ \bm {e}_\beta \end {pmatrix}.\end {equation}


$\Omega _2$


\begin {equation}\label {eq:input_ouput_2} \begin {pmatrix} \bm {u}_{\partial ,2} \\ \bm {u}_{\partial ,2}^{\Gamma _{\rm int}} \end {pmatrix} = \begin {bmatrix} 0 & \mathcal {T}_{\beta }\vert _{\Gamma _2} \\ 0 & \mathcal {T}_{\beta }\vert _{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \bm {e}_\alpha \\ \bm {e}_\beta \end {pmatrix}, \qquad \begin {pmatrix} \bm {y}_{\partial ,2} \\ \bm {y}_{\partial ,2}^{\Gamma _{\rm int}} \end {pmatrix} = \begin {bmatrix} \mathcal {T}_{\alpha }\vert _{\Gamma _2} & 0\\ \mathcal {T}_{\alpha }\vert _{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \bm {e}_\alpha \\ \bm {e}_\beta \end {pmatrix}.\end {equation}


$\Gamma _{12}$


$\Gamma _{\rm int}$


\begin {equation}\label {eq:coupling} \begin {split} \bm {u}_{\partial ,1}^{\Gamma _{\rm int}} &= \pm \bm {y}_{\partial ,2}^{\Gamma _{\rm int}}, \\ \bm {u}_{\partial ,2}^{\Gamma _{\rm int}} &= \mp \bm {y}_{\partial ,1}^{\Gamma _{\rm int}}, \end {split}\end {equation}


$\pm $


$\mp $


$\mathcal {L}$


$\Omega _1$


$\mathcal {L}^*$


$\Omega _2$


$\boundaryproduct {\mathcal {T}_{\partial ,\beta }\bm {v}_\beta }{\bm {u}_\partial }$


$\Omega _1$


\begin {equation}\boundaryproduct [\partial \Omega _1]{\mathcal {T}_{\beta }\bm {v}_\beta }{\mathcal {T}_{\alpha }\bm {e}_\alpha } = \boundaryproduct [\Gamma _1]{\mathcal {T}_{\beta }\bm {v}_\beta }{\bm {u}_{\partial ,1}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\beta }\bm {v}_\beta }{\bm {u}_{\partial ,1}^{\Gamma _{\rm int}}}, \label {eq:boundary-split-Omega1}\end {equation}


$\Omega _2$


\begin {equation}\boundaryproduct [\partial \Omega _2]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\mathcal {T}_{\beta }\bm {e}_\beta } = \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\bm {u}_{\partial ,2}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\bm {u}_{\partial ,2}^{\Gamma _{\rm int}}}. \label {boundary-split-Omega2}\end {equation}


$\Omega _1$


$\bm {e}_\alpha \in L^2(\Omega _1; \mathbb {A}), \; \bm {e}_\beta \in H^{\mathcal {L^*}}(\Omega _1)$


$\forall \; \bm {v}_\alpha \in L^2(\Omega _2; \mathbb {A})$


$\forall \; \bm {v}_\beta \in H^{\mathcal {L^*}}(\Omega _1)$


\begin {equation}\begin {aligned} \innerproduct [\Omega _1]{\bm {v}_\alpha }{\mathcal {M}_\alpha \partial _t\bm {e}_\alpha } &= - \innerproduct [\Omega _1]{\bm {v}_\alpha }{\mathcal {L}^*\bm {e}_\beta }, \\ \innerproduct [\Omega _1]{\bm {v}_\alpha }{\mathcal {M}_\beta \partial _t\bm {e}_\beta } &= \innerproduct [\Omega _1]{\mathcal {L}^*\bm {v}_\beta }{\bm {e}_\alpha } + \boundaryproduct [\Gamma _1]{\mathcal {T}_{\beta }\bm {v}_\beta }{\bm {u}_{\partial ,1}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\beta }\bm {v}_\beta }{\bm {u}_{\partial ,1}^{\Gamma _{\rm int}}}, \end {aligned} \label {eq:weak-form-L*}\end {equation}


$\Gamma _{\rm int}, \;$


$\Omega _2$


$\bm {e}_\alpha \in H^\mathcal {L}(\Omega _2), \;\bm {e}_\beta \in L^2(\Omega _2; \mathbb {B})$


$\forall \; \bm {v}_\alpha \in H^{\mathcal {L}}(\Omega _2)$


$\forall \; \bm {v}_\beta \in L^2(\Omega _2; \mathbb {B})$


\begin {equation}\begin {aligned} \innerproduct [\Omega _2]{\bm {v}_\alpha }{\mathcal {M}_\alpha \partial _t\bm {e}_\alpha } &= -\innerproduct [\Omega _2]{\mathcal {L}\bm {v}_\alpha }{\bm {e}_\beta } + \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\bm {u}_{\partial ,2}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\bm {u}_{\partial ,2}^{\Gamma _{\rm int}}}, \\ \innerproduct [\Omega _2]{\bm {v}_\beta }{\mathcal {M}_\beta \partial _t\bm {e}_\beta } &= \innerproduct [\Omega _2]{\bm {v}_\beta }{\mathcal {L}\bm {e}_\alpha }. \end {aligned} \label {eq:weak-form-L}\end {equation}


$\bm {e}_{\alpha ,1}$


$\bm {e}_\alpha $


$\Omega _1$


$\Omega _1$


$\Omega _2$


$\Gamma _{\rm int}$


\begin {equation}\label {eq:boundary_basis_interface} \begin {aligned} \mathrm {span}\{\chi _{\partial , 1}\}|_{\partial \Omega _1} &= \mathrm {span} \{\mathrm {\mathcal {T}_\alpha |_{\partial \Omega _1}\chi _{\alpha , 2}}\}, \\ \mathrm {span}\{\chi _{\partial , 2}\}|_{\partial \Omega _2} &= \mathrm {span} \{\mathcal {T}_\beta |_{\partial \Omega _2} \chi _{\beta , 1}\}. \end {aligned}\end {equation}


$\Gamma _{\rm int}$


\begin {equation}\label {eq:interconnection_dofs} \begin {split} \mathbf {u}_{\partial ,1}^{\Gamma _{\rm int}} &= \pm \mathbf {y}_{\partial ,2}^{\Gamma _{\rm int}} = \pm \mathbf {T}_\alpha ^{\Gamma _{\rm int}} \mathbf {e}_{\alpha , 2}, \\ \mathbf {u}_{\partial ,2}^{\Gamma _{\rm int}} &= \mp \mathbf {y}_{\partial ,1}^{\Gamma _{\rm int}} = \pm \mathbf {T}_\beta ^{\Gamma _{\rm int}} \mathbf {e}_{\beta , 1}. \\ \end {split}\end {equation}


$\mathbf {B}$


\begin {equation}\mathbf {B}_\alpha ^{\Gamma _{\rm int}} = (\mathbf {T}_\alpha ^{\Gamma _{\rm int}})^\top \mathbf {\Psi }^{\Gamma _{\rm int}}, \qquad \mathbf {B}_\beta ^{\Gamma _{\rm int}} = (\mathbf {T}_\beta ^{\Gamma _{\rm int}})^\top (\mathbf {\Psi }^{\Gamma _{\rm int}})^\top , \label {Xeqn43-43}\end {equation}


$[\mathbf {\Psi }^{\Gamma _{\rm int}}]_{lk} = \boundaryproduct [\Gamma _{\rm int}]{\chi _{\partial , 1}^l}{\chi _{\partial , 2}^k}$


$\Omega _1$


$\Omega _2$


$\Omega $


\begin {equation}\begin {aligned} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{\alpha , 1} \\ \mathbf {M}_{\beta , 1}\\ \mathbf {M}_{\alpha , 2}\\ \mathbf {M}_{\beta , 2} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1} \\ \mathbf {e}_{\alpha , 2} \\ \mathbf {e}_{\beta , 2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\mathcal {L}^*} & 0 & 0 \\ \mathbf {D}_{\mathcal {L}^*}^\top & 0 & \pm \mathbf {L}^{\Gamma _{\rm int}} & 0 \\ 0 & \mp (\mathbf {L}^{\Gamma _{\rm int}})^\top & 0 & -\mathbf {D}_\mathcal {L}^\top \\ 0 & 0 & \mathbf {D}_\mathcal {L} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \\ \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_\beta ^{\Gamma _1} & 0\\ 0 & \mathbf {B}_\alpha ^{\Gamma _2} \\ 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,1} \\ \mathbf {u}_{\partial ,2} \\ \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,1} \\ \mathbf {y}_{\partial ,2} \\ \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_\beta ^{\Gamma _1} & 0 & 0 \\ 0 & 0 & \mathbf {T}_\alpha ^{\Gamma _2} & 0\\ \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \\ \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix}, \end {aligned} \label {eq:Monolithic-System}\end {equation}


$\mathbf {L}^{\Gamma _{\rm int}} = (\mathbf {\Psi }^{\Gamma _{\rm int}}\mathbf {T}_\beta ^{\Gamma _{\rm int}})^\top \mathbf {T}_\alpha ^{\Gamma _{\rm int}}$


\begin {equation}\begin {aligned} \mathbf {M}\dot {\mathbf {e}} &= \mathbf {J} \mathbf {e} + \mathbf {Bu}, \\ \mathbf {y} &= \mathbf {T} \mathbf {e}, \end {aligned} \label {Xeqn45-45}\end {equation}


$\mathbf {J} = - \mathbf {J}^\top $


\begin {equation}\mathcal {M}\partial _t \bm {e} = \mathcal {J}_{d}\bm {e} + \mathcal {J}_a(\bm {e})\bm {e}, \label {Xeqn46-46}\end {equation}


$\mathcal {J}_d$


\begin {equation}\mathcal {J}_d = \begin {bmatrix} 0 & -\mathcal {L}^* \\ \mathcal {L} & 0 \end {bmatrix}, \label {Xeqn47-47}\end {equation}


$\mathcal {J}_a(\bm {e})$


$\bm {e}$


\begin {equation*}\bm {E} := \frac {1}{2}(\bm {F}^\top \bm {F} - \bm {I}), \qquad \bm {F} := \bm {I} + \nabla \bm {q},\end {equation*}


$\bm {q}$


$[\nabla \bm {q}]_{ij} = \partial _j q_i$


$\bm {F}$


\begin {equation*}\begin {aligned} T = \frac {1}{2} \int _\Omega \rho ||{\partial _t \bm {q}}||^2 \d \Omega , \qquad V = \frac {1}{2} \int _\Omega \bm {E}:\bm {K}\bm {E} \; \d \Omega , \end {aligned}\end {equation*}


$\bm {K}$


\begin {equation*}\rho \, \partial _{tt}\bm {q} = \Div (\bm {F}\bm {S}),\end {equation*}


$\Div $


$\bm {S}=\bm {K}\bm {E}$


\begin {equation*}\begin {aligned} \partial _t \bm {q} &= \bm {v}, \\ \begin {bmatrix} \rho & 0 \\ 0 & \bm {C} \end {bmatrix} \frac {\partial }{\partial {t}} \begin {pmatrix} \bm {v} \\ \bm {S} \end {pmatrix} &= \begin {bmatrix} 0 & \Div (\bm {F} \; \circ ) \\ \sym ( \bm {F}^\top \nabla \; \circ ) & 0 \\ \end {bmatrix} \begin {pmatrix} \bm {v} \\ \bm {S} \end {pmatrix}, \end {aligned}\end {equation*}


$\bm {C}:=\bm {K}^{-1}$


$\mathcal {L}$


$\mathcal {L}^*$


\begin {equation*}\begin {aligned} \mathcal {L}(\nabla \bm {q}) = \sym ( \bm {F}^\top \nabla \; \circ ), \qquad \mathcal {L}^*(\nabla \bm {q}) & = \Div (\bm {F} \; \circ ). \end {aligned}\end {equation*}


$\mathcal {L}^*$


\begin {equation*}\begin {aligned} \partial _t \bm {q}_h &= \bm {v}_h, \\ \innerproduct [\Omega ]{\bm {\psi }}{\rho \,\partial _t \bm {v}_h} &= - \innerproduct [\Omega ]{\bm {F}_h^\top \nabla \bm {\psi }}{\bm {S}_h}, \\ \innerproduct [\Omega ]{\bm {\Psi }}{\bm {C}\,\partial _t \bm {S}_h} &= +\innerproduct [\Omega ]{\bm {\Psi }}{\bm {F}_h^\top \nabla \bm {v}_h}, \\ \end {aligned} \qquad \begin {aligned} \\ \text {forall } \bm {\psi } \in V_h, \\ \text {forall } \bm {\Psi } \in \Sigma _h. \end {aligned}\end {equation*}


$\mathbf {u}_{\partial , 1}=0, \; \mathbf {u}_{\partial , 2}=0$


\begin {equation}\label {eq:interconnected_system} \begin {aligned} \begin {bmatrix} \mathbf {M}_{1} & 0 \\ 0 & \mathbf {M}_{2} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{1} \\ \mathbf {e}_{2} \end {pmatrix} &= \begin {bmatrix} \mathbf {J}_1 & +\mathbf {G} \\ -\mathbf {G}^\top & \mathbf {J}_2 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{1} \\ \mathbf {e}_{2} \end {pmatrix}. \end {aligned}\end {equation}


$\widehat {\mathbf {e}}_1 = \mathbf {C}_1 \mathbf {e}_1, \; \widehat {\mathbf {e}}_2 = \mathbf {C}_2 \mathbf {e}_2$


$\mathbf {C}_1, \; \mathbf {C}_2$


$\mathbf {M}_1 = \mathbf {C}_1^\top \mathbf {C}_1, \; \mathbf {M}_2 = \mathbf {C}_2^\top \mathbf {C}_2$


\begin {equation}\label {eq:interconnected_system_hat} \begin {aligned} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \widehat {\mathbf {e}}_{1} \\ \widehat {\mathbf {e}}_{2} \end {pmatrix} &= \begin {bmatrix} \widehat {\mathbf {J}}_1 & +\widehat {\mathbf {G}} \\ -\widehat {\mathbf {G}}^\top & \widehat {\mathbf {J}}_2 \end {bmatrix} \begin {pmatrix} \widehat {\mathbf {e}}_{1} \\ \widehat {\mathbf {e}}_{2} \end {pmatrix}, \qquad \text {or compactly } \quad \dot {\widehat {\mathbf {e}}} = \widehat {\mathbf {J}}\widehat {\mathbf {e}}, \end {aligned}\end {equation}


$\widehat {\mathbf {J}}_1 = \mathbf {C}_1^{-\top } {\mathbf {J}}_1 \mathbf {C}_1^{-1}, \; \widehat {\mathbf {J}}_2 = \mathbf {C}_2^{-\top } {\mathbf {J}}_2 \mathbf {C}_2^{-1}$


$\widehat {\mathbf {G}} = \mathbf {C}_1^{-\top } {\mathbf {G}} \mathbf {C}_2^{-1}.$


$\dot {\mathbf {e}} = {\mathbf {J}}{\mathbf {e}}$


$\widehat {\cdot }$


\begin {equation*}\frac {{\mathbf {e}}^{n+1}-{\mathbf {e}}^n}{\Delta t} = {\mathbf {J}} \left (\frac {{\mathbf {e}}^n + {\mathbf {e}}^{n+1}}{2}\right ).\end {equation*}


$\Delta t/2 = 1$


\begin {equation}\label {eq:discrete_flow} {\mathbf {e}}^{n+1} = \mathrm {Cay}({\mathbf {J}}) {\mathbf {e}}^{n}, \qquad \mathrm {Cay}({\mathbf {J}}) := (\mathbf {I} -{\mathbf {J}})^{-1}(\mathbf {I} + {\mathbf {J}}).\end {equation}


\begin {equation*}\mathrm {Cay}({\mathbf {J}}) \; \mathbf {J} \; \mathrm {Cay}({\mathbf {J}})^\top = \mathbf {J}.\end {equation*}


$\mathbf {J} = -\mathbf {J}^\top $


$\mathrm {Cay}({\mathbf {J}})^\top $


\begin {equation*}\mathrm {Cay}({\mathbf {J}})^\top = (\mathbf {I} -{\mathbf {J}})(\mathbf {I} + {\mathbf {J}})^{-1}.\end {equation*}


\begin {equation*}\mathrm {Cay}({\mathbf {J}}) \; \mathbf {J} \; \mathrm {Cay}({\mathbf {J}})^\top = (\mathbf {I} -{\mathbf {J}})^{-1}(\mathbf {I} + {\mathbf {J}}) \mathbf {J} (\mathbf {I} -{\mathbf {J}})(\mathbf {I} + {\mathbf {J}})^{-1}.\end {equation*}


\begin {equation}\label {eq:commutation_matrices} \begin {aligned} \mathbf {J}(\mathbf {I} + \mathbf {J}) = (\mathbf {I} + \mathbf {J}) \mathbf {J}, \qquad \mathbf {J}(\mathbf {I} - \mathbf {J}) = (\mathbf {I} - \mathbf {J}) \mathbf {J}, \qquad (\mathbf {I} + \mathbf {J})(\mathbf {I} - \mathbf {J}) = (\mathbf {I} - \mathbf {J})(\mathbf {I} + \mathbf {J}). \end {aligned}\end {equation}


\begin {equation*}(\mathbf {I} -{\mathbf {J}})^{-1}(\mathbf {I} + {\mathbf {J}}) \mathbf {J} (\mathbf {I} -{\mathbf {J}})(\mathbf {I} + {\mathbf {J}})^{-1} = \mathbf {J}.\end {equation*}


\begin {equation*}\begin {aligned} \frac {\widehat {\mathbf {e}}_1^{n+1}-\widehat {\mathbf {e}}_1^n}{\Delta t} &= \widehat {\mathbf {J}}_1 \left (\frac {\widehat {\mathbf {e}}_1^n + \widehat {\mathbf {e}}_1^{n+1}}{2}\right ) + \widehat {\mathbf {G}}\widehat {\mathbf {e}}_2^{n+\frac {1}{2}}, \\ \frac {\widehat {\mathbf {e}}_2^{n +\frac {1}{2}}-\widehat {\mathbf {e}}_2^{n -\frac {1}{2}}}{\Delta t} &= \widehat {\mathbf {J}}_2 \left (\frac {\widehat {\mathbf {e}}_2^{n +\frac {1}{2}}+\widehat {\mathbf {e}}_2^{n-\frac {1}{2}}}{2}\right ) - \widehat {\mathbf {G}}^\top \widehat {\mathbf {e}}_1^n. \\ \end {aligned}\end {equation*}


$\widehat {\mathbf {e}}_2^{\frac {1}{2}}$


\begin {equation*}\widehat {\mathbf {e}}_2^{\frac {1}{2}} = (\mathbf {I}- \frac {\Delta t}{2}\widehat {\mathbf {J}}_2)^{-1}\widehat {\mathbf {e}}_2^{0} - \frac {\Delta t}{2}\mathbf {G} ^\top \widehat {\mathbf {e}}_1^0.\end {equation*}


$L$


$x=0$


$x=L$


$\Omega _1$


$\Omega _2$


$\Gamma _{\rm int}$


$x_{\rm int}=L/2$


\begin {equation*}H = \frac {1}{2}\rho A ||\bm {v}||^2 + \frac {1}{2}\rho \bm {w}^\top \bm {J}\bm {w} + \frac {1}{2}\bm {n}^\top \bm {C}_t \bm {n} + \frac {1}{2}\bm {m}^\top \bm {C}_r \bm {m},\end {equation*}


$\bm {v}, \; \bm {w} \in \mathbb {R}^3$


$\bm {n}, \; \bm {m} \in \mathbb {R}^3$


$\rho $


$A$


$\bm {J} \in \mathbb {R}^{3\times 3}$


$\bm {C}_t, \bm {C}_r \in \mathbb {R}^{3\times 3}$


\begin {equation*}\begin {aligned} \bm {\pi }_v &= \partial _{\bm {v}} H = \rho A \bm {v}, \\ \bm {\pi }_w &= \partial _{\bm {w}} H = \rho \bm {J} \bm {w}, \\ \end {aligned}\qquad \begin {aligned} \bm {\gamma } &= \partial _{\bm {n}} H = \bm {C}_t \bm {n}, \\ \bm {\kappa } &= \partial _{\bm {m}} H = \bm {C}_r \bm {m}, \end {aligned}\end {equation*}


$[\bm {v}]_\times $


\begin {equation}\bm {v} = \begin {pmatrix} v_x \\ v_y \\ v_z \end {pmatrix} \rightarrow [\bm {v}]_\times := \begin {bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end {bmatrix}, \label {Xeqn52-52}\end {equation}


$\bm {v} \times \bm {u} = [\bm {v}]_\times \bm {u}$


$\bm {u} \in \mathbb {R}^3.$


${s} \in [0, L]$


$\Omega =[0, L]$


\begin {equation}\label {eq:intrinsic_beam} \mathrm {Diag} \begin {bmatrix} \rho A \\ \rho {\bm J} \\ {\bm C}_t\\ {\bm C}_r \end {bmatrix} {\partial }_t \begin {pmatrix} {\bm v} \\ {\bm w} \\ {\bm n} \\ {\bm m} \end {pmatrix} = \left ( \begin {bmatrix} 0 & 0 & {\partial }_s & 0 \\ 0 & 0 & 0 & {\partial }_s \\ \partial _s & 0 & 0 & 0 \\ 0 & \partial _s & 0 & 0 \end {bmatrix} + \begin {bmatrix} 0 & [{\bm \pi }_V]_{\times } & {[{\bm \kappa }]}_{\times } & 0 \\ {[{\bm \pi }_V]}_{\times } & {[{\bm \pi }_W]}_{\times } & {[{\bm \gamma } + {\bm e}_1]}_{\times } & {[{\bm \kappa }]}_{\times } \\ {[{\bm \kappa }]}_{\times } & {[{\bm \gamma } + {\bm e}_1]}_{\times } & 0 & 0 \\ 0 & {[{\bm \kappa }]}_{\times } & 0 & 0 \end {bmatrix} \right )\,\, \begin {pmatrix} {\bm v} \\ {\bm w} \\ {\bm n} \\ {\bm m} \end {pmatrix},\end {equation}


${\bm e}_1 = [1 \; 0\; 0]^\top $


$\mathcal {L}, \; \mathcal {L}^*$


${\bm e}_{\alpha }, \; {\bm e}_\beta $


\begin {equation*}\mathcal {L} = \begin {bmatrix} \partial _s & 0 \\ 0 & \partial _s \end {bmatrix}, \qquad \mathcal {L}^* = -\begin {bmatrix} \partial _s & 0 \\ 0 & \partial _s \end {bmatrix}, \qquad \bm {e}_{\alpha } = \begin {pmatrix} \bm {v} \\ \bm {w} \end {pmatrix} \qquad \bm {e}_{\beta } = \begin {pmatrix} \bm {n} \\ \bm {m} \end {pmatrix}.\end {equation*}


\begin {equation}\label {eq:timoshenkp_beam} \mathrm {Diag} \begin {bmatrix} \rho A \\ \rho \bm {J} \\ \bm {C}_t\\ \bm {C}_r \end {bmatrix} \partial _t \begin {pmatrix} \bm {v} \\ \bm {w} \\ \bm {n} \\ \bm {m} \end {pmatrix} = \begin {bmatrix} 0 & 0 & \partial _s & 0 \\ 0 & 0 & [\bm {e}_1]_{\times } & \partial _s \\ \partial _s & [\bm {e}_1]_{\times } & 0 & 0 \\ 0 & \partial _s & 0 & 0 \end {bmatrix}\,\, \begin {pmatrix} \bm {v} \\ \bm {w} \\ \bm {n} \\ \bm {m} \end {pmatrix}.\end {equation}


$\bm {v}, \bm {w} \in L^2(\Omega _1; \mathbb {R}^3), \; \bm {n}, \bm {m} \in H^1(\Omega _1; \mathbb {R}^3)$


$\bm {\psi }_v, \bm {\psi }_w \in L^2(\Omega _1; \mathbb {R}^3), \; \bm {\psi }_n, \bm {\psi }_m \in H^1(\Omega _1; \mathbb {R}^3)$


\begin {equation}\begin {aligned} \innerproduct [\Omega _1]{\bm {\psi }_v}{\rho A \partial _t \bm {v}} &= \innerproduct [\Omega _1]{\bm {\psi }_v}{\partial _s \bm {n}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_w}{\rho \bm {J} \partial _t \bm {w}} &= \innerproduct [\Omega _1]{\bm {\psi }_w}{[\bm {e}_1]_{\times } \bm {n}} + \innerproduct [\Omega _1]{\bm {\psi }_w}{\partial _s \bm {m}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_n}{\bm {C}_t \partial _t \bm {n}} &= \innerproduct [\Omega _1]{\bm {\psi }_n}{[\bm {e}_1]_{\times } \bm {w}} - \innerproduct [\Omega _1]{\partial _s \bm {\psi }_n}{\bm {v}} + \boundaryproduct [\partial \Omega _1]{\bm {\psi }_n }{\bm {v}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_n }{\bm {v}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_m}{\bm {C}_r \partial _t \bm {m}} &= - \innerproduct [\Omega _1]{\partial _s \bm {\psi }_m}{ \bm {w}} + \boundaryproduct [\partial \Omega _1]{\bm {\psi }_m }{\bm {w}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_m }{\bm {w}}, \\ \end {aligned} \label {Xeqn55-55}\end {equation}


$\mathcal {T}_\beta : H^1([a, b]; \, \mathbb {R}^6) \rightarrow \mathbb {R}^{12}$


\begin {equation*}\mathcal {T}_\beta \begin {pmatrix} \bm {f} \\ \bm {g} \end {pmatrix} = \begin {pmatrix} +\bm {f}(b) \\ -\bm {f}(a) \\ +\bm {g}(b) \\ -\bm {g}(a) \end {pmatrix}.\end {equation*}


$\bm {v}, \bm {w} \in H^1(\Omega _2; \mathbb {R}^3), \; \bm {n}, \bm {m} \in L^2(\Omega _2; \mathbb {R}^3)$


$\bm {\psi }_v, \bm {\psi }_w \in H^1(\Omega _2; \mathbb {R}^3), \; \bm {\psi }_n, \bm {\psi }_m \in L^2(\Omega _2; \mathbb {R}^3)$


\begin {equation}\begin {aligned} \innerproduct [\Omega _2]{\bm {\psi }_v}{\rho A \partial _t \bm {v}} &= - \innerproduct [\Omega _2]{\partial _s \bm {\psi }_v}{\bm {n}} + \boundaryproduct [\partial \Omega _2]{\bm {\psi }_v}{\bm {n}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_v}{\bm {n}}, \\ \innerproduct [\Omega _2]{\bm {\psi }_w}{\rho \bm {J} \partial _t \bm {w}} &= \innerproduct [\Omega _2]{\bm {\psi }_w}{[\bm {e}_1]_{\times } \bm {n}} - \innerproduct [\Omega _2]{\partial _s \bm {\psi }_w}{\bm {m}} + \boundaryproduct [\partial \Omega _2]{\bm {\psi }_w}{\bm {m}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_w}{\bm {m}}, \\ \innerproduct [\Omega _2]{\bm {\psi }_n}{\bm {C}_t \partial _t \bm {n}} &= \innerproduct [\Omega _2]{\bm {\psi }_n}{[\bm {e}_1]_{\times } \bm {w}} + \innerproduct [\Omega _2]{\bm {\psi }_n}{\partial _s \bm {v}}, \\ \innerproduct [\Omega _2]{\bm {\psi }_m}{\bm {C}_r \partial _t \bm {m}} &= \innerproduct [\Omega _2]{\bm {\psi }_m}{\partial _s \bm {w}}, \\ \end {aligned} \label {Xeqn56-56}\end {equation}


$\mathcal {T}_\alpha : H^1([a, b]; \, \mathbb {R}^6) \rightarrow \mathbb {R}^{12}$


\begin {equation*}\mathcal {T}_\alpha \begin {pmatrix} \bm {f} \\ \bm {g} \end {pmatrix} = \begin {pmatrix} \bm {f}(b) \\ \bm {f}(a) \\ \bm {g}(b) \\ \bm {g}(a) \end {pmatrix}.\end {equation*}


$_0$


$L^2$


$_1$


$H^1$


$\mathcal {I}_h^{\Omega _1}$


\begin {equation*}\begin {aligned} V_{\alpha , 1} &= \{u_h \in L^2(\Omega _1; \mathbb {R}^6)|\; \forall E \in \mathcal {I}_h^{\Omega _1}, \; u_h|_E \in \mathrm {DG}_0(\mathbb {R}^6)\}, \\ V_{\beta , 1} &= \{u_h \in H^1(\Omega _1; \mathbb {R}^6)|\; \forall E \in \mathcal {I}_h^{\Omega _1}, \; u_h|_E \in \mathrm {CG}_1(\mathbb {R}^6)\}, \end {aligned}\end {equation*}


$L^2(\Omega _1; \mathbb {R}^6), \; H^1(\Omega _1; \mathbb {R}^6), \; \mathrm {DG}_0(\mathbb {R}^6), \; \mathrm {CG}_1(\mathbb {R}^6)$


$\mathcal {I}_h^{\Omega _2}$


\begin {equation*}\begin {aligned} V_{\alpha , 2} &= \{u_h \in H^1(\Omega _2; \mathbb {R}^6)|\; \forall E \in \mathcal {I}_h^{\Omega _2}, \; u_h|_E \in \mathrm {CG}_1(\mathbb {R}^6) \}, \\ V_{\beta , 2} &= \{u_h \in L^2(\Omega _2; \mathbb {R}^6)|\; \forall E \in \mathcal {I}_h^{\Omega _2}, \; u_h|_E \in \mathrm {DG}_0(\mathbb {R}^6) \}. \end {aligned}\end {equation*}


$\Omega _1$


\begin {equation}\label {eq:discrete_clamped_intrinsic} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{v, 1} \\ \mathbf {M}_{w, 1} \\ \mathbf {M}_{n, 1} \\ \mathbf {M}_{m, 1} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {v}_1 \\ \mathbf {w}_1 \\ \mathbf {n}_1 \\ \mathbf {m}_1 \end {pmatrix} = \begin {bmatrix} 0 & 0 & \mathbf {D}_{\partial _s} & 0 \\ 0 & 0 & [\mathbf {e}_{1}]_\times & \mathbf {D}_{\partial _s} \\ -\mathbf {D}_{\partial _s}^\top & [\mathbf {e}_{1}]_\times & 0 & 0 \\ 0 & -\mathbf {D}_{\partial _s}^\top & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {v}_1 \\ \mathbf {w}_1 \\ \mathbf {n}_1 \\ \mathbf {m}_1 \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ 0 & 0 \\ \mathbf {T}_{\beta }^\top & 0 \\ 0 & \mathbf {T}_{\beta }^\top \\ \end {bmatrix}\begin {pmatrix} \mathbf {u}_v \\ \mathbf {u}_w \end {pmatrix},\end {equation}


$\mathbf {T}_{\beta }$


$1$


$-1$


$\Omega _2$


\begin {equation}\label {eq:discrete_free_intrinsic} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{v, 2} \\ \mathbf {M}_{w, 2} \\ \mathbf {M}_{n, 2} \\ \mathbf {M}_{m, 2} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {v}_2 \\ \mathbf {w}_2 \\ \mathbf {n}_2 \\ \mathbf {m}_2 \end {pmatrix} = \begin {bmatrix} 0 & 0 & -\mathbf {D}_{\partial _s}^\top & 0 \\ 0 & 0 & [\mathbf {e}_{1}]_\times & -\mathbf {D}_{\partial _s}^\top \\ \mathbf {D}_{\partial _s} & [\mathbf {e}_{1}]_\times & 0 & 0 \\ 0 & \mathbf {D}_{\partial _s} & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {v}_2 \\ \mathbf {w}_2 \\ \mathbf {n}_2 \\ \mathbf {m}_2 \end {pmatrix} + \begin {bmatrix} \mathbf {T}_\alpha ^\top & 0 \\ 0 & \mathbf {T}_\alpha ^\top \\ 0 & 0 \\ 0 & 0 \\ \end {bmatrix}\begin {pmatrix} \mathbf {u}_n \\ \mathbf {u}_m \end {pmatrix},\end {equation}


$\mathbf {T}_\alpha $


\begin {equation*}\begin {aligned} \mathbf {M}_i \dot {\mathbf {e}}_i &= \mathbf {J}_{d, i}\mathbf {e}_i + \mathbf {J}_{a, i}(\mathbf {e}_i)\mathbf {e}_i + \mathbf {B}_i \mathbf {u}_i, \\ \mathbf {y}_i &= \mathbf {B}_i^\top \mathbf {e}_i, \qquad i=\{1,2\}, \end {aligned}\end {equation*}


$\mathbf {J}_{d, i}= - \mathbf {J}_{d, i}^\top $


$\mathbf {J}_{a, i}(\mathbf {e}_i)= - \mathbf {J}_{d, i}^\top (\mathbf {e}_i)$


\begin {equation*}\begin {bmatrix} {\mathbf {M}}_1 & 0 \\ 0 & {\mathbf {M}}_2 \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t}\begin {pmatrix} {\mathbf {e}}_1 \\ {\mathbf {e}}_2 \\ \end {pmatrix} = \begin {bmatrix} {\mathbf {J}}_1({\mathbf {e}}_1) & {\mathbf {B}}_1^{{\Gamma }_{\rm int}} {({\mathbf {B}}_2^{{\Gamma }_{\rm int}})}^{\top } \\ - {\mathbf {B}}_2^{{\Gamma }_{\rm int}} {({\mathbf {B}}_1^{{\Gamma }_{\rm int}})}^{\top } & {\mathbf {J}}_2({\mathbf {e}}_2) \end {bmatrix} \begin {pmatrix} {\mathbf {e}}_1 \\ {\mathbf {e}}_2 \\ \end {pmatrix} + \begin {bmatrix} {\mathbf {B}}_{1}^{{\Gamma }_1} & 0 \cr 0 & {\mathbf {B}}_{2}^{{\Gamma }_2} \\ \end {bmatrix} \begin {pmatrix} {\mathbf {u}}_{\partial , 1} \\ {\mathbf {u}}_{\partial , 2} \\ \end {pmatrix}.\end {equation*}


$s=0$


\begin {equation*}\bm {v}(0,t)=0,\qquad \bm {w}(0,t)=0, \qquad \bm {n}(0,t)=0, \qquad \bm {m}(0,t)=0.\end {equation*}


$s=L$


$m_{\text {rollup}} = 2\pi EI / L$


$\rho = 0$


$t \in [0,1]$


\begin {equation*}m_0(t) = t\, m_{\text {rollup}}.\end {equation*}


\begin {equation}\label {eq:wave_primal} \partial _{tt}\phi -\div \grad \phi =0, \qquad \Omega = [0, 1]^ 2,\end {equation}


$\Omega _1$


$\Omega _2$


$\Gamma _1$


$\Gamma _2$


\begin {equation}{e}_{\alpha } = \partial _t\phi , \qquad \bm {e}_{\beta } = \grad \phi . \label {Xeqn60-60}\end {equation}


\begin {equation}\begin {pmatrix} \partial _t {e}_{\alpha } \\ \partial _t \bm {e}_{\beta } \end {pmatrix} = \begin {bmatrix} 0 & \div \\ \grad & 0 \end {bmatrix} \begin {pmatrix} {e}_{\alpha } \\ \bm {e}_{\beta } \end {pmatrix}, \label {Xeqn61-61}\end {equation}


$\mathcal {L}=\grad $


$\mathcal {L}^*=-\div $


$\Omega _1$


$\bm {e}_\alpha \in L^2(\Omega _1)$


$\bm {e}_\beta \in H^{\div }(\Omega _1)$


$\forall {v}_\alpha \in L^2(\Omega _1)$


$\forall \bm {v}_\beta \in H^{\div }(\Omega _1)$


\begin {equation}\begin {split} \innerproduct [{\Omega }_1]{{v}_{\alpha }}{{\partial }_t{e}_{\alpha }} &= + \innerproduct [{\Omega }_1]{{v}_{\alpha }}{\div {\bm e}_{\beta }}, \\ \innerproduct [{\Omega }_1]{{\bm v}_{\beta }}{{\partial }_t{\bm e}_{\beta }} &= - \innerproduct [{\Omega }_1]{\div {\bm v}_{\beta }}{{e}_{\alpha }} + \boundaryproduct [{\Gamma }_1]{{\mathcal {T}}_{\beta }{\bm v}_{\beta }}{{u}_{\partial ,1 }} + \boundaryproduct [{\Gamma }_{\rm int}]{{\mathcal {T}}_{\beta }{\bm v}_{\beta }}{u_{\partial , 1}^{{\Gamma }_{\rm int}}}, \end {split} \label {eq:Wave-weak-D}\end {equation}


$\mathcal {T}_\beta \bm {g} = \bm {g} \cdot \bm {n}|_{\partial \Omega _1}$


$\Omega _2$


$\bm {e}_\alpha \in H^1(\Omega _2)$


$\bm {e}_\beta \in H^{\curl }(\Omega _2)$


$\forall {v}_\alpha \in H^1(\Omega _2)$


$\forall \bm {v}_\beta \in H^{\curl }(\Omega _2)$


\begin {equation}\begin {split} \innerproduct [{\Omega }_2]{{v}_{\alpha }}{{\partial }_t{e}_\alpha } &= -\innerproduct [{\Omega }_2]{\grad {v}_{\alpha }}{{\bm e}_{\beta }} + \boundaryproduct [{\Gamma }_2]{{\mathcal {T}}_{\alpha }v_{\alpha }}{{u}_{\partial ,2}} + \boundaryproduct [{\Gamma }_{\rm int}]{{\mathcal {T}}_{\alpha }{v}_{\alpha }}{{u}_{\partial ,2}^{{\Gamma }_{\rm int}}}, \\ \innerproduct [{\Omega }_2]{{\bm v}_{\beta }}{{\partial }_t{\bm e}_{\beta }} &= \innerproduct [{\Omega }_2]{{\bm v}_{\beta }}{\grad {e}_{\alpha }}, \end {split} \label {eq:Wave-weak-N}\end {equation}


$\mathcal {T}_\alpha f = f|_{\partial \Omega _2}$


$k-1$


$k$


$_k$


$e_{\alpha , 1}$


$\bm {e}_{\beta , 1}$


$\Omega _1$


$k$


$_k$


$e_{\alpha , 2}$


$k$


$_k$


$\bm {e}_{\beta , 2}$


$\Omega _2$


$\mathfrak {T}_h=\mathfrak {T}_h^{\Omega _1}\cup \mathfrak {T}_h^{\Omega _2}$


$\Omega _1$


\begin {align}V_{\alpha , 1} &= \{u_h\in L^2(\Omega _1)|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; u_h|_T\in \mathrm {DG}\},\nonumber \\ V_{\beta , 1} &= \{\bm {u}_h\in H^{\div }(\Omega _1)|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {u}_h|_T\in \mathrm {RT}\}, \label {Xeqn64-64}\end {align}


$T$


$\mathfrak {T}_h$


$\Omega _2$


\begin {align}V_{\alpha , 2} &= \{u_h\in H^1(\Omega _2)|\; \forall T\in \mathfrak {T}_h^{\Omega _2},\; u_h|_T\in \mathrm {CG}\}, \nonumber \\ V_{\beta , 2} &= \{\bm {u}_h\in H^{\curl }(\Omega _2)|\; \forall T\in \mathfrak {T}_h^{\Omega _2}, \bm {u}_h|_T\in \mathrm {Ned}\}. \label {Xeqn65-65}\end {align}


$\Omega _1$


\begin {equation}\begin {split} \begin {bmatrix} \mathbf {M}_{\alpha , 1} & 0 \\ 0 & \mathbf {M}_{\beta , 1} \end {bmatrix}\frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {D}_{\div } \\ -\mathbf {D}_{\div }^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_{\beta }^{\Gamma _1} & \mathbf {B}_{\beta }^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,1} \\ \mathbf {u}_{\partial ,1}^{\rm int} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,1} \\ \mathbf {y}_{\partial ,1}^{\rm int} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_\beta ^{\Gamma _1} \\ 0 & \mathbf {T}_\beta ^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix}, \end {split} \label {Xeqn66-66}\end {equation}


$\Omega _2$


\begin {equation}\begin {split} \begin {bmatrix} \mathbf {M}_{\alpha , 2} & 0 \\ 0 & \mathbf {M}_{\beta , 2} \end {bmatrix}\frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\grad } \\ \mathbf {D}_{\grad }^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} + \begin {bmatrix} \mathbf {B}_\alpha ^{\Gamma _2} & \mathbf {B}_\alpha ^{\Gamma _{\rm int}} \\ 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,2} \\ \mathbf {u}_{\partial ,2}^{\rm int} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,2} \\ \mathbf {y}_{\partial ,2}^{\rm int} \end {pmatrix} &= \begin {bmatrix} \mathbf {T}_\alpha ^{\Gamma _2} & 0 \\ \mathbf {T}_\alpha ^{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix}. \end {split} \label {Xeqn67-67}\end {equation}


$\Omega =[0, 1]^2$


$\Delta t=0.001 \; \mathrm {[s]}$


\begin {align}f(t) &= 2\sin (\sqrt {2} t)+3\cos (\sqrt {2}t), \\ g(x,y) &= \cos (x)\sin (y).\end {align}


\begin {equation}e_\alpha ^{ex} = g\frac {{\rm d}{f}}{{\rm d}{t}}, \qquad \bm {e}_\beta ^{ex} = f\grad g, \label {Xeqn68-70}\end {equation}


\begin {equation*}e_\alpha |_{\Gamma _1}=g\frac {{\rm d}{f}}{{\rm d}{t}}, \qquad \bm {e}_\beta \cdot \bm {n}|_{\Gamma _2}=f\, \nabla _{\bm {n}} g|_{\Gamma _2},\end {equation*}


$\bm {n}$


$h$


$k=1,2,3$


$h^k$


$e_{\alpha ,2}$


$e_{\alpha ,2}$


$h^{k+1}$


$L^2$


$e_{\alpha ,2}$


$h^{k}$


$e_\alpha $


$e_\beta $


$\Omega _1$


$\Omega _2$


$h$


$h^k$


$e_\alpha $


$\Omega _2$


$k=1$


$h^{k+1}$


$h^k$


$V_{\beta , 2} \subset \grad V_{\alpha , 2}$


\begin {equation*}\curl \partial _t \bm {e}_\beta =\curl \grad \bm {e}_\alpha =0.\end {equation*}


$\bm {v}_\beta = \curl \bm {v}$


$\bm {v}$


$\curl \mathrm {Ned}_k \subset \mathrm {RT}_k$


\begin {equation*}\innerproduct [\Omega _1]{\curl \bm {v}}{\partial _t\bm {e}_\beta } = \innerproduct [\Omega _1]{\div \curl \bm {v}}{{e}_\alpha } = 0,\end {equation*}


$L^2$


$\curl \bm {e}_\beta $


$\curl e_{\beta , 2}$


$\Omega _2$


$\Omega _1$


\begin {equation*}\frac {{H}_1^{n+1} - H_1^n}{\Delta t} - \boundaryproduct [\partial \Omega _1]{\mathbf {y}_\partial ^{n+\frac {1}{2}}}{\mathbf {u}_\partial ^{n+\frac {1}{2}}} = 0.\end {equation*}


$\Omega _2$


\begin {equation*}\frac {{H}_2^{n+\frac {1}{2}} - H_2^{n-\frac {1}{2}}}{\Delta t} - \boundaryproduct [\partial \Omega _2]{\mathbf {y}_\partial ^{n+1}}{\mathbf {u}_\partial ^{n+1}} = 0.\end {equation*}


$\Omega _1$


$\Omega _2$


$10^{-12}$


$\Omega = \Omega _1 \cup \Omega _2$


\begin {equation*}\omega _{mn}^{ana} = \frac {\pi }{2\thinspace L}\sqrt {(2m-1)^2 + (2n-1)^2}.\end {equation*}


\begin {equation*}i \omega _{mn}^{num} \mathbf {M}\bm {\psi }_{mn} = \mathbf {J}\bm {\psi }_{mn},\end {equation*}


$i= \sqrt {-1}$


$30$


$|\omega _{nm}^{\text {num}} - \omega _{nm}^{\text {ana}}|/{\omega _{nm}^{\text {ana}}} \times 100$


$e_\alpha $


$_1$


\begin {equation}\label {eq:elasticity_primal} \rho \partial _{tt}\bm {u}-\Div \bm {\sigma }=0, \qquad \Omega = [0, 1]^ 2.\end {equation}


$\rho $


$\bm {u}$


$\Div $


$\bm {\sigma }$


\begin {equation*}\bm {\sigma } = \bm {K} \Grad \bm {u},\end {equation*}


$\bm {K}$


$\Grad \bm {u} = \bm {\varepsilon }:=\frac {1}{2}(\nabla \bm {u} + (\nabla \bm {u})^\top )$


\begin {equation*}\bm {K}(\circ ) = \frac {E}{(1 - \nu ^2)} ((1 - \nu )\circ + \nu \mathrm {tr}(\circ )\bm {I}_2),\end {equation*}


$E$


$\nu $


$\Omega _1$


$\Omega _2$


$\Gamma _1$


$\Gamma _2$


\begin {equation}\bm {e}_{\alpha } = \partial _t\bm {u}, \qquad \bm {E}_{\beta } = \bm {\sigma }, \label {Xeqn70-72}\end {equation}


\begin {equation}\begin {bmatrix} \rho & 0 \\ 0 & \bm {C} \end {bmatrix} \begin {pmatrix} \partial _t\bm {e}_{\alpha } \\ \partial _t\bm {E}_{\beta } \end {pmatrix} = \begin {bmatrix} 0 & \Div \\ \Grad & 0 \end {bmatrix} \begin {pmatrix} \bm {e}_{\alpha } \\ \bm {E}_{\beta } \end {pmatrix}, \label {Xeqn71-73}\end {equation}


$\bm {C} := \bm {K}^{-1}$


$\mathcal {L}=\Grad $


$\mathcal {L}^*=-\Div $


$\Omega _1$


$\bm {e}_\alpha \in L^2(\Omega _1; \bbR ^2)$


$L^2$


$\bm {E}_\beta \in H^{\Div }(\Omega _1; \bbS )$


$\bbS = \mathbb {R}^{2\times 2}_{\rm sym}$


$\forall {v}_\alpha \in L^2(\Omega _1; \bbR ^2)$


$\forall \bm {v}_\beta \in H^{\Div }(\Omega _1; \bbS )$


\begin {equation}\begin {split} \innerproduct [\Omega _1]{\bm {v}_\alpha }{\rho \partial _t\bm {e}_\alpha } &= +\innerproduct [\Omega _1]{\bm {v}_\alpha }{\Div \bm {E}_\beta }, \\ \innerproduct [\Omega _1]{\bm {V}_\beta }{\bm {C}\partial _t\bm {E}_\beta } &= -\innerproduct [\Omega _1]{\Div \bm {V}_\beta }{\bm {e}_\alpha } + \boundaryproduct [\Gamma _1]{\mathcal {T}_{\beta }\bm {V}_\beta }{\bm {u}_{\partial ,1 }} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\beta }\bm {V}_\beta }{\bm {u}_{\partial , 1}^{\Gamma _{\rm int}}}, \end {split} \label {eq:Elasticity-weak-D}\end {equation}


$\mathcal {T}_\beta \bm {S} = \bm {S} \cdot \bm {n}|_{\partial \Omega _1}$


$\Omega _2$


$\bm {E}_\alpha \in H^1(\Omega _2; \mathbb {R}^2)$


$\bm {E}_\beta \in H^{\rot \Rot }(\Omega _2; \mathbb {S})$


$\forall \bm {v}_\alpha \in H^1(\Omega _2; \bbR ^2)$


$\forall \bm {V}_\beta \in H^{\rot \Rot }(\Omega _2; \mathbb {S})$


\begin {equation}\begin {split} \innerproduct [\Omega _2]{\bm {v}_\alpha }{\rho \partial _t\bm {e}_\alpha } &= -\innerproduct [\Omega _2]{\Grad \bm {v}_\alpha }{\bm {E}_\beta } + \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{{u}_{\partial ,2}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{{u}_{\partial ,2}^{\Gamma _{\rm int}}}, \\ \innerproduct [\Omega _2]{\bm {V}_\beta }{\bm {C}\partial _t\bm {E}_\beta } &= +\innerproduct [\Omega _2]{\bm {V}_\beta }{\Grad \bm {e}_\alpha }, \end {split} \label {eq:Elasticity-weak-N}\end {equation}


$\mathcal {T}_\alpha \bm {u} = \bm {u}|_{\partial \Omega _2}$


$H^{\rot \Rot }(\Omega _2; \mathbb {S})$


$\rot \Rot $


$\rot \Rot $


\begin {equation*}\rot \Rot \bm {S} = \partial _{xx} S_{yy} + \partial _{yy} S_{xx} - 2 \partial _{xy}S_{xy},\end {equation*}


\begin {equation*}\rot \Rot \bm {S} = \div \Div (\bm {JSJ}^\top ), \qquad \bm {J}:=\begin {pmatrix} 0 & 1 \\ -1 & 0 \end {pmatrix}.\end {equation*}


$1$


$_1$


$3$


$_3$


$\bm {e}_{\alpha , 1}$


$\bm {E}_{\beta , 1}$


$\Omega _1$


$_2$


$\bm {a}_{\alpha , 2}$


$1$


$_1$


$\bm {e}_{\beta , 2}$


$\Omega _2$


$H^{\rot \Rot }(\bbS )$


\begin {equation*}\Grad \mathrm {CG}_k(\bbR ^2) \subseteq \mathrm {DG}_{k-1}(\bbS ),\end {equation*}


$\mathfrak {T}_h=\mathfrak {T}_h^{\Omega _1}\cup \mathfrak {T}_h^{\Omega _2}$


$\Omega _1$


\begin {equation}\begin {split} V_{\alpha , 1} &= \{\bm {u}_h\in L^2(\Omega _1; \bbR ^2)|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {u}_h|_T\in \mathrm {DG}_1(\bbR ^2)\}, \\ V_{\beta , 1} &= \{\bm {S}_h\in H^{\Div }(\Omega _1; \bbS )|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {S}_h|_T\in \mathrm {AW}_3\}, \end {split} \label {Xeqn74-76}\end {equation}


$T$


$\mathfrak {T}_h$


$\Omega _2$


\begin {equation}\begin {split} V_{\alpha , 2} &= \{\bm {u}_h\in H^1(\Omega _2; \bbR ^2)|\; \forall T\in \mathfrak {T}_h^{\Omega _2},\; \bm {u}_h|_T\in \mathrm {CG}_2(\bbR ^2)\}, \\ V_{\beta , 2} &= \{\bm {S}_h\in L^2(\Omega _2; \bbS )|\; \forall T\in \mathfrak {T}_h^{\Omega _2}, \bm {S}_h|_T\in \mathrm {DG}_1(\bbS )\}. \end {split} \label {Xeqn75-77}\end {equation}


$\Omega _1$


\begin {equation}\begin {split} \begin {bmatrix} \mathbf {M}_{\alpha , 1} & 0 \\ 0 & \mathbf {M}_{\beta , 1} \end {bmatrix}\frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {D}_{\Div } \\ -\mathbf {D}_{\Div }^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_{\beta }^{\Gamma _1} & \mathbf {B}_{\beta }^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,1} \\ \mathbf {u}_{\partial ,1}^{\rm int} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,1} \\ \mathbf {y}_{\partial ,1}^{\rm int} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_\beta ^{\Gamma _1} \\ 0 & \mathbf {T}_\beta ^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix}, \end {split} \label {Xeqn76-78}\end {equation}


$\Omega _2$


\begin {equation}\begin {split} \begin {bmatrix} \mathbf {M}_{\alpha , 2} & 0 \\ 0 & \mathbf {M}_{\beta , 2} \end {bmatrix}\frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\Grad } \\ \mathbf {D}_{\Grad }^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} + \begin {bmatrix} \mathbf {B}_\alpha ^{\Gamma _2} & \mathbf {B}_\alpha ^{\Gamma _{\rm int}} \\ 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,2} \\ \mathbf {u}_{\partial ,2}^{\rm int} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,2} \\ \mathbf {y}_{\partial ,2}^{\rm int} \end {pmatrix} &= \begin {bmatrix} \mathbf {T}_\alpha ^{\Gamma _2} & 0 \\ \mathbf {T}_\alpha ^{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix}. \end {split} \label {Xeqn77-79}\end {equation}


$\Omega = [0, 1]^2$


\begin {equation*}i \omega ^{num}_n \mathbf {M}\bm {\psi }_n = \mathbf {J}\bm {\psi }_n,\end {equation*}


$i= \sqrt {-1}$


$10$


\begin {equation*}L=1 \; \mathrm {[m]}, \qquad \rho = 2700 \; \mathrm {[Kg/m^3]}, \qquad E = 70 \; \mathrm {[GPa]}, \qquad \nu =0.3.\end {equation*}


\begin {equation*}\widehat {\omega } = \omega \; L\sqrt {\frac {\rho }{E}}, \qquad \end {equation*}


$\bm {e}_\alpha $


$\sqrt {\bm {e}_\alpha \cdot \bm {e}_\alpha }$


$_2$


\begin {equation}\label {eq:mindlin_primal} \begin {aligned} &\rho h\partial _{tt}{w}-\div \bm {q} =0, \qquad \Omega = [0, 1]^ 2, \\ &\rho J\partial _{tt}\bm {\bm {\theta }}-(\Div \bm {M} + \bm {q})=0. \end {aligned}\end {equation}


$\rho $


$h$


$J:=h^3/12$


$w$


$\bm {\theta }$


$\bm {q}$


$\bm {M}$


$w, \; \bm {\theta }$


\begin {equation*}\bm {q} = K_{\rm sh} (\grad w - \bm {\theta }), \qquad \bm {M} = \bm {K}_b \Grad \bm {\theta },\end {equation*}


$K_{\rm sh}$


$\bm {K}_b$


\begin {equation*}K_{\rm sh} = k G h, \qquad \bm {K}_b(\circ ) = \frac {Eh^3}{12(1 - \nu ^2)} ((1 - \nu )\circ + \nu \mathrm {tr}(\circ )\bm {I}_2)\end {equation*}


$k$


$G = E/(2(1+\nu ))$


$E$


$\nu $


\begin {equation}\bm {e}_{\alpha } = \begin {pmatrix} \partial _t w \\ \partial _t \bm {\theta } \\ \end {pmatrix} = \begin {pmatrix} v \\ \bm {\omega } \\ \end {pmatrix}, \qquad \bm {E}_{\beta } = \begin {pmatrix} K_{\rm sh}(\grad w - \bm {\theta })\\ \bm {K}_b \Grad \bm {\theta } \\ \end {pmatrix} = \begin {pmatrix} \bm {q}\\ \bm {M} \\ \end {pmatrix}, \label {Xeqn79-81}\end {equation}


\begin {equation}\begin {bmatrix} \rho h & 0 & 0 & 0 \\ 0 & \rho J & 0 & 0 \\ 0 & 0 & C_{\rm sh} & 0 \\ 0 & 0 & 0 & \bm {C}_b \end {bmatrix} \begin {pmatrix} \partial _t v \\ \partial _t\bm {\omega } \\ \partial _t \bm {q} \\ \partial _t \bm {M} \\ \end {pmatrix} = \begin {bmatrix} 0 & 0 & \div & 0 \\ 0 & 0 & \bm {I}_2 & \Div \\ \grad & -\bm {I}_2 & 0 & 0 \\ 0 & \Grad & 0 & 0 \\ \end {bmatrix} \begin {pmatrix} v \\ \bm {\omega } \\ \bm {q} \\ \bm {M} \\ \end {pmatrix}, \label {Xeqn80-82}\end {equation}


$C_{\rm sh}:=K^{-1}_{\rm sh}$


$\bm {C}_b := \bm {K}_b^{-1}$


$\mathcal {L}$


$\mathcal {L}^*$


\begin {equation*}\mathcal {L}= \begin {bmatrix} \grad & -\bm {I}_2 \\ 0 & \Grad \end {bmatrix}, \qquad \mathcal {L}^*= - \begin {bmatrix} \div & 0 \\ \bm {I}_2 & \Div \end {bmatrix}\end {equation*}


$\Omega _1$


$v \in L^2(\Omega _1), \; \bm {\omega }\in L^2(\Omega _1; \bbR ^2)$


$\bm {q}\in H^{\div }(\Omega _1), \; \bm {M}\in H^{\Div }(\Omega _1; \bbS )$


$\forall {\psi }_v\in L^2(\Omega _1), \; \forall \bm {\psi }_\omega \in L^2(\Omega _1; \bbR ^2), \; \forall \bm {\psi }_q\in H^{\Div }(\Omega _1)$


$\forall \bm {\Psi }_M\in H^{\div }(\Omega _1; \bbS )$


\begin {equation}\begin {split} \innerproduct [\Omega _1]{\psi _v}{\rho h \partial _t v} &= + \innerproduct [\Omega _1]{\psi _v}{\div \bm {q}}, \\ \innerproduct [\Omega _1]{\bm \psi _\omega }{\rho J \partial _t \bm {\omega }} &= + \innerproduct [\Omega _1]{\bm \psi _\omega }{\Div \bm {M} + \bm {q}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_q}{C_{\rm sh}\partial _t\bm {q}} &=- \innerproduct [\Omega _1]{\div \bm {\psi }_q}{v} - \innerproduct [\Omega _1]{\bm {\psi }_q}{\bm {\omega }} + \boundaryproduct [\Gamma _1]{\bm {\psi }_q \cdot \bm {n}}{v} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_q \cdot \bm {n}}{v}, \\ \innerproduct [\Omega _1]{\bm {\Psi }_M}{\bm {C}_b\partial _t\bm {M}} &=- \innerproduct [\Omega _1]{\Div \bm {\Psi }_M}{\bm {\omega }} + \boundaryproduct [\Gamma _1]{\bm {\Psi }_M \cdot \bm {n}}{\bm {\omega }} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\Psi }_M \cdot \bm {n}}{\bm {\omega }}, \\ \end {split} \label {eq:Mindlin-weak-D}\end {equation}


$\mathcal {T}_\beta $


\begin {equation*}\mathcal {T}_\beta \begin {pmatrix} \bm {q} \\ \bm {M} \\ \end {pmatrix} = \begin {pmatrix} \bm {q}\cdot \bm {n}\vert _{\partial \Omega _1} \\ \bm {M}\cdot \bm {n}\vert _{\partial \Omega _1} \\ \end {pmatrix}\end {equation*}


$\Omega _2$


$v \in H^1(\Omega _2; \mathbb {R}^2), \; \bm {\omega }\in H^1(\Omega _2; \mathbb {R}^2)$


$\bm {M}\in H^{\rot \Rot }(\Omega _2; \mathbb {S}), \; \bm {q}\in H^{\rot }(\Omega _2)$


$\forall \psi _v \in H^1(\Omega _2), \; \forall \bm \psi _\omega \in H^1(\Omega _2; \bbR ^2), \; \forall \bm {\Psi }_M\in H^{\rot \Rot }(\Omega _2; \mathbb {S}), \; \forall \bm {q}\in H^{\rot }(\Omega _2)$


\begin {equation}\begin {split} \innerproduct [\Omega _1]{\psi _v}{\rho h \partial _t v} &= - \innerproduct [\Omega _1]{\grad \psi _v}{\bm {q}} + \boundaryproduct [\Gamma _1]{\psi _v}{\bm {q} \cdot \bm {n}} + \boundaryproduct [\Gamma _{\rm int}]{\psi _v}{\bm {q} \cdot \bm {n}}, \\ \innerproduct [\Omega _1]{\bm \psi _\omega }{\rho J \partial _t \bm {\omega }} &= - \innerproduct [\Omega _1]{\Grad \bm \psi _\omega }{\bm {M}} + \innerproduct [\Omega _1]{\bm \psi _\omega }{\bm {q}} + \boundaryproduct [\Gamma _1]{\bm {\psi }_\omega }{\bm {M}\cdot \bm {n}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_\omega }{\bm {M}\cdot \bm {n}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_q}{C_{\rm sh }\partial _t\bm {q}} &= +\innerproduct [\Omega _1]{\bm {\psi }_q}{\grad v - \bm {\omega }},\\ \innerproduct [\Omega _1]{\bm {\Psi }_M}{\bm {C}_b\partial _t\bm {M}} &=+\innerproduct [\Omega _1]{\bm {\Psi }_M}{\Grad \bm {\omega }}, \\ \end {split} \label {eq:Mindlin-weak-N}\end {equation}


$\mathcal {T}_\alpha $


\begin {equation*}\mathcal {T}_\alpha \begin {pmatrix} v \\ \bm {\omega } \end {pmatrix} = \begin {pmatrix} v\vert _{\partial \Omega _2}\\ \bm {\omega }\vert _{\partial \Omega _2} \end {pmatrix}.\end {equation*}
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$\bm {q}, \; \bm {M}$


$\mathfrak {T}_h=\mathfrak {T}_h^{\Omega _1}\cup \mathfrak {T}_h^{\Omega _2}$


$\Omega _1$


\begin {equation}\begin {split} V_{\alpha , 1} &= \{\bm {u}_h\in L^2(\Omega _1) \times L^2(\Omega _1; \bbR ^2)|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {u}_h|_T\in \mathrm {DG}_1 \times \mathrm {DG}_1(\bbR ^2)\}, \\ V_{\beta , 1} &= \{\bm {S}_h\in H^{\div }(\Omega _1) \times H^{\Div }(\Omega _1; \bbS )|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {S}_h|_T\in \mathrm {RT}_2 \times \mathrm {AW}_3\}, \end {split} \label {Xeqn83-85}\end {equation}


$T$


$\mathfrak {T}_h$


$\Omega _2$


\begin {equation}\begin {split} V_{\alpha , 2} &= \{\bm {u}_h\in H^1(\Omega _2) \times H^1(\Omega _2; \bbR ^2)|\; \forall T\in \mathfrak {T}_h^{\Omega _2},\; \bm {u}_h|_T\in \mathrm {CG}_2 \times \mathrm {CG}_2(\bbR ^2)\}, \\ V_{\beta , 2} &= \{\bm {S}_h\in L^2(\Omega _2; \bbR ^2) \times L^2(\Omega _2; \bbS )|\; \forall T\in \mathfrak {T}_h^{\Omega _2}, \bm {S}_h|_T\in \mathrm {DG}_1(\bbR ^2) \times \mathrm {DG}_1(\bbS )\}. \end {split} \label {Xeqn84-86}\end {equation}


$\Omega _1$


\begin {equation}\label {eq:discrete_clamped_mindlin} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{v, 1} \\ \mathbf {M}_{w, 1} \\ \mathbf {M}_{m, 1} \\ \mathbf {M}_{q, 1} \\ \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {v}_1 \\ \mathbf {w}_1 \\ \mathbf {m}_1 \\ \mathbf {q}_1 \end {pmatrix} = \begin {bmatrix} 0 & 0 & \mathbf {D}_{\div } & 0 \\ 0 & 0 & \mathbf {P} & \mathbf {D}_{\Div } \\ -\mathbf {D}_{\div }^\top & -\mathbf {P}^\top & 0 & 0 \\ 0 & -\mathbf {D}_{\Div }^\top & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {v}_1 \\ \mathbf {w}_1 \\ \mathbf {m}_1 \\ \mathbf {q}_1 \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ 0 & 0 \\ \mathbf {B}_{\bm {q} \cdot \bm {n}} & 0 \\ 0 & \mathbf {B}_{\bm {M}\cdot \bm {n}} \\ \end {bmatrix}\begin {pmatrix} \mathbf {u}_v \\ \mathbf {u}_\omega \end {pmatrix}.\end {equation}


$\Omega _2$


\begin {equation}\label {eq:discrete_free_mindlin} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{v, 2} \\ \mathbf {M}_{w, 2} \\ \mathbf {M}_{m, 2} \\ \mathbf {M}_{q, 2} \\ \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {v}_2 \\ \mathbf {w}_2 \\ \mathbf {n}_2 \\ \mathbf {m}_2 \end {pmatrix} = \begin {bmatrix} 0 & 0 & -\mathbf {D}_{\grad }^\top & 0 \\ 0 & 0 & \mathbf {P} & -\mathbf {D}_{\Grad }^\top \\ \mathbf {D}_{\grad } & -\mathbf {P}^\top & 0 & 0 \\ 0 & \mathbf {D}_{\Grad } & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {v}_2 \\ \mathbf {w}_2 \\ \mathbf {n}_2 \\ \mathbf {m}_2 \end {pmatrix} + \begin {bmatrix} \mathbf {B}_{v} & 0 \\ 0 & \mathbf {B}_{\bm \omega } \\ 0 & 0 \\ 0 & 0 \\ \end {bmatrix}\begin {pmatrix} \mathbf {u}_q \\ \mathbf {u}_M \end {pmatrix}.\end {equation}


$\Omega = [0, 1]^2$


\begin {equation*}i \omega ^{num}_n \mathbf {M}\bm {\psi }_n = \mathbf {J}\bm {\psi }_n,\end {equation*}


$i= \sqrt {-1}$


$10$


\begin {equation*}L=1 \; \mathrm {[m]}, \qquad h=0.01 \; \mathrm {[m]}, \qquad \rho = 2700 \; \mathrm {[Kg/m^3]}, \qquad E = 70 \; \mathrm {[GPa]}, \qquad \nu =0.3, \qquad k=0.8601.\end {equation*}


\begin {equation*}\widehat {\omega } = \omega \; L\sqrt {\frac {\rho }{G}}, \qquad \qquad G=\frac {E}{2(1+\nu )},\end {equation*}
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operate together. In recent years, the port-Hamiltonian (pH) formalism [1] has established itself as a sound and powerful mathematical
framework for modeling and control of complex multiphysical systems. At the core of this framework lies the idea of composability,
i.e. the fact that interconnecting port-Hamiltonian systems (pHs) leads to another system of the same kind.

The theory of port-Hamiltonian systems is built upon a rich geometrical structure based on exterior calculus and issues may
arise if this structure is not preserved at the numerical level [2-4]. Structure preserving techniques attempt to capture as much of
the underlying structures as possible. To this aim, many strategies have been proposed throughout the years, such as mimetic finite
differences [5,6], discrete exterior calculus [7], finite element exterior calculus [3] and many others. When devising discretization
schemes for port-Hamiltonian systems, boundary conditions have a prominent role in the discussion. This is due to the connection
of port-Hamiltonian systems to the concept of Stokes-Dirac structure [8]. This geometrical structure characterizes all admissible
boundary flows into a spatial domain and is agnostic to the actual boundary conditions of the problem. The way boundary conditions
are included in the model is related to the numerical method used. In a finite element context, boundary conditions are either
imposed strongly by incorporating them in the discrete spaces used to approximate the variables or weakly when they explicitly
appear in the weak formulation [9]. Weak imposition of the boundary conditions typically arises from the variational formulation in a
natural manner via integration by parts. There is no general consensus on whether it is preferable to use a weak or strong formulation
and the best choice is strongly problem and method dependent [10,11]. Strong imposition of the boundary conditions in dynamical
systems leads to differential-algebraic equations that are more difficult to solve than ordinary differential equations [12]. In the
port-Hamiltonian community a general effort has been made to incorporate mixed boundary conditions in an explicit manner, see
for instance [13] for a discrete exterior calculus formulation, [14] for a Galerkin scheme based on Whitney forms, [15] for a mixed
finite element framework and [16] for discontinuous Galerkin discretization based on finite element exterior calculus (FEEC). Wave
propagation phenomena exhibit a primal dual structure that was first highlighted in [17]. Therein however no connection with dif-
ferential geometry is established. In [18] the authors used a finite element exterior calculus to highlight the fundamental primal-dual
structure of pHs. The two formations are related by the Hodge operator and the resulting scheme is called dual-field as each variable
is represented in dual finite element bases. The use of a dual field finite element formulation was initially introduced in [19] as a way
of handling the convective non-linearity of Navier-Stokes equations in an explicit manner and still obtaining a conservative scheme
in terms of mass, helicity and energy. The work of [19] focused on periodic domains only without dealing with boundary conditions.
In port-Hamiltonian systems, the dual field representation allows obtaining the topological power balance that characterizes
the Dirac structure when inhomogeneous mixed boundary conditions are considered. Furthermore, it clearly shows that the two
formulations treat the boundary conditions in a dual manner, i.e. the natural boundary conditions for one formulation are essen-
tial for the other and vice-versa, which leads to the question of how can this primal-dual structure be exploited for incorporating them.

In the present contribution, the dual-field representation is employed to achieve weak imposition of mixed boundary conditions
in hyperbolic systems. In particular, this work formalizes previous results discussed in [20,21] using finite element exterior calculus.
The spatial domain is decomposed using an internal interface that separates the two boundary subpartitions when a single boundary
condition applies. On each subdomain a mixed finite element formulation is used in such a way that the boundary condition is
included naturally. Each mixed formulation uses a pair a finite elements that constitute a Hilbert subcomplex and thus is stable and
structure preserving. The two formulations are then interconnected together on the shared interface by means of a feedback (or in port-
Hamiltonian jargon a gyrator interconnection) that enforces in weak manner the continuity of the finite element spaces. The resulting
system incorporates the mixed boundary conditions of the problem in a completely weak manner and does not require Lagrange
multipliers. The proposed methodology is reminiscent of Dirichlet-Neumann alternating Schwarz methods for non-overlapping domain
decomposition-based coupling, cf [22]. for an application to linear elasticity models. However, in the classical domain-decomposition
method only one primal formulation and the coupling conditions is achieved via an iterative approach. The present contribution is
not really concerned with accelerating numerical methods but rather with showing that the employment of a primal-dual formulation
makes it possible to avoid the usage of Lagrange multipliers for subdomain coupling. The strategy can also be applied to semilinear
model containing algebraic nonlinearities. Even if the methodology is discussed for hyperbolic port-Hamiltonian systems, it can
be extended to static elliptic problems. For the time integration the implicit midpoint scheme and the Stormer Verlet method are
considered. This choice guarantees the preservation of the power balance in each subdomain [23]. The implicit midpoint preserves
the overall energy but requires the solution of a monolithic system. Stérmer-Verlet decouples the two subdomains but does not
enforce energy preservation exactly. The proposed approach will be shown to be accurate, have proper convergence and to be
able to preserve certain mathematical, and thereby physical, properties at the discrete level. To demonstrate this, different physical
examples are considered: the nonlinear geometrically exact intrinsic beam model, the wave equation in two dimensions, membrane
elastodynamics and the Mindlin plate. The examples chosen showcase the versatility of our approach in different physical-domains as
well as different dimensions. Furthermore, they show that the proposed discretization does not suffer from shear locking phenomena.
To summarize main novel results of the paper are the following:

¢ Formalizes a dual-field representation using Finite Element Exterior Calculus (FEEC) to enforce mixed boundary conditions without
the need for Lagrange multipliers. The domain is decomposed into subdomains using a Hilbert subcomplex pair for each, ensuring
the formulation remains stable and preserves the underlying physical structure.

e Employs a gyrator (port-Hamiltonian feedback) interconnection at the internal interface to enforce continuity between finite
element spaces in a weak manner.

 Distinguished from classical Dirichlet-Neumann alternating Schwarz methods by using a primal-dual formulation that avoids
iterative coupling for subdomain interconnection.
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¢ Demonstrates that the Implicit Midpoint rule preserves overall energy, while the Stormer-Verlet method allows for subdomain
decoupling at the cost of exact energy preservation.

e The discretization approach is shown to be accurate, convergent, and specifically avoids shear locking phenomena in structural
mechanics.

e The method is primarily designed for hyperbolic port-Hamiltonian systems, but explicitly extensible to static elliptic problems and
semilinear models with algebraic nonlinearities. It can be extended to electromagnetic phenomena and multiphysics coupling.

The outline of the rest of the paper is as follows. The assumptions of the study and the mixed discretization approach based on
finite element subcomplexes are presented in Section 2. The domain-decomposition strategy is presented in Section 3 including the
choice of the finite element basis for the boundary input made to couple the two formulation on the interface. The time integration
schemes are discussed in Section 4. Section 5 presents the numerical examples.

2. Galerkin discretization of port-Hamiltonian systems

The general class of port-Hamiltonian systems is now presented. A brief introduction on port-Hamiltonian systems is given by
means of the wave equation as an example. Then we recall the mixed finite element Galerkin discretization presented in [17]. This
discretization is such to retain the Hamiltonian structure at the discrete level.

2.1. An introductory example: The wave equation
The propagation of acoustic waves in Q c R is described by the following hyperbolic partial differential equation, that determines
the time-dependent field ¢(t) : Q X [0, T, 4] > R
92 — divgrad¢ =0, ¢
together with time-varying Dirichlet boundary condition
Plaq = 8(0). (2)
The total energy is given by the sum of kinetic and potential energy

1
H=3 /(a,¢)2 + || grad ¢||? dQ.
Q

To highlight the Hamiltonian structure of the wave equation, consider the variables

a =0, B = grad ¢. (3)

Eq. (1), together with the boundary condition (2), can now be recast into a first order system
ga\ | 0 div| [« _ L
(@ﬁ) = [grad O] (ﬁ)’ g = 0,8 1= u. 4)
———
J

Notice that the operator J is formally skew-adjoint, as for compactly supported function the adjoint of the gradient is minus the
divergence grad® = — div. Here u corresponds to a control input applied to the boundary. Indeed port-Hamiltonian systems are bound-

ary controlled systems and the boundary conditions coincide with inputs that describe interactions with the external environment.
Notice that the Hamiltonian is quadratic in the new variables, making the variational derivative easier to compute

H=%/a2+llﬁllzd§2, S,H=a, 65H=p,
Q

where 6, and &, are the variational derivative with respect to the state variables. The power exchanged through the domain boundary
corresponds to the time derivative of the energy

H(@.B) = / 6,H - 0,0+ 5gH - 0,3 dQ,
Q

=/a~div,@+ﬁ~gradad£2, (5)
Q

=/div(aﬁ)dQ=/ aB-nd,
Q Q

where n is the outward normal to the boundary. The final expression pairs the Dirichlet condition with the Neumann boundary
condition. It corresponds to a passive power balance of the form

H= uy dI’
0Q

where variable y is the power conjugated output to the input and corresponds to the Neumann boundary condition,

y =B nlyo =grad¢ - nly (6)
System (4) is an example of a port-Hamiltonian system. The underlying geometrical structure is the Stokes-Dirac structure, an infinite
dimensional generalization of Dirac manifolds introduced by Courant [24].

3
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2.2. An abstract setting for linear port-Hamiltonian hyperbolic systems

Consider a domain Q ¢ R4, d € {1,2,3} and a partition of its boundary 9Q = l_“l U 1:2, such that 'y NI, = . Let = {, 3} be the
state variables. The states at a given time are expected to be square integrable functions a(t) € L*(Q; A), 3(t) € L*(Q; B) taking values
in the vector spaces A, B.

To define the dynamics of the system, an unbounded differential operator £ : L*(Q;A) — L?(Q;B) is introduced. For a given
differential it is possible to define its formal adjoint by means of the integration by parts formula.

Definition 1 (Formal Adjoint). Let u € CrEQ,A) and v € CrQ,B) smooth variables on Q, and £ be the differential operator £ :
L3(Q;A) - L*(Q;B). The formal adjoint of £ is than £* : L%(Q;B) — L*(Q; A) defined by the relation
(Lu,v)g = (U, L)g. 7)
where the inner product of two functions is denoted by (f, g)q = /Q f-gdQ.
The differential operator £ and its formal adjoint £* give rise to the Hilbert spaces H and H", which are specified as
H*(Q) = {u € L*(Q,A)| Lu € LX(Q,B)},
HY Q) = {v e LAB)| £*v € LA(Q; A)}. ®

The formal adjoint definition does not account for boundary terms arising from the integration by parts formula. They are introduced
by means of the next assumption.

Assumption 1 (Abstract integration by parts). Let e, € H5(Q), ey € H £°(Q). Then the following integration by parts formula is
assumed to hold

(Ley, ep)q = (€4, L7 eg)q + (Tyeq, Tpep)on (C))
for appropriate trace operators 7, and 7, where (f, g)q = J30 f - gdU denotes the inner product over the boundary.

Example 1 (Gradient and divergence operators). Let £ := grad be the gradient and £* = —div be the negative of the divergence. Let
f € H(Q), ve H™(Q) be a scalar and a vector function. The integration by parts states that the inner product with the gradient
can be written as

(grad f,v)g = —(f,divo)g + (f,v - n)h0. (10)
In this case the trace operators correspond to the Dirichlet trace and the normal trace.
In this work we focus on conservation laws describing wave propagation phenomena in Hamiltonian form
o0 0 —c¥|(6,H
= . 11
<at/8> [E 0 ]<5BH> an

where H is the Hamiltonian and 6, H, ogH its variational derivative with respect to the state variables. In this work we restrict our
attention to linear wave propagation phenomena described by the Hamiltonian formalism. The linearity of the system translates into
a quadratic Hamiltonian.

Assumption 2 (Quadratic Hamiltonian). The Hamiltonian is assumed to take the following form

1 1
H = E(Q,Qaa)g + E(ﬁ,QﬁB)Q, (12)
The operators Q, and Qp are symmetric and positive (and therefore invertible).
The variational derivative of the Hamiltonian (also called co-energy variables) is evaluated as follows [25]
6H 6H

ey 1= 5= Q,q, ey 1= B Q8. 13)

Given (13), the state variables are related to the co-energy variables by

a=Me,  B=Mye,
where M,, := Q;l, Mgy = Q;l. The Hamiltonian (12) can be expressed in terms of co-energy variables as

H = %(ea,Maen)Q + %(eﬂ,Mﬁeﬂ)ﬂ. (14)
The system can be equivalently rewritten in terms of the coenergy variables including mixed boundary conditions as follows

[Ma 0 ] <0,ea> o —c* <e> e, € H*(Q),

0 M\oey) "l 0 [\e) e ent @),
<Uo,1> _ |7l 0 ](e) (15)
Uy, | O Tylr, ] \es)’

<ya,1> — [ o Tﬁll"l] <ea>_
Yoo ,To,|r2 0 €p
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Variable u,; are the inputs. In the terminology of partial differential equations, they correspond to the boundary data. In the following
we will use input as a synonym for boundary conditions to stress the fact that these quantities are not fixed a priori but are the result
of the system interacting with the environment. The variables y,; correspond to the conjugate outputs, i.e. the dual variable to the
corresponding input u,; with respect to the power balance

H = (Ua,1>Yo,10r, + (Wa2. Ya2)dr,-

Examples of this duality are force and velocity in mechanics or voltage and current in electromagnetism. The notation 7|r,, T4lr,, i =
{1,2} denotes the restriction of the trace operators to a given subpartition of the boundary.

Remark 1 (Equivalence with Lagrangian dynamics). The presented Hamiltonian formulation can be deduced from the least action
principle and is equivalent to a Lagrangian formulation [26].

2.3. Conforming finite element discretization of port-Hamiltonian systems under mixed boundary conditions

The discretization of problem (15) is detailed in [17], where its primal-dual structure is highlighted. Therein however the point
of view of Hilbert complexes is not considered and this mathematical structure is important for port-Hamiltonian systems. We will
here consider a finite element formulation that respects the Hilbert complex structure. Furthermore, we detail the different numerical
treatment of input and output variables in the case of mixed boundary conditions. In a classical monolithic discretization, one input
variable enters the system via integration by parts and for this reason is called natural. The second input variable has to be enforced
in a strong way and it is typically called essential.

The weak formulation can now be obtained by applying the test function v = {v,,v,} and integrating over Q to end up with

(Vo MoOrq) = =(V4, L7€p)q, (16)
(vg, Myo,ep)q = (vg, Ley)q.

Given the abstract integration by parts formula (9), two possibilities arise. One can either integrate by parts the first line or the
second. Depending on the choice, two dynamical systems are obtained. These two systems differ in the way they treat boundary
conditions. In the first system wu,; is a natural boundary condition, whereas in the second system the natural boundary condition is
u,,. To explain the classical Galerkin discretization in the case of mixed boundary conditions, Lagrange multipliers A, ; will be used.

2.3.0.1. System 1: natural imposition of u, ,, essential imposition of u,,. If the second line is integrated by parts, the weak formulation
reads: find e, € L*(Q; A) and e; € H' (Q) such that

(Vg My0i€4)q = —(Vy, L €4)q, for all v, € L*(Q; A),
(v, Mgo,ep)q = (Lp, eq)q +(Tyvp. uo 1)r, + (Tyvp. Aodr, for all v, € HE' (Q),
Tﬂ|r2€p =Upps a17)
Yo1 = Tplr, €5
Yoo = Aa2-

The essential input u,, and the output y, ; are not evaluated weakly, but taken to be the trace of the associated state variable.

2.3.0.2. System 2: natural imposition of u, ,, essential imposition of u, ;. If the first line is integrated by parts, the following system is
obtained: find e, € HX(Q), e; € L*(Q; B) such that

(Vg My0i€)q = —(LVg, €)q + (Ta Vs A 101, + (T Vas Ua2)dr,» for all v, € HX(Q),
(0. Mgd,ep)q = (v, Ley)q. for all vy € L*(Q; B),
Tolr, €q = g1 (18)
Yo = >‘0,1'

Yoz = Tolr, €q-

2.3.0.3. Finite dimensional representation of the variables. The two systems should not be discretized in the same manner, as different
differential operators may arise in the weak formulations (17), (18). For this reason we now refer to the variables of formulation
i using an appropriate subscript i = {1,2}. Consider a finite element Galerkin approximation of the test, trial and boundary input
functions. For the two systems they are

My i np.i ny i
~ k k ~ k k ~ k k
Vo ¥ 2 X i (@) 5 Vpi ™ 2 X (@) s Uy ™ 2 Xy (@ (@),
k=1 k=1 k=1
19
Ny i np.i ng,i ( )

e R z 2L @ek ), ey Z 25 @ek (0, Ay~ Z x5 @)k ),
k=1 k=1 k=1
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where y,;, xp> X, the basis functions for the finite element spaces and n,;, n,, are the number of degrees of freedom associated
to variable e,, e; on the domain Q,. The finite element spaces associated to the state variables e, ;, e;; are spanned by the basis
functions

Vi =span{x,;}, Vs =span{xg;}, i={1,2}. (20)
Considering the fact that the weak formulations in Eqs. (17) and (18) are conforming, the spaces verify the following inclusions
Vo1 ©LAQ:A), V,, c HE (), Voo CHYQ), V) C LX) (21)
The guiding principle behind the choice of V, ;, V; is that of a Hilbert complex.

Definition 2 (Hilbert Complex). A Hilbert complex is a sequence { H¥, £*},., where:
e H¥ are Hilbert spaces,

e £k H* - H**! are bounded linear operators,
o Lk+logk = for all k € Z.

Given a Hilbert complex it is possible to define the adjoint complex by using the definition of an adjoint operator.
Example 2 (de-Rham Complex). One important example of a Hilbert complex that will be considered in Section 5 is the de Rham
complex

(@ g govig) L 12@) 22)

The adjoint complex reads
LY Q) o HYQ) ﬂﬁ]w”(g) ﬂﬁ[‘(g) (23)
where the Hilbert spaces in the adjoint complex include homogeneous boundary conditions.
Finite element spaces V, ;, Vj, are chosen from a finite dimensional subcomplex.

Definition 3 (Hilbert Subcomplex). Given a Hilbert complex { H¥, £*}, ., a subcomplex is a sequence of closed subspaces {V* C
H*},c7 such that:

o LKWVKyC VK forall k € Z,
e V¥ isa closed linear subspace of H¥,
e The restriction of £¥ to V¥ maps V* to Vk+1,

In order to obtain a finite element subcomplex, the finite element spaces are selected in such a way that
L*V5) C Vo LV,2) C Vo ©2))

This means that the spaces used for the discretization form two complexes

P ,
Vap— Vg2 Vsi—

a,l:

Spaces satisfying such an inclusion can be constructed in several manners [3,5,27]. The rationale behind the choice for the boundary
spaces V,; = span{ y,,} is important as it establishes a connection between the two formulations. As V, ; are trace spaces, their elements
can be taken to be the restriction to the boundary subpartitions I'; of the spaces V;, ¢ H~ (Q) and V,, ¢ HX(Q)

Span{}(o,l } = SPEm{TO(h"l Xu.2}7 25)

span{ y,,} = Spm{ﬁ|r2){p,1 }.

Remark 2 (Equivalence with the second order formulation). Because of the inclusions (24), the mixed formulations coincides
therefore with the second order formulation in time and space [17].

2.3.0.4. Algebraic realization for System 1. In this case the formulation (17) is converted into the following differential algebraic
system

M, | 0 0 €. 0 D 0 € 0 0
’ d ’ T IoNTMmT ? r u
0 My 0 |“fep|=|Dp 0 (THIMle;, f+]B 0 (u‘“>,
0 0 0 P 0 T 0 X2 R
. B ;. (26)
y@,l B 0 T;l 0 €41
Yoo "o 0 | AN ¥
’ Aa2
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where the matrices arising from the weak formulation are defined by

r
[Ma,I]mn z(}(:fl’MaI:J)Q’ [DE*]mp =(I;rf1’E*IZJ)Q’ [BﬁI]pl = <Tﬁlﬁp’]al‘;’1>r‘l7 (27)
My i1y =ty - Mpxg Dar IMT21 = ()00 25501,
where (m,n) € {1,...,n,,}, (p.q) € {1, ... gk () € {1, ngn) e {1 ny ) The trace matrix is a Boolean matrix that local-
izes the degrees of freedom lying on the boundary

r L if Tprp #0 only i=(12),
[Ty Ly = o (28)
0, otherwise,
where k = 1,...,dim{7} ;(; L E 0}2‘1l counts over the basis function that lie on the boundary subpartition I';. The matrix B;‘ can be

decomposed using the trace matrix as follows

r r /
B! =(®"T )T, where [¥"]; 1= (x) . 2)000r-

2.3.0.5. Algebraic realization for System 2. In this case the formulation (18) is converted into the following differential algebraic
system

My, 0 0] (e 0  -Dl (T,H'M"|e,,) [0 B "
0 M 0|=|e;, |=| D 0 0 e |+{o o (%),
£.2 ar| €2 c 52 u,,
0 0 0 Ad,l _Ta] 0 0 A(),l I 0 ’
(29)

(y()vl) [ 0 0 1] Za,z
= |2 2|
Yoo Ta 0 0 >‘l

The matrix components are obtained as follows

Mool = (o MaZi e Dplpn = o L2ior B2, = (Tt y 2 0ry- 30)
Mp2ly, = (15$2’Mﬁ1;3],2)97 M, = (Z(;,l’x(/il)rl’

where (m,n) € {1,....n,,}, (0. @) €{1,....n5,}, () €{1,...,n5,}, I €{1,...,ny,}. For this system the trace matrix selects the de-

grees of freedom for the variable e;,

r. 1, if T4 #0, onoQ,
[Tal]ki = { a2

(31
0, otherwise

Once again the control input matrix BEZ can be factorized using the trace matrix as follows

I, r j
B> = (T,) ", where [¥"2]; := (¥} . x),)r,
3. Domain decomposition for mixed boundary conditions

It has been shown that in order to solve problem (15) numerically, either system (26) or system (29) can be used. These systems are
differential algebraic as the essential imposition of the boundary data leads to constraints imposed on the dynamics. The idea behind
the domain decomposition approach is to introduce an interface boundary T, to split the domain Q = Q; U Q,, where Q; NQ, =@
holds, such that the boundaries of the subdomains are given as 0Q, = T'; UT;,, and 0Q, = I', UT},, (cf. Fig 1). This interface boundary
is chosen freely. The idea of the discretization is to use both formulations (17) and (18) concurrently to achieve natural boundary
imposition for both boundary inputs. This means applying the formulations (17) to the Q; subdomain and (18) to Q,. To ensure
proper coupling on the interface I';, consider the inputs and outputs from the port-Hamiltonian systems (39) and (40). The boundary

inputs and outputs for Q; include the boundary condition for the problem and the input along the interconnection boundary

u [T, Tslr, |
)= <e> o B <e> (32)
ud,l _all"im 0 €p yt),l ﬂlrmt- €

For the Q, domain one input will be the actual boundary condition and a second input represent the exchange of information along
the interface

o T <e">, o2\ _|Talr, O (e“>. (33)
Us2 0 Tplr, I \ep Y2 7alr,, 1\€s

The coupling of the two domains takes place on I';,, because the inputs and outputs are related by

=
(=)

(=]

(=]
(=]

rim — rml
Yot =EYss -
rlﬂ[ —_ - rlﬂ[
WUy =FY51

(34
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Fig. 1. Splitting of the domain.

Ding
Uy

rint
Uy o

Fig. 2. Interconnection at the interface I'},.

as shown in Fig. 2. The + and F are used due to opposite outward unit normals depending on the domain. An explicit incorporation
of the boundary conditions is achieved by integrating the £ term by parts on Q,, based on the weak form (17), and the £* on the Q,
subdomain, based on the weak form (18). Consider the additivity of integral operator, the boundary term (7 jv4, u,) 4o from the Q,
domain becomes

l—‘in
(Tyvg. Ta€udon, = (Tpvp wy dr, + (Tpvg w1, - (35)
while for the Q, subdomain
Tin
<Ta'va’Tﬂeﬁ>6QZ = <Tava,ua,z>r2 + <Tava’u()’2[ >1“;m' (36)
The weak formulation for Q, is to find e, € L*(Q; A), e; € HE"(Q) such that ¥ v, € L%(Q,;A) and ¥ vy € HY'(Q)) it holds
(Vg My0ie)q, = —(vy, L eg)q,
37)

T
(Vg, Myoiep)q = ([l*vﬁ, eo, + (T/J'Uﬁ’ua,ﬂrl + <T/3'Uﬁ’“0_"1“>l"

int”
where the boundary control and trace matrices are now restricted on the subpartitions of the boundary I';,,, For the Q, subdomain
with 36 find e, € HX(Q,), e; € L*(Q,; B) that satisfy V v, € H*(Q,) and V v, € L*(Q,; B)

i
(Vg Maatea)ﬂz =—(Lv,, eﬁ)ﬂz + (T4 Vg, 'u‘(),2>1"2 + (T4 v, ugvzl >rim » (38)
(vg, Myoieg)q, = (vg, Ley)q, -

The weak formulation can be discretized using the basis functions as in (19) where e.g. e, ; denotes e, on Q,, to include the
decomposed domain and interface. Using the basis functions, the formulations for each subdomain can be written into a finite
dimensional form. For Q, this becomes

M 0]d [0  -D,. 0 0 ]/u
[ oM ]—<e"’l>= DT OE]<e“">+ gl! gl P |
1l dr\eg, 1D €s.1 5 s |\l
I I
ylg,l 10 TI!,I <ea’1>
v 0 T et/

where the output variables are computed strongly considering discrete trace operators. In an analogous manner for Q, it is obtained

M, 0 ]d e, _ [0 —Dz LA BEZ B‘l;im “]Q,Z
0 Mg, | dr\eg, D, 0 J\eps 0 0 u, 5 '

Yoa ) _ T, 0 (ea.2>
ya:‘z“ _Tl;im 0 €5, :

(39)

(40)




S. De Jong et al. Applied Mathematical Modelling 156 (2026) 116775

Uy 1 Domain )y Yo
e —
I M;é; = Jie; + Biuy; I
u int . int
9.1 yo1 = Tie Yoi
]
F1
+1
Lint . Lint
Yoo Domain €29 Uy
Msé; = Joes + Boug o
Y62 yaﬁg = TQEQ u872
-

Fig. 3. Feedback interconnection of the two systems arising from the domain decomposition.

3.1. Choice of the boundary functions

The choice of the boundary spaces follows the same rationale as in Section 2. The boundary shape functions are not chosen in an
independent way with respect to the state variables. Given Eqs. (32), (33) and (34), it is natural to choose the basis functions for the
inputs as being the basis function of the associated co-energy variable on the boundary subpartions. This means leveraging Eq. (25)

also on the interface T,

span{ 75,1} og, = span{Tyloa, Xua - an

SPan{)(a,z}sz = SPaH{TﬂszZg,l }.

This choice will couple the two systems and is important for the domain decomposition strategy. The relations in Eq. (41) provide
the interconnection of the two system on I';,

Uine _ Fine _ int
u@,l _iy()’z _iTa ea,Z’

rlﬂ[ (42)

Y0

I I
= ¢ya,l?l = iTﬁ‘"‘ €1

These equations represent a feedback interconnection (cf. Fig. 3) which in port-Hamiltonian systems jargon is also called a gyrator
interconnection. Relations (41) are also responsible for a factorization of the B matrices

Bgim — (Tgi“‘)T‘I’rim, B;im - (T;im )T(\Ilrim)T’ (43)

where [Plint],, = ( ;((’) Iy ;{(’; »)r;, - The systems found for Q; and Q, can be combined into a monolithic interconnected system for the
entire domain Q. The pH-system for the full domain is provided as

M, €y 0 D, 0 0 e, (l)_ 0
T Ty 1
Diag My, |d|epi|_|Dp- ~ (r) i +LTint 0T e, B, ? <ua,1 ’
M, [dr]e,, 0 F@Lin) 0 -D, lleqn 0 B2 |\uy
M e 0 0 D 0 Je 0 0
52 8.2 c 8.2
(44
ea,l
Iy
<ym> _|o T, 0 0|les,
Yoo 0 0 ng 0l]lew2|
€5
where Lline = (Plin T;““)TTZ"“. The structure of the system is again Hamiltonian and can be written compactly as
Mé = Je + Bu,
(45)
y = Te,

where J = —J7 is skew-symmetric.

Remark 3. The domain decomposition strategy does not require matching interfaces. The feedback interconnection (42) corresponds
to a choice of numerical fluxes (as in Discontinuous Galerkin methods).

9
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3.2. Extension to the nonlinear case

The methodology can be applied to nonlinear systems but only if the nonlinearity has to enter the system in an algebraic way. In
other words the method is applicable to semi-linear systems of the form

Mo,e = J e+ J,(ee, (46)
where J; is a differential operator of the form
0 -C*
Tu= [£ ‘ ]

and J,(e) is a nonlinear algebraic operator the depends on the coenergy e. An example of such a semilinear dynamical systems is the
intrinsic geometrically exact beam introduced in [28]. In Section 5.1 a numerical test for this model will be detailed.

If the differential operator appears in a nonlinear term, it might not be possible to apply a primal dual formulation. We illustrate this
issue on an example.

(47)

3.2.0.1. A nonlinear example that does not fit in the domain decomposition strategy: geometrically nonlinear elasticity. In geometrically
nonlinear elasticity the infinitesimal strain tensor is replaced by the Green-Lagrange tensor

E = %(FTF—I), F:=1+Vq,

where q is the displacement [Vq];; = d;¢; is the gradient of a vector defined row-wise, and F" is the deformation gradient. The kinetic
and potential energies are given by

T:l/pna,quzdg, V:l/E  KEdQ,
2 Ja 2 Ja

where K is the stiffness tensor. For the potential energy a Saint-Venant Kirchhoff material model has been used. The Euler-Lagrange
equations are then given by

pd,q =Div(FS),

where Div is the row-wise divergence of a tensor and S = K E is the second Piola-Kirchhoff stress tensor. By introducing the dynamical
equation for the second Piola-Kirchhoff stress tensor, the Hamiltonian structure of the equations can be highlighted [29]:

J,q =,

p 0o (v _ 0 Div(F o)| (v
0 Cloar\S/)  |sym(FTV o) 0 Ss)
where C := K~! is the compliance tensor. In this case the differential operator £ and its adjoint £* contains the deformation gradient
(that is seen as a parameter for defining the adjoint) as
L(Vq) = sym(FV o), L£*(Vq) = Div(F o).
Because of the fact the these terms are nonlinear, the discretization can only be performed by integrating by part the £* operator.
The resulting weak formulation reads
0,9y = Uy,
. pdvp) = ~(F) Vp.S))q.  forall g €V,
(T, C 0,8y =HT, FIVv,),,  forall ¥ €%,

For this example it is not clear how a dual system with opposite treatment of the boundary conditions.
4. Time integration

We present two different integrators for the system (44), the Stormer Verlet scheme and the implicit midpoint. The first one
allows for decoupling of the two domains, but it is not a Poisson map. The second imposes a monolithic resolution of the problem,
but guarantees the preservation of the Poisson structure. To illustrate this method, we assume that the boundary data are homogeneous
(uy; =0, u,, =0). System (44) takes the partitioned form

M, Ofdfe)_| I +G| (e
[ 0 Mz] dt <92> B [‘GT P ] (ez>' “®

To simplify the analysis the system can be rewritten by a change of variable €, = C,e,, €, = C,e, where C,, C, are the Cholesky
factors of the mass matrices M; = C1TC1 M, = C;Cz, leading to

d (& J, +G|/[e PP,
aEeyo | b G (ey, ly é=Je
@ <e2> [—GT i, 8 or compactly e=Je (49)

where J; = C;7J,C; ', J, = C;7J,C;" and G = C;TGC;.

10
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4.0.0.1. Implicit midpoint scheme. Consider system (49) ¢ = Je, where the hat~ is omitted for simplicity. The implicit midpoint rule

gives
en+1 _e" —3 e + en+l
At 2 '

We now recall a known result that is not easy to find in the literature.

Proposition 1. The implicit midpoint scheme applied to a linear Poisson system is a Poisson map.
Proof. Using a time rescaling, we set A7/2 = 1. The application of the midpoint rule leads to the recursion
e =Cay(De",  Cay(d) :=A-D7'A+D. (50)
For the discrete flow (50) to be a Poisson map, it must hold
Cay(d) J Cayd)' =1J.
By exploiting the property J = —J7, the term Cay(J)" gives
Cay() =@A-HA+".
So the discrete flow can be rewritten as
Cay) J Cay@" = A= D' A+ DIA-DHA+ D~
The following commuting properties holds
JA+ D =d+DJ, JA-D=A-NJ, I+Hd-H=AdA-DHA+D. (51)
Using these relations, it is obtained
I-H'aA+DIA-DaA+H~" =17
O

So the implicit midpoint apply to the system given a Poisson map, leading to a symplectic integrator

4.0.0.2. Stormer-Verlet scheme. The Stormer Verlet scheme is a partitioned Runge-Kutta scheme [30]. In the present case it takes the

form
AR R A gy
=], +Ge, ?,

At 2
n+ n— ! n+ 1
S 2 < 2 <2 < 2
) 2 _s|% e T GTen
At 2 2 !

1
To start the iterations the Stormer-Verlet initial value 622 is obtained using

1
~3 Ats _ At
822 = (I - 7.]2) l/é(2) - TGT@?
Remark 4. The Stormer-Verlet integrator is not a Poisson map for system (49). By Lemma 4.9 in [30], the Stormer-Verlet integrator

is not symplectic for the canonical Hamiltonian system obtained via the Darboux-Lie theorem.

5. Numerical examples
The domain decomposition strategy is applied to four different examples:

¢ the one dimensional nonlinear geometrically exact intrinsic beam model;
o the two dimensional wave equation;

¢ the two dimensional linear elastodynamics problem;

o the Mindlin plate problem;

The decomposition of the mesh has been implemented using GMSH [31]. All the investigations will be performed employing the
finite element library FIREDRAKE [32].

11
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Fig. 4. The decomposed beam with mixed boundary conditions.

5.1. A 1D non linear example: Geometrically exact intrinsic geometrically exact beams

The domain decomposition strategy applied to a semilinear example as described in Section 3.2. An example of a semilinear
problem is the intrinsic formulation of geometrically exact beams first proposed by Dewey Hodges [28]. This model describes the
motion of the beam cross section as a rigid motion and captures the geometric nonlinearity in the deformation without making
any additional simplification. The model accounts for shear deformability. The description is in the material reference frame as all
variables follow the motion of the cross section. In this example a one dimensional beam with length L under a Dirichlet condition
at x = 0 (velocities are set to zero here) and a Neumann boundary condition at x = L (forces and torques are applied at this node), is
decomposed into two subdomains Q; and Q, using an interface vertex I';,.. The results shown in this example use an interface vertex
located at x;,, = L/2, but it should be restated that its position is arbitrary. The domain decompostion is plot in Fig. 4.

The Hamiltonian is given by

H = %PAH’UHZ + %prJw + %nTC,n+ %mTC,m,

where v, w € R? are the material linear and the angular velocity, respectively, n, m € R? are the material force and bending moment
resultants, respectively. The parameters are the density p, the cross section area A, the moment of area matrix J € R¥3, and the
translational and rotational compliance C,, C, € R¥3. The co-energy variables are given by

™, =0, H = pAv, Y=0,H=Cn,

T = 0 H = pJw, k=0, H=Cm,

denoting material momentum and strain quantities. In the following the notation [v],, denotes the skew-symmetric matrix obtained
as

vy 0 -v, vy,
v=|v,| =l =] v, 0 —vy | (52)
v, -v, vy 0

to rewrite the cross-product as matrix-vector multiplication, i.e. v X u = [v],u for arbitrary u € R3. Denoting with variable s € [0, L]
the material arc length coordinate, the dynamics of the system over an interval Q = [0, L] is given by

pA| (v 0 0 9 0 0 [y 1, (K], 0o \(v
. | pd w 0 0 0 o [y ] [y ] [v+ el [K] w
D B - E X X x X i 53
e nl[lo, 0 o okl (vrel 0 o ||| n (53)
C. m 0 0y 0 0 0 [K]y 0 0 m

where e; =[100]". For this examples of operators £, £* and the variables e,, e, are given by

oy O «_ |9 0 (v _(m
ﬁ_[o as]’ L= [0 o] =T \w) T \m)

Notice that the linearization of System (53) gives the port-Hamiltonian formulation of the Timoshenko beam

pA v 0 0 dg 0ffv

.| pd w 0 0 [e;ly O ||w

Dia, 0 = N . (54)
gl | o e, 0 ofln
C m 0 a 0 0]{m

The discretization is explained on the linear part only as the nonlinearity is simply projected on finite element spaces. If the last
two lines are integrated by parts then one obtains the weak formulation: find v, w € L3(Q B R}, n,meH 1Q; R3) such that forall
by € LAQRY), 1,9, € H(Q);RY)

(thy, pAG V) = (P, 0;m)g
(W pJ 0wl = (. [e1]xM)q, + (¥, Iy Mg,
(b, Ciom)q, = (P, [e]lxw)g, — (059,, V), + (¥, V)aq, + (¥u V)
(W, Com)q = =09, Wg, + (WP W)aa, + (P, w)r

(55)

int”
int’

12
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where the trace operator 7; : H!([a,b]; RS) — R!? is given by

+f(b)
-f(a)
+9(b) |
—g(a)

If the first two lines are integrated by parts then one obtains the following formulation: find v, w € H'(Q,;R?), n,m € L?(Q,;R?)
such that forall 1,1, € H' (Q,;R?), 1,1, € L*(Q,; R?)
(thy, pAO V), = —(0,%,, Mg, + (Y M)aq, + (Y. M)r, -
(b pJ W), = (P, [€1]xM)g, = (0,3, Mg, + (Y, M)sq, + (P
(W, Ciom)q, = (. [e| ] w)q, + (. 0,v)q,.
W, Com)q, = (P, 0,w)gq,,

m>rint’

(56)

and the trace operator 7, : H!([a,b]; R®) — R!? is given by

Fb)
_|f@

b
T"(g) e |

g(a)
5.1.0.1. Finite element basis. The finite element family used to solve this problem is the Discontinuous Galerkin elements of order
1 (DG,) to discretize the L? space, and linear Lagrange finite elements (CG,) to discretize the H' space, though the mixed finite
element spaces are different on each subdomain. This choice is justified by the de-Rham complex. This example constitutes the
simplest example of discrete de Rham subcomplex

Jaa! O 2

o n
oG, —25 DGy
Therefore, for the Iff' mesh the finite dimensional spaces are
V1 = {u, € LX(Q;R)| VE € I, uy | € DG(R%)},

Q
Vpy = {u, € H'(Q:RO)|VE € I, uy| € CG,(R)},

where the notation L2(Q,; R%), H (Q,;R®), DG,(R®), CG,(R®) indicates the functions are six dimensional vectors. For the Zfz domain
the finite dimensional spaces are

Voo = (uy € H'(Q:R%)| VE € T, uy|z € CG,(R)},
Vo = {uy, € L(Qy:RO)| VE € 1,2, uy|; € DGy(RY)).

Introducing the finite element approximation, the following ODE is obtained for subdomain Q,

Mv,l vy 0 0 Dt)l 0 vy 0 0
. IM,, |d|w 0 0 lelx Dy (| w 0 01/u
D w, | Y 1| _ s 1 v , 57
1ag Mn,l de| n; —D;v [e;]x 0 0 n, + T; 0 u, (57)
(M, | \m) | © —D; 0 0 mi) [O T;_
where T is the normal trace matrix, taking values 1 or —1 for the right and left extremity degree of freedom. The discrete system for
the domain Q, is given by
,Mv’zf v ) 0 —D;J 0 (v, fT;I_ o]
T
Diag Mw’z i W2 = 0 0 ley] _Dl’x W2 + 0 TI <un>’ (58)
Mo |difmy | (D, [e]y 0 0 [fn 0 0 |\u,
(M| \m2) [0 D, 0 0 [(\m) |O O]

where T, is a localization matrix that picks the degrees of freedom at the boundary. The nonlinear terms are then discretized by
simply projecting on the finite element basis, leading to two finite dimensional ODEs of the form

M;¢; =], e +J,(e)e; + Byu,,
vi=Ble., i={12},

13
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Table 1
Parameters for roll up example.

At T  Nywew=1/h L  pA=pl EA=GA EI
0.01 1 8 10 0 10* 500
g Clamped clamped case g Free-free case g Interconnected case
° 300 ° 300 ° 300
6 6 6
200 200 200
>4 = >4 = >4 =
9 100 9 100 9 / 100
0 0 0 0 0 0
0 5 10 0 5 10 0 5 10
X X X
(a) Clamped-clamped (b) Free-free (¢) Interconnection

Fig. 5. Configurations for the quasi static roll up using the free-free, clamped-clamped and interconnected model. System (57) is used for Fig. 5a.
System (58) is used for Fig. 5b. Fig. 5¢c shows the results when using the interconnection of the two. The first two cases require a Lagrange multiplier
to impose the boundary conditions while the last does not.

whereJ,; = -J dT[ is the matrix associated to the discretization of the differential operator and J ,;(e;) = —J; .(¢;) is the matrix discretiza-
tion of the nonlinear terms, modulated by the state variable. The interconnection is then performed using a feedback interconnection
leading to a final system of the form

Tint plincy | Iy
[Ml 0 ] d <e1> B [ Jie)) B B)m) ]<e1> . [Bl 0 ] <u(,,1>
- = : T r .
0 M2 dr €y _Bgml (Bl;"“) Jz(ez) €, 0 B22 U5o

5.1.0.2. Time domain simulation: Quasi static roll up of a cantilever beam. The benchmark problem of rolling up a cantilever beam is
used to demonstrate that the proposed formulation effectively avoids shear locking and is suitable for quasi-static simulations. An
initially straight cantilever beam is clamped at s = 0, enforcing the Dirichlet boundary conditions

v(0,1) =0, w(0,1) =0, n(0,1) =0, m(0,1) = 0.

A quasi-static torque is applied at the free end s = L, and according to reference results, a torque of mqyy,, = 27 E1/L rolls the beam
into a complete circular arc. The parameters from [33] are used, cf. Table 1. To enable quasi-static behavior within the intrinsi-
cally dynamical framework, inertial terms are neglected by setting p = 0. In this setting, velocity-type variables act as incremental
coordinates, and the simulation time ¢ € [0, 1] serves as a loading factor such that

my(t) = I Myollup-

The time integration is performed using the implicit midpoint method. The results for the free-free (corresponding to System (58)),
clamped-clamped (corresponding to System (57)) and interconnected formulation are shown in Fig. 5. The free-free case requires a
strong imposition of the clamp boundary condition. The clamped-clamped case required the strong imposition of the end bending
moment. The interconnected system does not require any Lagrange multiplier. The proposed formulation does not exhibit locking,
even under coarse spatial discretization.

5.2. The wave equation in 2D

The method is now applied to the two dimensional wave equation on a unit square domain
0, —divgrad¢p = 0, Q=1[0,17, (59)

split into subdomains Q, and Q, with a Dirichlet boundary condition on I'; and a Neumann boundary condition on I',. The discretiza-
tion of the wave equation starts again by expressing via the variables

ea =0 €;=grade. (60)

The system equivalent to (11) is then written as

o.e, 0 div| (e
o _ « 61
<ateﬂ> [grad 0 ] <eﬂ)’ V)

so the differential operator for the wave equations is £ = grad and its formal adjoint is now £* = — div. The discretization is obtained
by multiplying by the test functions and applying integration by parts as in (17) or (18). The resulting weak formulation for Q, is to
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find e, € L*(Q,) and ey € H(Q)) such that Vv, € L*(Q)) and Vv, € H¥(Q,) it holds

(Vgs Oreg)a, = +(Vy-diveg)q ©2)
. Tin

(g, 0epa, = —(divug, exda, + (Tpvg. ugidr, +(Tpvg.u, i r, -
where 7;g = g - nlq, is the normal trace. For the subdomain with the Neumann boundary condition ,, seek e, € H 1(©Q,) and
e; € HOM(Q,) to satisfy Vv, € H'(Q,) and Vv, € H(Q,)

Lin
(Vq: 01¢0)q, = —(gradvy, ep)g, + (ToUa- g 2)r, + (Talaty5 ), - -
(vg,0,€p)q, = (vg, gradey)q,,

where 7, f = flyq, is the Dirichlet trace.

5.2.0.1. Finite element spaces. The mesh consists of a structured triangular mesh. Discontinuous Galerkin of order k — 1 and Raviart-
Thomas of order k (RT,) elements are used for ¢, and eg, respectively on the Q, subdomain. Continuous Galerkin of order k
(CG,) element for e, ,, the Nédélec first kind of order k (NED,) for ey, on the Q, subdomain. The justification for this choice comes
from de Rham complex and the subcomplex obtained using finite element differential forms of the trimmed polynomial family. The
corresponding complex and subcomplex are given by

Hdiv div L2 Hl grad chrl
[ [ [ [n
RT), —2 DGy, CGy 2% NED,

The solution is again found on union of meshes, that is ¥, = Sfl u sz, with finite dimensional spaces for the Q; subdomain
given by

Vi = {uy € LX(Q)| VT € T}, uyly € DG,

Vo = {u, € HY@Q))| VT € T, w,ly € RT), (64)
where T now denotes a triangular mesh element of €. For the Q, subdomain the mixed finite element spaces are

Vs = {u, € H'(Q))| VT € T2, uy|y € CGY,

Vpa = (u, € HY(Qy)| VT € T2, uy |y € Ned). (65)

The finite dimensional system for the Q; subdomain becomes

M, 0 |d(eg [ 0 Dyiv| (€a1 0 0 LNl
0, M I ' = DT 0 ' + Brl Brim int |
paldr\eg, [~ Dy €p.1 5 s | \ Yol
_ r (66)
You ) _ 0 T[g <ea,1>
yi)"s _0 Tﬂim e B
while for the Q, subdomain it becomes
R EL e S o [ T ke [
ne )
0 My,[dries, D 0 €2 0 0 |\uy
g~ 67)
Yz),Z _ Taz 0 <ea,2>
02 )= | ¢ .
Yoo | Te™ 0] \ep2

5.2.0.2. Numerical experiments. For this example we consider three different numerical analyses:

* A convergence study;

¢ A conservation properties study. In particular, a curl free condition of the two subdomains and the power balance will be inves-
tigated.

¢ A spectral analysis.

The simulations take place on a unit square Q = [0, 1], decomposed by an interface placed diagonally between the lower left and
upper right vertex as shown in Fig. 6. For the first two analysis the Stormer-Verlet method has been used with time step time step of
At =0.001 [s].
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Fim‘c

Yy Oy

X

Fig. 6. Domain splitting for the wave equation.

5.2.0.3. Time domain simulations. An analytical solution has been used for the boundary inputs and the verification of the simulations.
The exact solution consists of a temporal and spatial part given by

F(0) = 2sin(V28) + 3 cos(V21), (68)
g(x,y) = cos(x) sin(). (69)

The exact solutions are given as

ex _ 4f

=g e? = fgradg, (70)

dr’ G

The boundary conditions have been obtained from the exact solutions

df
ealF] =8

a’ €p """|1"2 = angh“Z,

where n denotes the outward unit normal. The spatial convergence has been investigated by performing simulations for five different
spatial step sizes h and three polynomial degrees k = 1,2,3 for a total of 15 simulations. The convergence rates for the mixed finite
element formulation are well-known [34,35], and are thus expected to have a theoretical convergence rate of h*, apart from eyn-
This is due to the fact that e, , is discretized with a Lagrange element (whose convergence is given by #**! in the L? norm) whereas
e, it is discretized by a discontinuous Galerkin element (that convergences with a rate h*). Fig. 7 shows the L2-error of ¢, and ey for
both the Q; and Q, subdomains. The error is lower with smaller values of 4 and decreases faster with higher polynomial degrees. The
numerical solution is approaching the exact solution with a regular rate. This rate of convergence matches well with the theoretical
convergence rate /¥, but, as expected, the convergence of e, on Q, behaves slightly differently. For a polynomial order of k = I, it
converges with A**!, while for higher polynomial orders it converges with h*.
The second equation in (63) is satisfied strongly because of the inclusion Vj, C grad V, ,. This means that the following holds

curld,ey = curlgrade, = 0.

The curl free condition is instead only satisfied weakly in Eq. (62). Indeed, suppose v = curl v, where v is chosen in a Nédélec space
(recall that curl Ned, C RT, so this is a valid choice of test function), then it holds that

(curlv, d,e4)q, = (diveurlv, ey )q, =0,

for vanishing boundary conditions. The L? norm of curl e, is plotted in Fig. 8 and it is zero within machine precision. For the time
integration, the Stormer-Verlet scheme is used and each subdomain satisfies a power balance [23]. Since the solution for Q, is
computed at integer time steps, it holds
Hn+l —H"
1 1
At

+

n+% n %
- (ya ,ll() >()Q.l =0.

For Q, the solution is advanced at half-integer time steps so

1 1
— (g, = 0.

The power balance is determined for both the Q; and Q, subdomains in Figs. 9. For both parts of the domain the power balance is
observed to be in the order of 10~!2, hence zero within machine precision. If the entirer domain Q = Q, U Q, was considered than the
power balance would not be preserved to machine precision.
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Fig. 7. Convergence rates for wave equation.
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Fig. 9. The power balance for the wave equation in two dimensions.
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Table 2
Comparison of numerical and analytical eigenvalues of the 2D wave equation.
Relative error is computed as |@?"™ — 02| /@3 x 100.

Mode Proposed Classical ~ Analytical Rel. Err. Prop. Rel. Err. Class.

1 0.3536 0.3536 0.3536 0.002 0.017
2 0.7910 0.7912 0.7906 0.058 0.083
3 0.7908 0.7912 0.7906 0.035 0.085
4 1.0613 1.0622 1.0607 0.068 0.153
5 1.2763 1.2775 1.2748 0.124 0.216
6 1.2767 1.2775 1.2748 0.158 0.220
Eigenfunction 1, wi" = 0.3536 Eigenfunction 2, wy"™ = 0.7909 Eigenfunction 3, wy"™ = 0.7910

Eigenfunction 4, wj"™ = 1.0614 Eigenfunction 5, wl'™ = 1.2763 Eigenfunction 6, wi"" = 1.2768

5

Fig. 10. Numerical eigenvectors for variable e, wave equation under mixed boundary conditions.

5.2.0.4. Modal analysis. The analytical eigenvalues for the problem under examination are obtained via separation of variables,
leading to the following analytical eigenvalues

@™ = ﬁ\/@m — 12+ 2n- 102
The numerical eigenvalues are obtained via the generalized eigenproblem
lwnmuan'(/’mn = J’lpmn’

where i = v/—1 is the imaginary unit. For the discretization 30 finite elements per side are considered. The resulting eigenvalues are
shown in Table 2 whereas the eigenvectors are plotted in Fig. 10. The obtained eigenfrequencies match the analytical solution and
have comparable accuracy with respect to a classical finite element discretization using linear Lagrange elements CG,, with smaller
error overall.

5.3. Linear elastodynamics

We now consider the elastodynamics problem in a unit square domain
pd,u—-Dive =0, Q=[0,1]% (71)
Here p is the density, w is the displacement field, Div is row-wise divergence of a tensor and o the Cauchy stress tensor
o = K Gradu,

where K is the stiffness tensor and Gradu =€ := %(Vu + (Vu)") is the infinitesimal strain. An isotropic material under plane stress
is considered

_E
K(o) = —(1

5 (1 =v)o +vtr(o)I,),
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where FE is the Young modulus and v the Poisson ratio. The domain is split into subdomains Q; and Q, with a Dirichlet boundary
condition on I') and a Neumann boundary condition on I',. The discretization of the elastodynamics problem starts via the change of
variables

e, = ou, E;=o. (72)
where uppercase is used to denote tensor variables. The system equivalent to (11) is then written as
p  0ffoe, 0 Div| (e,
_ i 73
[0 C] (a,E,, Grad 0 |\E, 73)
where C := K~ is the compliance tensor. The differential operator for the elastodynamics problem is £ = Grad and its formal adjoint
is now £* = —Div applied to symmetric tensors. The discretization is obtained by multiplying by the test functions and applying

integration by parts as in (17) or (18). The resulting weak formulation for Q, is to find e, € L*(Q,; R?) (the L? space of two dimensional
vectors) and E; € H Div(Q,; S), where S = [Rf;ﬁ (the space of Div conforming symmetric tensors) such that Vv, € L>(Q,; R?) and
Vv, € HPV(Q); S) it holds

(Vg pOr€4)q, = +(Vy, Div Ey)g 4
. Tin
(Vy CO,Ep)o, = —(Div Vj. eq)q, + Ty V. ), + Ty Vgt -
where 7;S = S - n|yq, is the normal trace of a tensor (the traction). For the subdomain €, where the Neumann boundary condition
is natural, the functional setting is the following: seek E, € H'(Q,;R?) and E; € H™'R(Q,;S) to satisfy Vv, € H'(Q,;R?) and
V‘/ﬁ e Hrot R()I(QZ;S)
Tin
('Uavpatent)ﬂz = _(Grad Uy Eﬁ)ﬂz + (Tava’u()l)l"z + (nva’u,; ‘)l"

.2 Mlint” (75)

(V3,C0,Ep)q, = +(V;,Grade,)q,
where T,u = ulyqo, is the Dirichlet trace. The space H" Rot(@,: S) is the space of rot Rot conforming symmetric tensor, where the
rot Rot operator (also known as incompatibility operator in mechanics) is given by

TOtROt S = 0, + 0, Sy — 20,5

XX=yy y?

or it ca be interpreted equivalently as the double divergence of a rotated second order tensor

rotRot S = divDiv(JSJ "), J = <_01 é)

5.3.0.1. Finite element spaces. The mesh consists of a structured triangular mesh. Discontinuous Galerkin of order 1 (DG,) and
conforming Arnold Winther elements [36] of degree 3, denoted by AW, are used for e, | and Ej  respectively on the Q; subdomain.
Continuous Galerkin of order (CG,) element for a,, ,, and Discontinuous Galerkin of order 1 (DG, ) for e;, on the Q, subdomain. The
justification for this choice comes from the elasticity complex. However, given the fact that H™!R%(S) are yet not available in finite
element libraries, discontinuous Galerkin finite elements are used as on simplicial meshes it holds

Grad CG,(R?) C DG,_,(S),

leading to an exact discrete subcomplex. The commuting diagram for the complexes and corresponding subcomplexes is as follows

HDiv(S) % LQ(RZ) HI(R2) M Hrot Rot(S)
ln ln ln ln
AW; —PY DG, (R2) CGo(R2) —C12d DG, (S)
The solution is found on union of meshes, that is T, = %2‘ U 222, with finite dimensional spaces for the Q, subdomain given by

Vi = {uy € LAQ:RY)| VT € T, w,ly € DG (R?)),

. (76)
Vo1 = (S, € HP(Q:S)| VT € T}, S, |7 € AW, ),
where T now denotes a triangular mesh element of €,,. For the Q, subdomain the mixed finite element spaces are
Vs = {uy € H'(QuRY)| VT € T2, uyly € CGy(RY)), o
Vpa = (S) € L*(Qy:S)| VT € T}, 5, |1 € DG(S)).
The finite dimensional system for the Q, subdomain becomes
M, 0 |dfe\_| O Dpiy | (a1 0 0 |(uy,
0 My, o 0 Tl Bl [ )
paldi\ep ~Poiv €51 f; I 0.1
(78)

i) _ [0 T (&)
t ] in >
y:)r,ll 0 Tﬁl €51
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X

Fig. 11. Decomposition of the domain for the elasticity problem.

Table 3

Numerical eigenvalues of the elastodynamics
problem using the proposed method and a stan-
dard finite element discretization.

Mode Proposed Classical
1 2.3795 2.3803
2 3.3158 3.3166
3 3.5742 3.5751
4 4.5142 4.5156
5 4.9465 4.9468
6 5.1975 5.1980

while for the Q, subdomain it becomes
) Cine
[M‘,q2 0 ] d <em2> =[ 0 —DGrad] <ea’2>+ B,> B, uit,,12
0 My,|dr\es, Dl . 0 €50 0 0 [\ul}
Yoo\ _ T 0 <ea,2>
y;)rjlz T];im 0 eﬂ,z .

5.3.0.2. Modal analysis. For this example we consider only a spectral analysis. The simulations take place on a unit square Q = [0, 1],
decomposed by an interface placed diagonally between the lower left and upper right vertex as shown in Fig. 11.
The numerical eigenvalues are obtained via the generalized eigenproblem

79

"M, = Jp,,

where i = 1/—1 is the imaginary unit. For the discretization 10 finite elements per side are considered. The physical and geometrical
parameters are

L=1[m], p=2700[Kg/m’], E=70[GPal, v=03.

The resulting normalized eigenvalues, given by

@=wLﬂ£,
E

are shown in Table 3 whereas the eigenvectors for variable e, (corresponding to the velocity) are plotted using the magnitude of the
associated vector field in Fig. 12. The obtained eigenfrequencies have the same accuracy with respect to a classical finite element
discretization using quadratic Lagrange elements CG,.

5.4. Mindlin plate

We now consider the Mindlin plate problem in a unit square domain

phd,w—divg=0, Q=1[0,11

(80)
pJ 3,0 — (Div M + q) = 0.
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Eigenfunction 1, w{"™ = 2.3796 Eigenfunction 2, wj"™ = 3.3158 Eigenfunction 3, wi"™ = 3.5742

0.01 0.01
0.00 0.00

o
=

0.75 5 0.75
1.00 1.00 1.00 1.00

Eigenfunction 5, wi"" = 4.9465 Eigenfunction 6, wi"™ = 5.1975

0.02
0.01
0.00%,

0.00
0.25

1.00 1.00 1.00 1.00

Fig. 12. Numerical eigenvectors in terms of 4/e, - e, for the elastodynamics problem under mixed boundary conditions.

Here p is the density, 4 the thickness, J := h3/12, w is the vertical displacement, 0 the cross section rotation, q is shear force resulting
and M the bending moment tensor. The shear force and bending moment are relative to the kinematic variables w, 0 via the following
relations

q =Ky (gradw — 0), M = K, Grad 0,
where K, is the shear rigidity and K, the bending stiffness tensor. For isotropic materials these parameters take the following

expressions

ER
12(1 —v2)

where k is shear correction factor (that depends on the considered boundary conditions), G = E/(2(1 + v)) the shear modulus, E the
Young modulus and v the Poisson ratio. The discretization of the elastodynamics problem starts via the change of variables

_ (0w _ (v _ (Ka(gradw—-6)\ _ (g
e“(f;,@)_(w)’ E”‘( K, Grad >_<M>’ (81)

where uppercase is used to denote tensor variables. The system equivalent to (11) is then written as

Ky, =kGh,  K,(o)= ((1 = v)o + vtr(o)I,)

ph 0 0 0 ov 0 0 div 0 v

0 pJ 0 Oflow]|_| O 0 I, Divl| w 82)
0 0 Cq O o4q grad -I, 0 0llagl

o o o clom 0 Grad 0 0 |Mm

where Cy, := KS‘l is the shear compliance and C, := Kb‘1 is the bending compliance tensor. The differential operator £ and its
formal adjoint £* for the Mindlin plate problem are given by

_|grad -1, «_ _|div 0
ﬁ_[o Grad| £ T I, Div

The discretization is obtained by multiplying by the test functions and applying integration by parts as in (17) or (18). The resulting
weak formulation for Q, is to find v € L*(Q,), w € L*(Q,;R?) and ¢ € HW(Q,), M € HPV(Q,;S), such that Yy, € L%(Q,), V1, €
L2(Q;R?), Vap, € HPV(Q)) and V¥, € HUY(Q);S) it holds
Wy, pho,)g, =+, divg)g, .
(W, pJO,w)q, =+, Div M + q)q,,
(g, Cn0i @D, = —(divep,, v)q, = (Yg. w)g, + (P, - 1. 0)r +{P, - n.0)r,
(. Cyo,M)g = —Div¥ y,w)g + (¥ - nw)p, +{(¥y -1, w)r

(83)

int”
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where the trace operator 7} is the normal trace applied to a consisting of a tensor and a vector

A q "fl|aQ1
v M - nlyq,
For the subdomain Q, where the Neumann boundary condition is natural, the functional setting is the following:

seek v € H'(Q;R?), w € H'(Q,;R?) and M € H™R(Q,;S), g € H™(Q,) to satisfy Yy, € H'(Q,), Vb, € H'(Q,;R?), V¥ ,, €
Hmt Rot(gz;g)’ Vq c Hrot(gz)

(wy, phov)g, = —(gradw,, @), + (W @ - M), + (W, @ M),
(¢(D’PJ¢3;W)Q] = —(Grad ?Pwa M)Ql + (’l/)a)a q)Ql + (’l/)a)’ M - n>F| + <¢(1)’ M - ")r
Wy Ca0, @, = +(th,. grad v — w)q, .
(@ 5. Cy0, Mg,
where 7 is the Dirichlet trace applied to a tuple consisting of a scalar and a vector
(0-()
w wlaq,
5.4.0.1. Finite element spaces. The mesh consists of a structured triangular mesh. On the Q; subdomain, Discontinuous Galerkin of
order 1 (DG,) are used for v and w, Raviart-Thomas elements of degree two RT, are used for ¢ and conforming Arnold Winther
elements [36] of degree three are used for M. On the Q, subdomain Continuous Galerkin of order (CG,) element for v, w, and
Discontinuous Galerkin of order 1 (DG,) for g, M. The justification for this choice comes from the fact that the Mindlin plate
combines the wave equation with 2D elasticity. Therefore the finite element subcomplex are the same as the ones used in Section 5.2

and 5.3. The solution is found on union of meshes, thatis ¥, = sffl u fsz, with finite dimensional spaces for the Q; subdomain given
by

int”

(84)

= +(W,,,Grad c.u)g1 )

Vi = {uy, € LA(Q) x LX(Q: RY)| VT € T}, w,ly € DG, x DG, (R?)), )
i i Q
Vs =Sy € HY Q) x HPV(Q,:S)| VT € T, Syly € RT, x AW3},
where T now denotes a triangular mesh element of €,,. For the Q, subdomain the mixed finite element spaces are
Vs = {uy € H'(Q) x H'(Qy;RY)| VT € T)2, uyly € CG, x CG,(RY)), 6
Vo =1{S) € LA(QyR*) x LX(Q,:S)| VT € s‘h)Z, S|t € DG|(R?) x DG(S)}.
Introducing the finite element approximation, the following ODE is obtained for subdomain Q,
(™, | (v) [ o 0 Dy 0 |v 0 0
.M d|w 0 0 P Dp;, || W 0 0 u
D w,1 | 4 1 Div 1 + v 87
“8 ™, (ar|m |T[-DT, -PT 0 0 flm| By 0 |\u, (87)
[ M, | @) | © -D]. 0 0 |{q 0 By,
The discrete system for the domain Q, is given by
r T T
M, , vy 0 0 Dy 0 ) B, 0
T
Diag Moz fdpwof _| 0 0 P Do | ™[4 0 Be < Y > (88)
ma |dt| my ) -pPT 0 n, 0 0 |\uy,
_Mq’z_ m, | 0 Dg,a 0 0 m, 0 0

5.4.0.2. Modal analysis. We consider an analogous setting to the linear elastodynamics example, on a unit square Q = [0, 1]%, decom-
posed by an interface placed diagonally between the lower left and upper right vertex as shown in Fig. 11. The numerical eigenvalues
are obtained via the generalized eigenproblem

"M, = Jap,.

where i = y/—1 is the imaginary unit. For the discretization 10 finite elements per side are considered. The physical and geometrical
paramters are parameters are those of aluminum

L=1[m], h =0.01 [m], p = 2700 [Kg/m?], E =70 [GPa], v=03, k = 0.8601.

We consider a small thickness to show the robustness of the proposed methodology against shear locking phenomena. The resulting
normalized eigenvalues, given by

. P) E
—wly/2, G=_—% |
=0\ G 20 +v)

are shown in Table 4 whereas the eigenvectors for variable v (corresponding to the velocity) are plotted in Fig. 13. The obtained
eigenfrequencies are compared against a classical primal discretization using quadratic elements for w and 6, with respect to reference
[371, where an analytical approach is used. It can be noticed that the proposed discretization achieves better results and the mixed
discretization avoids shear locking phenomena introducing different variables for w and gq.
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Table 4
Numerical eigenvalues of the Mindlin plate problem using the proposed
method and a standard finite element discretization.

Mode Proposed Classical Reference [37] Rel. Error (%)

Proposed Classical

1 0.1168 0.1192 0.1171 0.256 1.793
2 0.1951 0.2008 0.1951 0.000 2.922
3 0.3094 0.3208 0.3093 0.032 3.718
4 0.3739 0.3876 0.3740 0.027 3.636
5 0.3940 0.4137 0.3931 0.229 5.240
6 0.5700 0.6050 0.5695 0.088 6.234
Eigenfunction 1, wi"" = 0.1169 Eigenfunction 2, wj"" = 0.1952 Eigenfunction 3, wi"" = 0.3095

0.75 0.75 0.75 0.75 0.75 0.75
1.00 1.00 1.00 1.00 1.00 1.00

Eigenfunction 4, wj"" = 0.3740 Eigenfunction 5, wi™ = 0.3940 Eigenfunction 6, wg"™ = 0.5701

5

1.00 1.00 1.00 1.00 1.00 1.00

Fig. 13. Numerical eigenvectors in terms of the vertical velocity v for the Mindlin plate. The proposed approach and a standard primal discretization
are compared with the results of [37].

6. Conclusion

In this contribution a numerical strategy to impose mixed boundary conditions in port-Hamiltonian systems has been detailed.

To this aim, a primal-dual formulation leveraging the machinery of Hilbert complexes has been used. The domain decomposition
can be reinterpreted under the lens of Discontinuous Galerkin method: the interconnection of the two subdomains corresponds to
a physically motivated choice of numerical fluxes. Indeed the natural boundary condition for each subdomain corresponds to the
output of the dual formulation. The time integration can be performed using methods capable of preserving the Poisson structure of
the system. A natural choice in the linear case is given by the implicit midpoint method. Integrators capable of decoupling the two
subdomains, like the Stormer-Verlet scheme, are also of interest as they reduce the computational burden. The methodology can be
extended to nonlinear problems but is limited to the case where the nonlinearity does not interfere with the differential operators.
The definition of an interface between two subdomains may represent a bottleneck in applications where the boundary subpartitions
present an intricate topology. However, this contribution represents a proof of concept that shows that primal-dual mixed formulations
can be used simultaneously. Problems with mixed boundary conditions can then be represented as ordinary differential equations
rather than differential algebraic ones. This presents advantages that go beyond simulation purposes, as the removal of algebraic
constraints is beneficial also in the context of numerical optimization.
An interesting perspective would be to push forward the method and perform the interconnection on each finite element. This
would lead to a completely discontinuous Galerkin method where each finite element exchanges information with the adjacent
elements via a feedback interconnection. Furthermore, it can be integrated as an actual domain decomposition approach to avoid
the computational cost of solving monotonically large systems arising from partial differential equations. This idea may be combined
with model reduction approaches to reduce each subdomain before performing the interconnection. The presented idea may also find
application in static problems, very much in the same spirit of hybrid and discontinuous methods.
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