
 
 

Delft University of Technology

Document Version
Final published version

Licence
CC BY

Citation (APA)
De Jong, S., Brugnoli, A., Rashad, R., Zhang, Y., & Stramigioli, S. (2026). A domain decomposition strategy for natural
imposition of mixed boundary conditions in port-Hamiltonian systems. Applied Mathematical Modelling, 156, Article
116775. https://doi.org/10.1016/j.apm.2026.116775

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.1016/j.apm.2026.116775


Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

A domain decomposition strategy for natural imposition of mixed 

boundary conditions in port-Hamiltonian systems

Sjoerd De Jong a, Andrea Brugnoli b,∗, Ramy Rashad c, Yi Zhang d, 
Stefano Stramigioli e

aDepartment of Microelectronics, Delft University of Technology, Delft, Netherlands
b ICA, Université de Toulouse, ISAE-SUPAERO, INSA, CNRS, MINES ALBI, UPS, Toulouse, France
c Control and Instrumentation Engineering department and Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University 
of Petroleum and Minerals, Saudi Arabia
d School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, China
e Robotics and Mechatronics Department, University of Twente, The Netherlands

a r t i c l e  i n f o

Johann Sienz
Keywords:
Port-Hamiltonian systems
Finite element exterior calculus
Mixed boundary conditions
Geometrically exact beams
Mechanical vibrations
Shear locking

 a b s t r a c t

In this contribution, a finite element scheme to impose mixed boundary conditions without intro-
ducing Lagrange multipliers is presented for hyperbolic systems described as port-Hamiltonian 
systems. The strategy relies on finite element exterior calculus and domain decomposition to in-
terconnect two systems with dual input-output behavior. The spatial domain is split into two 
parts by introducing an arbitrary interface. Each subdomain is discretized with a mixed finite 
element formulation that introduces a uniform boundary condition in a natural way as the input. 
In each subdomain the finite element spaces are selected from a finite element subcomplex to 
obtain a stable discretization. The two systems are then interconnected together by making use 
of a feedback interconnection. This is achieved by discretizing the boundary inputs using appro-
priate spaces that couple the two formulations. The final systems include all boundary conditions 
explicitly and do not contain any Lagrange multiplier. Time integration is performed using the 
implicit midpoint or Störmer-Verlet scheme. The method can also be applied to semilinear sys-
tems containing algebraic nonlinearities. The proposed strategy is tested on different examples: 
geometrically exact intrinsic beam model, the wave equation, membrane elastodynamics and the 
Mindlin plate. Numerical tests assess the conservation properties of the scheme, the effectiveness 
of the methodology and its robustness against shear locking phenomena.

1.  Introduction

To simulate, design and analyze modern engineering technologies, modular modeling tools are of great importance, as they allow 
to simplify validation and verification, speed up prototyping and encapsulate complexity. Paradigms based on a modular description 
of systems are implemented in many widespread libraries like Simulink1 or Dimola2. In many cases, a reliable description of a 
complex technological devices is achieved by using coupled systems of partial differential equations (PDE) where different physics 
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$\Omega \subset \mathbb {R}^d$


$\phi (t): \Omega \times [0, T_{\mathrm {end}}] \rightarrow \mathbb {R}$


\begin {equation}\label {eq:irr_wave} \partial _{tt}^2 \phi - \div \grad \phi = 0,\end {equation}


\begin {equation}\label {eq:dirbc_wave} \phi |_{\partial \Omega } = g(t).\end {equation}


\begin {equation*}H = \frac {1}{2} \int _\Omega (\partial _t \phi )^2 + ||\grad \phi ||^2 \; \rm {d}\Omega .\end {equation*}


\begin {equation}\alpha := \partial _t \phi , \qquad \bm {\beta } = \grad \phi . \label {Xeqn3-3}\end {equation}


\begin {equation}\label {eq:mix_wave} \begin {pmatrix} \partial _t \alpha \\ \partial _t \bm {\beta } \end {pmatrix} = \underbrace {\begin {bmatrix} 0 & \div \\ \grad & 0 \\ \end {bmatrix}}_{J} \begin {pmatrix} \alpha \\ \bm {\beta } \end {pmatrix}, \qquad \alpha |_{\partial \Omega } = \partial _t g:= u.\end {equation}


$J$


$\grad ^*= -\div $


$u$


\begin {equation*}H = \frac {1}{2} \int _\Omega \alpha ^2 + ||\bm \beta ||^2 \mathrm {d}\Omega , \qquad \qquad \delta _{\alpha } H = \alpha , \quad \delta _{\bm \beta } H = \bm \beta ,\end {equation*}


$\delta _\alpha $


$\delta _\beta $


\begin {equation}\label {eq:wave_power_balance} \begin {aligned} \dot {H}(\alpha ,\bm \beta ) &= \int _\Omega \delta _\alpha H \cdot \partial _t \alpha + \delta _{\bm \beta } H \cdot \partial _t \bm {\beta } \; \mathrm {d}\Omega , \\ &= \int _\Omega \alpha \cdot \div \bm {\beta } + \bm \beta \cdot \grad {\alpha } \; \mathrm {d}\Omega , \\ &= \int _\Omega \div (\alpha \; \bm {\beta }) \; \mathrm {d}\Omega = \int _{\partial \Omega } \alpha \; \bm {\beta } \cdot \bm {n} \; \mathrm {d}\Gamma , \end {aligned}\end {equation}


$\bm {n}$


\begin {equation*}\dot {H} = \int _{\partial \Omega } u y\; \mathrm {d}\Gamma \end {equation*}


$y$


\begin {equation}y := \bm {\beta } \cdot \bm {n}|_{\partial \Omega } = \grad \phi \cdot \bm {n}|_{\partial \Omega } \label {Xeqn6-6}\end {equation}


$\Omega \subset \mathbb {R}^d$


$d\in \{1,2,3\}$


$\partial \Omega =\overline {\Gamma }_1\cup \overline {\Gamma }_2$


$\Gamma _1\cap \Gamma _2=\emptyset $


$\bm {x}=\{\bm {\alpha },\bm {\beta }\}$


$\bm {\alpha }(t) \in L^2(\Omega ; \mathbb {A})$


$\bm {\beta }(t) \in L^2(\Omega ; \mathbb {B})$


$\mathbb {A}, \; \mathbb {B}$


$\mathcal {L} :L^2(\Omega ; \mathbb {A})\rightarrow L^2(\Omega ; \mathbb {B})$


$\bm {u}\in C_0^\infty (\Omega ,\mathbb {A})$


$\bm {v}\in C_0^\infty (\Omega ,\mathbb {B})$


$\Omega $


$\mathcal {L}$


$\mathcal {L}:L^2(\Omega ; \mathbb {A})\rightarrow L^2(\Omega ; \mathbb {B})$


$\mathcal {L}$


$\mathcal {L^*}:L^2(\Omega ; \mathbb {B})\rightarrow L^2(\Omega ; \mathbb {A})$


\begin {equation}\innerproduct {\mathcal {L}\bm {u}}{\bm {v}} = \innerproduct {\bm {u}}{\mathcal {L}^*\bm {v}}. \label {Xeqn7-7}\end {equation}


$\innerproduct {f}{g} = \int _\Omega f \cdot g \, d{\Omega }$


$\mathcal {L}$


$\mathcal {L}^*$


$H^\mathcal {L}$


$H^{\mathcal {L}^*}$


\begin {equation}\begin {split} H^\mathcal {L}(\Omega ) &= \{\bm {u} \in L^2(\Omega ,\mathbb {A})|\; \mathcal {L}\bm {u} \in L^2(\Omega ,\mathbb {B})\}, \\ H^{\mathcal {L}^*}(\Omega ) &= \{\bm {v} \in L^2(\Omega ; \mathbb {B})|\; \mathcal {L}^*\bm {v} \in L^2(\Omega ; \mathbb {A})\}. \end {split} \label {eq:Spaces-H^L-H^L*}\end {equation}


$\bm {e}_\alpha \in {H}^{\mathcal {L}}(\Omega ), \; \bm {e}_\beta \in {H}^{\mathcal {L}^*}(\Omega )$


\begin {equation}\label {eq:abstract_intbyparts} \innerproduct {\mathcal {L}\bm {e}_\alpha }{\bm {e}_\beta } = \innerproduct {\bm {e}_\alpha }{\mathcal {L}^*\bm {e}_\beta } + \boundaryproduct {\mathcal {T}_{\alpha }\bm {e}_\alpha }{\mathcal {T}_{\beta }\bm {e}_\beta },\end {equation}


$\mathcal {T}_\alpha $


$\mathcal {T_\beta }$


$\boundaryproduct {f}{g} = \int _{\partial \Omega } f \cdot g \, d\Gamma $


$\mathcal {L}:= \mathrm {grad}$


$\mathcal {L}^* = -\mathrm {div}$


$f \in H^1(\Omega ), \; \bm {v} \in H^{\mathrm {div}}(\Omega )$


\begin {equation}\innerproduct {\grad f}{\bm {v}} = - \innerproduct {f}{\div \bm {v}} + \boundaryproduct {f}{\bm {v} \cdot \bm {n}}. \label {Xeqn10-10}\end {equation}


\begin {equation}\begin {pmatrix} \partial _t{\bm {\alpha }} \\ \partial _t{\bm {\beta }} \end {pmatrix} = \begin {bmatrix} 0 & -\mathcal {L}^* \\ \mathcal {L} & 0 \end {bmatrix} \begin {pmatrix} \delta _{\bm {\alpha }} H\\ \delta _{\bm {\beta }} H \end {pmatrix}. \label {eq:energy_co-energy-system}\end {equation}


$H$


$\delta _{\bm {\alpha }} H, \delta _{\bm {\beta }} H$


\begin {equation}H = \frac {1}{2}\innerproduct {\bm {\alpha }}{\mathcal {Q}_\alpha \bm {\alpha }} + \frac {1}{2}\innerproduct {\bm {\beta }}{\mathcal {Q}_\beta \bm {\beta }}, \label {eq:linearHamiltonian}\end {equation}


$\mathcal {Q}_\alpha $


$\mathcal {Q}_\beta $


\begin {equation}\bm {e}_\alpha := \frac {\delta H}{\delta \bm {\alpha }} = \mathcal {Q}_\alpha \bm {\alpha }, \qquad \qquad \bm {e}_\beta := \frac {\delta H}{\delta \bm {\beta }} = \mathcal {Q}_\beta \bm {\beta }. \label {eq:co-energy-variables}\end {equation}


\begin {equation*}\bm {\alpha }=\mathcal {M}_\alpha \bm {e}_\alpha , \qquad \bm {\beta } = \mathcal {M}_\beta \bm {e}_\beta ,\end {equation*}


$\mathcal {M}_\alpha :=\mathcal {Q}_\alpha ^{-1}, \; \mathcal {M}_\beta :=\mathcal {Q}_\beta ^{-1}$


\begin {equation}H = \frac {1}{2}\innerproduct {\bm {e}_\alpha }{\mathcal {M}_\alpha \bm {e}_\alpha } + \frac {1}{2}\innerproduct {\bm {e}_\beta }{\mathcal {M}_\beta \bm {e}_\beta }. \label {eq:co-energyHamiltonian}\end {equation}


\begin {equation}\label {eq:co-energy-system} \begin {split} \begin {bmatrix} {\mathcal {M}}_{\alpha } & 0 \cr 0 & {\mathcal {M}}_{\beta } \end {bmatrix} \begin {pmatrix} {\partial }_t {\bm e}_{\alpha }\\ {\partial }_t {\bm e}_{\beta } \end {pmatrix} &= \begin {bmatrix} 0 & -{\mathcal {L}}^* \\ {\mathcal {L}} & 0 \end {bmatrix} \begin {pmatrix} {\bm e}_{\alpha } \\ {\bm e}_{\beta } \end {pmatrix}, \qquad \begin {aligned} {\bm e}_{\alpha } \in H^{\mathcal {L}}(\Omega ), \\ {\bm e}_{\beta } \in H^{\mathcal {L}^*}(\Omega ), \end {aligned}\\ \begin {pmatrix} \bm {u}_{\partial , 1} \\ \bm {u}_{\partial , 2} \\ \end {pmatrix} &= \begin {bmatrix} {\mathcal {T}}_{\alpha }{\vert }_{\Gamma _1} & {0} \cr {0} & {\mathcal {T}}_{\beta } {\vert }_{\Gamma _2} \end {bmatrix} \begin {pmatrix} {\bm e}_{\alpha } \\ {\bm e}_{\beta } \end {pmatrix}, \\ \begin {pmatrix} {\bm y}_{\partial , 1} \\ {\bm y}_{\partial , 2} \\ \end {pmatrix} &= \begin {bmatrix} 0 & {\mathcal {T}}_{\beta }{\vert }_{\Gamma _1} \\ {\mathcal {T}}_{\alpha } {\vert }_{\Gamma _2} & 0 \end {bmatrix} \begin {pmatrix} {\bm e}_{\alpha } \\ {\bm e}_{\beta } \end {pmatrix}. \end {split}\end {equation}


$\bm {u}_{\partial , i}$


$\bm {y}_{\partial , i}$


$\bm {u}_{\partial , i}$


\begin {equation*}\dot {H} = \boundaryproduct [\Gamma _1]{\bm {u}_{\partial , 1}}{\bm {y}_{\partial , 1}} + \boundaryproduct [\Gamma _2]{\bm {u}_{\partial , 2}}{\bm {y}_{\partial , 2}}.\end {equation*}


$\mathcal {T}_\alpha \vert _{\Gamma _i}, \; \mathcal {T}_\beta \vert _{\Gamma _i}, \; i=\{1, 2\}$


$\bm {v}=\{\bm {v}_\alpha ,\bm {v}_\beta \}$


$\Omega $


\begin {equation}\begin {split} \innerproduct {\bm {v}_\alpha }{\mathcal {M}_\alpha \partial _t\bm {e}_{\alpha }} &= -\innerproduct {\bm {v}_\alpha }{\mathcal {L}^*\bm {e}_\beta }, \\ \innerproduct {\bm {v}_\beta }{\mathcal {M}_\beta \partial _t\bm {e}_{\beta }} &= \innerproduct {\bm {v}_\beta }{\mathcal {L}\bm {e}_\alpha }. \end {split} \label {Xeqn16-16}\end {equation}


$\bm {u}_{\partial , 1}$


$\bm {u}_{\partial , 2}$


$\bm {\lambda }_{\partial ,i}$


$\bm {u}_{\partial , 1}$


$\bm {u}_{\partial , 2}$


$\bm {e}_{\alpha } \in L^2(\Omega ; \mathbb {A})$


$\bm {e}_{\beta } \in H^{\mathcal {L}^*}(\Omega )$


\begin {equation}\begin {aligned} \innerproduct {\bm {v}_{\alpha }}{\mathcal {M}_\alpha \partial _t\bm {e}_{\alpha }} &= -\innerproduct {\bm {v}_{\alpha }}{\mathcal {L}^*\bm {e}_{\beta }}, \\ \innerproduct {\bm {v}_{\beta }}{\mathcal {M}_\beta \partial _t\bm {e}_{\beta }} &= \innerproduct {\mathcal {L}^*\bm {v}_{\beta }}{\bm {e}_{\alpha }} + \boundaryproduct [\Gamma _1]{\mathcal {T}_{\beta }\bm {v}_{\beta }}{\bm {u}_{\partial , 1}} + \boundaryproduct [\Gamma _2]{\mathcal {T}_{\beta }\bm {v}_{\beta }}{\bm {\lambda }_{\partial , 2}}, \\ \mathcal {T}_{\beta }|_{\Gamma _2} \bm {e}_{\beta } &= \bm {u}_{\partial , 2}, \\ \bm {y}_{\partial , 1} &= \mathcal {T}_\beta |_{\Gamma _1} \bm {e}_{\beta }, \\ \bm {y}_{\partial , 2} &= \bm {\lambda }_{\partial , 2}. \end {aligned} \qquad \begin {aligned} \text {for all } \bm {v}_{\alpha } \in L^2(\Omega ; \mathbb {A}), \\ \text {for all } \bm {v}_{\beta } \in H^{\mathcal {L}^*}(\Omega ), \\ {} \\ {} \\ {} \end {aligned} \label {eq:weak_conforming_L}\end {equation}


$\bm {u}_{\partial , 2}$


$\bm {y}_{\partial , 1}$


$\bm {u}_{\partial , 2}$


$\bm {u}_{\partial , 1}$


$\bm {e}_{\alpha } \in H^\mathcal {L}(\Omega ), \; \bm {e}_\beta \in L^2(\Omega ; \mathbb {B})$


\begin {equation}\begin {aligned} \innerproduct {\bm {v}_{\alpha }}{\mathcal {M}_\alpha \partial _t\bm {e}_{\alpha }} &= -\innerproduct {\mathcal {L}\bm {v}_{\alpha }}{\bm {e}_{\beta }} + \boundaryproduct [\Gamma _1]{\mathcal {T}_{\alpha }\bm {v}_{\alpha }}{\bm {\lambda }_{\partial , 1}} + \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\bm {v}_{\alpha }}{\bm {u}_{\partial , 2}}, \\ \innerproduct {\bm {v}_{\beta }}{\mathcal {M}_\beta \partial _t\bm {e}_{\beta }} &= \innerproduct {\bm {v}_{\beta }}{\mathcal {L}\bm {e}_{\alpha }}, \\ \mathcal {T}_{\alpha }|_{\Gamma _1}\bm {e}_{\alpha } &= \bm {u}_{\partial , 1}, \\ \bm {y}_{\partial , 1} &= \bm {\lambda }_{\partial ,1}. \\ \bm {y}_{\partial , 2} &= \mathcal {T}_\alpha |_{\Gamma _2} \bm {e}_{\alpha }. \\ \end {aligned} \qquad \begin {aligned} \text {for all } \bm {v}_{\alpha } \in H^\mathcal {L}(\Omega ), \\ \text {for all } \bm {v}_{\beta } \in L^2(\Omega ; \mathbb {B}), \\ {} \\ {} \\ {} \end {aligned} \label {eq:weak_conforming_L18}\end {equation}


$i$


$i=\{1, 2\}$


\begin {equation}\begin {aligned} \bm {v}_{\alpha , i} &\approx \sum _{k=1}^{n_{\alpha , i}}\chi _{\alpha , i}^k(\bm {x})v_{\alpha , i}^k, & \bm {v}_{\beta , i} &\approx \sum _{k=1}^{n_{\beta , i}}\chi _{\beta , i}^k(\bm {x})v_{\beta , i}^k, & \bm {u}_{\partial , i} &\approx \sum _{k=1}^{n_{\partial , i}}\chi _{\partial , i}^k(\bm {x})u_{\partial , i}^k(t), \\ \bm {e}_{\alpha , i} &\approx \sum _{k=1}^{n_{\alpha , i}}\chi _{\alpha , i}^k(\bm {x})e_{\alpha , i}^k(t), & \bm {e}_{\beta , i} &\approx \sum _{k=1}^{n_{\beta , i}}\chi _{\beta , i}^k(\bm {x})e_{\beta , i}^k(t), & \bm {\lambda }_{\partial , i} &\approx \sum _{k=1}^{n_{\partial , i}}\chi _{\partial , i}^k(\bm {x})\lambda _{\partial , i}^k(t), \end {aligned} \label {eq:BasisFunction}\end {equation}


$\chi _{\alpha , i}, \; \chi _{\beta , i}, \; \chi _{\partial , i}$


$n_{\alpha , i}, \; n_{\beta , i}$


$\bm {e}_{\alpha }, \bm {e}_{\beta }$


$\Omega _i$


$\bm {e}_{\alpha , i}, \; \bm {e}_{\beta , i}$


\begin {equation}V_{\alpha , i} = \mathrm {span}\{\chi _{\alpha , i}\}, \qquad V_{\beta , i} = \mathrm {span}\{\chi _{\beta , i}\}, \qquad i=\{1, 2\}. \label {Xeqn20-20}\end {equation}


\begin {equation}V_{\alpha , 1} \subset L^2(\Omega ; \mathbb {A}), \quad V_{\beta , 1} \subset H^{\mathcal {L}^*}(\Omega ), \qquad V_{\alpha , 2} \subset H^{\mathcal {L}}(\Omega ), \quad V_{\beta , 1} \subset L^2(\Omega ; \mathbb {B}). \label {Xeqn21-21}\end {equation}


$V_{\alpha , i}, \; V_{\beta , i}$


$\{H^k, \mathcal {L}^k\}_{k \in \mathbb {Z}}$


$H^k$


$\mathcal {L}^k: H^k \to H^{k+1}$


$\mathcal {L}^{k+1} \circ \mathcal {L}^k = 0$


$k \in \mathbb {Z}$


\begin {equation}\begin {aligned} H^1(\Omega ) \xrightarrow {\grad } H^{\curl }(\Omega ) \xrightarrow {\curl } H^{\div }(\Omega ) \xrightarrow {\div } L^2(\Omega ) \end {aligned} \label {Xeqn22-22}\end {equation}


\begin {equation}\begin {aligned} L^2(\Omega ) \xleftarrow {\div } \mathring {H}^{\div }(\Omega ) \xleftarrow {\curl } \mathring {H}^{\curl }(\Omega ) \xleftarrow {\grad } \mathring {H}^1(\Omega ) \end {aligned} \label {Xeqn23-23}\end {equation}


$V_{\alpha , i}, \; V_{\beta , i}$


$\{H^k, \mathcal {L}^k\}_{k \in \mathbb {Z}}$


$\{V^k \subseteq H^k\}_{k \in \mathbb {Z}}$


$\mathcal {L}^k(V^k) \subseteq V^{k+1}$


$k \in \mathbb {Z}$


$V^k$


$H^k$


$\mathcal {L}^k$


$V^k$


$V^k$


$V^{k+1}$


\begin {equation}\label {eq:spaces_inclusion} \mathcal {L}^*(V_{\beta , 1}) \subset V_{\alpha , 1}, \qquad \qquad \mathcal {L}(V_{\alpha , 2}) \subset V_{\beta , 2}.\end {equation}


\begin {equation*}V_{\alpha , 2} \xrightarrow {\mathcal {L}} V_{\beta , 2}, \qquad \qquad V_{\beta , 1} \xrightarrow {\mathcal {L}^*} V_{\alpha , 1}.\end {equation*}


$V_{\partial , i} = \mathrm {span}\{\chi _{\partial , i}\}$


$V_{\partial , i}$


$\Gamma _i$


$V_{\beta , 1} \subset H^{\mathcal {L}^*}(\Omega )$


$V_{\alpha , 2} \subset H^{\mathcal {L}}(\Omega )$


\begin {equation}\label {eq:boundary_basis_boundary} \begin {aligned} \mathrm {span}\{\chi _{\partial , 1}\} &:= \mathrm {span} \{\mathrm {\mathcal {T}_\alpha |_{\Gamma _1}\chi _{\alpha , 2}}\}, \\ \mathrm {span}\{\chi _{\partial , 2}\} &:= \mathrm {span} \{\mathcal {T}_\beta |_{\Gamma _2} \chi _{\beta , 1}\}. \end {aligned}\end {equation}


\begin {equation}\begin {aligned} \begin {bmatrix} \mathbf {M}_{\alpha , 1} & 0 & 0\\ 0 & \mathbf {M}_{\beta , 1} & 0 & \\ 0 & 0 & 0 \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1} \\ \bm {\lambda }_{\partial , 2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\mathcal {L}^*} & 0 \\ \mathbf {D}_{\mathcal {L}^*}^\top & 0 & (\mathbf {T}_\beta ^{\Gamma _2})^\top \mathbf {M}^{\Gamma _2} \\ 0 & -\mathbf {T}_{\beta }^{\Gamma _2} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1} \\ \bm {\lambda }_{\partial , 2} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_\beta ^{\Gamma _1} & 0 \\ 0 & \mathbf {I} \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial , 1} \\ \mathbf {u}_{\partial , 2} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial , 1} \\ \mathbf {y}_{\partial , 2} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_\beta ^{\Gamma _1} & 0 \\ 0 & 0 & \mathbf {I} \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1}, \\ \bm {\lambda }_{\partial , 2} \end {pmatrix}, \end {aligned} \label {eq:systemL*}\end {equation}


\begin {equation}\begin {aligned} &[\mathbf {M}_{\alpha , 1}]_{mn} =\innerproduct {\chi _{\alpha , 1}^m}{\mathcal {M}_\alpha \chi _{\alpha , 1}^n}, \\ &[\mathbf {M}_{\beta , 1}]_{pq} = \innerproduct {\chi _{\beta , 1}^p}{\mathcal {M}_\beta \chi _{\beta , 1}^q}, \\ \end {aligned}\qquad \begin {aligned} &[\mathbf {D}_{\mathcal {L}^*}]_{mp} = \innerproduct {\chi _{\alpha , 1}^m}{\mathcal {L}^*\chi _{\beta , 1}^p}, \\ &[\mathbf {M}^{\Gamma _2}]_{rs} = \boundaryproduct [\Gamma _2]{\chi _{\partial , 2}^r}{\chi _{\partial , 2}^s}, \end {aligned} \qquad \begin {aligned} &[\mathbf {B}_\beta ^{\Gamma _1}]_{pl} = \boundaryproduct [\Gamma _1]{\mathcal {T}_\beta \chi _{\beta , 1}^p}{\chi _{\partial , 1}^l}, \\ &{} \end {aligned} \label {eq:Operational-matrices_1}\end {equation}


$(m,n) \in \{1, \dots , n_{\alpha , 1}\}, \; (p,q) \in \{1, \dots , n_{\beta , 1}\}, \; (r,s) \in \{1,\dots , n_{\partial , 2}\}, \; l \in \{1,\dots , n_{\partial , 1}\}$


\begin {equation}[\mathbf {T}_{\beta }^{\Gamma _i}]_{kp} = \begin {cases} 1, \quad \text {if} \quad \mathcal {T}_\beta \chi _{\beta , 1}^p \not \equiv 0 \quad \text {on } \Gamma _i, \quad i=\{1,2\}, \\ 0, \quad \text {otherwise}, \end {cases} \label {Xeqn28-28}\end {equation}


$k=1, \dots , \mathrm {dim} \{\mathcal {T}_\beta \chi _{\beta , 1}^i \not \equiv 0\}_{i=1}^{n_{\beta , 1}}$


$\Gamma _i$


$\mathbf {B}_\beta ^{\Gamma _1}$


\begin {equation*}\mathbf {B}_\beta ^{\Gamma _1} = (\bm {\Psi }^{\Gamma _1} \mathbf {T}_\beta ^{\Gamma _1})^\top , \quad \text {where } \quad [\bm {\Psi }^{\Gamma _1}]_{lj}:= \boundaryproduct [\Gamma _1]{\chi _{\partial , 1}^l}{\chi _{\partial , 2}^j}.\end {equation*}


\begin {equation}\begin {aligned} \begin {bmatrix} \mathbf {M}_{\alpha , 2} & 0 & 0\\ 0 & \mathbf {M}_{\beta , 2} & 0 \\ 0 & 0 & 0 \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha , 2} \\ \mathbf {e}_{\beta , 2} \\ \bm {\lambda }_{\partial , 1} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_\mathcal {L}^\top & (\mathbf {T}_{\alpha }^{\Gamma _1})^\top \mathbf {M}^{\Gamma _1} \\ \mathbf {D}_\mathcal {L} & 0 & 0 \\ -\mathbf {T}_{\alpha }^{\Gamma _1} & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 2} \\ \mathbf {e}_{\beta , 2} \\ \bm {\lambda }_{\partial , 1} \end {pmatrix} + \begin {bmatrix} 0 & \mathbf {B}_\alpha ^{\Gamma _2} \\ 0 & 0 \\ \mathbf {I}& 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial , 1} \\ \mathbf {u}_{\partial , 2} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial , 1} \\ \mathbf {y}_{\partial , 2} \end {pmatrix} &= \begin {bmatrix} 0 & 0 & \mathbf {I} \\ \mathbf {T}_\alpha ^{\Gamma _2} & 0 & 0 \\ \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 2} \\ \mathbf {e}_{\beta , 2} \\ \bm {\lambda }_1 \end {pmatrix}. \end {aligned} \label {eq:systemL}\end {equation}


\begin {equation}\begin {aligned} &[\mathbf {M}_{\alpha , 2}]_{mn} = \innerproduct {\chi _{\alpha , 2}^m}{\mathcal {M}_\alpha \chi _{\alpha , 2}^n}, \\ &[\mathbf {M}_{\beta , 2}]_{pq} = \innerproduct {\chi _{\beta , 2}^p}{\mathcal {M}_\beta \chi _{\beta , 2}^q}, \\ \end {aligned}\qquad \begin {aligned} &[\mathbf {D}_\mathcal {L}]_{pm} = \innerproduct {\chi _{\beta , 2}^p}{\mathcal {L}\chi _{\alpha , 2}^m}, \\ &[\mathbf {M}^{\Gamma _1}]_{rs} = \boundaryproduct [\Gamma _1]{\chi _{\partial , 1}^i}{\chi _{\partial , 1}^k}, \\ \end {aligned} \qquad \begin {aligned} &[\mathbf {B}_\alpha ^{\Gamma _2}]_{pl} = \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\chi _{\alpha , 2}^p}{\chi _{\partial , 2}^l}, \\ {} \end {aligned} \label {eq:Operational-matrices_2}\end {equation}


$(m,n) \in \{1, \dots , n_{\alpha , 2}\}, \; (p,q) \in \{1, \dots , n_{\beta , 2}\}, \; (r,s) \in \{1,\dots , n_{\partial , 1}\}, \; l \in \{1,\dots , n_{\partial , 2}\}$


$\mathbf {e}_{\beta , 2}$


\begin {equation}[\mathbf {T}_{\alpha }^{\Gamma _i}]_{ki} = \begin {cases} 1, \quad \text {if} \quad \mathcal {T}_\alpha \chi _{\alpha , 2}^i \not \equiv 0, \quad \text {on } \partial \Omega ,\\ 0, \quad \text {otherwise} \end {cases} \label {Xeqn31-31}\end {equation}


$\mathbf {B}_\alpha ^{\Gamma _2}$


\begin {equation*}\mathbf {B}_\alpha ^{\Gamma _2} = (\mathbf {T}_\alpha ^{\Gamma _2})^\top \bm {\Psi }^{\Gamma _2}, \quad \text {where } \quad [\bm {\Psi }^{\Gamma _2}]_{lj}:= \boundaryproduct [\Gamma _2]{\chi _{\partial , 1}^l}{\chi _{\partial , 2}^j}.\end {equation*}


$\Gamma _{\rm int}$


$\Omega =\Omega _1\cup \Omega _2$


$\Omega _1\cap \Omega _2=\emptyset $


$\partial \Omega _1=\overline {\Gamma }_1\cup \overline {\Gamma }_{\rm int}$


$\partial \Omega _2=\overline {\Gamma }_2\cup \overline {\Gamma }_{\rm int}$


$\Omega _1$


$\Omega _2$


$\Gamma _{\rm int}$


\begin {equation}\begin {aligned} \begin {bmatrix} \mathbf {M}_{\alpha ,1} & 0 \\ 0 & \mathbf {M}_{\beta ,1} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\mathcal {L}^*} \\ \mathbf {D}_{\mathcal {L}^*}^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_{\beta }^{\Gamma _1} & \mathbf {B}_{\beta }^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,1} \\ \mathbf {u}_{\partial ,1}^{\Gamma _{\rm int}} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,1} \\ \mathbf {y}_{\partial ,1}^{\Gamma _{\rm int}} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_{\beta }^{\Gamma _1} \\ 0 & \mathbf {T}_{\beta }^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1} \end {pmatrix}. \end {aligned} \label {eq:pH-system-L*}\end {equation}


\begin {equation}\begin {aligned} \begin {bmatrix} \mathbf {M}_{\alpha , 2} & 0 \\ 0 & \mathbf {M}_{\beta ,2} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\mathcal {L}}^\top \\ \mathbf {D}_{\mathcal {L}} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} + \begin {bmatrix} \mathbf {B}_{\alpha }^{\Gamma _2} & \mathbf {B}_{\alpha }^{\Gamma _{\rm int}} \\ 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,2} \\ \mathbf {u}_{\partial ,2}^{\Gamma _{\rm int}} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,2} \\ \mathbf {y}_{\partial ,2}^{\Gamma _{\rm int}} \end {pmatrix} &= \begin {bmatrix} \mathbf {T}_{\alpha }^{\Gamma _2} & 0 \\ \mathbf {T}_{\alpha }^{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix}. \end {aligned} \label {eq:pH-system-L}\end {equation}


$\Omega _1$


\begin {equation}\label {eq:input_ouput_1} \begin {pmatrix} \bm {u}_{\partial , 1} \\ \bm {u}_{\partial , 1}^{\Gamma _{\rm int}} \end {pmatrix} = \begin {bmatrix} \mathcal {T}_{\alpha }\vert _{\Gamma _1} & 0 \\ \mathcal {T}_{\alpha }\vert _{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \bm {e}_\alpha \\ \bm {e}_\beta \end {pmatrix}, \qquad \begin {pmatrix} \bm {y}_{\partial ,1} \\ \bm {y}_{\partial ,1}^{\Gamma _{\rm int}} \end {pmatrix} = \begin {bmatrix} 0 & \mathcal {T}_{\beta }\vert _{\Gamma _1} \\ 0 & \mathcal {T}_{\beta }\vert _{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \bm {e}_\alpha \\ \bm {e}_\beta \end {pmatrix}.\end {equation}


$\Omega _2$


\begin {equation}\label {eq:input_ouput_2} \begin {pmatrix} \bm {u}_{\partial ,2} \\ \bm {u}_{\partial ,2}^{\Gamma _{\rm int}} \end {pmatrix} = \begin {bmatrix} 0 & \mathcal {T}_{\beta }\vert _{\Gamma _2} \\ 0 & \mathcal {T}_{\beta }\vert _{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \bm {e}_\alpha \\ \bm {e}_\beta \end {pmatrix}, \qquad \begin {pmatrix} \bm {y}_{\partial ,2} \\ \bm {y}_{\partial ,2}^{\Gamma _{\rm int}} \end {pmatrix} = \begin {bmatrix} \mathcal {T}_{\alpha }\vert _{\Gamma _2} & 0\\ \mathcal {T}_{\alpha }\vert _{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \bm {e}_\alpha \\ \bm {e}_\beta \end {pmatrix}.\end {equation}


$\Gamma _{12}$


$\Gamma _{\rm int}$


\begin {equation}\label {eq:coupling} \begin {split} \bm {u}_{\partial ,1}^{\Gamma _{\rm int}} &= \pm \bm {y}_{\partial ,2}^{\Gamma _{\rm int}}, \\ \bm {u}_{\partial ,2}^{\Gamma _{\rm int}} &= \mp \bm {y}_{\partial ,1}^{\Gamma _{\rm int}}, \end {split}\end {equation}


$\pm $


$\mp $


$\mathcal {L}$


$\Omega _1$


$\mathcal {L}^*$


$\Omega _2$


$\boundaryproduct {\mathcal {T}_{\partial ,\beta }\bm {v}_\beta }{\bm {u}_\partial }$


$\Omega _1$


\begin {equation}\boundaryproduct [\partial \Omega _1]{\mathcal {T}_{\beta }\bm {v}_\beta }{\mathcal {T}_{\alpha }\bm {e}_\alpha } = \boundaryproduct [\Gamma _1]{\mathcal {T}_{\beta }\bm {v}_\beta }{\bm {u}_{\partial ,1}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\beta }\bm {v}_\beta }{\bm {u}_{\partial ,1}^{\Gamma _{\rm int}}}, \label {eq:boundary-split-Omega1}\end {equation}


$\Omega _2$


\begin {equation}\boundaryproduct [\partial \Omega _2]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\mathcal {T}_{\beta }\bm {e}_\beta } = \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\bm {u}_{\partial ,2}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\bm {u}_{\partial ,2}^{\Gamma _{\rm int}}}. \label {boundary-split-Omega2}\end {equation}


$\Omega _1$


$\bm {e}_\alpha \in L^2(\Omega _1; \mathbb {A}), \; \bm {e}_\beta \in H^{\mathcal {L^*}}(\Omega _1)$


$\forall \; \bm {v}_\alpha \in L^2(\Omega _2; \mathbb {A})$


$\forall \; \bm {v}_\beta \in H^{\mathcal {L^*}}(\Omega _1)$


\begin {equation}\begin {aligned} \innerproduct [\Omega _1]{\bm {v}_\alpha }{\mathcal {M}_\alpha \partial _t\bm {e}_\alpha } &= - \innerproduct [\Omega _1]{\bm {v}_\alpha }{\mathcal {L}^*\bm {e}_\beta }, \\ \innerproduct [\Omega _1]{\bm {v}_\alpha }{\mathcal {M}_\beta \partial _t\bm {e}_\beta } &= \innerproduct [\Omega _1]{\mathcal {L}^*\bm {v}_\beta }{\bm {e}_\alpha } + \boundaryproduct [\Gamma _1]{\mathcal {T}_{\beta }\bm {v}_\beta }{\bm {u}_{\partial ,1}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\beta }\bm {v}_\beta }{\bm {u}_{\partial ,1}^{\Gamma _{\rm int}}}, \end {aligned} \label {eq:weak-form-L*}\end {equation}


$\Gamma _{\rm int}, \;$


$\Omega _2$


$\bm {e}_\alpha \in H^\mathcal {L}(\Omega _2), \;\bm {e}_\beta \in L^2(\Omega _2; \mathbb {B})$


$\forall \; \bm {v}_\alpha \in H^{\mathcal {L}}(\Omega _2)$


$\forall \; \bm {v}_\beta \in L^2(\Omega _2; \mathbb {B})$


\begin {equation}\begin {aligned} \innerproduct [\Omega _2]{\bm {v}_\alpha }{\mathcal {M}_\alpha \partial _t\bm {e}_\alpha } &= -\innerproduct [\Omega _2]{\mathcal {L}\bm {v}_\alpha }{\bm {e}_\beta } + \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\bm {u}_{\partial ,2}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{\bm {u}_{\partial ,2}^{\Gamma _{\rm int}}}, \\ \innerproduct [\Omega _2]{\bm {v}_\beta }{\mathcal {M}_\beta \partial _t\bm {e}_\beta } &= \innerproduct [\Omega _2]{\bm {v}_\beta }{\mathcal {L}\bm {e}_\alpha }. \end {aligned} \label {eq:weak-form-L}\end {equation}


$\bm {e}_{\alpha ,1}$


$\bm {e}_\alpha $


$\Omega _1$


$\Omega _1$


$\Omega _2$


$\Gamma _{\rm int}$


\begin {equation}\label {eq:boundary_basis_interface} \begin {aligned} \mathrm {span}\{\chi _{\partial , 1}\}|_{\partial \Omega _1} &= \mathrm {span} \{\mathrm {\mathcal {T}_\alpha |_{\partial \Omega _1}\chi _{\alpha , 2}}\}, \\ \mathrm {span}\{\chi _{\partial , 2}\}|_{\partial \Omega _2} &= \mathrm {span} \{\mathcal {T}_\beta |_{\partial \Omega _2} \chi _{\beta , 1}\}. \end {aligned}\end {equation}


$\Gamma _{\rm int}$


\begin {equation}\label {eq:interconnection_dofs} \begin {split} \mathbf {u}_{\partial ,1}^{\Gamma _{\rm int}} &= \pm \mathbf {y}_{\partial ,2}^{\Gamma _{\rm int}} = \pm \mathbf {T}_\alpha ^{\Gamma _{\rm int}} \mathbf {e}_{\alpha , 2}, \\ \mathbf {u}_{\partial ,2}^{\Gamma _{\rm int}} &= \mp \mathbf {y}_{\partial ,1}^{\Gamma _{\rm int}} = \pm \mathbf {T}_\beta ^{\Gamma _{\rm int}} \mathbf {e}_{\beta , 1}. \\ \end {split}\end {equation}


$\mathbf {B}$


\begin {equation}\mathbf {B}_\alpha ^{\Gamma _{\rm int}} = (\mathbf {T}_\alpha ^{\Gamma _{\rm int}})^\top \mathbf {\Psi }^{\Gamma _{\rm int}}, \qquad \mathbf {B}_\beta ^{\Gamma _{\rm int}} = (\mathbf {T}_\beta ^{\Gamma _{\rm int}})^\top (\mathbf {\Psi }^{\Gamma _{\rm int}})^\top , \label {Xeqn43-43}\end {equation}


$[\mathbf {\Psi }^{\Gamma _{\rm int}}]_{lk} = \boundaryproduct [\Gamma _{\rm int}]{\chi _{\partial , 1}^l}{\chi _{\partial , 2}^k}$


$\Omega _1$


$\Omega _2$


$\Omega $


\begin {equation}\begin {aligned} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{\alpha , 1} \\ \mathbf {M}_{\beta , 1}\\ \mathbf {M}_{\alpha , 2}\\ \mathbf {M}_{\beta , 2} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha , 1} \\ \mathbf {e}_{\beta , 1} \\ \mathbf {e}_{\alpha , 2} \\ \mathbf {e}_{\beta , 2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\mathcal {L}^*} & 0 & 0 \\ \mathbf {D}_{\mathcal {L}^*}^\top & 0 & \pm \mathbf {L}^{\Gamma _{\rm int}} & 0 \\ 0 & \mp (\mathbf {L}^{\Gamma _{\rm int}})^\top & 0 & -\mathbf {D}_\mathcal {L}^\top \\ 0 & 0 & \mathbf {D}_\mathcal {L} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \\ \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_\beta ^{\Gamma _1} & 0\\ 0 & \mathbf {B}_\alpha ^{\Gamma _2} \\ 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,1} \\ \mathbf {u}_{\partial ,2} \\ \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,1} \\ \mathbf {y}_{\partial ,2} \\ \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_\beta ^{\Gamma _1} & 0 & 0 \\ 0 & 0 & \mathbf {T}_\alpha ^{\Gamma _2} & 0\\ \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \\ \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix}, \end {aligned} \label {eq:Monolithic-System}\end {equation}


$\mathbf {L}^{\Gamma _{\rm int}} = (\mathbf {\Psi }^{\Gamma _{\rm int}}\mathbf {T}_\beta ^{\Gamma _{\rm int}})^\top \mathbf {T}_\alpha ^{\Gamma _{\rm int}}$


\begin {equation}\begin {aligned} \mathbf {M}\dot {\mathbf {e}} &= \mathbf {J} \mathbf {e} + \mathbf {Bu}, \\ \mathbf {y} &= \mathbf {T} \mathbf {e}, \end {aligned} \label {Xeqn45-45}\end {equation}


$\mathbf {J} = - \mathbf {J}^\top $


\begin {equation}\mathcal {M}\partial _t \bm {e} = \mathcal {J}_{d}\bm {e} + \mathcal {J}_a(\bm {e})\bm {e}, \label {Xeqn46-46}\end {equation}


$\mathcal {J}_d$


\begin {equation}\mathcal {J}_d = \begin {bmatrix} 0 & -\mathcal {L}^* \\ \mathcal {L} & 0 \end {bmatrix}, \label {Xeqn47-47}\end {equation}


$\mathcal {J}_a(\bm {e})$


$\bm {e}$


\begin {equation*}\bm {E} := \frac {1}{2}(\bm {F}^\top \bm {F} - \bm {I}), \qquad \bm {F} := \bm {I} + \nabla \bm {q},\end {equation*}


$\bm {q}$


$[\nabla \bm {q}]_{ij} = \partial _j q_i$


$\bm {F}$


\begin {equation*}\begin {aligned} T = \frac {1}{2} \int _\Omega \rho ||{\partial _t \bm {q}}||^2 \d \Omega , \qquad V = \frac {1}{2} \int _\Omega \bm {E}:\bm {K}\bm {E} \; \d \Omega , \end {aligned}\end {equation*}


$\bm {K}$


\begin {equation*}\rho \, \partial _{tt}\bm {q} = \Div (\bm {F}\bm {S}),\end {equation*}


$\Div $


$\bm {S}=\bm {K}\bm {E}$


\begin {equation*}\begin {aligned} \partial _t \bm {q} &= \bm {v}, \\ \begin {bmatrix} \rho & 0 \\ 0 & \bm {C} \end {bmatrix} \frac {\partial }{\partial {t}} \begin {pmatrix} \bm {v} \\ \bm {S} \end {pmatrix} &= \begin {bmatrix} 0 & \Div (\bm {F} \; \circ ) \\ \sym ( \bm {F}^\top \nabla \; \circ ) & 0 \\ \end {bmatrix} \begin {pmatrix} \bm {v} \\ \bm {S} \end {pmatrix}, \end {aligned}\end {equation*}


$\bm {C}:=\bm {K}^{-1}$


$\mathcal {L}$


$\mathcal {L}^*$


\begin {equation*}\begin {aligned} \mathcal {L}(\nabla \bm {q}) = \sym ( \bm {F}^\top \nabla \; \circ ), \qquad \mathcal {L}^*(\nabla \bm {q}) & = \Div (\bm {F} \; \circ ). \end {aligned}\end {equation*}


$\mathcal {L}^*$


\begin {equation*}\begin {aligned} \partial _t \bm {q}_h &= \bm {v}_h, \\ \innerproduct [\Omega ]{\bm {\psi }}{\rho \,\partial _t \bm {v}_h} &= - \innerproduct [\Omega ]{\bm {F}_h^\top \nabla \bm {\psi }}{\bm {S}_h}, \\ \innerproduct [\Omega ]{\bm {\Psi }}{\bm {C}\,\partial _t \bm {S}_h} &= +\innerproduct [\Omega ]{\bm {\Psi }}{\bm {F}_h^\top \nabla \bm {v}_h}, \\ \end {aligned} \qquad \begin {aligned} \\ \text {forall } \bm {\psi } \in V_h, \\ \text {forall } \bm {\Psi } \in \Sigma _h. \end {aligned}\end {equation*}


$\mathbf {u}_{\partial , 1}=0, \; \mathbf {u}_{\partial , 2}=0$


\begin {equation}\label {eq:interconnected_system} \begin {aligned} \begin {bmatrix} \mathbf {M}_{1} & 0 \\ 0 & \mathbf {M}_{2} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{1} \\ \mathbf {e}_{2} \end {pmatrix} &= \begin {bmatrix} \mathbf {J}_1 & +\mathbf {G} \\ -\mathbf {G}^\top & \mathbf {J}_2 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{1} \\ \mathbf {e}_{2} \end {pmatrix}. \end {aligned}\end {equation}


$\widehat {\mathbf {e}}_1 = \mathbf {C}_1 \mathbf {e}_1, \; \widehat {\mathbf {e}}_2 = \mathbf {C}_2 \mathbf {e}_2$


$\mathbf {C}_1, \; \mathbf {C}_2$


$\mathbf {M}_1 = \mathbf {C}_1^\top \mathbf {C}_1, \; \mathbf {M}_2 = \mathbf {C}_2^\top \mathbf {C}_2$


\begin {equation}\label {eq:interconnected_system_hat} \begin {aligned} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \widehat {\mathbf {e}}_{1} \\ \widehat {\mathbf {e}}_{2} \end {pmatrix} &= \begin {bmatrix} \widehat {\mathbf {J}}_1 & +\widehat {\mathbf {G}} \\ -\widehat {\mathbf {G}}^\top & \widehat {\mathbf {J}}_2 \end {bmatrix} \begin {pmatrix} \widehat {\mathbf {e}}_{1} \\ \widehat {\mathbf {e}}_{2} \end {pmatrix}, \qquad \text {or compactly } \quad \dot {\widehat {\mathbf {e}}} = \widehat {\mathbf {J}}\widehat {\mathbf {e}}, \end {aligned}\end {equation}


$\widehat {\mathbf {J}}_1 = \mathbf {C}_1^{-\top } {\mathbf {J}}_1 \mathbf {C}_1^{-1}, \; \widehat {\mathbf {J}}_2 = \mathbf {C}_2^{-\top } {\mathbf {J}}_2 \mathbf {C}_2^{-1}$


$\widehat {\mathbf {G}} = \mathbf {C}_1^{-\top } {\mathbf {G}} \mathbf {C}_2^{-1}.$


$\dot {\mathbf {e}} = {\mathbf {J}}{\mathbf {e}}$


$\widehat {\cdot }$


\begin {equation*}\frac {{\mathbf {e}}^{n+1}-{\mathbf {e}}^n}{\Delta t} = {\mathbf {J}} \left (\frac {{\mathbf {e}}^n + {\mathbf {e}}^{n+1}}{2}\right ).\end {equation*}


$\Delta t/2 = 1$


\begin {equation}\label {eq:discrete_flow} {\mathbf {e}}^{n+1} = \mathrm {Cay}({\mathbf {J}}) {\mathbf {e}}^{n}, \qquad \mathrm {Cay}({\mathbf {J}}) := (\mathbf {I} -{\mathbf {J}})^{-1}(\mathbf {I} + {\mathbf {J}}).\end {equation}


\begin {equation*}\mathrm {Cay}({\mathbf {J}}) \; \mathbf {J} \; \mathrm {Cay}({\mathbf {J}})^\top = \mathbf {J}.\end {equation*}


$\mathbf {J} = -\mathbf {J}^\top $


$\mathrm {Cay}({\mathbf {J}})^\top $


\begin {equation*}\mathrm {Cay}({\mathbf {J}})^\top = (\mathbf {I} -{\mathbf {J}})(\mathbf {I} + {\mathbf {J}})^{-1}.\end {equation*}


\begin {equation*}\mathrm {Cay}({\mathbf {J}}) \; \mathbf {J} \; \mathrm {Cay}({\mathbf {J}})^\top = (\mathbf {I} -{\mathbf {J}})^{-1}(\mathbf {I} + {\mathbf {J}}) \mathbf {J} (\mathbf {I} -{\mathbf {J}})(\mathbf {I} + {\mathbf {J}})^{-1}.\end {equation*}


\begin {equation}\label {eq:commutation_matrices} \begin {aligned} \mathbf {J}(\mathbf {I} + \mathbf {J}) = (\mathbf {I} + \mathbf {J}) \mathbf {J}, \qquad \mathbf {J}(\mathbf {I} - \mathbf {J}) = (\mathbf {I} - \mathbf {J}) \mathbf {J}, \qquad (\mathbf {I} + \mathbf {J})(\mathbf {I} - \mathbf {J}) = (\mathbf {I} - \mathbf {J})(\mathbf {I} + \mathbf {J}). \end {aligned}\end {equation}


\begin {equation*}(\mathbf {I} -{\mathbf {J}})^{-1}(\mathbf {I} + {\mathbf {J}}) \mathbf {J} (\mathbf {I} -{\mathbf {J}})(\mathbf {I} + {\mathbf {J}})^{-1} = \mathbf {J}.\end {equation*}


\begin {equation*}\begin {aligned} \frac {\widehat {\mathbf {e}}_1^{n+1}-\widehat {\mathbf {e}}_1^n}{\Delta t} &= \widehat {\mathbf {J}}_1 \left (\frac {\widehat {\mathbf {e}}_1^n + \widehat {\mathbf {e}}_1^{n+1}}{2}\right ) + \widehat {\mathbf {G}}\widehat {\mathbf {e}}_2^{n+\frac {1}{2}}, \\ \frac {\widehat {\mathbf {e}}_2^{n +\frac {1}{2}}-\widehat {\mathbf {e}}_2^{n -\frac {1}{2}}}{\Delta t} &= \widehat {\mathbf {J}}_2 \left (\frac {\widehat {\mathbf {e}}_2^{n +\frac {1}{2}}+\widehat {\mathbf {e}}_2^{n-\frac {1}{2}}}{2}\right ) - \widehat {\mathbf {G}}^\top \widehat {\mathbf {e}}_1^n. \\ \end {aligned}\end {equation*}


$\widehat {\mathbf {e}}_2^{\frac {1}{2}}$


\begin {equation*}\widehat {\mathbf {e}}_2^{\frac {1}{2}} = (\mathbf {I}- \frac {\Delta t}{2}\widehat {\mathbf {J}}_2)^{-1}\widehat {\mathbf {e}}_2^{0} - \frac {\Delta t}{2}\mathbf {G} ^\top \widehat {\mathbf {e}}_1^0.\end {equation*}


$L$


$x=0$


$x=L$


$\Omega _1$


$\Omega _2$


$\Gamma _{\rm int}$


$x_{\rm int}=L/2$


\begin {equation*}H = \frac {1}{2}\rho A ||\bm {v}||^2 + \frac {1}{2}\rho \bm {w}^\top \bm {J}\bm {w} + \frac {1}{2}\bm {n}^\top \bm {C}_t \bm {n} + \frac {1}{2}\bm {m}^\top \bm {C}_r \bm {m},\end {equation*}


$\bm {v}, \; \bm {w} \in \mathbb {R}^3$


$\bm {n}, \; \bm {m} \in \mathbb {R}^3$


$\rho $


$A$


$\bm {J} \in \mathbb {R}^{3\times 3}$


$\bm {C}_t, \bm {C}_r \in \mathbb {R}^{3\times 3}$


\begin {equation*}\begin {aligned} \bm {\pi }_v &= \partial _{\bm {v}} H = \rho A \bm {v}, \\ \bm {\pi }_w &= \partial _{\bm {w}} H = \rho \bm {J} \bm {w}, \\ \end {aligned}\qquad \begin {aligned} \bm {\gamma } &= \partial _{\bm {n}} H = \bm {C}_t \bm {n}, \\ \bm {\kappa } &= \partial _{\bm {m}} H = \bm {C}_r \bm {m}, \end {aligned}\end {equation*}


$[\bm {v}]_\times $


\begin {equation}\bm {v} = \begin {pmatrix} v_x \\ v_y \\ v_z \end {pmatrix} \rightarrow [\bm {v}]_\times := \begin {bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end {bmatrix}, \label {Xeqn52-52}\end {equation}


$\bm {v} \times \bm {u} = [\bm {v}]_\times \bm {u}$


$\bm {u} \in \mathbb {R}^3.$


${s} \in [0, L]$


$\Omega =[0, L]$


\begin {equation}\label {eq:intrinsic_beam} \mathrm {Diag} \begin {bmatrix} \rho A \\ \rho {\bm J} \\ {\bm C}_t\\ {\bm C}_r \end {bmatrix} {\partial }_t \begin {pmatrix} {\bm v} \\ {\bm w} \\ {\bm n} \\ {\bm m} \end {pmatrix} = \left ( \begin {bmatrix} 0 & 0 & {\partial }_s & 0 \\ 0 & 0 & 0 & {\partial }_s \\ \partial _s & 0 & 0 & 0 \\ 0 & \partial _s & 0 & 0 \end {bmatrix} + \begin {bmatrix} 0 & [{\bm \pi }_V]_{\times } & {[{\bm \kappa }]}_{\times } & 0 \\ {[{\bm \pi }_V]}_{\times } & {[{\bm \pi }_W]}_{\times } & {[{\bm \gamma } + {\bm e}_1]}_{\times } & {[{\bm \kappa }]}_{\times } \\ {[{\bm \kappa }]}_{\times } & {[{\bm \gamma } + {\bm e}_1]}_{\times } & 0 & 0 \\ 0 & {[{\bm \kappa }]}_{\times } & 0 & 0 \end {bmatrix} \right )\,\, \begin {pmatrix} {\bm v} \\ {\bm w} \\ {\bm n} \\ {\bm m} \end {pmatrix},\end {equation}


${\bm e}_1 = [1 \; 0\; 0]^\top $


$\mathcal {L}, \; \mathcal {L}^*$


${\bm e}_{\alpha }, \; {\bm e}_\beta $


\begin {equation*}\mathcal {L} = \begin {bmatrix} \partial _s & 0 \\ 0 & \partial _s \end {bmatrix}, \qquad \mathcal {L}^* = -\begin {bmatrix} \partial _s & 0 \\ 0 & \partial _s \end {bmatrix}, \qquad \bm {e}_{\alpha } = \begin {pmatrix} \bm {v} \\ \bm {w} \end {pmatrix} \qquad \bm {e}_{\beta } = \begin {pmatrix} \bm {n} \\ \bm {m} \end {pmatrix}.\end {equation*}


\begin {equation}\label {eq:timoshenkp_beam} \mathrm {Diag} \begin {bmatrix} \rho A \\ \rho \bm {J} \\ \bm {C}_t\\ \bm {C}_r \end {bmatrix} \partial _t \begin {pmatrix} \bm {v} \\ \bm {w} \\ \bm {n} \\ \bm {m} \end {pmatrix} = \begin {bmatrix} 0 & 0 & \partial _s & 0 \\ 0 & 0 & [\bm {e}_1]_{\times } & \partial _s \\ \partial _s & [\bm {e}_1]_{\times } & 0 & 0 \\ 0 & \partial _s & 0 & 0 \end {bmatrix}\,\, \begin {pmatrix} \bm {v} \\ \bm {w} \\ \bm {n} \\ \bm {m} \end {pmatrix}.\end {equation}


$\bm {v}, \bm {w} \in L^2(\Omega _1; \mathbb {R}^3), \; \bm {n}, \bm {m} \in H^1(\Omega _1; \mathbb {R}^3)$


$\bm {\psi }_v, \bm {\psi }_w \in L^2(\Omega _1; \mathbb {R}^3), \; \bm {\psi }_n, \bm {\psi }_m \in H^1(\Omega _1; \mathbb {R}^3)$


\begin {equation}\begin {aligned} \innerproduct [\Omega _1]{\bm {\psi }_v}{\rho A \partial _t \bm {v}} &= \innerproduct [\Omega _1]{\bm {\psi }_v}{\partial _s \bm {n}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_w}{\rho \bm {J} \partial _t \bm {w}} &= \innerproduct [\Omega _1]{\bm {\psi }_w}{[\bm {e}_1]_{\times } \bm {n}} + \innerproduct [\Omega _1]{\bm {\psi }_w}{\partial _s \bm {m}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_n}{\bm {C}_t \partial _t \bm {n}} &= \innerproduct [\Omega _1]{\bm {\psi }_n}{[\bm {e}_1]_{\times } \bm {w}} - \innerproduct [\Omega _1]{\partial _s \bm {\psi }_n}{\bm {v}} + \boundaryproduct [\partial \Omega _1]{\bm {\psi }_n }{\bm {v}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_n }{\bm {v}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_m}{\bm {C}_r \partial _t \bm {m}} &= - \innerproduct [\Omega _1]{\partial _s \bm {\psi }_m}{ \bm {w}} + \boundaryproduct [\partial \Omega _1]{\bm {\psi }_m }{\bm {w}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_m }{\bm {w}}, \\ \end {aligned} \label {Xeqn55-55}\end {equation}


$\mathcal {T}_\beta : H^1([a, b]; \, \mathbb {R}^6) \rightarrow \mathbb {R}^{12}$


\begin {equation*}\mathcal {T}_\beta \begin {pmatrix} \bm {f} \\ \bm {g} \end {pmatrix} = \begin {pmatrix} +\bm {f}(b) \\ -\bm {f}(a) \\ +\bm {g}(b) \\ -\bm {g}(a) \end {pmatrix}.\end {equation*}


$\bm {v}, \bm {w} \in H^1(\Omega _2; \mathbb {R}^3), \; \bm {n}, \bm {m} \in L^2(\Omega _2; \mathbb {R}^3)$


$\bm {\psi }_v, \bm {\psi }_w \in H^1(\Omega _2; \mathbb {R}^3), \; \bm {\psi }_n, \bm {\psi }_m \in L^2(\Omega _2; \mathbb {R}^3)$


\begin {equation}\begin {aligned} \innerproduct [\Omega _2]{\bm {\psi }_v}{\rho A \partial _t \bm {v}} &= - \innerproduct [\Omega _2]{\partial _s \bm {\psi }_v}{\bm {n}} + \boundaryproduct [\partial \Omega _2]{\bm {\psi }_v}{\bm {n}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_v}{\bm {n}}, \\ \innerproduct [\Omega _2]{\bm {\psi }_w}{\rho \bm {J} \partial _t \bm {w}} &= \innerproduct [\Omega _2]{\bm {\psi }_w}{[\bm {e}_1]_{\times } \bm {n}} - \innerproduct [\Omega _2]{\partial _s \bm {\psi }_w}{\bm {m}} + \boundaryproduct [\partial \Omega _2]{\bm {\psi }_w}{\bm {m}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_w}{\bm {m}}, \\ \innerproduct [\Omega _2]{\bm {\psi }_n}{\bm {C}_t \partial _t \bm {n}} &= \innerproduct [\Omega _2]{\bm {\psi }_n}{[\bm {e}_1]_{\times } \bm {w}} + \innerproduct [\Omega _2]{\bm {\psi }_n}{\partial _s \bm {v}}, \\ \innerproduct [\Omega _2]{\bm {\psi }_m}{\bm {C}_r \partial _t \bm {m}} &= \innerproduct [\Omega _2]{\bm {\psi }_m}{\partial _s \bm {w}}, \\ \end {aligned} \label {Xeqn56-56}\end {equation}


$\mathcal {T}_\alpha : H^1([a, b]; \, \mathbb {R}^6) \rightarrow \mathbb {R}^{12}$


\begin {equation*}\mathcal {T}_\alpha \begin {pmatrix} \bm {f} \\ \bm {g} \end {pmatrix} = \begin {pmatrix} \bm {f}(b) \\ \bm {f}(a) \\ \bm {g}(b) \\ \bm {g}(a) \end {pmatrix}.\end {equation*}


$_0$


$L^2$


$_1$


$H^1$


$\mathcal {I}_h^{\Omega _1}$


\begin {equation*}\begin {aligned} V_{\alpha , 1} &= \{u_h \in L^2(\Omega _1; \mathbb {R}^6)|\; \forall E \in \mathcal {I}_h^{\Omega _1}, \; u_h|_E \in \mathrm {DG}_0(\mathbb {R}^6)\}, \\ V_{\beta , 1} &= \{u_h \in H^1(\Omega _1; \mathbb {R}^6)|\; \forall E \in \mathcal {I}_h^{\Omega _1}, \; u_h|_E \in \mathrm {CG}_1(\mathbb {R}^6)\}, \end {aligned}\end {equation*}


$L^2(\Omega _1; \mathbb {R}^6), \; H^1(\Omega _1; \mathbb {R}^6), \; \mathrm {DG}_0(\mathbb {R}^6), \; \mathrm {CG}_1(\mathbb {R}^6)$


$\mathcal {I}_h^{\Omega _2}$


\begin {equation*}\begin {aligned} V_{\alpha , 2} &= \{u_h \in H^1(\Omega _2; \mathbb {R}^6)|\; \forall E \in \mathcal {I}_h^{\Omega _2}, \; u_h|_E \in \mathrm {CG}_1(\mathbb {R}^6) \}, \\ V_{\beta , 2} &= \{u_h \in L^2(\Omega _2; \mathbb {R}^6)|\; \forall E \in \mathcal {I}_h^{\Omega _2}, \; u_h|_E \in \mathrm {DG}_0(\mathbb {R}^6) \}. \end {aligned}\end {equation*}


$\Omega _1$


\begin {equation}\label {eq:discrete_clamped_intrinsic} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{v, 1} \\ \mathbf {M}_{w, 1} \\ \mathbf {M}_{n, 1} \\ \mathbf {M}_{m, 1} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {v}_1 \\ \mathbf {w}_1 \\ \mathbf {n}_1 \\ \mathbf {m}_1 \end {pmatrix} = \begin {bmatrix} 0 & 0 & \mathbf {D}_{\partial _s} & 0 \\ 0 & 0 & [\mathbf {e}_{1}]_\times & \mathbf {D}_{\partial _s} \\ -\mathbf {D}_{\partial _s}^\top & [\mathbf {e}_{1}]_\times & 0 & 0 \\ 0 & -\mathbf {D}_{\partial _s}^\top & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {v}_1 \\ \mathbf {w}_1 \\ \mathbf {n}_1 \\ \mathbf {m}_1 \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ 0 & 0 \\ \mathbf {T}_{\beta }^\top & 0 \\ 0 & \mathbf {T}_{\beta }^\top \\ \end {bmatrix}\begin {pmatrix} \mathbf {u}_v \\ \mathbf {u}_w \end {pmatrix},\end {equation}


$\mathbf {T}_{\beta }$


$1$


$-1$


$\Omega _2$


\begin {equation}\label {eq:discrete_free_intrinsic} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{v, 2} \\ \mathbf {M}_{w, 2} \\ \mathbf {M}_{n, 2} \\ \mathbf {M}_{m, 2} \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {v}_2 \\ \mathbf {w}_2 \\ \mathbf {n}_2 \\ \mathbf {m}_2 \end {pmatrix} = \begin {bmatrix} 0 & 0 & -\mathbf {D}_{\partial _s}^\top & 0 \\ 0 & 0 & [\mathbf {e}_{1}]_\times & -\mathbf {D}_{\partial _s}^\top \\ \mathbf {D}_{\partial _s} & [\mathbf {e}_{1}]_\times & 0 & 0 \\ 0 & \mathbf {D}_{\partial _s} & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {v}_2 \\ \mathbf {w}_2 \\ \mathbf {n}_2 \\ \mathbf {m}_2 \end {pmatrix} + \begin {bmatrix} \mathbf {T}_\alpha ^\top & 0 \\ 0 & \mathbf {T}_\alpha ^\top \\ 0 & 0 \\ 0 & 0 \\ \end {bmatrix}\begin {pmatrix} \mathbf {u}_n \\ \mathbf {u}_m \end {pmatrix},\end {equation}


$\mathbf {T}_\alpha $


\begin {equation*}\begin {aligned} \mathbf {M}_i \dot {\mathbf {e}}_i &= \mathbf {J}_{d, i}\mathbf {e}_i + \mathbf {J}_{a, i}(\mathbf {e}_i)\mathbf {e}_i + \mathbf {B}_i \mathbf {u}_i, \\ \mathbf {y}_i &= \mathbf {B}_i^\top \mathbf {e}_i, \qquad i=\{1,2\}, \end {aligned}\end {equation*}


$\mathbf {J}_{d, i}= - \mathbf {J}_{d, i}^\top $


$\mathbf {J}_{a, i}(\mathbf {e}_i)= - \mathbf {J}_{d, i}^\top (\mathbf {e}_i)$


\begin {equation*}\begin {bmatrix} {\mathbf {M}}_1 & 0 \\ 0 & {\mathbf {M}}_2 \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t}\begin {pmatrix} {\mathbf {e}}_1 \\ {\mathbf {e}}_2 \\ \end {pmatrix} = \begin {bmatrix} {\mathbf {J}}_1({\mathbf {e}}_1) & {\mathbf {B}}_1^{{\Gamma }_{\rm int}} {({\mathbf {B}}_2^{{\Gamma }_{\rm int}})}^{\top } \\ - {\mathbf {B}}_2^{{\Gamma }_{\rm int}} {({\mathbf {B}}_1^{{\Gamma }_{\rm int}})}^{\top } & {\mathbf {J}}_2({\mathbf {e}}_2) \end {bmatrix} \begin {pmatrix} {\mathbf {e}}_1 \\ {\mathbf {e}}_2 \\ \end {pmatrix} + \begin {bmatrix} {\mathbf {B}}_{1}^{{\Gamma }_1} & 0 \cr 0 & {\mathbf {B}}_{2}^{{\Gamma }_2} \\ \end {bmatrix} \begin {pmatrix} {\mathbf {u}}_{\partial , 1} \\ {\mathbf {u}}_{\partial , 2} \\ \end {pmatrix}.\end {equation*}


$s=0$


\begin {equation*}\bm {v}(0,t)=0,\qquad \bm {w}(0,t)=0, \qquad \bm {n}(0,t)=0, \qquad \bm {m}(0,t)=0.\end {equation*}


$s=L$


$m_{\text {rollup}} = 2\pi EI / L$


$\rho = 0$


$t \in [0,1]$


\begin {equation*}m_0(t) = t\, m_{\text {rollup}}.\end {equation*}


\begin {equation}\label {eq:wave_primal} \partial _{tt}\phi -\div \grad \phi =0, \qquad \Omega = [0, 1]^ 2,\end {equation}


$\Omega _1$


$\Omega _2$


$\Gamma _1$


$\Gamma _2$


\begin {equation}{e}_{\alpha } = \partial _t\phi , \qquad \bm {e}_{\beta } = \grad \phi . \label {Xeqn60-60}\end {equation}


\begin {equation}\begin {pmatrix} \partial _t {e}_{\alpha } \\ \partial _t \bm {e}_{\beta } \end {pmatrix} = \begin {bmatrix} 0 & \div \\ \grad & 0 \end {bmatrix} \begin {pmatrix} {e}_{\alpha } \\ \bm {e}_{\beta } \end {pmatrix}, \label {Xeqn61-61}\end {equation}


$\mathcal {L}=\grad $


$\mathcal {L}^*=-\div $


$\Omega _1$


$\bm {e}_\alpha \in L^2(\Omega _1)$


$\bm {e}_\beta \in H^{\div }(\Omega _1)$


$\forall {v}_\alpha \in L^2(\Omega _1)$


$\forall \bm {v}_\beta \in H^{\div }(\Omega _1)$


\begin {equation}\begin {split} \innerproduct [{\Omega }_1]{{v}_{\alpha }}{{\partial }_t{e}_{\alpha }} &= + \innerproduct [{\Omega }_1]{{v}_{\alpha }}{\div {\bm e}_{\beta }}, \\ \innerproduct [{\Omega }_1]{{\bm v}_{\beta }}{{\partial }_t{\bm e}_{\beta }} &= - \innerproduct [{\Omega }_1]{\div {\bm v}_{\beta }}{{e}_{\alpha }} + \boundaryproduct [{\Gamma }_1]{{\mathcal {T}}_{\beta }{\bm v}_{\beta }}{{u}_{\partial ,1 }} + \boundaryproduct [{\Gamma }_{\rm int}]{{\mathcal {T}}_{\beta }{\bm v}_{\beta }}{u_{\partial , 1}^{{\Gamma }_{\rm int}}}, \end {split} \label {eq:Wave-weak-D}\end {equation}


$\mathcal {T}_\beta \bm {g} = \bm {g} \cdot \bm {n}|_{\partial \Omega _1}$


$\Omega _2$


$\bm {e}_\alpha \in H^1(\Omega _2)$


$\bm {e}_\beta \in H^{\curl }(\Omega _2)$


$\forall {v}_\alpha \in H^1(\Omega _2)$


$\forall \bm {v}_\beta \in H^{\curl }(\Omega _2)$


\begin {equation}\begin {split} \innerproduct [{\Omega }_2]{{v}_{\alpha }}{{\partial }_t{e}_\alpha } &= -\innerproduct [{\Omega }_2]{\grad {v}_{\alpha }}{{\bm e}_{\beta }} + \boundaryproduct [{\Gamma }_2]{{\mathcal {T}}_{\alpha }v_{\alpha }}{{u}_{\partial ,2}} + \boundaryproduct [{\Gamma }_{\rm int}]{{\mathcal {T}}_{\alpha }{v}_{\alpha }}{{u}_{\partial ,2}^{{\Gamma }_{\rm int}}}, \\ \innerproduct [{\Omega }_2]{{\bm v}_{\beta }}{{\partial }_t{\bm e}_{\beta }} &= \innerproduct [{\Omega }_2]{{\bm v}_{\beta }}{\grad {e}_{\alpha }}, \end {split} \label {eq:Wave-weak-N}\end {equation}


$\mathcal {T}_\alpha f = f|_{\partial \Omega _2}$


$k-1$


$k$


$_k$


$e_{\alpha , 1}$


$\bm {e}_{\beta , 1}$


$\Omega _1$


$k$


$_k$


$e_{\alpha , 2}$


$k$


$_k$


$\bm {e}_{\beta , 2}$


$\Omega _2$


$\mathfrak {T}_h=\mathfrak {T}_h^{\Omega _1}\cup \mathfrak {T}_h^{\Omega _2}$


$\Omega _1$


\begin {align}V_{\alpha , 1} &= \{u_h\in L^2(\Omega _1)|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; u_h|_T\in \mathrm {DG}\},\nonumber \\ V_{\beta , 1} &= \{\bm {u}_h\in H^{\div }(\Omega _1)|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {u}_h|_T\in \mathrm {RT}\}, \label {Xeqn64-64}\end {align}


$T$


$\mathfrak {T}_h$


$\Omega _2$


\begin {align}V_{\alpha , 2} &= \{u_h\in H^1(\Omega _2)|\; \forall T\in \mathfrak {T}_h^{\Omega _2},\; u_h|_T\in \mathrm {CG}\}, \nonumber \\ V_{\beta , 2} &= \{\bm {u}_h\in H^{\curl }(\Omega _2)|\; \forall T\in \mathfrak {T}_h^{\Omega _2}, \bm {u}_h|_T\in \mathrm {Ned}\}. \label {Xeqn65-65}\end {align}


$\Omega _1$


\begin {equation}\begin {split} \begin {bmatrix} \mathbf {M}_{\alpha , 1} & 0 \\ 0 & \mathbf {M}_{\beta , 1} \end {bmatrix}\frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {D}_{\div } \\ -\mathbf {D}_{\div }^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_{\beta }^{\Gamma _1} & \mathbf {B}_{\beta }^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,1} \\ \mathbf {u}_{\partial ,1}^{\rm int} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,1} \\ \mathbf {y}_{\partial ,1}^{\rm int} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_\beta ^{\Gamma _1} \\ 0 & \mathbf {T}_\beta ^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix}, \end {split} \label {Xeqn66-66}\end {equation}


$\Omega _2$


\begin {equation}\begin {split} \begin {bmatrix} \mathbf {M}_{\alpha , 2} & 0 \\ 0 & \mathbf {M}_{\beta , 2} \end {bmatrix}\frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\grad } \\ \mathbf {D}_{\grad }^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} + \begin {bmatrix} \mathbf {B}_\alpha ^{\Gamma _2} & \mathbf {B}_\alpha ^{\Gamma _{\rm int}} \\ 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,2} \\ \mathbf {u}_{\partial ,2}^{\rm int} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,2} \\ \mathbf {y}_{\partial ,2}^{\rm int} \end {pmatrix} &= \begin {bmatrix} \mathbf {T}_\alpha ^{\Gamma _2} & 0 \\ \mathbf {T}_\alpha ^{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix}. \end {split} \label {Xeqn67-67}\end {equation}


$\Omega =[0, 1]^2$


$\Delta t=0.001 \; \mathrm {[s]}$


\begin {align}f(t) &= 2\sin (\sqrt {2} t)+3\cos (\sqrt {2}t), \\ g(x,y) &= \cos (x)\sin (y).\end {align}


\begin {equation}e_\alpha ^{ex} = g\frac {{\rm d}{f}}{{\rm d}{t}}, \qquad \bm {e}_\beta ^{ex} = f\grad g, \label {Xeqn68-70}\end {equation}


\begin {equation*}e_\alpha |_{\Gamma _1}=g\frac {{\rm d}{f}}{{\rm d}{t}}, \qquad \bm {e}_\beta \cdot \bm {n}|_{\Gamma _2}=f\, \nabla _{\bm {n}} g|_{\Gamma _2},\end {equation*}


$\bm {n}$


$h$


$k=1,2,3$


$h^k$


$e_{\alpha ,2}$


$e_{\alpha ,2}$


$h^{k+1}$


$L^2$


$e_{\alpha ,2}$


$h^{k}$


$e_\alpha $


$e_\beta $


$\Omega _1$


$\Omega _2$


$h$


$h^k$


$e_\alpha $


$\Omega _2$


$k=1$


$h^{k+1}$


$h^k$


$V_{\beta , 2} \subset \grad V_{\alpha , 2}$


\begin {equation*}\curl \partial _t \bm {e}_\beta =\curl \grad \bm {e}_\alpha =0.\end {equation*}


$\bm {v}_\beta = \curl \bm {v}$


$\bm {v}$


$\curl \mathrm {Ned}_k \subset \mathrm {RT}_k$


\begin {equation*}\innerproduct [\Omega _1]{\curl \bm {v}}{\partial _t\bm {e}_\beta } = \innerproduct [\Omega _1]{\div \curl \bm {v}}{{e}_\alpha } = 0,\end {equation*}


$L^2$


$\curl \bm {e}_\beta $


$\curl e_{\beta , 2}$


$\Omega _2$


$\Omega _1$


\begin {equation*}\frac {{H}_1^{n+1} - H_1^n}{\Delta t} - \boundaryproduct [\partial \Omega _1]{\mathbf {y}_\partial ^{n+\frac {1}{2}}}{\mathbf {u}_\partial ^{n+\frac {1}{2}}} = 0.\end {equation*}


$\Omega _2$


\begin {equation*}\frac {{H}_2^{n+\frac {1}{2}} - H_2^{n-\frac {1}{2}}}{\Delta t} - \boundaryproduct [\partial \Omega _2]{\mathbf {y}_\partial ^{n+1}}{\mathbf {u}_\partial ^{n+1}} = 0.\end {equation*}


$\Omega _1$


$\Omega _2$


$10^{-12}$


$\Omega = \Omega _1 \cup \Omega _2$


\begin {equation*}\omega _{mn}^{ana} = \frac {\pi }{2\thinspace L}\sqrt {(2m-1)^2 + (2n-1)^2}.\end {equation*}


\begin {equation*}i \omega _{mn}^{num} \mathbf {M}\bm {\psi }_{mn} = \mathbf {J}\bm {\psi }_{mn},\end {equation*}


$i= \sqrt {-1}$


$30$


$|\omega _{nm}^{\text {num}} - \omega _{nm}^{\text {ana}}|/{\omega _{nm}^{\text {ana}}} \times 100$


$e_\alpha $


$_1$


\begin {equation}\label {eq:elasticity_primal} \rho \partial _{tt}\bm {u}-\Div \bm {\sigma }=0, \qquad \Omega = [0, 1]^ 2.\end {equation}


$\rho $


$\bm {u}$


$\Div $


$\bm {\sigma }$


\begin {equation*}\bm {\sigma } = \bm {K} \Grad \bm {u},\end {equation*}


$\bm {K}$


$\Grad \bm {u} = \bm {\varepsilon }:=\frac {1}{2}(\nabla \bm {u} + (\nabla \bm {u})^\top )$


\begin {equation*}\bm {K}(\circ ) = \frac {E}{(1 - \nu ^2)} ((1 - \nu )\circ + \nu \mathrm {tr}(\circ )\bm {I}_2),\end {equation*}


$E$


$\nu $


$\Omega _1$


$\Omega _2$


$\Gamma _1$


$\Gamma _2$


\begin {equation}\bm {e}_{\alpha } = \partial _t\bm {u}, \qquad \bm {E}_{\beta } = \bm {\sigma }, \label {Xeqn70-72}\end {equation}


\begin {equation}\begin {bmatrix} \rho & 0 \\ 0 & \bm {C} \end {bmatrix} \begin {pmatrix} \partial _t\bm {e}_{\alpha } \\ \partial _t\bm {E}_{\beta } \end {pmatrix} = \begin {bmatrix} 0 & \Div \\ \Grad & 0 \end {bmatrix} \begin {pmatrix} \bm {e}_{\alpha } \\ \bm {E}_{\beta } \end {pmatrix}, \label {Xeqn71-73}\end {equation}


$\bm {C} := \bm {K}^{-1}$


$\mathcal {L}=\Grad $


$\mathcal {L}^*=-\Div $


$\Omega _1$


$\bm {e}_\alpha \in L^2(\Omega _1; \bbR ^2)$


$L^2$


$\bm {E}_\beta \in H^{\Div }(\Omega _1; \bbS )$


$\bbS = \mathbb {R}^{2\times 2}_{\rm sym}$


$\forall {v}_\alpha \in L^2(\Omega _1; \bbR ^2)$


$\forall \bm {v}_\beta \in H^{\Div }(\Omega _1; \bbS )$


\begin {equation}\begin {split} \innerproduct [\Omega _1]{\bm {v}_\alpha }{\rho \partial _t\bm {e}_\alpha } &= +\innerproduct [\Omega _1]{\bm {v}_\alpha }{\Div \bm {E}_\beta }, \\ \innerproduct [\Omega _1]{\bm {V}_\beta }{\bm {C}\partial _t\bm {E}_\beta } &= -\innerproduct [\Omega _1]{\Div \bm {V}_\beta }{\bm {e}_\alpha } + \boundaryproduct [\Gamma _1]{\mathcal {T}_{\beta }\bm {V}_\beta }{\bm {u}_{\partial ,1 }} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\beta }\bm {V}_\beta }{\bm {u}_{\partial , 1}^{\Gamma _{\rm int}}}, \end {split} \label {eq:Elasticity-weak-D}\end {equation}


$\mathcal {T}_\beta \bm {S} = \bm {S} \cdot \bm {n}|_{\partial \Omega _1}$


$\Omega _2$


$\bm {E}_\alpha \in H^1(\Omega _2; \mathbb {R}^2)$


$\bm {E}_\beta \in H^{\rot \Rot }(\Omega _2; \mathbb {S})$


$\forall \bm {v}_\alpha \in H^1(\Omega _2; \bbR ^2)$


$\forall \bm {V}_\beta \in H^{\rot \Rot }(\Omega _2; \mathbb {S})$


\begin {equation}\begin {split} \innerproduct [\Omega _2]{\bm {v}_\alpha }{\rho \partial _t\bm {e}_\alpha } &= -\innerproduct [\Omega _2]{\Grad \bm {v}_\alpha }{\bm {E}_\beta } + \boundaryproduct [\Gamma _2]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{{u}_{\partial ,2}} + \boundaryproduct [\Gamma _{\rm int}]{\mathcal {T}_{\alpha }\bm {v}_\alpha }{{u}_{\partial ,2}^{\Gamma _{\rm int}}}, \\ \innerproduct [\Omega _2]{\bm {V}_\beta }{\bm {C}\partial _t\bm {E}_\beta } &= +\innerproduct [\Omega _2]{\bm {V}_\beta }{\Grad \bm {e}_\alpha }, \end {split} \label {eq:Elasticity-weak-N}\end {equation}


$\mathcal {T}_\alpha \bm {u} = \bm {u}|_{\partial \Omega _2}$


$H^{\rot \Rot }(\Omega _2; \mathbb {S})$


$\rot \Rot $


$\rot \Rot $


\begin {equation*}\rot \Rot \bm {S} = \partial _{xx} S_{yy} + \partial _{yy} S_{xx} - 2 \partial _{xy}S_{xy},\end {equation*}


\begin {equation*}\rot \Rot \bm {S} = \div \Div (\bm {JSJ}^\top ), \qquad \bm {J}:=\begin {pmatrix} 0 & 1 \\ -1 & 0 \end {pmatrix}.\end {equation*}


$1$


$_1$


$3$


$_3$


$\bm {e}_{\alpha , 1}$


$\bm {E}_{\beta , 1}$


$\Omega _1$


$_2$


$\bm {a}_{\alpha , 2}$


$1$


$_1$


$\bm {e}_{\beta , 2}$


$\Omega _2$


$H^{\rot \Rot }(\bbS )$


\begin {equation*}\Grad \mathrm {CG}_k(\bbR ^2) \subseteq \mathrm {DG}_{k-1}(\bbS ),\end {equation*}


$\mathfrak {T}_h=\mathfrak {T}_h^{\Omega _1}\cup \mathfrak {T}_h^{\Omega _2}$


$\Omega _1$


\begin {equation}\begin {split} V_{\alpha , 1} &= \{\bm {u}_h\in L^2(\Omega _1; \bbR ^2)|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {u}_h|_T\in \mathrm {DG}_1(\bbR ^2)\}, \\ V_{\beta , 1} &= \{\bm {S}_h\in H^{\Div }(\Omega _1; \bbS )|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {S}_h|_T\in \mathrm {AW}_3\}, \end {split} \label {Xeqn74-76}\end {equation}


$T$


$\mathfrak {T}_h$


$\Omega _2$


\begin {equation}\begin {split} V_{\alpha , 2} &= \{\bm {u}_h\in H^1(\Omega _2; \bbR ^2)|\; \forall T\in \mathfrak {T}_h^{\Omega _2},\; \bm {u}_h|_T\in \mathrm {CG}_2(\bbR ^2)\}, \\ V_{\beta , 2} &= \{\bm {S}_h\in L^2(\Omega _2; \bbS )|\; \forall T\in \mathfrak {T}_h^{\Omega _2}, \bm {S}_h|_T\in \mathrm {DG}_1(\bbS )\}. \end {split} \label {Xeqn75-77}\end {equation}


$\Omega _1$


\begin {equation}\begin {split} \begin {bmatrix} \mathbf {M}_{\alpha , 1} & 0 \\ 0 & \mathbf {M}_{\beta , 1} \end {bmatrix}\frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {D}_{\Div } \\ -\mathbf {D}_{\Div }^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ \mathbf {B}_{\beta }^{\Gamma _1} & \mathbf {B}_{\beta }^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,1} \\ \mathbf {u}_{\partial ,1}^{\rm int} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,1} \\ \mathbf {y}_{\partial ,1}^{\rm int} \end {pmatrix} &= \begin {bmatrix} 0 & \mathbf {T}_\beta ^{\Gamma _1} \\ 0 & \mathbf {T}_\beta ^{\Gamma _{\rm int}} \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,1} \\ \mathbf {e}_{\beta ,1} \end {pmatrix}, \end {split} \label {Xeqn76-78}\end {equation}


$\Omega _2$


\begin {equation}\begin {split} \begin {bmatrix} \mathbf {M}_{\alpha , 2} & 0 \\ 0 & \mathbf {M}_{\beta , 2} \end {bmatrix}\frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} &= \begin {bmatrix} 0 & -\mathbf {D}_{\Grad } \\ \mathbf {D}_{\Grad }^\top & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix} + \begin {bmatrix} \mathbf {B}_\alpha ^{\Gamma _2} & \mathbf {B}_\alpha ^{\Gamma _{\rm int}} \\ 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {u}_{\partial ,2} \\ \mathbf {u}_{\partial ,2}^{\rm int} \end {pmatrix}, \\ \begin {pmatrix} \mathbf {y}_{\partial ,2} \\ \mathbf {y}_{\partial ,2}^{\rm int} \end {pmatrix} &= \begin {bmatrix} \mathbf {T}_\alpha ^{\Gamma _2} & 0 \\ \mathbf {T}_\alpha ^{\Gamma _{\rm int}} & 0 \end {bmatrix} \begin {pmatrix} \mathbf {e}_{\alpha ,2} \\ \mathbf {e}_{\beta ,2} \end {pmatrix}. \end {split} \label {Xeqn77-79}\end {equation}


$\Omega = [0, 1]^2$


\begin {equation*}i \omega ^{num}_n \mathbf {M}\bm {\psi }_n = \mathbf {J}\bm {\psi }_n,\end {equation*}


$i= \sqrt {-1}$


$10$


\begin {equation*}L=1 \; \mathrm {[m]}, \qquad \rho = 2700 \; \mathrm {[Kg/m^3]}, \qquad E = 70 \; \mathrm {[GPa]}, \qquad \nu =0.3.\end {equation*}


\begin {equation*}\widehat {\omega } = \omega \; L\sqrt {\frac {\rho }{E}}, \qquad \end {equation*}


$\bm {e}_\alpha $


$\sqrt {\bm {e}_\alpha \cdot \bm {e}_\alpha }$


$_2$


\begin {equation}\label {eq:mindlin_primal} \begin {aligned} &\rho h\partial _{tt}{w}-\div \bm {q} =0, \qquad \Omega = [0, 1]^ 2, \\ &\rho J\partial _{tt}\bm {\bm {\theta }}-(\Div \bm {M} + \bm {q})=0. \end {aligned}\end {equation}


$\rho $


$h$


$J:=h^3/12$


$w$


$\bm {\theta }$


$\bm {q}$


$\bm {M}$


$w, \; \bm {\theta }$


\begin {equation*}\bm {q} = K_{\rm sh} (\grad w - \bm {\theta }), \qquad \bm {M} = \bm {K}_b \Grad \bm {\theta },\end {equation*}


$K_{\rm sh}$


$\bm {K}_b$


\begin {equation*}K_{\rm sh} = k G h, \qquad \bm {K}_b(\circ ) = \frac {Eh^3}{12(1 - \nu ^2)} ((1 - \nu )\circ + \nu \mathrm {tr}(\circ )\bm {I}_2)\end {equation*}


$k$


$G = E/(2(1+\nu ))$


$E$


$\nu $


\begin {equation}\bm {e}_{\alpha } = \begin {pmatrix} \partial _t w \\ \partial _t \bm {\theta } \\ \end {pmatrix} = \begin {pmatrix} v \\ \bm {\omega } \\ \end {pmatrix}, \qquad \bm {E}_{\beta } = \begin {pmatrix} K_{\rm sh}(\grad w - \bm {\theta })\\ \bm {K}_b \Grad \bm {\theta } \\ \end {pmatrix} = \begin {pmatrix} \bm {q}\\ \bm {M} \\ \end {pmatrix}, \label {Xeqn79-81}\end {equation}


\begin {equation}\begin {bmatrix} \rho h & 0 & 0 & 0 \\ 0 & \rho J & 0 & 0 \\ 0 & 0 & C_{\rm sh} & 0 \\ 0 & 0 & 0 & \bm {C}_b \end {bmatrix} \begin {pmatrix} \partial _t v \\ \partial _t\bm {\omega } \\ \partial _t \bm {q} \\ \partial _t \bm {M} \\ \end {pmatrix} = \begin {bmatrix} 0 & 0 & \div & 0 \\ 0 & 0 & \bm {I}_2 & \Div \\ \grad & -\bm {I}_2 & 0 & 0 \\ 0 & \Grad & 0 & 0 \\ \end {bmatrix} \begin {pmatrix} v \\ \bm {\omega } \\ \bm {q} \\ \bm {M} \\ \end {pmatrix}, \label {Xeqn80-82}\end {equation}


$C_{\rm sh}:=K^{-1}_{\rm sh}$


$\bm {C}_b := \bm {K}_b^{-1}$


$\mathcal {L}$


$\mathcal {L}^*$


\begin {equation*}\mathcal {L}= \begin {bmatrix} \grad & -\bm {I}_2 \\ 0 & \Grad \end {bmatrix}, \qquad \mathcal {L}^*= - \begin {bmatrix} \div & 0 \\ \bm {I}_2 & \Div \end {bmatrix}\end {equation*}


$\Omega _1$


$v \in L^2(\Omega _1), \; \bm {\omega }\in L^2(\Omega _1; \bbR ^2)$


$\bm {q}\in H^{\div }(\Omega _1), \; \bm {M}\in H^{\Div }(\Omega _1; \bbS )$


$\forall {\psi }_v\in L^2(\Omega _1), \; \forall \bm {\psi }_\omega \in L^2(\Omega _1; \bbR ^2), \; \forall \bm {\psi }_q\in H^{\Div }(\Omega _1)$


$\forall \bm {\Psi }_M\in H^{\div }(\Omega _1; \bbS )$


\begin {equation}\begin {split} \innerproduct [\Omega _1]{\psi _v}{\rho h \partial _t v} &= + \innerproduct [\Omega _1]{\psi _v}{\div \bm {q}}, \\ \innerproduct [\Omega _1]{\bm \psi _\omega }{\rho J \partial _t \bm {\omega }} &= + \innerproduct [\Omega _1]{\bm \psi _\omega }{\Div \bm {M} + \bm {q}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_q}{C_{\rm sh}\partial _t\bm {q}} &=- \innerproduct [\Omega _1]{\div \bm {\psi }_q}{v} - \innerproduct [\Omega _1]{\bm {\psi }_q}{\bm {\omega }} + \boundaryproduct [\Gamma _1]{\bm {\psi }_q \cdot \bm {n}}{v} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_q \cdot \bm {n}}{v}, \\ \innerproduct [\Omega _1]{\bm {\Psi }_M}{\bm {C}_b\partial _t\bm {M}} &=- \innerproduct [\Omega _1]{\Div \bm {\Psi }_M}{\bm {\omega }} + \boundaryproduct [\Gamma _1]{\bm {\Psi }_M \cdot \bm {n}}{\bm {\omega }} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\Psi }_M \cdot \bm {n}}{\bm {\omega }}, \\ \end {split} \label {eq:Mindlin-weak-D}\end {equation}


$\mathcal {T}_\beta $


\begin {equation*}\mathcal {T}_\beta \begin {pmatrix} \bm {q} \\ \bm {M} \\ \end {pmatrix} = \begin {pmatrix} \bm {q}\cdot \bm {n}\vert _{\partial \Omega _1} \\ \bm {M}\cdot \bm {n}\vert _{\partial \Omega _1} \\ \end {pmatrix}\end {equation*}


$\Omega _2$


$v \in H^1(\Omega _2; \mathbb {R}^2), \; \bm {\omega }\in H^1(\Omega _2; \mathbb {R}^2)$


$\bm {M}\in H^{\rot \Rot }(\Omega _2; \mathbb {S}), \; \bm {q}\in H^{\rot }(\Omega _2)$


$\forall \psi _v \in H^1(\Omega _2), \; \forall \bm \psi _\omega \in H^1(\Omega _2; \bbR ^2), \; \forall \bm {\Psi }_M\in H^{\rot \Rot }(\Omega _2; \mathbb {S}), \; \forall \bm {q}\in H^{\rot }(\Omega _2)$


\begin {equation}\begin {split} \innerproduct [\Omega _1]{\psi _v}{\rho h \partial _t v} &= - \innerproduct [\Omega _1]{\grad \psi _v}{\bm {q}} + \boundaryproduct [\Gamma _1]{\psi _v}{\bm {q} \cdot \bm {n}} + \boundaryproduct [\Gamma _{\rm int}]{\psi _v}{\bm {q} \cdot \bm {n}}, \\ \innerproduct [\Omega _1]{\bm \psi _\omega }{\rho J \partial _t \bm {\omega }} &= - \innerproduct [\Omega _1]{\Grad \bm \psi _\omega }{\bm {M}} + \innerproduct [\Omega _1]{\bm \psi _\omega }{\bm {q}} + \boundaryproduct [\Gamma _1]{\bm {\psi }_\omega }{\bm {M}\cdot \bm {n}} + \boundaryproduct [\Gamma _{\rm int}]{\bm {\psi }_\omega }{\bm {M}\cdot \bm {n}}, \\ \innerproduct [\Omega _1]{\bm {\psi }_q}{C_{\rm sh }\partial _t\bm {q}} &= +\innerproduct [\Omega _1]{\bm {\psi }_q}{\grad v - \bm {\omega }},\\ \innerproduct [\Omega _1]{\bm {\Psi }_M}{\bm {C}_b\partial _t\bm {M}} &=+\innerproduct [\Omega _1]{\bm {\Psi }_M}{\Grad \bm {\omega }}, \\ \end {split} \label {eq:Mindlin-weak-N}\end {equation}


$\mathcal {T}_\alpha $


\begin {equation*}\mathcal {T}_\alpha \begin {pmatrix} v \\ \bm {\omega } \end {pmatrix} = \begin {pmatrix} v\vert _{\partial \Omega _2}\\ \bm {\omega }\vert _{\partial \Omega _2} \end {pmatrix}.\end {equation*}


$\Omega _1$


$1$


$_1$


$v$


$\bm {\omega }$


$_2$


$\bm {q}$


$\bm {M}$


$\Omega _2$


$_2$


$v, \; \bm {\omega }$


$1$


$_1$


$\bm {q}, \; \bm {M}$


$\mathfrak {T}_h=\mathfrak {T}_h^{\Omega _1}\cup \mathfrak {T}_h^{\Omega _2}$


$\Omega _1$


\begin {equation}\begin {split} V_{\alpha , 1} &= \{\bm {u}_h\in L^2(\Omega _1) \times L^2(\Omega _1; \bbR ^2)|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {u}_h|_T\in \mathrm {DG}_1 \times \mathrm {DG}_1(\bbR ^2)\}, \\ V_{\beta , 1} &= \{\bm {S}_h\in H^{\div }(\Omega _1) \times H^{\Div }(\Omega _1; \bbS )|\; \forall T\in \mathfrak {T}_h^{\Omega _1}, \; \bm {S}_h|_T\in \mathrm {RT}_2 \times \mathrm {AW}_3\}, \end {split} \label {Xeqn83-85}\end {equation}


$T$


$\mathfrak {T}_h$


$\Omega _2$


\begin {equation}\begin {split} V_{\alpha , 2} &= \{\bm {u}_h\in H^1(\Omega _2) \times H^1(\Omega _2; \bbR ^2)|\; \forall T\in \mathfrak {T}_h^{\Omega _2},\; \bm {u}_h|_T\in \mathrm {CG}_2 \times \mathrm {CG}_2(\bbR ^2)\}, \\ V_{\beta , 2} &= \{\bm {S}_h\in L^2(\Omega _2; \bbR ^2) \times L^2(\Omega _2; \bbS )|\; \forall T\in \mathfrak {T}_h^{\Omega _2}, \bm {S}_h|_T\in \mathrm {DG}_1(\bbR ^2) \times \mathrm {DG}_1(\bbS )\}. \end {split} \label {Xeqn84-86}\end {equation}


$\Omega _1$


\begin {equation}\label {eq:discrete_clamped_mindlin} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{v, 1} \\ \mathbf {M}_{w, 1} \\ \mathbf {M}_{m, 1} \\ \mathbf {M}_{q, 1} \\ \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {v}_1 \\ \mathbf {w}_1 \\ \mathbf {m}_1 \\ \mathbf {q}_1 \end {pmatrix} = \begin {bmatrix} 0 & 0 & \mathbf {D}_{\div } & 0 \\ 0 & 0 & \mathbf {P} & \mathbf {D}_{\Div } \\ -\mathbf {D}_{\div }^\top & -\mathbf {P}^\top & 0 & 0 \\ 0 & -\mathbf {D}_{\Div }^\top & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {v}_1 \\ \mathbf {w}_1 \\ \mathbf {m}_1 \\ \mathbf {q}_1 \end {pmatrix} + \begin {bmatrix} 0 & 0 \\ 0 & 0 \\ \mathbf {B}_{\bm {q} \cdot \bm {n}} & 0 \\ 0 & \mathbf {B}_{\bm {M}\cdot \bm {n}} \\ \end {bmatrix}\begin {pmatrix} \mathbf {u}_v \\ \mathbf {u}_\omega \end {pmatrix}.\end {equation}


$\Omega _2$


\begin {equation}\label {eq:discrete_free_mindlin} \mathrm {Diag} \begin {bmatrix} \mathbf {M}_{v, 2} \\ \mathbf {M}_{w, 2} \\ \mathbf {M}_{m, 2} \\ \mathbf {M}_{q, 2} \\ \end {bmatrix} \frac {\rm {d}}{{\rm {d}}t} \begin {pmatrix} \mathbf {v}_2 \\ \mathbf {w}_2 \\ \mathbf {n}_2 \\ \mathbf {m}_2 \end {pmatrix} = \begin {bmatrix} 0 & 0 & -\mathbf {D}_{\grad }^\top & 0 \\ 0 & 0 & \mathbf {P} & -\mathbf {D}_{\Grad }^\top \\ \mathbf {D}_{\grad } & -\mathbf {P}^\top & 0 & 0 \\ 0 & \mathbf {D}_{\Grad } & 0 & 0 \end {bmatrix} \begin {pmatrix} \mathbf {v}_2 \\ \mathbf {w}_2 \\ \mathbf {n}_2 \\ \mathbf {m}_2 \end {pmatrix} + \begin {bmatrix} \mathbf {B}_{v} & 0 \\ 0 & \mathbf {B}_{\bm \omega } \\ 0 & 0 \\ 0 & 0 \\ \end {bmatrix}\begin {pmatrix} \mathbf {u}_q \\ \mathbf {u}_M \end {pmatrix}.\end {equation}


$\Omega = [0, 1]^2$


\begin {equation*}i \omega ^{num}_n \mathbf {M}\bm {\psi }_n = \mathbf {J}\bm {\psi }_n,\end {equation*}


$i= \sqrt {-1}$


$10$


\begin {equation*}L=1 \; \mathrm {[m]}, \qquad h=0.01 \; \mathrm {[m]}, \qquad \rho = 2700 \; \mathrm {[Kg/m^3]}, \qquad E = 70 \; \mathrm {[GPa]}, \qquad \nu =0.3, \qquad k=0.8601.\end {equation*}


\begin {equation*}\widehat {\omega } = \omega \; L\sqrt {\frac {\rho }{G}}, \qquad \qquad G=\frac {E}{2(1+\nu )},\end {equation*}


$v$


$v$


$w$


$\bm {\theta }$


$\bm {\omega }$


$\bm {q}$
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operate together. In recent years, the port-Hamiltonian (pH) formalism [1] has established itself as a sound and powerful mathematical 
framework for modeling and control of complex multiphysical systems. At the core of this framework lies the idea of composability, 
i.e. the fact that interconnecting port-Hamiltonian systems (pHs) leads to another system of the same kind.

The theory of port-Hamiltonian systems is built upon a rich geometrical structure based on exterior calculus and issues may 
arise if this structure is not preserved at the numerical level [2–4]. Structure preserving techniques attempt to capture as much of 
the underlying structures as possible. To this aim, many strategies have been proposed throughout the years, such as mimetic finite 
differences [5,6], discrete exterior calculus [7], finite element exterior calculus [3] and many others. When devising discretization 
schemes for port-Hamiltonian systems, boundary conditions have a prominent role in the discussion. This is due to the connection 
of port-Hamiltonian systems to the concept of Stokes-Dirac structure [8]. This geometrical structure characterizes all admissible 
boundary flows into a spatial domain and is agnostic to the actual boundary conditions of the problem. The way boundary conditions 
are included in the model is related to the numerical method used. In a finite element context, boundary conditions are either 
imposed strongly by incorporating them in the discrete spaces used to approximate the variables or weakly when they explicitly 
appear in the weak formulation [9]. Weak imposition of the boundary conditions typically arises from the variational formulation in a 
natural manner via integration by parts. There is no general consensus on whether it is preferable to use a weak or strong formulation 
and the best choice is strongly problem and method dependent [10,11]. Strong imposition of the boundary conditions in dynamical 
systems leads to differential-algebraic equations that are more difficult to solve than ordinary differential equations [12]. In the 
port-Hamiltonian community a general effort has been made to incorporate mixed boundary conditions in an explicit manner, see 
for instance [13] for a discrete exterior calculus formulation, [14] for a Galerkin scheme based on Whitney forms, [15] for a mixed 
finite element framework and [16] for discontinuous Galerkin discretization based on finite element exterior calculus (FEEC). Wave 
propagation phenomena exhibit a primal dual structure that was first highlighted in [17]. Therein however no connection with dif-
ferential geometry is established. In [18] the authors used a finite element exterior calculus to highlight the fundamental primal-dual 
structure of pHs. The two formations are related by the Hodge operator and the resulting scheme is called dual-field as each variable 
is represented in dual finite element bases. The use of a dual field finite element formulation was initially introduced in [19] as a way 
of handling the convective non-linearity of Navier-Stokes equations in an explicit manner and still obtaining a conservative scheme 
in terms of mass, helicity and energy. The work of [19] focused on periodic domains only without dealing with boundary conditions. 
In port-Hamiltonian systems, the dual field representation allows obtaining the topological power balance that characterizes 
the Dirac structure when inhomogeneous mixed boundary conditions are considered. Furthermore, it clearly shows that the two 
formulations treat the boundary conditions in a dual manner, i.e. the natural boundary conditions for one formulation are essen-
tial for the other and vice-versa, which leads to the question of how can this primal-dual structure be exploited for incorporating them.

In the present contribution, the dual-field representation is employed to achieve weak imposition of mixed boundary conditions 
in hyperbolic systems. In particular, this work formalizes previous results discussed in [20,21] using finite element exterior calculus. 
The spatial domain is decomposed using an internal interface that separates the two boundary subpartitions when a single boundary 
condition applies. On each subdomain a mixed finite element formulation is used in such a way that the boundary condition is 
included naturally. Each mixed formulation uses a pair a finite elements that constitute a Hilbert subcomplex and thus is stable and 
structure preserving. The two formulations are then interconnected together on the shared interface by means of a feedback (or in port-
Hamiltonian jargon a gyrator interconnection) that enforces in weak manner the continuity of the finite element spaces. The resulting 
system incorporates the mixed boundary conditions of the problem in a completely weak manner and does not require Lagrange 
multipliers. The proposed methodology is reminiscent of Dirichlet-Neumann alternating Schwarz methods for non-overlapping domain 
decomposition-based coupling, cf [22]. for an application to linear elasticity models. However, in the classical domain-decomposition 
method only one primal formulation and the coupling conditions is achieved via an iterative approach. The present contribution is 
not really concerned with accelerating numerical methods but rather with showing that the employment of a primal-dual formulation 
makes it possible to avoid the usage of Lagrange multipliers for subdomain coupling. The strategy can also be applied to semilinear 
model containing algebraic nonlinearities. Even if the methodology is discussed for hyperbolic port-Hamiltonian systems, it can 
be extended to static elliptic problems. For the time integration the implicit midpoint scheme and the Störmer Verlet method are 
considered. This choice guarantees the preservation of the power balance in each subdomain [23]. The implicit midpoint preserves 
the overall energy but requires the solution of a monolithic system. Störmer-Verlet decouples the two subdomains but does not 
enforce energy preservation exactly. The proposed approach will be shown to be accurate, have proper convergence and to be 
able to preserve certain mathematical, and thereby physical, properties at the discrete level. To demonstrate this, different physical 
examples are considered: the nonlinear geometrically exact intrinsic beam model, the wave equation in two dimensions, membrane 
elastodynamics and the Mindlin plate. The examples chosen showcase the versatility of our approach in different physical-domains as 
well as different dimensions. Furthermore, they show that the proposed discretization does not suffer from shear locking phenomena. 
To summarize main novel results of the paper are the following:

• Formalizes a dual-field representation using Finite Element Exterior Calculus (FEEC) to enforce mixed boundary conditions without 
the need for Lagrange multipliers. The domain is decomposed into subdomains using a Hilbert subcomplex pair for each, ensuring 
the formulation remains stable and preserves the underlying physical structure.

• Employs a gyrator (port-Hamiltonian feedback) interconnection at the internal interface to enforce continuity between finite 
element spaces in a weak manner.

• Distinguished from classical Dirichlet-Neumann alternating Schwarz methods by using a primal-dual formulation that avoids 
iterative coupling for subdomain interconnection.

Applied Mathematical Modelling 156 (2026) 116775 

2 



S. De Jong et al.

• Demonstrates that the Implicit Midpoint rule preserves overall energy, while the Störmer-Verlet method allows for subdomain 
decoupling at the cost of exact energy preservation.

• The discretization approach is shown to be accurate, convergent, and specifically avoids shear locking phenomena in structural 
mechanics.

• The method is primarily designed for hyperbolic port-Hamiltonian systems, but explicitly extensible to static elliptic problems and 
semilinear models with algebraic nonlinearities. It can be extended to electromagnetic phenomena and multiphysics coupling.
The outline of the rest of the paper is as follows. The assumptions of the study and the mixed discretization approach based on 

finite element subcomplexes are presented in Section 2. The domain-decomposition strategy is presented in Section 3 including the 
choice of the finite element basis for the boundary input made to couple the two formulation on the interface. The time integration 
schemes are discussed in Section 4. Section 5 presents the numerical examples.

2.  Galerkin discretization of port-Hamiltonian systems

The general class of port-Hamiltonian systems is now presented. A brief introduction on port-Hamiltonian systems is given by 
means of the wave equation as an example. Then we recall the mixed finite element Galerkin discretization presented in [17]. This 
discretization is such to retain the Hamiltonian structure at the discrete level.

2.1.  An introductory example: The wave equation

The propagation of acoustic waves in Ω ⊂ ℝ𝑑 is described by the following hyperbolic partial differential equation, that determines 
the time-dependent field 𝜙(𝑡) ∶ Ω × [0, 𝑇end] → ℝ

𝜕2𝑡𝑡𝜙 − div grad𝜙 = 0, (1)

together with time-varying Dirichlet boundary condition
𝜙|𝜕Ω = 𝑔(𝑡). (2)

The total energy is given by the sum of kinetic and potential energy

𝐻 = 1
2 ∫Ω

(𝜕𝑡𝜙)2 + || grad𝜙||2 dΩ.

To highlight the Hamiltonian structure of the wave equation, consider the variables
𝛼 ∶= 𝜕𝑡𝜙, β = grad𝜙. (3)

Eq.  (1), together with the boundary condition (2), can now be recast into a first order system
(

𝜕𝑡𝛼
𝜕𝑡β

)

=
[

0 div
grad 0

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐽

(

𝛼
β

)

, 𝛼|𝜕Ω = 𝜕𝑡𝑔 ∶= 𝑢. (4)

Notice that the operator 𝐽 is formally skew-adjoint, as for compactly supported function the adjoint of the gradient is minus the 
divergence grad∗ = −div. Here 𝑢 corresponds to a control input applied to the boundary. Indeed port-Hamiltonian systems are bound-
ary controlled systems and the boundary conditions coincide with inputs that describe interactions with the external environment. 
Notice that the Hamiltonian is quadratic in the new variables, making the variational derivative easier to compute

𝐻 = 1
2 ∫Ω

𝛼2 + ||β||2dΩ, 𝛿𝛼𝐻 = 𝛼, 𝛿β𝐻 = β,

where 𝛿𝛼 and 𝛿𝛽 are the variational derivative with respect to the state variables. The power exchanged through the domain boundary 
corresponds to the time derivative of the energy

𝐻̇(𝛼,β) = ∫Ω
𝛿𝛼𝐻 ⋅ 𝜕𝑡𝛼 + 𝛿β𝐻 ⋅ 𝜕𝑡β dΩ,

= ∫Ω
𝛼 ⋅ divβ + β ⋅ grad 𝛼 dΩ,

= ∫Ω
div(𝛼 β) dΩ = ∫𝜕Ω

𝛼 β ⋅n dΓ,

(5)

where n is the outward normal to the boundary. The final expression pairs the Dirichlet condition with the Neumann boundary 
condition. It corresponds to a passive power balance of the form

𝐻̇ = ∫𝜕Ω
𝑢𝑦 dΓ

where variable 𝑦 is the power conjugated output to the input and corresponds to the Neumann boundary condition,
𝑦 ∶= β ⋅n|𝜕Ω = grad𝜙 ⋅n|𝜕Ω (6)

System (4) is an example of a port-Hamiltonian system. The underlying geometrical structure is the Stokes-Dirac structure, an infinite 
dimensional generalization of Dirac manifolds introduced by Courant [24].
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2.2.  An abstract setting for linear port-Hamiltonian hyperbolic systems

Consider a domain Ω ⊂ ℝ𝑑 , 𝑑 ∈ {1, 2, 3} and a partition of its boundary 𝜕Ω = Γ1 ∪ Γ2, such that Γ1 ∩ Γ2 = ∅. Let x = {α,β} be the 
state variables. The states at a given time are expected to be square integrable functions α(𝑡) ∈ 𝐿2(Ω;𝔸), β(𝑡) ∈ 𝐿2(Ω;𝔹) taking values 
in the vector spaces 𝔸, 𝔹.

To define the dynamics of the system, an unbounded differential operator  ∶ 𝐿2(Ω;𝔸) → 𝐿2(Ω;𝔹) is introduced. For a given 
differential it is possible to define its formal adjoint by means of the integration by parts formula.
Definition 1  (Formal Adjoint). Let u ∈ 𝐶∞

0 (Ω,𝔸) and v ∈ 𝐶∞
0 (Ω,𝔹) smooth variables on Ω, and  be the differential operator  ∶

𝐿2(Ω;𝔸) → 𝐿2(Ω;𝔹). The formal adjoint of  is than ∗ ∶ 𝐿2(Ω;𝔹) → 𝐿2(Ω;𝔸) defined by the relation
(u,v)Ω = (u,∗v)Ω. (7)

where the inner product of two functions is denoted by (𝑓, 𝑔)Ω = ∫Ω 𝑓 ⋅ 𝑔 𝑑Ω. 
The differential operator  and its formal adjoint ∗ give rise to the Hilbert spaces 𝐻 and 𝐻∗ , which are specified as

𝐻(Ω) = {u ∈ 𝐿2(Ω,𝔸)| u ∈ 𝐿2(Ω,𝔹)},

𝐻∗
(Ω) = {v ∈ 𝐿2(Ω;𝔹)| ∗v ∈ 𝐿2(Ω;𝔸)}.

(8)

The formal adjoint definition does not account for boundary terms arising from the integration by parts formula. They are introduced 
by means of the next assumption.
Assumption 1  (Abstract integration by parts).  Let e𝛼 ∈ 𝐻(Ω), e𝛽 ∈ 𝐻∗ (Ω). Then the following integration by parts formula is 
assumed to hold

(e𝛼 ,e𝛽 )Ω = (e𝛼 ,∗e𝛽 )Ω + ⟨𝛼e𝛼 , 𝛽e𝛽⟩𝜕Ω, (9)

for appropriate trace operators 𝛼 and ⨎ , where ⟨𝑓, 𝑔⟩𝜕Ω = ∫𝜕Ω 𝑓 ⋅ 𝑔 𝑑Γ denotes the inner product over the boundary.
Example 1  (Gradient and divergence operators).  Let  ∶= grad be the gradient and ∗ = −div be the negative of the divergence. Let 
𝑓 ∈ 𝐻1(Ω), v ∈ 𝐻div(Ω) be a scalar and a vector function. The integration by parts states that the inner product with the gradient 
can be written as

(grad 𝑓,v)Ω = −(𝑓, divv)Ω + ⟨𝑓,v ⋅n⟩𝜕Ω. (10)

In this case the trace operators correspond to the Dirichlet trace and the normal trace. 
In this work we focus on conservation laws describing wave propagation phenomena in Hamiltonian form

(

𝜕𝑡α
𝜕𝑡β

)

=
[

0 −∗

 0

](

𝛿α𝐻
𝛿β𝐻

)

. (11)

where 𝐻 is the Hamiltonian and 𝛿α𝐻, 𝛿β𝐻 its variational derivative with respect to the state variables. In this work we restrict our 
attention to linear wave propagation phenomena described by the Hamiltonian formalism. The linearity of the system translates into 
a quadratic Hamiltonian.
Assumption 2  (Quadratic Hamiltonian).  The Hamiltonian is assumed to take the following form

𝐻 = 1
2
(α,𝛼α)Ω + 1

2
(β,𝛽β)Ω, (12)

The operators 𝛼 and 𝛽 are symmetric and positive (and therefore invertible).
The variational derivative of the Hamiltonian (also called co-energy variables) is evaluated as follows [25]

e𝛼 ∶= 𝛿𝐻
𝛿α

= 𝛼α, e𝛽 ∶= 𝛿𝐻
𝛿β

= 𝛽β. (13)

Given (13), the state variables are related to the co-energy variables by
α = 𝛼e𝛼 , β = 𝛽e𝛽 ,

where 𝛼 ∶= −1
𝛼 , 𝛽 ∶= −1

𝛽 . The Hamiltonian (12) can be expressed in terms of co-energy variables as

𝐻 = 1
2
(e𝛼 ,𝛼e𝛼)Ω + 1

2
(e𝛽 ,𝛽e𝛽 )Ω. (14)

The system can be equivalently rewritten in terms of the coenergy variables including mixed boundary conditions as follows
[

𝛼 0
0 𝛽

](

𝜕𝑡e𝛼
𝜕𝑡e𝛽

)

=
[

0 −∗

 0

](

e𝛼
e𝛽

)

,
e𝛼 ∈ 𝐻(Ω),

e𝛽 ∈ 𝐻∗
(Ω),

(

u𝜕,1
u𝜕,2

)

=
[

𝛼|Γ1 0
0 𝛽 |Γ2

](

e𝛼
e𝛽

)

,

(

y𝜕,1
y𝜕,2

)

=
[

0 𝛽 |Γ1
𝛼|Γ2 0

](

e𝛼
e𝛽

)

.

(15)
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Variable u𝜕,𝑖 are the inputs. In the terminology of partial differential equations, they correspond to the boundary data. In the following 
we will use input as a synonym for boundary conditions to stress the fact that these quantities are not fixed a priori but are the result 
of the system interacting with the environment. The variables y𝜕,𝑖 correspond to the conjugate outputs, i.e. the dual variable to the 
corresponding input u𝜕,𝑖 with respect to the power balance

𝐻̇ = ⟨u𝜕,1,y𝜕,1⟩Γ1 + ⟨u𝜕,2,y𝜕,2⟩Γ2 .

Examples of this duality are force and velocity in mechanics or voltage and current in electromagnetism. The notation 𝛼|Γ𝑖 , 𝛽 |Γ𝑖 , 𝑖 =
{1, 2} denotes the restriction of the trace operators to a given subpartition of the boundary.
Remark 1  (Equivalence with Lagrangian dynamics).  The presented Hamiltonian formulation can be deduced from the least action 
principle and is equivalent to a Lagrangian formulation [26]. 

2.3.  Conforming finite element discretization of port-Hamiltonian systems under mixed boundary conditions

The discretization of problem (15) is detailed in [17], where its primal-dual structure is highlighted. Therein however the point 
of view of Hilbert complexes is not considered and this mathematical structure is important for port-Hamiltonian systems. We will 
here consider a finite element formulation that respects the Hilbert complex structure. Furthermore, we detail the different numerical 
treatment of input and output variables in the case of mixed boundary conditions. In a classical monolithic discretization, one input 
variable enters the system via integration by parts and for this reason is called natural. The second input variable has to be enforced 
in a strong way and it is typically called essential.

The weak formulation can now be obtained by applying the test function v = {v𝛼 ,v𝛽} and integrating over Ω to end up with
(v𝛼 ,𝛼𝜕𝑡e𝛼)Ω = −(v𝛼 ,∗e𝛽 )Ω,

(v𝛽 ,𝛽𝜕𝑡e𝛽 )Ω = (v𝛽 ,e𝛼)Ω.
(16)

Given the abstract integration by parts formula (9), two possibilities arise. One can either integrate by parts the first line or the 
second. Depending on the choice, two dynamical systems are obtained. These two systems differ in the way they treat boundary 
conditions. In the first system u𝜕,1 is a natural boundary condition, whereas in the second system the natural boundary condition is 
u𝜕,2. To explain the classical Galerkin discretization in the case of mixed boundary conditions, Lagrange multipliers λ𝜕,𝑖 will be used. 

2.3.0.1.  System 1: natural imposition of u𝜕,1, essential imposition of u𝜕,2. If the second line is integrated by parts, the weak formulation 
reads: find e𝛼 ∈ 𝐿2(Ω;𝔸) and e𝛽 ∈ 𝐻∗ (Ω) such that

(v𝛼 ,𝛼𝜕𝑡e𝛼)Ω = −(v𝛼 ,∗e𝛽 )Ω,

(v𝛽 ,𝛽𝜕𝑡e𝛽 )Ω = (∗v𝛽 ,e𝛼)Ω + ⟨𝛽v𝛽 ,u𝜕,1⟩Γ1 + ⟨𝛽v𝛽 ,λ𝜕,2⟩Γ2 ,

𝛽 |Γ2e𝛽 = u𝜕,2,

y𝜕,1 = 𝛽 |Γ1e𝛽 ,

y𝜕,2 = λ𝜕,2.

for all v𝛼 ∈ 𝐿2(Ω;𝔸),

for all v𝛽 ∈ 𝐻∗
(Ω),

(17)

The essential input u𝜕,2 and the output y𝜕,1 are not evaluated weakly, but taken to be the trace of the associated state variable.

2.3.0.2.  System 2: natural imposition of u𝜕,2, essential imposition of u𝜕,1. If the first line is integrated by parts, the following system is 
obtained: find e𝛼 ∈ 𝐻(Ω), e𝛽 ∈ 𝐿2(Ω;𝔹) such that

(v𝛼 ,𝛼𝜕𝑡e𝛼)Ω = −(v𝛼 ,e𝛽 )Ω + ⟨𝛼v𝛼 ,λ𝜕,1⟩Γ1 + ⟨𝛼v𝛼 ,u𝜕,2⟩Γ2 ,

(v𝛽 ,𝛽𝜕𝑡e𝛽 )Ω = (v𝛽 ,e𝛼)Ω,

𝛼|Γ1e𝛼 = u𝜕,1,

y𝜕,1 = λ𝜕,1.

y𝜕,2 = 𝛼|Γ2e𝛼 .

for all v𝛼 ∈ 𝐻(Ω),

for all v𝛽 ∈ 𝐿2(Ω;𝔹),
(18)

2.3.0.3.  Finite dimensional representation of the variables. The two systems should not be discretized in the same manner, as different 
differential operators may arise in the weak formulations (17), (18). For this reason we now refer to the variables of formulation 
𝑖 using an appropriate subscript 𝑖 = {1, 2}. Consider a finite element Galerkin approximation of the test, trial and boundary input 
functions. For the two systems they are

v𝛼,𝑖 ≈
𝑛𝛼,𝑖
∑

𝑘=1
𝜒𝑘𝛼,𝑖(x)𝑣

𝑘
𝛼,𝑖, v𝛽,𝑖 ≈

𝑛𝛽,𝑖
∑

𝑘=1
𝜒𝑘𝛽,𝑖(x)𝑣

𝑘
𝛽,𝑖, u𝜕,𝑖 ≈

𝑛𝜕,𝑖
∑

𝑘=1
𝜒𝑘𝜕,𝑖(x)𝑢

𝑘
𝜕,𝑖(𝑡),

e𝛼,𝑖 ≈
𝑛𝛼,𝑖
∑

𝑘=1
𝜒𝑘𝛼,𝑖(x)𝑒

𝑘
𝛼,𝑖(𝑡), e𝛽,𝑖 ≈

𝑛𝛽,𝑖
∑

𝑘=1
𝜒𝑘𝛽,𝑖(x)𝑒

𝑘
𝛽,𝑖(𝑡), λ𝜕,𝑖 ≈

𝑛𝜕,𝑖
∑

𝑘=1
𝜒𝑘𝜕,𝑖(x)𝜆

𝑘
𝜕,𝑖(𝑡),

(19)
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where 𝜒𝛼,𝑖, 𝜒𝛽,𝑖, 𝜒𝜕,𝑖 the basis functions for the finite element spaces and 𝑛𝛼,𝑖, 𝑛𝛽,𝑖 are the number of degrees of freedom associated 
to variable e𝛼 ,e𝛽 on the domain Ω𝑖. The finite element spaces associated to the state variables e𝛼,𝑖, e𝛽,𝑖 are spanned by the basis 
functions

𝑉𝛼,𝑖 = span{𝜒𝛼,𝑖}, 𝑉𝛽,𝑖 = span{𝜒𝛽,𝑖}, 𝑖 = {1, 2}. (20)

Considering the fact that the weak formulations in Eqs.  (17) and (18) are conforming, the spaces verify the following inclusions
𝑉𝛼,1 ⊂ 𝐿

2(Ω;𝔸), 𝑉𝛽,1 ⊂ 𝐻
∗
(Ω), 𝑉𝛼,2 ⊂ 𝐻

(Ω), 𝑉𝛽,1 ⊂ 𝐿
2(Ω;𝔹). (21)

The guiding principle behind the choice of 𝑉𝛼,𝑖, 𝑉𝛽,𝑖 is that of a Hilbert complex.
Definition 2  (Hilbert Complex).  A Hilbert complex is a sequence {𝐻𝑘,𝑘}𝑘∈ℤ where:

• 𝐻𝑘 are Hilbert spaces,
• 𝑘 ∶ 𝐻𝑘 → 𝐻𝑘+1 are bounded linear operators,
• 𝑘+1◦𝑘 = 0 for all 𝑘 ∈ ℤ.

Given a Hilbert complex it is possible to define the adjoint complex by using the definition of an adjoint operator.
Example 2  (de-Rham Complex).  One important example of a Hilbert complex that will be considered in Section 5 is the de Rham 
complex

𝐻1(Ω)
grad
←←←←←←←←←←←←←←←←←→ 𝐻curl(Ω)

curl
←←←←←←←←←←←←←←←→ 𝐻div(Ω)

div
←←←←←←←←←←←←→ 𝐿2(Ω) (22)

The adjoint complex reads

𝐿2(Ω)
div
←←←←←←←←←←←←← 𝐻̊div(Ω)

curl
←←←←←←←←←←←←←←←← 𝐻̊curl(Ω)

grad
←←←←←←←←←←←←←←←←←← 𝐻̊1(Ω) (23)

where the Hilbert spaces in the adjoint complex include homogeneous boundary conditions. 
Finite element spaces 𝑉𝛼,𝑖, 𝑉𝛽,𝑖 are chosen from a finite dimensional subcomplex.

Definition 3  (Hilbert Subcomplex).  Given a Hilbert complex {𝐻𝑘,𝑘}𝑘∈ℤ, a subcomplex is a sequence of closed subspaces {𝑉 𝑘 ⊆
𝐻𝑘}𝑘∈ℤ such that:

• 𝑘(𝑉 𝑘) ⊆ 𝑉 𝑘+1 for all 𝑘 ∈ ℤ,
• 𝑉 𝑘 is a closed linear subspace of 𝐻𝑘,
• The restriction of 𝑘 to 𝑉 𝑘 maps 𝑉 𝑘 to 𝑉 𝑘+1.

In order to obtain a finite element subcomplex, the finite element spaces are selected in such a way that
∗(𝑉𝛽,1) ⊂ 𝑉𝛼,1, (𝑉𝛼,2) ⊂ 𝑉𝛽,2. (24)

This means that the spaces used for the discretization form two complexes

𝑉𝛼,2

←←←←←←←→ 𝑉𝛽,2, 𝑉𝛽,1

∗
←←←←←←←←←←←←→ 𝑉𝛼,1.

Spaces satisfying such an inclusion can be constructed in several manners [3,5,27]. The rationale behind the choice for the boundary 
spaces 𝑉𝜕,𝑖 = span{𝜒𝜕,𝑖} is important as it establishes a connection between the two formulations. As 𝑉𝜕,𝑖 are trace spaces, their elements 
can be taken to be the restriction to the boundary subpartitions Γ𝑖 of the spaces 𝑉𝛽,1 ⊂ 𝐻∗ (Ω) and 𝑉𝛼,2 ⊂ 𝐻(Ω)

span{𝜒𝜕,1} ∶= span{α|Γ1χα,2},

span{𝜒𝜕,2} ∶= span{𝛽 |Γ2𝜒𝛽,1}.
(25)

Remark 2  (Equivalence with the second order formulation).  Because of the inclusions (24), the mixed formulations coincides 
therefore with the second order formulation in time and space [17]. 

2.3.0.4.  Algebraic realization for System 1. In this case the formulation (17) is converted into the following differential algebraic 
system

⎡

⎢

⎢

⎣

𝐌𝛼,1 0 0
0 𝐌𝛽,1 0
0 0 0

⎤

⎥

⎥

⎦

d
d𝑡

⎛

⎜

⎜

⎝

𝐞𝛼,1
𝐞𝛽,1
λ𝜕,2

⎞

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎣

0 −𝐃∗ 0
𝐃⊤∗ 0 (𝐓Γ2

𝛽 )⊤𝐌Γ2

0 −𝐓Γ2
𝛽 0

⎤

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎝

𝐞𝛼,1
𝐞𝛽,1
λ𝜕,2

⎞

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎣

0 0
𝐁Γ1
𝛽 0
0 𝐈

⎤

⎥

⎥

⎥

⎦

(

𝐮𝜕,1
𝐮𝜕,2

)

,

(

𝐲𝜕,1
𝐲𝜕,2

)

=

[

0 𝐓Γ1
𝛽 0

0 0 𝐈

]

⎛

⎜

⎜

⎝

𝐞𝛼,1
𝐞𝛽,1,
λ𝜕,2

⎞

⎟

⎟

⎠

,

(26)
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where the matrices arising from the weak formulation are defined by
[𝐌𝛼,1]𝑚𝑛 = (𝜒𝑚𝛼,1,𝛼𝜒

𝑛
𝛼,1)Ω,

[𝐌𝛽,1]𝑝𝑞 = (𝜒𝑝𝛽,1,𝛽𝜒
𝑞
𝛽,1)Ω,

[𝐃∗ ]𝑚𝑝 = (𝜒𝑚𝛼,1,
∗𝜒𝑝𝛽,1)Ω,

[𝐌Γ2 ]𝑟𝑠 = ⟨𝜒𝑟𝜕,2, 𝜒
𝑠
𝜕,2⟩Γ2 ,

[𝐁Γ1
𝛽 ]𝑝𝑙 = ⟨𝛽𝜒

𝑝
𝛽,1, 𝜒

𝑙
𝜕,1⟩Γ1 , (27)

where (𝑚, 𝑛) ∈ {1,… , 𝑛𝛼,1}, (𝑝, 𝑞) ∈ {1,… , 𝑛𝛽,1}, (𝑟, 𝑠) ∈ {1,… , 𝑛𝜕,2}, 𝑙 ∈ {1,… , 𝑛𝜕,1}. The trace matrix is a Boolean matrix that local-
izes the degrees of freedom lying on the boundary

[𝐓Γ𝑖
𝛽 ]𝑘𝑝 =

{

1, if 𝛽𝜒
𝑝
𝛽,1 ≢ 0 on Γ𝑖, 𝑖 = {1, 2},

0, otherwise,
(28)

where 𝑘 = 1,… , dim{𝛽𝜒 𝑖𝛽,1 ≢ 0}
𝑛𝛽,1
𝑖=1  counts over the basis function that lie on the boundary subpartition Γ𝑖. The matrix 𝐁

Γ1
𝛽  can be 

decomposed using the trace matrix as follows
𝐁Γ1
𝛽 = (ΨΓ1𝐓Γ1

𝛽 )⊤, where [ΨΓ1 ]𝑙𝑗 ∶= ⟨𝜒 𝑙𝜕,1, 𝜒
𝑗
𝜕,2⟩Γ1 .

2.3.0.5.  Algebraic realization for System 2. In this case the formulation (18) is converted into the following differential algebraic 
system

⎡

⎢

⎢

⎣

𝐌𝛼,2 0 0
0 𝐌𝛽,2 0
0 0 0

⎤

⎥

⎥

⎦

d
d𝑡

⎛

⎜

⎜

⎝

𝐞𝛼,2
𝐞𝛽,2
λ𝜕,1

⎞

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎣

0 −𝐃⊤ (𝐓Γ1
𝛼 )⊤𝐌Γ1

𝐃 0 0
−𝐓Γ1

𝛼 0 0

⎤

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎝

𝐞𝛼,2
𝐞𝛽,2
λ𝜕,1

⎞

⎟

⎟

⎠

+
⎡

⎢

⎢

⎣

0 𝐁Γ2
𝛼

0 0
𝐈 0

⎤

⎥

⎥

⎦

(

𝐮𝜕,1
𝐮𝜕,2

)

,

(

𝐲𝜕,1
𝐲𝜕,2

)

=

[

0 0 𝐈
𝐓Γ2
𝛼 0 0

]

⎛

⎜

⎜

⎝

𝐞𝛼,2
𝐞𝛽,2
λ1

⎞

⎟

⎟

⎠

.

(29)

The matrix components are obtained as follows
[𝐌𝛼,2]𝑚𝑛 = (𝜒𝑚𝛼,2,𝛼𝜒

𝑛
𝛼,2)Ω,

[𝐌𝛽,2]𝑝𝑞 = (𝜒𝑝𝛽,2,𝛽𝜒
𝑞
𝛽,2)Ω,

[𝐃]𝑝𝑚 = (𝜒𝑝𝛽,2,𝜒
𝑚
𝛼,2)Ω,

[𝐌Γ1 ]𝑟𝑠 = ⟨𝜒 𝑖𝜕,1, 𝜒
𝑘
𝜕,1⟩Γ1 ,

[𝐁Γ2
𝛼 ]𝑝𝑙 = ⟨𝛼𝜒

𝑝
𝛼,2, 𝜒

𝑙
𝜕,2⟩Γ2 , (30)

where (𝑚, 𝑛) ∈ {1,… , 𝑛𝛼,2}, (𝑝, 𝑞) ∈ {1,… , 𝑛𝛽,2}, (𝑟, 𝑠) ∈ {1,… , 𝑛𝜕,1}, 𝑙 ∈ {1,… , 𝑛𝜕,2}. For this system the trace matrix selects the de-
grees of freedom for the variable 𝐞𝛽,2

[𝐓Γ𝑖
𝛼 ]𝑘𝑖 =

{

1, if 𝛼𝜒 𝑖𝛼,2 ≢ 0, on 𝜕Ω,
0, otherwise

(31)

Once again the control input matrix 𝐁Γ2
𝛼  can be factorized using the trace matrix as follows

𝐁Γ2
𝛼 = (𝐓Γ2

𝛼 )⊤ΨΓ2 , where [ΨΓ2 ]𝑙𝑗 ∶= ⟨𝜒 𝑙𝜕,1, 𝜒
𝑗
𝜕,2⟩Γ2 .

3.  Domain decomposition for mixed boundary conditions

It has been shown that in order to solve problem (15) numerically, either system (26) or system (29) can be used. These systems are 
differential algebraic as the essential imposition of the boundary data leads to constraints imposed on the dynamics. The idea behind 
the domain decomposition approach is to introduce an interface boundary Γint to split the domain Ω = Ω1 ∪ Ω2, where Ω1 ∩ Ω2 = ∅
holds, such that the boundaries of the subdomains are given as 𝜕Ω1 = Γ1 ∪ Γint and 𝜕Ω2 = Γ2 ∪ Γint (cf. Fig 1). This interface boundary 
is chosen freely. The idea of the discretization is to use both formulations (17) and (18) concurrently to achieve natural boundary 
imposition for both boundary inputs. This means applying the formulations (17) to the Ω1 subdomain and (18) to Ω2. To ensure 
proper coupling on the interface Γint consider the inputs and outputs from the port-Hamiltonian systems (39) and (40). The boundary 
inputs and outputs for Ω1 include the boundary condition for the problem and the input along the interconnection boundary

(

u𝜕,1
u
Γint
𝜕,1

)

=
[

𝛼|Γ1 0
𝛼|Γint 0

](

e𝛼
e𝛽

)

,

(

y𝜕,1
y
Γint
𝜕,1

)

=
[

0 𝛽 |Γ1
0 𝛽 |Γint

](

e𝛼
e𝛽

)

. (32)

For the Ω2 domain one input will be the actual boundary condition and a second input represent the exchange of information along 
the interface

(

u𝜕,2
u
Γint
𝜕,2

)

=
[

0 𝛽 |Γ2
0 𝛽 |Γint

](

e𝛼
e𝛽

)

,

(

y𝜕,2
y
Γint
𝜕,2

)

=
[

𝛼|Γ2 0
𝛼|Γint 0

](

e𝛼
e𝛽

)

. (33)

The coupling of the two domains takes place on Γint because the inputs and outputs are related by
u
Γint
𝜕,1 = ±yΓint𝜕,2 ,

u
Γint
𝜕,2 = ∓yΓint𝜕,1 ,

(34)
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Fig. 1. Splitting of the domain.

Fig. 2. Interconnection at the interface Γ12.

as shown in Fig. 2. The ± and ∓ are used due to opposite outward unit normals depending on the domain. An explicit incorporation 
of the boundary conditions is achieved by integrating the  term by parts on Ω1, based on the weak form (17), and the ∗ on the Ω2
subdomain, based on the weak form (18). Consider the additivity of integral operator, the boundary term ⟨𝜕,𝛽v𝛽 ,u𝜕⟩𝜕Ω from the Ω1
domain becomes

⟨𝛽v𝛽 , 𝛼e𝛼⟩𝜕Ω1
= ⟨𝛽v𝛽 ,u𝜕,1⟩Γ1 + ⟨𝛽v𝛽 ,u

Γint
𝜕,1 ⟩Γint , (35)

while for the Ω2 subdomain
⟨𝛼v𝛼 , 𝛽e𝛽⟩𝜕Ω2

= ⟨𝛼v𝛼 ,u𝜕,2⟩Γ2 + ⟨𝛼v𝛼 ,u
Γint
𝜕,2 ⟩Γint . (36)

The weak formulation for Ω1 is to find e𝛼 ∈ 𝐿2(Ω1;𝔸), e𝛽 ∈ 𝐻∗ (Ω1) such that ∀ v𝛼 ∈ 𝐿2(Ω2;𝔸) and ∀ v𝛽 ∈ 𝐻∗ (Ω1) it holds
(v𝛼 ,𝛼𝜕𝑡e𝛼)Ω1

= −(v𝛼 ,∗e𝛽 )Ω1
,

(v𝛼 ,𝛽𝜕𝑡e𝛽 )Ω1
= (∗v𝛽 ,e𝛼)Ω1

+ ⟨𝛽v𝛽 ,u𝜕,1⟩Γ1 + ⟨𝛽v𝛽 ,u
Γint
𝜕,1 ⟩Γint ,

(37)

where the boundary control and trace matrices are now restricted on the subpartitions of the boundary Γint ,  For the Ω2 subdomain 
with 36 find e𝛼 ∈ 𝐻(Ω2), e𝛽 ∈ 𝐿2(Ω2;𝔹) that satisfy ∀ v𝛼 ∈ 𝐻(Ω2) and ∀ v𝛽 ∈ 𝐿2(Ω2;𝔹)

(v𝛼 ,𝛼𝜕𝑡e𝛼)Ω2
= −(v𝛼 ,e𝛽 )Ω2

+ ⟨𝛼v𝛼 ,u𝜕,2⟩Γ2 + ⟨𝛼v𝛼 ,u
Γint
𝜕,2 ⟩Γint ,

(v𝛽 ,𝛽𝜕𝑡e𝛽 )Ω2
= (v𝛽 ,e𝛼)Ω2

.
(38)

The weak formulation can be discretized using the basis functions as in (19) where e.g. e𝛼,1 denotes e𝛼 on Ω1, to include the 
decomposed domain and interface. Using the basis functions, the formulations for each subdomain can be written into a finite 
dimensional form. For Ω1 this becomes

[

𝐌𝛼,1 0
0 𝐌𝛽,1

]

d
d𝑡

(

𝐞𝛼,1
𝐞𝛽,1

)

=
[

0 −𝐃∗

𝐃⊤∗ 0

](

𝐞𝛼,1
𝐞𝛽,1

)

+

[

0 0
𝐁Γ1
𝛽 𝐁Γint

𝛽

](

𝐮𝜕,1
𝐮Γint𝜕,1

)

,

(

𝐲𝜕,1
𝐲Γint𝜕,1

)

=

[

0 𝐓Γ1
𝛽

0 𝐓Γint
𝛽

]

(

𝐞𝛼,1
𝐞𝛽,1

)

.

(39)

where the output variables are computed strongly considering discrete trace operators. In an analogous manner for Ω2 it is obtained
[

𝐌𝛼,2 0
0 𝐌𝛽,2

]

d
d𝑡

(

𝐞𝛼,2
𝐞𝛽,2

)

=
[

0 −𝐃⊤
𝐃 0

](

𝐞𝛼,2
𝐞𝛽,2

)

+

[

𝐁Γ2
𝛼 𝐁Γint

𝛼
0 0

](

𝐮𝜕,2
𝐮Γint𝜕,2

)

,

(

𝐲𝜕,2
𝐲Γint𝜕,2

)

=

[

𝐓Γ2
𝛼 0

𝐓Γint
𝛼 0

]

(

𝐞𝛼,2
𝐞𝛽,2

)

.

(40)
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Fig. 3. Feedback interconnection of the two systems arising from the domain decomposition.

3.1.  Choice of the boundary functions

The choice of the boundary spaces follows the same rationale as in Section 2. The boundary shape functions are not chosen in an 
independent way with respect to the state variables. Given Eqs.  (32), (33) and (34), it is natural to choose the basis functions for the 
inputs as being the basis function of the associated co-energy variable on the boundary subpartions. This means leveraging Eq.  (25) 
also on the interface Γint

span{𝜒𝜕,1}|𝜕Ω1
= span{α|∂Ω1

χα,2},

span{𝜒𝜕,2}|𝜕Ω2
= span{𝛽 |𝜕Ω2

𝜒𝛽,1}.
(41)

This choice will couple the two systems and is important for the domain decomposition strategy. The relations in Eq.  (41) provide 
the interconnection of the two system on Γint

𝐮Γint𝜕,1 = ±𝐲Γint𝜕,2 = ±𝐓Γint
𝛼 𝐞𝛼,2,

𝐮Γint𝜕,2 = ∓𝐲Γint𝜕,1 = ±𝐓Γint
𝛽 𝐞𝛽,1.

(42)

These equations represent a feedback interconnection (cf. Fig. 3) which in port-Hamiltonian systems jargon is also called a gyrator 
interconnection. Relations (41) are also responsible for a factorization of the 𝐁 matrices

𝐁Γint
𝛼 = (𝐓Γint

𝛼 )⊤𝚿Γint , 𝐁Γint
𝛽 = (𝐓Γint

𝛽 )⊤(𝚿Γint )⊤, (43)

where [𝚿Γint ]𝑙𝑘 = ⟨𝜒 𝑙𝜕,1, 𝜒
𝑘
𝜕,2⟩Γint . The systems found for Ω1 and Ω2 can be combined into a monolithic interconnected system for the 

entire domain Ω. The pH-system for the full domain is provided as

Diag

⎡

⎢

⎢

⎢

⎢

⎣

𝐌𝛼,1
𝐌𝛽,1
𝐌𝛼,2
𝐌𝛽,2

⎤

⎥

⎥

⎥

⎥

⎦

d
d𝑡

⎛

⎜

⎜

⎜

⎜

⎝

𝐞𝛼,1
𝐞𝛽,1
𝐞𝛼,2
𝐞𝛽,2

⎞

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎣

0 −𝐃∗ 0 0
𝐃⊤∗ 0 ±𝐋Γint 0
0 ∓(𝐋Γint )⊤ 0 −𝐃⊤
0 0 𝐃 0

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝐞𝛼,1
𝐞𝛽,1
𝐞𝛼,2
𝐞𝛽,2

⎞

⎟

⎟

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎢

⎣

0 0
𝐁Γ1
𝛽 0
0 𝐁Γ2

𝛼
0 0

⎤

⎥

⎥

⎥

⎥

⎦

(

𝐮𝜕,1
𝐮𝜕,2

)

,

(

𝐲𝜕,1
𝐲𝜕,2

)

=

[

0 𝐓Γ1
𝛽 0 0

0 0 𝐓Γ2
𝛼 0

]

⎛

⎜

⎜

⎜

⎜

⎝

𝐞𝛼,1
𝐞𝛽,1
𝐞𝛼,2
𝐞𝛽,2

⎞

⎟

⎟

⎟

⎟

⎠

,

(44)

where 𝐋Γint = (𝚿Γint𝐓Γint
𝛽 )⊤𝐓Γint

𝛼 . The structure of the system is again Hamiltonian and can be written compactly as

𝐌𝐞̇ = 𝐉𝐞 + 𝐁𝐮,
𝐲 = 𝐓𝐞,

(45)

where 𝐉 = −𝐉⊤ is skew-symmetric.

Remark 3.  The domain decomposition strategy does not require matching interfaces. The feedback interconnection (42) corresponds 
to a choice of numerical fluxes (as in Discontinuous Galerkin methods). 
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3.2.  Extension to the nonlinear case

The methodology can be applied to nonlinear systems but only if the nonlinearity has to enter the system in an algebraic way. In 
other words the method is applicable to semi-linear systems of the form

𝜕𝑡e = 𝑑e + 𝑎(e)e, (46)

where 𝑑 is a differential operator of the form

𝑑 =
[

0 −∗

 0

]

, (47)

and 𝑎(e) is a nonlinear algebraic operator the depends on the coenergy e. An example of such a semilinear dynamical systems is the 
intrinsic geometrically exact beam introduced in [28]. In Section 5.1 a numerical test for this model will be detailed.
If the differential operator appears in a nonlinear term, it might not be possible to apply a primal dual formulation. We illustrate this 
issue on an example.

3.2.0.1.  A nonlinear example that does not fit in the domain decomposition strategy: geometrically nonlinear elasticity. In geometrically 
nonlinear elasticity the infinitesimal strain tensor is replaced by the Green-Lagrange tensor

E ∶= 1
2
(F ⊤F − I), F ∶= I + ∇q,

where q is the displacement [∇q]𝑖𝑗 = 𝜕𝑗𝑞𝑖 is the gradient of a vector defined row-wise, and F  is the deformation gradient. The kinetic 
and potential energies are given by

𝑇 = 1
2 ∫Ω

𝜌||𝜕𝑡q||
2dΩ, 𝑉 = 1

2 ∫Ω
E ∶KE dΩ,

where K is the stiffness tensor. For the potential energy a Saint-Venant Kirchhoff material model has been used. The Euler-Lagrange 
equations are then given by

𝜌 𝜕𝑡𝑡q = Div(FS),

where Div is the row-wise divergence of a tensor and S =KE is the second Piola-Kirchhoff stress tensor. By introducing the dynamical 
equation for the second Piola-Kirchhoff stress tensor, the Hamiltonian structure of the equations can be highlighted [29]:

𝜕𝑡q = v,
[

𝜌 0
0 C

]

𝜕
𝜕𝑡

(

v

S

)

=
[

0 Div(F ◦)
sym(F ⊤∇ ◦) 0

](

v

S

)

,

where C ∶=K−1 is the compliance tensor. In this case the differential operator  and its adjoint ∗ contains the deformation gradient 
(that is seen as a parameter for defining the adjoint) as

(∇q) = sym(F ⊤∇ ◦), ∗(∇q) = Div(F ◦).

Because of the fact the these terms are nonlinear, the discretization can only be performed by integrating by part the ∗ operator. 
The resulting weak formulation reads

𝜕𝑡qℎ = vℎ,

(ψ, 𝜌 𝜕𝑡vℎ)Ω = −(F ⊤
ℎ ∇ψ,Sℎ)Ω,

(Ψ,C 𝜕𝑡Sℎ)Ω = +(Ψ,F ⊤
ℎ ∇vℎ)Ω,

forall ψ ∈ 𝑉ℎ,

forall Ψ ∈ Σℎ.

For this example it is not clear how a dual system with opposite treatment of the boundary conditions.

4.  Time integration

We present two different integrators for the system (44), the Störmer Verlet scheme and the implicit midpoint. The first one 
allows for decoupling of the two domains, but it is not a Poisson map. The second imposes a monolithic resolution of the problem, 
but guarantees the preservation of the Poisson structure. To illustrate this method, we assume that the boundary data are homogeneous 
(𝐮𝜕,1 = 0, 𝐮𝜕,2 = 0). System (44) takes the partitioned form

[

𝐌1 0
0 𝐌2

]

d
d𝑡

(

𝐞1
𝐞2

)

=
[

𝐉1 +𝐆
−𝐆⊤ 𝐉2

](

𝐞1
𝐞2

)

. (48)

To simplify the analysis the system can be rewritten by a change of variable ̂𝐞1 = 𝐂1𝐞1, 𝐞̂2 = 𝐂2𝐞2 where 𝐂1, 𝐂2 are the Cholesky 
factors of the mass matrices 𝐌1 = 𝐂⊤1𝐂1, 𝐌2 = 𝐂⊤2𝐂2, leading to

d
d𝑡

(

𝐞̂1
𝐞̂2

)

=

[

𝐉1 +𝐆̂
−𝐆̂⊤ 𝐉2

]

(

𝐞̂1
𝐞̂2

)

, or compactly ̇̂𝐞 = 𝐉𝐞̂, (49)

where ̂𝐉1 = 𝐂−⊤
1 𝐉1𝐂−1

1 , 𝐉2 = 𝐂−⊤
2 𝐉2𝐂−1

2  and 𝐆̂ = 𝐂−⊤
1 𝐆𝐂−1

2 .
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4.0.0.1.  Implicit midpoint scheme. Consider system (49) 𝐞̇ = 𝐉𝐞, where the hat ̂⋅ is omitted for simplicity. The implicit midpoint rule 
gives

𝐞𝑛+1 − 𝐞𝑛
Δ𝑡

= 𝐉
(

𝐞𝑛 + 𝐞𝑛+1
2

)

.

We now recall a known result that is not easy to find in the literature.

Proposition 1. The implicit midpoint scheme applied to a linear Poisson system is a Poisson map. 

Proof.  Using a time rescaling, we set Δ𝑡∕2 = 1. The application of the midpoint rule leads to the recursion

𝐞𝑛+1 = Cay(𝐉)𝐞𝑛, Cay(𝐉) ∶= (𝐈 − 𝐉)−1(𝐈 + 𝐉). (50)

For the discrete flow (50) to be a Poisson map, it must hold

Cay(𝐉) 𝐉 Cay(𝐉)⊤ = 𝐉.

By exploiting the property 𝐉 = −𝐉⊤, the term Cay(𝐉)⊤ gives

Cay(𝐉)⊤ = (𝐈 − 𝐉)(𝐈 + 𝐉)−1.

So the discrete flow can be rewritten as

Cay(𝐉) 𝐉 Cay(𝐉)⊤ = (𝐈 − 𝐉)−1(𝐈 + 𝐉)𝐉(𝐈 − 𝐉)(𝐈 + 𝐉)−1.

The following commuting properties holds

𝐉(𝐈 + 𝐉) = (𝐈 + 𝐉)𝐉, 𝐉(𝐈 − 𝐉) = (𝐈 − 𝐉)𝐉, (𝐈 + 𝐉)(𝐈 − 𝐉) = (𝐈 − 𝐉)(𝐈 + 𝐉). (51)

Using these relations, it is obtained

(𝐈 − 𝐉)−1(𝐈 + 𝐉)𝐉(𝐈 − 𝐉)(𝐈 + 𝐉)−1 = 𝐉.

 ∎
So the implicit midpoint apply to the system given a Poisson map, leading to a symplectic integrator

4.0.0.2.  Störmer-Verlet scheme. The Störmer Verlet scheme is a partitioned Runge-Kutta scheme [30]. In the present case it takes the 
form

𝐞̂𝑛+11 − 𝐞̂𝑛1
Δ𝑡

= 𝐉1

(

𝐞̂𝑛1 + 𝐞̂𝑛+11
2

)

+ 𝐆̂𝐞̂
𝑛+ 1

2
2 ,

𝐞̂
𝑛+ 1

2
2 − 𝐞̂

𝑛− 1
2

2
Δ𝑡

= 𝐉2

⎛

⎜

⎜

⎜

⎝

𝐞̂
𝑛+ 1

2
2 + 𝐞̂

𝑛− 1
2

2
2

⎞

⎟

⎟

⎟

⎠

− 𝐆̂⊤𝐞̂𝑛1.

To start the iterations the Störmer-Verlet initial value ̂𝐞
1
2
2  is obtained using

𝐞̂
1
2
2 = (𝐈 − Δ𝑡

2
𝐉2)−1𝐞̂02 −

Δ𝑡
2
𝐆⊤𝐞̂01.

Remark 4.  The Störmer-Verlet integrator is not a Poisson map for system (49). By Lemma 4.9 in [30], the Störmer-Verlet integrator 
is not symplectic for the canonical Hamiltonian system obtained via the Darboux-Lie theorem. 

5.  Numerical examples

The domain decomposition strategy is applied to four different examples:

• the one dimensional nonlinear geometrically exact intrinsic beam model;
• the two dimensional wave equation;
• the two dimensional linear elastodynamics problem;
• the Mindlin plate problem;

The decomposition of the mesh has been implemented using GMSH [31]. All the investigations will be performed employing the 
finite element library Firedrake [32].
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Fig. 4. The decomposed beam with mixed boundary conditions.

5.1.  A 1D non linear example: Geometrically exact intrinsic geometrically exact beams

The domain decomposition strategy applied to a semilinear example as described in Section 3.2. An example of a semilinear 
problem is the intrinsic formulation of geometrically exact beams first proposed by Dewey Hodges [28]. This model describes the 
motion of the beam cross section as a rigid motion and captures the geometric nonlinearity in the deformation without making 
any additional simplification. The model accounts for shear deformability. The description is in the material reference frame as all 
variables follow the motion of the cross section. In this example a one dimensional beam with length 𝐿 under a Dirichlet condition 
at 𝑥 = 0 (velocities are set to zero here) and a Neumann boundary condition at 𝑥 = 𝐿 (forces and torques are applied at this node), is 
decomposed into two subdomains Ω1 and Ω2 using an interface vertex Γint . The results shown in this example use an interface vertex 
located at 𝑥int = 𝐿∕2, but it should be restated that its position is arbitrary. The domain decompostion is plot in Fig. 4.

The Hamiltonian is given by

𝐻 = 1
2
𝜌𝐴||v||2 + 1

2
𝜌w⊤Jw + 1

2
n⊤C𝑡n + 1

2
m⊤C𝑟m,

where v, w ∈ ℝ3 are the material linear and the angular velocity, respectively, n, m ∈ ℝ3 are the material force and bending moment 
resultants, respectively. The parameters are the density 𝜌, the cross section area 𝐴, the moment of area matrix J ∈ ℝ3×3, and the 
translational and rotational compliance C𝑡,C𝑟 ∈ ℝ3×3. The co-energy variables are given by

π𝑣 = 𝜕v𝐻 = 𝜌𝐴v,

π𝑤 = 𝜕w𝐻 = 𝜌Jw,

γ = 𝜕n𝐻 = C𝑡n,

κ = 𝜕m𝐻 = C𝑟m,

denoting material momentum and strain quantities. In the following the notation [v]× denotes the skew-symmetric matrix obtained 
as

v =
⎛

⎜

⎜

⎝

𝑣𝑥
𝑣𝑦
𝑣𝑧

⎞

⎟

⎟

⎠

→ [v]× ∶=
⎡

⎢

⎢

⎣

0 −𝑣𝑧 𝑣𝑦
𝑣𝑧 0 −𝑣𝑥
−𝑣𝑦 𝑣𝑥 0

⎤

⎥

⎥

⎦

, (52)

to rewrite the cross-product as matrix-vector multiplication, i.e. v × u = [v]×u for arbitrary u ∈ ℝ3. Denoting with variable 𝑠 ∈ [0, 𝐿]
the material arc length coordinate, the dynamics of the system over an interval Ω = [0, 𝐿] is given by

Diag

⎡

⎢

⎢

⎢

⎢

⎣

𝜌𝐴
𝜌J
C𝑡
C𝑟

⎤

⎥

⎥

⎥

⎥

⎦

𝜕𝑡

⎛

⎜

⎜

⎜

⎜

⎝

v

w

n

m

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

0 0 𝜕𝑠 0
0 0 0 𝜕𝑠
𝜕𝑠 0 0 0
0 𝜕𝑠 0 0

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

0 [π𝑉 ]× [κ]× 0
[π𝑉 ]× [π𝑊 ]× [γ + e1]× [κ]×
[κ]× [γ + e1]× 0 0
0 [κ]× 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

v

w

n

m

⎞

⎟

⎟

⎟

⎟

⎠

, (53)

where e1 = [1 0 0]⊤. For this examples of operators , ∗ and the variables e𝛼 , e𝛽 are given by

 =
[

𝜕𝑠 0
0 𝜕𝑠

]

, ∗ = −
[

𝜕𝑠 0
0 𝜕𝑠

]

, e𝛼 =
(

v

w

)

e𝛽 =
(

n

m

)

.

Notice that the linearization of System (53) gives the port-Hamiltonian formulation of the Timoshenko beam

Diag

⎡

⎢

⎢

⎢

⎢

⎣

𝜌𝐴
𝜌J
C𝑡
C𝑟

⎤

⎥

⎥

⎥

⎥

⎦

𝜕𝑡

⎛

⎜

⎜

⎜

⎜

⎝

v

w

n

m

⎞

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 𝜕𝑠 0
0 0 [e1]× 𝜕𝑠
𝜕𝑠 [e1]× 0 0
0 𝜕𝑠 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

v

w

n

m

⎞

⎟

⎟

⎟

⎟

⎠

. (54)

The discretization is explained on the linear part only as the nonlinearity is simply projected on finite element spaces. If the last 
two lines are integrated by parts then one obtains the weak formulation: find v,w ∈ 𝐿2(Ω1;ℝ3), n,m ∈ 𝐻1(Ω1;ℝ3) such that forall 
ψ𝑣,ψ𝑤 ∈ 𝐿2(Ω1;ℝ3), ψ𝑛,ψ𝑚 ∈ 𝐻1(Ω1;ℝ3)

(ψ𝑣, 𝜌𝐴𝜕𝑡v)Ω1
= (ψ𝑣, 𝜕𝑠n)Ω1

,

(ψ𝑤, 𝜌J𝜕𝑡w)Ω1
= (ψ𝑤, [e1]×n)Ω1

+ (ψ𝑤, 𝜕𝑠m)Ω1
,

(ψ𝑛,C𝑡𝜕𝑡n)Ω1
= (ψ𝑛, [e1]×w)Ω1

− (𝜕𝑠ψ𝑛,v)Ω1
+ ⟨ψ𝑛,v⟩𝜕Ω1

+ ⟨ψ𝑛,v⟩Γint ,

(ψ𝑚,C𝑟𝜕𝑡m)Ω1
= −(𝜕𝑠ψ𝑚,w)Ω1

+ ⟨ψ𝑚,w⟩𝜕Ω1
+ ⟨ψ𝑚,w⟩Γint ,

(55)

Applied Mathematical Modelling 156 (2026) 116775 

12 



S. De Jong et al.

where the trace operator 𝛽 ∶ 𝐻1([𝑎, 𝑏]; ℝ6) → ℝ12 is given by

𝛽
(

f

g

)

=

⎛

⎜

⎜

⎜

⎜

⎝

+f (𝑏)
−f (𝑎)
+g(𝑏)
−g(𝑎)

⎞

⎟

⎟

⎟

⎟

⎠

.

If the first two lines are integrated by parts then one obtains the following formulation: find v,w ∈ 𝐻1(Ω2;ℝ3), n,m ∈ 𝐿2(Ω2;ℝ3)
such that forall ψ𝑣,ψ𝑤 ∈ 𝐻1(Ω2;ℝ3), ψ𝑛,ψ𝑚 ∈ 𝐿2(Ω2;ℝ3)

(ψ𝑣, 𝜌𝐴𝜕𝑡v)Ω2
= −(𝜕𝑠ψ𝑣,n)Ω2

+ ⟨ψ𝑣,n⟩𝜕Ω2
+ ⟨ψ𝑣,n⟩Γint ,

(ψ𝑤, 𝜌J𝜕𝑡w)Ω2
= (ψ𝑤, [e1]×n)Ω2

− (𝜕𝑠ψ𝑤,m)Ω2
+ ⟨ψ𝑤,m⟩𝜕Ω2

+ ⟨ψ𝑤,m⟩Γint ,

(ψ𝑛,C𝑡𝜕𝑡n)Ω2
= (ψ𝑛, [e1]×w)Ω2

+ (ψ𝑛, 𝜕𝑠v)Ω2
,

(ψ𝑚,C𝑟𝜕𝑡m)Ω2
= (ψ𝑚, 𝜕𝑠w)Ω2

,

(56)

and the trace operator 𝛼 ∶ 𝐻1([𝑎, 𝑏]; ℝ6) → ℝ12 is given by

𝛼
(

f

g

)

=

⎛

⎜

⎜

⎜

⎜

⎝

f (𝑏)
f (𝑎)
g(𝑏)
g(𝑎)

⎞

⎟

⎟

⎟

⎟

⎠

.

5.1.0.1.  Finite element basis. The finite element family used to solve this problem is the Discontinuous Galerkin elements of order 
1 (DG0) to discretize the 𝐿2 space, and linear Lagrange finite elements (CG1) to discretize the 𝐻1 space, though the mixed finite 
element spaces are different on each subdomain. This choice is justified by the de-Rham complex. This example constitutes the 
simplest example of discrete de Rham subcomplex

Therefore, for the Ω1
ℎ  mesh the finite dimensional spaces are

𝑉𝛼,1 = {𝑢ℎ ∈ 𝐿2(Ω1;ℝ6)| ∀𝐸 ∈ Ω1
ℎ , 𝑢ℎ|𝐸 ∈ DG0(ℝ6)},

𝑉𝛽,1 = {𝑢ℎ ∈ 𝐻1(Ω1;ℝ6)| ∀𝐸 ∈ Ω1
ℎ , 𝑢ℎ|𝐸 ∈ CG1(ℝ6)},

where the notation 𝐿2(Ω1;ℝ6), 𝐻1(Ω1;ℝ6), DG0(ℝ6), CG1(ℝ6) indicates the functions are six dimensional vectors. For the Ω2
ℎ  domain 

the finite dimensional spaces are

𝑉𝛼,2 = {𝑢ℎ ∈ 𝐻1(Ω2;ℝ6)| ∀𝐸 ∈ Ω2
ℎ , 𝑢ℎ|𝐸 ∈ CG1(ℝ6)},

𝑉𝛽,2 = {𝑢ℎ ∈ 𝐿2(Ω2;ℝ6)| ∀𝐸 ∈ Ω2
ℎ , 𝑢ℎ|𝐸 ∈ DG0(ℝ6)}.

Introducing the finite element approximation, the following ODE is obtained for subdomain Ω1

Diag

⎡

⎢

⎢

⎢

⎢

⎣

𝐌𝑣,1
𝐌𝑤,1
𝐌𝑛,1
𝐌𝑚,1

⎤

⎥

⎥

⎥

⎥

⎦

d
d𝑡

⎛

⎜

⎜

⎜

⎜

⎝

𝐯1
𝐰1
𝐧1
𝐦1

⎞

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 𝐃𝜕𝑠 0
0 0 [𝐞1]× 𝐃𝜕𝑠

−𝐃⊤𝜕𝑠 [𝐞1]× 0 0
0 −𝐃⊤𝜕𝑠 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝐯1
𝐰1
𝐧1
𝐦1

⎞

⎟

⎟

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
𝐓⊤𝛽 0
0 𝐓⊤𝛽

⎤

⎥

⎥

⎥

⎥

⎦

(

𝐮𝑣
𝐮𝑤

)

, (57)

where 𝐓𝛽 is the normal trace matrix, taking values 1 or −1 for the right and left extremity degree of freedom. The discrete system for 
the domain Ω2 is given by

Diag

⎡

⎢

⎢

⎢

⎢

⎣

𝐌𝑣,2
𝐌𝑤,2
𝐌𝑛,2
𝐌𝑚,2

⎤

⎥

⎥

⎥

⎥

⎦

d
d𝑡

⎛

⎜

⎜

⎜

⎜

⎝

𝐯2
𝐰2
𝐧2
𝐦2

⎞

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 −𝐃⊤𝜕𝑠 0
0 0 [𝐞1]× −𝐃⊤𝜕𝑠
𝐃𝜕𝑠 [𝐞1]× 0 0
0 𝐃𝜕𝑠 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝐯2
𝐰2
𝐧2
𝐦2

⎞

⎟

⎟

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎢

⎣

𝐓⊤𝛼 0
0 𝐓⊤𝛼
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎦

(

𝐮𝑛
𝐮𝑚

)

, (58)

where 𝐓𝛼 is a localization matrix that picks the degrees of freedom at the boundary. The nonlinear terms are then discretized by 
simply projecting on the finite element basis, leading to two finite dimensional ODEs of the form

𝐌𝑖𝐞̇𝑖 = 𝐉𝑑,𝑖𝐞𝑖 + 𝐉𝑎,𝑖(𝐞𝑖)𝐞𝑖 + 𝐁𝑖𝐮𝑖,
𝐲𝑖 = 𝐁⊤𝑖 𝐞𝑖, 𝑖 = {1, 2},
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Table 1 
Parameters for roll up example.
Δ𝑡 𝑇 𝑁elements = 1∕ℎ 𝐿 𝜌𝐴 = 𝜌𝐼 𝐸𝐴 = 𝐺𝐴 𝐸𝐼

 0.01  1  8  10  0 104  500

Fig. 5. Configurations for the quasi static roll up using the free-free, clamped-clamped and interconnected model. System (57) is used for Fig. 5a. 
System (58) is used for Fig. 5b. Fig. 5c shows the results when using the interconnection of the two. The first two cases require a Lagrange multiplier 
to impose the boundary conditions while the last does not.

where 𝐉𝑑,𝑖 = −𝐉⊤𝑑,𝑖 is the matrix associated to the discretization of the differential operator and 𝐉𝑎,𝑖(𝐞𝑖) = −𝐉⊤𝑑,𝑖(𝐞𝑖) is the matrix discretiza-
tion of the nonlinear terms, modulated by the state variable. The interconnection is then performed using a feedback interconnection 
leading to a final system of the form

[

𝐌1 0
0 𝐌2

]

d
d𝑡

(

𝐞1
𝐞2

)

=

[

𝐉1(𝐞1) 𝐁Γint
1 (𝐁Γint

2 )
⊤

−𝐁Γint
2 (𝐁Γint

1 )
⊤

𝐉2(𝐞2)

]

(

𝐞1
𝐞2

)

+

[

𝐁Γ1
1 0
0 𝐁Γ2

2

]

(

𝐮𝜕,1
𝐮𝜕,2

)

.

5.1.0.2.  Time domain simulation: Quasi static roll up of a cantilever beam. The benchmark problem of rolling up a cantilever beam is 
used to demonstrate that the proposed formulation effectively avoids shear locking and is suitable for quasi-static simulations. An 
initially straight cantilever beam is clamped at 𝑠 = 0, enforcing the Dirichlet boundary conditions

v(0, 𝑡) = 0, w(0, 𝑡) = 0, n(0, 𝑡) = 0, m(0, 𝑡) = 0.

A quasi-static torque is applied at the free end 𝑠 = 𝐿, and according to reference results, a torque of 𝑚rollup = 2𝜋𝐸𝐼∕𝐿 rolls the beam 
into a complete circular arc. The parameters from [33] are used, cf. Table 1. To enable quasi-static behavior within the intrinsi-
cally dynamical framework, inertial terms are neglected by setting 𝜌 = 0. In this setting, velocity-type variables act as incremental 
coordinates, and the simulation time 𝑡 ∈ [0, 1] serves as a loading factor such that

𝑚0(𝑡) = 𝑡 𝑚rollup.

The time integration is performed using the implicit midpoint method. The results for the free-free (corresponding to System (58)), 
clamped-clamped (corresponding to System (57)) and interconnected formulation are shown in Fig. 5. The free-free case requires a 
strong imposition of the clamp boundary condition. The clamped-clamped case required the strong imposition of the end bending 
moment. The interconnected system does not require any Lagrange multiplier. The proposed formulation does not exhibit locking, 
even under coarse spatial discretization.

5.2.  The wave equation in 2D

The method is now applied to the two dimensional wave equation on a unit square domain
𝜕𝑡𝑡𝜙 − div grad𝜙 = 0, Ω = [0, 1]2, (59)

split into subdomains Ω1 and Ω2 with a Dirichlet boundary condition on Γ1 and a Neumann boundary condition on Γ2. The discretiza-
tion of the wave equation starts again by expressing via the variables

𝑒𝛼 = 𝜕𝑡𝜙, e𝛽 = grad𝜙. (60)

The system equivalent to (11) is then written as
(

𝜕𝑡𝑒𝛼
𝜕𝑡e𝛽

)

=
[

0 div
grad 0

](

𝑒𝛼
e𝛽

)

, (61)

so the differential operator for the wave equations is  = grad and its formal adjoint is now ∗ = −div. The discretization is obtained 
by multiplying by the test functions and applying integration by parts as in (17) or (18). The resulting weak formulation for Ω1 is to 

Applied Mathematical Modelling 156 (2026) 116775 

14 



S. De Jong et al.

find e𝛼 ∈ 𝐿2(Ω1) and e𝛽 ∈ 𝐻div(Ω1) such that ∀𝑣𝛼 ∈ 𝐿2(Ω1) and ∀v𝛽 ∈ 𝐻div(Ω1) it holds

(𝑣𝛼 , 𝜕𝑡𝑒𝛼)Ω1
= +(𝑣𝛼 , dive𝛽 )Ω1

,

(v𝛽 , 𝜕𝑡e𝛽 )Ω1
= −(divv𝛽 , 𝑒𝛼)Ω1

+ ⟨𝛽v𝛽 , 𝑢𝜕,1⟩Γ1 + ⟨𝛽v𝛽 , 𝑢
Γint
𝜕,1 ⟩Γint ,

(62)

where 𝛽g = g ⋅n|𝜕Ω1
 is the normal trace. For the subdomain with the Neumann boundary condition Ω2, seek e𝛼 ∈ 𝐻1(Ω2) and 

e𝛽 ∈ 𝐻curl(Ω2) to satisfy ∀𝑣𝛼 ∈ 𝐻1(Ω2) and ∀v𝛽 ∈ 𝐻curl(Ω2)

(𝑣𝛼 , 𝜕𝑡𝑒𝛼)Ω2
= −(grad 𝑣𝛼 ,e𝛽 )Ω2

+ ⟨𝛼𝑣𝛼 , 𝑢𝜕,2⟩Γ2 + ⟨𝛼𝑣𝛼 , 𝑢
Γint
𝜕,2 ⟩Γint ,

(v𝛽 , 𝜕𝑡e𝛽 )Ω2
= (v𝛽 , grad 𝑒𝛼)Ω2

,
(63)

where 𝛼𝑓 = 𝑓 |𝜕Ω2
 is the Dirichlet trace.

5.2.0.1.  Finite element spaces. The mesh consists of a structured triangular mesh. Discontinuous Galerkin of order 𝑘 − 1 and Raviart-
Thomas of order 𝑘 (RT𝑘) elements are used for 𝑒𝛼,1 and e𝛽,1 respectively on the Ω1 subdomain. Continuous Galerkin of order 𝑘
(CG𝑘) element for 𝑒𝛼,2, the Nédélec first kind of order 𝑘 (NED𝑘) for e𝛽,2 on the Ω2 subdomain. The justification for this choice comes 
from de Rham complex and the subcomplex obtained using finite element differential forms of the trimmed polynomial family. The 
corresponding complex and subcomplex are given by

The solution is again found on union of meshes, that is 𝔗ℎ = 𝔗Ω1
ℎ ∪𝔗Ω2

ℎ , with finite dimensional spaces for the Ω1 subdomain 
given by

𝑉𝛼,1 = {𝑢ℎ ∈ 𝐿2(Ω1)| ∀𝑇 ∈ 𝔗Ω1
ℎ , 𝑢ℎ|𝑇 ∈ DG},

𝑉𝛽,1 = {uℎ ∈ 𝐻div(Ω1)| ∀𝑇 ∈ 𝔗Ω1
ℎ , uℎ|𝑇 ∈ RT}, (64)

where 𝑇  now denotes a triangular mesh element of 𝔗ℎ. For the Ω2 subdomain the mixed finite element spaces are

𝑉𝛼,2 = {𝑢ℎ ∈ 𝐻1(Ω2)| ∀𝑇 ∈ 𝔗Ω2
ℎ , 𝑢ℎ|𝑇 ∈ CG},

𝑉𝛽,2 = {uℎ ∈ 𝐻curl(Ω2)| ∀𝑇 ∈ 𝔗Ω2
ℎ ,uℎ|𝑇 ∈ Ned}. (65)

The finite dimensional system for the Ω1 subdomain becomes
[

𝐌𝛼,1 0
0 𝐌𝛽,1

]

d
d𝑡

(

𝐞𝛼,1
𝐞𝛽,1

)

=
[

0 𝐃div
−𝐃⊤div 0

](

𝐞𝛼,1
𝐞𝛽,1

)

+

[

0 0
𝐁Γ1
𝛽 𝐁Γint

𝛽

](

𝐮𝜕,1
𝐮int𝜕,1

)

,

(

𝐲𝜕,1
𝐲int𝜕,1

)

=

[

0 𝐓Γ1
𝛽

0 𝐓Γint
𝛽

]

(

𝐞𝛼,1
𝐞𝛽,1

)

,

(66)

while for the Ω2 subdomain it becomes
[

𝐌𝛼,2 0
0 𝐌𝛽,2

]

d
d𝑡

(

𝐞𝛼,2
𝐞𝛽,2

)

=

[

0 −𝐃grad
𝐃⊤grad 0

]

(

𝐞𝛼,2
𝐞𝛽,2

)

+

[

𝐁Γ2
𝛼 𝐁Γint

𝛼
0 0

](

𝐮𝜕,2
𝐮int𝜕,2

)

,

(

𝐲𝜕,2
𝐲int𝜕,2

)

=

[

𝐓Γ2
𝛼 0

𝐓Γint
𝛼 0

]

(

𝐞𝛼,2
𝐞𝛽,2

)

.

(67)

5.2.0.2.  Numerical experiments. For this example we consider three different numerical analyses:

• A convergence study;
• A conservation properties study. In particular, a curl free condition of the two subdomains and the power balance will be inves-
tigated.

• A spectral analysis.

The simulations take place on a unit square Ω = [0, 1]2, decomposed by an interface placed diagonally between the lower left and 
upper right vertex as shown in Fig. 6. For the first two analysis the Störmer-Verlet method has been used with time step time step of 
Δ𝑡 = 0.001 [s].
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Fig. 6. Domain splitting for the wave equation.

5.2.0.3.  Time domain simulations. An analytical solution has been used for the boundary inputs and the verification of the simulations. 
The exact solution consists of a temporal and spatial part given by

𝑓 (𝑡) = 2 sin(
√

2𝑡) + 3 cos(
√

2𝑡), (68)

𝑔(𝑥, 𝑦) = cos(𝑥) sin(𝑦). (69)

The exact solutions are given as

𝑒𝑒𝑥𝛼 = 𝑔
d𝑓
d𝑡
, e𝑒𝑥𝛽 = 𝑓 grad 𝑔, (70)

The boundary conditions have been obtained from the exact solutions

𝑒𝛼|Γ1 = 𝑔
d𝑓
d𝑡
, e𝛽 ⋅n|Γ2 = 𝑓 ∇n𝑔|Γ2 ,

where n denotes the outward unit normal. The spatial convergence has been investigated by performing simulations for five different 
spatial step sizes ℎ and three polynomial degrees 𝑘 = 1, 2, 3 for a total of 15 simulations. The convergence rates for the mixed finite 
element formulation are well-known [34,35], and are thus expected to have a theoretical convergence rate of ℎ𝑘, apart from 𝑒𝛼,2. 
This is due to the fact that 𝑒𝛼,2 is discretized with a Lagrange element (whose convergence is given by ℎ𝑘+1 in the 𝐿2 norm) whereas 
𝑒𝛼,2 it is discretized by a discontinuous Galerkin element (that convergences with a rate ℎ𝑘). Fig. 7 shows the L2-error of 𝑒𝛼 and 𝑒𝛽 for 
both the Ω1 and Ω2 subdomains. The error is lower with smaller values of ℎ and decreases faster with higher polynomial degrees. The 
numerical solution is approaching the exact solution with a regular rate. This rate of convergence matches well with the theoretical 
convergence rate ℎ𝑘, but, as expected, the convergence of 𝑒𝛼 on Ω2 behaves slightly differently. For a polynomial order of 𝑘 = 1, it 
converges with ℎ𝑘+1, while for higher polynomial orders it converges with ℎ𝑘.

The second equation in (63) is satisfied strongly because of the inclusion 𝑉𝛽,2 ⊂ grad𝑉𝛼,2. This means that the following holds

curl 𝜕𝑡e𝛽 = curl grade𝛼 = 0.

The curl free condition is instead only satisfied weakly in Eq.  (62). Indeed, suppose v𝛽 = curlv, where v is chosen in a Nédélec space 
(recall that curl Ned𝑘 ⊂ RT𝑘 so this is a valid choice of test function), then it holds that

(curlv, 𝜕𝑡e𝛽 )Ω1
= (div curlv, 𝑒𝛼)Ω1

= 0,

for vanishing boundary conditions. The 𝐿2 norm of curle𝛽 is plotted in Fig. 8 and it is zero within machine precision. For the time 
integration, the Störmer-Verlet scheme is used and each subdomain satisfies a power balance [23]. Since the solution for Ω1 is 
computed at integer time steps, it holds

𝐻𝑛+1
1 −𝐻𝑛

1
Δ𝑡

− ⟨𝐲
𝑛+ 1

2
𝜕 ,𝐮

𝑛+ 1
2

𝜕 ⟩𝜕Ω1
= 0.

For Ω2 the solution is advanced at half-integer time steps so

𝐻
𝑛+ 1

2
2 −𝐻

𝑛− 1
2

2
Δ𝑡

− ⟨𝐲𝑛+1𝜕 ,𝐮𝑛+1𝜕 ⟩𝜕Ω2
= 0.

The power balance is determined for both the Ω1 and Ω2 subdomains in Figs. 9. For both parts of the domain the power balance is 
observed to be in the order of 10−12, hence zero within machine precision. If the entirer domain Ω = Ω1 ∪ Ω2 was considered than the 
power balance would not be preserved to machine precision.
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Fig. 7. Convergence rates for wave equation.

Fig. 8. curl 𝑒𝛽,2 on Ω2.

Fig. 9. The power balance for the wave equation in two dimensions.

Applied Mathematical Modelling 156 (2026) 116775 

17 



S. De Jong et al.

Table 2 
Comparison of numerical and analytical eigenvalues of the 2D wave equation. 
Relative error is computed as |𝜔num𝑛𝑚 − 𝜔ana𝑛𝑚 |∕𝜔ana𝑛𝑚 × 100.

 Mode  Proposed  Classical  Analytical  Rel. Err. Prop.  Rel. Err. Class.
 1  0.3536  0.3536  0.3536  0.002  0.017
 2  0.7910  0.7912  0.7906  0.058  0.083
 3  0.7908  0.7912  0.7906  0.035  0.085
 4  1.0613  1.0622  1.0607  0.068  0.153
 5  1.2763  1.2775  1.2748  0.124  0.216
 6  1.2767  1.2775  1.2748  0.158  0.220

Fig. 10. Numerical eigenvectors for variable 𝑒𝛼 wave equation under mixed boundary conditions.

5.2.0.4.  Modal analysis. The analytical eigenvalues for the problem under examination are obtained via separation of variables, 
leading to the following analytical eigenvalues

𝜔𝑎𝑛𝑎𝑚𝑛 = 𝜋
2𝐿

√

(2𝑚 − 1)2 + (2𝑛 − 1)2.

The numerical eigenvalues are obtained via the generalized eigenproblem
𝑖𝜔𝑛𝑢𝑚𝑚𝑛 𝐌ψ𝑚𝑛 = 𝐉ψ𝑚𝑛,

where 𝑖 =
√

−1 is the imaginary unit. For the discretization 30 finite elements per side are considered. The resulting eigenvalues are 
shown in Table 2 whereas the eigenvectors are plotted in Fig. 10. The obtained eigenfrequencies match the analytical solution and 
have comparable accuracy with respect to a classical finite element discretization using linear Lagrange elements CG1, with smaller 
error overall.

5.3.  Linear elastodynamics

We now consider the elastodynamics problem in a unit square domain
𝜌𝜕𝑡𝑡u − Divσ = 0, Ω = [0, 1]2. (71)

Here 𝜌 is the density, u is the displacement field, Div is row-wise divergence of a tensor and σ the Cauchy stress tensor
σ =K Gradu,

where K is the stiffness tensor and Gradu = ε ∶= 1
2 (∇u + (∇u)⊤) is the infinitesimal strain. An isotropic material under plane stress 

is considered
K(◦) = 𝐸

(1 − 𝜈2)
((1 − 𝜈)◦ + 𝜈tr(◦)I2),
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where 𝐸 is the Young modulus and 𝜈 the Poisson ratio. The domain is split into subdomains Ω1 and Ω2 with a Dirichlet boundary 
condition on Γ1 and a Neumann boundary condition on Γ2. The discretization of the elastodynamics problem starts via the change of 
variables

e𝛼 = 𝜕𝑡u, E𝛽 = σ, (72)

where uppercase is used to denote tensor variables. The system equivalent to (11) is then written as
[

𝜌 0
0 C

](

𝜕𝑡e𝛼
𝜕𝑡E𝛽

)

=
[

0 Div
Grad 0

](

e𝛼
E𝛽

)

, (73)

where C ∶=K−1 is the compliance tensor. The differential operator for the elastodynamics problem is  = Grad and its formal adjoint 
is now ∗ = −Div applied to symmetric tensors. The discretization is obtained by multiplying by the test functions and applying 
integration by parts as in (17) or (18). The resulting weak formulation for Ω1 is to find e𝛼 ∈ 𝐿2(Ω1;ℝ2) (the 𝐿2 space of two dimensional 
vectors) and E𝛽 ∈ 𝐻Div(Ω1;𝕊), where 𝕊 = ℝ2×2

sym (the space of Div conforming symmetric tensors) such that ∀𝑣𝛼 ∈ 𝐿2(Ω1;ℝ2) and 
∀v𝛽 ∈ 𝐻Div(Ω1;𝕊) it holds

(v𝛼 , 𝜌𝜕𝑡e𝛼)Ω1
= +(v𝛼 ,DivE𝛽 )Ω1

,

(V𝛽 ,C𝜕𝑡E𝛽 )Ω1
= −(DivV𝛽 ,e𝛼)Ω1

+ ⟨𝛽V𝛽 ,u𝜕,1⟩Γ1 + ⟨𝛽V𝛽 ,u
Γint
𝜕,1 ⟩Γint ,

(74)

where 𝛽S = S ⋅n|𝜕Ω1
 is the normal trace of a tensor (the traction). For the subdomain Ω2 where the Neumann boundary condition 

is natural, the functional setting is the following: seek E𝛼 ∈ 𝐻1(Ω2;ℝ2) and E𝛽 ∈ 𝐻 rot Rot (Ω2;𝕊) to satisfy ∀v𝛼 ∈ 𝐻1(Ω2;ℝ2) and 
∀V𝛽 ∈ 𝐻 rot Rot (Ω2;𝕊)

(v𝛼 , 𝜌𝜕𝑡e𝛼)Ω2
= −(Gradv𝛼 ,E𝛽 )Ω2

+ ⟨𝛼v𝛼 , 𝑢𝜕,2⟩Γ2 + ⟨𝛼v𝛼 , 𝑢
Γint
𝜕,2 ⟩Γint ,

(V𝛽 ,C𝜕𝑡E𝛽 )Ω2
= +(V𝛽 ,Grade𝛼)Ω2

,
(75)

where 𝛼u = u|𝜕Ω2
 is the Dirichlet trace. The space 𝐻 rot Rot (Ω2;𝕊) is the space of rot Rot conforming symmetric tensor, where the 

rot Rot operator (also known as incompatibility operator in mechanics) is given by
rot Rot S = 𝜕𝑥𝑥𝑆𝑦𝑦 + 𝜕𝑦𝑦𝑆𝑥𝑥 − 2𝜕𝑥𝑦𝑆𝑥𝑦,

or it ca be interpreted equivalently as the double divergence of a rotated second order tensor

rot Rot S = divDiv(JSJ⊤), J ∶=
(

0 1
−1 0

)

.

5.3.0.1.  Finite element spaces. The mesh consists of a structured triangular mesh. Discontinuous Galerkin of order 1 (DG1) and 
conforming Arnold Winther elements [36] of degree 3, denoted by AW3, are used for e𝛼,1 and E𝛽,1 respectively on the Ω1 subdomain. 
Continuous Galerkin of order (CG2) element for a𝛼,2, and Discontinuous Galerkin of order 1 (DG1) for e𝛽,2 on the Ω2 subdomain. The 
justification for this choice comes from the elasticity complex. However, given the fact that 𝐻 rot Rot (𝕊) are yet not available in finite 
element libraries, discontinuous Galerkin finite elements are used as on simplicial meshes it holds

GradCG𝑘(ℝ2) ⊆ DG𝑘−1(𝕊),

leading to an exact discrete subcomplex. The commuting diagram for the complexes and corresponding subcomplexes is as follows

The solution is found on union of meshes, that is 𝔗ℎ = 𝔗Ω1
ℎ ∪𝔗Ω2

ℎ , with finite dimensional spaces for the Ω1 subdomain given by

𝑉𝛼,1 = {uℎ ∈ 𝐿2(Ω1;ℝ2)| ∀𝑇 ∈ 𝔗Ω1
ℎ , uℎ|𝑇 ∈ DG1(ℝ2)},

𝑉𝛽,1 = {Sℎ ∈ 𝐻Div(Ω1;𝕊)| ∀𝑇 ∈ 𝔗Ω1
ℎ , Sℎ|𝑇 ∈ AW3},

(76)

where 𝑇  now denotes a triangular mesh element of 𝔗ℎ. For the Ω2 subdomain the mixed finite element spaces are
𝑉𝛼,2 = {uℎ ∈ 𝐻1(Ω2;ℝ2)| ∀𝑇 ∈ 𝔗Ω2

ℎ , uℎ|𝑇 ∈ CG2(ℝ2)},

𝑉𝛽,2 = {Sℎ ∈ 𝐿2(Ω2;𝕊)| ∀𝑇 ∈ 𝔗Ω2
ℎ ,Sℎ|𝑇 ∈ DG1(𝕊)}.

(77)

The finite dimensional system for the Ω1 subdomain becomes
[

𝐌𝛼,1 0
0 𝐌𝛽,1

]

d
d𝑡

(

𝐞𝛼,1
𝐞𝛽,1

)

=
[

0 𝐃Div
−𝐃⊤Div 0

](

𝐞𝛼,1
𝐞𝛽,1

)

+

[

0 0
𝐁Γ1
𝛽 𝐁Γint

𝛽

](

𝐮𝜕,1
𝐮int𝜕,1

)

,

(

𝐲𝜕,1
𝐲int𝜕,1

)

=

[

0 𝐓Γ1
𝛽

0 𝐓Γint
𝛽

]

(

𝐞𝛼,1
𝐞𝛽,1

)

,

(78)
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Fig. 11. Decomposition of the domain for the elasticity problem.

Table 3 
Numerical eigenvalues of the elastodynamics 
problem using the proposed method and a stan-
dard finite element discretization.
    Mode  Proposed  Classical 
  1  2.3795  2.3803  
  2  3.3158  3.3166  
  3  3.5742  3.5751  
  4  4.5142  4.5156  
  5  4.9465  4.9468  
  6  5.1975  5.1980  

while for the Ω2 subdomain it becomes
[

𝐌𝛼,2 0
0 𝐌𝛽,2

]

d
d𝑡

(

𝐞𝛼,2
𝐞𝛽,2

)

=
[

0 −𝐃Grad
𝐃⊤Grad 0

](

𝐞𝛼,2
𝐞𝛽,2

)

+

[

𝐁Γ2
𝛼 𝐁Γint

𝛼
0 0

](

𝐮𝜕,2
𝐮int𝜕,2

)

,

(

𝐲𝜕,2
𝐲int𝜕,2

)

=

[

𝐓Γ2
𝛼 0

𝐓Γint
𝛼 0

]

(

𝐞𝛼,2
𝐞𝛽,2

)

.

(79)

5.3.0.2.  Modal analysis. For this example we consider only a spectral analysis. The simulations take place on a unit square Ω = [0, 1]2, 
decomposed by an interface placed diagonally between the lower left and upper right vertex as shown in Fig. 11.

The numerical eigenvalues are obtained via the generalized eigenproblem
𝑖𝜔𝑛𝑢𝑚𝑛 𝐌ψ𝑛 = 𝐉ψ𝑛,

where 𝑖 =
√

−1 is the imaginary unit. For the discretization 10 finite elements per side are considered. The physical and geometrical 
parameters are

𝐿 = 1 [m], 𝜌 = 2700 [Kg∕m3], 𝐸 = 70 [GPa], 𝜈 = 0.3.

The resulting normalized eigenvalues, given by

𝜔̂ = 𝜔 𝐿
√

𝜌
𝐸
,

are shown in Table 3 whereas the eigenvectors for variable e𝛼 (corresponding to the velocity) are plotted using the magnitude of the 
associated vector field in Fig. 12. The obtained eigenfrequencies have the same accuracy with respect to a classical finite element 
discretization using quadratic Lagrange elements CG2.

5.4.  Mindlin plate

We now consider the Mindlin plate problem in a unit square domain
𝜌ℎ𝜕𝑡𝑡𝑤 − divq = 0, Ω = [0, 1]2,

𝜌𝐽𝜕𝑡𝑡θ − (DivM + q) = 0.
(80)
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Fig. 12. Numerical eigenvectors in terms of √e𝛼 ⋅ e𝛼 for the elastodynamics problem under mixed boundary conditions.

Here 𝜌 is the density, ℎ the thickness, 𝐽 ∶= ℎ3∕12, 𝑤 is the vertical displacement, θ the cross section rotation, q is shear force resulting 
and M the bending moment tensor. The shear force and bending moment are relative to the kinematic variables 𝑤, θ via the following 
relations

q = 𝐾sh(grad𝑤 − θ), M =K𝑏 Gradθ,

where 𝐾sh is the shear rigidity and K𝑏 the bending stiffness tensor. For isotropic materials these parameters take the following 
expressions

𝐾sh = 𝑘𝐺ℎ, K𝑏(◦) =
𝐸ℎ3

12(1 − 𝜈2)
((1 − 𝜈)◦ + 𝜈tr(◦)I2)

where 𝑘 is shear correction factor (that depends on the considered boundary conditions), 𝐺 = 𝐸∕(2(1 + 𝜈)) the shear modulus, 𝐸 the 
Young modulus and 𝜈 the Poisson ratio. The discretization of the elastodynamics problem starts via the change of variables

e𝛼 =
(

𝜕𝑡𝑤
𝜕𝑡θ

)

=
(

𝑣
ω

)

, E𝛽 =
(

𝐾sh(grad𝑤 − θ)
K𝑏 Gradθ

)

=
(

q

M

)

, (81)

where uppercase is used to denote tensor variables. The system equivalent to (11) is then written as
⎡

⎢

⎢

⎢

⎢

⎣

𝜌ℎ 0 0 0
0 𝜌𝐽 0 0
0 0 𝐶sh 0
0 0 0 C𝑏

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑡𝑣
𝜕𝑡ω
𝜕𝑡q
𝜕𝑡M

⎞

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 div 0
0 0 I2 Div

grad −I2 0 0
0 Grad 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝑣
ω

q

M

⎞

⎟

⎟

⎟

⎟

⎠

, (82)

where 𝐶sh ∶= 𝐾−1
sh  is the shear compliance and C𝑏 ∶=K−1

𝑏  is the bending compliance tensor. The differential operator  and its 
formal adjoint ∗ for the Mindlin plate problem are given by

 =
[

grad −I2
0 Grad

]

, ∗ = −
[

div 0
I2 Div

]

The discretization is obtained by multiplying by the test functions and applying integration by parts as in (17) or (18). The resulting 
weak formulation for Ω1 is to find 𝑣 ∈ 𝐿2(Ω1), ω ∈ 𝐿2(Ω1;ℝ2) and q ∈ 𝐻div(Ω1), M ∈ 𝐻Div(Ω1;𝕊), such that ∀𝜓𝑣 ∈ 𝐿2(Ω1), ∀ψ𝜔 ∈
𝐿2(Ω1;ℝ2), ∀ψ𝑞 ∈ 𝐻Div(Ω1) and ∀Ψ𝑀 ∈ 𝐻div(Ω1;𝕊) it holds

(𝜓𝑣, 𝜌ℎ𝜕𝑡𝑣)Ω1
= +(𝜓𝑣, divq)Ω1

,

(ψ𝜔, 𝜌𝐽𝜕𝑡ω)Ω1
= +(ψ𝜔,DivM + q)Ω1

,

(ψ𝑞 , 𝐶sh𝜕𝑡q)Ω1
= −(divψ𝑞 , 𝑣)Ω1

− (ψ𝑞 ,ω)Ω1
+ ⟨ψ𝑞 ⋅n, 𝑣⟩Γ1 + ⟨ψ𝑞 ⋅n, 𝑣⟩Γint ,

(Ψ𝑀 ,C𝑏𝜕𝑡M )Ω1
= −(DivΨ𝑀 ,ω)Ω1

+ ⟨Ψ𝑀 ⋅n,ω⟩Γ1 + ⟨Ψ𝑀 ⋅n,ω⟩Γint ,

(83)
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where the trace operator 𝛽 is the normal trace applied to a consisting of a tensor and a vector

𝛽
(

q

M

)

=
(

q ⋅n|𝜕Ω1
M ⋅n|𝜕Ω1

)

For the subdomain Ω2 where the Neumann boundary condition is natural, the functional setting is the following: 
seek 𝑣 ∈ 𝐻1(Ω2;ℝ2), ω ∈ 𝐻1(Ω2;ℝ2) and M ∈ 𝐻 rot Rot (Ω2;𝕊), q ∈ 𝐻 rot (Ω2) to satisfy ∀𝜓𝑣 ∈ 𝐻1(Ω2), ∀ψ𝜔 ∈ 𝐻1(Ω2;ℝ2), ∀Ψ𝑀 ∈
𝐻 rot Rot (Ω2;𝕊), ∀q ∈ 𝐻 rot (Ω2)

(𝜓𝑣, 𝜌ℎ𝜕𝑡𝑣)Ω1
= −(grad𝜓𝑣,q)Ω1

+ ⟨𝜓𝑣,q ⋅n⟩Γ1 + ⟨𝜓𝑣,q ⋅n⟩Γint ,

(ψ𝜔, 𝜌𝐽𝜕𝑡ω)Ω1
= −(Gradψ𝜔,M )Ω1

+ (ψ𝜔,q)Ω1
+ ⟨ψ𝜔,M ⋅n⟩Γ1 + ⟨ψ𝜔,M ⋅n⟩Γint ,

(ψ𝑞 , 𝐶sh𝜕𝑡q)Ω1
= +(ψ𝑞 , grad 𝑣 −ω)Ω1

,

(Ψ𝑀 ,C𝑏𝜕𝑡M )Ω1
= +(Ψ𝑀 ,Gradω)Ω1

,

(84)

where 𝛼 is the Dirichlet trace applied to a tuple consisting of a scalar and a vector

𝛼
(

𝑣
ω

)

=
(

𝑣|𝜕Ω2
ω|𝜕Ω2

)

.

5.4.0.1.  Finite element spaces. The mesh consists of a structured triangular mesh. On the Ω1 subdomain, Discontinuous Galerkin of 
order 1 (DG1) are used for 𝑣 and ω, Raviart-Thomas elements of degree two RT2 are used for q and conforming Arnold Winther 
elements [36] of degree three are used for M . On the Ω2 subdomain Continuous Galerkin of order (CG2) element for 𝑣, ω, and 
Discontinuous Galerkin of order 1 (DG1) for q, M . The justification for this choice comes from the fact that the Mindlin plate 
combines the wave equation with 2D elasticity. Therefore the finite element subcomplex are the same as the ones used in Section 5.2 
and 5.3. The solution is found on union of meshes, that is 𝔗ℎ = 𝔗Ω1

ℎ ∪𝔗Ω2
ℎ , with finite dimensional spaces for the Ω1 subdomain given 

by

𝑉𝛼,1 = {uℎ ∈ 𝐿2(Ω1) × 𝐿2(Ω1;ℝ2)| ∀𝑇 ∈ 𝔗Ω1
ℎ , uℎ|𝑇 ∈ DG1 × DG1(ℝ2)},

𝑉𝛽,1 = {Sℎ ∈ 𝐻div(Ω1) ×𝐻Div(Ω1;𝕊)| ∀𝑇 ∈ 𝔗Ω1
ℎ , Sℎ|𝑇 ∈ RT2 × AW3},

(85)

where 𝑇  now denotes a triangular mesh element of 𝔗ℎ. For the Ω2 subdomain the mixed finite element spaces are
𝑉𝛼,2 = {uℎ ∈ 𝐻1(Ω2) ×𝐻1(Ω2;ℝ2)| ∀𝑇 ∈ 𝔗Ω2

ℎ , uℎ|𝑇 ∈ CG2 × CG2(ℝ2)},

𝑉𝛽,2 = {Sℎ ∈ 𝐿2(Ω2;ℝ2) × 𝐿2(Ω2;𝕊)| ∀𝑇 ∈ 𝔗Ω2
ℎ ,Sℎ|𝑇 ∈ DG1(ℝ2) × DG1(𝕊)}.

(86)

Introducing the finite element approximation, the following ODE is obtained for subdomain Ω1

Diag

⎡

⎢

⎢

⎢

⎢

⎣

𝐌𝑣,1
𝐌𝑤,1
𝐌𝑚,1
𝐌𝑞,1

⎤

⎥

⎥

⎥

⎥

⎦

d
d𝑡

⎛

⎜

⎜

⎜

⎜

⎝

𝐯1
𝐰1
𝐦1
𝐪1

⎞

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 𝐃div 0
0 0 𝐏 𝐃Div

−𝐃⊤div −𝐏⊤ 0 0
0 −𝐃⊤Div 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝐯1
𝐰1
𝐦1
𝐪1

⎞

⎟

⎟

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0

𝐁q⋅n 0
0 𝐁M ⋅n

⎤

⎥

⎥

⎥

⎥

⎦

(

𝐮𝑣
𝐮𝜔

)

. (87)

The discrete system for the domain Ω2 is given by

Diag

⎡

⎢

⎢

⎢

⎢

⎣

𝐌𝑣,2
𝐌𝑤,2
𝐌𝑚,2
𝐌𝑞,2

⎤

⎥

⎥

⎥

⎥

⎦

d
d𝑡

⎛

⎜

⎜

⎜

⎜

⎝

𝐯2
𝐰2
𝐧2
𝐦2

⎞

⎟

⎟

⎟

⎟

⎠

=
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. (88)

5.4.0.2.  Modal analysis. We consider an analogous setting to the linear elastodynamics example, on a unit square Ω = [0, 1]2, decom-
posed by an interface placed diagonally between the lower left and upper right vertex as shown in Fig. 11. The numerical eigenvalues 
are obtained via the generalized eigenproblem

𝑖𝜔𝑛𝑢𝑚𝑛 𝐌ψ𝑛 = 𝐉ψ𝑛,

where 𝑖 =
√

−1 is the imaginary unit. For the discretization 10 finite elements per side are considered. The physical and geometrical 
paramters are parameters are those of aluminum

𝐿 = 1 [m], ℎ = 0.01 [m], 𝜌 = 2700 [Kg∕m3], 𝐸 = 70 [GPa], 𝜈 = 0.3, 𝑘 = 0.8601.

We consider a small thickness to show the robustness of the proposed methodology against shear locking phenomena. The resulting 
normalized eigenvalues, given by

𝜔̂ = 𝜔 𝐿
√

𝜌
𝐺
, 𝐺 = 𝐸

2(1 + 𝜈)
,

are shown in Table 4 whereas the eigenvectors for variable 𝑣 (corresponding to the velocity) are plotted in Fig. 13. The obtained 
eigenfrequencies are compared against a classical primal discretization using quadratic elements for 𝑤 and θ, with respect to reference 
[37], where an analytical approach is used. It can be noticed that the proposed discretization achieves better results and the mixed 
discretization avoids shear locking phenomena introducing different variables for ω and q.
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Table 4 
Numerical eigenvalues of the Mindlin plate problem using the proposed 
method and a standard finite element discretization.
 Mode  Proposed  Classical  Reference [37]  Rel. Error (%)

 Proposed  Classical

 1  0.1168  0.1192  0.1171  0.256  1.793
 2  0.1951  0.2008  0.1951  0.000  2.922
 3  0.3094  0.3208  0.3093  0.032  3.718
 4  0.3739  0.3876  0.3740  0.027  3.636
 5  0.3940  0.4137  0.3931  0.229  5.240
 6  0.5700  0.6050  0.5695  0.088  6.234

Fig. 13. Numerical eigenvectors in terms of the vertical velocity 𝑣 for the Mindlin plate. The proposed approach and a standard primal discretization 
are compared with the results of [37].

6.  Conclusion

In this contribution a numerical strategy to impose mixed boundary conditions in port-Hamiltonian systems has been detailed. 
To this aim, a primal-dual formulation leveraging the machinery of Hilbert complexes has been used. The domain decomposition 
can be reinterpreted under the lens of Discontinuous Galerkin method: the interconnection of the two subdomains corresponds to 
a physically motivated choice of numerical fluxes. Indeed the natural boundary condition for each subdomain corresponds to the 
output of the dual formulation. The time integration can be performed using methods capable of preserving the Poisson structure of 
the system. A natural choice in the linear case is given by the implicit midpoint method. Integrators capable of decoupling the two 
subdomains, like the Störmer-Verlet scheme, are also of interest as they reduce the computational burden. The methodology can be 
extended to nonlinear problems but is limited to the case where the nonlinearity does not interfere with the differential operators.
The definition of an interface between two subdomains may represent a bottleneck in applications where the boundary subpartitions 
present an intricate topology. However, this contribution represents a proof of concept that shows that primal-dual mixed formulations 
can be used simultaneously. Problems with mixed boundary conditions can then be represented as ordinary differential equations 
rather than differential algebraic ones. This presents advantages that go beyond simulation purposes, as the removal of algebraic 
constraints is beneficial also in the context of numerical optimization.
An interesting perspective would be to push forward the method and perform the interconnection on each finite element. This 
would lead to a completely discontinuous Galerkin method where each finite element exchanges information with the adjacent 
elements via a feedback interconnection. Furthermore, it can be integrated as an actual domain decomposition approach to avoid 
the computational cost of solving monotonically large systems arising from partial differential equations. This idea may be combined 
with model reduction approaches to reduce each subdomain before performing the interconnection. The presented idea may also find 
application in static problems, very much in the same spirit of hybrid and discontinuous methods. 
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