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1 INTRODUCTION
Neural networks are one of the most common frameworks to solve

regression or classification problems. Whilst their flexibility offers

a valuable solution to real-world problems, they are often used as

black-boxes thatmight yield incorrect outcomes. Hence, researchers

employ various techniques to test their out-of-samples behaviours.

Among others, the scenario approach provides probability guaran-

tees of correctness for SVM and SVR [1], exploiting the convexity of

support vector methods. Remarkably, [5] proved that the training

of networks with ReLU activations can be rewritten as a convex

problem. In this short note, we bridge the gap between these two

notions: we exploit the scenario theory to obtain probability bounds

on the performance of a neural network. Let us denote a sample

set (X𝑖 ,Y𝑖 )𝑁𝑖=1, where the X𝑖 ’s belong to a Hilbert space X and the

Y𝑖 ’s represent the corresponding outputs in R𝐿 . Each data point is

extracted independently from an unknown probability distribution.

2 CONVEX MAPPING
Recent work [3–5] allow us to formulate the training of a ReLU net-

work as a convex optimisation problem. Let us consider a network

with a single hidden layer; the neural output can be expressed as

𝑁𝜃 (X) =𝑊2 · 𝜎 (𝑊1X), (1)

where 𝜎 represents ReLU activations, and𝑊𝑖 represent the con-

catenation of the network’s weights and bias, as X are augmented
samples, i.e. a column of 1 is concatenated at its end. For brevity, we

consider single-layer networks, whose training can be formulated

min

𝜃 ∈Θ
∥𝑁𝜃 (X) − Y∥2 + 𝛼𝑅(𝜃 ), (2)

where Y is the desired output, Θ is the parameter space, 𝑅(·) and
𝛼 > 0 are the regularization function and parameter, respectively. In

[5], the authors prove that (2) is equivalent to the convex program

min

𝑢,𝑣∈𝐶







 𝑀∑︁
𝑗=1

𝐷 𝑗X(𝑢 𝑗 − 𝑣 𝑗 ) − Y








2

2

+ 𝛼 ( |𝑢 |2,1 + |𝑣 |2,1) (3)
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where 𝐷 𝑗 represents a matrix whose entries are 0 or 1, 𝑀 rep-

resents the number of all possible combinations of 0 and 1 in a

𝑁 -dimensional vector, and 𝐶 is the constraint set that depends on

the combinations of 𝐷 𝑗 as

𝐶 := {(2𝐷 𝑗 − 𝐼𝑛)X𝑢 ≥ 0, (2𝐷 𝑗 − 𝐼𝑛)X𝑣 ≥ 0,∀𝑖, 𝑗}. (4)

Intuitively, the matrices 𝐷 𝑗 represent the combinations of ReLU ac-

tivations (active being 1 and inactive being 0). The optimal solution

to (2) can be reconstructed from the optimal solution of (3), as

(𝑊 ∗
1,𝑢𝑖

,𝑊 ∗
2,𝑢𝑖

) =
(

𝑢∗
𝑖

| |𝑢∗
𝑖
| |2

, | |𝑢𝑖 | |2
)
, for all 𝑖 s.t. | |𝑢∗

𝑖
| |2 > 0, (5)

where 𝑢∗
𝑖
is the 𝑖-th row of 𝑢. Similarly for 𝑣∗

𝑖
we get (𝑊 ∗

1,𝑣𝑖
,𝑊 ∗

2,𝑣𝑖
).

The optimal layers of the network are composed by the concate-

nation𝑊 ∗
1
= [𝑊1,𝑢∗ ,𝑊1,𝑣∗ ] and𝑊 ∗

2
= [𝑊2,𝑢∗ ,𝑊2,𝑣∗ ], featuring𝑚

neurons, where𝑚 =
∑
𝑢𝑖≠0 1 +

∑
𝑣𝑖≠0 1.

3 SCENARIO GUARANTEES FOR SVR
Let us state the support vector regression (SVR) as described in [6],

where we aim at finding parameters𝑤 and 𝑏 such that the function

𝑦 = 𝑤X+𝑏 extended with a "tube" of diameter 𝛾 contains the values

Y. Given some hyper-parameters 𝛼, 𝜌 > 0, we solve the program

min

𝑤,𝑏,𝛾≥0
𝜈𝑖≥0

(𝛾 + 𝛼 ∥𝑤 ∥2) + 𝜌

𝑁∑︁
𝑖=1

𝜈𝑖 ,

𝑠 .𝑡 . |Y𝑖 − 𝑦𝑖 | − 𝛾 ≤ 𝜈𝑖 , 𝑖 = 1, . . . , 𝑁 ,

(6)

where the𝜈𝑖 are slack variables that represent the distance of sample

X𝑖 from the "tube" – if 𝜈𝑖 = 0, the sample Y𝑖 is within the tube. The

scenario theory bounds the probability of an erroneous prediction,

i.e. the probability that a new sample (𝑥,𝑦) lies outside the tube.
Given a user-defined confidence 𝛽 and denoting 𝑠∗ as the number

of positive 𝜈∗
𝑖
obtained by solving (6), it holds that

P𝑁
[
𝜖 (𝑠∗) ≤ P[|𝑦 −𝑤∗ · 𝑥 − 𝑏∗ | ≤ 𝛾∗] ≤ 𝜖 (𝑠∗)

]
≥ 1 − 𝛽, (7)

where 𝜖 , 𝜖 are obtained solving a polynomial equation [1].

4 GUARANTEES FOR RELU NETWORKS
Program (6) can be rewritten employing a network as regressor, i.e.

𝑦𝑖 =𝑊2𝜎 (𝑊1X). In light of (3), let us denote

𝑁𝐷 (X𝑖 ) =
𝑀∑︁
𝑗=1

𝐷 𝑗X𝑖 · (𝑢 𝑗 − 𝑣 𝑗 ), (8)

hence an SVR-like optimisation program holds

min

𝑢,𝑣∈𝐶,𝛾≥0
𝜈𝑖≥0

𝛾 + 𝛼 ( |𝑢 |2,1 + |𝑣 |2,1) + 𝜌

𝑁∑︁
𝑖=1

𝜈𝑖 ,

𝑠 .𝑡 . |Y𝑖 − 𝑁𝐷 (X𝑖 ) | − 𝛾 ≤ 𝜈𝑖 , 𝑖 = 1, . . . , 𝑁 ,

(9)
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Figure 1: Regression of the sinusoidal function. Training and
validation data are shown in blue and orange, respectively.

where the set 𝐶 is defined as in (4). The scenario approach requires

the presence of a unique constraint per sample:𝐶 is actually a set of

constraints over the sample set X. For this reason, we incorporate
𝐶 with the "tube" conditions as

𝑔(X𝑖 ) := max{ (𝐼𝑛 − 2𝐷 𝑗 )X𝑖𝑢, (𝐼𝑛 − 2𝐷 𝑗 )X𝑖𝑣, ∀𝑗,
|Y𝑖 − 𝑁𝐷 (X𝑖 ) | − 𝛾 − 𝜈𝑖 } ≤ 0.

(10)

Finally, the optimisation program reads

min

𝑢,𝑣∈𝐶,𝛾≥0
𝜈𝑖≥0

𝛾 + 𝛼 ( |𝑢 |2,1 + |𝑣 |2,1) + 𝜌

𝑁∑︁
𝑖=1

𝜈𝑖 ,

𝑠 .𝑡 . 𝑔(X𝑖 ) ≤ 0, 𝑖 = 1, . . . , 𝑁 ,

(11)

This formulation allows us to leverage the following result:

Theorem 1 (Violation of a Neural Regressor). Given a user-
defined confidence 𝛽 , with 𝜖 (·) and 𝜖 (·) defined as in [2], we have

P𝑁
[
𝜖 (𝑠∗) ≤ P[(𝑥,𝑦) : 𝑔(𝑥) > 0] ≤ 𝜖 (𝑠∗)

]
≥ 1 − 𝛽. (12)

Notice that programs (2)-(3) are equivalent by [5], whereas prov-

ing the equivalence (or the relation between the solutions) between

(6), where we use the neural output 𝑦 =𝑊2𝜎 (𝑊1X), and its convex-
ified formulation (11) is matter of future work.

5 EXPERIMENTAL EVALUATION
Regression
We test our procedure with a non-linear regression example. We

consider 𝑁 = 300 samplesX ∈ R300×1 generated within [−2, 2] and
set 𝛽 = 10

−3
. The values Y are obtained as Y𝑖 = sin(4X𝑖 ) +𝜔,where

𝜔 ∼ N(0, 0.12). We approximate program (11) using 𝑝 = 100 ≪ 𝑀

different combinations 𝐷 𝑗 (cfr. (3)) , and get an optimal value of

𝛾∗ ≃ 0.08. Training and validation results are reported in Table

1, where we notice that the validation violation, computed over

additional 𝑁 = 1000 samples, is indeed within the scenario bounds.

Three-class Classification
We test the neural classification algorithm where we consider 𝑁 =

500 samples X ∈ R2, with three labels (𝐿 = 3), i.e. 𝑦 = {1, 2, 3}
encoded as the one-hot vector Y. The labels depend on the angles

of the samples, as

𝑦 (X𝑖 ) = 𝑗, where ∠X𝑖 ∈ [( 𝑗 − 1)2𝜋/𝐿, 𝑗 2𝜋/𝐿] , 𝑗 ∈ [1, 𝐿] . (13)

We trained the neural classifier (see Fig. 2), and we approximated

(11) using solely 𝑝 = 100 ≪ 𝑀 different matrices 𝐷 𝑗 (cfr. (3)). We

Test 𝑁 𝑠∗ 𝜖 𝜖 Valid. Error Time [s]

Regression 300 10 0 0.096 0.087 229

Classification 500 57 0 0.21 0.17 125

Table 1: Results for the numerical examples.

Figure 2: Classification example. True and estimated bound-
aries are depicted in black and colored lines, respectively.
Training and test data are depicted with circles and triangles,
respectively.

set 𝛽 = 10
−3

and report training and validation results in Table 1.

Again, the validation error, computed over additional 𝑁 = 1000

samples, is within the scenario bounds.

6 CONCLUSIONS
Wepropose an approach to bridge the neural training as a convex op-

timisation program with the scenario theory for machine learning.

This technique is computationally heavier than the canonical train-

ing, but in exchange can offer PAC guarantees about out-of-sample

performance. Future work aims at kick-starting the optimisation

program, by employing gradient descent algorithms to train the

network, to yield faster results with the same PAC guarantees.
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