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Anonymous transmission in a noisy quantum network using the W state

Victoria Lipinska,* Gláucia Murta,† and Stephanie Wehner
QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands

(Received 29 June 2018; published 16 November 2018)

We consider the task of anonymously transmitting a quantum message in a network. We present a protocol
that accomplishes this task using the W state and we analyze its performance in a quantum network where some
form of noise is present. We then compare the performance of our protocol with some of the existing protocols
developed for the task of anonymous transmission. We show that, in many regimes, our protocol tolerates more
noise and achieves higher fidelities of the transmitted quantum message than the other ones. Furthermore, we
demonstrate that our protocol tolerates one nonresponsive node. We prove the security of our protocol in a
semiactive adversary scenario, meaning that we consider an active adversary and a trusted source.
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I. INTRODUCTION

In cryptographic scenarios we are often concerned with
hiding the content of the messages being exchanged. How-
ever, sometimes the identity of the parties who communi-
cate may also carry relevant information. Examples of tasks
where the identities of the ones who communicate carry
crucial information are voting, electronic auctions [1] or,
more practically, sending a message to a secret beloved [2].
Therefore, the establishment of anonymous links in a net-
work, where identities of connected parties remain secret, is
an important primitive for both classical [3] and quantum
communication.

In this paper we consider a task of anonymously transmit-
ting a quantum message in a network. To define the task more
precisely, consider a quantum network with N nodes. One of
the nodes, sender S, would like to communicate a quantum
state |ψ〉 to a receiver R in a way that their identities remain
completely hidden throughout the protocol. In particular, for
S it implies that her identity remains unknown to all the
other parties, whereas for R it implies that no one except S

knows her identity. The essence of the protocol is to create
an entangled link between S and R by performing local
operations on the other nodes of the network. Such a link is
called anonymous entanglement (AE) [4], since the identities
of the nodes holding the shares of the entangled pair is kept
anonymous. After anonymous entanglement is created, S and
R use it as a resource for teleporting the quantum information
|ψ〉. Note that the main goal of anonymous transmission is
to fully hide the identities of the sender and the receiver; it
does not aim at guaranteeing the reliability of the transmitted
message.

A number of protocols have been proposed to tackle this
task, which was first introduced in Ref. [4]. There, the authors
present a protocol which makes use of a given multipar-
tite Greenberger-Horne-Zeilinger (GHZ) state as a quantum
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resource, i.e., |GHZN 〉 = 1√
2
(|0 . . . 0〉 + |1 . . . 1〉). The prob-

lem was subsequently developed to consider the preparation
and certification of the GHZ state [5,6]. In Ref. [6], it was first
shown that the proposed protocol is information-theoretically
secure against an active adversary. What is more, other proto-
cols were proposed, which do not make use of multipartite
entanglement, but utilize solely Bell pairs to create anony-
mous entanglement [7]. Yet, so far, it has not been discussed
whether multipartite states other than the GHZ allow for
anonymous transmission of a quantum state. Moreover, noth-
ing is known about the performance of such protocols in a
realistic quantum network, where one inevitably encounters
different forms of noise.

Here we design a protocol for quantum anonymous trans-
missions which uses the W state, |W 〉N = 1√

N
(|10 . . . 0〉 + · · ·

+ |0 . . . 01〉). Just like other existing protocols, our protocol
is based on establishing anonymous entanglement between S

and R. We prove the security of our protocol in a semiactive
adversary scenario, meaning that we consider an active ad-
versary and a trusted source, as in Ref. [4]. We also show
that security is preserved in the presence of noise in the
network, when all the particles are subjected to the same
type of noise. What is more, we compare the performance
of our protocol with previously proposed protocols that use
the GHZ state and Bell pairs. We quantify the performance
of protocols by the fidelity of the transmitted quantum state.
We find that, in many cases, our W-state based protocol
tolerates more noise than the other protocols and achieves
higher fidelity of the transmitted state. Additionally, we show
that our protocol can tolerate one non-responsive node, e.g., if
one of the qubits of a multipartite state gets lost. In contrast,
the protocol using the GHZ state cannot be carried out at
all in this case, since the loss of a single qubit destroys the
entanglement of the state. We also address the performance
of the Bell-pair based protocol, presented in Ref. [7], and
we show that in the presence of noise, the performance of
the protocol depends on the ordering of S and R in the
network. To the best of our knowledge this is the first anal-
ysis of anonymous transmission in the presence of noise.
Without such an analysis the performance of near-future
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applications for quantum networks cannot be characterized
[8].

The paper is organized as follows. In Sec. II, we present
the protocol for anonymous transmission with the W state and
discuss its correctness. In Sec. III, we provide the security def-
inition and prove that our protocol is secure in the semiactive
and passive adversary scenario. Finally, in Sec. IV we examine
the behavior of our protocol in a noisy quantum network and
compare it with the other existing protocols.

II. THE PROTOCOL

Our anonymous transmission protocol, Protocol 1, allows
a sender S to transmit an arbitrary quantum state |ψ〉 to a
receiver R in an anonymous way and uses the N -partite W
state as a quantum resource.

Protocol 1: Anonymous transmission with the W state.

Goal: Transmit a quantum state |ψ〉 from the sender S to the
receiver R, while keeping the identities of S and R anonymous.

1. Collision detection.
Nodes run the classical collision detection protocol [9] to
determine a single sender S. All nodes input 1 if they do
wish to be the sender and 0 otherwise. If a single node
wants to be the sender, continue.

2. Receiver notification.
Nodes run the classical receiver notification protocol [9],
where the receiver R is notified of her role.

3. State distribution.
A trusted source distributes the N -partite W state.

4. Measurement.
N − 2 nodes (all except for S and R) measure in the
{|0〉, |1〉} basis.

5. Anonymous announcement of outcomes.
Nodes use the classical veto protocol [9] which outputs 0 if
all the N − 2 measurement outcomes are 0, and 1
otherwise. If the output is 0 then anonymous entanglement
is established, else abort.

6. Teleportation.
Sender S teleports the message state |ψ〉 to the receiver R.
Classical message m associated with teleportation is sent
anonymously. The communication is carried out using the
classical logical OR protocol [9] which computes m ⊕ rand,
where rand is a random 2-bit string input by the receiver R.

Protocol 1 is built on a number of classical subroutines:
collision detection, receiver notification, veto, and logical
OR. Specifically, collision detection checks whether only one
of the nodes wishes to be the sender; receiver notification
notifies the receiver of her role in the protocol; veto an-
nounces if at least one of the parties has given input 1;
and logical OR computes the XOR of the input of all the
parties. In Ref. [9], protocols for implementing these classical
subroutines were proposed. The protocols were proven to be
information-theoretically secure in the classical regime, even
with an arbitrary number of corrupted participants, assuming
the parties share pairwise authenticated private channels and
a broadcast channel. However, security against a quantum
adversary was not analyzed. Like in related work [6], here
we will assume that the protocols listed above remain secure
even in the presence of a quantum adversary. We make this

assumption explicit in the security proof presented in Ap-
pendix A 2, where we assume that the classical subprotocols
only act on the classical input register and create the output
register, therefore, not revealing any information other than
what is specified by the protocol.

The main concern of any anonymous transmission protocol
is to hide the identities of sender S and receiver R. Nonethe-
less, it is also desired that, in the case in which all the parties
act honestly, no information about the transmitted message
is revealed. In order to achieve this functionality we add the
step where R randomizes the output of the logical OR in Step
6 of Protocol 1. In that way, the classical outcome of the
teleportation, m, is sent from S to R in a secret way. Indeed,
even though the classical bit m could be sent by a simple
anonymous broadcast protocol, the probability of obtaining a
particular outcome m can depend on which state is teleported
if the established anonymous entanglement is not a maximally
entangled state. This is the case especially in the presence of
noise in the network (for more details see Appendix A 3).

Note that our protocol is probabilistic, as the parties may
abort in Step 5. However, since the measurement outcomes
are announced, the creation of anonymous entanglement is
heralded. Hence, S and R know when the anonymous entan-
glement failed to be established before they initiate the tele-
portation, so in the case in which the protocol aborts, S keeps
the state |ψ〉. In the following we first state the correctness of
the protocol and then elaborate on the probability of success
in the protocol, as a function of the number of parties in the
network N .

Lemma 1 (correctness). If all the parties act honestly and
Protocol 1 does not abort, the state |ψ〉 is transferred from the
sender S to the receiver R, except with probability εcorr, where
εcorr is an exponentially vanishing function of the number of
rounds used to implement the classical subroutines.

Proof. First, recall that Protocol 1 is built on several classi-
cal subroutines and in Ref. [9], protocols to implement these
subroutines were presented. The protocols were proven to be
correct except with a probability that vanishes exponentially
with the number of rounds nclass used to implement the
subroutines. Second, conditioned on the fact that the classi-
cal subroutines are correct and the parties act honestly, the
measurement in the {|0〉, |1〉} basis can lead to two situations:
(i) all parties obtain measurement outcome 0, in which case
the anonymous entangled state between S and R is |ψ+〉 =

1√
2
(|01〉 + |10〉), or (ii) a single party obtains a measurement

outcome 1 and then the state between S and R is |00〉, in
which case they abort the protocol. If the parties do not
abort the protocol in Step 5, then the state shared by S and
R is the maximally entangled state |ψ+〉 = 1√

2
(|01〉 + |10〉),

which is then used to perfectly teleport state |ψ〉 from S to R.
Altogether, this implies that Protocol 1 is correct except with
probability εcorr which vanishes exponentially with nclass. �

Lemma 2 (probability of success). Given sender S and
receiver R, the probability of obtaining the anonymous entan-
gled state |ψ+〉 in Step 4 of Protocol 1 is 2

N
.

Proof. Let |�0〉〈�0|N−2 denote the projection on the |0〉 state
of N − 2 parties. The probability Pψ+ of obtaining this state
can be expressed as Pψ+ = [|W〉〈W|N (1SR ⊗ |�0〉〈�0|N−2)] =
2
N

[|ψ+〉〈ψ+|] = 2
N

. �
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Lemma 2 states that in the honest implementation, the
probability of not aborting in Step 4 of Protocol 1 decreases
with the number of parties. Protocols based on the GHZ
state [4,6], on the other hand, are deterministic in creating
anonymous entanglement. However, we remark that a fair
comparison between the success rate of the two protocols
should also take into account the rate of state generation. Note
that recently, a linear optical setup for generating the W state
in nitrogen-vacancy systems was proposed [10], which could
offer a potential advantage in generation rates of the W state,
over the GHZ state.

III. SECURITY

As discussed in the previous section, in the task of anony-
mous transmission the main goal is to keep the identities of
sender S and receiver R secret. In this section we present
the security definitions and prove the security of Protocol 1
against a semiactive adversary.

Let [N ] = {1, . . . , N} be the set of nodes. We say that
dishonest nodes are a subset A ∈ [N ], with |A| = t . This set
is defined at the beginning of the protocol, which is known as
a nonadaptive adversary.

Definition 1 (semiactive adversary). We define the semiac-
tive adversary scenario as one in which the adversaries are
active, i.e., can perform arbitrary joint operations on their
state during the execution of the protocol, but the source
distributing a quantum state is trusted.

In particular, for Protocol 1 this means that the state in
Step 3 is exactly the W state. This adversarial model is
stronger than a passive adversary, where it is assumed that
the parties follow all the steps of the protocol and only
collect the available classical information. However, note that
a fully active adversarial scenario would allow the cheating
participants to corrupt the source.

We define security in terms of the guessing probability, i.e.,
the maximum probability that adversaries guess the identity
of the S or R given all the classical and quantum information
they have available at the end of the protocol. Intuitively, we
say that the protocol is secure when the guessing probability
is no larger than the uncertainty the adversaries have about
the identity of the sender before the protocol begins. This
uncertainty is defined by the prior probability, P [S = i|S /∈A].
For example, in the case where all the nodes are equally
likely to be the sender, the prior probability is uniform and,
therefore, P [S = i|S /∈ A] = 1

N−t
.

In Protocol 1 it is assumed that the message |ψ〉 to
be sent carries no information about the sender’s identity.
We remark that anonymous transmission is concerned with
ensuring anonymity and not secrecy. In the case in which
secrecy of the message is required, anonymous transmission
could be combined with another primitive that allows one to
encrypt the message. However, here, we do not address this
issue.

Definition 2 (guessing probability). Let A be the subset
of semiactive adversaries. Let C be the register that contains
all classical and quantum side information accessible to the
adversaries. Let WA denote the adversaries’ quantum register
of the state distributed by the source. Then, the probability of

adversaries guessing the sender is given by

Pguess[S|WA, C, S /∈ A]

= max
{Mi }

∑
i∈[N]

P [S = i|S /∈ A][MiρWAC|S=i], (1)

where the maximization is taken over the set of POVMs {Mi}
for the adversaries and ρWAC|S=i is the state of the adversaries
at the end of the protocol, given that node i is the sender.

Definition 3 (sender security). We say that an anonymous
transmission protocol is sender-secure if, given that the sender
is honest, the probability of the adversary guessing the sender
is

Pguess[S|WA, C, S /∈ A] � max
i∈[N]

P [S = i|S /∈ A]. (2)

In words, the protocol is sender-secure if the probability
that the adversaries guess the identity of S at the end of the
protocol is not larger than the probability that an honest node
i is the sender, maximized over all the nodes. An analogous
definition can be given for the receiver security.

We remark that even if S and R are honest, it is trivially
possible for the malicious parties to prevent S and R from
exchanging the desired message. For example, the dishonest
parties can measure the W state in a different basis affecting
the resulting anonymous entanglement. In this sense, the
correctness of Protocol 1 is not robust to malicious attacks.
However, in what follows, we show that Protocol 1 is secure,
and even in the presence of dishonest parties, the anonymity
of S and R is preserved.

Theorem 1. The anonymous transmission protocol with
the W state, Protocol 1, is sender- and receiver-secure in the
semiactive adversary scenario.

Idea of the proof. For clarity, here we present the main idea
of our security proof and we refer the reader to Appendix A 3
for details. Note that in the semiactive adversary scenario we
allow the adversaries to apply an arbitrary cheating strategy,
which in particular includes not following the steps of the
protocol and performing global operations on their joint state.
First, let us discuss the sender security. We consider the case
when R is honest, R /∈ A, as well as when she is dishonest,
R ∈ A. In both cases, the gist of our sender-security proof
is to show that the reduced quantum state of the adversary
ρWAC|S=i at the end of the protocol is independent of the
sender, i.e., ∀i /∈ A, ρWAC|S=i = ρWAC . To show it, we explic-
itly use the assumption that the classical protocols do not leak
any information about S or R’s identity even if the adversary
has access to quantum correlations. Therefore, any quantum
side information the adversary holds is independent of S. This,
together with the fact that the state distributed by the source
is permutationally invariant yields the desired equality. Since
now the reduced quantum state of the adversary is indepen-
dent of S we can easily upper-bound the guessing probability
by maxi∈[N] P [S = i|S /∈ A]. The receiver security can be
proven following the same structure. �

Note that our security proof tolerates any number of
cheating nodes. It is also general enough to make a security
statement about any resource state that is invariant under
permutation of nodes.

052320-3



LIPINSKA, MURTA, AND WEHNER PHYSICAL REVIEW A 98, 052320 (2018)

Let us now discuss a passive adversarial model, also called
the honest-but-curious model. This is the case when the mali-
cious parties follow all the steps of the protocol (in particular,
they measure in the {0, 1} basis in Step 4), but can collaborate
to compare their classical data. Note that the passive adversary
model is a special case of the semiactive adversary scenario.
However, this model is interesting by itself, since in the case in
which the nodes build their anonymous transmission protocol
using weaker versions of classical subroutines, i.e., those
that are not secure against quantum adversary, the security
still holds. Indeed, it restricts the power of the adversary, so
that they cannot share any quantum side information. Then,
the probability of the adversaries guessing the sender sim-
plifies to Pguess[S|WA, C, S /∈ A] = ∑

a,c P [WA = a, C =
c] maxi∈[N] P [S = i|WA = a, C = c, S /∈ A], where maxi-
mization is taken over all the values of the random variable
S, and a, c are possible values of random variables WA

and C, respectively [11]. Note that, unlike before, here WA

is a classical register of the adversary, since their share of
the W state was measured in the {0, 1} basis. An analogous
expression holds for receiver security.

Theorem 2. The anonymous transmission protocol with
the W state, Protocol 1, is sender- and receiver-secure in the
passive adversary scenario.

The proof of this statement is a special case of the proof of
Theorem 1. As before, we use the fact that classical protocols
do not leak identities of S and R and the permutational
invariance of the resource state to conclude that the classical
information generated during the protocol is independent of
who is sender and receiver. For details see Appendix A 3.

IV. ANONYMOUS TRANSMISSION IN A NOISY
QUANTUM NETWORK

Equipped with the security tools from the previous section,
here we analyze the security and performance of Protocol 1 in
a noisy quantum network. We consider a noise model in which
each qubit is subjected to the same individual noisy channel.
One can think that a trusted source prepared the multipartite
state for the network, but each qubit is individually affected
by a noise map � while being transmitted to the nodes.
Note that this model can also encompass noise on the local
measurements performed on the state. Therefore, in our noisy
network, if |W 〉N is the perfect N -partite W state prepared by
a trusted source, then

ω�
N = �⊗N (|W〉〈W|N ) (3)

is the state distributed to the parties at Step 3 of Protocol 1.

A. Security in the presence of noise

Perfect security. In what follows we will show that our pro-
tocol is perfectly secure in the semiactive adversary scenario
in the noisy network defined by Eq. (3). We start by defining
what it means for a map to preserve permutational invariance.

Definition 4 (permutational-invariance preserving map).
Let π be a permutationally invariant state, such that for
all permutations �, π = V� (π ), where V� is a map that
performs the permutation � on the subsystems. A map E
is permutational-invariance preserving if the state after the

action of the map π ′ = E (π ) is permutationally invariant, i.e.,
π ′ = V� (π ′).

Note that the noise channel of our interest, �⊗N , preserves
permutational invariance according to the above definition,
due to the tensor structure.

Theorem 3. The anonymous transmission protocol with
the W state, Protocol 1, is sender- and receiver-secure in the
semiactive adversary scenario in a noisy network, where noise
is defined by Eq. (3).

Proof. According to Definition 4, the noise channel �⊗N

is permutational-invariance preserving. Therefore, the proof
of Theorem 3 follows exactly the same steps as the proof of
Theorem 1, where one replaces the state distributed by the
source, |W〉〈W|N , with ω�

N . Therefore if ρ�
WAC|S=i

is the state
of the adversaries at the end of the protocol, given that node
i is the sender, we have that ρ�

WAC|S=i
= ρ�

WAC
, for all i /∈ A,

and

Pguess[S|A,C, S /∈ A]

:= max
{Mi }

∑
i∈[N]

P [S = i|S /∈ A]
[
Miρ�

WAC|S=i

]
� max

i∈[N]
P [S = i|S /∈ A]. (4)

The same statement holds for receiver security. �
ε security. In a realistic quantum network, it is quite

unlikely that one will be able to control the noise channels
perfectly and ensure that all qubits are subjected to the action
of exactly the same noise channel. Here we would like to
analyze what happens in the case when the network noise is
slightly perturbed, in the sense that each qubit experiences
a slightly different noise. We say that in the perturbed case,
the network noise is such that each individual qubit of the
multipartite W state, |W 〉N , is subjected to an action of a
channel �i ,

ω̂�
N =

N⊗
i=1

�i (|W〉〈W|N ), (5)

where ‖� − �i‖1 � εi for some map �, and ‖ · ‖1 denotes
the induced trace norm [12].

Since each channel is slightly perturbed, the state after
the action of the channel, ω̂�

N , is no longer perfectly permu-
tationally invariant. Yet, intuitively, since the perturbation is
small, the state ω̂�

N is ε-close to a permutationally invariant
state, for some small ε, and, consequently, the protocol should
be ε-secure. In the following we show that this intuition is,
indeed, true. First, let us formalize the notion of ε security.

Definition 5 (ε-sender security). We say that the anony-
mous transmission protocol is ε-sender-secure if, given that
the sender is not the adversary, the probability of the adver-
saries guessing the sender is

Pguess[S|WA, C, S /∈ A] � max
i∈[N]

P [S = i|S /∈ A] + ε. (6)

And analogously for ε-receiver security.
Theorem 4. The anonymous transmission protocol with the

W state, Protocol 1, is Nεmax-sender-secure in the semiactive
adversary scenario when the noise in the network is defined by
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Eq. (5), i.e.,

Pguess[S|WA, C, S /∈ A]

= max
{Mi }

∑
i∈[N]

P [S = i|S /∈ A]
[
Miρ̂�

WAC|S=i

]
� max

i∈[N]
P [S = i|S /∈ A] + Nεmax, (7)

where ρ̂�
WAC|S=i

is the state of the adversaries at the end of the
protocol, and εmax = maxi∈[N] εi , with εi given by Eq. (5).

The idea of the proof is to show that, for all i ∈ [N ],
the trace [Miρ̂�

WAC|S=i
] is upper-bounded by [Miρ�

WAC|S=i
] +

Nεmax. Then using the fact that Nεmax is independent of i,
the rest of the proof follows from Theorem 3. For details see
Appendix A 3.

B. Performance in a noisy network

In this section we analyze the performance of Protocol 1 in
a noisy quantum network. To do so reliably, we assume honest
implementation; i.e., all of the parties follow the protocol. In
the honest implementation, given success in the protocol, the
anonymous entangled state between S and R after Step 5 is

ωSR = 1

N TrN−2[�⊗N (|W〉〈W|N )(1SR ⊗ |�0〉〈�0|N−2)], (8)

where |W〉〈W|N is the N -partite W state, |�0〉〈�0|N−2 is a projec-
tion onto the |0〉 state of N − 2 parties, and N is a normaliza-
tion factor. Note that in the case where no noise is present we
recover the maximally entangled state, i.e., ωSR = |ψ+〉〈ψ+|,
where |ψ+〉 = 1√

2
(|01〉 + |01〉).

Throughout the rest of the paper, we will be interested
in discussing the performance of anonymous transmission
protocols under two types of noise:

(1) � is the dephasing channel

�(ρ) = Pq (ρ) = qρ + (1 − q )ZρZ, (9)

where ρ is a single-qubit state, Z is the Pauli Z gate, and q ∈
[0, 1] is the noise parameter.

(2) � is the depolarizing channel

�(ρ) = Dq (ρ) = qρ + (1 − q )
1

2
, (10)

where ρ is a single-qubit state, 1
2 is a maximally mixed single-

qubit state, and q ∈ [0, 1] is the noise parameter.
Comparison with the GHZ protocol [4]. In the following we

are interested in comparing the performance of our protocol
using the W state with the protocol that uses the GHZ state
(for reference see [4,6]). The main differences between our
protocol and the protocol presented in Ref. [4] lie in (i) the
initial resource state: W in our case and GHZ for [4]; (ii)
the measurement basis: standard basis for our protocol and
X basis for [4]; (iii) the fact that our protocol is probabilistic,
whereas the one with the GHZ state continues regardless of
the measurement outcome.

For the noise under consideration, all measurement out-
comes in the GHZ protocol are equally likely and the resulting
states are equivalent up to a local unitary operation. Therefore,
without loss of generality, we consider the state between S and
R created in this protocol to be

γSR = 1

N ′ TrN−2[�⊗N (|GHZ〉〈GHZ|N )(1SR ⊗ | �+〉〈 �+|N−2)],

(11)

where |GHZ〉〈GHZ|N is the N -partite GHZ state, | �+〉〈 �+|N−2 is
a projection onto the |+〉 state of N − 2 honest parties, and N ′
is a normalization factor. In the case where no noise is present
in the network, the ideal state of S and R is the maximally en-
tangled state γSR = |φ+〉〈φ+|, with |φ+〉 = 1√

2
(|00〉 + |11〉).

Note that this is a different maximally entangled state than
in our W state protocol, but both states are equally useful for
teleportation.

To compare the performance of the two protocols, we fix
the figure of merit to be the fidelity of the obtained anonymous
entangled (AE) state with the ideal state that is obtained in the
protocol when no noise is present,

FAE (ωSR ) = [ωSR|ψ+〉〈ψ+|], (12)

FAE (γSR ) = [γSR|φ+〉〈φ+|], (13)

where ωSR and γSR are anonymous entangled states between
S and R arising from measuring W and GHZ states subjected
to the network noise.

In what follows we define what it means for an anonymous
entangled state to be useful. Before that, let us motivate it
twofold. First, not all states are entangled enough to be a
resource for teleportation. It has been shown in Ref. [13] that
any two-qubit entangled state can be used for teleportation
if and only if its singlet fidelity exceeds 1

2 . Second, note
that the quality of a low-fidelity anonymous entanglement
could be further improved by performing entanglement dis-
tillation [14]—a protocol which creates an entangled state
with high fidelity out of a few lower-fidelity states. However,
entanglement distillation protocols can be carried out only
when fidelities of initial states are larger than 1

2 . We remark
that performing entanglement distillation without compro-
mising security of anonymous transfer requires support of
anonymous two-way classical communication between S and
R. This can be achieved, for example, by using a classical
anonymous broadcast protocol [9].

We are now ready to define what it means to say that a
resource state is useful for anonymous transmission.

Definition 6 (usefulness). We say that the anonymous en-
tangled state is a useful resource for transmission of a quantum
message if its fidelity is strictly larger than 1

2 , i.e., FAE > 1
2 .

Therefore an N -partite state is a useful resource state for
anonymous transmission if, upon the parties acting honestly,
it can generate anonymous entanglement between any two
nodes with FAE > 1

2 .
To evaluate the behavior of the protocols, we calculate the

fidelity of anonymous entanglement as a function of the noise
parameter q and the number of nodes N , for the depolarizing
and dephasing channels. Examples of the performance of the
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W and GHZ protocols for N = {4, 10, 50} are shown in Fig. 1.

FAE (ωSR ) FAE (γSR )

Dephasing noiseP⊗N
q 1 − 2q(1 − q )

1 + (2q − 1)N

2

Depolarizing noiseD⊗N
q

(1 + q )(N (q − 1)2 + 4q(1 + q ))

4(N (1 − q ) + 4q )

2qN + q2 + 1

4

We can now ask ourselves which of the states, GHZ or
W, tolerates more noise. Note that if one has access to both
parameters of the network, noise parameter q and number of
nodes N , it is easy to determine which of the states would
perform better by simply looking at values of FAE calculated
from our analytical expressions.

We start by looking at the dephasing noise. Observe that
in this case the fidelity of anonymous entanglement created
with the W state FAE (ωSR ) is constant in N . Specifically,
this implies that when fixed dephasing noise is present in
the network, the quality of the anonymous link is always the
same, regardless of the number of nodes N . Moreover, for the
dephasing noise, one can observe that FAE (ωSR ) � FAE (γSR )
for all N � 2 and all q, which implies that our Protocol 1
tolerates more noise than the GHZ-based protocol [4,6].

When depolarizing noise is present in the network, unlike
for the dephasing noise, the fidelity of the anonymous
entanglement generated by Protocol 1 decreases as the
number N of parties increases. Let us define the noise
threshold q∗ as the minimum value of noise parameter q for
which the anonymous entangled state is still useful in the
sense of Definition 6. One can see that, for small networks
(e.g., N < 50), the threshold q∗ is lower for the W state than
for the GHZ state q∗

W < q∗
GHZ, see Fig. 2, which implies that

the W state tolerates more noise in these cases. However,
for N � 182 one finds that the converse is true, q∗

W > q∗
GHZ,

and therefore the GHZ-based protocol tolerates more noise in
this regime. Nevertheless, in Appendix B 2 we show that for
N � 182 and larger values of q, q > q∗

W , we still recover the
behavior FAE (ωSR ) � FAE (γSR ). Lastly, we remark that the
challenge to create a multipartite state scales with the number

W, N�4
W, N�10
W, N�50
GHZ, N�4
GHZ, N�10
GHZ, N�50
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FIG. 1. Fidelity of anonymous entanglement as a function of the
noise parameter q for depolarizing network noise. Examples for N =
{4, 10, 50}.

of parties. Therefore, applications of anonymous transmission
of interest in the near future will likely be in the range of
N < 50, in which case Protocol 1 has proven to be the most
noise-tolerant.

Let us also comment on the probability of success of our
protocol in the presence of noise. Recall that a round of the
protocol only succeeds if in Step 3 the measurement outcome
of the N − 2 measuring parties is 0. For the dephasing noise
the probability of success in our protocol remains 2

N
, which is

due to the fact that the noise commutes with the measurement
basis. However, for the depolarizing noise the probability of
success drops exponentially in N . In contrast, for the GHZ
state, the outcomes do not need to be postselected; therefore
the protocol [4] remains deterministic.

Comparison with the relay protocol [7]. We now compare
our protocol to a scheme proposed in Ref. [7], which only
requires the creation of local Bell pairs and therefore could
potentially offer an advantage for a quantum network imple-
mentation. The main idea of the relay protocol [7] is to locally
prepare and transmit Bell pairs in order to create a four-
partite GHZ state, which will then be turned into anonymous
entanglement.

In the protocol proposed in Ref. [7], the nodes are con-
secutively ordered and each node locally prepares a Bell pair.
The first node sends half of her Bell pair to the second node.
The second node performs entanglement swapping with a half
of her own Bell pair and sends the other half of the state to
the next node. This relay continues until the last N th node
is reached. S and R, however, perform an additional CNOT
operation, where they locally entangle the state received from
another node with an additional qubit initiated in |0〉. At

W
GHZ
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FIG. 2. Depolarizing parameter thresholds for fidelity of anony-
mous entanglement FAE = 1

2 .

052320-6



ANONYMOUS TRANSMISSION IN A NOISY QUANTUM … PHYSICAL REVIEW A 98, 052320 (2018)

W
GHZ
Relay

0.6 0.7 0.8 0.9 1.0

0.6

0.7

0.8

0.9

1.0

Noise parameter q (depolarizing)

Fi
de
lit
y
F A

E

FIG. 3. Comparison of the fidelity of anonymous entanglement
FAE for the W state protocol (Protocol 1), the GHZ protocol [4], and
the relay scheme [7] for N = 6 nodes.

the end of this relay a four-partite GHZ state is created
among S, R, the first and the last node. Finally, anonymous
entanglement is established after the first and the last node
perform a measurement.

We explore a scenario for N = 6 nodes, assuming that the
network is such that quantum channels between parties are
depolarizing channels � = Dq ; i.e., whenever a qubit is sent
from one party to another it is subject to depolarization. We
calculate fidelities of anonymous entanglement for different
locations of the S and R in the network. Our results are
summarized in Appendix B 2. The numerical evidence shows
that in the presence of the depolarizing noise in the network,
the fidelity of anonymous entanglement is different depending
on the ordering of S and R in the network. Note that this
does not necessarily imply that the security of the protocol is
broken, in the sense that nodes can learn the identity of S and
R. However, we can see that the performance of the protocol
strongly depends on who is sender and receiver, which is not
a desirable feature for the anonymous transmission task.

With this in mind, we define the usefulness of the anony-
mous entanglement created with the relay scheme as the worst
case fidelity achieved by the scheme. This is practical if one
wants to make sure that the scheme achieves at least a certain
fidelity threshold. We then compare the behavior of the relay
scheme with the behavior of Protocol 1 in the presence of
depolarizing noise. In Fig. 3 one can see that in the presence
of the depolarizing noise in the network the relay protocol
achieves lower fidelity than both the GHZ and the W state
protocols.

Nonresponsive nodes. Finally, let us consider the scenario
where some of the nodes, that are neither S nor R, stop
responding. This can happen, for example, due to particle
losses in the multipartite state. Note that if S or R lose their
particle the teleportation cannot be carried out and, therefore,
the protocol is not correct.

Let us consider that the resource state prepared by the
source suffers from the action of a noise channel where
particles might get lost. Then, with some probability k out of
N nodes experience particle loss. Here we ask the question of
how many particle losses can be tolerated in an anonymous

transmission protocol. Say that a protocol tolerates k′ particle
losses. After the distribution of the state, if k particles are lost,
(i) the nodes abort the protocol if k > k′, or (ii) the remaining
N − k parties proceed with the protocol if k � k′.

It is known that the entanglement of the GHZ state is
not robust to particle losses; i.e., if one particle is lost the
remaining N − 1 parties are left with a separable state. On
the other hand, if the W state is subjected to N − 2 particle
losses the remaining bipartite state is still entangled. In fact,
the W state is the most robust to particle losses among all N

qubit states [15]. Motivated by this property of the W state,
we show that Protocol 1 can tolerate one nonresponsive node.
Observe that the N -partite W state has the following form after
tracing out k out of N parties,

Trk|W〉〈W|N = N − k

N
|W〉〈W|N−k + k

N
|�0〉〈�0|N−k, (14)

where |W〉〈W|N−k is the W state of N − k parties.
In the following theorem we show that Protocol 1 tolerates

one particle loss.
Theorem 5. Protocol 1 tolerates one nonresponsive node

i ∈ [N ] \ {S,R} to produce useful anonymous entanglement,
regardless of the number of parties.

Proof. The proof of the above theorem involves two steps.
We first show the correctness of Protocol 1 when one of the
nodes stopped responding, and then show that the created
entangled link between S and R is in fact anonymous, i.e.,
that the security is preserved.

Let us look at the correctness. The measurement of the state
(14) in the standard basis and after obtaining all 0 outcomes
on N − k − 2 parties yields a normalized state

ω̃SR = 2

2 + k
|ψ+〉〈ψ+| + k

2 + k
|00〉〈00|, (15)

which has entanglement fidelity FAE (ω̃SR ) = 2
2+k

. By Defini-
tion 6 the state ω̃SR is useful for anonymous transmission if

2
2+k

> 1
2 which implies k < 2. This yields the desired result.

To show that the created entanglement is anonymous,
observe that when one of the nodes stops responding the
resource state is the state from Eq. (14) with k = 1. This state
is invariant under permutations of nodes and, therefore, we
can treat it as a new resource state. Then the security proof
follows the same pattern as the proof of Theorem 1. �

For completeness, in Appendix B 2 we provide analytical
expressions for the fidelity of anonymous entanglement when
the W state is subjected to one particle loss, as well as
dephasing and depolarizing noise. Figure 4 shows the compar-
ison of anonymous entanglement fidelity of Protocol 1 under
depolarizing noise without particle loss, FAE (ωSR ), and when
one particle is lost, FAE (ω̃SR ), for N = {4, 10, 50} nodes.
Note that with the growing number of nodes the fidelity of
anonymous entanglement in the lossy case approaches the one
with no loss. Indeed, the larger N the smaller the admixture
of the |�0〉〈�0|N−1 term in Eq. (14), and so, with growing N the
fidelity is less affected by the loss of a particle. On the other
hand, for a larger number of nodes more than one particle
loss is more likely to occur. Therefore, the probability that
the protocol aborts also increases with the number of nodes.

Lastly, we point out that when one particle is lost in the
protocol of Ref. [7], the relay cannot be completed. Therefore,
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FIG. 4. Fidelity of anonymous entanglement as a function of
the noise parameter q for depolarizing network noise when the
resource W state is subjected to one particle loss. Examples for
N = {4, 10, 50}.

much like the GHZ protocol, the relay protocol also cannot be
used to create anonymous entanglement whenever one of the
nodes is not responsive.

V. OUTLOOK

We presented a protocol for quantum anonymous trans-
mission using the W state, and proved its security in the
semiactive adversary scenario, i.e., when the adversary is
active and the source of a quantum state is trusted. Moreover,
we analyzed the behavior of our protocol under the action of
common noise models that occur in a realistic quantum net-
work. An important question is whether our security proof can
be extended to the case where the source might be corrupted,
i.e., the fully active adversary scenario. Note that to achieve
full security in the noiseless case for the GHZ protocol,
Refs. [6,16] introduced a certification step of the resource state
shared by the trusted parties. We remark that for the noiseless
W state protocol, it may be possible to achieve full security
in a similar way by employing self-testing techniques [17,18].
The problem of certifying the resource state in the presence of
noise in the network remains an open question.

We have also analyzed the security of our protocol when
each qubit suffers the action of a noise channel with slightly
different parameters. This bound, however, may not be tight,
so another interesting question is whether the security proof
can be improved and a stronger bound can be derived for this
case.

Finally, we have seen that in many instances our W-state
based protocol outperforms the GHZ-state and Bell-pair based
protocols. For the values of parameters N and q, where all
the protocols produce useful anonymous entanglement, we
remark that a more refined comparison of their performance
should take into account the generation rates and resources
required to produce the states in every particular experimental
setup.
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APPENDIX A: SECURITY

1. Classical subroutines

Our anonymous transmission protocol, Protocol 1, is built
on a few classical subroutines. As mentioned, in Ref. [9],
protocols for implementing these classical subroutines were
proposed. Here we list the protocols which we will use as
building blocks of our anonymous transmission protocol.

Theorem 6 (collision detection [9]). There exists an
information-theoretically secure collision detection protocol
that takes as input the classical register Cdin of all the partici-
pants, Cdi

in = 1 if node i wishes to be a sender and Cdi
in = 0

otherwise, and outputs Cdout = 0 if only one register wants to
be the sender and Cdout = 1 otherwise.

Theorem 7 (receiver notification [9]). There exists an
information-theoretically secure receiver notification protocol
that takes as input the classical register Rnin of the participants
and outputs Rnout, where RnR

out = 1 for the receiver, and all
the other parties get output 0.

Theorem 8 (veto [9]). There exists an information-
theoretically secure veto protocol that takes as input the
classical register Oin of the parties and outputs Oout = 0 if
all the parties input 0, Oin = �0, and Oout = 1 otherwise.

Theorem 9 (logical OR [9]). There exists an information-
theoretically secure logical OR protocol that takes as input the
classical register Tin and publicly outputs Tout = ⊕N

i=1T
i

in.
The protocols are information-theoretically secure, in the

sense that they do not reveal any classical information other
than the one specified by the protocol. The security holds even
with an arbitrary number of corrupted participants, assuming
the parties share pairwise authenticated private channels and
a broadcast channel. However, security against a quantum ad-
versary was not analyzed. Here we assume that the protocols
listed above remain secure even in the presence of a quantum
adversary. This assumption is made explicit in Appendix A 2
where we assume that the classical subprotocols only act
on the classical input register and create the output register,
therefore not revealing any information other than what is
specified by the protocol, also in the quantum setting.

2. States and registers

In what follows we make a detailed description of the state
in each step of Protocol 1. Our main goal is to show that the
quantum state of the adversary at the end of the protocol does
not depend on who is the sender or the receiver. We will later
use this fact in the security proof in Sec. III.

Here we adopt the notation that A denotes registers held
by the adversary A, and Ā denotes all the other registers, i.e.,
of the honest parties (including the sender and the receiver).
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TABLE I. Registers available to parties at each step of Protocol 1. All registers are classical unless specified otherwise.

Step Available registers Description

0 A0, Ā0 Quantum side information of dishonest and honest parties before the beginning of Protocol 1.
1 CdA

in , CdĀ
in Private input of the parties in the collision detection protocol.

The node which wants to be a sender inputs 1, the rest 0.
CdA

out, CdĀ
out Outputs of the collision detection protocol.

2 RnA
in, RnĀ

in Private input of the receiver notification protocol.
S inputs the identifier of R, everyone else 0.

RnA
out, RnĀ

out Private outputs of receiver notification protocol.
Output 0 for R, 1 for everyone else.

DA, DHSR Redefined register of dishonest parties DA = {A0CdA
inCdA

outRnA
inRnA

out}
and honest parties DHSR = {Ā0CdĀ

inCdĀ
outRnĀ

inRnĀ
out} after Step 2.

3 WH, WA,WS, WR Quantum registers of the state prepared by the source.
4 WH, WA,WS, WR Quantum registers of the state prepared by the source.
5 OH

in Private input of the honest parties to the veto protocol.
Represented by a string of measurement outcomes �ν.

OA
in Private input of dishonest parties to the veto protocol.

Represented by a string of measurement outcomes �μ.
Oout Public output of the veto protocol.

0 if all entries of strings �ν and �μ are 0, 1 otherwise.
6 Q Quantum register of quantum message |ψ〉 which S wants to transmit.

T S
in , T

R
in Private inputs of S and R to the logical OR protocol.

S inputs teleportation message m and R inputs random bit rand.
T H

in , T A
in Private input of the honest and dishonest parties to the logical OR protocol.

T Public outcome the logical OR protocol. Outputs XOR of all the inputs.

After Step 2, i.e., once S and R are defined, we distinguish S

and R registers from the registers of honest parties H.
In the following we specify what are the assumptions

associated with each step of the protocol. Additionally, we
explicitly write out the state ξ (j ) after each step j of the
protocol, taking into account all the registers that play a role
in the particular step. Therefore, we remark that our notation
may be cumbersome at the first glance. However, we advise
the reader to refer to Table I at any point of our proof.

Step 1: Collision detection

Assumption 1. Let A0 be the quantum side information of
dishonest parties and Ā0 be the quantum side information of
the honest parties, including sender and receiver, before the
beginning of the protocol. We assume that before the start of
the protocol the parties share the following state:

ξ
(0)
A0Ā0CdinRnin

= σ
(0)
A0Ā0CdA

inRnA
in

⊗ σ
(0)

CdĀ
inRnĀ

in
. (A1)

In words, we assume the adversaries have a quantum side
information, A0, and classical inputs to the collision detection
and receiver notification protocols, CdA

in and RnA
in, that might

be correlated with some quantum side information Ā0 of the
remaining parties. However the inputs of the honest parties
CdĀ

in and RnĀ
in are uncorrelated with the adversary’s state.

Assumption 2. We assume that the classical collision de-
tection protocol is secure against a quantum adversary; that
is, it acts on classical registers Cdin and outputs Cdout without
revealing any other information to the dishonest parties. In
particular, if sender and receiver are honest, it does not leak
their identity.

Let ξ
(1)
A0Ā0CdinCdoutRnin

be the global output state after colli-
sion detection (Step 1). Assumption 2 implies that tracing out

the registers of honest parties (all registers of Ā) we obtain
a partial state of the adversary (all registers of A) which is
independent of the sender, if the sender is honest. That is,
for all honest parties, ∀i /∈ A, the state after the collision
detection step (Step 1 of Protocol 1) is

TrĀ0CdĀ
inCdĀ

outRnĀ
in

(
ξ

(1)
A0Ā0CdinCdoutRnin|S=i

) = ξ
(1)
A0CdA

inCdA
outRnA

in|S=i

(A2)

= ξ
(1)
A0CdA

inCdA
outRnA

in
.

(A3)

Step 2: Receiver notification

Assumption 3. We assume that the classical receiver no-
tification protocol is secure against the quantum adversary;
that is, the protocol acts on the classical register Rnin and
outputs Rnout, without revealing any other information to
the dishonest parties. In particular, if sender and receiver are
honest, it does not leak their identity.

Let the input state to the receiver notification protocol be
ξ

(1)
A0Ā0CdinCdoutRnin

and the output state conditioned on node i

being the sender be ξ
(2)
A0Ā0CdinCdoutRninRnout|S=i

. Assumption 3
implies that, again, tracing out the registers of honest parties
(all registers of Ā) we obtain a partial state of the adversary
(all registers of A) which is independent of the sender. That
is, for all honest parties ∀i /∈ A, the state after the receiver
notification step (Step 2 of Protocol 1) is

TrĀ0CdĀ
inCdĀ

outRnĀ
inRnĀ

inRnĀ
out

(
ξ

(2)
A0Ā0CdinCdoutRninRnout|S=i

)
= ξ

(2)
A0CdA

inCdA
outRnA

inRnA
out|S=i

(A4)
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= ξ
(2)
A0CdA

inCdA
outRnA

inRnA
out

. (A5)

For clarity, we denote the state after the receiver notifica-
tion (Step 2), given that node i is the sender, by

ξ
(2)
A0Ā0CdinCdoutRninRnout|S=i

≡ σDADHSR |S=i , (A6)

where DA = {A0CdA
inCdA

outRnA
inRnA

out} denotes all the regis-
ters in possession of the adversary at the end of Step 2. And
similarly, DHSR denotes the registers of the honest parties.
Note that now that sender S and receiver R are defined, we
distinguish them from the subset of honest players.

Lemma 3. If S and R are honest, the state of the ad-
versary at the end of the receiver notification protocol does
not carry any information about their identity. Let σDA|S=i :=
TrDHSR [σDADHSR |S=i]; by Assumptions 2 and 3 it holds that

σDA|S=i = σDA|S=j = σDA ∀i, j /∈ A (A7)

and

σDA|R=i = σDA|R=j = σDA ∀i, j /∈ A. (A8)

Step 3: State distribution

Assumption 4. The N -partite state distributed by a trusted
source is |W〉〈W|WHWAWSWR . Here WH is the quantum register

of the honest parties, WA is the quantum register of dishonest
parties, and WS and WR are quantum registers of the sender
and receiver.

Therefore, the global state after the source distributed the
quantum state (Step 3 of Protocol 1) is

ξ
(3)
WHWAWSWRDADHSR |S=i

= |W〉〈W|WHWAWSWR ⊗ σDADHSR |S=i .

(A9)

Step 4: Measurement

Step 4 describes a measurement on quantum registers
WHWA and creates the classical registers OH

in and OA
in . The

honest parties perform a projection ��ν
WH on the {0, 1} basis

and the string of outcomes �ν is recorded on register OH
in . The

adversaries, however, instead of performing the measurement
specified by the protocol, can apply an arbitrary map on
their registers and produce a classical outcome | �μ〉〈 �μ|OA

in
. This

action is descried by applying a map F �μ
WADA labeled by �μ,

which acts on registers WADA and producing a classical
outcome | �μ〉〈 �μ|OA

in
in register OA

in . Note that this outcome
can be a strategy upon which dishonest parties agree and, in
particular, it does not have to represent the actual action of
the map F �μ

WADA . Therefore, the state after the parties perform
local measurements (Step 4 of Protocol 1) is described as

ξ
(4)
WHWAWSWRDADHSROH

in OA
in |S=i

=
∑
�μ,�ν

��ν
WH ⊗ F �μ

WADA (|W〉〈W|WHWAWSWR ⊗ σDADHSR |S=i ) ⊗ |�ν〉〈�ν|OH
in

⊗ |�μ〉〈 �μ|OA
in
, (A10)

where ��ν
WH corresponds to a projection of register WH onto the state |�ν〉〈�ν| in the standard basis.

Step 5: Anonymous announcement of outcomes

Each of the parties inputs their measurement outcome into the veto protocol. In particular, OH
in = |�ν〉〈�ν|OH

in
is a private input

of the honest parties and OA
in = |�μ〉〈 �μ|OA

in
is a private input of the dishonest parties.

Assumption 5. We assume that the classical veto protocol is secure against the quantum adversary; i.e., the veto protocol acts
on the classical registers OH

in ,OA
in , and only outputs Oout = 0 if OH

in = OA
in = |�0〉〈�0| and 1 otherwise, and does not reveal any

other information.
Then, the state after the veto protocol, where the parties announce their outcomes (Step 5 of Protocol 1), is

ξ
(5)
WHWAWSWRDHASROH

in OA
in Oout|S=i

= �
�0
WH ⊗ F �0

WADA (|W〉〈W|WHWAWSWR ⊗ σDADHSR |S=i ) ⊗ |�0〉〈�0|OH
in

⊗ |�0〉〈�0|OA
in

⊗ |0〉〈0|Oout

+
∑
�μ�=0,�ν

��ν
WH ⊗F �μ

WADA (|W〉〈W|WHWAWSWR ⊗ σDADHSR |S=i ) ⊗ |�ν〉〈�ν|OH
in

⊗ |�μ〉〈 �μ|OA
in

⊗ |1〉〈1|Oout .

(A11)

Step 6: Teleportation

In Step 6, sender and receiver wish to perform the teleportation. To do so, the sender performs the Bell state measurement and
communicates the classical outcome to the receiver, so that she can correct the teleported state. The classical communication is
carried out by using the classical protocol logical OR.

Assumption 6. The classical logical OR protocol acts on classical registers and does not reveal any information other than the
logical OR of the inputs.

Let Q denote the register of the quantum message which sender S wishes to transmit. More formally, this step consists of
applying a map, a Bell state measurement, acting on the registers of the sender WS and Q and producing a classical message in
the public register T , followed by the receiver applying a unitary operation according to the outcome m of the Bell measurement.
We denote the map that describes the teleportation step by TWSWRQOout→WSWRQOoutT

S
in T R

in T . Its action is conditioned on the outcome
of Step 5, i.e., public output of the veto protocol. We define its action on a state φWSWR ⊗ |ψ〉〈ψ |Q as follows,

TWSWRQ|Oout=0→WSWRQOoutT
S

in T R
in T :=

∑
m

Rm
WR ◦ Bm

WSQ
(φWSWR ⊗ |ψ〉〈ψ |Q) ⊗

∑
rand

1

4
|m〉〈m|T S

in
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⊗ |rand〉〈rand|T R
in

⊗ |m ⊕ rand〉〈m ⊕ rand|T , (A12)
TWSWRQ|Oout=1→WSWRQOoutT

S
in T R

in T := 1WSWRQ(φWSWR ⊗ |ψ〉〈ψ |Q) ⊗ |⊥〉〈⊥|T S
in

⊗ |⊥〉〈⊥|T R
in

⊗ |⊥〉〈⊥|T . (A13)

The map Bm
WSQ

represents the Bell state measurement, on registers WSQ, with outcome m, and the map Rm
WR corresponds to the

unitary the receiver applies to correct the teleported state. The action of the map TWSWRQOout→WSWRQOoutT
S

in T R
in T describes that the

state |ψ〉〈ψ |Q is either teleported to register WR when Oout = 0 or the protocol aborts when Oout = 1, which we represent by
the state |⊥〉〈⊥|T in register T .

However, we note that in this step the adversaries could also deviate from the protocol. In general, they could perform an
arbitrary map in their registers and input a string �κ �= �0 to the logical OR protocol. In that case, the teleportation step can be
described as

TWSWRWADAQ|Oout=0→WSWRWADAQOoutT
S

in T R
in T A

in T

(
ξ

(5)
WHWAWSWRQDHASROH

in OA
in Oout|S=i

)
:=

∑
m,�κ

Rm⊕i κi

WR ◦ G �κ
WADA ◦ Bm

WSQ

(
�

�0
WH ⊗ F �0

WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDADHSR |S=i )
)

⊗
∑
rand

1

4
|m〉〈m|T S

in
⊗ |rand〉〈rand|T R

in
⊗ |�κ〉〈�κ|T A

in
⊗ |m ⊕ rand ⊕i κi〉〈m ⊕ rand ⊕i κi |T , (A14)

where G �κ
WADA represents an arbitrary map the adversaries apply to registers WADA, which is followed by the creation of classical

register T A
in . Rm⊕i κi

R expresses the fact that the receiver now applies a unitary labeled by m ⊕i κi instead of m.
Note that the map G �κ

WADA only acts on the registers of the adversaries and after the teleportation step (Step 6) no other
operations are performed by the honest parties. The security of the protocol is defined in terms of the guessing probability, which
takes into account an optimization over all maps on the register of the adversary. Therefore, for the security analysis, we can,
without loss of generality, neglect the map G �κ

ADA in the final state, since it is taken into account in the definition of the guessing
probability.

Finally, the state after the teleportation protocol (Step 6 of Protocol 1) is

ξ
(6)
WHWAWSWRQDHASROH

in OA
in OoutT

S
in T R

in T A
in T |S=i

=
∑
m,�κ

Rm⊕i κi

WR ◦ Bm
WSQ

(
�

�0
WH ⊗ F �0

WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDADHSR |S=i )
)

⊗ |�0〉〈�0|OH
in

⊗ |�0〉〈�0|OA
in

⊗ |0〉〈0|Oout ⊗
∑
rand

1

4
|m〉〈m|T S

in
⊗ |rand〉〈rand|T R

in
⊗ |�κ〉〈�κ|T A

in
⊗ |m ⊕ rand ⊕i κi〉〈m ⊕ rand ⊕i κi |T

+
∑
�μ�=0,�ν

1WSWRQ

(
��ν

WH ⊗ F �μ
WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDADHSR |S=i )

)

⊗ |�ν〉〈�ν|OH
in

⊗ |�μ〉〈 �μ|OA
in

⊗ |1〉〈1|Oout ⊗ |⊥〉〈⊥|T S
in

⊗ |⊥〉〈⊥|T R
in

⊗ |⊥〉〈⊥|T A
in

⊗ |⊥〉〈⊥|T . (A15)

Observe, however, that the classical registers DHSR,OH
in , T S

inT R
in are not further acted upon with any map. Moreover, their

content is private, as by Lemma 3 and Assumptions 5 and 6 no information about it is revealed to the adversary. Since we are
interested in the information available to the adversary we will trace out these subsystems.

Lemma 4. Let C = {DA,OA
in ,Oout, T

A
in , T } represent all the classical and quantum side information accessible to the

adversary at the end of the protocol. The reduced output state of the anonymous transmission protocol with the W state, where
we trace out all private information of the honest parties H, S, and R, given that node i is the sender, can be described as follows,

ρWHWAWSWRQC|S=i =
∑
m,�κ

Rm⊕i κi

WR ◦ Bm
WSQ

(
�

�0
WH ⊗ F �0

WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDA )
)

⊗ |�0〉〈�0|OA
in

⊗ |0〉〈0|Oout ⊗ |�κ〉〈�κ|T A
in

⊗ 1T

4

+
∑
�μ �=0,�ν

1WSWRQ

(
��ν

WH ⊗ F �μ
WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDA )

)

⊗ |�μ〉〈 �μ|OA
in

⊗ |1〉〈1|Oout ⊗ |⊥〉〈⊥|T A
in

⊗ |⊥〉〈⊥|T , (A16)

where we made use of Lemma 3 and the explicitly wrote that the state of register T is maximally mixed.
In summary, Lemma 4 represents the state at the end of the protocol, given that the adversaries might have acted arbitrarily

in Step 4 and under the assumption that, in particular, the classical protocols do not reveal the identities of the sender and the
receiver. We will use this state to prove security in the following section.
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3. Security analysis

a. Semiactive adversary

In this section we show that Protocol 1 is sender-secure. The key point of the proof is that security follows from permutational
invariance of the state. Before proving Theorem 1, we first prove the following useful lemma.

Lemma 5. The reduced quantum state of the adversary at the end of the protocol is independent of the sender, i.e., ∀i /∈ A,

ρWAC|S=i = ρWAC. (A17)

Proof. Let us first consider the case where the receiver is not an adversary, R /∈ A.
By tracing out we have that

ρWAC|S=i = TrWHWSWRQ[ρWHWAWSWRQC|S=i], (A18)

where ρWHWAWSWRQC|S=i is the total state at the end of the protocol (A16), Lemma 4, given that i is the sender. Since Rm⊕i κi

WR

and
∑

m Bm
WSQ

are CPTP, they do not change the trace and thus we can write the first part of Eq. (A16) as

TrWHWSWRQ

⎡
⎣∑

m,�κ
Rm⊕i κi

WR ◦ Bm
WSQ

(
�

�0
WH ⊗ F �0

WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDA )
)

⊗ |�0〉〈�0|OA
in

⊗ |0〉〈0|Oout ⊗ |�κ〉〈�κ|T A
in

⊗ 1T

4

⎤
⎦

= TrWHWSWRQ

[
�

�0
WH ⊗ F �0

WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDA ) ⊗ |�0〉〈�0|OA
in

⊗ |0〉〈0|Oout ⊗
∑

�κ
|�κ〉〈�κ|T A

in
⊗ 1T

4

]

= TrWH
[
�

�0
WH ⊗ F �0

WADA (W̃WHWA ⊗ σDA )
] ⊗ |�0〉〈�0|OA

in
⊗ |0〉〈0|Oout ⊗

∑
�κ

|�κ〉〈�κ|T A
in

⊗ 1T

4
, (A19)

where W̃WHWA is the reduced W state on registers WH and WA after tracing out WS and WR , i.e., W̃WHWA =
TrWSWR (|W〉〈W|WHWAWSWR ), and similarly for the second term of (A16). So,

ρWAC|S=i = TrWH
[
�

�0
WH ⊗ F �0

WADA (W̃WHWA ⊗ σDA )
] ⊗ |�0〉〈�0|OA

in
⊗ |0〉〈0|Oout ⊗

∑
�κ

|�κ〉〈�κ|T A
in

⊗ 1T

4

+
∑
�μ �=0,�ν

TrWH
[
��ν

WH ⊗ F �μ
WADA (W̃WHWA ⊗ σDA )

] ⊗ |�μ〉〈 �μ|OA
in

⊗ |1〉〈1|Oout ⊗ |⊥〉〈⊥|T A
in

⊗ |⊥〉〈⊥|T . (A20)

But since the state distributed by the source is permutationally invariant, it holds that

W̃WHWA = TrWS=iWR (|W〉〈W|WHWAWS=iWR ) = TrWS=j WR (|W〉〈W|WHWAWS=j WR ), ∀i, j /∈ A. (A21)

Since no other part of the state ρWAC|S=i depends on the sender, the state ρWAC|S=i must be the same for all senders and we
denote ρWAC|S=i = ρWAC . Note that the same statement holds when the receiver is honest, since

TrWSWR=i (|W〉〈W|WHWAWSWR=i ) = TrWSWR=j (|W〉〈W|WHWAWSWR=j ), ∀i, j /∈ A, (A22)

and therefore, ρWAC|R=i = ρWAC .
Now we proceed to the proof of this statement in the case where the receiver is an adversary.
If the receiver is dishonest then the teleportation map has to take into account the fact that the adversaries can apply an

arbitrary map instead of Rm⊕i κi

WR . Also, now the output of the teleportation m is known to the adversaries and the map F �μ
WADA

could initially also act on the receiver’s register. Now we can model the action of the receiver after receiving m by an arbitrary
map that acts on all the registers in possession of the adversaries, i.e., Rm⊕i κi

WR → R′
WAWRCT A

in T and instead of (A16), the final
state of the protocol is described by

ρWHWAWSWRQC|S=i =R′
WAWRCT A

in T
◦

⎛
⎝∑

m,�κ
Bm

WSQ

(
�

�0
WH ⊗ F �0

WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDA )
)

⊗ |�0〉〈�0|OA
in

⊗ |0〉〈0|Oout ⊗ |�κ〉〈�κ|T A
in

⊗ |m〉〈m|T
⎞
⎠

+
∑
�μ�=0,�ν

1WSWRQ ◦ (
��ν

WH ⊗ F �μ
WADA (|W〉〈W|WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDA )

)

⊗ |�μ〉〈 �μ|OA
in

⊗ |1〉〈1|Oout ⊗ |⊥〉〈⊥|T A
in

⊗ |⊥〉〈⊥|T . (A23)
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Let us look at the reduced final state of the adversary, which now includes the receiver, ρWAWRC|S=i =
TrWHWSQ[ρWHWAWSWRQC|S=i]. By the permutational invariance of the state generated by the source we have that the state at
the end of the protocol given that node i is the sender is equivalent to the state given that node j is the sender up to a permutation
of i and j ,

ρWHWAWSWRQC|S=i = Pi↔j (ρWHWAWSWRQC|S=j ). (A24)

Therefore after tracing out the sender and the other honest parties, the remaining states are equal,

ρWAWRC|S=i = ρWAWRC|S=j , (A25)

which proves anonymity of the sender even if the receiver is dishonest. �
Proof of Theorem 1 (sender security). Here we focus on proving sender security. The receiver security is formally stated in

Theorem 10. Given Lemma 5, we have that

Pguess[S|WA, C, S /∈ A] = max
{Mi }

∑
i∈[N]

P [S = i|S /∈ A]Tr[MiρWAC|S=i] (A26)

= max
{Mi }

∑
i∈[N]

P [S = i|S /∈ A]Tr[MiρWAC] (A27)

� max
i

P [S = i|S /∈ A] max
{Mi }

Tr

⎡
⎢⎢⎢⎢⎢⎣

∑
i∈[N]

Mi

︸ ︷︷ ︸
1

WAC

ρWAC

⎤
⎥⎥⎥⎥⎥⎦ (A28)

= max
i

P [S = i|S /∈ A]. (A29)

�
Analogously, we will prove the following statement for the receiver security.
Theorem 10 (receiver security). The anonymous transmission protocol with the W state, Protocol 1, is receiver-secure in the

semiactive adversary scenario, i.e.,

max
{Mi }

∑
i∈[N]

P [R = i|WA, C,R /∈ A]Tr[MiρWAC|R=i] � max
i

P [R = i|R /∈ A], (A30)

given that the receiver is honest.
Proof. By the proof of Lemma 5, it follows that the reduced quantum state of the adversary at the end of the protocol is

independent of the receiver, i.e., ρWAC|R=i = ρWAC,∀i /∈ A. Therefore,

Pguess[R|WA, C,R /∈ A] = max
{Mi }

∑
i∈[N]

P [R = i|R /∈ A]Tr[MiρWAC|R=i] (A31)

� max
i

P [R = i|R /∈ A] max
{Mi }

Tr

⎡
⎢⎢⎢⎢⎢⎣

∑
i∈[N]

Mi

︸ ︷︷ ︸
1

WAC

ρWAC

⎤
⎥⎥⎥⎥⎥⎦ (A32)

= max
i

P [R = i|R /∈ A]. (A33)

�
b. Passive adversary

Definition 7. Let H be the subset of honest players, excluding S and R, and A be the subset of passive adversaries. Let C be the
register that contains all classical information accessible to the adversaries, i.e., the public outputs of the classical subprotocols,
plus all the inputs and outputs of the adversaries to these classical subprotocols, C = {DA,OA

in ,Oout, T
A

in , T }. Then probability
of the adversaries guessing the sender is given by

Pguess[S|WA, C, S /∈ A] =
∑
a,c

P [WA = a, C = c] max
i∈[N]

P [S = i|WA = a, C = c, S /∈ A], (A34)

where maximization is taken over all the values of random variable S, and a and c are possible values of random variables WA

and C, respectively. Note that unlike before, here WA is a classical register of the adversary, since their share of the W state was
measured in the {0, 1} basis. An analogous expression holds for receiver security.
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The proof for the passive adversary security scenario is a special case of the proof for the semiactive adversary scenario.
Indeed, it corresponds to the case where the arbitrary map of the adversary, F �μ

WADA , is a measurement in the {|0〉, |1〉} basis and

T A
in = �0. Let us first prove the following lemma.

Lemma 6. The probability of registers WA and C assuming certain values a and c is independent of the sender,

P [WA = a, C = c|S = i, S /∈ A] = P [WA = a, C = c]. (A35)

Proof. In the passive adversary scenario, the dishonest parties follow the protocol; therefore the map F �0
WADA is replaced by

a projector onto the |�0〉〈�0|WA subspace, i.e., �
�0
WA . By the permutational invariance argument the state, in this case classical, is

independent of the sender S (or the receiver R), which completes the proof. �
Proof of Theorem 2. Let us expand the probability appearing in the security definition (A34),

P [S = i|WA = a, C = c, S /∈ A] = P [WA = a, C = c|S = i, S /∈ A]P [S = i|S /∈ A]

P [WA = a, C = c]
(A36)

= P [WA = a, C = c|S = i]P [S = i|S /∈ A]

P [WA = a, C = c]
(A37)

= P [S = i|S /∈ A], (A38)

where in Eq. (A37) we used Lemma 6. Therefore, (A34) becomes

Pguess[S|WA, C, S /∈ A] =
∑
a,c

P [WA = a, C = c] max
i∈[N]

P [S = i|S /∈ A] (A39)

= max
i∈[N]

P [S = i|S /∈ A]. (A40)

�
APPENDIX B: ANONYMOUS TRANSMISSION IN A NOISY QUANTUM NETWORK

1. Proof for ε security

Here we provide a proof of Theorem 4 for ε-sender security.
Proof of Theorem 4. The idea of our proof is to show that, for all i, the trace Tr[Miρ̂�

WAC|S=i
] can be upper-bounded by

Tr[Miρ�
WAC|S=i

] + Nεmax. Then using the fact that Nεmax is independent of i, the rest of the proof follows from Theorem 3. Let
us look at the following expression, ∀i,∣∣Tr

[
Miρ̂�

WAC|S=i

] − Tr
[
Miρ�

WAC|S=i

]∣∣
�

∥∥ρ̂�
WAC|S=i

− ρ�
WAC|S=i

∥∥
1

�
∥∥ξ

′� (6)
WHWAWSWRQDHASROH

in OA
in OoutT

S
in T R

in T A
in T |S=i

− ξ
� (6)
WHWAWSWRQDHASROH

in OA
in OoutT

S
in T R

in T A
in T |S=i

∥∥
1, (B1)

where ξ
′� (6)
WHWAWSWRQDHASROH

in OA
in OoutT

S
in T R

in T A
in T |S=i

and ξ
� (6)
WHWAWSWRQDHASROH

in OA
in OoutT

S
in T R

in T A
in T |S=i

are final states of the protocol after

Step 6 [defined analogously to Eq. (A15)] when the network is perturbed (5), or not (3), respectively. Since the protocol is
described by a CPTP map, the trace distance of the final state is upper-bounded by the trace distance of the initial state,∣∣Tr

[
Miρ̂�

WAC|S=i

] − Tr
[
Miρ�

WAC|S=i

]∣∣ � ∥∥ω′�
WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDHASR |S=i − ω�

WHWAWSWR ⊗ |ψ〉〈ψ |Q ⊗ σDHASR |S=i

∥∥
1

(B2)

�
∥∥ω′�

WHWAWSWR − ω�
WHWAWSWR

∥∥
1 (B3)

�
∥∥∥∥∥

N⊗
i=1

�i (|W〉〈W|WHWAWSWR ) − �⊗N (|W〉〈W|WHWAWSWR )

∥∥∥∥∥
1

(B4)

�
∥∥∥∥∥

N⊗
i=1

�i − �⊗N

∥∥∥∥∥
1

�
N∑

i=1

‖�i − �‖1 =
N∑

i=1

εi � Nεmax, (B5)

where we used the properties of the trace distance and the induced trace norm. Therefore we have that, ∀i,

Tr
[
Miρ̂�

WAC|S=i

]
� Tr

[
Miρ�

WAC|S=i

] + Nεmax, (B6)

so using Theorem 3,

Pguess[S|WA, C, S /∈ A] = max
{Mi }

∑
i∈[N]

P [S = i|S /∈ A]Tr
[
Miρ̂�

WAC|S=i

]
(B7)
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� max
{Mi }

∑
i∈[N]

P [S = i|S /∈ A]
(
Tr

[
Miρ�

WAC|S=i

] + Nεmax
)

(B8)

= max
{Mi }

∑
i∈[N]

P [S = i|S /∈ A]Tr
[
Miρ�

WAC|S=i

] +
∑
i∈[N]

P [S = i|S /∈ A]Nεmax (B9)

� max
i∈[N]

P [S = i|S /∈ A] + Nεmax. (B10)

�
The same argument holds for receiver security.

2. Performance in a noisy network

Fidelity derivation. In general, it is nontrivial to derive analytical expressions for fidelity of anonymous entanglement in the
presence of noise. The most troublesome part is to obtain analytical expressions for anonymous entangled states shared between
S and R, which are affected by the noise. Nevertheless, to obtain these explicit formulas, we used the fact that the noise is
described by a linear map which acts on each qubit individually. We will illustrate the gist of our derivation with an example for
the GHZ state, since it is easier to follow than the one for the W state.

As defined in the main text, the state shared by S and R in the noisy case is

γSR = 1

N ′ TrN−2[�⊗N (|GHZ〉〈GHZ|N )| �+〉〈 �+|N−2], (B11)

where N is the normalization factor. Note that the GHZ state can be written as

|GHZ〉〈GHZ|N = 1
2 (|0〉〈0|⊗N + |0〉〈1|⊗N + |1〉〈0|⊗N + |1〉〈1|⊗N ). (B12)

Due to the tensor structure and linearity of the noise, we can write that

γSR = 1

2N ′ TrN−2{[�(|0〉〈0|)⊗N + �(|0〉〈1|)⊗N + �(|1〉〈0|)⊗N + �(|1〉〈1|)⊗N ]|+〉〈+|⊗N−2}

= 1

2N ′ {Tr[�(|0〉〈0|)]N−2�(|0〉〈0|)⊗2 + Tr[�(|0〉〈1|)]N−2�(|0〉〈1|)⊗2

+ Tr[�(|1〉〈0|)]N−2�(|1〉〈0|)⊗2 + Tr[�(|1〉〈1|)]N−2�(|1〉〈1|)⊗2}. (B13)

This way one only takes the tensor product of the two terms corresponding to S and R, instead of taking the tensor of N terms.
The expression for the W state follows the exact same pattern, but one has to account for all the combinations of 0’s and 1’s
occurring in the state |W〉〈W|N . Let trxy := Tr[�(|x〉〈y|)|0〉〈0|] with x, y = {0, 1}. Then the state ωSR shared between S and R

in the noisy implementation of Protocol 1 is

ωSR = 1

N
{
(N − 2)(N − 3)tr01tr10trN−4

00 �(|0〉〈0|) ⊗ �(|0〉〈0|)

+ (N − 2)tr10trN−3
00 [�(|0〉〈1|) ⊗ �(|0〉〈0|) + �(|0〉〈0|) ⊗ �(|0〉〈1|)]

+ (N − 2)tr01trN−3
00 [�(|1〉〈0|) ⊗ �(|0〉〈0|) + �(|0〉〈0|) ⊗ �(|1〉〈0|)] + (N − 2)tr11trN−3

00 �(|0〉〈0|) ⊗ �(|0〉〈0|)
+ trN−2

00

(
�(|0〉〈1|) ⊗ �(|1〉〈0|) + �(|1〉〈0|) ⊗ �(|0〉〈1|) + �(|0〉〈0|) ⊗ �(|1〉〈1|) + �(|1〉〈1|) ⊗ �(|0〉〈0|))}. (B14)
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FIG. 6. Noise parameter threshold for the depolarizing noise.
Close-up to 179 � N � 185.

052320-15



LIPINSKA, MURTA, AND WEHNER PHYSICAL REVIEW A 98, 052320 (2018)

W, N�400
GHZ, N�400

0.986 0.988 0.990 0.992 0.994 0.996 0.998 1.000
0.5

0.6

0.7

0.8

0.9

1.0

Noise parameter q (depolarizing)

Fi
de
lit
y
F A

E

FIG. 7. Fidelity of anonymous entanglement for N = 400.

Using the explicit form of � for the depolarizing and de-
phasing noise, after easy but tedious calculations, one obtains
explicit fidelity expressions derived from Eqs. (12) and (13).

Dephasing and depolarizing noise. In this section we
provide additional details to the noise analysis provided in
the main text. First, we plot the behavior of our protocol
vs the GHZ-based protocol under the dephasing noise, for
example, N = {4, 10, 50}, Fig. 5. Note that the GHZ state
is increasingly useful according to Definition 6 for q < 0.5.
For anonymous entanglement created with the W state this is
always the case, however, for the GHZ—only for even N . To
observe the same behavior for odd N and the GHZ state one
would have to redefine Eq. (13) to compare the fidelity with
the state |φ−〉〈φ−|.

As discussed, the noise parameter threshold q∗ for N =
182 nodes becomes larger for the W state: q∗

W = 0.979057,
q∗

GHZ = 0.979043, q∗
W > q∗

GHZ. This means that for N � 182
the W state tolerates less noise than the GHZ; see Fig. 6.
However, we numerically see that there exists a value of
q > q∗

W for which FAE (ωSR ) > FAE (γSR ). As an example for
N = 400 see Fig. 7.

Moreover, we provide an analytical expression for the
probability of success in our protocol, defined as PωSR

:=
Tr[�⊗N (|W〉〈W|N )|�0〉〈�0|N−2], which for the depolarizing
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FIG. 8. Probability of success in Protocol 1 in the presence of the
depolarizing noise, N = {4, 10, 50}.
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FIG. 9. Fidelity of anonymous entanglement for Protocol 1, as
a function of the noise parameter for the dephasing channel in the
presence of one particle loss.

TABLE II. Fidelity of anonymous entanglement for the relay
scheme [7] in the N -fold noisy network for the depolarizing channel.
Note that for the depolarizing parameter q = 0.8 the anonymous
entanglement created between nodes 1 and 6 is not useful in the sense
of Definition 6.

Scenario FAE for q = 0.8 FAE for q = 0.95

0.5738 0.8625

0.6138 0.8744

0.5418 0.8512

0.5162 0.8405

0.4958 0.8303
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noise assumes the form

PωSR
= (q + 1)N−3[N (1 − q ) + 4q]

N2N−2
. (B15)

Examples of PωSR
as a function of q for N = {4, 10, 50} are

plotted in Fig. 8. Note that for the dephasing noise PωSR
= 2

N
,

since the measurement basis is not affected by the Z noise.
Particle loss. In the case when one of the particles of the W

state is lost and the state is subjected to the network noise, the
fidelity of anonymous entanglement can be expressed as

FAE (ω̃SR ) = (1 + q )[N2(q − 1)2 − 8q2 + 4Nq(1 + q )]

4N [N (1 − q ) + 4q]
(B16)

for the depolarizing noise, and

FAE (ω̃SR ) = N − 1

N
[1 − 2q(1 − q )] (B17)

for the dephasing noise. In Fig. 9 we plot the examples of FAE

for N = {4, 10, 50} when the initial W state is subjected to one
particle loss and the dephasing noise.

Relay protocol. Finally, in Table II we present the values
for anonymous entanglement in the relay protocol [7] in the
presence of the depolarizing noise.
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