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Combining Manipulability and Fatigue for
Multi-Metric Authority Arbitration of Physical

Human-Robot Collaboration: A Proof of Concept
Álvaro Gil Andrés

Supervisors: Niek Beckers, David Abbink, and Luka Peternel

Abstract—Human-robot interaction is a growing field that
aims to research and develop communication channels between
humans and robots to enhance comfort, safety, and productivity
in healthcare, the household, and the industry. Researchers have
considered ergonomy-related metrics to compose these channels
for physical human-robot collaborative scenarios. We refer to
these communication channels as arbitration methods. Several
of these metrics, such as human arm manipulability and muscle
fatigue, have taken their turns in the literature to set the base
for arbitration methods reaching promising results. Human arm
force manipulability represents the transmission between joint
torques in the joint space and end-point force in the task space
depending on the configuration of the joint angles. Muscle fatigue
keeps track of the muscle activation and builds up depending on
the muscle activation level and previous fatigue value. The first
one has predictive value. The other has a reactive value.

Nevertheless, no work in the literature explores the power of
combining both metrics into an arbitration method. Here we
develop a multi-metric arbitration method that combines human
arm force manipulability and muscle fatigue as input for a finite
state machine (FSM) that translates the human multi-metric
state to robot control level over a collaborative task. Although
some modifications may be worth trying and evaluating to reach
generalizability in physical human-robot collaborative tasks, the
system reached satisfactory results. Moreover, as future steps, we
should conduct human-factors research to compare the effect of
the system on task performance.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

OVER the last decades, the concept of robots and their
relationship with humans has been evolving, aiming to

tackle increasingly complex applications to enhance productiv-
ity and safety in most facets or our lives, including the industry,
our households, and healthcare. To achieve such productive
and safe application of robotics, designing for proper human-
robot interaction is essential. Human-robot interaction aims to
investigate intuitive means of interaction and communication
between a robot and a human and maximize their performance,
efficiency, and applicability as a coupled team [1]. Physi-
cal human-robot interaction concerns the interaction through
physical contact.

In collaborative scenarios, the human and the robot work
contribute to a common task, depending on their skillset

Author and supervisors are with the department of Cognitive Robotics,
faculty of Mechanical, Maritime, and Material Engineering, Delft University
of Technology.
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Fig. 1. Representation of the task: the human and robot collaboratively exert
a constant force against a horizontal surface. To the right we can see a graph
representing the desired force level of the task (pink), the robot’s end-point
force (orange), and the combined exerted force (red)

[2]. Typically, humans are good at adapting to unknown
and changing environments and task requirements, and have
manual dexterity lacking in robots. Robots, on the other hand,
are able to perform tasks with higher precision, while not
being impacted by fatigue. Agravante et al. [3], for example,
developed a framework for combining the strengths of a
human and robot in for a collaborative tasks. In their task,
the human and robot had to work together to keep a ball on a
flat horizontal board. The human can choose where the board
has to go or how to get there. The robot follows the human
motion, calculating a trajectory that minimizes the required
energy for the motion and, therefore, helps keeping the ball
on the board.

Arbitration is defined as the mechanism that assigns the
control of the (part of the) task to either the human or the
robot [1]. Arbitration determines the interaction strategies
between human and robot, such as teacher-student, supervisor-
subordinate, or leader-follower to fit the task and skills of the
human and robot [4, 1]. In the board game example, the human
is the primary leader and the robot the follower, yet the robot
can increase its assistance to keep the ball on the board when
needed. In such a case, the task is divided into sub-tasks, and
the arbitration mechanism will interpret the sensed information
from the human and robot, estimate the human’s intention, and
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choose the robot’s action and timing. i.e., Now it is time to
help in this way and to this grade. Pehlivan et al. [5] developed
a method for rehabilitation that also fits as an example for this
kind of arbitration. Utilizing the interaction forces between
the human and the rehabilitation robot when performing a
predefined motion, they derived the user’s capability at each
time step. The user’s capability is then used to arbitrate the
amount of force the robot exerts to perform the motion. In
other words, their method uses the user’s capability estimation
to adjust the level of assistance the robot provides.

How roles and tasks are arbitrated between human and robot
can be based on many sets of metrics representing different
kinds of information. The type of information often depends
on the task. Of particular interest for industrial human-robot
collaboration are ergonomy metrics in collaborative scenarios,
such as human arm manipulability and muscle fatigue [6].
The velocity and force manipulability ellipsoids, introduced
by Yokishawa [7] in robotics, represent a quantitative metric
of the velocity and force, respectively, with which the end
effector of an arm can move in every direction depending on
the joint space configuration. Jacquier-Bret et al. [8] borrowed
manipulability from the robotics field and applied it for human
arm movement evaluation. Gopinathan et al. [9] introduced the
concept in a physical human-robot interaction scenario. They
studied the effects caused by the variation of task parameters
calculating manipulability on different simplified human arm
models.

Peternel et al. [10] made the step towards introducing
manipulability in robot control. They developed a control
method for a physical human-robot co-manipulation and han-
dover scenario using a human body model for ergonomic
optimization with human arm manipulability properties as a
constraint. They set the manipulability limits so the algorithm
would find positions that keep isometric manipulability while
optimizing for minimum joint torques. i.e., the positions for
which the manipulability ellipsoid has equal main axes and
minimum joint torques. This way, the robot ensures to handle
or deliver the manipulated object within a range of positions
the human can optimally manipulate the object in whatever his
intended direction is. Petrič et al. [11] used human arm force
manipulability directly as a supervisor-subordinate arbitration
metric for a human arm exoskeleton for power augmentation.
They made the robot compensate for the minor ellipsoid axes,
turning manipulability into isometric manipulability in a wide
range of arm positions. [12] discovered that arm muscles
recruitment and activation is strongly related to human arm
manipulability, and so is muscle fatigue induction. [13, 14, 15]
concluded that a fatigued muscle is more likely to get injured.
Therefore, using human arm manipulability for arbitration is
an approach to prevent the muscles from getting fatigued and
risk injury.

Muscle fatigue represents an interesting metric with a sig-
nificant presence in the literature, with varying computational
models of fatigue. Some models use the externally applied
force (e.g., on an object by the human) as input to calculate a
fatigue-related measure [15]. Others developed a fatigue model
that infers the force generated by human muscles based on
physiological muscle motor unit behavior [16]. Maurice et al.

[17] used fatigue for ergonomy evaluation in a human-robot
collaboration scenario, exploring the utility of such a metric in
the field of focus for this research. They developed a dynamic
human model consisting of a rigid-body model that asses for
postural risk, physical effort, and consumed energy. With this,
they simulated the subjects performing the evaluated tasks
and computed the joint-torque derived fatigue for every joint
through the estimated torques. Peternel et al. [18, 19] used it
as a supervisor-subordinate arbitration metric and computed it
through muscle activity measured through electromyography
(EMG) signals captured online, [18] for a system in which the
robot would take over the task whenever the human fatigue
reaches a predetermined threshold. In [19], the robot modifies
and adapts the working configuration to the fatigue of the
involved muscles. The EMG-based fatigue models proved
to be advantageous over the force or torque-based models
in many aspects. While both present similar dynamics, the
EMG-based fatigue models allow for accurate muscle-specific
fatigue estimation without the need for complex biomechanical
models and dimensional reduction methods. Another advan-
tage is that they do not require expensive force sensors.

In all the aforementioned studies (all but [16]), the fatigue
model constitutes a first-order differential equation system,
behaving like a (leaky) integrator of either force measurements
or physiological signals (EMG) as input. Moreover, they are
generally used for a reactive approach. The robot assists
once one of the considered muscles gets to a predetermined
level of fatigue, providing time to rest or guide towards a
posture change. Therefore, the robot acts to reduce fatigue
once fatigue occurs, in opposition to the manipulability-based
existing approaches.

Nevertheless, both preventive and reactive approaches
present significant limitations. Preventive approaches often fail
to succeed since they do not explicitly consider and measure
the event they are preventing. If we think about fatigue as the
event to prevent, our preventive method will be based on the
assumption that fatigue happens under certain conditions and
our actions prevent it. On the other hand, reactive approaches
can often be too late. As we mentioned above, fatigue is
directly related to the probability of injury. The existing fatigue
models used for physical human-robot collaboration constitute
a practical tool, yet they still approximate the actual fatigue
level and depend on the previous calibration process.

Given that muscle activation and recruitment are highly
related to the manipulability ellipsoid, a combination of both
approaches would be preferable. Thus, assisting in preventing
fatigue, keeping track, and assisting when fatigue cannot be
prevented from happening. Nevertheless, an approach with
these features is missing in the literature. The problem is that
combining these two metrics requires a method that can suc-
cessfully arbitrate both while resulting in stable behavior. The
arbitration method should behave sensibly to the considered
metrics. However, it should not provide too variable assistance
increasing the task difficulty from the user’s perspective.

To address this gap, we propose a multi-metric arbitra-
tion method based on human arm force manipulability and
muscle fatigue. The proposed method constitutes a finite
state machine model with four states and assistance levels
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that provide smooth transitions between states. We prove
the concept with an abstract, simplified task: collaboratively
exerting a constant force a horizontal surface and perform
four experiments modifying the manipulability and fatigue
conditions around the task. With this research, we set the
first step towards developing a simple physical human-robot
collaboration method suitable for the industry that exploits the
advantages of preventive and reactive assistance.

We describe the arbitration algorithm, the manipulability
model and its data acquisition, the fatigue model, and data
acquisition in the Methods section. The Experiments section
describes the designed functionalities of the system and the
experiment data to prove them. It explains the variations of the
main task that we introduce in the experiments and presents
the achieved results. Finally, the discussion section develops
the relationship between the results and the experiments, the
conclusions, and the suggested future work.

II. METHODS

The proposed method uses a collaborative task that involve
exerting a constant force for an extended period, but which
still requires the human-robot team to change the position of
the applied force. For example, a real-world task would be
a polishing task. The human and the robot would provide a
percentage of the total desired force throughout the task execu-
tion, based on how the force production sharing is arbitrated
(e.g. more by the human, or more by the robot). The force
production arbitration is assigned online depending on the
human’s muscle fatigue and human arm force manipulability
in the direction of the desired force.
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Fig. 2. Schematic representation of the developed network. The system con-
sists of three main components, which communicate through UDP. (Yellow)
The arbitration module. It incorporates the arbitration method, based on a
finite state machine that translates the fatigue and manipulability values into a
percentage of the total force exerted by the robot. (Green) The fatigue module.
It incorporates the EMG data acquisition and processing and translates the
signal into a fatigue value. (Blue) The Manipulability module. It integrates
the joints’ position and orientation data acquisition, and It calculates the
manipulability value in the direction of the exerted force.

Muscle fatigue indicates the accumulated fatigue level of
the selected muscle during the task execution. The human arm
force manipulability indicates the transmission level from joint
torques to the end-point force of the human arm, depending
on the arm pose. As a result, the method will result in a
human-robot arbitration in which the robot will reactively
assist the human depending on the human fatigue, allowing
the human to rest when needed, while still sharing the task
when possible (minimal intervention of the robot). Assistance
that depends on force manipulability constitutes a preventive
approach; the robot assists when the human is in a posture that
involves more effort and is less comfortable to prevent fatigue
in the long-term. We combine these two metrics to exploit the
advantages of preventive (manipulability based) and reactive
(fatigue based) approaches. Thus, the robot keeps track of the
fatigue level even though its assisting to prevent it, and assists
based on fatigue when it cannot be prevented from happening.

An example of an eligible task would be collaboratively
polishing a surface. Here, the robot’s end-effector and the
human would hold the polisher against the surface. Then, the
human would swipe the polisher through the surface while
exerting a percentage of the force. Depending on the arm pose
the arm takes along the target surface and the fatigue level of
the involved muscles, the robot would adapt, exerting different
force percentages. The human can see through visual feedback
the desired force level, and the combined exerted force. This
way, the human adapts to the robot’s levels of assistance. For
this method, we performed an abstraction of this task. The
selected task is collaboratively exerting a constant force level
on a horizontal surface, see Fig 1.

This method consists of three main modules: (1) the multi-
metric arbitration module, (2) the manipulability estimation
module, and (3) the fatigue estimation module. The multi-
metric arbitration module is based on a finite state machine.
Depending on a normalized value of human arm force manip-
ulability and muscle fatigue, the finite state machine smoothly
converges towards an arbitration value a ∈ [0, 1] that repre-
sents the robot’s fraction of its required force production. The
normalized human arm force manipulability value emerges
from an estimate of the force manipulability ellipsoid, which
is measured through human arm pose estimation. Selecting the
direction of the applied force, we extract a single manipula-
bility norm that we normalize based on a comparison with
known manipulability poses and values. Finally, the fatigue
estimate module computes a fatigue level based on EMG
measurements of the muscle. The fatigue module distinguishes
between two modes: fatigue mode, slowly converging to 1,
and recovery mode, slowly converging to 0. We can see an
schematic representation of the built system in figure 2.

In figure 2, we can see a scheme of the implemented
network. The Kinect V2 and the Delsys Trigno System acquire
and send the data to a PC (Lenovo Legion with USB 3.0
connection and Intel Core i7 9th generation, windows 10)
through the blue, green channels. The algorithm performs the
estimations, coordinates the results, and sends them to the
desktop computer through the red channel. The arbitration
algorithm and robot control interpret and translate the metrics
and communicate with Kuka iiwaa 7 R800 through the yellow
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channel. The Kuka iiwaa 7 R800’s control loop operates at
200Hz.

A. Arbitration Method

Manipulability and fatigue need to be translated into an
arbitration variable a. The arbitration variable a is afterward
integrated into an impedance control scheme that translates
into the torques for the control system of Kuka iiwaa 7 R800.

The arbitration algorithm is a finite state machine (FSM)
composed of five states, see Fig. 3: four states for multi-
metric arbitration and a fifth that substitutes the two middle
states for single-metric arbitration. The initial state is a = 0,
when manipulability m = 0 and fatigue f = 0. The five
other states that depend on which interval contains m and f :
[0, 0.3), [0.3, 0.7) or [0.7, 1]. When m is in the low interval
or f is in the high interval a = 0.9 meaning the robot exerts
0.9 times the desired force providing maximum assistance.
When m and f are in the middle interval a = 0.6 providing
a robot-dominated intermediate assistance. When m is in the
high interval and f in the middle interval, or f is low and m
is in the middle interval a = 0.3 providing a man-dominated
intermediate assistance. When m is high and f is low, or
for single-metric arbitration, when f is low or m is high,
a = 0.1 providing minimum assistance. Finally, for single-
metric arbitration, is one of the metrics is 0 and the other is in
the middle interval, a = 0.5 providing intermediate assistance.

The algorithm contemplates two scenarios: only one input is
relevant, or both of them are. If the system is going to be used
for a single quick task such as drilling several holes in places
that are not reachable in a confortable position, then setting the
EMG sensors might be inconvenient, and manipulability-based
assistance would be helpful. Three states contemplate the first
scenario, leading a to converge to 0.1, 0.5 and 0.9. On the other
hand, in an scenario were the considered time is worth setting
up the sensors, combining preventive and reactive assistance is
preferable. For the second scenario, the algorithm disregards
the previous middle state, and two others are considered in its
place: 0.3 and 0.6. In figure 3, we can see an scheme with
the conditional logic expressions that lead towards each state,
with the green color referring to f and the red color referring
to m.

a(t+ dt) =


at + (a0 − at) ·

(
1− 1

1+eE(t)

)
if a(t) > at

a0 + (at − a0) ·
(
1− 1

1+eE(t)

)
if a(t) < at

a(t) if a(t) = at
(1)

where:

E(t) = −
a0+at

2 − (a(t) + at−a0

1000 )

0.02
(2)

State transitions are smoothed using a sigmoid function
(Eq. 1) between the current (a0) and the target state (at). In
equation 2 we can see the expanded exponential for equation
1. Here, a0 represents the initial arbitration, meaning the
arbitration of the previous state, and at represents the target
arbitration, meaning the arbitration to which the current state
converges. The minimum time in each state after a transition is

a = 0

a = 0.5

a = 0.9

a = 0.6a = 0.3

a = 0.1

m = 0 & f =0

Low x<0,3
Mid 0,3 <= x < 0,7
High x >= 0.7

s1

s0

s2

s3

s4

s5

Fig. 3. Schematic representation of the arbitration finite state machine. On the
top right corner we can see a legend explaining the intervals for the variables:
manipulability m and fatigue f. By the arrows pointing out the top state, we
can see the conditionals that lead to each of the states. In red we can see
the values or intervals referring to manipulability m. In green we can see the
values or intervals referring to fatigue f .

set to 5 seconds to avoid fast state transitions and to allow the
human to adapt to the new state. The denominator at 0.02 was
set to have the sigmoid function fit a 5s transition. Similarly,
the denominator 1000 was set so the transition takes 5 seconds
in total, since the frequency at which the robot runs is 200Hz.
We can see the sigmoid transitions in Fig. 6.

B. Robot Control

The robot uses an impedance controller. In equation 3, we
can see the expression of our impedance controller, where K
is the stiffness matrix of the robot, xref (t) is the reference
end-point state, x(t) is the current end-point position, D is the
damping matrix of the robot, v(t) is the end-point velocity and
Fend is the end-point force. The control algorithm transforms
Fend to joint torques for the torque control of the robot.

Fend(t) = K · (xref (t)− x(t)) + D · v(t) (3)

Finally, in equation 4 we can see how the control algorithm
integrates the arbitration variable a(t) (result of the current
state of the FSM) into the impedance controller, adjusting Fend

accordingly. The control algorithm modifies the z coordinate
of the end-point reference position to a maximum of 20
centimeters. Depending on the robot stiffness we select, that
modification translates to a determined force when the robot
is in contact with a horizontal surface.

xref(t) =
[
0 −0.5657 0.0590− 0.2 · a(t) 0 0 0

]T
(4)

C. Human Arm Manipulability

The end-point motion of an arm in the task space is the
result of joint angle variations. The arm’s endpoint manipula-
bility ellipsoid represents this kinematic relationship, capturing
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how efficiently joint angle variations propagate towards end-
point variations in every direction within the task space. The
force manipulability ellipsoid is orthogonal to the velocity ma-
nipulability ellipsoid and, similarly, represents how efficiently
joint torques are propagated towards end-point forces in every
direction within the task space [7, 20].

The manipulability calculation requires the human arm
joints configuration in the joint space. Provided the position
and orientation of the human arm joints in the task space, sev-
eral steps lead to the projection from task space to joint space
to human arm manipulability. Figure 4 shows these steps: task
space data acquisition, human arm triangle space projection
[21], joint space projection, and human arm manipulability
calculation.

x

z y

l

r

α

θ1θ2

∆θ3

𝜋 + θ4 = α

MANIPULABILITY
X 

Task space

∆
Human Arm 

Triangle space
Θ

Joint space

Fig. 4. Scheme of the data transformations connecting the human arm position
and orientation data in the task space and the human arm manipulability in
the task space. [21]

Given the human arm configuration in the joint space,
the jacobian J(q) connects the transmission of the joint
velocities and end-point velocities, and J(q)−T connects the
joint torques to end-point force transmission. We can see in
Eq. 5 the expression for force manipulability ellipsoid for a
redundant arm, and in the last term, the matrices resulting from
a singular value decomposition.

fM = (J(q)J(q)
T
)−1 = UΣV∗ (5)

Here, Σ ∈ Rm×n is a diagonal matrix composed of the sin-
gular values of the force manipulability matrix fM ∈ Rm×n,
where σ1 ≥ σ2 ≥ σ3 ≥ σn ≥ 0. In Eq. 6 we can see
a general development of Σ ∈ Rm×n. U ∈ Rm×m and
V ∈ Rn×n are orthogonal matrices. In Eq. 7 we can see
a general development of U ∈ Rm×m, where each entry
represents an unitary vector [7, 11].

Σ =


σ1 0

σ2
σ3

0 σm 0

 ∈ Rm×n, (6)

U =
[
u1 u2 u3 um

]
∈ Rm×m (7)

The principal axes of fM ∈ Rmxn are σ1u1, ...σmum.
σ1u1 represent the direction in which the end-effector can
exert the highest force. Similarly, σmum represents the direc-
tion for the lowest force [7, 20, 11]. Jacquier-Bret et al. [8],

when applying the manipulability concept to the human arm,
identifies three singular axes. Equation 8 shows the expression
of the projections of the axes of the ellipsoid in the global
reference frame.

UΣ
1
2 =

u1,x√σ1 u2,x
√
σ2 u3,x

√
σ3

u1,y
√
σ1 u2,y

√
σ2 u3,y

√
σ3

u1,z
√
σ1 u2,z

√
σ2 u3,z

√
σ3

 , (8)

For this research, exerting a constant force against a hor-
izontal surface is the task that serves as a proof of concept.
In figure 4, the last data transformation graphically explains
the selection of the manipulability values of interest for such
a task—the projection of the manipulability ellipsoid in the z-
axis of the global reference frame.We can see the expression
for such projection in equation 9. The m value is then
normalized using a sigmoid function with 0.5 value on m =
1.0283.

m = u1,z
√
σ1 + u2,z

√
σ2 + u3,z

√
σ3, (9)

1) Sensor for manipulability estimation: The Kinect V2
sensor acquired the position and orientation arm data in the
task space. In figure 5, we can see a picture acquired using
the Kinect Studio v2.0 software. It represents the skeleton the
Kinect embedded software estimation and user body segments
at a sampling frequency of 30Hz. This skeleton was accessed
online using the Kinect C++ package. The joint angles needed
to calculate the Jacobian are extracted from the Kinect soft-
ware.

Fig. 5. Graphic representation of the body segment skeleton extracted using
the Kinect Studio v2.0 software.

D. Fatigue model

We found the fatigue estimation model by Peternel et
al.[18] the most appropriate for the application, because such a
model allows for a muscle-specific fatigue estimation through
wearable light EMG sensors that do not interfere with task
execution. It is suitable for every muscle involved in the task.
For instance, this research tests different experiments with
different involved muscles providing proof of versatility. In
equation 10, we can see the first-order system representing
this research’s fatigue model [18].

dVi(t)

dt
=

{
(1− Vi(t))Ai(t)

CFi
if Ai(t) ≥ Ath

−Vi(t) R
CFi

if Ai(t) < Ath
, (10)
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Here, each equation represents the fatigue increase at the top
and recovery at the bottom. The fatigue index of the muscle
i Vi(t) increases when the muscle activation level i Ai(t)
is above an activation threshold Ath. Similarly, the muscle
fatigue index decreases when the mentioned muscle activation
is below such threshold at a recovery rate R. The speed to
which the fatigue induction or recovery happens also depends
on the fatigue-related capacity of muscle i CFi.

0 ≤ Ai(t) =
EMGi(t)

MVCi
≤ 1, (11)

Eq. 11 represents how we obtain the activation level Ai(t)
of muscle i, from its EMG signal. First, the fatigue estimation
algorithm processes the raw EMG signal. First, the EMG
signals are filtered using a second-order Butterworth high-
pass filter with a cut-off frequency at 20 Hz. The resulting
signal is then rectified and low-pass filtered using a second-
order Butterworth low pass filter at 1 Hz, yielding the EMG
envelope EMGi(t). Finally, the EMG envelope is normalized
using the maximum-voluntary-contraction of muscle i MV Ci,
resulting in the muscle activation Ai(t). The MVC is obtained
by exerting as much force with that muscle as possible by
pushing against an object and recording its muscle activity.

Equation 12 expresses the fatigue-related capacity of muscle
i. We used 0.3 times the MVCi [18] as the reference effort
Gref . Tend represents the time the user can endure exerting the
reference effort Gref . In order to obtain the MVCi and Tend,
we integrated a preliminary experiment in a Jupyter notebook
that allows calibrating these values in a straightforward way.
Equation 12 also assumes the muscle reaches total capacity at
fatigue index Vi(t) = 0.993 [18].

CF = − Gref · Tend
log(1− 0.993)

, (12)

1) Sensor for fatigue estimation: We used the wireless
Delsys Trignos System for the data collection of the muscle
activity Ai(t) using the muscle’s EMG signal.

III. EXPERIMENTS

Aiming to use the potential of the selected metrics: human
arm force manipulability and muscle fatigue; and explore the
preventive assistance allowed by the former metric and the
reactive assistance allowed by the latter, we designed the pro-
posed method to have three main functionalities: Modularity,
Fatigue hysteresis, and Conservative behavior.

Modularity is the ability to correctly function using either
of the arbitration metrics: manipulability and fatigue, on their
own, and the ability to function with both metrics simultane-
ously. Fatigue hysteresis allows the human to rest for longer
when the fatigue level reaches a high threshold. Once the
muscle is fatigued, the proposed method disregards the manip-
ulability value and takes over 90% of the force until muscle
fatigue decreases below a lower threshold, thus skipping the
intermediate states in the multi-metric arbitration. This way,
the robot takes a reactive approach and gives time to the human
to modify his/her position and rest. Conservative behavior
prioritizes the metric that is in the worst condition. Thus, when

the fatigue level reaches a high threshold, the robot takes over
90% of the force no matter the manipulability value. Similarly,
if the manipulability value is below the low threshold, the robot
takes over 90% of the force and disregards fatigue. In the latter
case, the robot takes a preventive approach. If manipulability
is low, the robot aims to minimize the induction of fatigue.

We designed and performed five experiments to validate
the modalities of the proposed method. Before getting in
contact with the robot, we checked the functionalities in a
simulated experiment or pre-experiment. The pre-experiment
consisted of several simulations with pre-designed values for
the arbitration metrics. Then a chain of three experiments
tested the manipulability module, the fatigue module, and the
combination of both modules. The latter experiment imple-
mented the proof of concept task: the user and the robot
collaboratively exert a constant force against a horizontal
surface. While keeping a constant combined force, the human
modifies the human arm posture to test the robot’s adaptability
to the manipulability value and fatigue accumulation, see
Fig. 1. The high manipulability configuration experiment,
proves one of the affirmations that motivated this research:
even while keeping a good posture, exerting a force induces
fatigue.

A. Pre-experiment

The pre-experiment consisted of 6 simulations with different
predefined arbitration metrics combinations and 2 simulations
with variations of only one metric. Figure 6 is composed of
the simulations performed with one of the metrics increasing
from 0 to 1 and decreasing back to 1, while the other metric is
constant within two state limits. The column on the left shows
the results of simulations in which the manipulability value
was constant and within the different intervals, and fatigue
increases uniformly from 0 to 1 in 50 seconds. The last row
of the first column keeps the manipulability value set to 0
and increases fatigue. Similarly, in the column on the right,
fatigue keeps a constant value within the different intervals,
and manipulability increases.

B. Manipulability experiment

Once we had validated the arbitration algorithm on the pre-
experiment, the manipulability experiment took place. For this
experiment, the subject stood in front of the Kinect v2 sensor
at a distance of 1.7 meters and with the line of the shoulders at
an angle of approximately 45º with respect to the baseline of
the sensor. In this position the subject performed a sequence
of three poses. These poses are representative of high manip-
ulability, medium manipulability, and low manipulability. We
previously tested the poses exerting a vertical force without the
robot to have a qualitative perception of the manipulability in
each pose. The reasoning behind the manipulability levels is
explained in the multi-metric experiment subsection. The high
manipulability pose consists of an orthostatic body position,
with the right arm pointing downward and no shoulder ro-
tation. We can see it in figure 8, in the top row, being the
high manipulability pose at the first, fifth, and last picture.
We can see the medium manipulability pose in figure 8, in
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Fig. 7. Scheme of the performed experiments and tested functionalities. (Blue)
Functionalities. (Orange) Hypothesis. We performed five experiments to test
the proposed method.(Pre-experiment) First, a simulated experiment or pre-
experiment proved the designed functionalities (modularity, fatigue hysteresis
and conservative behavior) to work correctly before performing tests in direct
contact with the robot. (T1) Then, a manipulability test in which the user
performs a sequence of movements to test the manipulability module. (T2)
Then, a fatigue test is conducted in which the user evaluates the fatigue
module and the fatigue hysteresis. (T3) This is followed by a multi-metric
test that assesses the multi-metric module, the fatigue hysteresis functionality,
and the conservative behavior functionality. (T4) Finally, a multi-metric test
with constant high manipulability is performed to check the hypothesis that
motivates the proposed method:even while keeping a high manipulability pose,
exerting a force induces fatigue.

the top row, the second, and the fourth picture. It consists
of an orthostatic pose with 90º forward shoulder flexion and

90º internal shoulder rotation and 90º elbow flexion. The low
manipulability pose consisted of an orthostatic pose with 90º
shoulder flexion and 90º internal shoulder rotation with the
extended elbow. We can see this in figure 8 in the third and
sixth pictures in the top row.

The experiment took two minutes per repetition and a total
of eight repetitions. We can also see in figure 8 some of the
results of the described experiment. The second row represents
the manipulability value m, the fatigue value f , and the
arbitration value. The third row represents the calculated robot
exerted force, and the measured exerted force.

C. Fatigue experiment
Then, we validated the fatigue module. For this, we de-

signed an experiment that consisted of intermittently lifting a
load for 5 and 10 seconds to achieve two different levels of
fatigue. As a weight, we used an aluminum frame from the
laboratory and previously tested that the required effort to lift
it was high enough to trigger fatigue. We also developed an
online fatigue visualization algorithm through the pyqtgraph
python library to see the effect of different motions and efforts
on the fatigue level and check its correct behavior.

We chose the anterior deltoid muscle for the fatigue ex-
periment. The subject first performed a short calibration pre-
experiment to fit the model to the electrical behavior and fea-
tures of the chosen muscle. The experiment took 4 repetitions
of 5 minutes. We set the recovery rate R parameter to 0.1 for
two repetitions and 0.5 for the rest. This way, the user could
pick the recovery rate that felt more natural for the muscle.

In figure 9 we can see some of the results of this experiment,
performed with the selected recovery rate R = 0.1. In the
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first row, we can see the arbitration value a and the estimated
fatigue value f. In the second row, we can see the calculated
robot force and the measured exerted force. Finally, in the
third row, we can see represented the raw EMG signal and
processed normalized linear envelope of the EMG signal and
the estimated fatigue f.

D. Multi-metric experiment; exerting a constant force

The multi-metric experiment consisted of the subject chang-
ing poses of known manipulability value around the robot
while collaboratively exerting a force of 50N. We placed the
EMG sensor on the latissimus dorsi muscle of the subject
and tuned the fatigue model parameters to MVC = 0.09mV
and Tend = 40 seconds. For this test, we did not perform a
calibration pre-experiment. Instead, we tuned the model to be

more sensitive than usual to achieve a faster system response
and check the state transitions quicker online. The subject
repeated the experiment 8 times, with 4 minutes per repetition.
Same as for the fatigue experiment, we set the recovery rate
R = 0.5 for half of the takes and R = 0.1 for the other half
and R = 0.1 was preferred.

The succession of poses kept similar criteria to the ma-
nipulability experiment. While exerting a vertical force with
the right hand on the back of the robot’s end-effector, the
subject went through a low manipulability pose, two middle
manipulability poses (medium manipulability pose and side-
ways medium manipulability pose), and a high manipulability
pose. We can see the sequence of poses in the first raw of
figure 10.

The low manipulability pose consisted of the user in an
orthostatic position in front of the robot. Due to the height
difference between the subject and the robot, the user’s arm
only flexes slightly on the elbow while pushing the end-
effector downward. In this position, the difference on the
principal axes of the manipulability ellipsoid is significant,
meaning there is a very high manipulability in the long
axis direction. However, the moment the user exerts force in
a different direction, the manipulability quickly drops. The
middle manipulability poses consisted of the user squatting
on a chair by the robot.

The medium manipulability pose, as we can see in the
second picture of the first row in figure 10, was a squat facing
the robot’s end-effector, with the elbow 90º flexed and the
shoulder 90º rotated inward. With the 90º elbow flexion, the
difference between the principal axes of the manipulability
ellipsoid decreases. The ability to produce force is similar in
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every direction and oscillates around m = 0.5. In the sideways
medium manipulability pose, the user keeps the squat but
faces to his/her left. This way, the manipulability level keeps
invariable, but the latissimus dorsi exerts the effort.

Finally, the high manipulability pose occurs with the user
standing on the chair by the robot, leaning forward and
pushing downward with the straight arm. As explained above,
for the low manipulability position, in this case, we are using
a position with a significant difference of principal axes.
However, the force direction is much closer to that of the
longest axis. Thus the manipulability level is close to 1.

Figure 10 shows the results for one of the loops of one of the
repetitions of the multi-metric experiment. In a similar fashion
to the fatigue experiment results, the first row displays the
fatigue value f, the manipulability value m, and the arbitration
value a; the second row displays the calculated robot force
and the measured combined force; and the third row shows
the raw EMG signal, the normalized EMG’s linear envelope,
and the fatigue value f.

E. High manipulability multi-metric experiment

The last of the experiments had the purpose of checking
one of the affirmations set as motivation for this research:
even while keeping a good posture, exerting a force induces
fatigue. Even when performing a task in a high manipulability
setting, the involved muscles get fatigued. Thus, allowing the
robot to consider fatigue as an arbitration metric together with
manipulability may prove beneficial and compensate for the
faults of the corresponding separate modules on their own, by
faults meaning, the inability of manipulability as a metric to
keep historical track of the physical activity; And the inability

of fatigue to instantly reflect or predict the effort involved or
to be involved in the execution of a force or movement.

With the above-explained reasoning in mind, we set an
experiment consisting of performing the proof of concept task:
collaboratively exerting a constant force against a horizontal
surface; but constantly keeping a high manipulability pose:
the high manipulability position described in the multi-metric
experiment, that we can see in the last picture of the first
row of figure 10. We considered the triceps muscle for
fatigue calculation, and the user performed a short calibration
experiment previous to the task. The resulting MVC = 0.17
mV, and the resulting Tend = 94.6 seconds.

The experiment took 8 repetitions of 3 minutes each, 4 of
them with R = 0.5 and 4 with R = 0.1. In this case, we
selected R = 0.5 since it allowed us to see more transitions
in the system. We can see in figure 11 the results of one
of the repetitions. In a similar fashion as the previous test,
it displays arbitration, manipulability, and fatigue in the first
row; the calculated robot’s end-point force and the measured
combined force in the second row; and the raw EMG signal,
the normalized EMG’s linear envelope and fatigue in raw 3.

IV. DISCUSSION

We developed a method to arbitrate the force contributed by
each agent (a human and a robot) in a collaborative task. The
proposed method finally resulted in an arbitration algorithm
that maps the “ergonomic level” of the human arm (the human
arm force manipulability and muscle fatigue) into predefined
levels of force assistance (i.e., the robot exerts predefined
percentages of the desired total required task force). Here,
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we discuss the design choices of the proposed method. Then,
designed functionalities: modularity, fatigue hysteresis and
conservative behavior. Then, the limitations of the proposed
method are explained, and finally, a future work subsection
states the future modifications and research projects that
should sharpen the proposed method.

Collaborative robots have the ultimate goal of decreasing
workload to prevent injuries in the workplace and increase
task performance. Nevertheless, decreasing the cognitive load
below the individual skill of the user could lead to boredom
[22]. Boredom is highly related to a detriment in vigilance
[23], which in an industrial setting can be problematic in
terms of safety. We, therefore, want to decrease the physical
workload keeping user engagement. Most of the methods
in the literature (all but [18] and [19]) propose authority
arbitration methods between the human user and the automated
system. Even though they increase the cognitive workload
compared to a fully-automated system, the automated agents
are task-dependent, limiting their applicability.

The methods in [24, 25] solves this issue by using machine
learning techniques to teach the robot the required task by
demonstration. However, they still require to be trained prior
to the task execution, and when the robot performs the task,
it is fully autonomous, removing the cognitive load from
the task. [11], on the other hand, developed their method
for power augmentation with exoskeletons. They altogether
remove the automation, reducing the physical load and leaving
the cognitive load for the user. However, actuated exoskeletons
might be inconvenient. Gull et al. [26] concluded that in
most of the currently developed systems, the human and robot
interaction had not been addressed satisfactorily, pointing
towards further research to achieve good interaction in terms

of robot compliance.
We have developed a system following a similar framework

to that of power-augmentation systems. The system is designed
such that the cognitive work is on the human. The assistance
is provided as needed depending on the ergonomic state of
the human arm. We have also developed the proposed method
on a collaborative robot, so the human biomechanics does not
have to be explicitly considered for the correct functioning of
the robot.

A. Reactive versus preventive assistance

Assistance can be provided reactively or preventively. In
reactive assistance, the robot helps the human when a partic-
ular incident occurs, even when the incident is unforeseen or
unmodelled. Nevertheless, reactive assistance can often be too
late. e.g., if the considered incidence is an injury, preventing
the incidence would be preferable. Thus, assistance should
be preventive. The robot helps the human to avoid a specific
incidence. However, the incidence is not explicitly considered
for the assistance to be provided. Because the robot assists
the human before the incidence takes place, it is based on
the assumptions of the incidence happening under certain
conditions and the assistive action preventing the incident.

If we consider muscle fatigue as the incident, reactive
assistance can get to be insufficient. [13, 14, 15] concluded
that a fatigued muscle is more likely to get injured. [12]
discovered that arm muscles recruitment and activation is
strongly related to human arm manipulability, and so is muscle
fatigue induction. Thus, we decided to provide a combined
approach (preventive and reactive) by using the manipulability
metric to provide assistance that prevents fatigue and use
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fatigue to provide assistance when fatigue cannot be prevented
from happening.

Previous methods that exploit these two metrics individually
and successfully achieve preventive or reactive behavior of
the robot. The method in [18] employed fatigue for binary
single-metric arbitration. The robot takes over the task when
a certain level of muscle fatigue is reached. This way, the
robot successfully provides rest when needed. The approach
in [11], on the other hand, used manipulability for single-
metric arbitration in a power-augmentation exoskeleton. This
way, the exoskeleton provides assistance compensating for the
difficulty in exerting force in every possible position. This way,
they managed to reduce the muscle activation required for
performing physical tasks. They reduced the induced fatigue
reaching a fatigue-preventive behavior. However, method that
can combine both reactive and preventive techniques was
missing.

We filled this gap by successfully developing a multi-
metric arbitration method. Our method can assists dependent
on manipulability, aiming to reduce the probability of getting
fatigued and dependent on muscle fatigue to react to fatigue
when this cannot be prevented. We can see in figure 11 a
scenario in which manipulability is high. Here the preventive
assistance is not provided since manipulability is in a good
state. Thus, fatigue slowly builds up, and the robot provides
assistance reacting to the fatigue level. Interestingly, we can
see that the fatigue level only reaches the maximum state in
two loops. Afterward, it only gets to the intermediate state in
every loop. This finding provides a good sign of the utility
of combining preventive and reactive behavior. Nevertheless,
further research should be conducted.

B. Continuous versus binary arbitration

Arbitration methods map the selected arbitration metrics’
values into an arbitration value. This arbitration level is the
value that represents the percentage of the desired force the
robot is exerting. In the literature, we have found out there are
two main approaches to take: the binary mapping [18, 24, 27],
and the continuous mapping[25, 28]. The main advantage of
binary mapping is its simplicity. Nevertheless, the changes
between states are too significant for the user to adapt to them
quickly. In the case of [24] they performed a collaboratively
polishing task in which the robot and the human had to
exert a constant force against the surface. They successfully
performed the task since their arbitration method did not aim to
improve performance but to allow for the human to supervise
a robot learning process. Nevertheless, their results show
difficulty for the human to compensate for the sudden changes
in robot behavior. [29] already tried to overcome this issue by
implementing a finite state machine that smoothly transitions
between robot control and human control. They state an
improvement in this aspect. Nevertheless, they concluded that
there is a trade-off between accuracy and workload reduction
with such a framework.

On the other hand, the continuous mapping translates the
metrics state more accurately into the control command. The
robot can adapt without the need to have predefined states.

This way, continuous mapping aims to have a more natural
robot behavior and act highly sensitive to the selected metrics.
The work in [25] successfully implemented a continuous arbi-
tration method for control transfer during a machine learning
process in which a human teaches a robot standing balance.
Here the method results are satisfactory since the human does
not directly feel the arbitration. The robot listens to the human
commands to more or less grade depending on the arbitration
value. [28] successfully implemented a continuous arbitration
method for a pick-and-place task in telemanipulation. Simi-
larly, the human does not directly feel the arbitration since
the robot arm and the human are not in direct contact. In
our case, the arbitration value is translated directly into the
interaction forces between the robot and the human. Thus,
the human needs to adapt to the robot forces and the binary
method produces significant force changes that humans can
find problematic. In the case of continuous metrics, having a
continuously varying force involves a big increase in the task’s
cognitive load.

Considering human adaptability and cognitive load, we
decided to exploit the advantages of both by finding a middle-
ground: the simplicity and cognitive easiness of the binary
methods and the sensitivity of the continuous methods. We
used a finite state model with 4 states for multi-metric ar-
bitration and three states for single-metric arbitration. We
can see a representation of the behavior of the arbitration
method for every combination of the metrics in figure 6.
Looking in the second graphs at figures 10 and 11 we can
see that the proposed method successfully performed the task:
collaboratively exerting a constant force against a horizontal
surface.

C. Modularity

Using multi-metric arbitration in the industry is not always
possible. In some scenarios, the visibility of the user from the
motion capture system might be compromised. In other cases,
the user might want to use the system for a short task like
moving a heavy load and then move on to a task that does not
require physical assistance. Then, the user will prefer not to set
the EMG sensors up. Thus, we considered it necessary to make
the algorithm work for single-metric arbitration and multi-
metric arbitration. As we have already seen, the literature only
contains methods for single-metric arbitration with ergonomic
metrics [18, 19, 11]. Nevertheless, there are a few multi-metric
arbitration methods with other metrics as well. The method in
[28] use confidence in automation and confidence in the human
user as arbitration metrics for telemanipulation. Even though
their arbitration method is suitable for working with either
metric separately, they did not contemplate such a scenario
due to the different requirements of their application.

To address the above issue, we have developed a modular
arbitration method. The proposed method can be used with
either metric for single-metric arbitration or both metrics
for multi-metric arbitration. We can see in figure 6 proof
for this. In both columns, the three first graphs correspond
to the mapped arbitration value from different multi-metric
combinations. The last graph in both columns represents the
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arbitration value for single-metric arbitration. An example of
modularity working is shown in figures 8 and 9. We also aimed
to provide preventive-reactive assistance when only fatigue is
available as a metric, as we can see in figure 9 by adding
an intermediate assistance state when fatigue is moderate for
when manipulability cannot be used.

D. Fatigue hysteresis

We face two main problems with the fatigue module: The
fatigue model presents two modes, fatigue, and recovery.
When the activation level of the muscle oscillates around
the predefined threshold, the transition between these two
models is too sharp and can lead to fast state transitions.
Also, when high fatigue is reached, the performance is already
compromised, and the risk of injury is high. In the literature,
the fatigue models that have been used do not consider the
fatigue-recovery sharp transitions. [18, 15, 17]. The work in
[18] developed a binary method with a single fatigue threshold
that determines if the model is in human-control or robot-
control.

To avoid sharp and rapid switching between fatigue and
recovery modes, we have designed the proposed method to
have fatigue hysteresis. The fatigue single-metric arbitration
module is composed of three states and two fatigue thresholds.
When fatigue reaches a high level, the intermediate state
and high fatigue thresholds are disregarded, so the system
provides extra resting time that the user can use to change to
a more comfortable position or resting. Moreover, when the
system is performing multi-metric arbitration, manipulability
is also disregarded in a high fatigue state. The robot provides
maximum assistance until the muscle is rested. We can see
in figure 6 proof of this feature. In the left columns, when
the fatigue value is decreasing, the system provides maximum
assistance level for an extended period in every case, disregard-
ing manipulability. We can see a similar result in figure 10.In
the third posture, high fatigue level is reached. Then, when
the user changes to a high manipulability pose in the fourth
posture, the assistance level is maximum until the muscle is
rested, providing additional 5 seconds of rest that are enough
for the user to choose a better posture.

E. Conservative behavior

Even though multi-metric arbitration seems beneficial, it can
also be problematic. When the muscle is fatigued, having the
system transition to different states depending on manipulabil-
ity would add cognitive load without achieving real benefits.
An increase in the required load means an increase in muscle
activation. Similarly, the muscle activity required to increase
force is inversely proportional to the manipulability level.
When manipulability is very low, the possibility of the system
adapting to fatigue and transitioning state would be detrimental
rather than beneficial. In the literature, this issue has not
been directly analyzed. However, [24] proposed a hybrid
mapping framework of ergonomic metrics for communicating
ergonomic work conditions. They combined a binary map and
a continuous map, filtered out the configurations in which at
least one of the ergonomic metrics was not sufficiently good.

For the configurations in which all the ergonomic metrics were
sufficiently good, they proposed continuous mapping for tasks
that are not highly paced and changeable, such as ours.

Aiming to avoid the human from having to adapt when
either the posture is not good enough, or the fatigue level is
too high, We have designed a functionality called conservative
behavior. This system provides maximum assistance either if
the manipulability is not sufficiently high or the fatigue level
sufficiently low, in this case exploiting fatigue hysteresis to
provide extra rest. Nevertheless, when both metrics are suffi-
ciently good, the proposed method provides three assistance
levels as a middle point between the binary framework and
continuous frame that [6] recommend in their hybrid mapping.
The reasoning behind this is in the fourth paragraph of this
discussion. We can see proof of Conservative behavior in the
positions (0, 0) and (2, 1) of figure 6 and figure 10.

F. Limitations and future work
For the sake of simplicity, the proposed method presents

some limitations. It is designed to work in a hard-coded
predefined direction. In the case of the proof of concept task,
it is vertical or z-direction. Also, we have only considered one
muscle for muscle fatigue estimation. Moreover, the proposed
method is suitable for lengthy steady tasks. In order to make
it robust to the noise introduced by the Kinect V2 sensor, we
have set the transition time between states too long for highly
paced tasks. Nevertheless, the proposed method sets a good
start towards further exploiting multi-metric arbitration with
ergonomy metrics.

As future work, we propose several ideas:
1) More muscles should be considered for the fatigue

estimate.
2) It would be interesting to exploit the IMU functionality

of the Delsys sensors. Even though the Kinect V2 sensor
is easy to implement and use, it would be interesting to
evaluate a more accurate motion capture system in the
scenarios where the users set up the EMG sensors.

3) The proposed method should be tested on actual collab-
orative tasks: drilling, polishing, and co-manipulating.
An interface to easily select the direction of the applied
force and the desired force should be developed, inte-
grating different tasks.

4) Human-factors research to evaluate the effect of the
proposed method in performance versus state-of-the-art
methods should be conducted.

V. CONCLUSIONS

We have developed a satisfactory multi-metric arbitration
method applying the assist-as-needed approach for a physical
human-robot collaboration scenario. It is suitable for tasks
where end-point assistance force is mainly required in one
direction, and quick changes of the human arm position are not
required: polishing, drilling, or co-manipulating. Nevertheless,
more work is worth doing towards the generalization of the
proposed method. More importantly, human-factors research is
required to quantitatively know the effect on the performance
of the proposed method versus state-of-the-art methods.
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Appendix A: Extended figures
This appendix contains the extended version of the figures in the manipulability experiment (Fig 1), the

fatigue experiment (Fig 2), and the multi­metric experiment(Fig 3). More repetitions of these experiments were
performed, but we considered the ones displayed here representative enough. Notice that the figure and equation
numbering is reset for the appendices to differentiate this section from the research paper.
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Figure 1: Long results plot for the manipulability experiment together with images of the poses that were performed in each moment of the
test. (0,0) Manipulability m, fatigue f, and arbitration a vs time (s). (1,0) Calculated robot force and Measured force vs time (s).
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Figure 2: Long results plot for the fatigue experiment. (0,0) Fatigue value f and arbitration value a vs time(s).(1,0) Calculated robot force
and measured exerted force vs time (s). (2,0) Raw EMG signal, normalised EMG’s linear envelope and fatigue f vs time(s).
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Figure 3: Long results plot for the high manipulability multi­metric experiment.(0,0) Fatigue value f, manipulability value m and arbitration
value a vs time(s).(1,0) Calculated robot force and measured exerted force vs time (s). (2,0) Raw EMG signal, normalised EMG’s linear
envelope and fatigue f vs time(s).



Appendix B: Manipulability module
This appendix presents in­depth information about the motion capture method and data processing for ma­

nipulability estimation. As mentioned in the method section, we use Kinect V2 for this purpose. Implementing
the Kinect SDK C++ library, we extracted right away the estimates the Kinect V2 does on the right wrist, elbow,
and shoulder positions. Then, we process the data, change the reference frames to fit the Robot’s reference frame,
and correctly interpret manipulability information. Once this is achieved, the calculations to transform task­space
data into joint­space data take place to estimate the manipulability ellipsoid finally and extract the direction of
interest.

.1. Position data capture and processing
The Kinect SDK library allows access to the orientation and position data of the joints in the­task space. Never­
theless, these data are noisy and represented concerning the reference frame of Kinect V2. A moving window of
300 manipulability values is averaged and updated for the former issue in every iteration.

For the latter issue, we modified the reference frame of the shoulder to be coincident with that of Kuka for
a fixed positioning of the user. Nevertheless, since the task was being performed exerting force only in the z­
direction, this is not particularly relevant in this case, so the Kinect did not have to be perfectly aligned in x and y
and its location could be varied between experiments. Notice that if the task­required applied force involves any
other direction (not one of the reference axis), the location and orientation of the Kinect need to be defined and
kept throughout the use of the proposed method. Then, the rest of the local frames were expressed concerning
the new shoulder reference frame.

T = ⎛⎜

⎝

√2
2 0 −√22 (𝑑𝑖𝑠 − 𝑠) ⋅ √22
−√22 0 −√22 (𝑑𝑖𝑠 + 𝑠) ⋅ √22
0 1 0 −ℎ
0 0 0 1

⎞
⎟

⎠

(1)

In Eq 1 we can see the transformation matrix that was applied to make the aforementioned reference frame
transformation. Here, 𝑑𝑖𝑠, 𝑠 and ℎ represent the 𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒, 𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and 𝑧 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒
respectively in the Kinect reference frame of the shoulder position, which is extracted online.
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Appendix C: Fatigue
For the fatigue module, the Delsys Trigno system was used. We set the EMG sensors’ frequency to 1500Hz.

This way, by sending to the robot one every 50 samples, we matched the Kinect frequency of 30Hz for the
arbitration. Thes raw EMG data were processed before applying the fatigue model. Moreover, we designed a fast,
easy­to­implement Jupyter notebook to calibrate the model to the used muscle. Finally, an online visualization
system was implemented for the user to know his/her fatigue level and, this way, judge if the model’s behavior
meets the user’s qualitative sensations.

.2. Signal collection and processing
A python library called pytrigno was used to define the settings and access to the EMG channels of the sensors.
Then, the signal was processed through python before calculating the fatigue value. First, the signal is rectified
through the application of a 2𝑛𝑑 order high pass Butterworth filter with cut­off frequency at 20Hz. The absolute
value of the resultant signal was computed, and then a second­order low­pass Butterworth filter with cut­off
frequency at 2 Hz was applied. The signal was then normalised against the Maximum Voluntary contraction of
the selected muscle.

.3. Calibration experiment
The fatigue model needs to be calibrated to the user and selected muscles. For this purpose, we designed a brief
and easy­to­implement calibration exercise in a Jupyter notebook. First, the maximum voluntary contraction
(MVC) was calculated. For this, the user is asked to exert maximum force in a body posture that maximally
engages the selected muscle. For example, the user presses upwards with the extended arm against a mechanical
resistance for the anterior deltoid. An example of this is represented in Fig 4. The user is asked to perform this
exercise 3 times, exerting maximal force for 3 seconds each. These 3­second signals are processed as described
in the previous section. Then the maximum values are selected and averaged between the three signals to extract
the MVC value.

Figure 4: Representation of the MVC calibration exercise for for the fatigue model to use with the anterior deltoid muscle.

Once we know the MVC value, the user performs a second exercise to get the 𝑇𝑒𝑛𝑑 or endurance time, also
required for the fatigue model. This second exercise consists of exerting 0.3 times the MVC for as long as the
effort can be stably exerted. We, therefore, programed an online visualization plot using pyQtgraph that shows
the target value and a region in which the user needs to keep the maximum value of the linear envelope of their
EMG signal. When the linear envelope goes below the low or high threshold, the system saves the time the user
endures. The exercise can be performed several times for practice. Then three ’official’ takes are finally recorded
and averaged. The thresholds were finaly set to +0.1 and ­0.1 after several trials. We can see an screenshot of the
visualization plot in Fig 5

.
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Figure 5: Screenshot of the online visualization plot of the 𝑇𝑒𝑛𝑑 calibration exercise for for the fatigue model. (Green) 0.3 times the MVC.
(Blue) High threshold or limit of the target zone of the experiment. (Yellow) Low threshold or limit of the target zone of the experiment.
(Red) Linear Envelop of the EMG signal measured from the user.

.4. Online fatigue feedback
We programmed an online visual feedback plot to online evaluate the fatigue model. For this, we also used
pyQtgraph. We can see in Fig 6 a screenshot of this visualization system.

Figure 6: Screenshot of the online feedback plot of the fatigue model. (Yellow) Normalised linear envelope of the EMG signal called here
normalised activation measured from the user. (Red) Activation threshold for the fatigue model. (Green) Calculated fatigue value.



Appendix D: Force Feedback
To successfully perform the task in the proposed method, a force feedback is needed showing the target force

or desired force and plotting the force that is being collaboratively exerted. The exerted force was measured
online through a Schunk FTS­Delta SI­330­30 load cell. The force feedback was also programmed using the
pyQtgraph library. We can see a screenshot of it in Fig 7.

Figure 7: Screenshot of the online force feedback visualization during the multi­metric experiment. (Red) Desired force set at 50N. (Yellow)
Collaborative measured force.
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