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Xin Liu
Delft University of Technology

Delft, The Netherlands
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Abstract

This work proposes a method for matching images from
different domains in an unsupervised manner, and detecting
outlier samples in the target domain at the same time. This
matching problem is made difficult by i) the different do-
main images that are related but under different conditions
(e.g. photos of the same location captured in different illu-
minations), ii) unsupervised settings with paired-image in-
formation available only for one of the domains, iii) the ex-
isting of outliers that makes the two domains not fully over-
lap. To this end, we propose an end-to-end architecture that
can match cross domain images in an unsupervised man-
ner and handle not fully overlapping domains by outlier
detection. Our architecture is composed of three subnet-
works, two of which are fed with pairs of source images to
learn the ”match” information. The other subnetwork is fed
with target images, and works together with the other two
subnetworks to learn domain invariant representations of
the source samples and the target inlier samples by apply-
ing a weighted multi-kernel Maximum Mean Discrepancy
(weighted MK-MMD). We propose the weighted MK-MMD,
together with an entropy loss, for outlier detection. The en-
tropy loss iteratively outputs the probability of a target sam-
ple to be an inlier during training. And the probabilities
are used as weights in our weighted MK-MMD for align-
ing only the target inlier samples with the source samples.
Extensive experimental evidence on Office [26] dataset and
our proposed datasets Shape, Pitts-CycleGAN shows that
the proposed approach yields state-of-the-art cross domain
image matching and outlier detection performance on dif-
ferent benchmarks.

1. Introduction
Cross domain image matching is about matching two

images that are collected from different sources (e.g. pho-
tos of the same location but captured in different illumina-
tions or seasons). It has wide application value in differ-
ent areas, with research in location recognition over large
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Figure 1: Proposed method applied on a 2D toy dataset. (a) Source
and target domain data distribution; (b) Source and Target domain
data distribution after only applying domain adaptation (DA) and
image matching; (c) Source and Target domain data distribution
after applying outlier detection based on (b). Comparing (b) and
(c), it shows that outlier detection helps separate the outliers from
the aligned source samples and inlier target samples.

time lags [4], e-commerce product image retrieval using
images taken by smart phone [11], urban environment im-
age matching for geo-localization [35], etc. But cross do-
main image matching is still a challenging problem when
the paired-image information in one of the two domains is
not available during training. And the two domains even do
not fully overlap because of the existing of some outliers in
at least one of the two domains, which affects the matching
performance if not being detected.

The standard method for image matching consists of two
major steps. First, a feature vector is extracted to represent
each image, including the query image and images in the
database. Second, the similarity (e.g. Euclidean distance
similarity) of the query image and the database images is
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computed based on the feature vectors. Then top-K similar
images are returned to the user. State of art cross domain
image matching systems focus on improving feature extrac-
tion, which falls into two main categories. One is the hand-
crafted way of extracting feature descriptors (SIFT [20],
LIOP [43], Patch-CKN [23]) or representations (Fisher Vec-
tors [24], DeCAF [3]) of images and matching with differ-
ent metrics. These methods focused on designing feature
extractors suitable for each domain, which yields domain
invariant descriptors that can then be directly compared.
The other category is based on deep learning models, which
utilizes the deep convolutional neural networks (CNNs) as
feature extractors. This method has proven incredibly ef-
fective in various visual tasks such as object classification
[14, 21, 31, 32], scene recognition [52] and object detection
[6]. We also utilize CNNs as our feature extractors to learn
effective features for our matching task.

The previous works using deep learning frameworks for
cross domain image matching are in supervised settings.
Those research utilized the available information that im-
age A from the source domain matches with image B from
the target domain during training [13, 11, 35]. And they as-
sume that the two domains fully overlap. But this assump-
tion cannot be guaranteed in many cases when the datasets
are collected from various sources. In our work, we perform
unsupervised cross domain image matching which has the
benefit of not needing expensive labeled samples, and han-
dle not fully overlapping domains by outlier detection at the
same time. The setting of our problem is shown in Figure 1.
We only want to correctly align the inliers in the target do-
main with the source domain data, and reject those outliers
in the target domain.

Our inspiration for matching the cross domain images
in an unsupervised manner comes from Siamese network
[2] for image matching and unsupervised domain adapta-
tion used in image classification [38, 27, 41, 50, 18]. There
are two main methods that have been investigated in un-
supervised domain adaptation classification, which are do-
main adversarial network [38, 5, 29, 12] and statistic do-
main adaptive method [41, 50, 40, 18]. In short, domain
adversarial method makes the network cannot distinguish
whether one image is from the source domain or the target
domain. Statistic method (e.g. MK-MMD [9]) compares
the sample distribution in a latent space. In our work, we
choose to investigate the statistic domain adaptive method
to form a loss function, which could leverage the sample
distributions for the matching of non-fully overlapping do-
mains.

Outliers detection [44, 47] is the process of identifying
the new or unexplained set of data to determine if they are
within the norm (i.e., inliers) or outside of it (i.e., outliers).
Outliers refer to the unusual observations that do not occur
regularly or are simply different from the others. Outliers

detection can be portrayed in the context of one-class clas-
sification, which aims to build classification models. For
example, one-class support vector machines [30, 34] are
widely used, effective unsupervised techniques to identify
outliers. The adversarially learned one-class neural net-
works [25, 1] also become popular in recent years for out-
liers detection. It applies an encoder-decoder network archi-
tecture. For our problem, it is not easy to apply these outlier
detection methods directly. Our approach needs to optimize
the learning objective which jointly learns domain adaptive
image matching and the distinguishing of inliers and out-
liers in the target domain. So for matching the pairs of im-
ages, it is hard to achieve with, for example, an encoder-
decoder network.

Several works have focused on cross domain image
matching, yet few have analyzed the impact of existing out-
liers in the target domain dataset on unsupervised image
matching performance. And few public datasets are avail-
able for unsupervised cross domain image matching. For
this purpose, we introduce two new datasets, a Shape toy
dataset and Pitts-CycleGAN dataset. The Shape toy dataset
consists of basic geometric shapes, such as triangle, square,
circle, etc. The source domain of the toy dataset is shapes
with solid lines, where the two images contain shapes from
same categories are a pair. And the target domain con-
tains shapes with colored dash line. The outliers in Shape
dataset are images with single digits or alphabets. The Pitts-
CycleGAN dataset consists of source domain from Pitts-
burgh (Pitts250k) [36] and target domain generated by ap-
plying CycleGAN [53] method to Pittsburgh (Pitts250k).
The outliers in Pitts-CycleGAN dataset are images of ran-
dom sky views or meaningless city views. In a nutshell, our
main contributions are three-fold:

• We propose a loss function to train the deep network
with the following components: (i) supervised con-
trastive loss for labeled source data, which helps the
network learn how two images are matched; (ii) unsu-
pervised entropy loss for unlabeled target data, which
ensures the distinction between inliers and ourliers;
(iii) a loss based on MK-MMD [9], which is to learn
transferable features within the layers of the network
to minimize the distribution difference between the
source and the inlier part of target domain.

• We introduce two datasets, Pits-CycleGAN dataset and
Shape toy dataset, for our research problem and evalu-
ating our method.

The research goal of our work is to investigate the unsuper-
vised cross domain image matching, where the query target
domain does not fully overlap with the source domain be-
cause of the outliers. Thus, the fundamental task of this
work is matching cross domain images in an unsupervised
manner and rejecting the outliers at the same time.
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2. Related Work

Our unsupervised cross domain image matching with
outlier detecting problem belongs to content based image
matching. Many research works have been proposed to im-
prove the matching performance from the feature extraction
and similarity measurement perspectives. However, to our
knowledge, none of existing research works considered the
impact of outliers in query target dataset on the matching
performance.

Image Matching Feature learning based matching meth-
ods become popular due to its superior performance over
hand-crafted features (e.g. SIFT [20]), for many com-
puter vision tasks such as image matching and classifica-
tion. Among the feature learning based matching methods,
a so-called ”Siamese network” architectures [2] is popu-
lar. It integrates feature extraction and comparison in a
single differentiable model that can be optimized end-to-
end. Past works have demonstrated that Siamese networks
learn good features for person re-identification, face recog-
nition, and stereo matching [49, 22, 45]. Many other re-
search works also utilized Siamese architectures for image
matching or retrieval tasks, especially for pairs comparison
tasks. Lin et al. [15] investigated the deep learning method
for cross-view image geo-localization. A deep Siamese net-
work was used to learn feature embedding for image match-
ing. Kong et al. [13] applied Siamese architecture to cross
domain footprint matching. The network was trained with
paired footprint images from two different domains. Tian
et al. [35] utilized Siamese network for building matching,
where the buildings come from two domains of street view
images and bird’s eye view images. However, our work
differs from the existing cross domain image matching ap-
proaches since we do not have the paired information of
images from two domains to train the network directly. In
addition, we also consider the outliers existing in the query
target domain. To solve this problem, we propose to ap-
ply domain adaptation methods in our unsupervised cross
domain image matching and perform outliers distinction at
the same time.

Domain Adaptation Domain Adaptation have been re-
searched over recent years in unsupervised diverse domain
classification tasks. Adversarial learning, GAN-based and
statistic domain adaptation methods are main approaches
that have been utilized in domain adaptation classification
tasks. Ganin et al. [5] proposed domain-adversarial train-
ing of neural networks, which are trained on labeled data
from the source domain and unlabeled data from the tar-
get domain for classification. Tzeng et al. [39] proposed
a framework which combines discriminative modeling, un-
tied weight sharing, and a GAN [7] loss for unsupervised

adaptation classification problems. They called it Adversar-
ial Discriminative Domain Adaptation (ADDA). Sankara-
narayanan et al. [29] provided an adversarial image gen-
eration approach for unsupervised domain adaptation that
directly learns a joint feature space in which the distance
between source and target distributions is minimized. In
[51], the authors proposed a domain adaptation method
called Deep Transfer Network (DTN), which achieved do-
main transfer by simultaneously matching both the marginal
and the conditional distributions with adopting the empiri-
cal Maximum Mean Discrepancy (MMD) [8] nonparamet-
ric metric. Venkateswara et al. [41] investigated a novel
deep learning framework that can exploit labeled source
data and unlabeled target data to learn hash codes for clas-
sification. In their work, they applied MK-MMD [9], which
seeks to learn transferable features to minimize the distri-
bution difference between the source and target domains.
Based on these successful applications of MK-MMD [9],
we also adopt it to adapt different domains and perform in-
stance level reweighting for outliers detection. It is easy to
change MK-MMD [9] metric into a weighted form to deal
with outliers.

Outlier Detection For outlier detection, there are many
existing works, such as Liu etal. [17] proposed a kernel-
based method jointly learning a large margin one-class clas-
sifier and a soft label assignment for inliers and outliers.
Chalapathy etal. [1] proposed an one-class neural network
(OC-NN) model to detect anomalies in complex data sets.
The model is an encoder-decoder architecture. Sabokrou
etal. [25] investigated the adversarially learned one-class
classifier for novelty detection, which also applied encoder-
decoder architecture as part of their network. We do not
change our architecture into the encoder-decoder manner,
instead we inspire by the soft label assignment technique,
jointly implement outlier detection and unsupervised cross
domain image matching in an iteratively sample-reweighted
way.

3. Background on Unsupervised Domain
Adaptive Image Matching

Before introducing our proposed method, we first ex-
plain the image matching method and domain adaptation
approaches that are utilized in our work.

3.1. Image Matching

Our goal is to utilize the paired-image information of
source domain to guide the network to learn the ”match”
concept. It can help find good feature representations for
cross domain images matching.

The Siamese network [2] has been successfully applied
to image matching [16, 48], tracking [33] and retrieval [42].

3



Figure 2: The network for learning unsupervised cross domain image matching and outlier detection. The convolution layers conv4-conv5
and the fully connected layers fc6-fc8 are fine tuned to fit specific tasks. The triplet network shares weights at the same layers. The
contrastive loss makes the network to learn paired-image information from the source. The MK-MMD loss trains the network to learn
transferable features between the source and the target. And the entropy loss helps the network learn to distinct the inlier and the outlier in
the target domain.

We also adopt this architecture as part of our network to
learn deep representations to distinguish matched and un-
matched pairs in source domain. Even this only learns the
paired-image information of the source domain, we want to
utilize it to help learn the ”match” concept between cross
domain images. Let Xs denote the source domain image
set. A pair of images xi, xj ∈ Xs are used as input to part of
the network, as shown in Figure 2. xi, xj can be a matched
pair or unmatched pair. The objective is to automatically
learn a feature representation, f(·), that effectively maps
the input xi, xj to a feature space, in which matched pairs
are close to each other and unmatched pairs are far apart. To
train the network towards this goal, the Euclidean distance
of the matched pairs in the feature space should be small
while the distance of the unmatched pairs should be large.
We employ the contrastive loss in the form of [10]:

L(xi, xj , y) =
1

2
yD2+

1

2
(1− y){max(0,m−D)}2, (1)

where y ∈ {0, 1} indicates non-matching pairs with y = 0
and matching pairs with y = 1, D is the Euclidean distance
between the two feature vectors f(xi) and f(xj), and m is
the margin parameter acting as threshold to separate match-
ing and non-matching pairs.

3.2. Reducing Domain Disparity

Domain adaptation has been studied in deep learning
methods with state-of-the-art algorithms [5, 18, 19, 37] in
recent years. In a deep CNN, the feature representations
transition from generic to task-specific as one goes up from
bottom layers to other layers [46]. The convolution layers

conv1 to conv5 have been shown in [46] to be generic and
thus readily transferable, whereas the fully connected layers
are more task-specific and need to be adapted before they
can be transferred [41]. To make the fully connected lay-
ers adaptive, it is possible to apply MK-MMD [9] on these
layers. MK-MMD [9] produces a nonlinear alignment of
data, which generates a nonparametric distance in Repro-
ducing kernel Hilbert space (RKHS). The distance between
two distributions is the distance between their means in an
RKHS. When two data sets belong to the same distribution,
their MK-MMD is zero.

Our approach attempts to minimize the MK-MMD [9]
loss to reduce the domain disparity between the source
and target feature representations for fully connected lay-
ers, F = {fc6, fc7, fc8}. After applying MK-MMD [9]
on the image matching network in section 3.1, we expect
the learned paired-image information can be domain adap-
tive for cross domain image matching. The multi-layer MK-
MMD loss is given by,

M(us, ut) =
∑
l∈F

d2k(u
l
s, u

l
t), (2)

where, uls = {us,li }
ns
i=1 and ult = {ut,li }

nt
i=1 are the set of

output representations for the source and target data at layer
l, u∗,li is the output representation of inuput image x∗,li for
the lth layer. The MK-MMD measure d2k(·) is the multi-
kernel maximum mean discrepancy between the source and
target representations [9]. For a nonlinear mapping φ(·) as-
sociated with a reproducing kernel Hilbert space Hk and
kernel k(·), where k(x,y) =< φ(x,y) >, the MMD is
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defined as,

d2k(u
l
s, u

l
t) = ||E[φ(us,l)]− E[φ(ut,l)]||Hk

. (3)

The characteristic kernel k(·), is determined as a convex
combination of κ PSD kernels, {km}κm=1, K := {k : k =∑κ
m=1 βmkm,

∑κ
m=1 βm = 1, βm ≥ 0,∀m}. In particu-

lar, we set the kernel weights as βm = 1/κ according to
[19].

4. Proposed Approach
This section presents the proposed method in details. In

unsupervised cross domain image matching with outliers in
the target domain, we are given a source domain data and a
target domain data containing outliers. The source domain
data denoted as Xs ∈ RD×ns are drawn from distribution
ps(x) and the target domain data donated as Xt ∈ RD×nt

are drawn from distribution pt(x), where D is the dimen-
sion of the data instance, ns and nt are number of samples
in source and target domain respectively. Our problem fo-
cus on the setting which assumes that there are sufficient la-
beled source domain data and the label indicates if the two
images are a matched pair or not, Ds = {(xsi , xsj , ysij)}

ns

i 6=j ,
xsi , x

s
j ∈ RD, yij = 0, negative pair, yij = 1, positive

pair, and unlabeled target domain data, Dt = {(xti)}
nt
i=1,

xti ∈ RD, in the training stage. Especially, in the target do-
main, there are some low-density samples that not belong to
any categories of source and target domain, which are called
outliers. In this case, the feature spaces are assumed partly
same: Xs ≈ Xt since the target domain space contains some
samples that not belong to either feature space. And we
have ps(y|x) = pt(y|xinlier), ps(y|x) 6= pt(y|xoutlier). In
addition, due to the domain shift, ps(x) 6= pt(x) even when
the label spaces between domains are the same.

4.1. Model

We implemented the neural network as a deep triplet net-
work which is comprised of three instances of the same
feed-forward network with shared parameters, as shown in
Figure 2. The sub-network instance is a CNN which con-
sists of 5 convolution layers conv1 - conv5 and 3 fully con-
nected layers fc6 - fc8. When fed with 3 samples (a pair
from source domain, a single image from target domain),
the network outputs three different representations. The
representations of the pair are fed into contrastive loss and
the representation of one image from the pair together with
the representation of a target image are fed into entropy
loss. The contrastive loss ensures the learned representa-
tions having a large difference between negative pairs, and
having a small difference between positive pairs. The en-
tropy loss aligns the target samples with source image and
the inliers and outliers in the target domain, which is based
on the similarity of their feature representations.

To address the issue of cross domain (domain shift), we
align the feature representations of the target domain and
the source domain. This is achieved by reducing the domain
discrepancy between the source and the target samples fea-
ture representations at multiple layers of the network. In
the following subsections, we discuss the design of our pro-
posed network in detail.

4.2. Importance Weighted Domain Adaptation

We implement the linear MK-MMD loss according to
[9], and apply MK-MMD to the fully connected layers as
shown in Figurer 2. The output of ith source data point at
layer l is represented as usi and the output of the ith target
data point is represented as uti. Unlike the conventional
MMD loss which is O(n2), the MK-MMD loss outlined in
[9] is O(n) and can be estimated without requiring all the
data. The loss is calculated over every batch of data points
during the back-propagation. Let n be the number of source
data points us := {usi}ni=1 and the number of target data
points ut := {uti}ni=1 in the batch. Equal number of source
and target data points is assumed in a batch and n is even.
Then, the MK-MMD can be defined over a set of 4 data
points zi = [us2i−1,u

s
2i,u

t
2i−1,u

t
2i], ∀i ∈ {1, 2, ..., n/2}.

Thus, the MK-MMD is given by,

M(us, ut) =

κ∑
m=1

βm
1

n/2

n/2∑
i=1

hm(zi), (4)

where, κ is the number of kernels and βm = 1/κ is the
weight for each kernel. And we can expand h(·) as,

hm(zi) = km(us2i−1,u
s
2i) + km(ut2i−1,u

t
2i)

− km(us2i−1,u
t
2i)− km(us2i,u

t
2i−1), (5)

in which, the kernel is km(x,y) = exp(− ||x−y||
2
2

σm
).

With the MK-MMD loss in form of equation 4, we can
interpret that in the minimum calculation unit (hm(zi)), two
target domain images are contributed to the MK-MMD loss
for minimizing the difference between the source domain
and the target domain. When considering the case that
there are outliers in target domain, we can conclude that
we only want to correctly align the source domain data with
those target data that are in the same categories (inliers), but
avoid involving the outliers. We consider the target sample
weights wi for inliers as 1, and for outliers as 0. But in our
setting, the outlier-inlier information is not available for the
target samples. We can only treat the weights as the prob-
ability of the target samples to be inliers. Hence, we can
introduce the weighted MK-MMD as,

Mw(us, ut) =

κ∑
m=1

βm
1

n/2

n/2∑
i=1

w2i−1w2ihm(zi), (6)

5



where, w2i−1 and w2i are the weights of the target
data points ut2i−1 and ut2i in hm(zi) respectively, and
w2i−1, w2i ∈ [0, 1]. If we treat all the target domain data
the same, with wi = 1, then the outliers would introduce
bias to domain adaptation. We will talk about how to obtain
the weight to each target domain data point in next subsec-
tion.

4.3. Outlier detection

In the target domain, data contains some outliers, but we
own no information about which samples are outliers. To
solve this problem, we implement an entropy loss to itera-
tively reassign sample probability of being an inlier, which
provides the weights for the weighted MK-MMD.

In the absence of target data inlier-outlier information,
we use the similarity measure < ui,uj >, to guide the net-
work to learn discriminative inlier-outlier information for
the target data. We define there are three categories of ref-
erence data ur for similarity measure, the source domain
data u1, the pseudo inlier data of target domain u2, and the
pseudo outlier data of target domain u3. An ideal target
output uti needs to be similar to many of the outputs from
one of the categories, {uck}Kk=1. Without loss of general-
ity, we assume K data points for every category c where,
c ∈ {1, 2, 3} and uck is the kth output from category c.
Moreover, uti must be dissimilar to most other reference
outputs uck belonging to a different category. Enforcing
similarity with all the K data points guarantee a robust tar-
get data category assignment. Then the probability measure
for each target sample can be outlined as,

pic =

∑K
k=1 exp(u

t
i>uck)∑C

c=1

∑K
k=1 exp(u

t
i>uck)

, (7)

where, pic is the probability that input target data point
xi is assigned to category c. The exp(·) has been in-
troduced for ease of differentiability and the denominator
ensures

∑
c pic = 1. When the target data point out-

put is similar to one category only, the probability vector
pi = [pi1, ..., piC ]

> tends to be a one-hot vector. A one-
hot vector can be viewed as a low entropy realization of pi,
which means the target data outputs are similar to reference
data outputs in one and only one category. Thus, we intro-
duce a loss to capture the entropy of the target probability
vectors. The entropy loss can be given by,

S(ur, ut) = −
1

nt

nt∑
i=1

C∑
c=1

piclog(pic). (8)

Minimizing the entropy loss gives us probability vectors pi
that tend to be one-hot vectors.

In subsection 4.2, we discussed the weighted form of
MK-MMD loss with weights w2i−1 and w2i. Here, the

sample probabilities of target domain data calculated from
equation 7 are assigned as target sample weights for the
weighted MK-MMD loss. Because only the target sam-
ples that are categorized as source data or pseudo inlier can
be used for reducing the domain disparity in MK-MMD.
Therefore, the probability of target domain sample catego-
rized as ”inlier” is projected into MK-MMD as the weight.
In practice, the weights for different samples in target do-
main are calculated as,

wi =

{
pi1+pi2

pi1+pi2+pi3
if xti categorized as source

pi2
pi1+pi2+pi3

if xti categorized as others
(9)

in which, pi1, pi2, pi3 means the probability of sample xti
categorized as source, pseudo-inlier, pseudo-outlier, re-
spectively. We assign the the weight of target sample that
is classified as similar to source data with the sum of pi1
and pi2. The reason is that we want to align the inliers of
target domain with source data as much as possible. If a tar-
get sample is categorized as ”similar to source”, then it has
a high probability of being an inlier, and therefore should
contribute more to reducing the domain difference.

Algorithm The weighted MK-MMD loss determines how
much the target samples should contribute to reducing do-
main disparity according to their characteristics (source,
pseudo-inlier, pseudo-outlier). Since the domain adaptation
is learned during epochs of training gradually, we decide
to iteratively update the target data probabilities after each
epoch for guiding and correcting the distinction between
outliers and inliers.

The proposed algorithm for unsupervised cross domain
image matching and outlier detection is showed below.
Firstly, we initialize the target sample weights by calculat-
ing the average Euclidean distance of each target sample
with all the source samples, and sort the average distances
in ascending way. The proposed method is built upon the in-
tuitive assumption that outliers originate from low-density
samples. Thus, we can assume that the percentage of out-
liers to all the target data is no more than 50%. For initial-
ization, we set the samples as pseudo-inliers and pseudo-
outliers according to the sorted average Euclidean distance.
So the target samples with distances in the first half of sort-
ing are pseudo-inliers, and the rest are pseudo-outliers. Af-
ter each epoch, we update all the target data probabilities
using equations 7 and 9, where the reference of pseudo-
inlier category and pseudo-outlier category is inherited from
the previous epoch’s prediction. We initialize inliers with
probability 0.7 and outliers with probability 0.3 since we
assume to have three reference categories (source, pseudo-
inlier, pseudo-outlier). And the equal probability of being
one of the three categories is 1

3 .
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Algorithm 1
Input: source domain training data and target domain

training data
Output: target domain training data with sample probabil-

ity of being an inlier
1: Initialization i = 0, calculate the average Euclidean

distance of each target data point with all the source
data points, sort the distances in ascending order and
assign training target samples’ probabilities according
to the sorted distances (xi ∈ first half: pi = 0.7 (pseudo
inliers), xi ∈ second half: pi = 0.3 (pseudo outliers))

2: Repeat:
3: i = i+ 1
4: make new mini batches
5: minimize the overall loss function objective (10)
6: update the target samples’ probabilities of being an in-

lier by equation 7 and 9
7: Until target samples’ probabilities are unchanged or
T > T

′

4.4. Overall Objective

We propose a model for unsupervised cross domain
image matching and outlier detection, which incorporates
learning image matching information from source domain
(1), unsupervised weighted domain adaptation between the
source and the target (6) and outlier detection (8) in a deep
convolutional neural network. The network is trained to
minimize the overall objective:

minuJ = L(us) + γMw(us, ut) + ηS(ur, ut), (10)

where, u := {us
⋃
ut} and (γ, η) control the importance of

domain adaptation (6) and entropy loss (8) respectively. The
loss terms (1) and (8) are determined in the final layer of
the network with the network output u. The weighted MK-
MMD loss (6) is determined between layer outputs {uls, ult}
at each of the fully connected layers F = {fc6, fc7, fc8}.

5. Experiments
In this section, we conduct extensive experiments to

evaluate the proposed method on three different image
datasets. Since we proposed an unsupervised cross do-
main image matching method with outlier detection, the ex-
periments are about evaluating image matching accuracies
alongside the discriminatory capability of the outlier detec-
tion. The performance results are analyzed in details.

5.1. Datasets

We used three datasets to evaluate our algorithm. To the
best of our knowledge, there are no available datasets that
can be used directly for both cross domain image matching
and outlier detection, therefore, we made our own datasets

to proceed the test. Two synthetic image datasets and
one real image dataset are used for our experiments. The
synthetic datasets are Shape dataset and Pitts-CycleGAN
datasets. For the real dataset, we have modified the Office
[26] dataset to form pair images as we need. Sample images
from the three datasets are shown in Figure 3.

Figure 3: Sample images from Shape, Pitts-CycleGAN and Office
datasets. The samples display the source domain, target domain
and outlier images in these three datasets, respectively.

Shape Dataset is one of the artificial datasets we gener-
ate. It contains 60k source (database) images and 30k target
(query) images, and there are 2800 outliers in the 30k im-
ages. The outlier images are made up of single alphabets
or digits. Other ”inlier” images are made up of two basic
geometric shapes, such as square, circle, diamond, triangle
etc. We define two images are a pair if the combination of
shapes in the two images are the same, for example, both
images contain two circles. To make two different domains,
the geometric shapes of source domain are drawn with black
solid lines, while shapes of target domain are drawn with
colored dot lines. For training, there are 12k positive pairs
and 12k negative pairs from source domain, and 24k im-
ages from target domain. We make two query datasets from
source domain and target domain, with 6k images in each.

Pitts-CycleGAN contains 204k Pittsburgh Google Street
View images from Pittsburgh dataset [36] as the source
(database) domain, and 157k target (query) domain artifi-
cial images generated by applying the CycleGAN technique
[53] to the Pittsburgh images. So the target domain images
are in a painting style. In the target domain, there are around
52k outliers out of 157k target domain images, which are
random sky images or city views not containing any useful
landmark information. Since the original Pittsburgh dataset
does not have pairs of images available, we also make pairs
by selecting the images taken at the same location with sim-
ilar views. There are 40k positive pairs and 40k negative
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pairs from source domain, and 80k images from target do-
main for training. For testing, one query set contains 6k
source images and the other query set contains 6k target
images.

Office [26] is currently one of the most popular bench-
mark dataset for object recognition in the domain adaptation
computer vision community for image classification. The
dataset consists of images from 31 different categories of
everyday objects in an office environment. It has 3 domains,
Amazon, Dslr, Webcam. The dataset has around 4,100 im-
ages with a majority of the images (2816 images) in the
Amazon domain. Here we only choose Dslr as source do-
mains and Amazon as target domain for our evaluation. We
make pairs with images from the same categories. In our
case, the outliers come from 2 randomly chosen categories
(’speaker’, ’scissors’) out of the 31 categories, so the rest 29
categories are used as source of ”inlier” images. There are
16k pairs from source domain and 16k images (including
3k outliers) from target domain for training, and 3k source
query images and 3k target query images for testing.

5.2. Implementation Details

For our triplet network, the three sub-networks share the
same architecture and weights. Pre-trained AlexNet [14]
is used for the sub-networks. We finetune the weights of
conv4-conv5, fc6, fc7, fc8. We set the learning rate of fc8
10 times the learning rate of the rest. We vary the learning
rate between 10−4 to 10−5 during training with a momen-
tum 0.9 and weight decay 5 × 10−4. We use batch size
of 64. The image features obtained by the top two sub-
networks are fed into an L2 normalization layer separately
before they are used to compute contrastive loss. The L2
normalization layer normalizes the two feature vectors to
the same scale and makes the network easier to learn. In
this way, the Euclidean distance between two feature vec-
tors is thus upper-bounded by 2. Then we do not need to
train with different margin values in a large range for the
contrastive loss term. In our experiments, we train on mar-
gin values [0.5, 1.0, 2.0] on Shape dataset to determine the
margin value. For the entropy loss and the weighted MK-
MMD loss, we set η = 1.5γ to help preventing the network
cheating by classifying all the samples to outliers. For the
weighted MK-MMD loss, we train with different γ values
[0.1, 0.5, 1.0, 2.0] on Shape dataset to determine the proper
parameter value. For MMD, we use a Gaussian kernel with
a bandwidth σ given by the median of the pairwise distances
in the training data. To incorporate the multi-kernel, we
vary the bandwidth σm ∈ [2−8σ, 28σ] with multiplicative
factor of 2 [41]. The mean average precision (MAP) is used
as our evaluation metric.

5.3. Baseline Methods

For the setting of our research goal, there are no existing
baselines to compare with directly. Thus, we separate our
experiments to research on unsupervised domain adaptive
image matching 5.4 and outlier detection 5.5, with our three
datasets Shape, Pitts-CycleGAN and Office.

For unsupervised domain adaptive image matching, we
assume there are no outliers in the target domain data. We
want to evaluate the unsupervised domain adaptive match-
ing performance. The baselines are,

• the conventional SIFT + Fisher Vector [20, 28]
method

• the Siamese network [2] method, which is only trained
on the source domain pair images

and our method is to jointly learn the contrastive loss L(us)
and MK-MMD lossM(us, ut). It is trained with pairs from
the source domain and images from the target domain, we
call it SiameseDA.

For outlier detection, the target contains inliers and out-
liers for evaluating our proposed method. Our method in
the experiments is DA+OutlierDetection, which learns on
the objective 10 from subsection 4.4. The baselines are,

• (lower bound) SiameseDA trained on the case that the
target domain contains outliers, called SiameseDAOut
in our experiments

• (upper bound) SiameseDA trained on the case that the
target domain does not contain outliers

5.4. Unsupervised Domain Adaptive Image Match-
ing

In this section, we study the performance of the proposed
method for unsupervised cross image matching when there
are no outliers in the target domain. In this case, the learning
objective is

minuJ = L(us) + γM(us, ut), (11)

where, the MK-MMD loss term M(us, ut) is the un-
weighted version as explained in subsection 3.2. We
compare our unsupervised cross domain image matching
method with the conventional SIFT + Fisher Vector method
[20, 28] and Siamese network [2] method.

Parametric Exploration For our learning objective
(equation 11), two main hyperparameters have to be deter-
mined: the margin of contrastive loss and the γ for MK-
MMD loss. With Shape dataset, we explore the impact of
these two hyperparameters on performance respectively.

As mentioned in subsection 5.2, we apply L2 normal-
ization to the features of the pairs from the source domain
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before they are fed into contrastive loss. Then the Euclidean
distance between two feature vectors is in range from 0 to
2. Thus, we choose to train our network on margin values
[0.5, 1.0, 2.0] to determine the margin hyperparameter. At
this point, we set γ = 1.0 for MK-MMD, and only change
the margin value. The performance is evaluated on queries
and database images both from the source domain (mark
as S → S), and we choose rank K = 5 closest retrieval
images for evaluation.

Margin Value MAP (S → S)
0.5 0.517± 0.010
1.0 0.531± 0.007
2.0 0.465± 0.011

Table 1: Exploration of different margin values for contrastive loss
on Shape dataset.
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Figure 4: Empirical analysis: sensitivity of γ for MK-MMD loss
term.

Dataset Source Target

Shape 0.950± 0.002 0.635± 0.001
Pitts-CycleGAN 0.813± 0.001 0.616± 0.0007
Office 0.992± 0.001 0.821± 0.0004

Table 2: Source and target domain difficulty validation on Siamese
network for our three datasets. Mean average precision (MAP) for
matching source domain query to source domain database S → S,
and target domain query to target domain database T → T .

The impact of margin value on performance is given in
Table 1. With margin = 1.0, we get the best performance
in this case.

To determine hyperparameter γ, we keep margin =
1.0, and evaluate with i) query from the source domain and
database from the source domain (S → S), ii) query from
the target domain and database from the source domain

(T → S), iii) query from the target domain and database
from the target domain (T → T ), respectively. The rank is
K = 5 for MAP measure.

We determine the γ based on the MAP of matching query
target image to database source images (T → S). The red
line in Figure 4 indicates that when γ = 1.0, the perfor-
mance is relatively optimal comparing to that with other
γ values. We can notice that the performance change of
T → T matching is consistent with that of T → S as ex-
pected. It shows the domain adaptation technique works for
both matching cross domain images and in-domain match-
ing for the target domain. And it is not surprising to see that
the performance of matching S → S decreases a lot when
applying domain adaptation. Because the network now is
trying to learn the common features of the source and target
domain images, the learned features for matching S → S
thus is less informative than that from network without ap-
plying domain adaptation.

Domain Difficulty When taking cross domain image
matching experiments, we first ensure that source domain
images and target domain images have similar matching dif-
ficulty. We train Siamese network on target domain images
and source domain images separately to test the difficulty,
which is shown in Table 2. The matching results indicate
that the two domains of our datasets have small difference
in terms of matching difficulty, which ensure a relatively ra-
tional comparison. Because if one of the domains is too dif-
ficult to learn, the domain adaptation might not work well.

Comparative Results The results for evaluating the per-
formance of our unsupervised cross domain image match-
ing method are given in Table 3. Our method consistently
outperforms the baselines across all the datasets for cross
domain matching. With the applying of MK-MMD loss for
domain adaptation, the performance of matching S → S
decreases comparing to that of Siamese method without do-
main adaptation. This is within our expectation since the
network may need to learn less from the source domain to
be domain adaptive. In addition, the performance of match-
ing T → S improves a lot for Shape dataset (+0.181) and
Office dataset (+0.184), but for Pitts-CycleGAN it is not
evident, with only +0.0014. This indicates that real life
complex images are more difficult to be aligned to a com-
mon feature space. Moreover, it is worth to notice that
our method also improves the in-domain image matching
(T → T ) of the target domain.

In Figure 5, we also show the retrieval performance in
terms of the trade-off of precision and recall at different
match thresholds for our three datasets. To give informa-
tive results, the interpolated average precision of query im-
ages is used for drawing the precision-recall curves. We can
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Methods Shape Office Pitts-CycleGAN
T → S S → S T → T T → S S → S T → T T → S S → S T → T

SIFT + Fisher Vector 0.025± 0.004 0.036± 0.003 0.034± 0.003 0.035± 0.002 0.120± 0.005 0.035± 0.001 0.0004 0.008± 0.0005 0.003± 0.0003
Siamese 0.083± 0.001 0.950± 0.002 0.317± 0.006 0.107± 0.005 0.992± 0.002 0.772± 0.003 0.0025± 0.0001 0.813± 0.003 0.606± 0.005
SiameseDA 0.264± 0.002 0.531± 0.001 0.462± 0.001 0.291± 0.001 0.997± 0.001 0.775± 0.002 0.0039± 0.0001 0.804± 0.001 0.595± 0.001

Table 3: Mean average precision (MAP) of rank = 5 for unsupervised cross domain image matching experiments on three datasets. T
means target domain, S means source domain. T → S implies matching target domain images to source domain images.
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Figure 5: Comparing our method to baselines for unsupervised cross domain image matching on datasets (a) Shape, (b) Office and (c)
Pitts-CycleGAN. The curves represent interpolated average precision-recall.

clearly see that our method gains over the baseline methods.

5.5. Outlier Detection

As discussed earlier, we assume that the target domain
contains outliers. We evaluate the performance of our pro-
posed method for outlier detection and unsupervised cross
domain image matching at the same time, using Shape,
Pitts-CycleGAN and Office datasets.

Comparative Results With outlier detection, the results
of comparing the performance of our method with up-
per bound (SiameseDA) and baseline (SiameseDAOut) are
given in Table 4. The performance is the MAP of match-
ing target domain query images to source domain database.
For this measurement, the proportion of outliers is 10% in
both training target dataset and testing target dataset. The
retrieval level is rank top-5. In terms of evaluation, we first
distinguish and separate the outliers and inliers in testing
query set. Then we only take the recognized inlier queries
into mean average precision calculation. From Table 4 we
can see, our method outperforms the baseline for all the
three datasets, but is not better than the upper bound as
expected. Interestingly, the exception exists in the perfor-
mance of our method on Pitts-CycleGAN dataset, which
even exceeds the upper bound performance. This remains
to be investigated to see if the outlier detection even helps
unsupervised cross domain image matching when encoun-
tering complex dataset.

Datasets (T → S) SiameseDA SiameseDAOut DA+OutlierDetection
Shape 0.264± 0.001 0.054± 0.0005 0.119± 0.001
Office 0.291± 0.001 0.068± 0.0005 0.159± 0.0007
Pitts-CycleGAN 0.0039± 0.0001 0.0017± 0.00004 0.011± 0.0003

Table 4: Unsupervised cross domain matching MAP performance
with outlier detection for our three datasets. SiameseDA is the
upper bound performance without outliers, SiameseDAOut means
target training set contains outliers.

To show the retrieval performance at different match
thresholds, we present the precision-recall curves for all
the three datasets, as shown in Figure 6. Similarly, the in-
terpolated average precision of query images is used here
for evaluating the performance. The precision-recall per-
formance shows our method gains over the baseline for the
three datasets. The comparative results illustrate that the
outlier detection is necessary to be considered when outliers
may exist in the target domain, which decreases the bias of
cross domain matching evaluation. Some samples of query
and retrievals are given in Figure 7 (a) for Shape dataset, (b)
for Office dataset and (c) for Pitts-CycleGAN dataset.

Impact of Outlier Proportion We also report the F1-
score as a measure to evaluate the performance of outlier-
inlier distinction of our method. Figure 8 shows the F1-
score of out method as a function of the portion of outlier
samples for the three datasets. As can be seen, with the in-
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Figure 6: Comparing our method DA+OutlierDetection to upper-bound method SiameseDA and baseline method SiameseDAOut for the
performance of unsupervised cross domain image matching with outlier detection on datasets (a) Shape, (b) Office and (c) Pitts-CycleGAN.
The curves represent interpolated average precision-recall.

(a) Shape (b) Office (c) Pitts-CycleGAN

Figure 7: Retrieval results for three datasets. For each dataset, the left column shows a query image, the top row shows the top-5 results
for SiameseDA method, the middle row shows the top-5 results for our DA+OutlierDetection method, and the bottom row shows the top-5
results for SiameseDAOut method. Green boxes indicate the corresponding correct test impression.

crease in the number of outliers, our method operates con-
sistently robust and successfully detects the outliers. How-
ever, it is important to notice the downside of this method,
which wrongly recognizes some inliers as outliers.
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Figure 8: Comparisons of F1-scores on three datasets for different
percentages of outlier samples involved in the target domain.

Figure 9: The average distance change of target samples to source
samples before and after training on our method. The upper sub-
plot is the target sample distribution by distance before training,
the bottom one is that after training. The x-axis is the average tar-
get sample distance to source data. This is measured on Shape
dataset.
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Data Distribution Change Since the target training data
are the ”inlier” reference in our system, we measure the
average distance between every testing target sample and
source reference data to show the distinguishing ability of
our method. Figure 9 shows the distance change of target
samples consisting of inliers and outliers before (upper sub-
plot) and after training (bottom subplot) the network on our
method with Shape dataset. The portion of outliers in this
experiment is 10% during training. It is obvious that the
inliers and outliers in the target domain are still hard to dis-
tinguish before training. After training the network on our
method, we can see that in the bottom subplot, the outliers
and inliers are well separated even though it sacrifices some
inliers (false negative).

5.6. Limitations

From the experiment results, it is important to notice that
our outlier detection method categorizes some inlier sam-
ples of the target domain as outliers in the training. This
is mainly caused by the way of initializing the probabilities
of the target domain training data. Since it is unsupervised
learning, we have to initialize with the assumption of the
worst case: the portion of outliers is 50%. And the ini-
tial categorizing of inliers and outliers is measured by av-
erage Euclidean distance between every target sample and
the source domain data, which is not accurate (e.g. outliers
may be closer to the source than inliers). These above lead
some inliers to be classified as outliers in the end.

6. Conclusion
We have proposed a triplet network that is trained for

unsupervised cross domain image matching with outlier de-
tection in an end-to-end manner. The two main parts of
our approach are (i) domain adaptive image matching sub-
network learning with contrastive loss and weighted MK-
MMD loss, (ii) outlier detection with entropy loss by train-
ing the network in an iterative way. The results on sev-
eral datasets demonstrate that the proposed method is ca-
pable of detecting outlier samples in the target domain and
achieving unsupervised cross domain image matching at the
same time. But our method still needs improvement to over-
come the wrongly categorizing inliers to outliers problem.
In addition, it is worth further exploration to see if domain
adaptation alone can produce a good performance for un-
supervised cross domain image matching, even without the
paired-image information from the source domain.
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2
Introduction

Over the past decade, fueled by cheaper storage and availability of ever increasing computational re-
sources, there has been an explosive increase in the collection of data about the same concept from
multiple sources and in multiple formats. This leads to pattern matching scenarios across that necessitate
the development of learning algorithms that have the ability to learn concepts from diverse source of data,
much like human learning. And cross domain image matching is a research object that belongs to this
topic.

There are many methods that have been implemented to deal with the cross domain image matching
problem, such as using hand-crafted features for matching [1], convolutional neural network based image
matching[2] [3], etc. In the convolutional neural network based image matching field, there are also two
main categories as supervised cross domain image matching [3] and unsupervised cross domain image
matching [4]. For supervised approach, images in both domains have labels; for unsupervised approach,
one of the two domains contains only unlabeled samples. When talking about domains, one thing that
can not be ignored is the outlier images in either domain. In the image datasets collected from real world,
it is normal to find that the datasets contain some images that not belong to both domains. And these
images are called outliers, which could compromise the learning model. Therefore, pruning the irrelevant
images, i.e., the outliers, becomes necessary for the cross domain image matching task.

This work aims to investigate the possibility of detecting the outliers as well as achieving the unsuper-
vised cross domain image matching task at the same time by machine learning techniques. Towards that
end, the following literature research is carried out to present an analysis of the state of the art research
in the topic of unsupervised cross domain images matching with detection of outliers at the same time.

In this introduction chapter, section 2.1 presents the motivations behind this research, section 2.2
outlines the research objectives to be addressed. The final section of this chapter shows the outlines of
following chapters.

2.1. Motivation

C ross domain image matching is about searching a large-scale dataset (gallery dataset) to find the
images, which are visually similar to a given query image across different domains. The cross domain

here means that the marginal distributions of the data in the two domains are different, but the conditional
distributions are the same. This is possible because the two domains are assumed to be correlated. This
correlation is often modeled as covariate shift [5]. Cross domain image matching is still a challenging
task since small perceptual differences can result in arbitrarily large differences at the raw pixel level. In
addition, real world cross domain image matching usually encounters the problem that the knowledge of
query specific domain is not available. It means that, for example, the paired information of images in
domain A (gallery dataset) is given, but the information of a similar pair of two images (one from domain
A and the other from domain B) is not available. This makes it difficult to develop a generalized solution
for multiple potential visual domains.
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Cross domain image matching arises in a variety of application domains. For example, matching aerial
photos to GIS map data for location discovery [6] [7] [8], image retrieval from hand drawn sketches and
paintings [9] [10], and matching images to 3D models [11]. Some of these research works present a
semi-supervised setting of the datasets, which means that part of the label information is given for the
query specific domain. But in our work, the unsupervised setting will be considered, which is closer to
the real world cases.

In unsupervised cross domain image matching, the labeled dataset is usually called the source dataset,
the unlabeled query dataset is called the target dataset. Figure 2.1 shows the concept of unsupervised
cross domain image matching with outliers in the query target domain. To solve this challenge, there
are two main approaches, one is the traditional way of extracting feature descriptors (SIFT [12], LIOP
[13], Patch-CKN [14]) or representations (Fisher Vectors [15], DeCAF [16]) of images and matching with
different metrics. These methods focused on designing feature extractor for each domain which yield
domain invariant descriptors which can then be directly compared. However, these approaches would fail
when matching in high oblique views [3]. The other main approach is utilizing the power of deep learning
with proper learning objectives [3][17][18]. Deep convolutional neural net (CNN) features hierarchies have
proven incredibly effective at a wide range of recognition tasks. In this work, we chose to investigate deep
learning approaches for unsupervised cross domain image matching problem.

Figure 2.1: An example of unsupervised cross domain image matching. The left column is the query images from a painting style
target dataset containing sky images as outliers; the right two columns are photographs of city from the source dataset. The query
images and photographs are in different domains. The paired-image information in the source domain is given, which is that the
two photographs in each row are a positive pair. We need to detect the outliers in the query target set to avoid the impact of outliers
on the matching performance.

Even though many deep learning frameworks have been used in cross domain image matching, the
settings of those research are in a supervised manner. Those work have information of what is a matching
pair of images from different domains during training [18][17][3]. In our work, we would like to investigate
the possibility of only using the labeled source domain images and unlabeled target domain image to
achieve the cross domain matching task.

When matching cross domain images, another aspect that can not be ignored is the noise images
existing in the query image domain. For example, in Figure 2.1, both domains’ images should be city
views, but the query dataset may also contain sky only images (e.g. outliers in Figure 2.1) or pedestrian
only images that do not belong to both of the two domains. This appears a lot when collecting data from
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various sources. We call these images as outliers. Previous work treated the query images as they are
all inliers, which actually not and may affect the performance of training the network. In this work, we
investigate the possibility of rejecting the outliers and matching the cross domain images at the same
time. To our knowledge, no previous work focused on this problem setting.

2.2. Research objectives

T he aim of this research work is to investigate the unsupervised cross domain image matching in a case
where the query target domain has some other image categories that do not belong to both of the

two domains, e.g, photos that are not depicting city views. From the research objective, the following
research questions are derived,

• To define an empirical loss for the network that can encourage domain adaptation matching as well
as perform outlier detection.

• Is it possible to use the labels in the source domain to learn a feature space that the outliers and
inliers of the target domain are more distinct?

2.3. Outline

T he rest of the thesis report is organized as follows, Chapter 2 gives the theoretical background on the
deep learning network. Chapter 3 introduces the domain adaptation methods. Chapter 4 explains the

outlier detection approaches. Chapater 5 discusses the evaluation methods used to measure the network
performance in our experiments. Chapter 6 presents some additional experiments that are not mentioned
in the scientific paper.
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3
Background on Deep Learning

3.1. Deep learning

D eep Learning is a sub-field of machine learning methods, which layers of artificial neurons to learn
data representations [1]. Deep learning architectures have gained success in computer vision, speech

recognition, natural language processing, and many other domains. The basic computational unit for
most deep learning frameworks are artificial neurons with trainable parameters, which are trained by
backpropagation procedure [2].

Neural networks Neural networks are modeled as collections of neurons that are connected in an
acyclic graph. They are often organized into distinct layers of neurons. Figure 3.1 illustrates a mathe-
matical model of a neuron. The weights 𝑤። are learnable and control the strength of influence and its
direction of one neuron on an activation function.

Figure 3.1: A mathematical model of a single neuron with ኽ inputs, ኽ ዄ ኻ learnable weights and bias parameters. After the affine
transformation, an activation function ፟ is applied.

Mathematically, each neuron applies an affine transformation of the input x = [𝑥ኻ, 𝑥ኼ, ..., 𝑥፧]ፓ:

𝑢 =
፧

∑
።዆ኻ
𝑤።𝑥። + 𝑏, (3.1)

where 𝑤። is the weight for input 𝑥። and 𝑏 is the bias term. A non-linear activation function 𝑓 is applied
after this affine transformation:

𝑜 = 𝑓(𝑢). (3.2)

, which is the final output 𝑜.
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By connecting multiple neurons in different layers, a neural network is formed. For regular neural
networks the most common layer type is the fully-connected layer in which neurons between two adjacent
layers are fully pairwise connected, but neurons within a single layer share no connections. Figure 3.2 is
an example of a 3-layer neural network.

Figure 3.2: A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer.

Activation functions Some common activation functions are Sigmoid, Tanh and Rectified Linear Unit
(ReLU). Figure 3.3 presents these three non-linearity outputs given a range of input values.

Sigmoid non-linearity has two major drawbacks, which are Sigmoid saturates and killed gradients and
its outputs are not zero-centered. Like the Sigmoid neuron, Tanh activations saturate, but its output is
zero-centered. The ReLU unit has become very popular in the last few years. It has been widely used
in deep learning networks compared to the other two activation functions. ReLU was found to greatly
accelerate the convergence of stochastic gradient descent [3]. Compared to Tanh/Sigmoid neurons that
involve expensive operations, ReLU can be implemented by simply thresholding a matrix of activations at
zero. However, ReLU units can be fragile during training and can ’die’. There is an activation called Leaky
ReLU attempting to fix this problem. Instead of the function being zero when 𝑥 < 0, a leaky ReLU will
instead have a small negative slope.

Learning and optimization Neural networks are usually initialized with small random weights, and
these parameters are updated during training by minimizing a loss function 𝐿. The learning process is
achieved by gradient descent parameter update method with gradients calculated by backpropagation
[2]. A set of parameter update techniques have been developed to optimize the neural network, such as
Stochastic Gradient Descent (SGD) [4], RMSprop [5], Adam [6], and etc.

3.2. Convolutional neural networks

C onvolutional neural networks (ConvNet) take advantage of the fact that the inputs are images, and
they constrain the network in a more reasonable way with less parameters than the regular neural

networks. ConvNets are built by three main types of layers, which are convolutional layer, pooling layer,
and fully-connected layer.

Convolutional layer To have a better understanding of convolutional layer, the convolution operation
is first discussed. A convolution is an integral function that computes the amount of overlap between two
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Figure 3.3: Three common activation functions. Sigmoid maps real numbers to range between [ኺ, ኻ], Tanh squashes real numbers
to range between [ዅኻ, ኻ], and ReLU function is zero when input ጺ ኺ and then linear with slope 1 when input ጻ ኺ.

functions [7]. Its mathematical form is as the following equation:

𝑓 ∗ 𝑔 = ∫
ጼ

ዅጼ
𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏, (3.3)

The integral calculates the product of function 𝑓 and 𝑔 as 𝑔 is shifted over 𝑓 by 𝜏. Convolution is widely
used as filter in image processing [7].

The basic idea of convolutional layer is to connect each neuron to only a local region of the input
volume. The spatial extent of this connectivity is a receptive field of the neuron (or the filter size). The
extent of the connectivity along the depth axis is always equal to the depth of the input volume. Then
the output volume of the conv layer depends on the depth, stride and zero-padding. One of the purpose
for introducing the convolutional layer is to decrease the parameters in the network. So one important
character of convolutional layer is parameter sharing of all neurons in a single depth slice. Then the
forward pass of the convolutional layer can be computed as a convolution of the neuron’s weights with
the input volume since the filers ’slides’ across the input volume. A visualization of convolutional layer is
shown in Figure 3.4

Pooling layer Pooling layer is usually insert between successive convolutional layers. It can progres-
sively reduce the spatial size of the representations, which is helpful for reducing the amount of parameters
and computation of the network, and controlling overfitting. The pooling layer operates independently on
every depth slice of the input and resizes it spatially, using the MAX operation. Thus, the depth of the
output remains unchanged. A visual expression of max pooling with 𝐹 = 2, 𝑆 = 2 is shown in Figure 3.5.

AlexNet In this work, we used AlexNet [3] as sub-network, so it is necessary to introduce AlexNet
briefly. AlexNet was the first work that popularized convolutional networks in computer vision. AlexNet
architecture is illustrated in Figure 3.6. It consists of five convolutional layers and three fully connected
layers, and the output is 1000-class softmax for classification. AlexNet has been widely used as a pre-
trained model in research. Here we also use AlexNet as our sub-network for our task with finetuning
it.
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Figure 3.4: A visualization of convolutional layer. The input volume is of size ፖ ዆ ኿,ፇ ዆ ኿,ፃ ዆ ኽ, and the CONV layer parameters
are ፊ ዆ ኼ, ፅ ዆ ኽ, ፒ ዆ ኼ, ፏ ዆ ኻ. The green box is the output activations, in which each element is computed by elementwise
multiplying the hightlighted input (blue) with the filter (red), summing it up, and then offsetting the result by the bias. [8]

Figure 3.5: A visual expression of max pooling with a stride of 2. Each max is taken over 4 numbers (little 2x2 square). [8]
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Figure 3.6: The network architecture of AlexNet. It was separated into two parallel parts since the GPU calculation was not strong
enough at that time [3].

3.3. Siamese network

F or paired comparison tasks, the Siamese architectures have been widely implemented. It integrates
feature extraction and comparison in a single model that can be optimized end-to-end [9]. The Siame-

seNet architecture is presented in Figure 3.7.

Figure 3.7: The network architecture of Siamese. ፗᎳ and ፗᎴ are a pair of images as input to the two identity sub-networks ፆᑨ(ፗ)
that share weights. Output is ፄᑨ is a scalar energy that measures the compatibility between ፗᎳ and ፗᎴ [10].

It has a pair of input images to two sub-networks that are exactly the same. The output is a scalar
energy 𝐸፰ that measures the similarity between the input pair. For training, a contrastive loss is developed,
which depends on the input and the parameters only indirectly through the energy [10]. The loss function
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is of the form:

𝐿(𝑊) =
ፏ

∑
።
𝐿(𝑊, (𝑌, 𝑋ኻ, 𝑋ኼ)።) (3.4)

𝐿(𝑊, (𝑌, 𝑋ኻ, 𝑋ኼ)።) = (1 − 𝑌)𝐿ፆ(𝐸ፖ(𝑋ኻ, 𝑋ኼ)።) + 𝑌𝐿ፈ(𝐸ፖ(𝑋ኻ, 𝑋ኼ)።), (3.5)

where (𝑌, (𝑋ኻ, 𝑋ኼ)።) is the 𝑖-sample, which is composed of a pair of images and a label (genuine 𝑌 = 1
or impostor 𝑌 = 0), 𝐿ፆ is the partial loss function for a genuine pair, 𝐿ፈ is the partial loss function for
an impostor pair, and 𝑃 is the number of training samples. 𝐿ፆ and 𝐿ፈ are designed in such a way that
minimization of 𝐿 will decrease the energy of genuine pairs and increase the energy of impostor pairs
[10]. Here we employ the contrastive loss [11]:

𝐿(𝑊, (𝑌, 𝐼ኻ, 𝐼ኼ)።) = (1 − 𝑌)𝐷(𝐼ኻ, 𝐼ኼ)ኼ። + 𝑌(𝑚𝑎𝑥(0,𝑚 − 𝐷(𝐼ኻ, 𝐼ኼ)።))ኼ. (3.6)

where 𝐼ኻ and 𝐼ኼ are the output representations of 𝑋ኻ and 𝑋ኼ from SiameseNet, and 𝐷(𝐼ኻ, 𝐼ኼ) is the distance
of the two representations. In our work, we adopt Euclidean distance metric.

In fact, SiameseNet is originally developed for face verification task [10]. But it shows the ability
for image matching, image retrieval tasks in works of recent years. Past works have demonstrated that
Siamese networks learn good features for person re-identication, face recognition, and stereo matching
[12][13][14]. We also employ this network structure as part of our network to help learn deep represen-
tations to distinguish matched and unmatched pairs in cross domain images of our datasets.
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4
Domain Adaptation

In this chapter, we introduce the domain adaptation definition. Since part of our research goal is on
unsupervised domain adaptive image matching, we will mainly discuss about two unsupervised domain
adaptation methods that have been investigated in computer vision research.

4.1. Introduction to domain adaptation

T raditional machine learning paradigms train statistical models to make predictions or more on unseen
data in the future. These models do not guarantee optimal performance if the test data are vastly

different from the training data. To reduce the effort involved in recollecting labeled data and retraining
a new model, knowledge transfer between tasks or domains is desirable [1].

In a standard supervised learning setting, test data are sampled from the same distribution as the
training data. Therefore, trained models can guarantee a level of performance. When test data come
from a distribution very different from training data, transfer of knowledge from the training domain is
necessary to build robust models. Domain adaptation is one of the multiple types paradigms in transfer
learning. For the introduce here, the definitions of domain and task are outlined in line with [1]. A domain
D is said to consist of two components, a feature space 𝒳 and a marginal probability distribution P(X) that
governs the feature space, where X = {xኻ, ...,x፧} ∈ 𝒳 is the set of samples from the feature space. Two
domains are considered different if their feature spaces are different, or their probability distributions are
different. If D = {𝒳, 𝑃(X)} is a domain, then a task T consists of two components, T = {𝑦, 𝑓(⋅)}, where 𝑦
is the label space and 𝑓(⋅) is the function 𝑓 ∶ 𝒳 → 𝑦.

In domain adaptation, the source domain Dፒ and the target domain Dፓ are not the same, and the
goal is to solve a common task T = {𝑦, 𝑓(⋅)}. For example, in an image-recognition task, the source
domain could contain labeled images of objects against a white background, and the target domain could
consist of unlabeled images of objects against a noisy background. Both domains inherently have the
same set of images categories. The difference between the domains is modeled as the variation in their
joint probability distributions 𝑃ፒ(X,Y) ≠ 𝑃ፓ(X, Y) [2]. Standard domain adaptation assumes that there
are plenty of labels data in the source domain, while there is no or few labeled data in the target domain.
Particularly, in unsupervised domain adaptation, there is no labeled data in the target domain. Then the
key task of domain adaptation is to get a good estimation of 𝑃ፓ(X,Y) using the source data distribution
estimation 𝑃ፒ(X,Y). This is possible since the two domains are assumed to be correlated. This correlation
is often modeled as covariate shift, where 𝑃ፒ ≠ 𝑃ፓ and 𝑃ፒ(Y|X) ≈ 𝑃ፓ(Y|X).

4.2. Deep learning domain adaptation with statistic methods

U sing deep networks as feature extractors, the performance of naive statistic domain adaptation meth-
ods can be boosted [3, 4]. Some of the naive statistic domain adaptation methods are, for example,

maximum mean discrepancy (MMD) [5], moment alignment [6], or a loss function that drives the source
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and target classifiers to be indistinguishable. Reducing domain disparity through nonlinear alignment of
data has been made possible with MMD, which is a nonparametric distance kernel Hilbert space (RKHS).
The data are mapped to a high-dimensional space defined by Φ = [𝜙(xኻ), ..., 𝜙(x፧)], 𝜙 ∶ R፝ ⇒ + defines
a mapping function, and + is a RKHS. Gretton et al. in [5] introduced the MMD to estimate the distance
between the source and the target data sets, which is given by

𝑀𝑀𝐷 = | 1𝑛፬

፧ᑤ
∑
።዆ኻ
𝜙(𝑥፬። ) −

1
𝑛፭

፧ᑥ
∑
፣዆ኻ
𝜙(𝑥፭፣)|ኼH. (4.1)

The distance between two distributions is the distance between their means in an RKHS. When two data
sets belong to the same distribution, their MMD is zero.

Long et al. proposed the deep adaptation networks (DAN) model [7], which incorporates an MMD loss
for all the fully connected layers of AlexNet [8]. The MMD loss is estimated for the feature representations
over every minibatch during training. Based on the network architecture of the DAN [7], Venkateswara
et al. [9] developed a hashing algorithm for domain adaptation. The architecture of the domain adaptive
hash (DAH) network is based on the VGG-F, and domain alignment is achieved using MMD. The residual
transfer network (RTN) in [10], which also achieved feature adaptation with MMD loss. In all of these
deep domain adaptation approaches, the weights are shared between the source and the target network
to ensure domain invariant features.

4.3. Domain adversarial learning methods

T he introduce of generative adversarial networks (GANs) by Goodfellow et al. [11] helps the research
in domain adaptation. GANs are networks that generate data (text, images, audio, etc.) such that

the data follow a predetermined distribution 𝑃(𝑋). A vanilla GAN implementation has two deep networks,
generator 𝑔(⋅) and discriminator 𝑓(⋅), competing against each other. The generator network tries to fool
the discriminator network by generating data that appear to belong to 𝑃(𝑋), and the discriminator tries
to distinguish between real images and fake images. The core concept of the GAN is applied to achieve
domain adaptation. The pixel-GAN in [12] is a straightforward extension of the GAN for unsupervised
domain adaptation. The domain adversarial neural network (DANN) [13] trained in a domain adversarial
manner for image classification problem involving domain adaptation. In DANN, the features from the
bottom layers are fed into two branches of the network. The first branch is a softmax classifier trained
with the labeled source data. The second branch is a domain classifier trained to distinguish between
the features of the source and the target. The key in DANN is the gradient reversal layer connecting the
bottom feature extraction layers and the domain classifier. During back propagation, the gradient from
the domain classifier is reversed when learning the feature extractor weights. In this way, the feature
extractor is trained to extract domain invariant features.

Adversarial methods have shown remarkable performance in domain adaptation. However, in our
problem setting, we will utilize statistic domain adaptation to matching cross domain images, and recognize
the outliers in the training data of the target domain at the same time. Statistic method compares the
sample distributions in a latent space. With this, we can form a loss function that could leverage the
sample distributions for the matching of non-fully overlapping domains. Therefore, we convert the MMD
loss to a weighted form to control that only the inliers can contribute to the domain adaptation. The
weight is the probability of a target training sample to be an inlier. The probability is calculated by entropy
loss of an outlier-inlier classifier.
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5
Outlier Detection

A lot of recent vision research works have exploited a massive number of images from the Internet as
a source of training data for different learning tasks. A problem exists that images gathered via various
sources are often noisy, which could compromise the learning model. Therefore, pruning the irrelevant
images, i.e., the outliers, becomes necessary.

5.1. Introduction to outlier detection

A nomalies or outliers can be caused by errors in the data but sometimes are indicative of a new,
previously unknown, underlying process; in fact Hawkins [1] defines an outlier as an observation that

deviates so significantly from other observations as to arouse suspicion that it was generated by a different
mechanism.

Outliers detection [2, 3] is the process of identifying the new or unexplained set of data to determine
if they are within the norm (i.e., inliers) or outside of it (i.e., outliers). Figure 5.1 shows the examples of
the outliers in our datasets. For the Shape dataset, the outliers are images with single digits or alphabets.
For the Pitts-CycleGAN dataset, the outliers are images of sky views or random meaningless city views of
Pittsburgh. For the Office dataset, the outliers are two categories (’scissors’ and ’speaker’) chosen from
the 31 categories of Office [4] dataset.

5.2. Unsupervised outlier detection methods

F or our case, we train our network in an unsupervised manner. The target training data here have no
label information. Thus, we need to consider unsupervised outlier detection for our problem.
Outliers detection can be portrayed in the context of one-class classification, which aims to build

classification models. For example, one-class support vector machines [5, 6] are widely used, effective
unsupervised techniques to identify outliers. In addition, there are many other existing works addressing
this problem, such as Liu etal. [7] proposed a kernel-based method jointly learning a large margin one-
class classifier and a soft label assignment for inliers and outliers. Chalapathy etal. [8] proposed an one-
class neural network (OC-NN) model to detect anomalies in complex data sets. The model is an encoder-
decoder architecture. Sabokrou etal. [9] investigated the adversarially learned one-class classifier for
novelty detection, which also applied encoder-decoder architecture as part of their network.

Considering both cross domain image matching and outlier detection, it is hard to change our architec-
ture into the encoder-decoder manner. Instead we inspire by the soft label assignment technique, jointly
implement outlier detection and unsupervised cross domain image matching in an iteratively sample-
reweighted way. We build an entropy loss to act as the inlier-outlier classifier for outlier detection and
providing the sample weights.
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Figure 5.1: Sample images from Shape, Pitts-CycleGAN and Office datasets. The samples display the source domain, target domain
and outlier images in our three datasets.
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6
Performance Evaluation Method

Our proposed method is evaluated by the ranked retrieval results of the query testing set. The most
standard measure for evaluating ranked retrieval results is Mean Average Precision (MAP), which provides
a single-figure measure of quality across recall levels. Among evaluation measures, MAP has been shown
to have especially good discrimination and stability [1].

6.1. The interpolated precision

I n a ranked retrieval context, appropriate sets of retrieved items are naturally given by the top k retrieved
items. For each such set, precision and recall values can be plotted to give a precision-recall curve,

such as the one shown in Figure 6.1. Precision-recall curves have a distinctive saw-tooth shape. If the

Figure 6.1: Precision-recall curve [2]

(𝑘 + 1)፭፡ item retrieved is nonrelevant then recall is the same as for the top 𝑘 items, but precision has
dropped. If it is relevant, then both precision and recall increase, and the curve jags up and to the right.
It is often useful to remove these jiggles by an interpolated precision. The interpolated precision 𝑝።፧፭፞፫፩
at a certain recall level 𝑟 is defined as the highest precision found for any recall level 𝑟ᖤ ≥ 𝑟:

𝑝።፧፭፞፫፩(𝑟) = 𝑚𝑎𝑥፫ᖤጿ፫𝑝(𝑟
ᖤ) (6.1)

Interpolated precision is shown by a thinner dark blue line in Figure 6.1. With this definition, the interpo-
lated precision at a recall of 0 is well-defined as 1.
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Another benefit to use the interpolated precision in our experiments is that, we can use the mean
of the interpolated precision over images in the testing set. In our evaluation, we need to evaluate our
method on a set of query images, not only one. Thus, we need to calculate the arithmetic mean of the
interpolated precision at that recall level for images in the test set.

6.2. Mean average precision

M ean average precision (MAP) provides a single-figure measure of quality across recall levels. For a
single item need, Average Precision is the average of the precision value obtained for the set of top

𝑘 items existing after each relevant items is retrieved, and this value is then averaged over the ground
true items that should be retrieved. If the set of relevant items for an query 𝑞። ∈ 𝑄 is {𝐼ኻ, ...𝐼፦ᑚ} and 𝑅።፤
is the set of ranked retrieval results from the top result until you get to item 𝐼፤, thus,

𝑀𝐴𝑃(𝑄) = 1
𝑄

ፐ

∑
።዆ኻ

1
𝑚።

፦ᑚ
∑
፤዆ኻ

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅።፤). (6.2)

When a relevant item is not retrieved at all, the precision value in the above equation is taken to be 0.
For MAP, fixed recall levels are not chosen, and there is no interpolation.

When the relevant item expected to be retrieved is one, using MAP for such system evaluation is
problematic. Calculated MAP scores normally vary widely across information needs when measured within
a single system. This means that MAP is more suitable to the case, where a set of test information needs
is large and diverse enough to be representative of the system effectiveness across different queries.
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7
Additional Experiments

In addition to the experiments presented in the scientific paper, some additional experiments results are
shared here.

7.1. Performance on noisy toy dataset

S imilar to the Shape toy dataset mentioned in the scientific paper part, we also create a Noisy Shape
toy dataset. Some samples from this dataset are shown in Figure 7.1. Instead of only drawing shapes

Figure 7.1: Samples from the source domain and the target domain of Noisy Shape toy dataset.

with colored dot lines to represent the target domain, the Noisy Shape dataset also adds Gaussian white
noise to the background. This makes the target domain more difficult to learn.

Domain difficulty We train the Siamese network on image pairs of the source domain and the target
domain respectively to test the domain difficulty. Results in Table 7.1 show that the target domain is much
more difficult than the source domain.

Dataset 𝑆𝑜𝑢𝑟𝑐𝑒 𝑇𝑎𝑟𝑔𝑒𝑡
Noisy Shape 0.950 ± 0.002 0.306 ± 0.001

Table 7.1: Source and target domain difficulty validation on Siamese network for Noisy Shape dataset. Mean average precision
(MAP) for matching source domain query to source domain database ፒ → ፒ, and target domain query to target domain database
ፓ → ፓ.
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Unsupervised cross domainmatching To investigate if our unsupervised cross domain image match-
ing method also works well for the Noisy Shape dataset, we conduct experiments same as that in sec-
tion 5.4 in the scientific paper. The learning objective again is contrastive loss 𝐿(𝑢፬) and MK-MMD loss
𝑀(𝑢፬ , 𝑢፭),

𝑚𝑖𝑛፮J = L(𝑢፬) + 𝛾M(𝑢፬ , 𝑢፭), (7.1)

where, the 𝑢፬ , 𝑢፭ are feature representations of the source domain images and target domain images
respectively.

The matching results are shown in Figure 7.2. It is easy to find that, even with a large 𝛾 value, the
cross domain matching (𝑇 → 𝑆) does not work better than the Siamese network only trained on the source
domain data (𝛾 = 0). It indicates that the domain adaptation method Mk-MMD loss may not be able to
improve the performance of cross domain image matching when the dataset is too complex. This also
illustrates that MK-MMD for domain adaptation is not robust enough for datasets in different complexity.
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