
Delft Center for Systems and Control

Throughput and Stabilisability
Analysis of Mode-Constrained
Stochastic Switching Max-Plus
Linear Systems

Bart de Jong

M
as

te
ro

fS
cie

nc
e

Th
es

is

Throughput and Stabilisability Analysis
of Mode-Constrained Stochastic

Switching Max-Plus Linear Systems

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Bart de Jong

June 27, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Throughput and Stabilisability Analysis of Mode-Constrained

Stochastic Switching Max-Plus Linear Systems
by

Bart de Jong
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: June 27, 2022

Supervisor(s):
dr.ir. A.J.J. van den Boom (Ton)

ir. A. Gupta (Abhimanyu)

Reader(s):
dr. J.W. van der Woude (Jacob)

Abstract

Switching max-plus linear (SMPL) systems written in max-plus algebra (MPA) form a ro-
bust framework to model discrete-event systems (DESs) governed by synchronisation but no
concurrency whose behaviour may switch over time. Their evolution is described by a max-
plus linear state-space representation that may change by switching modes. In their typical
form, switching may depend on the system’s previous state, previous mode, a discrete control
signal, and exogenous stochastic signals.

In this work, we investigate modelling options and performance analyses for SMPL systems
and the application of control to such systems. We propose to model stochastic systems whose
mode sequences are constrained in some form as discrete hybrid stochastic automata (DHSAs).
For such systems, we offer definitions with which to predict system performance measured
in throughput in the form of finite-horizon approximations of a class of asymptotic perfor-
mance metrics. We validate these approximations of a system’s growth rate using a Monte
Carlo (MC) method and corresponding statistical analyses. We use these analyses to form
stabilisability guarantees for SMPL systems as a function of the growth rate of their refer-
ence signal. Lastly, we propose a model predictive control (MPC) framework for stabilising
stochastic mode-constrained SMPL systems. We validate these contributions by considering
three control cases regarding stabilising mode-constrained deterministic and stochastic SMPL
systems under discrete and hybrid control.

Master of Science Thesis Bart de Jong

ii

Bart de Jong Master of Science Thesis

Table of Contents

Preface and Acknowledgements vii

1 Introduction 1
1-1 The State of the Art . 2
1-2 The Aim of this Thesis . 3

1-2-1 Formulation of the research questions 3
1-2-2 Justification of the research questions 3

2 Preliminaries 5
2-1 The Max-Plus Algebra . 6

2-1-1 An introduction to the algebra . 6
2-1-2 Properties of the algebra . 7
2-1-3 Matrices and spectral theory . 8
2-1-4 Norms in the max-plus algebra . 10
2-1-5 Max-plus linear systems . 10

2-2 Model Predictive Control . 13
2-3 Graph Theory and Discrete Automata . 16

2-3-1 General graph theory . 16
2-3-2 Discrete finite automata . 17
2-3-3 Discrete hybrid automata . 18
2-3-4 Discrete hybrid stochastic automata . 19

2-4 Monte Carlo Randomised Algorithms . 21
2-4-1 Monte Carlo method for estimating the expectation of random variables . 21
2-4-2 Monte Carlo method for performance functions 22

Master of Science Thesis Bart de Jong

iv Table of Contents

3 Switching Max-Plus Linear Systems 27
3-1 Deterministic Modelling . 28
3-2 Stochastic Modelling . 31

3-2-1 Randomly switching max-plus-linear systems 31
3-2-2 Type-1 and type-2 switching max-plus-linear systems 31

3-3 Automaton-Based Mode Constraints . 34

4 Growth Rate of SMPL Systems 39
4-1 Growth Rate of Deterministic SMPL Systems 40

4-1-1 Asymptotic growth rate . 40
4-1-2 Maximum growth rate: ρ . 42
4-1-3 Minimum growth rate: ρ . 44

4-1-4 Finite-horizon approximations of the maximum and minimum growth rate 44
4-2 Growth Rate of Stochastic SMPL Systems . 46

4-2-1 Asymptotic (minimum) expected growth rate: ρ and ρ 46

4-2-2 Infinite-horizon approximation of ρ . 48

4-2-3 Finite-horizon approximation of ρ and ρ 50

4-2-4 Extension to mode-constrained systems 51
4-3 Accuracy of the Finite-Horizon Approximations 53

4-3-1 The influence of Nt on the approximation accuracy 53
4-3-2 The influence of Np on the approximation accuracy 54

4-3-3 Compare approximation to the empirical mean using a Monte Carlo algorithm 56

5 MPC Stabilisability of SMPL Systems 65
5-1 Stability of SMPL systems . 66
5-2 Stabilisability of SMPL Systems . 68

5-2-1 Stabilisability of a mode-constrained deterministic system under discrete
control . 69

5-2-2 Stabilisability of a mode-constrained deterministic system under hybrid con-
trol . 70

5-2-3 Stabilisability of a mode-constrained stochastic system under hybrid control 70
5-3 A Stabilising Model Predictive Controller . 72

5-3-1 Model predictive control for general SMPL systems 72
5-3-2 Discrete control of a mode-constrained deterministic SMPL system . . . 77
5-3-3 Hybrid control of a mode-constrained deterministic SMPL system 80
5-3-4 Hybrid control of a mode-constrained stochastic SMPL system 83

Bart de Jong Master of Science Thesis

Table of Contents v

6 Case Study 87

6-1 Problem Setup . 88

6-1-1 System description . 88

6-1-2 Objective function . 91

6-1-3 Formulation of constraints . 93
6-1-4 Optimisation problem . 95

6-1-5 Controller setup . 95

6-2 Discrete Control of a Mode-Constrained Deterministic SMPL System 96

6-2-1 System description . 96

6-2-2 Objective function . 97

6-2-3 Formulation of constraints . 98
6-2-4 Optimisation problem . 98

6-2-5 Controller setup . 99

6-2-6 Results of the simulation . 99
6-3 Hybrid Control of a Mode-Constrained Deterministic SMPL System 101

6-3-1 System description . 101

6-3-2 Objective function . 102

6-3-3 Formulation of constraints . 103
6-3-4 Optimisation problem . 104

6-3-5 Controller setup . 104

6-3-6 Results of the simulation . 104
6-4 Hybrid Control of a Mode-Constrained Stochastic SMPL System 109

6-4-1 System description . 109

6-4-2 Objective function . 110

6-4-3 Formulation of constraints . 110
6-4-4 Optimisation problem . 111

6-4-5 Controller setup . 111

6-4-6 Results of the simulation . 111

7 Conclusion 117
7-1 Discussion and Contributions . 118

7-1-1 Contributions of this research . 118
7-1-2 Answers to the research questions . 119

7-2 Recommendations for Future Research . 121

Master of Science Thesis Bart de Jong

vi Table of Contents

A Appendices 123
A-1 Influence of the Parameter γ in the MPC Cost Function 124
A-2 Supporting MATLAB Scripts . 128

A-2-1 Case1.mlx . 128
A-2-2 Case2.mlx . 137
A-2-3 Case3.mlx . 147
A-2-4 allSequences.m . 158
A-2-5 checkError.m . 159
A-2-6 findOffset.m . 159
A-2-7 generateSemigroup.m . 162
A-2-8 generateSupport.m . 163
A-2-9 generateSystem.m . 164
A-2-10 growthRate.m . 165
A-2-11 modeConstraints.m . 168
A-2-12 mpAdd.m . 169
A-2-13 mpMulti.m . 169
A-2-14 predictionModel.m . 169

Bibliography 171

Glossary 177
List of Acronyms . 177
List of Symbols . 178

Index 181

Bart de Jong Master of Science Thesis

Preface and Acknowledgements

Like all other control engineers and enthusiasts, at Delft Center for Systems and Control
(DCSC), we concern ourselves with predicting the future. Not only do we aim to accurately
predict future states and events, we also try to manipulate them to our liking. Where regular
people would focus these efforts on large-scale and impactful areas such as politics or the
stock market, we dedicate significant portions of our lives to optimising production systems
or imaginary inland waterway networks [1].

To continue that tradition, I explored the remarkable mathematical concept of constrained
stochastic switching discrete-event systems represented in the max-plus algebra. These one
and a half years of psychological adventure have been both exhilarating and exhausting.
However, above all, it has been enlightening. For instance, I learned that I do not need
sunlight to survive, that minus infinity is zero and zero is one, and that one can obtain a
Master’s degree in the highly mathematical field of control engineering while relying solely on
a few alphabets—numbers are for novices. Still, the most obvious lesson I drew from trading
in 6 % of my life1 for this report is that time away from a project is as essential as time spent
on a project. It is fair to say that the majority of my ‘Eureka’-moments happened either
during free time, at my new job, or the day after I took a day off. That is not to say that
I have successfully learned to take days off. If anything, in the past year or so, I too often
declined invitations from friends because ‘I was very close to graduating’. I would like to take
this opportunity to express my gratitude to my friends for inviting me nonetheless and to
encourage them to keep doing this. Please remind me to read this paragraph if I ever decline
invitations because I supposedly cannot find the time. I will then consider reconsidering.

Although all my friends deserve individual acknowledgements, I would like to give prominence
to a special one. Diede, you have made this lonely journey in the midst of a pandemic
rewarding and genuinely enjoyable. You care so much about what I do, even while you could
not care less about constrained stochastic switching discrete-event systems represented in the
max-plus algebra. You motivate me to do the things I like to do and finish the things I have
to finish through your encouraging words and the promise of all the fun things we will do
in the future. I cannot wait to hand in this report and go on our long-awaited holiday trip
together.

11.5 years / 25 years = 0.06. The Master’s programme has even entertained me for 10 % of my life.

Master of Science Thesis Bart de Jong

viii Preface and Acknowledgements

Additionally, I want to spotlight the people who have improved this report’s contents through
their stimulating ideas and critical feedback.
Mike and Ruby, although we should have kept up the tradition of presenting our weekly
progress to each other, I thoroughly enjoyed our time working together, and I am grateful for
all the inspiring max-plus discussions we have had over the months. I trust we can continue
our friendship despite having nothing left to talk about.
Abhimanyu, I greatly appreciate how you helped me get up to speed at the beginning of the
project and your admirable willingness to explain such complex topics to an utterly confused
student. I enjoyed all our meetings together.
Ton, I am envious of your ability to turn discussions on challenging and dry mathematical
concepts into pleasant, informative and entertaining ones. Your appreciation of the beauty
of max-plus algebra convinced me, too, and motivated me to contribute to the field.
Mr Van der Woude, I acknowledge the significant time and effort it takes you to review my
work, and I would like to thank you in advance for your undoubtedly valuable perspective
and feedback.

Thank you all,

Bart

Bart de Jong Master of Science Thesis

Chapter 1

Introduction

The modelling framework of discrete-event systems (DESs) is often employed for situations
in which engineers are not concerned with small-scale continuous dynamics but instead care
about system behaviour governed by discrete actions, spontaneous natural occurrences or
situations in which a particular set of conditions is suddenly met, i.e., events. Such conditions
can, for instance, relate to the synchronisation of other events. In production systems, two
parts can only be joined after they both have been produced in earlier steps. Thus, these
events—production of the parts—need to be synchronised as a condition for a future event—
joining the parts. These discrete and inherently nonlinear dynamics can be elegantly captured
by traversing from the conventional algebra to the max-plus algebra (MPA). A specific type
of system described in the MPA, a switching max-plus linear (SMPL) system, offers a way of
capturing these dynamics into a single set of matrix equalities that can be used for control
purposes. These systems, that may be subject to uncertain dynamics and external constraints,
are the subject of this research. Specifically, this report explores their modelling, performance
evaluation and stabilisability.

First, this chapter introduces the current state of the art regarding the concepts discussed
above and reveals the gaps in the existing research that this thesis aims to fill. Then, Chapter 2
on page 5 provides the reader with a sound mathematical foundation needed to understand
the main body of the report. Chapter 3 on page 27 discusses the modelling framework of
SMPL systems used throughout this work, after which Chapter 4 on page 39 explains and
approximates various performance metrics. Chapter 5 on page 65 builds on these metrics
and offers a stabilising model predictive control (MPC) strategy and related conditions for
stability. Chapter 6 on page 87 validates these results by investigating a series of case studies
through simulations. Finally, Chapter 7 on page 117 reflects on the work outlined in this
thesis and recommends directions for future research.

The following two sections of this chapter justify the research direction.

Master of Science Thesis Bart de Jong

2 Introduction

1-1 The State of the Art

Recognised by many, the 1868 article of James Clark Maxwell [2] marked the beginning of
the field of control theory. It provides a stability analysis of an apparatus used to maintain
a constant rotational velocity of a fictional machine and was often applied to windmills. In
the succeeding 150 years, as chemical and mechanical machines became more complex and
safety concerns were given higher regard, the field has matured and grown to incorporate
many types of mathematical system descriptions. Still, the toolbox we have for analysing
nonlinear systems pales compared to that for linear systems. This deficiency, too, is the case
for systems whose nonlinearity originates from synchronisation.

During the late seventies, however, researchers made strides to translate such systems to a
description that allows for the application of many linear systems theory tools [3]. These
systems, now represented using MPA, could be written in the well-known linear state-space
representation. At the beginning of the millennium, Van den Boom and De Schutter extended
the framework to SMPL systems to improve its modelling potency. As a result of this exten-
sion, it could represent systems with discrete and sudden changes in their behaviour through
switching. The seminal 2012 work of Van den Boom and De Schutter reviewed their MPC
strategy to control these deterministic and stochastic systems within a limited set of achiev-
able throughput [4]. In the last few years, Gupta et al. developed robust controllability and
stabilisability frameworks for SMPL systems that offer additional insight into the conditions
under which they can be effectively controlled [5, 6].

These efforts, however, all assume restrictive conditions on the systems, such as a strict upper
bound on throughput or an unconstrained set of permissible switching sequences. Further-
more, the number of practical frameworks to control such systems is marginal. Section 1-2
discusses the areas of research this thesis aims to explore by proposing research questions.
Throughout the work, we review the state of the art with more specificity. At the end of
the report, Chapter 7 on page 117 reflects on the efforts and proposes additional research
directions.

Bart de Jong Master of Science Thesis

1-2 The Aim of this Thesis 3

1-2 The Aim of this Thesis

As discussed in Section 1-1, we identified specific research areas that are yet to be explored.
This section defines the scope of this thesis by posing four research questions and correspond-
ing subquestions. These questions are used to guide the theory provided in Chapters 3–6.
Chapter 7 on page 117 reflects on these questions and evaluates the answers as submitted by
the individual sections.

1-2-1 Formulation of the research questions

The four research questions and supporting subquestions are listed below. The paragraphs
thereafter detail the establishment and justification of these questions.

1. What is the state of the art of stabilising deterministic and stochastic SMPL systems?

(a) What control strategies exist for stabilising SMPL systems?
(b) What is the achievable set of growth rates under discrete or hybrid control?

2. How can we incorporate mode constraints into a control framework?

(a) What frameworks exist for modelling mode constraints?
(b) How can we ensure a control algorithm does not violate these constraints?

3. How can we quantify the performance of SMPL systems?

(a) What distinctions in throughput metrics can we make?
(b) How can we calculate, approximate and validate these values?

4. How can we stabilise deterministic and stochastic mode-constrained SMPL systems
using discrete and hybrid control?

(a) Under what conditions can an MPC controller stabilise SMPL systems below their
maximum growth rate?

(b) What is the performance advantage of hybrid control over discrete control?

1-2-2 Justification of the research questions

The report’s title shows that this thesis mainly concerns the stabilisation and throughput
analysis of constrained stochastic SMPL systems. As a first approach to performing this task,
Research Question 1 aims to find the state of the art regarding the stabilisation of SMPL
systems. It is meant as a probe for finding existing control strategies and their expected
performance. In this report, as will become clear, we use a system’s growth rate as a metric
for performance, justifying Research Question 1b. These questions are answered throughout
the report.

Master of Science Thesis Bart de Jong

4 Introduction

In order to generalise the framework, we aim to include constraints on the systems’ mode
sequences into the control algorithm. Due to several reasons, many systems may not be
allowed to operate in the same mode indefinitely. For example, a production system sometimes
needs to change recipes because there is a limited number of parts that are needed for a
specific product. Research Question 2a and 2b are used to investigate ways of achieving this
incorporation of constraints. Chapter 3 on page 27 is the primary source for answering these
questions.

An SMPL system’s stability and performance are often related to its growth rate. With
Research Question 3 and its subquestions, we investigate ways of quantifying this metric to
aid in stability and throughput analyses. Chapter 4 on page 39 investigates these topics.

Finally, Chapter 5 on page 65 and Chapter 6 on page 87 aim to answer Research Question 4
and its subquestions. They analyse conditions for stability and propose a framework that can
be used to control SMPL systems. Lastly, they apply the strategy to three case studies to
demonstrate its efficacy.

Together, these research questions demarcate the scope of the research and highlight its
contributions. They are evaluated in Chapter 7 on page 117.

Bart de Jong Master of Science Thesis

Chapter 2

Preliminaries

This chapter introduces the concepts of discrete-event systems (DESs) described with max-
plus algebra (MPA), model predictive control (MPC), graph theory and Monte Carlo (MC)
randomised algorithms. These concepts form the basis of the research in this report, and a
general understanding of them is a prerequisite for reading the remaining main-body chapters.
The theory on these notions is explained in Section 2-1 on page 6, Section 2-2 on page 13,
Section 2-3 on page 16 and Section 2-4 on page 21, respectively.

Master of Science Thesis Bart de Jong

6 Preliminaries

2-1 The Max-Plus Algebra

Many linear control theory tools rely on a general state-space description of a system. This
set of tools includes, for instance, modal decomposition for stability analyses, a large part of
Lyapunov theory [7, 8] and controllability studies. If such a linear state-space description is
not readily available, for instance, for the DESs introduced below, these tools are useless.
This section introduces a mathematical language called max-plus algebra (MPA) to “linearise”
a class of DESs and reallow the application of many of these tools. This class of max-plus
linear (MPL) systems is characterised by synchronisation and no concurrency or choice.
Consider first the definition of a DES posed by Cassandras [9]. The reader is referred to their
work for a broader explanation of DESs and the interpretation of events.

Definition 2.1. [9] A discrete-event system (DES) is a discrete-state, event-driven system,
that is, its state evolution depends entirely on the occurrence of asynchronous discrete events
over time.

A noteworthy curiosity in modelling these systems is that the state vector generally represents
the time instances of event occurrences. For instance, x1(k) may represent the time instance
at which event 1 in cycle k occurred. Then, the time instance of the occurrence of the
next cycle x1(k + 1) may occur as soon as a certain delay a after the previous occurrence,
such that x1(k + 1) ≥ x1(k) + a. Incorporating multiple possible events and assuming no
unnecessary delays, the state-update equation of a DES in conventional algebra generally
follows the nonlinear form of Eq. (2-1). This chapter demonstrates that these equations can
be rewritten in a seemingly linear way, allowing for applying otherwise incompatible tools
from linear systems theory.

xi(k + 1) = max
j=1,...,n

(xj(k) + aij), i = 1, . . . , n, (2-1)

Here, the state vector x(k) contains occurrence times for event k, and aij represents a delay,
i.e., an offset to the simultaneity of event occurrences. The time delay between different
events in the same event cycle k is often referred to as the system’s buffer level.
It is essential to realise that synchronisation, modelled through the max-operation, remains
nonlinear in conventional algebra. It is, however, its representation in the MPA that appears
linear. Unless mentioned otherwise, the ideas and explanations of this section are primarily
based on the book by Heidergott et al. [10].

2-1-1 An introduction to the algebra

Denote by Rε the set R∪ {ε}, where R is the set of real numbers and ε def= −∞. As discussed
further in Section 2-1-2, ε acts as a zero element in the MPA. For a, b ∈ Rε, define the
operations ⊕ (pronounced ‘oplus’) and ⊗ (pronounced ‘otimes’) as

a⊕ b def= max(a, b) and a⊗ b def= a+ b

Then, Eq. (2-1) can be written as

xi(k + 1) =
n⊕
j=1

xj(k)⊗ aij , i = 1, . . . , n

Bart de Jong Master of Science Thesis

2-1 The Max-Plus Algebra 7

Notable are the similarities with a general linear expression of the form:

xi(k + 1) =
n∑
j=1

xj(k)× aij , i = 1, . . . , n,

where × represents multiplication in the conventional sense. This linear expression is the
expansion of conventional matrix-vector multiplication Ax, for any A ∈ Rn×n and x ∈ Rn.

The similarities with these common expressions can be exploited to apply many fundamental
linear algebra concepts to systems written in the MPA. These concepts include matrices and
their eigenvectors and eigenvalues. The promise of applying these concepts to a broader set
of systems has driven researchers to explore the field for over four decades.

During the late seventies, Cunninghame-Green has been influential in developing the MPA
theory [3]. Early steps in the development were taken by the same author in [11]. In the
nineties, Baccelli et al. [12] and Gunawardena [13] wrote two commendable books on the
subject. A more recent book around the MPA is used extensively in this section by Heidergott
et al. [10]. A recent survey on the history of the algebra was published in 2018 [14]. The
first work to feature its application to a railway network was in 1991, in [15]. To explore its
application in this report, the algebra needs to be defined to a greater extent. The following
section aims to achieve this goal. First, the definition of the MPA is augmented with a zero
and a unit element. Then, algebraic properties, including eigenvalues and eigenvectors, are
uncovered.

2-1-2 Properties of the algebra

Recall the zero-element ε def= −∞ and define e def= 0 as the unit element so that the following
holds:

a⊕ ε = ε⊕ a = a and a⊗ ε = ε⊗ a = ε

for all a ∈ Rε.

The set Rε, the operations ⊕ and ⊗, and the elements defined above constitute the MPA,
which is denoted as

Rmax = (Rε, ⊕, ⊗, ε, e)

As introduced before, the algebra shares similarities with conventional linear algebra. This
property constitutes the convenience of exploiting it in settings where conventional linear
algebra is ineffective but the application of linear tools is desirable. The similarities start with
the definition of the order of operations. Analogous to conventional algebra, multiplication
(⊗) comes before addition (⊕). The following expression exemplifies this order:

4⊕ 3⊗ 5 = 4⊕ (3⊗ 5) = 8

Additional algebraic properties of the MPA are defined below. The variables x, y, z are
assumed to be in the set Rε.

Associativity:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z and x⊗ (y ⊗ z) = (x⊗ y)⊗ z

Master of Science Thesis Bart de Jong

8 Preliminaries

Commutativity:
x⊕ y = y ⊕ x and x⊗ y = y ⊗ x

Distributivity of ⊗ over ⊕:

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)

Existence of a zero element:

∀x ∈ Rε : x⊕ ε = ε⊕ x = x

Existence of a unit element:

∀x ∈ Rε : x⊗ e = e⊗ x = x

The zero is absorbing for ⊗:

∀x ∈ Rε : x⊗ ε = ε⊗ x = ε

Idempotency of ⊕:
∀x ∈ Rε : x⊕ x = x

Excluding idempotency, all properties also apply to the conventional algebra. Accordingly,
the MPA is considered an idempotent semiring. This classification is substantiated by the
definition used in [10]:

Definition 2.2. A semiring is a nonempty set R endowed with two binary operations ⊕R
and ⊗R, such that

• ⊕R is associative and commutative with zero element εR;

• ⊗R is associative, distributes over ⊕R, and has unit element eR;

• εR is absorbing for ⊗R.

A semiring is denoted by R = (R, ⊕R, ⊗R, εR, eR). If ⊗R is commutative, then R is called
commutative, and if ⊕R is idempotent, then it is called idempotent.

2-1-3 Matrices and spectral theory

The max-plus algebraic framework is also applicable to matrices. Consider the following
succinct set of properties. For all matrices A ∈ Rq×rε and B ∈ Rq×rε , their sum in the MPA is
defined by

[A⊕B]ij = aij ⊕ bij
for i ∈ {1, . . . , q} and j ∈ {1, . . . , r}. In this report, Rq denotes the vector space of q-tuples
of real numbers. Similarly, Rq×q is the vector space of q × q real matrices. For any α ∈ Rε ,
the scalar multiple is defined by

[α⊗A]ij = α⊗Aij

Bart de Jong Master of Science Thesis

2-1 The Max-Plus Algebra 9

The max-plus Schur product, denoted by “�”, is defined as

[A�B]i,j = [A]i,j + [B]i,j

For matrices A ∈ Rq×rε and B ∈ Rr×pε , the matrix product is defined as

[A⊗B]ik =
r⊕
j=1

aij ⊗ bjk

= max
j∈{1,...,r}

{aij + bjk}

for i ∈ {1, . . . , q} and k ∈ {1, . . . , p}. Notice the analogy with conventional algebra, where ⊕
would be replaced with + and ⊗ with ×.

A zero-matrix in the conventional algebra is analogous to the matrix E(q, r) in the MPA,
whose elements are equal to ε. The identity matrix has the E(q, r)-matrix as its counterpart
and has e along its main diagonal and ε elsewhere. The definition can also be extended to
nonsquare matrices. These two matrices exhibit the following two properties:

A⊕ E(q, r) = E(q, r)⊕A = A

A⊗ E(q, q) = E(q, q)⊗A = A

for any matrix A ∈ Rq×rε . Additionally, for k ≥ 1, also the following hold:

A⊗ E(r, k) = E(q, k)
E(k, q)⊗A = E(k, r)

The concept of eigenvalues and corresponding eigenvectors also exists in the MPA. The
definition is analogous to the conventional one, where, for eigenvalue λ and eigenvector v, the
following holds:

A⊗ v = λ⊗ v

For any matrix A with size n × n, eigenvector v has n entries that are not all equal to
ε. Recall that λ ⊗ v denotes the element-wise addition of λ to the entries in v. The most
straightforward way of obtaining the unique eigenvalue of an irreducible matrix A ∈ Rn×nε

is by considering that it is equal to the finite maximal average circuit weight of the strongly
connected communication graph G(A) [12, Theorem 3.23]. For a general matrix A ∈ Rn×nε ,
any eigenvalue is equal to some cycle mean. As a result, the largest eigenvalue coincides with
the maximum cycle mean.

Lastly, powers translate to the MPA in the following way:

x⊗
q def= x⊗ x⊗ . . .⊗ x︸ ︷︷ ︸

q times

for every x ∈ Rε and for all q 6= 0 ∈ N, where N is the set of natural numbers. For q = 0, we
define x⊗0 def= e = 0. The reader is advised to consult the book by Heidergott et al. [10] to
attain a deeper understanding of the topics discussed in this section.

Master of Science Thesis Bart de Jong

10 Preliminaries

2-1-4 Norms in the max-plus algebra

We define various norms in the MPA that will help quantify the size of vectors and matrices.
Please note that, more so than for conventional algebra, these norms tend to be infinite due
to the nature of the max-plus zero element ε.

The projective norm The projective norm, also, Hilbert’s projective norm, is defined for
vectors x ∈ Rnε in the MPA as [10, Sec. 4.4]:

‖x‖P
def=

n⊕
i=1

xi ⊗
n⊕
i=1

(−xi) = max
i∈n

xi −min
i∈n

xi

For matrices A ∈ Rn×mε , the norm is defined as

‖A‖P = max {‖[A]·i‖P | i ∈ m}

Furthermore, we have that ‖x+ y‖P ≤ ‖x‖P + ‖y‖P.

The supremum norm The supremum norm, also, l∞-norm, is defined for vectors x ∈ Rnε as
the maximum of the absolute value of all entries of x [10, Sec. 3.2.1]:

‖x‖∞
def= max

i∈n
|xi|.

Minimal finite element We denote the minimal finite entry of matrix A ∈ Rn×mε as [10,
Sec. 11.2]:

‖A‖min
def= min

i,j
{ai,j | ai,j 6= −∞, i ∈ n, j ∈ m}

Maximal finite element We denote the maximal finite entry of matrix A ∈ Rn×mε as [10,
Sec. 11.2]:

‖A‖max
def= max

i,j
{ai,j | ai,j 6= +∞, i ∈ n, j ∈ m}

2-1-5 Max-plus linear systems

DESs with a linear max-plus algebraic description are called max-plus linear (MPL) systems.
These are systems that display synchronisation and no concurrency. The MPL-framework
cannot capture the evolution of a system in which concurrency governed by the choice of an
external user occurs. This framework has the following general deterministic form [12]:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)
y(k) = C ⊗ x(k)

where A ∈ Rnx×nxε , B ∈ Rnx×nuε and C ∈ Rny×nxε . It describes a time-invariant system, i.e., a
system that exhibits constant behaviour over time. In this description, k is called the event
counter, and the entries in x(k) and y(k) are event times. u(k) represents an external delay

Bart de Jong Master of Science Thesis

2-1 The Max-Plus Algebra 11

imposed on the system. The system matrices A, B and C contain processing times, similar
to the delays in Eq. (2-1) on page 6.

An autonomous MPL system is one that evolves without external inputs and can thus be
described by the simplified form

x(k + 1) = A⊗ x(k)
y(k) = C ⊗ x(k).

For some systems, the values in the system matrices may change over time. Illustratively, this
may happen for a railway network whose trains have a stricter speed limit during rainfall.
In such a case, the system matrices of the uncertain MPL system are time-varying and the
description changes to:

x(k + 1) = A(k)⊗ x(k)⊕B(k)⊗ u(k)
y(k) = C(k)⊗ x(k)

(2-2)

Note here that the dependence of the matrices on k does not explicitly allow time-driven
changes, only event-driven changes. The description thus cannot account for unforeseen
rainfall while the trains are on the move. However, it illustrates that the system dynamics
can change from one event to the next.

Uncertainty in the dynamics due to, for example, rainfall, is modelled using a stochastic
variable e(k) [16]. The deterministic model of Eq. (2-2) is thus generalised to include this
parametric uncertainty:

x(k + 1) = A(e(k))⊗ x(k)⊕B(e(k))⊗ u(k)
y(k) = C(e(k))⊗ x(k)

(2-3)

A system represented by Eq. (2-3) is called a max-plus linear parameter-varying (MP-LPV)
system [17].

Explicit state-update equations, e.g., the one in Eq. (2-2), offer a direct way to calculate
x(k + 1). However, in many systems, one finds that the updated state vector x(k + 1) is a
function of itself and previous state vectors. In general, systems are described by the implicit
recurrence relation [10]

x(k + 1) =
M⊕
i=0

(Ai ⊗ x(k + 1− i))⊕B ⊗ u(k) (2-4)

where M ≥ 0 represents the number of past cycles on which the updated state depends.

Implicit models are difficult to solve analytically or simulate. Often, repeated substitution
is necessary to find the solution. The following lemma and theorem provide a basis for
transforming the description into an explicit one.

Lemma 2.1. [10, Lemma 2.2] Let A ∈ Rn×nε be such that any circuit in G(A) has an average
circuit weight less than or equal to e. Then, it holds that

A+ =
∞⊕
k=1

A⊗
k = A⊕A⊗2 ⊕A⊗3 ⊕ . . .⊕A⊗n ∈ Rn×nε .

Master of Science Thesis Bart de Jong

12 Preliminaries

Here, G(A) is the communication graph of matrix A. Section 2-3 on page 16 details the graph
theory surrounding this concept.

Now, define A∗ as
A∗

def= E ⊕A+ =
⊕
k≥0

A⊗
k
.

Then, the following theorem holds:

Theorem 2.1. [10, Theorem 2.10] Let A ∈ Rn×nε and b ∈ Rnε . If the communication graph
G(A) has maximal average circuit weight less than or equal to e, then the vector x = A∗ ⊗ b
solves the equation x = (A ⊗ x) ⊕ b. Moreover, if the circuit weights in G(A) are negative,
then the solution is unique.

Heidergott et al. rewrite A0 in Eq. (2-4) on page 11 according to Lemma 2.1 as [10, p. 82]

A∗0 =
n−1⊕
i=0

A0
⊗i ,

given that A0 has circuit weights less than or equal to zero.

Next, for

b(k) =
M⊕
i=1

Ai ⊗ x(k + 1− i),

Eq. (2-4) on page 11 reduces to

x(k + 1) = A0 ⊗ x(k + 1)⊕ b(k). (2-5)

Theorem 2.1 dictates that Eq. (2-5) can be written as

x(k + 1) = A∗0 ⊗ b(k)

= A∗0 ⊗
M⊕
i=1

Ai ⊗ x(k + 1− i)

= A∗0 ⊗A1 ⊗ x(k)⊕ . . .⊕A∗0 ⊗AM ⊗ x(k + 1−M).

(2-6)

These steps transform the implicit form of Eq. (2-4) on page 11 to the explicit form of
Eq. (2-6). The M -th order recurrence relation of Eq. (2-6) can be reduced to a first-order
relation if needed.

A more general way to model DESs with synchronisation but no concurrency is through
switching max-plus linear (SMPL) systems, discussed in Chapter 3 on page 27. Also, the
chapter introduces the modelling of uncertainty in the system’s switching behaviour.

This chapter has omitted many aspects of the algebra for brevity. The referenced literature is
a good starting point for further exploring the field and its capabilities. The following section
discusses the acclaimed control algorithm model predictive control (MPC) and its application
to dynamical systems represented in the MPA.

Bart de Jong Master of Science Thesis

2-2 Model Predictive Control 13

2-2 Model Predictive Control

During the 1970s, a need emerged for more powerful controllers in industrial applications.
Until then, no systematic control algorithms existed that could respect hard constraints on
the process to be controlled [18]. The fundamentals for a new control strategy, MPC, were laid
in subsequent years. Cutler and Ramakers [19] and Richalet et al. [20] are recognised for their
early influential work on MPC. In recent years, many industrial and academic applications
have widely adopted the control method. Virtually every refinery and petrochemical plant
exploits the algorithm [18]. Figure 2-1 suggests that the control structure is more popular
than ever, and its popularity is still on the rise. Its data originate from Google’s Ngram
viewer [21], which uses their vast collection of books to investigate the percentage of 3-grams
equal to ’model predictive control’. Here, a 3-gram is a contiguous set of three words. The
tool also shows that MPC has overtaken ’pole placement’ around 2000 and ’linear quadratic
gaussian’ or ’linear quadratic regulator’ a few years earlier. This popularity analysis is hardly
impeccable; however, it does show the impact of MPC on the industry.

Figure 2-1: Percentage of 3-grams equal to ’model predictive control’ in books of the English corpus of
Google books Ngram viewer [21]. The data are smoothed using a smoothing spline.

The strength of MPC lies partially in its use of a system’s mathematical model. Due to the
incorporation of a model, the controller can optimise the system’s performance within some
predetermined bounds. The bounds may define the extremities of the system’s output but
can also represent limits on the actuator input. Within the MPC’s optimisation problem, a
cost function defines the optimality of a given solution. This section discusses the basic setup
of the MPC algorithm and does not explore the field’s borders, nor does it examine the state
of the art. [22, 23, 24, 25] discuss MPC in more detail.

Consider the following state-space model describing a system with nx states, nu inputs and
ny outputs:

x(k + 1) = Ax(k) +B u(k),
y(k) = C x(k) +Du(k)

(2-7)

Master of Science Thesis Bart de Jong

14 Preliminaries

where x ∈ Rnx is the state vector, u ∈ Rnu is the input vector, and y ∈ Rny is the output
vector. A linear system modelled by Eq. (2-7) on page 13 is called a plus-times linear (PTL)
system. It is the conventional counterpart to the MPL system.

In the MPC framework, the evolution of a model is captured over a prediction horizon Np.
The optimisation algorithm weighs the cost of outputs against the cost of inputs, often using
a cost function of the form:

J(k) = Jout(ũ) + λJin(ũ)

The function J(k) represents the cost of applying a set of inputs ũ over a period [k, k+Np−1].
The nonnegative scalar λ weighs the cost of output reference error against the actuator cost.
The function representing the output cost, Jout(ũ), is based on the predicted state evolution
of the system over the prediction horizon. Generally, for PTL systems, the functions Jout and
Jin are chosen in the following way [26]:

Jout =
Np∑
j=1
||ŷ(k + j | k)− r(k + j)||2

Jin =
Np∑
j=1
||u(k + j − 1)||2

where ŷ(k + j | k) is the output estimation of the system at time step k + j given the
information available at time step k. The signal r(k + j) represents the reference output at
time step k+j. The value of Np is often chosen in such a way as to balance the processing load
against prediction power. A longer prediction horizon results in a prediction of the system’s
behaviour over an extended period. Contrarily, it burdens the processor by increasing the
number of optimisation variables. One could incorporate a control horizon Nc to limit the
processing load while preserving prediction power over a longer period. Often, the input is
assumed to be constant after time step k+Nc: u(k+j) = u(k+Nc−1) for j = Nc, . . . , Np−1
in order to decrease the number of optimisation variables.

At every time step, a cost function J is minimised over the control variables in the set ũ.
Then, only the first element of the set of control actions is applied to the system and the two-
step process repeats. This repetitive process justifies the alternative name of MPC; receding
horizon control.

Figure 2-2 presents a schematic view of the workings of an MPC. The control loop in the
figure is executed once every time step k. Note that all future inputs ũ are used in the model
for predicting the system’s behaviour over Np time steps. However, only the input of one
time step is fed into the actual system. The figure is based on Figure 1.2 from [23].

As introduced, an advantage of MPC over control algorithms such as pole-placement, linear-
quadratic-gaussian (LQG) control and robust algorithms such as H∞, is the possible inclusion
of constraints. Bounds on the input and output are typically considered as constraints.
Additionally, the change of the input signal is often restricted:

umin ≤ u(k) ≤ umax, ∀ k
dumin ≤ ∆u(k) ≤ dumax, ∀ k
ymin ≤ ŷ(k) ≤ ymax, ∀ k

Bart de Jong Master of Science Thesis

2-2 Model Predictive Control 15

Optimiser

Model
-

Predicted
outputs ŷ

Future
errors

Future
inputs ũ

Past inputs
and outputs +

Reference
signal r

Cost
function J Constraints

Figure 2-2: Schematic structure of an MPC, based on Figure 1.2 from [23]

where ∆u(k) = u(k) − u(k − 1). MPC allows for the inclusion of any type of constraint.
However, linear constraints are computationally the most efficient. They are modelled as:

E(k)ũ(k) + F (k)ỹ(k) ≤ h(k)

Here, ỹ(k) is a collection of all ŷ over prediction horizon Np and ũ(k) as defined before:

ỹ(k) =

 ŷ(k + 1 | k)
...

ŷ(k +Np | k)

 , ũ(k) =

 u(k)
...

u(k +Np − 1)


The set ỹ(k) can be obtained as a function of ũ(k) through repetitive substitution of both
parts of Eq. (2-7) on page 13 [23]:

ỹ(k) = Hũ(k) + g(k)

with

H =


CB 0 . . . 0
CAB CB . . . 0

...
...

CANp−1 CANp−2B . . . CB

 and g(k) =


CA
CA2

...
CANp

x(k)

The resulting optimisation problem is convex when using a quadratic cost function J and a
linear set of constraints. Many efficient algorithms exist for solving convex problems, such
as the cutting plane algorithm [27], the ellipsoid algorithm [27] and the interior-point algo-
rithm [28]. Apart from describing the model and its constraints, the MPC tuning parameters
are Np, Nc and λ. Np should be chosen such that the interval (1, Np) contains the system’s
crucial dynamics. The control horizon Nc is by definition at most equal to Np and usually
matches the system order. λ defines the trade-off between the output error and actuator
input and is often selected as small as possible while avoiding a destabilising controller [26].

Many perks of MPC for PTL systems carry over to systems with an MPL description. The
translation of MPC to these systems is detailed in Section 5-3 on page 72.

Master of Science Thesis Bart de Jong

16 Preliminaries

2-3 Graph Theory and Discrete Automata

Two additional concepts support the theory outlined in this thesis: graph theory and discrete
automata. Many of the concepts within the DES theory mentioned before can be related
to graph theory. In some cases, graph theory offers tools to do system analyses otherwise
impossible. The section on graph theory is primarily based on the work by Heidergott et
al. [10]. Furthermore, the framework of discrete automata offers the possibility of modelling
discrete behaviour of systems. More specifically, they may aid in including constraints on the
systems’ mode sequences, as further illustrated in Section 3-3 on page 34. Both concepts are
explored in this section.

2-3-1 General graph theory

A directed graph G(A) associated with matrix A ∈ Rn×nε , also called the communication graph
of A, consists of the pair (V (A), E(A)). Here, V (A) = n is the finite set of vertices, or nodes,
of the graph, where n is the set of all positive integers up to n. The set of ordered pairs of
vertices of the graph, called arcs, is denoted by E(A).

If [A]j,i 6= ε, then G(A) contains an arc (i, j) ∈ E(A) from vertex i to vertex j. Specifically,
the graph contains an incoming arc at j and an outgoing arc at i. The distinction between
the arcs (i, j) and (j, i) justifies the name directed graph. Furthermore, a directed graph is
weighted if a weight w(i, j) is associated with each arc in the set E(A). A sequence of arcs
connecting any two vertices i and j is called a path from vertex i to vertex j. In the special
case that i = j, the path is called a circuit.

A graph G(A) is called strongly connected if every vertex j ∈ V (A) is reachable from any
vertex i ∈ V (A), i.e., if there is a path from i to j for all i, j ∈ V (A). A matrix A associated
with a strongly connected communication graph G(A) is called irreducible.

If a path exists from i to j, then vertex i communicates with vertex j. If a graph is not
strongly connected, not all vertices in V (A) communicate with each other. In that case, it is
possible to subdivide V (A) into a set with vertices that communicate with vertex i, and a set
with vertices that do not. Then, contrary to the second subset, all vertices in the first subset
must communicate with each other. Repeated subdivision of this set results in a partitioning
V1(A) ∪ V2(A) ∪ · · · ∪ Vr(A) = V (A) where each Vq(A), q ∈ r, is a subset with vertices that
communicate only with each other. These partitions are called classes.

The graph G can be partitioned correspondingly, resulting in G = (Vq(A), Eq(A)), q ∈ r,
where Eq(A) is the subset of E(A) of arcs that have both the begin vertex and end vertex
in Vq(A). For every reducible matrix A, there exists a max-plus permutation matrix P such
that its Frobenius normal form has the following structure [29]:

P ⊗A⊗ P⊗−1 = Ã =


A11 ε . . . ε
A21 A22 . . . ε
...

...
Ar1 Ar2 . . . Arr


where A11, . . . , Arr are irreducible submatrices of Ã. The partitions of V (A) corresponding
to the submatrices A11, . . . , Arr are V1(A), . . . , Vr(A). As a result of the permutation, an

Bart de Jong Master of Science Thesis

2-3 Graph Theory and Discrete Automata 17

arc from a vertex in the class Vi(A) to a vertex in Vj(A) exists only if i ≤ j. The classes with
no incoming arcs are called initial classes, and those without outgoing arcs are final classes.
In the Frobenius normal form, V1(A) is an initial class, and Vr(A) is a final class.

2-3-2 Discrete finite automata

As discussed, the framework of deterministic finite automata (DFAs) allows for modelling
discrete system behaviour. To illustrate this, consider first their formal definition:

Definition 2.3. [30, Def. 1.4.2] An automaton is defined by the triple Σ = (Q, U , φ) with

• Q a finite or countable set of discrete states;

• U a finite or countable set of discrete inputs or the input alphabet;

• φ : Q× U → P (Q) a partial transition function.

If Q and U are finite, we speak of a finite automaton.

Given a state q and an input u, the transition function φ(q, u) defines the set of possible next
states. If this set is undefined or has zero or one element for each combination of (q, u), the
finite automaton is a deterministic finite automaton (DFA). An automaton is often called a
finite state machine (FSM), representing its discrete states.

The DFA can conveniently be regarded as a strongly connected, directed and labelled graph
G(V, E), where V = Q is the set of the automaton’s states and E = U ⊂ V × V is the set
of labelled edges [31]. The labelled edges in the graph imply the transition function. See
Figure 2-3 for a deterministic finite automaton representing the switching behaviour of an
exemplary bimodal system. It depicts a deterministic bimodal system that may not stay in
mode 1 for more than one step but may always stay in mode 2. Figure 2-4 on page 18 shows
a nondeterministic finite automaton (nDFA) for a bimodal system where one state-input pair
leads to two possible outcomes, namely φ(1, 2) = {1, 2}.

Often, an input to the automaton, i.e., a label on an edge, is called a letter. A sequence of
inputs forms a word, and the set of all admissible words forms a regular language. A word
is admissible if it can be formed by the succession of letters on a path in G.

1 2
2

1

2

Figure 2-3: A DFA of an exemplary constrained bimodal system that is not allowed to stay in mode 1
for more than one step.

Master of Science Thesis Bart de Jong

18 Preliminaries

1 2

2

2

1

2

Figure 2-4: An nDFA of an exemplary constrained bimodal system that is undefined for the input ‘2’ at
state 1.

2-3-3 Discrete hybrid automata

First introduced by [32], a discrete hybrid automaton (DHA) originated from the connection
between an FSM responsible for modelling the discrete states and a switched affine system
(SAS) responsible for the continuous states. The two parts are connected through an event
generator (EG) and a mode selector (MS); see Figure 2-5. Together, the elements and their
interconnection provide a way of modelling various levels of system behaviour. They may
combine the evolution of switched systems with additional discrete behaviour governed by
DFAs.

Below, the four elements of a DHA are explained.

Switched affine system (SAS) In the DHA framework, a switched affine system (SAS) is
a collection of linear affine systems

xr(k + 1) = Ai(k)xr(k) +Bi(k)ur(k) + fi(k)

yr(k) = Ci(k)xr(k) +Di(k)ur(k) + gi(k)

where xr ∈ Xr is the continuous state vector, ur ∈ Ur is the exogenous continuous input
vector, yr ∈ Yr is the continuous output vector, and the mode i(k) ∈ I is a discrete input
signal. If necessary, reset maps may be added to the model to alter the system state after
transitions.

Event generator (EG) The event generator (EG) generates a signal δe ∈ D ⊆ {0, 1}nc
according to an affine constraint

δe(k) = fEG(xr(k), ur(k), k)

where fEG : Xr×Ur×Z≥0 → D is a vector of descriptive functions of a linear hyperplane, and
Z≥0 is the set of nonnegative integers.

Finite state machine (FSM) A finite state machine (FSM), or automaton, differs from
a hybrid automaton (HA) by the exclusion of the continuous state dynamics. Instead, its
discrete state evolves according to the following state update function:

xb(k + 1) = fFSM(xb(k), ub(k), δe(k)) (2-8)

Bart de Jong Master of Science Thesis

2-3 Graph Theory and Discrete Automata 19

Event
generator
(EG)

Switched
affine
system
(SAS)

Mode
selector
(MS)

Finite state
machine
(FSM)

δe(k)

δe(k)

δe(k)

ub(k)

ub(k)

xb(k)

i(k)

xr(k)

ur(k)

ur(k)

Figure 2-5: A discrete hybrid automaton that consists of an FSM and a SAS, connected through an EG
and an MS. The output signals are omitted. Adopted from [32].

where xb ∈ Xb ⊆ {0, 1}nb is the binary state vector denoting the active state of the FSM,
ub ∈ Ub ⊆ {0, 1}mb is an exogenous binary input and fFSM : Xb×Ub×D → Xb is a deterministic
logic function. It may also have a Boolean output

yb(k) = gFSM(xb(k), ub(k), δe(k))

where yb ∈ Yb ⊆ {0, 1}pb and gFSM : Xr × Ur ×D → Yb is a logic output function.

Mode selector (MS) The mode selector (MS) converts the logic state xb(k), the Boolean
inputs ub(k) and the events δe(k) to a dynamic mode i(k) through a function fMS : Xb ×Ub ×
D → α(I), where α is the set of the binary codings of the elements of I. The output of this
function determines the active mode:

i(k) = fMS(xb(k), ub(k), δe(k))ms

Note that mode switches can only occur at sampling instances. In the case of a switch at step
k, i(k) 6= i(k − 1).

2-3-4 Discrete hybrid stochastic automata

Bemporad and Di Cairano extended the framework of DHAs to discrete hybrid stochastic
automata (DHSAs) that take into account stochastic mode switching [33]. The framework

Master of Science Thesis Bart de Jong

20 Preliminaries

consists of the same three elements SAS, EG and MS, but with a stochastic version of the
FSM, the stochastic finite state machine (sFSM). Specifically, Eq. (2-8) on page 18 is adjusted
to reflect a probability of switching:

P [xb(k + 1) = x̂b] = fsFSM(xb(k), ub(k), δe(k), x̂b)

where fsFSM : 0, 12nb+mb+ne → [0, 1]. Again, xb ∈ {0, 1}nb is the binary state vector denoting
the active state of the sFSM, ub ∈ {0, 1}mb is a vector of exogenous binary inputs, and δe is
the binary output of the EG.

Bart de Jong Master of Science Thesis

2-4 Monte Carlo Randomised Algorithms 21

2-4 Monte Carlo Randomised Algorithms

A randomised algorithm is one that employs some form of randomness in its logic. That is,
for equal inputs, the algorithm may produce different results that may even be incorrect. The
most common type of such algorithms is the MC randomised algorithm, formally defined as:

Definition 2.4. [34, Def. 10.1] A Monte Carlo (MC) randomised algorithm is a randomised
algorithm that may produce an incorrect result, but the probability of such an incorrect result
is bounded.

These MC randomised algorithms are often used for numerical integration, for instance, when
calculating the expectation of random variables whose probability density functions (PDFs)
are challenging to integrate analytically. The method was pioneered by Metropolis and
Ulam [35], but a more recent book by Tempo et al. is the primary source of information
for this section [34]. The next two sections provide an introduction to mean estimation
of random variables using the MC method, and to quantifying the performance of random
systems.

2-4-1 Monte Carlo method for estimating the expectation of random variables

Consider a random variable X and corresponding PDF f(x), whose expected value E [X] is
defined as

E [X] =
∫
xf(x) dx

Consider generating N samples of X according to the PDF f(x) and storing them as:

X1...N
def= {X1, . . . , XN}

The set X1...N is called a multisample of X with cardinality N . Now, the empirical mean is
defined as

ÊN [X] def= 1
N

N∑
i=1

Xi. (2-9)

The following two theorems support the evaluation of the empirical mean against the actual
mean.

Theorem 2.2. [34, Theorem 7.2] For any ε > 0, we have

lim
N→∞

P
[∣∣∣E [X]− ÊN [X]

∣∣∣ > ε
]

= 0.

Moreover, the empirical mean converges with probability one to the expected value, that is

lim
N→∞

ÊN [X] = E [X] .

Theorem 2.3. [34, Theorem 7.3] If the variance Var(X) is finite, then for any N ≥ 1, we
have

Var
(
ÊN [X]

)
def= E

[(
E [X]− ÊN [X]

)2
]

= Var(X)
N

.

Master of Science Thesis Bart de Jong

22 Preliminaries

A consequence of Theorem 2.3, if the variance of the original random variable X is known a
priori, we can compute the number of samples N needed to guarantee a maximum variance
of the empirical mean Var(ÊN [X]):

N ≥ Var(X)
Var

(
ÊN [X]

)
In that case, it is also possible to employ Chebychev’s inequality to calculate the probability
that the empirical mean is off from the actual mean by a value smaller than ε:

Theorem 2.4. (Chebychev inequality) Let x be a random variable with Var(x) < ∞.
Then, for any ε > 0, we have

P [|x− E [x]| ≥ ε] ≤ Var(x)
ε2

.

The formulation of the inequality is taken from [34]. Assuming no bias on the empirical mean
defined in Eq. (2-9) such that E

[
ÊN [X]

]
= E [X], we obtain:

P
[
|ÊN [X]− E [X]| < ε

]
= 1− P

[
|ÊN [X]− E [X]| ≥ ε

]
≥ 1− Var(ÊN [X])

ε2

≥ 1− Var([X])
Nε2

The reader is referred to [36, Sec. 13.3] for a validation of this result and additional information
regarding the topic.

Tempo et al. conclude that, unfortunately, the variance of the original function is often un-
known and that Theorem 2.3 can only be used to conclude that the error is of the order
O(N−1/2). In other words, the precision of the estimation will increase twofold when in-
creasing the number of draws N by a factor of 4. Still, an essential characteristic of the MC
method is that the mean square error (MSE) of the empirical mean is independent of the
problem dimension, justifying the famous statement that the MC method breaks the curse of
dimensionality. Section 2-4-2 discusses a method proposed in [34] to analyse robustness and
quantify the performance of uncertain systems. The theory offers an insightful view on the
application of MC methods.

2-4-2 Monte Carlo method for performance functions

In their work, Tempo et al. introduce a way of quantifying robustness for uncertain sys-
tems [34, Chap. 6]. They define for a system with uncertainties ∆ ∈ BD the performance
function J(∆):

J(∆): D→ R

where D is the uncertainty structured set for which a definition is posed in [34, Sec. 3.6] and
an associated performance level γ. This performance function J(∆) may, for instance, be

Bart de Jong Master of Science Thesis

2-4 Monte Carlo Randomised Algorithms 23

defined to be equal to 0 if a system is stable for a particular uncertainty ∆ and 1 otherwise.
Then, they propose that checking for robust stability is equivalent to checking if

J(∆) ≤ γ

for all ∆ ∈ BD [34, Problem 6.1]. In that case, the sets BG
def= {∆ ∈ BD : J(∆) ≤ γ} and BD

coincide.

In contrast to robust stability, probabilistic robustness of a control system is the probability
of a desired performance level being satisfied. Therefore, they aim to compute the following
quantity [34, Sec. 6.3]:

p(γ) def= P [J(∆) ≤ γ] =
∫
BG
f∆(∆) d∆

Where the uncertainty matrix ∆ has a PDF f∆(∆) and support BD. In such a probabilistic
setting, the measure of robustness is related to the ratio of the volumes Vol(BG)/Vol(BD),
which is, preferably, close to one. Tempo et al. summarise that the probability of performance
p(γ) measures the probability that a level of performance γ is achieved when ∆ has distribution
f∆(∆).

Since this probability is in general difficult to compute analytically, one may aim to compute
the estimate p̂N (γ), instead [34, Sec. 7.1]:

p̂N (γ) = NG

N

where NG is the number of samples ∆i of multisample ∆1...N such that J(∆i) ≤ γ. To this
end, one may define an indicator function IBG(∆) to count these samples:

IBG(∆) =
{
1 if ∆ ∈ BG
0 otherwise

,

such that the estimate p̂N (γ) is equal to the empirical mean of this indicator function:

p̂N (γ) = 1
N

N∑
i=1

IBG (∆i) .

Now, it is favourable to ensure with high probability that the estimation error is smaller than
some value ε [34, Sec. 8.3]:

|p̂N (γ)− p(γ)| < ε.

That is, given accuracy ε ∈ (0, 1) and confidence δ ∈ (0, 1), one should know the minimum
number of samples N required such that the following is satisfied:

P [|p̂N (γ)− p(γ)| < ε] > 1− δ. (2-10)

To that end, consider Chebychev’s inequality from Theorem 2.4 and the Hoeffding inequalities
from the following theorems, taken from [34].

Master of Science Thesis Bart de Jong

24 Preliminaries

Theorem 2.5. (Hoeffding inequality) Let x1, . . . , xN be independent bounded random
variables with xi ∈ [ai, bi] and define sN

def=
∑N
i=1 xi. Then, for any ε > 0, we have

P [sN − E [sN] ≥ ε] ≤ e−2ε2/
∑N

i=1(bi−ai)2

and
P [sN − E [sN] ≤ −ε] ≤ e−2ε2/

∑N

i=1(bi−ai)2
.

If the variables xi are independent and bounded in the interval [a, b], we acknowledge the
following inequality:

Theorem 2.6. Two-sided Hoeffding inequality Let x1, . . . , xN be independent random
variables such that xi ∈ [a, b]. Then, for any ε > 0, we have

P [|sN − E [sN]| ≥ ε] ≤ 2e−2ε2/(N(b−a)2).

These three inequalities form the basis for the Bernoulli bound and the Chernoff bound that
pose a minimum number of samples required to obtain a certain accuracy ε and confidence 1−δ
in Eq. (2-10). They require the definitions of IBG(∆i) = pi and sN =

∑N
i pi. The Bernoulli

bound, found in 1713, is an elegant lower bound on the number of samples required [37]:

Theorem 2.7. (Bernoulli bound) For any ε ∈ (0, 1) and δ ∈ (0, 1), if

N ≥ 1
4ε2δ ,

then, with probability greater than 1− δ, we have |P̂N (γ)− p(γ)| < ε.

However, in 1952, Chernoff found a significant improvement to this bound that is based on
the Hoeffding Inequality [38]:

Theorem 2.8. (Chernoff bound) For any ε ∈ (0, 1) and δ ∈ (0, 1), if

N ≥ 1
2ε2 log 2

δ
,

then, with probability greater than 1− δ, we have |P̂N (γ)− p(γ)| < ε.

The minimum number of samples required, as described by the Bernoulli bound or the Cher-
noff bound, can be computed a priori. Tempo et al. present a table with typical values for ε
and δ and highlight the differences between the Bernoulli and Chernoff bounds [34, Table 8.1].
A replica of that table is shown as Table 2-1.

As opposed to the bounds discussed above, it is possible to compute the classical confidence
intervals a posteriori. In order to calculate the lower and upper confidence intervals pL and
pU such that

P [pL ≤ p(γ) ≤ pU] > 1− δ,

Bart de Jong Master of Science Thesis

2-4 Monte Carlo Randomised Algorithms 25

Table 2-1: Comparison of the minimum number of samples required to obtain a certain precision ε and
confidence 1 − δ, obtained from [34, Table 8.1]

ε 1− δ Bernoulli Chernoff

0.05 0.95 2000 738
0.99 1.00× 104 1060
0.995 2.00× 104 1199
0.999 1.00× 105 1521

0.01 0.95 5.00× 104 1.84× 104

0.99 2.50× 105 2.65× 104

0.995 5.00× 105 3.00× 104

0.999 2.50× 106 3.80× 104

0.005 0.95 2.00× 105 7.38× 104

0.99 1.00× 106 1.06× 105

0.995 2.00× 106 1.20× 105

0.999 1.00× 107 1.52× 105

0.001 0.95 5.00× 106 1.84× 106

0.99 2.50× 107 2.65× 106

0.995 5.00× 107 3.00× 106

0.999 2.50× 108 3.80× 106

one evaluates a posteriori the equations

N∑
k=NG

(
N

k

)
pkL(1− pL)N−k = δL;

NG∑
k=0

(
N

k

)
pkU (1− pU)N−k = δU ;

with δL + δU = δ and the binomial coefficient
(N
k

)
. An explicit solution to these equations is

not available, so one should resort to standard tables or numerical methods. The reader is
advised to consult [34, Sec. 8.3] and [39] for more information.

Master of Science Thesis Bart de Jong

26 Preliminaries

Bart de Jong Master of Science Thesis

Chapter 3

Switching Max-Plus Linear Systems

This chapter discusses the modelling of switching max-plus linear (SMPL) systems used
throughout this thesis. The concept was introduced in 2006 to account for systems with mul-
tiple modes of operation [40]. Each mode describes the system with a max-plus linear (MPL)
state equation and an MPL output equation. The switching may be deterministic, as a func-
tion of only the inputs and the states, or stochastic. The interpretation of SMPL systems in
the event-driven domain is analogous to piecewise-affine (PWA) systems in the time-driven
domain. Similarly, the properties of the individual MPL systems provide insight into the
behaviour of the underlying SMPL system.

This chapter details two equivalent stochastic descriptions of SMPL systems. First, a deter-
ministic model of an SMPL system is introduced in Section 3-1 on page 28. Section 3-2 on
page 31 introduces stochastic switching, and Section 3-3 on page 34 discusses constraints on
the mode and state sequences of SMPL systems.

Master of Science Thesis Bart de Jong

28 Switching Max-Plus Linear Systems

3-1 Deterministic Modelling

A switching max-plus linear (SMPL) system description differs from an MPL representation
by its variable system matrices [40]. In each mode ` ∈ L = nL, where nL is the number of
modes in the set L, the system is described by an MPL state and output equation. Addition-
ally, at each step k, the mode `(k) is the output of a switching function φ(·), leading to the
following general description:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k)
y(k) = C(`(k)) ⊗ x(k)
`(k) = φ (`(k − 1), x(k − 1), v(k), u(k))
`(k) ∈ L = nL, k ∈ N

(3-1)

Here, A(`(k)) ∈ Rnx×nxε , B(`(k)) ∈ Rnx×nuε and C(`(k)) ∈ Rny×nxε are the system matrices for the
`-th mode. Furthermore, the discrete control signal v(k) with |v(k)| = nv is used to influence
the switching behaviour of the system. By changing the mode `(k), the system matrices and
thus its dynamics are altered. In this way, structural system changes such as, for example,
the order of events can be modelled. The function φ(·) that dictates the switching may be
deterministically or stochastically dependent on its input parameters. This section discusses
the deterministic case, while Section 3-2 on page 31 details the stochastic one. Additionally,
Section 3-3 on page 34 discusses the case where the set of mode sequences is constrained.
In their early work [40], Van den Boom and De Schutter ascribe deterministic switching to a
switching variable z(k):

z(k) = Φ(`(k − 1), x(k − 1), u(k), v(k)) ∈ Rnzε , ∀k ∈ N.

If z(k) is in the partition L (i) of Rnzε , the system’s mode is `(k) = i. In the above formulation
and as introduced before, v(k) is an additional discrete control input that influences switching
behaviour. It may, for example, exclusively determine the next mode `(k), or it may influence
the switching stochastics, as explained further in Section 3-2 on page 31.
An autonomous SMPL system description is analogous to an autonomous MPL description,
and has the following form:

x(k) = A(`(k)) ⊗ x(k − 1) (3-2a)
`(k) = φ(`(k − 1), x(k − 1)) (3-2b)
y(k) = C(`(k)) ⊗ x(k) (3-2c)

Again, mode switching is determined through the switching function φ(·) in Eq. (3-2b).
We classify SMPL systems based on various characteristics related to control. As a first
observation, an autonomous system is one under no control. A nonautonomous system is
controlled through discrete, continuous or hybrid control. Eq. (3-1) and Eq. (3-2) are examples
of a description of open-loop SMPL systems. That is, control inputs u(k) and v(k) are
unspecified in the system description. Conversely, a controlled SMPL system is one whose
description also includes a controller. These various forms of SMPL systems are defined in
this report as follows.
First, we distinguish between autonomy levels:

Bart de Jong Master of Science Thesis

3-1 Deterministic Modelling 29

Autonomous system: A system uninfluenced by external inputs.

Nonautonomous system: A system influenced through discrete, continuous or hybrid
control.

Then, we denote whether a system description is in open-loop:

Open-loop system: A system whose description does not specify control inputs
u(k) and v(k).

Controlled system: A system whose description includes a controller.

Lastly, the notions of discrete, continuous and hybrid control are specified as:

Discrete control: Control using the discrete signal v(k) and no continuous
signal u(k).

Continuous control: Control using the continuous signal u(k) and no discrete
signal v(k).

Hybrid control: Control using both the discrete signal v(k) and the contin-
uous control signal u(k).

For simplicity, we combine the vectors on which the switching depends into the vector w(k):

w(k) =
[
`(k − 1) x>(k − 1) u>(k) v>(k)

]>
∈ Rnw

where nw = 1 + nx + nu + nv.
Since the switching is assumed to be deterministic, the following holds:

P [L(k) = `(k) | w(k)] ∈ {0, 1}

and
nL∑

`(k)=1
P [L(k) = `(k) | w(k)] = 1

Here, L(k) is a stochastic variable denoting the system’s mode at event step k and `(k) is its
value.
Consider Example 3.1, which shows a case of deterministic switching for an SMPL system
with three modes.

Example 3.1. Consider an unspecified SMPL system with three modes that is in mode 1
at event step k. Let v(k) be a control variable determining the switching sequence. This
influence is achieved by defining the probability functions

P [L(k) = 1 | 1, x(k − 1), u(k), v(k)] =
{

1 for v(k) = 1, ∀k
0 for v(k) 6= 1, ∀k

P [L(k) = 2 | 1, x(k − 1), u(k), v(k)] =
{

1 for v(k) = 2, ∀k
0 for v(k) 6= 2, ∀k

P [L(k) = 3 | 1, x(k − 1), u(k), v(k)] =
{

1 for v(k) = 3, ∀k
0 for v(k) 6= 3, ∀k

Master of Science Thesis Bart de Jong

30 Switching Max-Plus Linear Systems

Evidently, for `(k) = 1, the control variable v(k) solely and deterministically controls the next
mode `(k+1). The previous state x(k−1) and continuous control signal u(k) do not influence
the switching behaviour. Often, as is the case for this example, the probability functions for
deterministic switching are piecewise constant with values of either 0 or 1 [4].

Finally, we define three structural properties of SMPL systems. For a given integer N , let the
set LN =

{
[`1 . . . `N]> | `m ∈ {1, . . . , nL}, m = 1, . . . , N

}
. Here, A> denotes the transpose

of matrix A.

Definition 3.1. [12] Let α ∈ R be given. Define the matrices A(`)
α with

[
A

(`)
α

]
i,j

=
[
A(`)

]
−α.

An SMPL system is structurally controllable if there exists a finite positive integer N such
that for all ˜̀= [`1 . . . `N]> ∈ LN the matrices

ΓNα (˜̀) =
[
A

(`N)
α ⊗ · · · ⊗A(`2)

α ⊗B(`1) A
(`N)
α ⊗A(`N−1)

α ⊗B(`N−2) A
(`N)
α ⊗B(`N−1) B(`N)

]
are row-finite, i.e., in each row, there is at least one entry different from ε.

Definition 3.2. [6, Def. 4.5] Let α ∈ R be given. Define the matrices A(`)
α with

[
A

(`)
α

]
i,j

=[
A(`)

]
− α. An SMPL system is weakly structurally controllable if for a finite positive integer

k ≤ n such that there exists a mode sequence ˜̀= [`1 . . . `k] such that the matrices

Γkα(˜̀) =
[
A

(`N)
α ⊗ · · · ⊗A(`2)

α ⊗B(`1) A
(`N)
α ⊗A(`N−1)

α ⊗B(`N−2) A
(`N)
α ⊗B(`N−1) B(`N)

]
are row-finite, i.e., in each row, there is at least one entry different from ε.

Definition 3.3. [12] Let α ∈ R be given. Define the matrices A(`)
α with

[
A

(`)
α

]
i,j

=
[
A(`)

]
i,j
−

α. An SMPL system is structurally observable if there exists a finite positive integer M such
that for all ˜̀= [`1 . . . `M]> ∈ LM the matrices

OMα (˜̀) =



C
(`M)
α ⊗A(`M)

α ⊗ · · · ⊗A(`2)
α

...
C

(`M)
α ⊗A(`M)

α ⊗A(`N−1)
α

C
(`M)
α ⊗A(`M)

α

C
(`M)
α


are column-finite, i.e., in each column, there is at least one entry different from ε.

The wording of Definition 3.1 and Definition 3.3 has been taken from work by Van den Boom
and De Schutter [4].

Bart de Jong Master of Science Thesis

3-2 Stochastic Modelling 31

3-2 Stochastic Modelling

The switching in SMPL systems may also depend on nondeterministic influences. The travel
time between two stations in a train network may unpredictably increase due to a faulty train.
In some cases, this uncertainty may be modelled as parametric uncertainty, as in Section 2-1
on page 6. Other times, the uncertainty can only be captured in the switching behaviour.
This happens when, for example, a connection between two stations is lost due to a broken
track and the structure of the corresponding system matrices changes. This section deals
with unpredictable mode switching and reviews two equivalent uncertain SMPL descriptions:
type-1 and type-2. First, Section 3-2-1 introduces lesser-used randomly switching max-plus
linear (RSMPL) systems.

3-2-1 Randomly switching max-plus-linear systems

Introduced by Van den Boom and De Schutter in 2007 [41], RSMPL systems switch modes
based on a stochastic sequence. For a system described by the following state-update equa-
tions, the probability of switching from a mode i to a mode j is assumed to be given by
Ps(i, j), ∀i = 1, . . . , nL, j = 1, . . . , nL:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k)
y(k) = C(`(k)) ⊗ x(k)
`(k) ∈ L = nL, k ∈ N,

where
P [L(k) = j | `(k − 1) = i] = Ps(i, j).

In other words, the probability of switching to a certain mode is entirely determined by the
system’s previous mode. No internal or external signal may further alter the probability.
Such a system description is an exciting subject for throughput analyses under continuous
control. It, however, offers no possibility for discrete or hybrid control.

Often, both deterministic and stochastic variables determine the switching of an SMPL sys-
tem [42, 4]. In that case, the switching depends on the previous mode `(k − 1), the previous
state x(k − 1), the input variable u(k) and an additional control signal v(k). The system is
then categorised as a type-1 SMPL system, introduced in the following section.

3-2-2 Type-1 and type-2 switching max-plus-linear systems

Van den Boom and De Schutter distinguish between the equivalent type-1 and type-2 stochas-
tic SMPL systems, where the first are defined as follows.

Definition 3.4. (Type-1 SMPL system) [4] Consider a system described by Eq. (3-1)
on page 28 and nL possible modes and let the probability of switching to mode `(k) given
`(k − 1), x(k − 1), u(k), v(k) be denoted by P [L(k) = `(k) | `(k − 1), x(k − 1), u(k), v(k)].
Then, the system is a type-1 SMPL system if for any given `(k) ∈ {1, . . . , nL}, P [L(k) =
`(k) | ·, ·, ·, ·] is a probability function that is piecewise affine on polyhedral partition of the
space of the variables `(k − 1), x(k − 1), u(k), v(k).

Master of Science Thesis Bart de Jong

32 Switching Max-Plus Linear Systems

Here, a polyhedral partition is defined as:

Definition 3.5. [4] A polyhedral partition {Γi}i=1,...,ns of the space Rnw is defined as the
partitioning of the space Rnw into non-overlapping polyhedra Γi, i = 1, . . . , ns of the form

Γi = {w(k) | Siw(k) �i si}, for i = 1, . . . , ns,

for some matrices Si ∈ Rq×nw and vectors si ∈ Rq and with �i a vector operator where the
entries stand for either ≤ or < and there holds

ns⋃
i=1

Γi = Rnw and Γi ∩ Γj = ∅ for i 6= j.

Through these definitions, we derive that for any type-1 SMPL system, there exist a poly-
hedral partition {Γi}i=1,...,ns of Rnw , vectors αm,i and scalars βm,i for i = 1, . . . , ns and
m ∈ {1, . . . , nL} such that the probability P can be written as

P [L(k) = `(k) | w(k)] = α>`(k),iw(k) + β`(k),i, if w(k) ∈ Γi

for w(k) =
[
`(k − 1) x>(k − 1) u>(k) v>(k)

]>
∈ Rnw .

In general, since P is a probability, the following conditions hold for nL possible modes:

0 ≤ P [L(k) = `(k) | w(k)] ≤ 1

and
nL∑

`(k)=1
P [L(k) = `(k) | w(k)] = 1.

Because of its form, a type-1 SMPL model offers intuitive insight into the system’s dynamics.
[43] proposes a type-2 SMPL system that is more easily translated into other hybrid system
descriptions, such as a PWA system or a max-min-plus-scaling (MMPS) system [44]. The
following definition is taken from later work by Van den Boom and De Schutter.

Definition 3.6. (Type-2 SMPL system) [4] A type-2 SMPL system is defined as follows:
Consider the system described by Eq. (3-1) on page 28 with nL possible modes. The mode
`(k) = m if

z(k) =
[
`(k − 1) x>(k − 1) u>(k) v>(k) d(k)

]>
∈ Ωm ⊂ Rnz

for m = 1, . . . , nL, where d(k) ∈ [0, 1] is a uniformly distributed stochastic scalar signal, and
where Ωm is a union of polyhedra, so Ωm = ∪nmj=1Ωm, j in which {Ωm, j}m=1, ..., nL; j=1, ..., nm is
a polyhedral partition.

The polyhedral partition {Ωm,j}m=1,...,nL, j=1,...,nm can be parameterised by

Ωm,j = {z(k) | Rm,jz(k) �m,j rm,j}, for j = 1, . . . , nm.

Van den Boom and De Schutter prove that the classes of type-1 SMPL systems and type-2
SMPL systems are equivalent in the sense of input-state-output-mode behaviour [4]. The
reader is referred to their work for the proof. They also propose and prove the following:

Bart de Jong Master of Science Thesis

3-2 Stochastic Modelling 33

Proposition 3.1. [4] A type-2 SMPL system can always be rewritten in the form:

x(k) = Ā(κ(k)) ⊗ x(k − 1)⊕ B̄(κ(k)) ⊗ u(k)
y(k) = C̄(κ(k)) ⊗ x(k)

such that the mode κ(k) = m if

z(k) =
[
κ(k − 1) x>(k − 1) u>(k) v>(k) d(k)

]>
∈ Ω̄m

where d(k) ∈ [0, 1] is a uniformly distributed stochastic scalar signal, and where {Ω̄m}m=1,...,nκ
is a polyhedral partition and Ω̄m can be written as

Ω̄m = {z(k) | Rmz(k) �rm rm}.

Here,

Rm,i =

ᾱ>m−1,i −1
−ᾱ>m,i 1
Si 0

 , rm,i =

β̄m−1,i
−β̄m,i
−si

 , �rm,i=

<≤
�si


They also introduce the notion of structural finiteness for SMPL systems in the following
way:

Definition 3.7. [4] an SMPL system is structurally finite if for any finite (x(k−1), u(k)) we
have that x(k) and y(k) are finite for all `(k − 1) ∈ {1, . . . , nL} and any d(k) ∈ [0, 1].

This notion is captured in their lemma:

Lemma 3.1. [4] an SMPL system is structurally finite if and only if the matrix

H(`) =
[
A(`) B(`) ε

ε ε C(`)

]

is row-finite for all ` = 1, . . . , nL.

The authors note that physical systems are typically structurally finite. This characteristic is
necessary to convert between type-2 SMPL systems and type-d PWA systems of the form

x(k) = Aix(k − 1) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi
for

x(k − 1)
u(k)
d(k)

 ∈ Ωi,

where fi ∈ Rn, gi ∈ Rl, Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rl×n and Di ∈ Rl×m for i = 1, . . . , N .
The signal d(k) ∈ [0, 1] in the description above is a uniformly distributed stochastic scalar
signal and {Ωi}i=1,...,N is a polyhedral partition of Rn+m+1. This form, introduced by [4], is
an extension to the PWA system description described by Sontag [45].

In summary, whereas type-1 systems offer distinct physical insight into their behaviour, type-
2 systems are more easily translated into other frameworks. For this reason, we opt to use a
type-1 SMPL description for the remainder of this report. The work by Van den Boom and
De Schutter contains additional information on the equivalence between the frameworks [4].

Master of Science Thesis Bart de Jong

34 Switching Max-Plus Linear Systems

3-3 Automaton-Based Mode Constraints

In many practical situations, the mode sequence of an SMPL system may be subject to
constraints. For instance, a production system may not be able to indefinitely produce the
same part since there is a limited supply of subparts. Also, trains sometimes need to divert
to another route because of regular maintenance on a part of the network.

The probability of switching to a certain mode `(k) may depend in a state-invariant Markovian
fashion on the previous mode `(k − 1) [46, 47], as discussed in Section 3-2 on page 31.
Additionally, the set of admissible switching sequences may be governed by an automaton; a
concept explained in Section 2-3 on page 16 [48]. The latter is the main point of discussion
in this section since it allows for straightforward restriction of the length of mode sequences.

Consider again the nonautonomous SMPL description of Eq. (3-1) on page 28 with nL modes
in event cycle k. Denote a finite length switching sequence as σk = {`(1), `(2), . . . , `(k)},
where |σk| = k ≥ 1. This section discusses the constraining of the set of admissible mode
sequences by an automaton. A switching sequence is admissible if its corresponding word is
in the regular language.

Next to these constraints, the switching behaviour may be deterministic or stochastic. A
deterministic finite automaton (DFA), introduced in Section 2-3-3 on page 18, is suitable
for modelling systems that switch in a deterministic but constrained way. Stochastically
switching systems may be modelled using discrete hybrid stochastic automata (DHSAs),
introduced below.

A DHSA, first introduced in [33], is composed of four elements:

• Switched affine system (SAS)

• Event generator (EG)

• Stochastic finite state machine (sFSM)

• Mode selector (MS)

The interconnection of these four elements is similar to those of a discrete hybrid automaton
(DHA) introduced in Section 2-3-3 on page 18 and is visualised in Figure 3-1. The main
difference between a DHSA and a DHA is the replacement of the finite state machine (FSM)
with an sFSM. Now, the state update equation of the sFSM is described as:

P [xb(k + 1) = x̂b] = fsFSM(xb(k), ub(k), δe(k), x̂b)

where only the probability distribution of xb(k+1) = x̂b is known. Generally, the state vector
xb(k) is a zero vector with entry i being a 1 if the i-th discrete sFSM state is active.

Now, we can introduce mode switching constraints that are a function of the discrete sFSM
state xb(k). If switching is stochastic, we enforce these constraints on the discrete control
signal v(k) that influences mode switching rather than on the mode `(k) itself. Due to the
switching uncertainty, this choice is not equivalent to enforcing a hard constraint on the mode
sequence, but rather, it acts as a soft constraint.

Bart de Jong Master of Science Thesis

3-3 Automaton-Based Mode Constraints 35

Event
generator
(EG)

Switched
affine
system
(SAS)

Mode
selector
(MS)

Stochastic finite
state machine
(sFSM)

δe(k)

δe(k)

δe(k)

ub(k)

ub(k)

xb(k)

i(k)

xr(k)

ur(k)

ur(k)

Figure 3-1: A discrete hybrid stochastic automaton (DHSA) that consists of an sFSM and a SAS,
connected through an EG and an MS. The output signals are omitted. The schematic is adopted
from [32, Fig. 1].

To this end, we introduce the constraint vector Cxb that has the set of admissible discrete
control inputs as a function of xb(k) as its entries:

Cxb =


ṽxb,1
ṽxb,2
...

ṽxb,|xb|


where ṽxb,i denotes the admissible set of discrete control inputs if the i-th discrete sFSM
state is active as denoted by xb(k). In the case of deterministic switching, we often define
P [L(k) = `(k) | v(k) = `(k)] = 1, such that the entries of Cxb may equivalently relate to
admissible succeeding modes.

Example 3.2. For the example of Figure 3-2 on page 36, we define the discrete state vector
as such:

xb(k) =



[
1
0

]
if state 1 is active at event step k[

0
1

]
if state 2 is active at event step k

Master of Science Thesis Bart de Jong

36 Switching Max-Plus Linear Systems

The admissible control inputs as visualised by the arrows in the figure are captured by Cxb :

Cxb =
[
ṽxb,1
ṽxb,2

]
=
[
{2}
{1, 2}

]

1 2
2

1

2

Figure 3-2: Automaton of a constrained bimodal system

The framework can be used to capture and limit the number of equal modes in a row. For
this, denote with the discrete sFSM state Qij the j-th occurrence of mode ` = i in a row.
Figure 3-3 depicts this for a bimodal system for sequences up to length n of the same mode.
Its paths with corresponding labels relate to the set of admissible succeeding modes. These
states form in a specific order the vector Q̃, such that Q̃>xb(k) = Qij if Qij is the active state
at event step k. Consider now a system in which the maximum length of a sequence of equal
modes is constrained to equal m < n. Then, the set of admissible discrete control sequences
at Qim . . . Qin is nL\{i}. Here, the backslash operation \ denotes the relative complement,
i.e., A\B is the set of objects that belong to A and not B.

Q21 . . . Q2nQ11. . .Q1n
2 2

11 1

2
22

1 1

Figure 3-3: Example of capturing number of equal modes in a row for a bimodal system that allows for
sequences up to length n of the same mode.

Example 3.3. As an example, consider the constraint matrix Cxb and corresponding vector
Q̃ of a trimodal system where no mode may occur twice in a row:

Cxb =

{2, 3}
{1, 3}
{1, 2}

 , Q̃ =

Q11
Q21
Q31


where xb(k) is such that Q̃>xb(k) = Qij if Qij is the active sFSM state, i.e., `(k − j) =
`(k − j + 1) = . . . = `(k − 1) = i, and `(k − j − 1) 6= i. These correspond to the following
automaton:

Bart de Jong Master of Science Thesis

3-3 Automaton-Based Mode Constraints 37

Q11

Q21Q31

2

3 1

3

1

2

Figure 3-4: Example of an automaton enforcing the constraint that no mode may occur twice in a row
for the trimodal system of Example 3.3.

Example 3.4. As a second example, consider the constraint matrix Cxb and corresponding
vector Q̃ of a bimodal system where no mode may occur three times in a row:

Cxb =


{1, 2}
{2}
{1, 2}
{1}

 , Q̃ =


Q11
Q12
Q21
Q22


where Q̃ and ˜xb(k) are defined as before. The following automaton may represent them:

Q12 Q11 Q21 Q22

2

1
2 2
1

1

Figure 3-5: Example of an automaton enforcing the constraint that no mode may occur three times in
a row for the bimodal system of Example 3.4.

To conclude, we state that for any deterministic SMPL system whose mode sequence can
be captured as a discrete state of an automaton, its mode constraints can be captured by
appropriate Q̃ and Cxb . These constraints are on the control sequence ṽ(k) for stochastic
systems. A discrete control sequence ṽ or mode sequence ˜̀(k) of a certain length is admissible
if its corresponding word is in the regular language of the sFSM.

In contrast to the conventional definition of DHSAs as introduced before, we opt to include
switching uncertainty in the MS instead. This choice allows us to employ the sFSM solely for
representing hard constraints while effortlessly incorporating Markovian uncertainty in the
MS. The discrete state of the sFSM is then determined by the set of past modes of the SAS.

Master of Science Thesis Bart de Jong

38 Switching Max-Plus Linear Systems

Bart de Jong Master of Science Thesis

Chapter 4

Growth Rate of SMPL Systems

It is essential to have a notion of system performance in mind when optimising the system’s
future behaviour through control. For conventional systems, performance often pertains to
their deviation from a stable point in the state-space. Such a definition is impractical for
discrete-event systems (DESs), whose states often grow unboundedly. This chapter explores
the notion of growth rate that offers a promising alternative on which to assess a system’s
stability. Section 4-1 on page 40 introduces the concept for deterministic systems, after which
Section 4-2 on page 46 translates to stochastically switching systems. Lastly, Section 4-3 on
page 53 assesses the accuracy of various approximations posed in the chapter.

Master of Science Thesis Bart de Jong

40 Growth Rate of SMPL Systems

4-1 Growth Rate of Deterministic SMPL Systems

Stability for conventional systems pertains to the boundedness of the state vector. For a
switching max-plus linear (SMPL) system, its state is expected to grow unboundedly as time
passes. Thus, the notion of stability for these systems is adjusted to relate to the boundedness
of the state growth. More precisely, it is often associated with the boundedness of the system’s
buffer levels, of which the concept was introduced in Section 2-1 on page 6 [49]. Asymptotic
stability implies that these levels remain constant, which can only be achieved when the
average growth rate of all states becomes equal [5]. Chapter 5 on page 65 discusses the
stability of SMPL systems in more detail. This chapter examines the growth rate of such
systems.

4-1-1 Asymptotic growth rate

Define the cycle time vector ξ ∈ Rn for a DES in the max-plus algebra (MPA) with state
vector x(k) as [10]:

ξi
def= lim

k→∞

xi(k)
k

. (4-1)

If the limit exists, ξi ∈ R represents the asymptotic average time between event occurrences,
or, growth rate. The largest value ξ in ξ determines the system’s performance [50, Theorem
7]. Vice versa, the system’s throughput, often denoted by 1/ξ, is inversely proportional to
this maximum value [12]. Often, a smaller state growth is desirable over a larger one since
it increases throughput. For a train network, a smaller state growth signifies shorter times
between departures.
Gupta et al. defined the notion of synchronised system evolution to explore the behaviour of
SMPL systems further:
Definition 4.1. [6] System evolution is synchronised if the asymptotic average growth rates
of the state trajectories attain a common value in Eq. (4-1):

ξi = ξj
def= ρs, ∀i, j ∈ n

Here, we define ρs as the state growth rate. Naturally, the state growth rate is the growth
rate of all individual states in the case of synchronised system evolution.
In some cases, it is helpful to look at another definition of growth rate, the output growth rate
ρo:

ρo
def= lim

k→∞

C ⊗ x(k)
k

Note that ⊗ is not a linear operator, thus ρo is not by definition equal to C ⊗ ξ. In many
cases, however, the values of ρs and ρo differ only by a constant value related to the C-
matrix, shown by the following relation. Consider, without loss of generality, a single-output
C-matrix. Then, assuming synchronised state evolution, i.e., xi(k) = xj(k), ∀i, j ∈ n, ρo can
be written as

ρo = lim
k→∞

maxi (xi(k) + Ci)
k

= max
i

(
lim
k→∞

[
xi(k)
k

+ Ci
k

])
= max

i

(
ρs + lim

k→∞

Ci
k

)
= ρs + lim

k→∞

maxi (Ci)
k

(4-2)

Bart de Jong Master of Science Thesis

4-1 Growth Rate of Deterministic SMPL Systems 41

Therefore, as long as the system’s state evolution is synchronised and maxi (Ci) = 0, i.e.,
C⊗1n = 0, the two values ρs and ρo coincide. Here, 1n is a max-plus algebraic n-dimensional
unity vector of all zeros. In the case of asynchronous system evolution, the output growth
rate relates to the system’s states as:

ρo = max
i

(
lim
k→∞

[
xi(k)
k

+ Ci
k

])
.

Clearly, the maximum deviation of ρo with respect to the growth rate of the individual states
is ‖C‖max+ 1

k‖x(k)‖P. In all cases, the influence of the finitely-valued entries of C will diminish
as k →∞.

In summary, while these two definitions of growth rate are not equal in all cases, they allow
for similar analyses of their bounds and expectations. In the remainder of this report, we will
consider either state growth rate ρs or output growth rate ρo with a fixed C-matrix that has
entries all equal to e = 0. The definitions used in the concepts proposed in this report will
be clearly stated if that is of relevance.

The example below provides a helpful visualisation of the growth rate of a max-plus linear
(MPL) system.

Example 4.1. Consider a one-dimensional MPL system of the form

x(k + 1) = ρ⊗ x(k)

with a growth rate equal to the eigenvalue of its state-update matrix, in this case, ρ. Figure 4-
1 on page 42 shows a visual representation in the form of a line of the growth rate of such a
system. Evidently, at every event step, the system’s state grows with a value of ρ, a measure
of the slope of the growth rate line. A flatter line relates to higher system throughput and is,
therefore, often desirable.

Let us now consider the growth rate ρs of systems with a synchronised state evolution in
greater detail. The cycle time vector ξ for a deterministic autonomous MPL system is unique
and determined by the system’s A-matrix.

To show this, consider a deterministic autonomous MPL system with irreducible matrix A
that has a unique eigenvalue λ with associated eigenvector v. Then, for x(0) = v [10]:

x(k) = A⊗
k ⊗ x(0)

= λ⊗
k ⊗ v

for all k ≥ 0, such that:

lim
k→∞

xi(k)
k

= λ, ∀i ∈ n

This result is independent of the initial condition x(0) [10, Lemma 3.12]. The source also
states that if a generalised eigenmode of an MPL system with a reducible matrix exists, the
cycle-time vector exists and is still unique [10, Sec. 3.2.3]. It is apparent that, in most cases,
MPL systems exhibit state evolution with a fixed cycle-time vector. This rate can, of course,
be increased by applying a continuous control input u(k) [12, §6].

Master of Science Thesis Bart de Jong

42 Growth Rate of SMPL Systems

Figure 4-1: Visual representation of the state growth ρ of a one-dimensional MPL system x(k + 1) =
ρ⊗x(k). The orange rectangles represent the inter-event duration ρ. The growth rate is visualised using
a line with slope ρ.

Contrarily, the cycle time vector for an SMPL system is generally dependent on the system’s
mode sequence, and is thus susceptible to discrete control. In some cases, discrete control can
even reduce the growth rates of the SMPL system’s states below their value for the individual
MPL systems [6]. The range of achievable growth rates through discrete control can be upper
and lower bounded. Without distinguishing between ρs and ρo, these bounds are denoted
by ρ (pronounced ‘rho bar’) and ρ (pronounced ‘rho underbar’), respectively. The following
section shows that the upper bound ρ can be calculated using spectral theory, which is not
true for the lower bound ρ.

4-1-2 Maximum growth rate: ρ

Contrary to MPL systems, switching systems may have a range of possible growth rates
instead of a fixed one. In the case of continuous control of structurally controllable SMPL
systems, it is straightforward to prove stabilisability for growth rates above ρ, see Section 5-2
on page 68. When constraining the system to operate above ρ, the value represents an upper
bound on throughput. In the case of discrete control, the maximum growth rate serves as a
lower bound on achievable throughput. Therefore, it is insightful to investigate the maximum
growth rate ρ of such systems as a bound on their throughput.

To that end, let us denote the largest max-plus algebraic eigenvalue of a matrix A ∈ Rn×nε

as ρ(A). This value is called the spectral radius of A. If A is irreducible, ρ(A) is its unique
eigenvalue. By definition, all associated eigenvectors v of A satisfy v > 0. That is, they have
at least one finite element. Now, the maximum growth rate ρ of an autonomous MPL system
with a reducible system matrix A is given by the spectral radius of its A-matrix [10, Sec.
3.2]. For any initial state that is a corresponding eigenvector, all states will grow with the
rate ρ(A).

Bart de Jong Master of Science Thesis

4-1 Growth Rate of Deterministic SMPL Systems 43

Similarly, the joint spectral radius (JSR) measures the maximum growth rate of an au-
tonomous switching system with multiple A-matrices, such as SMPL systems. Rota and
Strang defined the JSR for the set of A-matricesM = {A(1), . . . , A(m)} of a system as [51]:

ρ(M) def= lim sup
t→∞

ρt(M),

where, forM expressed in the MPA, ρt(M) def= sup{ρ(A)⊗
1/t

: A ∈ M⊗t}. This computation
is known to be NP-hard1 [52, Theorem 1].

However, Gaubert found in 1995 that the JSR for max-plus algebraic systems is defined by
only one matrix S(M) [53]:

S(M) def=
⊕

A(`)∈M

A(`)

Then
ρ(M) = ρ(S(M)). (4-3)

In other words, the maximum growth rate ρ = ρ(M) is easily computed and is no larger than
the largest entry in all matrices A(`), i.e., ρ ≤ maxi,j,`[A(`)]ij . This quantification gives the
growth rate of the slowest mode sequence possible as an upper bound to the growth rate of
the autonomous SMPL system with system matrices in the setM. The value may be larger
than the largest eigenvalue of any individual system matrix A(`).

Van den Boom and De Schutter verify this result by proposing a dual solution using scaling
via max-plus diagonal matrices. They arrive at the following definition:

Definition 4.2. [41, Def. 1] Consider a randomly switching max-plus linear (RSMPL) system
with matrices A(`)

α with [A(`)
α]ij = [A(`)]ij−α. The maximum growth rate ρ of the RSMPL sys-

tem is the smallest α for which there exists a max-plus diagonal matrix S = diag⊕(s1, . . . , sn)
with finite diagonal elements si, such that

[S ⊗A(`)
α ⊗ S⊗

−1]ij ≤ 0, ∀i, j, `

Defining ρ′ = maxi,j,`[A(`)]ij yields:

[S ⊗A(`)
ρ′ ⊗ S

⊗−1]ij = [A(`)
ρ′]ij = [A(`)]ij − ρ′ ≤ 0, ∀i, j, `.

The maximum growth rate ρ can then be easily computed by solving a linear programming
problem.

As explained by Gupta et al., the maximum growth rate ρ, or, equivalently, the JSR of the
set of system matrices A(`), is equal to the smallest β that satisfies the following equation for
all trajectories [6, Def. 3.2]:

∃α, β ∈ R with α ≤ β s.t.
α⊗ 1n ≤ ∆x(k) ≤ β ⊗ 1n, ∀k ∈ N

(4-4)

1A problem A is NP-hard if it is at least as hard as some NP-complete problem B, in that B can be reduced
to A in polynomial time. NP is short for “nondeterministic polynomial-time”.

Master of Science Thesis Bart de Jong

44 Growth Rate of SMPL Systems

where 1n is an n-dimensional vector of all zeros and x(k) is the system’s state vector at event
step k.

In summary, the JSR for SMPL systems is unique, easily computed, and may serve as both a
lower and upper bound on their throughput. We denote the value by the maximum growth
rate ρ. For further information on the JSR, the reader is referred to [54, 55]. The following
section discusses the concept of the minimum growth rate ρ, related to the lesser-known lower
spectral radius (LSR).

4-1-3 Minimum growth rate: ρ

As introduced before, the minimum growth rate ρ is the lowest possible growth rate of a
system. Following the example of Gupta, ρ is equal to the largest α for which Eq. (4-4) on
page 43 is true. Essentially, this value is a strict lower bound on the growth rate achievable
through control. It may be lower than the growth rate of the slowest mode.

The minimum growth rate ρ is equal to the lower spectral radius (LSR) of the set of matrices
M:

ρ = ρ∗(M)

Contrary to the max-plus algebraic JSR and to the best of the author’s knowledge, there is
no scheme that calculates the max-plus algebraic LSR to any arbitrary precision. It is not the
aim of this report to do so. Instead, we discuss an upper bound to the LSR in this section,
finite-horizon estimates in Section 4-1-4 and stochastic growth rate definitions in Section 4-2
on page 46.

In recent years, Gupta et al. formalised an upper bound ρ∗(M) of the max-plus algebraic
LSR [6, Sec. 3.3]:

ρ∗(M) = min
`∈L

min
j∈r`
{λ(A(`)

jj) | Vj is an initial class}. (4-5)

They assumed that there are r` classes for matrices A(`) inM. Vj represents the vertex set
V (A(`)) corresponding to the submatrix A(`)

jj of A(`). The result is based on the supereigen-
vector theory by Butkovič [56, Section 5]. The reader is advised to consult Section 2-3 on
page 16 for information on graph-theoretical concepts such as classes.

In summary, the minimum growth rate ρ is equal to the LSR of the system matrices of SMPL
systems, but is not easily computed. Instead, we will propose an approximation of the value
in the next section and evaluate them in Section 4-3 on page 53.

4-1-4 Finite-horizon approximations of the maximum and minimum growth rate

In some cases, it is helpful to consider a finite-horizon estimate of the growth rate. Such
an approximation of the infinite-horizon counterparts may offer computational benefits, espe-
cially when calculating the minimum growth rate ρ. It may also prove helpful when employing
receding horizon control strategies as an estimation of growth rate over a certain horizon.

Bart de Jong Master of Science Thesis

4-1 Growth Rate of Deterministic SMPL Systems 45

Thus, we introduce the definition of the output growth rate ρNp(k) at event step k over a
certain prediction horizon Np:

ρNp(k) def= C ⊗ x(k +Np)− C ⊗ x(k +Nt)
Np −Nt

(4-6)

where 0 ≤ Nt < Np, and Nt is chosen such that the influence of both transient behaviour
as well as switching stochastics on the growth rate are minimised, keeping the following
consequences in mind:

Larger Nt → decreased influence from transients
Smaller Nt → decreased influence from individual mode transitions

Although the definition in Eq. (4-6) is sensitive to transients and other small-scale behaviour,
it is insusceptible to the synchronicity of the state evolution. Note that in the case of non-
synchronised state evolution, the finite-horizon growth rate ρNp(k) may be entirely driven by
a single state and be oblivious to the dynamics of the others.

Now, define an upper bound ρNp(k) and lower bound ρ
Np

(k) on the finite-horizon output
growth rate:

ρNp(k) def= max
x(k),...,x(k+Np)

ρNp(k)

ρ
Np

(k) def= min
x(k),...,x(k+Np)

ρNp(k)
(4-7)

where ṽNp is a discrete control sequence of length Np. For increasing Np and finite Nt, these
values converge to their asymptotic values:

lim
Np→∞

ρNp(k) = ρ

lim
Np→∞

ρ
Np

(k) = ρ

Note that in the case of implementing a control horizon Nc, the limit should be limNc→∞.
Furthermore, the minimisation over the variables x(k), . . . , x(k + Np) in Eq. (4-7) may not
lead to a violation of the system dynamics describing state evolution.

In the remainder of this chapter, we will extend the growth rate definitions and approximations
toward stochastic systems and evaluate all approximations using statistical reasoning. These
values will form the basis for stabilisability analysis in Chapter 5 on page 65.

Master of Science Thesis Bart de Jong

46 Growth Rate of SMPL Systems

4-2 Growth Rate of Stochastic SMPL Systems

The SMPL systems discussed in this chapter have not yet shown stochastic switching be-
haviour. However, one can imagine it is helpful to quantify the expected state evolution of a
system, rather than to place conservative bounds on its behaviour. While stochastics do not
influence the bounds ρ and ρ, they do allow for the definition of expected growth rates. This
section proposes mathematical definitions and finite-horizon approximations of these values.

4-2-1 Asymptotic (minimum) expected growth rate: ρ and ρ

Two additional measures offer insight into these growth rates: the expected growth rate, and
minimum expected growth rate. The expected growth rate of an autonomous stochastic SMPL
system is denoted by ρ (pronounced ‘rho double bar’). The minimum expected growth rate of
a stochastic SMPL system under discrete or hybrid control is represented by ρ (pronounced
‘rho double underbar’). To sum up, these four quantities measure the growth rate of stochastic
SMPL systems:

ρ Maximum growth rate under autonomous evolution

ρ Expected growth rate based on controlled stochastic evolution , given a discrete
control sequence

ρ Minimum expected growth rate based on controlled stochastic evolution

ρ Best case minimum growth rate based on controlled deterministic switching

By definition, the newly introduced stochastic growth rates are bounded by the previously
considered bounds in the following way:

ρ ≤ ρ ≤ ρ, ρ ≤ ρ ≤ ρ

In the case of all system modes being equal, the SMPL system reduces to an MPL system
and the four quantities coincide. The aforementioned ordinality is visualised in Figure 4-2.
The growth rate lines in the figure correspond to a single one-dimensional system with growth
rates defined as above but may be generalised to multi-dimensional SMPL systems. The sole
aim of the visualisation is to convey the ordinality of the growth rate definitions for any SMPL
system. The interpretation of the figure is similar to the one in Example 4.1 on page 41. It
is essential to realise that these values and corresponding ordinality relate to the growth rate
without continuous control. Depending on the system’s B-matrices, the growth rate may be
increased arbitrarily by employing a delay through u(k).

As introduced before, the expected asymptotic output growth rate ρ is related to the expected
asymptotic average time between event occurrences. Since the switching stochastics often
depend on a discrete control sequence ṽk of length k, we extend Eq. (4-1) on page 40 in the
following way:

E [ξi] = E [ξi | ṽk]
def= lim

k→∞

E [xi(k) | ṽk]
k

. (4-8)

Bart de Jong Master of Science Thesis

4-2 Growth Rate of Stochastic SMPL Systems 47

Figure 4-2: Four different state growth quantities ρ, ρ, ρ and ρ with ρ ≤ ρ ≤ ρ ≤ ρ for a single
one-dimensional SMPL system. The figure aids in visualising the ordinality of the growth rate values.

Now, as an extension to Definition 4.1 on page 40, we notice that system evolution synchronic-
ity also relates to the equality of the expectation of the asymptotic average growth rates of
the state trajectories in Eq. (4-8):

E [ξi] = E [ξj]
def= ρs(ṽk) = ρs, ∀i, j,∈ n

Note that we again explicitly define the state growth rate as a function of a discrete control
sequence ṽk of length k, since we assume that the switching stochastics may be altered by
the control signal v(k). For brevity, we may omit the dependency and write ρs, instead.

In the same manner, the output growth rate is defined as:

ρo = ρo(ṽk)
def= lim

k→∞

E [C ⊗ x(k) | ṽk]
k

Notice that the relation of Eq. (4-2) on page 40 holds true:

ρo = lim
k→∞

1
k

max
i

(E [xi(k) | ṽk] + Ci) = max
i

(
lim
k→∞

E [xi(k) | ṽk]
k

+ Ci

)
= max

i
(E [ξi | ṽk] + Ci) = max

i
(ρs(ṽk) + Ci) = ρs(ṽk) + max

i
(Ci)

Thus, if the system’s state evolution is synchronised and maxi (Ci) = 0, the values ρs(ṽk) and
ρo(ṽk) still coincide. In case of asynchronous evolution, we derive that

ρo = max
i

(
lim
k→∞

E [xi(k) | ṽk]
k

+ Ci

)
such that the difference of ρo with respect to the individual states is maximally ‖C‖max +
1
k‖E [xi(k) | ṽk]‖P.

Master of Science Thesis Bart de Jong

48 Growth Rate of SMPL Systems

In this report, we define the expected growth rate and minimum expected growth rate as:

ρ(ṽk)
def= ρs(ṽk)

ρ
def= min

ṽk
ρs(ṽk)

(4-9)

For brevity, we will often omit the dependence on ṽ and write ρ(ṽ) as ρ.

To the best of the author’s knowledge, no work has been done on evaluating or approximat-
ing the growth rates of stochastic SMPL systems. This report’s aim is not to evaluate these
infinite-horizon values to any arbitrary accuracy. However, we introduce an infinite-horizon
approximation of the expected growth rate ρ in Section 4-2-2 and finite-horizon approxima-
tions of ρ and ρ in Section 4-2-3 on page 50. The finite-horizon approximations are validated
in Section 4-3 on page 53.

4-2-2 Infinite-horizon approximation of ρ

As a proposed algorithm for approximating the expected growth rate ρ and based on unpub-
lished work by Van den Boom, we extend Definition 4.2. The extension is based on finding
the expected upper bound on the following max-plus matrix product:

Γ(N) def=
N⊗
i=1

A(`i)

where N is the prediction horizon and A(`i) is the system matrix for the `-th mode at event
step i, such that the system evolution according to a mode sequence ˜̀ is calculated as

x(k +N) = Γ(N)⊗ x(k), ˜̀= {`1, . . . , `N}

and, with a x(k) and the switching stochastics as a function of the discrete control sequence
ṽ known,

E [x(k +N) | ṽ] = E [Γ(N) | ṽ]⊗ x(k)

Thus, limN→∞ E [Γ(N) | ṽ] measures the expected state growth rate. Assuming nonsyn-
chronicity of the system’s states, we further specify the measure to relate to the maximum
element of this matrix, as a way of capturing individual state behaviour. Considering the
dependence on ṽ, we deduce that

ρ = E
[
Γ(N) | ṽ

]
= E

 N⊗
i=1

A(`i) | ṽ


where Γ(N) = maxi,j [Γ(N)]ij . Denote the probability P of switching to mode m ∈ nL by
P[`(k) = m | v(k)] = pm, where

∑
m∈nL pm = 1.

Now, define
α(`, S) def= S−A(`)S, for ` ∈ nL

and
E [α(`r, S) | v] =

nL∑
i=1

α(i, S)P [`r = i | v] =
nL∑
i=1

α(i, S)pi

Bart de Jong Master of Science Thesis

4-2 Growth Rate of Stochastic SMPL Systems 49

where pi has a dependence on the discrete control signal v. Then,

Γ(N) =
N⊗
i=1

A(`i)

= max
i,j

[
A(`1)A(`2) · · ·A(`N)

]
ij

= max
i,j

[
SS−A(`1)SS−A(`2) · · ·SS−A(`N)SS−

]
ij

≤ max
i,j

[
S

(
max
ij

[
S−A(`1)S

]
E

)(
max
ij

[
S−A(`2)S

]
E

)
· · ·
(

max
i,j

[
S−A(`N)S

]
E

)
S−
]
ij

≤ SES−α(`1, S)α(`2, S) · · ·α(`N , S)
≤ SES− + α(`1, S) + α(`2, S) + . . .+ α(`N , S)

And the expectation of Γ(N) is

E
[
Γ(N) | ṽ

]
≤ SES− + E [α(`1, S) | ṽ] + E [α(`2, S) | ṽ] + . . .+ E [α(`N , S) | ṽ]

= SES− +N
nL∑
i=1

α(i, S)pi

Now, look for the matrix S that minimises the expectation of the state evolution matrix Γ(N):

min
S
SES− +N

nL∑
i=1

α(i, S)pi (4-10)

A linear programming (LP) setup is used to find this upper bound by defining a vector s ∈ Rn:

si = [S]i,i

and
σ0 ≥ sj − sk, ∀ j, k
σi ≥ −sj + [A(i)]j,k + sk, ∀ i, j, k

Such that Eq. (4-10) can be recast as the following LP problem:

min
s

σ0 +N
nL∑
i=1

σipi

s.t. σ0 ≥ sj − σk, ∀ j, k
σi ≥ −sj + [A(i)]j,k + sk, ∀ i, j, k

Now, the result of this optimisation scheme is the smallest upper bound on the expected
growth rate ρ of the system.

The result above has been established as a function of a specific discrete control sequence
ṽ. However, this sequence can often be determined by a controller in order to, for instance,
optimise throughput. In such a case, the goal becomes to minimise the expected growth rate,
and we state:

ρ = min
ṽ

E
[
Γ(N) | ṽ

]
Master of Science Thesis Bart de Jong

50 Growth Rate of SMPL Systems

The presented method of finding the upper bound on ρ does not, in this form, allow for min-
imisation over ṽ. It is recommended to investigate this addition in future work. Furthermore,
although this analytic bound on ρ is of value when a strict upper bound is desired, we will
recommend its evaluation and validation for future research and place it outside the scope
of this report. Instead, we will focus on additional finite-horizon approximations in the next
section.

4-2-3 Finite-horizon approximation of ρ and ρ

This section introduces finite-horizon approximations of the expected and minimum expected
growth rates ρ and ρ. These approximations offer a computationally efficient way of predicting
uncertain system behaviour over a predefined horizon. We extend the definition of the finite-
horizon growth rate approximation introduced in Eq. (4-6) on page 45 as:

ρNp(k, ṽNp) def=
E
[
C ⊗ x(k +Np)− C ⊗ x(k +Nt) | ṽNp

]
Np −Nt

.

This value is a representation of the expected growth rate over horizon Np, whereas the
minimisation of this value over ṽNp represents the case of highest throughput, and we define

ρNp(k, ṽNp) def= ρNp(k, ṽNp)

ρ
Np

(k) def= min
ṽNp

ρNp(k, ṽNp)

where ρNp(k, ṽNp) is the expected growth rate for a certain discrete control sequence ṽNp ,
and ρ

Np
(k) is the minimum achievable expected growth rate over horizon Np. Here, too, the

values converge to their asymptotic counterparts:

lim
Np→∞

ρNp(k, ṽNp) = ρ(ṽNp)

lim
Np→∞

ρ
Np

(k) = ρ

Note that ρ, too, has a dependency on ṽNp , as shown in Eq. (4-9) on page 48.

The values of ρNp and ρ
Np

can be calculated using a tree-search algorithm, in which every
discrete control sequence is evaluated and weighted according to its probability of occur-
rence. Such an algorithm is shown in Algorithm 4.1 and implemented in the MATLAB script
growthRate.m of Appendix A-2-10 on page 165. For improved efficiency, one can investigate
evaluating only the sequences with a probability of occurrence higher than a certain threshold.

Algorithm 4.1. (Calculate (minimum) expected growth rate)
For a given Np, denote with ṼNp the set of all control sequences ṽjNp

of length Np and with
L̃Np the set of all mode sequences ˜̀i

Np of length Np. Predefine the parameter Nt, initial state
x(0) and initial mode `(0), and do:

1. For each ˜̀i
Np in L̃Np , do

Bart de Jong Master of Science Thesis

4-2 Growth Rate of Stochastic SMPL Systems 51

1-1. Simulate the system with a predefined initial state x(0) for Np simulation steps
using predefined mode sequence ˜̀i

Np

1-2. Calculate the simulated system’s growth rate based on Eq. (4-6) on page 45 and
predefined Nt

1-3. Store growth rate as ρi
1-4. For each ṽjNp

in ṼNp , do

1-4-1. Calculate the probability of occurrence of mode sequence ˜̀i
Np given discrete

control sequence ṽjNp
and `(0) and store as pij

1-4-2. Calculate weighted growth rate ρi · pij and store as ρ̃ij
1-5. End

2. End

3. Calculate the expected growth rate for a given control sequence ρNp(ṽjNp
) =

∑
i ρ̃ij

4. Calculate the minimum expected growth rate as ρ
Np

= minj ρNp(ṽjNp
)

5. Calculate the minimum growth rate as ρ
Np

= mini ρi

Section 4-3 on page 53 discusses the accuracy of the approximations found through Algo-
rithm 4.1, and proposes methods to optimise it. The following section discusses an extension
to account for the automaton-based mode constraints in the algorithm.

4-2-4 Extension to mode-constrained systems

Constraints on the mode sequence of a system, as introduced in Section 3-3 on page 34,
influence the expected growth rate and its bounds. The consideration of these constraints
may offer tighter bounds on the achievable growth rates and may change the expected and
minimum expected growth rates. When denoting growth rate as a function of the constraint
matrix Cxb as ρ(Cxb), we can say that:

ρ(Cxb) ≤ ρ
ρ(Cxb) ≥ ρ

These relationships are easily verified by realising that the set of possible mode sequences
subject to constraints is a subset of all mode sequences. Thus, the minima and maxima of
this subset cannot exceed the ones from the complete set. The same relationship, however,
cannot be established for the finite-horizon approximations of these quantities since they do
not represent bounds on the asymptotic values.

The value of ρ(Cxb) is represented by the constrained joint spectral radius (CJSR) ρ̂ in litera-
ture as an extension to the JSR. The authors of [57] offer arbitrarily accurate approximation
schemes for estimating the CJSR for systems with switching sequences constrained by an
automaton. Given a relative accuracy r > 0, the algorithms compute an estimate of ρ̂ within
the range [ρ̂, (1 + r)ρ̂].

Master of Science Thesis Bart de Jong

52 Growth Rate of SMPL Systems

Again, we redefine the finite-horizon growth rate approximations in the following way, as to
incorporate both stochastics and constraints:

ρNp(k, Cxb)
def= max

x(k),...,x(k+Np)

[C ⊗ x(k +Np)− C ⊗ x(k +Nt) | Cxb]
Np −Nt

ρNp(k, ṽNp , Cxb)
def=

E
[
C ⊗ x(k +Np)− C ⊗ x(k +Nt) | ṽNp , Cxb

]
Np −Nt

ρ
Np

(k, Cxb)
def= min

ṽNp

E
[
C ⊗ x(k +Np)− C ⊗ x(k +Nt) | ṽNp , Cxb

]
Np −Nt

ρ
Np

(k, Cxb)
def= min

x(k),...,x(k+Np)

[C ⊗ x(k +Np)− C ⊗ x(k +Nt) | Cxb]
Np −Nt

(4-11)

These constraints can be accounted for in Algorithm 4.1 on page 50 by excluding mode se-
quences or control sequences that violate them. That is to say; one should consider subsets
Ṽ con
Np of ṼNp and L̃con

Np of L̃Np , excluding the sequences in violation. The finite-horizon approx-
imations in Eq. (4-11) are used throughout this report since they incorporate both constraints
and stochastics. Additionally, they do not require synchronised state evolution.

Bart de Jong Master of Science Thesis

4-3 Accuracy of the Finite-Horizon Approximations 53

4-3 Accuracy of the Finite-Horizon Approximations

The finite-horizon approximations proposed earlier in this chapter offer computationally ef-
ficient ways of estimating the infinite-horizon growth rates of constrained stochastic SMPL
systems. The accuracy of these approximations is explored in more detail in this section.
Specifically, the following sections offer insight into the influence of the parameters Nt and
Np in Eq. (4-11) and propose a framework for validating the approximations.

4-3-1 The influence of Nt on the approximation accuracy

The parameterNt in Eq. (4-11) mitigates the effect of the initial state x0 on the approximation
of the growth rate. Naturally, the infinite-horizon definitions are independent of this initial
value. Therefore, through this Nt, we aim to redefine the starting condition at a point where
the state vector x has converged to a ‘normal’ value. ‘Normal’, in this case, refers to the
condition that ‖x‖P has converged to a value within certain bounds such that the influence
of x0 has subsided.

When employing a single-output C-matrix with finite entries Ci, the output is a function of
all states. As a result, there cannot be a hidden state, i.e., one that does not influence the
output, larger than the rest by at least ‖C‖P. Assuming this hidden largest state is xi, and
the smallest state that solely determines the output is xj , then we have:

xi + Ci < xj + Cj

The positive difference xi − xj is:

xi − xj < Cj − Ci ≤ max(C)−min(C) = ‖C‖P

If at one event step, the output y(k) is equal to xj + Cj and the largest hidden state was xi,
then the output at the next event step y(k + 1) is upper bounded by:

y(k + 1) ≤ max
j

(
max
i

(xi + aji) + cj

)
≤ xi + ‖A‖max + ‖C‖max

And
y(k + 1)− y(k) ≤ (xi + ‖A‖max + ‖C‖max)− (xj + Cj)

= ‖A‖max + ‖C‖max + ‖C‖P − Cj
≤ ‖A‖max + ‖C‖max + ‖C‖P − ‖C‖min

= ‖A‖max + 2 · ‖C‖P
def= ∆y

This upper bound on the difference between two system outputs without continuous control
can be used as a guide to select Nt. Evidently, the initial output y(k + Nt) cannot differ
by more than ∆y from y(k + Nt − 1) and y(k + Nt + 1). For systems with a C-matrix
consisting only of zeros, such as the ones regarded in this report, the upper bound simplifies
to y(k + 1) − y(k) ≤ ‖A‖max. Note that this is not the system’s growth rate; it is merely a
measure of the maximum one-step influence of hidden states on the system’s output.

Master of Science Thesis Bart de Jong

54 Growth Rate of SMPL Systems

Through switching, however, hidden states may stay hidden for any number of event steps.
If this hidden state influences other states and the output only at certain modes that occur
infrequently, one needs a large value of Nt to suppress the influence of x0. The frequency of
occurrence of such modes may be used as an inverse of a lower bound on Nt.

As a general guide, a designer may select Nt based on the prediction horizon Np, the upper
bound on the influence of hidden states as discussed above, and the general structure of
the system matrices across all modes. For structurally observable systems with few infinite
entries in their A-matrices, one can often get away with values not larger than the system’s
dimension.

4-3-2 The influence of Np on the approximation accuracy

From their definitions, it is clear that for Np →∞, the finite-horizon approximations converge
to their asymptotic values. One may conclude that, in general, a larger Np leads to a closer
approximation. However, it is not uncommon for SMPL systems to have non-constant first-
order differences of their output signal for input signals with a constant rate of change. The
discontinuous nature of the maximum operator that determines a system’s states may cause
the output signal to grow at different rates at each step. Figure 4-3 from Example 4.2 shows
the difference between an exemplary tow-dimensional SMPL system’s states xi(k) and their
mean value x̄(k), visualising the effect that results in a jerky output signal. Due to this jerky
nature, a lower value for Np may result in a more accurate approximation of the system’s
growth rate than a higher one. In general, however, a larger Nt results in a better estimation
since the state differences as percentages of the state values decrease.

Example 4.2. Consider a two-dimensional autonomous SMPL system with

A =
[
ε 1

0.5 e

]
, C =

[
0 0

]
and x(0) =

[
1
0

]
,

in its state-space representation

x(k) = A⊗ x(k − 1)
y(k) = C ⊗ x(k).

It is apparent that
x1(k) = x2(k − 1) + 1
x2(k) = max (x1(k − 1) + 0.5, x2(k − 1))
y(k) = max (x1(k), x2(k)) ,

causing the two states to alternate in maximum value, as visualised in Figure 4-3. The mean
value x(k) grows with a constant rate of 0.75, which is the unique max-plus eigenvalue of
matrix A: [

ε 1
0.5 e

]
⊗
[
0.25 + δ

δ

]
= 0.75⊗

[
0.25 + δ

δ

]
.

As long as the initial state x(0) is not a max-plus eigenvector corresponding to the system’s
max-plus eigenvalue, i.e., it is not of the form

[
0.25 + δ δ

]>
for any δ ∈ R, the system’s

states demonstrate jerky behaviour.

Bart de Jong Master of Science Thesis

4-3 Accuracy of the Finite-Horizon Approximations 55

Figure 4-3: ABsolute and relative value of an example system’s individual states xi(k), introduced in
Example 4.2.

Importantly, there is a trade-off to be made between the accuracy of the approximation and
computational efficiency—it is the reason for the existence of these approximations. Since
calculating the expected and minimum growth rates of a system with nL modes require
evaluation of the probability of occurrence of all nNp

L possible mode sequences ˜̀ over the
horizonNp, it is often impractical to select horizons larger thanNp = 8. If used in combination
with a model predictive control (MPC) algorithm, it may be beneficial to choose the same
horizon for the growth rate calculation as for the control algorithm.

In order to further isolate the growth rate as a result of a certain mode sequence with length
Np from the influence of the initial state and the jerky output signal, we employ another
technique. While still considering only mode sequences with length Np, we now evaluate the
system’s growth rate using repetitions of these sequences. Therefore, we obtain cyclic mode
sequences of arbitrary total length but with a period of Np. It is essential to acknowledge
the discrepancy between this method and selecting longer values for the prediction horizon.
Namely, we only search the subset of control sequences with a period of Np, which would

Master of Science Thesis Bart de Jong

56 Growth Rate of SMPL Systems

result in finding a local growth rate minimum instead of a global one. Therefore, one can
expect lower minimum growth rate values when extending Np, but not when extending the
number of repetitions of control sequences. Furthermore, the expected (minimum) growth
rates are also skewed. Namely, when considering the hypothetical scenario of Np = 1, the
algorithm evaluates only the probabilities of the nL mode sequences consisting of the same
modes:

˜̀(k) = {`(k) = i, `(k + 1) = i, . . . } , ∀i ∈ nL
Other mode sequences are not evaluated, inevitably skewing the stochastic approximations.
This way of scaling the simulation may be implemented in step 1-1 and step 1-4-1 of Algo-
rithm 4.1 on page 50 by considering repetitions of the original ˜̀

Np and ṽNp sequences.
As a guide, an engineer may select the largest value of Np that still results in acceptable com-
putation times. Alternatively, when paired with an MPC algorithm, they may choose to set
equal the prediction horizon of the controller and the approximation algorithm. Furthermore,
it is often wise to simulate the system using a repetition of the periodic mode sequences in
order to isolate the system’s growth rate as a function of its mode sequences.

4-3-3 Compare approximation to the empirical mean using a Monte Carlo algo-
rithm

This section discusses the accuracy and correct interpretation of the finite-horizon growth
rate approximations as introduced in this chapter, focusing on the minimum expected growth
rate ρ

Np
. This value is deemed most important since it yields an upper bound of expected

system throughput. A few characteristics complicate this investigation. Firstly, we have
no way of analytically calculating the exact infinite-horizon value ρ and its corresponding
discrete control sequence ṽ. The finite-horizon growth rate of a stochastic SMPL system
follows an unknown distribution that we can only empirically sample from. Secondly, it is
unknown how system parameters such as eigenvalues or structural characteristics such as the
ε-structure influence the distribution. Thirdly, there is no accurate way to predict whether a
certain control algorithm will succeed in steering the system along this optimal track since it
may require infinite-horizon predictive capacity. Therefore, the investigation in this section is
inherently limited. Section 7-2 on page 121 proposes valuable additions to the investigation
for future research.
Using the theory presented in Section 2-4 on page 21 and considering the limitations described
above, we will tackle the following problem:

Problem 4.1. For a given structurally observable system, find the finite-horizon approxima-
tion of the minimum expected growth rate ρ

Np
as introduced in Section 4-2-3 on page 50 and

its corresponding control sequence ṽNp . Define p(γ) with γ > 0 as the probability that the
infinite-horizon value ρ is not larger than ρ

Np
+ o with given offset o. Then, determine the

number of samples N needed so that we can bound the error on this probability p(γ) with
value ε and confidence 1 − δ. Using a multisample of ρ with cardinality N , find the offset o
such that we can say with confidence 1− δ that p(γ) is within an error ε of a desired value.

To that end, consider the finite-horizon approximation of the minimum expected growth rate
ρ
Np

achieved through a control sequence that is a repetition of the sequence ṽNp . Then,

Bart de Jong Master of Science Thesis

4-3 Accuracy of the Finite-Horizon Approximations 57

through simulation, approximate the actual growth rate ρo of the system under the same
control sequence by considering the estimator ρNsim that makes use of a much larger simulation
horizon Nsim:

ρNsim = y(Nsim)− y(1 +Nt)
Nsim −Nt − 1 . (4-12)

We assume that the stochastic variable ρNsim is an unbiased estimator of the actual growth
rate ρo, a claim substantiated through simulation. The following example elaborates on the
validation of the claim.

Example 4.3. We consider a randomly generated trimodal three-dimensional structurally
observable SMPL system with the following A and C matrices:

A(1) =

 ε ε 0.2
1.1 ε 5.5
0.6 2.6 ε

 ,
A(2) =

 ε 1.0 3.9
2.5 ε 0.0
ε 2.6 ε

 ,
A(3) =

 ε ε 1.4
4.2 ε ε
1.1 3.3 ε

 ,
C =

[
0 0 0

]
.

The entries of the matrices used for the simulations have been rounded to one decimal such
that the representations above are exact.

The system has been generated by randomly generating an ε-structure for the A-matrix
of each mode such that, on average, half of the entries are ε. If the resulting matrix is
irreducible, the remaining finite elements are generated from a uniform [0, 1] distribution and
scaled such that the sum of all elements is equal to 10. If instead, the matrix is reducible, a
new ε-structure is generated until the resulting matrix is irreducible. This way of generating
systems is used throughout the research and ensures a similar scaling across all systems and
across all modes while allowing for structural differences and individual element scalings. The
system generation is implemented in MATLAB using generateSystem.m in Appendix A-2-9
on page 164 and supporting files generateSupport.m in Appendix A-2-8 on page 163 and
generateSemigroup.m in Appendix A-2-7 on page 162.

The switching stochastics of the system used in this example are such that

P [L(k) = `(k) | v(k)] =
{

0.8 for `(k) = v(k)
0.1 otherwise.

Using repetitions of the randomly generated discrete control sequence ṽ = {1, 2, 2, 2, 3}, we
simulated the system 1000 times for ten different simulation horizons Nsim, logarithmically
spaced in the range [101, 104]. The mean µ and standard deviation σ of distribution of the
growth rate ρNsim for the ten different simulation horizons using Nt = 3 are visualised in
Figure 4-4 on page 58. The experiment has been conducted for about 20 other randomly
generated systems. We conclude that the mean of the distribution, unlike its variance, is

Master of Science Thesis Bart de Jong

58 Growth Rate of SMPL Systems

Figure 4-4: Mean and error bar with a length of 2σ of the growth rate ρNsim of a system evaluated after
various numbers of simulation steps Nsim, using Nt = 3 and each averaged over 1000 runs. The system
is described in Example 4.3 on page 57.

independent of the horizon Nsim, a finding that is true for all simulated systems. In other
words, the estimator in Eq. (4-12) on page 57 appears to be an unbiased one.

Next, let us define the performance function Jp(ρNsim) that is zero whenever the actual growth
rate ρNsim of the system under discrete control according to the sequence ṽ is larger than the
finite-horizon approximation of the minimum expected growth rate ρ

Np
minus some offset o:

Jp(ρNsim) =

0 if ρNsim ≤ ρNp
+ o

1 otherwise
. (4-13)

Now, we wish to estimate the probability of performance p(γ) = P [Jp(ρNsim) ≤ γ] given a
performance level γ by finding p̂N (γ):

p̂N (γ) = 1
N

N∑
i=1

IBG(ρ(i)
Nsim

),

where ρ(i)
Nsim

is a single sample of the growth rate using a simulation horizon Nsim. The
indicator function IBG takes the form of

IBG(ρ(i)
Nsim

) def=
{
1 if ρ(i)

Nsim
∈ BG

0 otherwise

and BG =
{
ρ

(i)
Nsim
∈ BD : Jp(ρ(i)

Nsim
) ≤ γ

}
. The unspecified set BD represents the bounds on the

uncertainty of the system that is a result of the stochasticity in the mode switching. Since

Bart de Jong Master of Science Thesis

4-3 Accuracy of the Finite-Horizon Approximations 59

the variance Var (ρNsim) depends on Nsim and the empirical mean E [ρNsim] inherently has a
nonzero offset with respect to its finite-horizon approximation, the probability p(γ) depends
on Nsim, too. Therefore, a suitable Nsim should be selected a priori. It is recommended to
select a value similar to the simulation horizon used in a control application, or, in general,
any value for which you need to have probability of performance guarantees.

As a result of the definition in Eq. (4-13), any nonnegative performance level smaller than
one, i.e., γ ∈ [0, 1), will result in the same value of p(γ), since Jp(ρNsim) is either zero or one.

Next, define pi = IBG(ρ(i)
Nsim

) and sN =
∑N
i=1 pi. If we apply Theorem 2.6 on page 24 and

observe that pi ∈ [0, 1], we obtain

P [|sN − E [sN]| ≥ ε] ≤ 2e−2ε2/N .

If we now let p̂N (γ) = sN/N such that E [p(γ)] = E [p̂N (γ)], we have

P [|p̂N − p(γ)| ≥ ε] ≤ 2e−2Nε2 . (4-14)

Then, we may employ the Chernoff bound from Theorem 2.8 on page 24 to equate the right-
hand side of Eq. (4-14) to δ and find the minimum number of samples for a given accuracy ε
and confidence 1− δ:

N ≥ 1
2ε

2 log 2
δ

With this value of N , we can guarantee that the following holds:

P [|p̂N (γ)− p(γ)| < ε] > 1− δ

We know from Table 2-1 on page 25 that we need a minimum of 3.00 × 104 samples for
an accuracy of ε = 0.01 and confidence 1 − δ = 0.995. We will, in Example 4.4 on page 60,
investigate for a single randomly generated system for which offset o we may say with precision
ε = 0.01 and certainty 1− δ that for a fraction of 0.95 of all simulations, ρ ≤ ρ

Np
+ o.

In the rest of this section, we will assume that E [ρNsim] obtained with the same control
sequence used to find ρ

Np
is equal to ρ. In theory, there may be a control sequence that

results in an even lower expected value. We will not consider that case since there exists no
algorithm to obtain that sequence. Therefore, we will regard ρ, found through Algorithm 4.2,
as an approximate upper bound to the infinite-horizon ρ.

Algorithm 4.2. (Performance verification and offset selection)
Given ε, δ ∈ (0, 1), this algorithm returns a minimum offset o on the finite-horizon approxi-
mation of the minimum expected growth rate such that any probability of performance can
be met with accuracy ε and confidence 1− δ, such that:

P [|p̂N (γ)− p(γ)| < ε] > 1− δ

1. Calculate finite-horizon approximation ρ
Np

of the minimum expected growth rate ρ and
find the corresponding discrete control sequence ṽ.

2. Select N using Table 2-1 on page 25 or Eq. (2.8) on page 24.

Master of Science Thesis Bart de Jong

60 Growth Rate of SMPL Systems

3. Select suitable Nsim and Nt based on heuristics discussed in this section.

4. Select range of offset o based on ρ
Np

.

5. Draw N samples ρ(i)
Nsim

by through simulation with a repetition of control sequence ṽ.

6. Find for all values of o the empirical probability

p̂N (0.5) = 1
N

N∑
i=1

IBG
(
ρ

(i)
Nsim

)
where IBG is the indicator function of the set BG = {ρNsim : Jp(ρNsim) ≤ 0.5}.

7. Select based on p̂N (0.5) as a function of the offset o the minimum offset necessary for
obtaining a probability of performance within accuracy ε and confidence 1− δ.

The algorithm is implemented in the MATLAB script of Appendix A-2-6 on page 159.

Example 4.4. (Selection of offset o)
Consider a randomly generated three-dimensional trimodal structurally observable stochastic
SMPL system with the following approximate A and C matrices:

A(1) ≈

 ε ε 1.5126
1.9395 ε 1.0671
1.9174 2.2776 1.2858

 ,
A(2) ≈

0.4229 0.5541 1.9906
ε 2.0655 1.7282

0.7906 1.0565 1.3915

 ,
A(3) ≈

 ε ε 3.6583
1.9722 ε 3.4227
ε 0.9468 ε


C =

[
0 0 0

]
.

The system generation is according to the procedure given in Example 4.3 on page 57. Again,
the switching stochastics are such that

P [L(k) = `(k) | v(k)] =
{

0.8 for `(k) = v(k)
0.1 otherwise.

The finite-horizon approximation of the system’s minimum expected growth rate found using
Algorithm 4.1 on page 50 with Np = 8 and Nt = 10 is ρ

Np
≈ 2.07 with corresponding control

sequence used to obtain the value denoted as ṽ. We simulate the system using a repetition
of ṽ a total of 3.00× 104 times using four simulation horizons of Nsim ∈ {100, 200, 103, 104}
and calculate the growth rate according to Eq. (4-12) on page 57 using Nt = 10. Then, for
1000 linearly spaced offset values o ∈ [−0.2, 0.2], we checked what fraction of the 3.00× 104

runs resulted in a growth rate smaller than ρ
Np

+ o, by selecting γ = 0.5.

Bart de Jong Master of Science Thesis

4-3 Accuracy of the Finite-Horizon Approximations 61

Figure 4-5 on page 62 and Figure 4-6 on page 63 show the investigation results. The first
figure visualises the value of p̂N (0.5) as a function of the offset o for four different values of
Nsim. The latter shows the distribution of the sampled ρ(i)

Nsim
values. As expected, an offset

o of zero results in a probability of performance of around 0.5. Naturally, for an unbiased
estimator, about half of the draws will be on one side of the actual value. Furthermore,
the mean of the distributions shown in Figure 4-6 remains relatively unchanged while the
variance decreases. This decrease is apparent in the first figure, where the necessary offset to
obtain a certain probability of performance decreases as Nsim increases. The results may be
interpreted as follows:

When simulating the system for 100 steps, we can say with confidence 0.995
that in 95 % of the cases, with an accuracy of 1 %, this particular system under
hybrid control will be able to follow a growth rate of ρ

Np
+o with offset o = 0.068.

For simulation horizons of 200, 1000 and 10,000, an offset of 0.048, 0.022 or 0.007,
respectively, suffices. For illustration, the respective offsets are 3.3 %, 2.3 %, 1.1 %
and 0.3 % of the growth rate ρ

Np
. These values cannot be expected to hold for

other systems. Furthermore, this conclusion does not consider whether a control
algorithm will be able to select the appropriate discrete control inputs. Lastly, it
does not consider any discrete control sequences that would result in growth rates
lower than ρ

Np
.

The algorithm performed by MATLAB version R2022a takes, respectively and on average,
61 s, 69 s, 135 s and 869 s to complete for the four values of Nsim on an HP ZBook Studio
G5 with an Intel Core i7-8750H CPU with a base clock speed of 2.20 GHz and 16.0 GB of
RAM, using parallelisation of all six CPU cores. The MATLAB script used to perform the
calculations is included in Appendix A-2-6 on page 159.

Master of Science Thesis Bart de Jong

62 Growth Rate of SMPL Systems

Figure 4-5: The value of p̂N (0.5) as a function of the offset o and simulation horizon Nsim as calculated
using Algorithm 4.2 on page 59 for the system of Example 4.4 on page 60. It shows the value of p̂N (0.5)
for a zero offset, and the minimum offset necessary for obtaining p̂N (0.5) = 0.95. Furthermore, the red
bounds around the plot represent the uncertainty ε = 0.01 with confidence 1 − δ = 0.995. The reader is
referred to Example 4.4 on page 60 for an elaborate interpretation of the figure.

Bart de Jong Master of Science Thesis

4-3 Accuracy of the Finite-Horizon Approximations 63

Figure 4-6: The distribution of ρNsim , its mean value E [ρNsim] and the finite-horizon approximation of
the minimum expected growth rate ρ

Np
. The distribution is shown for four different values of Nsim.

Master of Science Thesis Bart de Jong

64 Growth Rate of SMPL Systems

Bart de Jong Master of Science Thesis

Chapter 5

MPC Stabilisability of SMPL Systems

Based on the notion of growth rate, this chapter explores the conditions for stability and
stabilisability of switching max-plus linear (SMPL) systems. It proposes a control framework
that considers these notions and that can be applied to mode-constrained systems with un-
certain switching behaviour. Section 5-1 on page 66 introduces the concept of stability for
SMPL systems, Section 5-2 on page 68 discusses stabilisability, and Section 5-3 on page 72
proposes a stabilising model predictive controller.

Master of Science Thesis Bart de Jong

66 MPC Stabilisability of SMPL Systems

5-1 Stability of SMPL systems

As discussed in Section 4-1 on page 40, the notion of stability for discrete-event system (DES)
systems relates to the boundedness of their buffer levels or, alternatively, their growth rate.
This relation to growth rate results in a straightforward stability analysis for systems with a
unique eigenvalue but presents difficulties when dealing with other systems, such as SMPL
systems. In recent years, Gupta et al. presented multiple frameworks for analysing the
stability of autonomous SMPL systems. They introduced the notions of (asymptotic) max-plus
weakly bounded-buffer stability and (asymptotic) max-plus strongly bounded-buffer stability
that are related to the boundedness of the buffer levels within the same event cycle [5, Def. 4.1–
4.2]. Conversely, they propose the notion of (asymptotic) max-plus Lipschitz stability that
considers the buffer levels associated to time delays in consecutive event cycles [5, Def. 4.3].
The latter concept does not imply the bounded-buffer stability of the first two concepts. The
paragraphs below introduce their definitions of the stability criteria.

(Asymptotic) max-plus weakly bounded-buffer stability This form of stability is posed by
Gupta et al. and relates to the boundedness of the state trajectories within the same event
cycle:

Definition 5.1. [5, Def. 4.1] An autonomous DES is said to be max-plus weakly bounded-
buffer stable if for every x0 ∈ Rnε , there exists a bound Mx(x0) ∈ R such that the states are
bounded in the projective norm, defined in Section 2-1-4 on page 10:

‖x(k;x0)‖P ≤Mx(x0), ∀k ∈ N (5-1)

Asymptotic max-plus weakly bounded-buffer stability is achieved if the norm in Eq. (5-1)
attains a constant value:

lim
k→∞

1
k
‖x(k;x0)‖P = 0. (5-2)

(Asymptotic) max-plus strongly bounded-buffer stability The same work proposes a defi-
nition of stability suitable for when the time delays between the states are also constrained:

Definition 5.2. [5, Def. 4.3] An autonomous DES is said to be max-plus strongly bounded-
buffer stable if the state are bounded with respect to each other in the supremum norm, as
defined in Section 2-1-4 on page 10. Equivalently, the state trajectory is contained in a finitely
generated set K ⊆ Rn:

∃Q ∈ Rn×n, [Q]i,j = qi,j and
∃K = {x ∈ Rn | xi − xj ≥ qj,i, ∀i, j ∈ n} 6= ∅

(5-3)

such that x(k;x0) ∈ K, ∀k ∈ N. The max-plus cone K is finitely generated if Q is an
irreducible matrix [58]. Asymptotic max-plus strongly bounded-buffer stability is achieved if
the component-wise bounds attain a constant value:

lim
k→∞

1
k

(xi(k)− xj(k)) = 0, ∀i, j ∈ n

The set K in Eq. (5-3) can be represented as a max-plus cone:

K = {x ∈ Rn | Q⊗ x ≤ x} .

Bart de Jong Master of Science Thesis

5-1 Stability of SMPL systems 67

(Asymptotic) max-plus Lipschitz stability The authors propose a different form of stability
that relates the state trajectories of consecutive event cycles:

Definition 5.3. [6, Def. 3.2] An autonomous DES is said to be max-plus Lipschitz stable
if there exist upper and lower bounds (α, β ∈ R) on the first-order difference of the state
trajectories:

α⊗ 1n ≤ ∆x(k) ≤ β ⊗ 1n,∀k ∈ N

These inequalities suggest minimum and maximum duration requirements between two con-
secutive events. These conditions hold for max-plus linear (MPL) systems over finite state
evolution if the system matrix A is regular [59].

Stability for systems with a due date As discussed, synchronised system evolution implies
adherence to the condition in Eq. (5-2) for asymptotic max-plus weakly bounded-buffer sta-
bility. This boundedness, however, only applies to the states within the same event cycle. It
does not dictate the system’s behaviour over a certain period. In many cases, SMPL systems
are subject to a reference signal that follows a desired throughput 1

µ , i.e., systems with a due
date. Therefore, we discuss the condition for stability that the system’s output should remain
bounded with respect to the reference signal. It is known that all buffer levels of structurally
observable systems, as introduced in Definition 3.3 on page 30, are bounded if their dwelling
times, i.e., the time differences between u(k) and y(k), remain bounded [60]. Therefore, we
consider a SISO structurally observable SMPL system stable if there exist finite constants k0,
Myr, Myx and Mxu such that

|y(k)− r(k)| ≤Myr, (5-4a)
|y(k)− xi(k)| ≤Myx, ∀i (5-4b)
|xj(k)− u(k)| ≤Mxu, ∀j (5-4c)

for all k ≥ k0. The condition in Eq. (5-4a) bounds the difference between the reference signal
and the system output. It does not specify whether a system should be quicker or slower than
this signal. The conditions in Eq. (5-4b) and Eq. (5-4c) bound the internal dwelling times of
the system.

Note that a system that meets these conditions is max-plus weakly bounded-buffer stable and
max-plus Lipschitz stable. Furthermore, recognise that stability is not an intrinsic feature of
SMPL systems but depends on the reference signal r(k). The following section explores the
stabilisability of SMPL systems as a function of this signal.

Master of Science Thesis Bart de Jong

68 MPC Stabilisability of SMPL Systems

5-2 Stabilisability of SMPL Systems

This section aims to define conditions for which structurally controllable and structurally
observable SMPL systems are stabilisable. For the same setting, Gupta et al. define the
following [6]:

Definition 5.4. [6, Def. 3.1] A DES is stabilisable if there exist control inputs such that the
system evolution becomes synchronised:

∃µ ∈ R s.t.
ξi = ξj = µ, ∀ i, j ∈ n.

Recall that this relates to the concept of synchronised system evolution explained in Defini-
tion 4.1 on page 40 and that µ is the reciprocal of the system throughput.
This definition, however, does not directly relate to the stability criteria posed in Eq. (5-4) on
page 67. To form stabilisability conditions for systems with a due date, we consider a strictly
increasing one-dimensional reference signal r(k) of the form:

r(k) = ρr k + c(k), where |c(k)| ≤ cmax and ρr > 0 (5-5)

where ρr ∈ R is the desired growth rate and c(k) > c(k − 1)− ρr.
Now, Van den Boom and De Schutter state conditions and an input signal u(k) that will
stabilise an SMPL system. The reader is advised to consult their work for the proof.

Theorem 5.1. [4, Theorem 1] Consider a structurally observable and structurally con-
trollable SMPL system with maximum growth rate ρs and consider the reference signal in
Eq. (5-5) with growth rate ρr. Now, if ρr > ρ, then any input signal

u(k) = ρr k + ν(k), where |ν(k)| ≤ νmax, ∀k (5-6)

will stabilise the SMPL system for a finite value νmax according to the criteria in Eq. (5-4)
on page 67.

The theorem is powerful in that it ensures stability for the rather lenient conditions of struc-
turally observability and controllability and all reference signals with a slope larger than the
system’s maximum growth rate. This last condition, however, is a restrictive one. The con-
dition is a logical result of the application of continuous control, but it is constraining for
hybrid or discrete control. Similarly, the authors of Definition 5.4 prove that under continu-
ous control, a max-plus Lipschitz stable DES is stabilisable only for µ ≥ ρ [6, Theorem 4.2].
However, as discussed in Chapter 4 on page 39, even under continuous control, SMPL systems
may exhibit growth rates lower than this value ρ. With the application of discrete or hybrid
control, one may even aim to predictably stabilise the system with a growth rate below the
maximum growth rate ρ.
This report investigates the conditions for stabilisability regarding reference signals with a
growth rate ρr ≤ ρ. It considers the effects of the different forms of control, the inclusion
of mode constraints as introduced in Section 3-3 on page 34 and uncertainty in the system’s
switching behaviour as discussed in Section 3-2 on page 31. Furthermore, it explores the
additional requirement of synchronised evolution.
We distinguish between the following three problems:

Bart de Jong Master of Science Thesis

5-2 Stabilisability of SMPL Systems 69

Problem I: Formulate conditions for stabilisability of a mode-constrained
deterministic SMPL system under discrete control for a reference signal
with a growth rate ρr ≤ ρ.

Problem II: Formulate conditions for stabilisability of a mode-constrained
deterministic SMPL system under hybrid control for a reference sig-
nal with a growth rate ρr ≤ ρ.

Problem III: Formulate conditions for stabilisability of a mode-constrained stochastic
SMPL system under hybrid control for a reference signal with a growth
rate ρr ≤ ρ.

These problems are discussed in Section 5-2-1, Section 5-2-2 on page 70 and Section 5-2-3 on
page 70, respectively. Furthermore, they are investigated in the case studies of Chapter 6 on
page 87.

5-2-1 Stabilisability of a mode-constrained deterministic system under discrete
control

In Problem I, we explore the conditions for stabilisability of a deterministic SMPL system
under discrete control subject to a reference signal of the form in Eq. (5-5) with a growth rate
ρr smaller than the maximum growth rate ρ.

The theorem below provides sufficient conditions for synchronised evolution through discrete
control:

Theorem 5.2. [6, Theorem 4.1] A max-plus Lipschitz stable autonomous SMPL system can
be synchronised by discrete control for some ρr ∈ [ρ∗(M, ρ] if the semigroup generated by
the matrices inM is irreducible. Here, ρ∗(M) is the upper bound of the max-plus algebraic
lower spectral radius (LSR) in Eq. (4-5) on page 44.

A semigroup is a set combined with an associative binary operation. For example, a set A of
regular square matrices in the max-plus algebra (MPA) of dimension n forms a multiplicative
semigroup [6]:

Ψ(A) def=
{
A(i1) ⊗ . . .⊗A(ik) | A(ij) ∈ A, j ∈ k, k ∈ N

}
They note that the theorem provides only a sufficient condition; it may also work for reducible
semigroups. Due to multiple irreducible matrices in the semigroup Ψ(A), it is hard to define
the set of achievable growth rates. Future research may find stricter bounds on the set.

The theorem assumes SMPL systems with finite periodic mode sequences since those can be
reduced to MPL systems that achieve asymptotic max-plus Lipschitz stability [6]. Under this
assumption, the theorem illustrates that stabilisability can only be predictably achieved for
reference signals with some growth rates in the proposed range.

We continue on this theorem by proposing the following hypothesis:

Hypothesis 5.1. Any max-plus Lipschitz stable and structurally observable SMPL system
can be stabilised by discrete control for some ρr ∈ [ρ, ρ] including ρ but not necessarily ρ.

Master of Science Thesis Bart de Jong

70 MPC Stabilisability of SMPL Systems

This hypothesis is believed to hold true since Theorem 5.2 implies synchronised evolution, i.e.,
bounded buffer levels, for some growth rates in this range, whereas the addition of structural
observability implies adherence to the stability conditions in Eq. (5-4) on page 67. Note that
the lower limit of the range has been extended to the minimum growth rate ρ since we no
longer assume periodic mode sequences of finite length. However, it is not a given that the
system is able to follow the maximum growth rate ρ that acts as a conservative upper bound.

The inclusion of mode-constraints represented by the constraint matrix Cxb tightens the
proposed range to [ρ(Cxb), ρ(Cxb)] and may reduce the number of growth rates for which
the system is stabilisable. The theory presented in Section 4-3 on page 53 sheds light on
approximations of the minimum growth rate ρ and their interpretation for individual systems.

5-2-2 Stabilisability of a mode-constrained deterministic system under hybrid
control

In this paragraph, we explore the conditions for stabilisability of a deterministic SMPL system
under hybrid control subject to a reference signal of the form in Eq. (5-5) on page 68 with a
growth rate ρr smaller than the maximum growth rate ρ.

Theorem 5.3. [6, Theorem 4.3] A max-plus Lipschitz stable SMPL system can be syn-
chronised by hybrid control for some ρr ∈ [ρ∗(M), ρ] if the system is weakly structurally
controllable.

Again, the authors assume a periodic mode sequence of finite length and an input signal with
a growth rate ρu ≤ ρ.

We propose the following hypothesis:

Hypothesis 5.2. Any max-plus Lipschitz stable, structurally observable and structurally
controllable SMPL system can be stabilised by hybrid control for all ρr ≥ ρ.

Recall from Definition 3.1 on page 30 and [6, Theorem 4.2] that structural controllability for
max-plus Lipschitz stable SMPL systems under continuous control implies that the growth
rate of a system can be steered towards any value larger than ρ. Then, if Hypothesis 5.1
dictates that the system can be stabilised for ρr = ρ, then such a system under hybrid control
can be stabilised for all ρr ≥ ρ. The addition of structural observability ensures that the
system meets the conditions of Eq. (5-4) on page 67.

Again, the inclusion of mode-constraints represented by Cxb may increase the lower bound ρ
to the set of growth rates for which the system is stabilisable to ρ(Cxb). Furthermore, the
reader is referred to Section 4-3 on page 53 for details on growth rate approximations and
their validity.

5-2-3 Stabilisability of a mode-constrained stochastic system under hybrid con-
trol

Lastly, for Problem III, we explore the conditions for stabilisability of a stochastic SMPL
system under hybrid control subject to a reference signal of the form in Eq. (5-5) on page 68
with a growth rate ρr smaller than the maximum growth rate ρ.

Bart de Jong Master of Science Thesis

5-2 Stabilisability of SMPL Systems 71

Since Theorem 5.3 presumes the case where the mode sequence is deterministically controlled
via v, it does not apply to systems with uncertainty in their switching behaviour. Due to this
uncertainty, in general, no upper limit other than ρ can be put on the growth rate of such
systems. We can state that, on average, the growth rate of systems will converge for infinite
horizon to ρ(ṽ) as a function of a specific control sequence ṽ and without continuous control.
Additionally, these systems will, on average, not be able to achieve growth rates smaller than
ρ for infinite horizon.

Conversely, if we assume that, given a discrete control sequence ṽ and no continuous control,
a system’s growth rate will always converge to ρ(ṽ), and subsequently can always converge
to ρ with suitable discrete control, we can better predict its behaviour. We will assume such
a stochastically predictable system in the following hypothesis.

For illustration, we give the following example of a system that does not follow such behaviour:

Example 5.1. Consider a one-dimensional autonomous trimodal stochastic SMPL system
with the following system matrices:

A(1) =
[
1
]
,

A(2) =
[
2
]
,

A(3) =
[
3
]
,

C =
[
0
]
,

and with Markovian switching probabilities:

P [L(k) = j | `(k − 1) = j] = 1, for j ∈ {1, 3}
P [L(k) = j | `(k − 1) = 2] = 0.5, for j ∈ {1, 3}.

Evidently, with `(0) = 2, the system will either stay in mode 1 or mode 3, indefinitely. Mode 1
and 3 are considered sinks in an underlying graph representing the modes of the switching
system, while mode 2 is considered a source. As a result of this behaviour, the system will
have a growth rate of 1 or 3 at every individual simulation instance while having an expected
growth rate ρ of 2. We classify such a system as stochastically unpredictable. This is in
contrast to a stochastically predictable system, whose growth rate will converge to ρ for all
simulation instances.

Hypothesis 5.3. Any stochastically predictable, max-plus Lipschitz stable, structurally ob-
servable and structurally controllable SMPL system can be stabilised by hybrid control for
all ρr ≥ ρ.

The justification of this hypothesis is similar to Hypothesis 5.2. The only difference is that
the lower bound considers the stochastics in the switching behaviour. The inclusion of mode-
constrained represented by Cxb may again increase this bound to ρ(Cxb). Section 4-3 on
page 53 shows approximations of the expected growth rate metrics and their interpretations.

Master of Science Thesis Bart de Jong

72 MPC Stabilisability of SMPL Systems

5-3 A Stabilising Model Predictive Controller

This section discusses the application of model predictive control (MPC) to mode-constrained
SMPL systems. De Schutter and Van den Boom pioneered an MPC approach for MPL
systems in 2000 [26]. They showed in 2002 that in many cases, MPL-MPC results in a linear
programming problem, which can be solved efficiently. Later, they extended the algorithm
to deterministic and stochastic SMPL systems [40, 41, 42]. In this report, we apply their
findings to mode-constrained systems subject to hybrid control.

Section 5-3-1 first poses a general introduction to SMPL-MPC. Then, in Section 5-3-2 on
page 77, Section 5-3-3 on page 80 and Section 5-3-4 on page 83, respectively, the following
three cases are discussed:

Case 1: Discrete control of deterministic mode-constrained SMPL systems

Case 2: Hybrid control of deterministic mode-constrained SMPL systems

Case 3: Hybrid control of stochastic mode-constrained SMPL systems

These three cases correspond to the ones discussed in Section 5-2 on page 68. Afterwards,
Chapter 6 on page 87 applies this section’s theory to an exemplary SMPL system. The reader
is referred to Section 2-2 on page 13 for a general introduction to MPC.

5-3-1 Model predictive control for general SMPL systems

The theory in this section is primarily based on [4] and other work of the same authors, unless
stated otherwise.

Consider a system in the discrete hybrid stochastic automaton (DHSA) framework, where the
switched affine system (SAS) and the mode selector (MS) are represented by a type-1 SMPL
system of the form in Eq. (3-1) on page 28:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k)
y(k) = C(`(k)) ⊗ x(k)
`(k) = φ(`(k − 1), x(k − 1), v(k), u(k))
`(k) ∈ L = nL, k ∈ N

where the switching function φ(·) is unspecified other than its possible dependence on `(k−1),
x(k − 1), v(k) and u(k). The reader is referred to Section 3-3 on page 34 for the theory on
DHSA modelling.

Furthermore, consider mode-constraints in the form of admissible discrete control inputs ṽ
captured by a constraint matrix Cxb . These arise from the unspecified underlying stochastic
finite state machine (sFSM) in the DHSA framework.

Bart de Jong Master of Science Thesis

5-3 A Stabilising Model Predictive Controller 73

Now, define the prediction vectors at event step k over horizon Np:

ỹ(k) def=


ŷ(k | k)

...
ŷ(k +Np − 2 | k)
ŷ(k +Np − 1 | k)

 , ũ(k) def=


u(k)
...

u(k +Np − 2)
u(k +Np − 1)

 ,

˜̀(k) def=


`(k | k)

...
`(k +Np − 2 | k)
`(k +Np − 1 | k)

 , ṽ(k) def=


v(k)
...

v(k +Np − 2)
v(k +Np − 1)

 ,

r̃(k) def=


r(k)
...

r(k +Np − 2)
r(k +Np − 1)



(5-7)

where ŷ(k + j | k) denotes the prediction of y(k + j) based on knowledge at event step k,
u(k + j) denotes the continuous input at event step k + j, `(k + j) represents the mode at
event step k + j, v(k + j) is the discrete input at event step k + j and r(k + j) denotes the
reference at event step k + j. This reference signal is assumed to have the form of Eq. (5-5)
on page 68:

r(k) = ρrk + c(k), where |c(k)| ≤ cmax and ρr > 0

where ρr is the desired growth rate and c(k) > c(k − 1)− ρr.

In conjunction to the aforementioned prediction vectors, define the following prediction ma-
trices:

Ãm(˜̀(k)) def= A(`(k+m−1|k) ⊗ · · · ⊗A(`(k|k)

B̃m,n(˜̀(k)) def=


A(`(k+m−1|k)) ⊗ · · · ⊗A(`(k+n|k)) ⊗B(`(k+n−1|k)) if m > n

B(`(k+m−1|k)) if m = n

ε if m < n

(5-8)

and
C̃m(˜̀(k)) def= C(`(k+m−1|k)) ⊗ Ãm(˜̀(k))

D̃m,n(˜̀(k)) def= C(`(k+m−1|k)) ⊗ B̃m,n(˜̀(k)),
(5-9)

such that the prediction model over horizon j ∈ {0, 1, . . . , Np} is given by

x(k + j) = Ãj(˜̀(k))⊗ x(k − 1)⊕ B̄j(˜̀(k))⊗ ũ(k)
ỹ(k) = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)

Master of Science Thesis Bart de Jong

74 MPC Stabilisability of SMPL Systems

in which
B̄j(˜̀(k)) def=

[
B̃j,1(˜̀(k)) . . . B̃j,Np(˜̀(k))

]
,

C̃(˜̀(k)) def=


C̃1(˜̀(k))

...
C̃Np(˜̀(k))

 ,

D̃(˜̀(k)) def=


D̃1,1(˜̀(k)) · · · D̃1,Np(˜̀(k))

...
D̃Np,1(˜̀(k)) · · · D̃Np,Np(˜̀(k))

 .
(5-10)

This prediction model does not yet consider any mode constraints or constraints on the set of
possible discrete control inputs. Instead, it offers a concise way of predicting a system’s state
at a future point.
Incorporate now the switching uncertainty in the MS by defining the probability for all switch-
ing sequences ˜̀(k) as:

P̃
[
L̃(k) = ˜̀(k) | `(k − 1), x(k − 1), ũ(k), ṽ(k)

]
= P [L(k) = `(k) | `(k − 1), x(k − 1), u(k), v(k)]
· P [L(k + 1) = `(k + 1) | `(k), x(k), u(k + 1), v(k + 1)] · . . . ·
· . . . · P [L(k +Np − 1) = `(k +Np − 1) |
`(k +Np − 2), x(k +Np − 2), u(k +Np − 1), v(k +Np − 1)]

Recall that the cost function J(k) of an MPC setup at event step k usually consists of the
combination of an output cost function Jout(k) and a scaled input cost function Jin(k):

J(k) = Jout(k) + β Jin(k)

where β ≥ 0 is a user-chosen tuning parameter. The output cost function represents the
system’s tardiness by comparing its output to the reference value:

Jout(k) = E
{Np−1∑

j=0

ny∑
i=1

max
(
yi(k + j)− ri(k + j), 0

)}

= E
{nyNp∑

i=1
max

(
ỹi(k)− r̃i(k), 0

)}

= E
{nyNp∑

i=1

[
(ỹ(k)− r̃(k))⊕ 1

]
i

}

= E
{nyNp∑

i=1

[(
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)− r̃(k)

)
⊕ 1

]
i

}

=
∑

˜̀(k)∈LN

{nyNp∑
i=1

[(
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)− r̃(k)

)
⊕ 1

]
i

· P̃ [L̃(k) = ˜̀(k) | `(k − 1), x(k − 1), ũ(k), ṽ(k)]
}

Bart de Jong Master of Science Thesis

5-3 A Stabilising Model Predictive Controller 75

where E{·} is a function that calculates the expectation over the switching sequences and 1

is a vector of zeros of appropriate size. The input cost function gives preference to delays
through u(k) while penalising discrete control action v(k):

Jin(k) = −
nuNp∑
i=1

[ũ(k)]i +
nvNp∑
i=1

α̃i [ṽ(k)]i (5-11)

where α̃ is a vector containing weights to scale the discrete control action.

The resulting MPC problem for structurally controllable and structurally observable SMPL
systems seeks to minimise the cost function J(k) over the control sequences ũ(k) and ṽ(k)
within the following constraints:

ỹ(k) = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k) (5-12a)
∆u(k + j) ≥ 0, j = 0, . . . , Np − 1 (5-12b)
|ui(k + j)− ρr · (k + j)| ≤ νmax, for i = 1, . . . , nu, j = 0, . . . , Np − 1 (5-12c)
Qṽ(k) ≤ q (5-12d)
Rũ(k) ≤ s (5-12e)

where Eq. (5-12a) represents the system dynamics, Eq. (5-12b) enforces the continuous input
signal to be nondecreasing, Eq. (5-12c) guarantees stability according to Theorem 5.1 on
page 68, and Eq. (5-12d) and Eq. (5-12e) represent additional linear constraints on the control
sequences. Note that the resulting optimisation problem is a nonlinear one that can be solved
by employing, for instance, multi-start optimisation methods.

Alternatively, Van den Boom and De Schutter show that in many cases, the problem can
be rewritten into a more efficient one [4]. For deterministic switching, the original type-
1 SMPL description can be converted into a type-2 one where the stochastic signal d(k)
is absent, allowing for transforming the system into a deterministic piecewise-affine (PWA)
system or deterministic max-min-plus-scaling (MMPS) system. See Section 3-2-2 on page 31
for information regarding type-1 and type-2 SMPL systems. There are many MPC algorithms
available for PWA systems, e.g., [61, 62], and for MMPS systems, e.g., [63].

If the MS only depends on the discrete control variable v(k), the MPC problem can be
recast into a mixed-integer linear programming (MILP) problem. MSs that describe mode-
dependent and control-independent switching can be translated to linear programming (LP)
problems, as shown in the following theorem by Van den Boom and De Schutter:

Theorem 5.4. [4, Theorem 2] Consider a type-1 SMPL system with mode-dependent stochas-
tic switching, so the switching probability Ps and switching sequence probability P̃s are such
that:

P [L(k) = `(k) | `(k − 1), x(k − 1), u(k), v(k)] = Ps [L(k) = `(k) | `(k − 1)]

P̃
[
L̃(k) = ˜̀(k) | `(k − 1), x(k − 1), u(k), v(k)

]
= P̃s

[
L̃(k) = ˜̀(k) | `(k − 1)

]
.

Assume that LNp can be rewritten as LNp =
{

˜̀1, ˜̀2, . . . , ˜̀M
}

for M = n
Np
L . The MPC

Master of Science Thesis Bart de Jong

76 MPC Stabilisability of SMPL Systems

problem can be recast as an LP problem:

min
ũ(k), ti,m

nyNp∑
i=1

M∑
m=1

ti,mP̃s
[
L̃(k) = ˜̀m | `(k − 1)

]
− β

nuNp∑
i=1

ũi(k)

s.t. ti,m ≥
[
C̃
(

˜̀m
)]
i,l

+ xl(k − 1)− r̃i(k), ∀i, m, l

ti,m ≥
[
D̃
(

˜̀m
)]
i,l

+ ũl(k)− r̃i(k), ∀i, m, l

ti,m ≥ 0, ∀i, m
∆u(k + j) ≥ 0, ∀i, j
|ui(k + j)− ρr · (k + j)| ≤ νmax, ∀i, j
Rũ(k) ≤ s.

The mode constraints as described by the sFSM in the DHSA can be accounted for in the set
LNp , leading to M ≤ nNp

L .
Whenever the switching probability P [L(k) = `(k)] depends solely and linearly on a con-
trol variable such as v(k), the cost function and resulting optimisation problem of the form
depicted above become quadratic:

nyNp∑
i=1

M∑
m=1

V∑
j=1

ti,mP̃s
[
L̃(k) = ˜̀m | ṽj

]
δṽj (5-14)

where V is the number of possible control sequences ṽj over horizon Np and δṽj is one when
control sequence ṽj is activated and zero otherwise.
If, however, we define

Mt ≥ max ti,m, mt ≤ min ti,m,

we can introduce auxiliary real variables tji,m = δṽj ti,m to linearise the cost function. To this
end, we replace the cost function in Eq. (5-14) with:

nyNp∑
i=1

M∑
m=1

V∑
j=1

tji,mP̃s
[
L̃(k) = ˜̀m | ṽj

]
that is subject to the constraints:

tji,m ≤Mtδṽj

tji,m ≥ mtδṽj

tji,m ≤ ti,m −mt (1− δṽj)

tji,m ≥ ti,m −Mt (1− δṽj)

After this transformation, the mixed-integer quadratic programming (MIQP) problem is con-
verted into an MILP one. The bounds Mt and mt that transform the system into a mixed
logical dynamical (MLD)-like description are an arbitrary upper and lower bound to the ac-
tual maximum of the variables, with stricter values providing computational benefits [64,
p. 171]. For our application, we consider the following bounds:

Mt = ρ ·Nsim + y(0), mt = y(0).

Bart de Jong Master of Science Thesis

5-3 A Stabilising Model Predictive Controller 77

Since the variables ti,m represent the system’s output, they are upper bounded by a function
of the maximum growth rate ρ and simulation horizon Nsim, and lower bounded by 0. These
bounds may be offset by any nonzero initial system output y(0).
In summary, any switching function that depends on the discrete control signal v(k), com-
bined with continuous control in the optimisation algorithm, can result in an MILP problem.
Individual assessment of the algorithm’s efficiency may still result in a preference towards
MIQP. This selection is discussed in Chapter 6 on page 87 for the individual case studies.

Timing issues The irregularity of MPC for SMPL systems is that the event counter k does
not directly relate to a specific time. Instead, it represents the number of events that have
happened. As a result, the state vector x(k) is often not fully known at the same time instant.
Van den Boom and De Schutter address these timing issues in the following manner [60, Sec. 3]:

For the case of full state information1, let [xest(k, t)]i be an estimation of the kth occurrence
time of an internal event i with a measured, true occurrence time of [xtrue(k)]i. Let l(t) be the
smallest integer such that [xtrue(k− l(t))]i is known at time t. Then, define xest(k− l(t), t) =
xtrue(k − l(t)) and reconstruct the unknown state components using the recursion

xest(k−l(t)+j, t) = A⊗xest(k−l(t)+j−1, t)⊕B⊗ũ(k−l(t)+j−1, t) for j = 1, . . . , l(t).

Note that ũ(k− l(t)+ j−1, t) consists of past applied input times and future computed input
times.
The second time-related issue for MPL-MPC is to find the best time t = t(k) to determine
x(k)|t and to start the optimisation algorithm for computing ũ(k). Here, x(k)|t is the value
of the state x(k) that can be used at time t:

[x(k)|t]i =
{

[xtrue(k)]i if [xtrue(k)]i is known at time t (so [xtrue(k)]i ≤ t)
[xext(k, t)]i otherwise

The previously computed sequence ũ(k − 1) offers insight into the appropriate time instant
to start the computation. Namely,

t(k) = min
j

[u(k | k − 1)]j − tc,

where tc is an upper bound for the computation time. If tc � ∆t(k+1), at least one additional
intermediate optimisation step can be done with new information.
In this report, we do not consider these timing issues, and instead assume full state availability
without measurement delay. The following sections in this chapter detail the specifics of MPC
for the three control cases introduced earlier.

5-3-2 Discrete control of a mode-constrained deterministic SMPL system

This section and the succeeding two discuss the differences of the system model, prediction
model, cost function, constraints, and optimisation problem with respect to the general MPC
model introduced in Section 5-3-1 on page 72. The subject of this section is discrete control
of a deterministic SMPL system.

1Since the components of the state correspond to event times, they are, in general, easy to measure.

Master of Science Thesis Bart de Jong

78 MPC Stabilisability of SMPL Systems

System model

Similarly, the structurally observable deterministic SMPL system under discrete control is
represented as a discrete hybrid automaton (DHA). The single-output SAS has the following
form:

x(k) = A(`(k)) ⊗ x(k − 1)
y(k) = C ⊗ x(k)

and is paired with a deterministic MS:

`(k) = φ(`(k − 1), v(k))
`(k) ∈ L = nL, k ∈ N

with no switching stochastics:

P [L(k) = `(k) | `(k − 1), v(k)] ∈ {0, 1}

System matrix A(`(k)) ∈ Rnx×nxε varies over the modes `(k), whereas matrix C ∈ R1×nx
ε is

assumed to be constant across the modes.

The discrete state xb of the finite state machine (FSM) evolves according to the dynamics
specified by the unspecified function fFSM(·):

xb(k + 1) = fFSM(xb(k), `(k))

Lastly, we assume a reference signal of the form in Eq. (5-5) on page 68.

Prediction model

The prediction vectors ˜̀(k), r̃(k), ỹ(k) and ṽ(k) over horizon Np are defined as in Eq. (5-7) on
page 73. Similarly, the matrices Ãm(˜̀(k)), C̃m(˜̀(k)) and C̃(˜̀(k)) are defined as in Eq. (5-8),
Eq. (5-9) and Eq. (5-10) on page 73. The prediction model as a function of the switching
sequence ˜̀(k) is given by:

x(k + j) = Ãj(˜̀(k))⊗ x(k − 1)
ỹ(k) = C̃(˜̀(k))⊗ x(k − 1)

Furthermore, we can predict the future FSM state using the unspecified function f̃FSM(·) that
acts as an expansion to the function fFSM(·):

xb(k + j) = f̃FSM(xb(k), ˜̀(k))

Cost function

With the omission of continuous control and no penalisation on discrete control, the cost
function is solely dependent on the system’s output. As a result, the optimisation problem
loses the inclination to minimise the positive distance between the reference signal r(k) and

Bart de Jong Master of Science Thesis

5-3 A Stabilising Model Predictive Controller 79

the system’s output y(k), a property we aim to keep. To that end, we consider both the
positive difference y(k)− r(k) and the negative difference r(k)− y(k) in a weighted manner:

J(k) = E
{Np−1∑

j=0
max

(
y(k + j)− r(k + j), γ(r(k + j)− y(k + j)

)}

= E
{Np∑
i=1

max
(
ỹi(k)− r̃i(k), γ(r̃i(k)− ỹi(k))

)}

= E
{Np∑
i=1

[
(ỹ(k)− r̃(k))⊕ γ(r̃(k)− ỹ(k))

}

= E
{Np∑
i=1

[(
C̃(˜̀(k))⊗ x(k − 1)− r̃(k)

)
⊕ γ

(
r̃(k)− C̃(˜̀(k))⊗ x(k − 1)

)}

=
∑

˜̀(k)∈LN

{Np∑
i=1

[(
C̃(˜̀(k))⊗ x(k − 1)− r̃(k)

)
⊕ γ

(
r̃(k)− C̃(˜̀(k))⊗ x(k − 1)

)

· P̃ [L̃(k) = ˜̀(k) | `(k − 1), ṽ(k)]
}
.

(5-15)

The nonnegative parameter γ ≥ 0 balances the output’s convergence speed with respect to the
reference and the strictness of the soft constraint that keeps the output below the reference.
The influence of the weight for the case study is evaluated in Chapter 6-2-2 on page 97.

Constraints

Many constraints present in the general case in Eq. (5-12) on page 75 can be discarded due
to the omission of continuous control. We keep the following constraints:

ỹ(k) = C̃(˜̀(k))⊗ x(k − 1) (5-16a)
Qṽ(k) ≤ q (5-16b)

The constraint matrix Q and vector q embody the mode constraints as represented by con-
straints on the discrete control sequence ṽ(k), such that for every k, v(k) ∈ C>xbxb as discussed
in Section 3-3 on page 34. The specific implementation of these constraints for the case study
is discussed in Chapter 6-2-3 on page 98.

Master of Science Thesis Bart de Jong

80 MPC Stabilisability of SMPL Systems

Optimisation problem

The individual control components discussed in this section are rewritten in the following LP
problem:

min
ṽ, ti,m

Np∑
i=1

nL∑
m=1

ti,mP̃s
[
L̃(k) = ˜̀m | ṽ(k)

]
(5-17a)

s.t. ti,m ≥
[
C̃
(

˜̀m
)]
i,l

+ xl(k − 1)− r̃i(k), ∀ i, m, l (5-17b)

ti,m ≥ γ
(
r̃i(k)−

[
C̃
(

˜̀m
)]
i,l
− xl(k − 1)

)
, ∀ i, m, l (5-17c)

ti,m ≥ 0, ∀ i, m (5-17d)
Qṽ(k) ≤ q (5-17e)

where P̃s[·] is the probability of a specific mode sequence. Notice that the inclusion of
Eq. (5-17c) ensures the minimisation of the distance r(k) − y(k), scaled through the weight
factor γ. Due to the specific implementation discussed in Section 6-2-5 on page 99, the
problem results in an MILP one.

For a structurally observable and max-plus Lipschitz stable system and a reference signal
with a growth rate of ρr in the set [ρ, ρ], the absolute difference |y(k) − r(k)| will remain
bounded according to Hypothesis 5.1 on page 69, thereby ensuring stability according to the
stability conditions of Eq. (5-4) on page 67.

5-3-3 Hybrid control of a mode-constrained deterministic SMPL system

This section details the specifics of the hybrid control problem of a deterministic SMPL
system. It is subdivided into the following parts: system model, prediction model, cost
function, constraints and optimisation problem. The implementation of the theory is discussed
in Section 6-3 on page 101.

System model

The structurally controllable and observable single-input single-output (SISO) SAS of the
DHA under hybrid control is described by:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k)
y(k) = C ⊗ x(k)

and is paired with a deterministic MS:

`(k) = φ(`(k − 1), v(k))
`(k) ∈ L = nL, k ∈ N

with no switching stochastics:

P [L(k) = `(k) | `(k − 1), v(k)] ∈ {0, 1}

Bart de Jong Master of Science Thesis

5-3 A Stabilising Model Predictive Controller 81

System matrices A(`(k)) ∈ Rnx×nxε and B(`(k)) ∈ Rnx×1
ε vary over the modes `(k), whereas

matrix C ∈ R1×nx
ε is assumed to be constant across the modes.

The discrete state xb of the FSM evolves according to the dynamics specified by the function
fFSM(·):

xb(k + 1) = fFSM(xb(k), `(k))

Lastly, we assume a reference signal of the form in Eq. (5-5) on page 68.

Prediction model

The prediction vectors ˜̀(k), r̃(k), ỹ(k), ũ(k) and ṽ(k) over horizon Np are defined as in
Eq. (5-7) on page 73. Similarly, the matrices Ãm(˜̀(k)), B̄j(˜̀(k)), B̃m,n(˜̀(k)), C̃(˜̀(k)),
C̃m(˜̀(k)), D̃(˜̀(k)) and D̃m,n(˜̀(k)) are defined in Eq. (5-8), Eq. (5-9) and Eq. (5-10) on
page 73. The prediction model of the deterministic model under hybrid control given a
switching sequence ˜̀(k) is:

x(k + j) = Ãj(˜̀(k))⊗ x(k − 1)⊕ B̄j(˜̀(k))⊗ ũ(k)
ỹ(k) = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)

Furthermore, we can predict the future FSM state:

xb(k + j) = f̃FSM(xb(k), ˜̀(k))

Cost function

The cost function is the sum of the output cost function and the scaled input cost function:

J(k) = Jout(k) + βJin(k)

where,

Jout(k) = E
{Np−1∑

j=0
max

(
y(k + j)− r(k + j), 0

)}

= E
{Np∑
i=1

max
(
ỹi(k)− r̃i(k), 0

)}

= E
{Np∑
i=1

[
(ỹ(k)− r̃(k))⊕ 1

]
i

}

= E
{Np∑
i=1

[((
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)

)
− r̃(k)

)
⊕ 1

]
i

}

=
∑

˜̀(k)∈LN

{Np∑
i=1

[((
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)

)
− r̃(k)

)
⊕ 1

]
i

· P̃ [L̃(k) = ˜̀(k) | `(k − 1), ṽ(k)]
}

Master of Science Thesis Bart de Jong

82 MPC Stabilisability of SMPL Systems

and

Jin(k) = −
Np∑
i=1

[ũ(k)]i

As opposed to the input cost function in Eq. (5-11) on page 75, there is no penalisation on
the discrete control action ṽ(k), since we assign no value to specific modes. One could opt to
enforce soft constraints on mode sequences via this cost function instead of hard constraints
in the optimisation problem.

Constraints

We have the following constraints:

ỹ(k) = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k) (5-18a)
∆u(k + j) ≥ 0, j = 0, . . . , Np − 1 (5-18b)
|u(k + j)− ρr · (k + j)| ≤ νmax, for j = 0, . . . , Np − 1 (5-18c)
Qṽ(k) ≤ q (5-18d)
Rũ(k) ≤ s (5-18e)

Eq. (5-18a) represents the system dynamics, Eq. (5-18b) and Eq. (5-18c) dictate the behaviour
of the continuous input sequence, and Eq. (5-18d) and Eq. (5-18e) are additional linear
constraints on the input sequences. The mode constraints can be captured in Eq. (5-18d).

Optimisation problem

This again results in an LP optimisation problem:

min
ũ, ṽ

Np∑
i=1

nL∑
m=1

ti,mP̃s
[
L̃(k) = ˜̀m | ṽ(k)

]
− β

Np∑
i=1

ũi(k)

s.t. ti,m ≥
[
C̃
(

˜̀m
)]
i,l

+ xl(k − 1)− r̃i(k), ∀i, m, l

ti,m ≥
[
D̃
(

˜̀m
)]
i,l

+ ũ(k)− r̃(k), ∀m, l

ti,m ≥ 0, ∀i, m
u(k + j)− u(k + j − 1) ≥ 0, ∀j
|u(k + j)− ρr · (k + j)| ≤ νmax, ∀j
Rũ(k) ≤ s,
Qṽ(k) ≤ q

The algorithm can be implemented as either an MILP or an MIQP problem, as discussed in
Section 5-3-1 on page 72. For a structurally observable, structurally controllable and max-
plus Lipschitz stable SMPL system and a reference signal with a growth rate of ρr no lower
than ρ, the absolute difference |y(k) − r(k)| and positive distance y(k) − u(k) will remain
bounded according to Hypothesis 5.2 on page 70, thereby ensuring stability according to the
stability conditions of Eq. (5-4) on page 67.

Bart de Jong Master of Science Thesis

5-3 A Stabilising Model Predictive Controller 83

5-3-4 Hybrid control of a mode-constrained stochastic SMPL system

At last, we discuss MPC for a mode-constrained stochastic SMPL system. The section in-
troduces the system model, prediction model, cost function, constraints and optimisation
problem. Section 6-4 on page 109 details the implementation of the individual parts in the
case study.

System model

We consider a structurally controllable and observable SISO SAS of a DHSA under hybrid
control:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k)
y(k) = C ⊗ x(k)

paired with a stochastic MS:

`(k) = φstoch(`(k − 1), v(k))
`(k) ∈ L = nL, k ∈ N

with switching stochastics:

P [L(k) = `(k) | `(k − 1), v(k)] ∈ (0, 1)

System matrices A ∈ Rnx×nxε and B ∈ Rnx×1
ε vary over the modes `(k), whereas matrix

C ∈ R1×nx
ε is constant. The number of system modes is nL.

The discrete state xb of the sFSM evolves according to the stochastic dynamics specified by
the function fsFSM(·):

P [xb(k + 1) = x̂b] = fsFSM(xb(k), v(k))

Finally, we consider a reference signal of the form in Eq. (5-5) on page 68.

Prediction model

The prediction vectors ˜̀(k), r̃(k), ỹ(k), ũ(k) and ṽ(k) over horizon Np are defined as in
Eq. (5-7) on page 73. Similarly, the matrices Ãm(˜̀(k)), B̄j(˜̀(k)), B̃m,n(˜̀(k)), C̃(˜̀(k)),
C̃m(˜̀(k)), D̃(˜̀(k)) and D̃m,n(˜̀(k)) are defined in Eq. (5-8), Eq. (5-9) and Eq. (5-10) on
page 73. The prediction model of the stochastic model under hybrid control given a switching
sequence ˜̀(k) is:

x(k + j) = Ãj(˜̀(k))⊗ x(k − 1)⊕ B̄j(˜̀(k))⊗ ũ(k)
ỹ(k) = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)

Furthermore, we can predict the future sFSM state:

xb(k + j) = f̃sFSM(xb(k), ˜̀(k))

Note that these prediction models are deterministic under the given mode sequence ˜̀(k). The
stochastics arise in the switching to mode `(k + 1).

Master of Science Thesis Bart de Jong

84 MPC Stabilisability of SMPL Systems

Cost function

The cost function is again a sum of two parts:

J(k) = Jout(k) + βJin(k)

where,

Jout(k) = E
{Np−1∑

j=0
max

(
y(k + j)− r(k + j), 0

)}

= E
{Np∑
i=1

max
(
ỹi(k)− r̃i(k), 0

)}

= E
{Np∑
i=1

[
(ỹ(k)− r̃(k))⊕ 1

]
i

}

= E
{Np∑
i=1

[((
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)

)
− r̃(k)

)
⊕ 1

]
i

}

=
∑

˜̀(k)∈LN

{Np∑
i=1

[((
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)

)
− r̃(k)

)
⊕ 1

]
i

· P̃ [L̃(k) = ˜̀(k) | `(k − 1), ṽ(k)]
}

and

Jin(k) = −
Np∑
i=1

[ũ(k)]i

Recall from Section 5-3-3 on page 80 that there is no penalisation on ṽ(k).

Constraints

We have the following constraints:

ỹ(k) = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k) (5-20a)
∆u(k + j) ≥ 0, j = 0, . . . , Np − 1 (5-20b)
|u(k + j)− ρr · (k + j)| ≤ νmax, for j = 0, . . . , Np − 1 (5-20c)
Qṽ(k) ≤ q (5-20d)
Rũ(k) ≤ s (5-20e)

Eq. (5-20a) represents the system dynamics, Eq. (5-20b) and Eq. (5-20c) dictate the behaviour
of the continuous input sequence, and Eq. (5-20d) and Eq. (5-20e) are additional linear
constraints on the input sequences.

Bart de Jong Master of Science Thesis

5-3 A Stabilising Model Predictive Controller 85

Optimisation problem

We obtain the following LP optimisation problem:

min
ũ, ṽ

Np∑
i=1

nL∑
m=1

ti,mP̃s
[
L̃(k) = ˜̀m | ṽ(k)

]
− β

Np∑
i=1

ũi(k)

s.t. ti,m ≥
[
C̃
(

˜̀m
)]
i,l

+ xl(k − 1)− r̃i(k), ∀i, m, l

ti,m ≥
[
D̃
(

˜̀m
)]
i,l

+ ũ(k)− r̃(k), ∀m, l

ti,m ≥ 0, ∀i, m
u(k + j)− u(k + j − 1) ≥ 0, ∀j
|u(k + j)− ρr · (k + j)| ≤ νmax, ∀j
Rũ(k) ≤ s,
Qṽ(k) ≤ q

The hybrid control description of the stochastic system is very similar to the one for the
deterministic system. This similarity results from the uncertainty being represented only in
the probability P̃s of a particular mode sequence ˜̀(k) given a discrete control sequence ṽ(k).
The uncertainty is dealt with during the online execution of the MPC and not in the predictor
step of the controller. This is discussed in Chapter 6 on page 87.

Again, the algorithm results in an MILP or an MIQP problem as discussed in Section 5-3-1
on page 72. For a structurally observable, structurally controllable, max-plus Lipschitz stable
and stochastically predictable SMPL system and a reference signal with a growth rate of ρr
no smaller than ρ, the absolute difference |y(k)− r(k)| and positive distance y(k)− u(k) will
remain bounded according to Hypothesis 5.3 on page 71, thereby ensuring stability according
to the stability conditions of Eq. (5-4) on page 67.

The next chapter discusses the practical implementation of such systems into MATLAB to
validate the presented theory.

Master of Science Thesis Bart de Jong

86 MPC Stabilisability of SMPL Systems

Bart de Jong Master of Science Thesis

Chapter 6

Case Study

This penultimate chapter deals with the application of the model predictive control (MPC)
method introduced in Section 5-3 on page 72 to suitable switching max-plus linear (SMPL)
systems according to the following three familiar cases:

1. Discrete Control of a Mode-Constrained Deterministic SMPL System

2. Hybrid Control of a Mode-Constrained Deterministic SMPL System

3. Hybrid Control of a Mode-Constrained Stochastic SMPL System

These cases are discussed in Section 6-2 on page 96, Section 6-3 on page 101 and Section 6-
4 on page 109, respectively. The sections offer details on the specific implementation in
MATLAB and the results of the simulations. First, Section 6-1 on page 88 introduces the
system description and the control structure that are used throughout the chapter.

Master of Science Thesis Bart de Jong

88 Case Study

6-1 Problem Setup

This section discusses the SMPL system used for visualising the results of this work. In order,
it reviews the application of MPC to the three cases as specified on page 87. Case 1 and Case 2
in this study employ the same underlying system as in Case 3. However, switching is instead
assumed to be deterministic, and Case 1 does not permit the use of continuous control through
u(k). This section introduces the problem setup and the system with uncertain switching
under hybrid control as used for Case 3. Then, Section 6-2 on page 96 and Section 6-3 on
page 101 explain the specific alterations to this general model for the first two cases.
The sections in this chapter introduce the system description, control objective, system con-
straints, optimisation problem and controller setup. The latter three sections also review
results obtained through a MATLAB simulation.

6-1-1 System description

The mode-constrained SMPL system used for the three case studies is described as a discrete
hybrid stochastic automaton (DHSA), introduced in Section 3-3 on page 34. It is modelled
as an interconnection between a switched affine system (SAS), a mode selector (MS) and a
stochastic finite state machine (sFSM) that are described below. The switching stochasticity
has been modelled as a part of the MS instead of the sFSM. Still, we opt to regard it as a
DHSA instead of a discrete hybrid automaton (DHA) despite the lack of stochasticity in the
sFSM as a function of `(k). We do still consider stochasticity in the sFSM as a function of
v(k).

SAS The switched affine system (SAS) is a structurally controllable, structurally observ-
able and max-plus Lipschitz stable single-input single-output (SISO) SMPL system with the
following description:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k)
y(k) = C ⊗ x(k)

(6-1)

where A(`(k)) ∈ Rnx×nxε , B(`(k)) ∈ Rnx×1
ε and C ∈ R1×nx

ε . We assume the output matrix C to
be constant across the modes and have only zeros as its entries:

C =
[
0 . . . 0

]
∈ R1×nx

ε

MS Secondly, the MS, denoting the switching behaviour, is described as:

`(k) = φstoch(`(k − 1), v(k))
`(k) ∈ L = {1, 2, 3}, k ∈ N

P [L(k) = `(k) | `(k − 1), v(k)] =
{

0.8 for `(k) = v(k)
0.1 otherwise

(6-2)

where v(k) ∈ {1, 2, 3} is an integer. Note that the switching function does not explicitly
depend on `(k − 1). However, this previous mode does affect the set of admissible control
signals for v(k). Therefore, the dependence is displayed in the function description.

Bart de Jong Master of Science Thesis

6-1 Problem Setup 89

sFSM Lastly, the sFSM used in these studies enforces the constraint that no mode should
occur more than three times in a row. Figure 6-1 depicts the automaton constraining the
system assuming deterministic switching. In the graph, discrete state Qij represents the j-th
instance of mode i in a row. The labels along the edges denote the allowed discrete control
inputs v(k) and, therefore, the succeeding mode.

In this case of uncertain switching, however, the sFSM is set up in a way that allows for the
violation of the constraint. The controller may not decide to violate the constraint through
v(k), but through stochastics, this may still happen. Namely, the discrete control signal v(k)
can only influence the probability of switching, as shown in Eq. (6-2). Note that a different
setup may rule out the violation for all cases.

Figure 6-2 on page 90 is an adaptation to the automaton in Figure 6-1 that takes switching
uncertainty into account. Now, the possible discrete control inputs, denoted by the sets a,
b, c and d of Eq. (6-3) on page 90, do not relate one-to-one with the state evolution of
the automaton. Instead, they depict all possible paths and allowed control signals at each
automaton state. Together with the stochasticity information in Eq. (6-2), it reflects the mode
evolution behaviour of the SMPL system. These admissible control inputs collected in the
sets in Eq. (6-3) on page 90 form the alphabet of the sFSM. The dotted paths in Figure 6-2
on page 90 denote ones that result in the violation of the mode sequence constraint. Note
that the discrete state evolution of the sFSM is governed deterministically by the mode `(k)
and stochastically by the signal v(k).

Q13 Q12 Q11

Q21

Q22

Q23

Q31 Q32 Q33

22

1

1

3
3

1
1

3

3

2 22

1

3

2

1

3

2

2

3 3
11

Figure 6-1: Finite state machine (FSM) capturing the constraint enforcing a maximum number of
consecutive equal modes. Discrete state Qij represents the j-th instance of mode i in a row. The labels
on the paths denote the admissible control inputs.

Master of Science Thesis Bart de Jong

90 Case Study

Q13 Q12 Q11

Q21

Q22

Q23

Q31 Q32 Q33

ab

a

c

a
b

a
d

a

c

a da
a

a
a

a

a

a

a

a a
aab

c

d

Figure 6-2: Stochastic finite state machine (sFSM) capturing the constraint enforcing a maximum
number of consecutive equal modes. Discrete state Qij represents the j-th instance of mode i in a row.
The labels on the paths relate to the admissible control inputs as shown in Eq. (6-3). The dotted paths
denote ones that result in the violation of the constraint.

a = {1, 2, 3}
b = {2, 3}
c = {1, 3}
d = {1, 2}

(6-3)

The system used in this chapter is generated using the generateSystem.m script in MATLAB
that is shown in Appendix A-2-9 on page 164, with the following dimensions:

nx = 3 (Number of states)
ny = 1 (Number of outputs)
nu = 1 (Number of continuous inputs)
nv = 1 (Number of discrete inputs)
nL = 3 (Number of modes)

(6-4)

It results in a structurally controllable, structurally observable and max-plus Lipschitz stable
system with three irreducible matrices A(`) with unique eigenvalues approximately equal to:

λ(A(1)) ≈ 1.91
λ(A(2)) ≈ 2.07
λ(A(3)) ≈ 2.19

(6-5)

Bart de Jong Master of Science Thesis

6-1 Problem Setup 91

These values have been calculated using a Max-Plus Algebra Toolbox for MATLAB [65] that
uses the work by Olsder et al. [66]. Furthermore, the maximum growth rate of the system as
calculated using Eq. (4-3) on page 43, and the minimum (expected) growth rate with cyclic
control signals of period Np = 6, simulation horizon Nsim = 96 and Nt = 10 are approximately
equal to:

ρ ≈ 2.85
ρcon
Np
≈ 2.09

ρcon
Np
≈ 1.94

Note that these values correspond to the mode-constrained system that does not allow for
mode sequences of the same mode larger than 3. For illustration, the unconstrained values are
equal to ρ

Np
= 2.08 and ρ

Np
= 1.91. Hereafter, we omit the superscript ‘con’ for brevity while

still assuming a constrained system. The reader is referred to Algorithm 4.1 on page 50 and
the script growthRate.m in Appendix A-2-10 on page 165 for the algorithm to compute these
values. The distribution of the growth rate ρNp given all possible periodic mode sequences
˜̀
Np with a period of 6 over a horizon of 96 is visualised by box plots in Figure 6-3, and
the expected growth rate given all possible periodic control sequences ṽNp is visualised in
Figure 6-4 on page 92.

Figure 6-3: Distribution of the growth rate ρNp given all periodic mode sequences ˜̀
Np with a period

of Np = 6 over a horizon of Nsim = 96. They have been calculated using Algorithm 4.1 on page 50
implemented in the script growhtRate.m of Appendix A-2-10 on page 165.

6-1-2 Objective function

We aim to track a reference signal with a growth rate of ρr = 2.2 of the form:

r(k) = ρr k + c (6-6)

Master of Science Thesis Bart de Jong

92 Case Study

Figure 6-4: Distribution of the expected growth rate ρNp given all periodic control sequences ṽNp with
a period of Np = 6 over a horizon of Nsim = 96. They have been calculated using Algorithm 4.1 on
page 50 implemented in the script growhtRate.m of Appendix A-2-10 on page 165.

where c = −2 in order to achieve slower convergence in the simulation, such that:

ρo ≤ ρr

and the distance |ρo − ρr| is bounded and minimised.
Furthermore, we want to achieve a system output growth rate ρo that is smaller than the
maximum growth rate ρ:

2.09 ≈ ρ
Np
≤ ρo < ρ ≈ 2.85

To this end, we employ an objective function of the form

J(k) = Jout(k) + βJin(k)

where

Jout(k) = E
{Np−1∑

j=0
max

(
y(k + j)− r(k + j), 0

)}

=
∑

˜̀(k)∈LN

{Np∑
i=1

[(
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)− r̃(k)

)
⊕ 1

]
i

· P̃ [L̃(k) = ˜̀(k) | `(k − 1), x(k − 1), ũ(k), ṽ(k)]
}

and

Jin(k) = −
Np∑
i=1

[ũ(k)]i

with C̃(˜̀(k)) and D̃(˜̀(k)) defined as in Eq. (5-8), Eq. (5-9) and Eq. (5-10) on page 73, and
the vectors ˜̀(k), r̃(k), ṽ(k) and ũ(k) as in Eq. (5-7) on page 73.

Bart de Jong Master of Science Thesis

6-1 Problem Setup 93

6-1-3 Formulation of constraints

The system behaviour and input sequences are subject to several constraints that were intro-
duced in Section 5-3-1 on page 72:

1. The system state evolution is according to the description of Eq. (6-1) on page 88.

2. The switching behaviour is according to Eq. (6-2) on page 88.

3. The admissible discrete control inputs v(k) and discrete sFSM state evolution are defined
by Figure 6-2 on page 90.

4. The continuous input signal u(k) and its rate of change are nonnegative.

5. The absolute difference between the continuous input signal u(k) and the nondecreasing
reference signal r(k) is bounded by a finite constant νmax as in Eq. (5-6) on page 68.

A linear implementation of these constraints into an optimisation problem has been discussed
in Section 5-3-1 on page 72. The paragraphs below discuss an altered implementation of these
five constraints that has been used for these case studies.

Constraint 1 The system state evolution has been implemented in the same way as intro-
duced before:

ti,m ≥
[
C̃
(

˜̀m
)]
i,l

+ xl(k − 1)− r̃i(k), ∀i, m, l

ti,m ≥
[
D̃
(

˜̀m
)]
i,l

+ ũl(k)− r̃i(k), ∀i, m, l

ti,m ≥ 0

Constraint 2 The switching behaviour is incorporated into the objective function as stochas-
ticity information in P̃s:

Jout =
Np∑
i=1

M∑
m=1

ti,mP̃s
[
L̃(k) = ˜̀m | ṽ(k)

]
(6-7)

where ˜̀ is a set of M possible mode sequences over horizon Np. Then, the mode switching
occurs online during the execution of the MPC.

Constraint 3 At every control step, the discrete sFSM state advances according to the
behaviour in Figure 6-2 on page 90 through various logical statements and is stored in the
logical vector xb, such that [xb]i = 1 if state Qi of the sFSM is active and 0 otherwise, with:

Q =

Q̃1
Q̃2
Q̃3

 ∈ {0, 1}9×1, Q̃i =

Qi1Qi2
Qi3

 for i = 1, 2, 3

Master of Science Thesis Bart de Jong

94 Case Study

The admissible control action v(k) is then read from the vector Cxb :

Cxb =



a
a
b
a
a
c
a
a
d


,

with the sets a, b, c and d defined in Eq. (6-3) on page 90. This information is translated into
a set of admissible control sequences ṽadm over prediction horizon Np and fed into the MPC
algorithm, such that:

ṽ(k) + ¬(ṽadm) ≤ 1.5∑
ṽ(k) = 1

(6-8)

where ¬(ṽadm) denotes the inverse of the logical vector ṽadm. The result of these constraints
is that the optimiser can only choose one discrete control sequence ṽ(k) over the prediction
horizon Np, and it has to be within the set of admissible sequences ṽadm.

Constraint 4 The nonnegativity of the input signal u(k) and its rate of change is incorpo-
rated as:

u(k) ≥ 0, ∀k
∆u(k) ≥ 0, ∀k

Constraint 5 The input signal u(k) is bounded with respect to the reference signal r(k) as:

u(k)− r(k) ≤ νmax ∀k
u(k)− r(k) ≥ −νmax ∀k

The next section discusses the optimisation problem that takes these constraints into account.

Bart de Jong Master of Science Thesis

6-1 Problem Setup 95

6-1-4 Optimisation problem

The setup of the optimisation problem over horizon Np that takes into account the objective
function and the constraints is of the form

min
ũ(k), ṽ(k)

Jout(k) + βJin(k) (6-9a)

s.t. ỹ = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k) (6-9b)
˜̀(k) = φ̃stoch(˜̀(k − 1), ṽ(k)) (6-9c)
xb(k + 1) = fsFSM(xb(k), `(k)) (6-9d)
ṽ(k) ∈ ṽadm(k) (6-9e)
u(k) ≥ 0 (6-9f)
∆u(k + j) ≥ 0, j = 0, . . . , Np − 1 (6-9g)
|u(k + j)− ρr · (k + j)| ≤ νmax, j = 0, . . . , Np − 1 (6-9h)

Eq. (6-9b) and Eq. (6-9c) reflect the general SMPL dynamics and Eq. (6-9d) the sFSM
dynamics. The last four, Eq. (6-9e) to Eq. (6-9h) constrain the input sequences ũ(k) and
ṽ(k).

The prediction horizon Np is set to a value of 3 as a result of balancing efficiency and perfor-
mance, and no separate control horizon Nc is employed.

6-1-5 Controller setup

In both frameworks, the input cost function Jin(k) accounts in a linear fashion for continuous
control. In contrast, the output cost function Jout(k) in Eq. (6-7) on page 93 multiplies
the optimisation variables ti,m with the probability P̃s that depends on the optimisation
variable ṽ(k). As a result, the objective function J(k) has a quadratic formulation, leading
to a mixed-integer quadratic programming (MIQP) framework. This form may be converted
into a mixed-integer linear programming (MILP) formulation through the transformation
described in Section 5-3-1 on page 72.

The constraints of the MILP framework that were discussed in this section are represented
in MATLAB [67] by YALMIP [68] as a set of 9262 or 9355 linear matrix inequalities (LMIs)
for discrete and hybrid control, respectively. In contrast, the constraints are represented by
514 or 607 LMIs when modelled as an MIQP problem. This large discrepancy in the number
of LMIs may manifest as longer computation times during the setup phase, as well as during
the optimisation phase. Empirically, the best framework for the first and second case studies
is the MIQP one, where the third one is modelled as an MILP problem.

The MPC problem for the three cases described using YALMIP in MATLAB is solved by
Gurobi [69]. The controller object has the system’s state vector x(k − 1) as described in
Eq. (6-1) on page 88, the reference signal value r(k) as in Eq. (6-6) on page 91, and the set of
admissible discrete control signals ṽadm as in Eq. (6-8) as inputs. The controller outputs the
values of u(k) and v(k) over the prediction horizon Np and does so for 200 simulation steps.

Master of Science Thesis Bart de Jong

96 Case Study

6-2 Discrete Control of a Mode-Constrained Deterministic SMPL
System

This section shows the results of the control method when applied to a mode-constrained
deterministic SMPL system under discrete control. It discusses the adaptations to the general
setup as introduced in Section 6-1 on page 88 and presents the simulation results. First,
the adaptations are introduced in the same order as before: System description, Objective
function, Formulation of constraints, Optimisation problem and Controller setup.

6-2-1 System description

Since the system is deterministic, it is presented in the form of a DHA, introduced in Section 2-
3-3 on page 18, consisting of a SAS, an MS and an FSM.

SAS The system is adapted from the general switched affine system (SAS) in Eq. (6-1) on
page 88 to have the following form with no continuous inputs:

x(k) = A(`(k)) ⊗ x(k − 1)
y(k) = C ⊗ x(k)

(6-10)

where A(`(k)) ∈ R3×3
ε and C ∈ R1×3

ε . The A-matrix is generated randomly for the three
different modes and is approximately equal to:

A(1) ≈

 ε ε 1.5126
1.9395 ε 1.0671
1.9174 2.2776 1.2858

 ,
A(2) ≈

0.4229 0.5541 1.9906
ε 2.0655 1.7282

0.7906 1.0565 1.3915

 ,
A(3) ≈

 ε ε 3.6583
1.9722 ε 3.4227
ε 0.9468 ε

 .
(6-11)

The system generation has been performed according to the procedure described in Exam-
ple 4.3 on page 57 and using the script generateSystem.m in Appendix A-2-9 on page 164.
Note that the values shown here are an approximation to the real entries of the matrices that
are defined by up to 56 digits. The C-matrix is constant across the modes:

C =
[
0 0 0

]
. (6-12)

Lastly, the initial state x(0) and initial mode `(0) are set to:

x(0) =

0
0
0

 , `(0) = 1.

Bart de Jong Master of Science Thesis

6-2 Discrete Control of a Mode-Constrained Deterministic SMPL System 97

Since C consists of only finite values and every column of the three A-matrices has at least one
finite element, the observability matrices OMα (˜̀) as defined in Definition 3.3 on page 30 are
column-finite for every positive integer M . Therefore, the system is structurally observable.
The B-matrices in this system can be assumed to have only ε as entries, and the system is
not structurally controllable.

MS The mode selector (MS) is adjusted to reflect the deterministic switching behaviour:

`(k) = φ(`(k − 1), v(k))
`(k) ∈ L = nL, k ∈ N

P [L(k) = `(k) | `(k − 1), v(k)] =
{
1 for `(k) = v(k)
0 otherwise

(6-13)

where v(k) ∈ {1, 2, 3} is an integer.

FSM The deterministic finite state machine (FSM) constraining the mode sequence of the
system is equal to the one shown in Figure 6-1 on page 89.
Lastly, the system has the following dimensions that are unchanged compared to Eq. (6-4)
on page 90, except for nu:

nx = 3 (Number of states)
ny = 1 (Number of outputs)
nu = 0 (Number of continuous inputs)
nv = 1 (Number of discrete inputs)
nL = 3 (Number of modes)

And has the following growth rate values, calculated using Np = 6, Nsim = 96 and Nt = 10
according to Algorithm 4.1 on page 50 using the script growthRate.m in Appendix A-2-10 on
page 165:

ρ ≈ 2.85 (Maximum growth rate)

ρ
Np

≈ 1.91 (Finite-horizon estimation of minimum expected growth rate)

ρcon
Np

≈ 1.94 (Finite-horizon estimation of minimum expected constrained growth rate)

ρ
Np

≈ 1.91 (Finite-horizon estimation of minimum growth rate)

ρcon
Np

≈ 1.94 (Finite-horizon estimation of minimum constrained growth rate)
(6-14)

Since there are no switching stochastics, the minimum expected growth rate is equal to the
minimum growth rate.

6-2-2 Objective function

As we stabilise the system using only discrete control and no continuous control, we cannot
expect the system to track a reference signal r(k) flawlessly. Instead, we aim to achieve a

Master of Science Thesis Bart de Jong

98 Case Study

growth rate ρo that is at least as low as the rate of change of the reference signal ρ:

ρo ≤ ρr + ε.

Here, the finite margin ε is a function of the weight parameter γ in the cost function below
and as introduced in Section 5-3-2 on page 77. Furthermore, we want to minimise the distance
|ρo − ρr|.

To this end, we employ an objective function of the form

J(k) =
∑

˜̀∈LN


Np∑
i=1

[(
C̃(˜̀(k))⊗ x(k − 1)− r̃(k)

)
⊕ γ

(
r̃(k)− C̃(˜̀(k))⊗ x(k − 1)

)]
i

 (6-15)

with C̃(`(k)) defined as in Eq. (5-9) on page 73, and the vectors ˜̀(k), r̃(k) as in Eq. (5-7)
on page 73. The cost function does not penalise the discrete control signal v(k). Instead,
introducing the second term in the maximisation operation forces the optimisation problem
to consider minimising the scaled distance r(k) − y(k). The weight factor γ, introduced in
Section 5-3-2 on page 77, balances the convergence speed and the penalisation of positive
differences r(k) − y(k). In this simulation, the value is set to γ = 0.05; however, additional
simulations with γ = 0, γ = 0.01 and γ = 1 are shown in Appendix A-1 on page 124 to visualise
its influence.

6-2-3 Formulation of constraints

Without the employment of continuous control through u(k), the system is subject to only
three of the five constraints introduced in Section 6-1-3 on page 93:

1. The system state evolution is according to the description of Eq. (6-10) on page 96.

2. The switching behaviour is according to Eq. (6-13) on page 97.

3. The admissible discrete control inputs v(k) and discrete FSM state evolution are defined
by Figure 6-1 on page 89.

They are implemented in the same way as in Section 6-1-3 on page 93.

6-2-4 Optimisation problem

With the omission of continuous control, the optimisation problem has the following form:

min
ṽ(k)

J(k) (6-16a)

s.t. ỹ = C̃(˜̀(k))⊗ x(k − 1) (6-16b)
˜̀(k) = φ(˜̀(k − 1), ṽ(k)) (6-16c)
xb(k + 1) = fFSM(xb(k), `(k)) (6-16d)
ṽ(k) ∈ ṽadm(k) (6-16e)

Bart de Jong Master of Science Thesis

6-2 Discrete Control of a Mode-Constrained Deterministic SMPL System 99

6-2-5 Controller setup

The controller setup is similar to the one described in Section 6-1-5 on page 95.

The constraints take the form of 514 LMIs, and the objective function is quadratic with 108
optimisation variables, leading to an MIQP problem. The controller object takes the system’s
state vector x(k−1) as described in Eq. (6-1) on page 88, the reference signal value r(k) as in
Eq. (6-6) on page 91, and the set of admissible discrete control signals ṽadm as in Eq. (6-8) on
page 94 as inputs. The controller outputs the values of v(k) over the prediction horizon Np
and does so for 200 simulation steps. The simulation performed by MATLAB version R2022a
takes on average 0.8 s on an HP ZBook Studio G5 with an Intel Core i7-8750H CPU with a
base clock speed of 2.20 GHz and 16.0 GB of RAM. Appendix A-2-1 on page 128 contains the
MATLAB script used for the simulation.

6-2-6 Results of the simulation

Figure 6-5 on page 100 shows the simulation results of this case study. As expected, the
difference signal y(k)−r(k) stays close to and predominantly below zero after first convergence.
This is to be expected since the reference signal r(k) is not below the set of achievable growth
rates as indicated by the first plot. The third plot shows no violation of the constraint on
the mode sequence as there is no sequence of equal modes with a length longer than three.
Furthermore, the fourth plot shows that there is seemingly no synchronised evolution in the
system.

The reader is referred to the simulation results in Appendix A-1 on page 124 for insight into
the influence of parameter γ in Eq. (6-15).

Master of Science Thesis Bart de Jong

100 Case Study

Figure 6-5: Simulation results of discrete control of a mode-constrained deterministic SMPL system
with γ = 0.05. The plots show the output y(k) versus the reference r(k), the difference signal of
y(k) − r(k), the system mode `(k) and the difference between the states xi(k) and the reference signal
r(k). Furthermore, it shows the expected event step at which the output y(k) converges with the reference
signal r(k) based on the calculated growth rate ρcon

Np
of the system, shown in Eq. (6-14) on page 97.

Bart de Jong Master of Science Thesis

6-3 Hybrid Control of a Mode-Constrained Deterministic SMPL System 101

6-3 Hybrid Control of a Mode-Constrained Deterministic SMPL
System

This section discusses the case study of hybrid control on a system similar to the one of
Section 6-2 on page 96. It is subdivided into the following sections: System description,
Objective function, Formulation of constraints, Optimisation problem, Controller setup and
Results of the simulation.

6-3-1 System description

The system used in this study shares many similarities with the one introduced in Section 6-
1-1 on page 88. In fact, it lacks only the stochasticity in the mode switching. The system is
presented in the DHA framework.

SAS We utilise the following switched affine system (SAS):

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k)
y(k) = C ⊗ x(k)

where A(`(k)) ∈ R3×3
ε , B(`(k)) ∈ R3×1

ε and C ∈ R1×3
ε . Compared to the previous case study, the

system now has B-matrices with finite entries to enable continuous control. The A-matrices
are as shown in Eq. (6-11) on page 96, and the B-matrices are approximately equal to:

B(1) ≈


0.4271

4.8797

4.6932

 ,

B(2) ≈


5.9921

1.9095

2.0984

 ,

B(3) ≈


3.8990

3.1257

2.9753

 .

As with the A-matrices, these values are the rounded values of the real entries that consist of
over 50 digits. The C-matrix consists of only zeros, as in Eq. (6-12) on page 96. We again use
an initial state vector of only zeros and mode 1 as the initial mode. Besides being structurally
observable as noted in Section 6-2 on page 96, the system is structurally controllable due to
the finiteness of every element in the B-matrices. The reader is advised to revisit Section 3-1
on page 28 for the definitions of structural observability and structural controllability.

Master of Science Thesis Bart de Jong

102 Case Study

MS The mode selector (MS) is equal to the one of the previous case in Section 6-2 on
page 96:

`(k) = φ(`(k − 1), v(k))
`(k) ∈ L = nL, k ∈ N

P [L(k) = `(k) | `(k − 1), v(k)] =
{
1 for `(k) = v(k)
0 otherwise

where v(k) ∈ {1, 2, 3} can take the value of the three modes.

FSM For this deterministically switching system, the finite state machine (FSM) is as de-
picted in Figure 6-1 on page 89.

Lastly, the system dimension are equal to the ones presented in Section 6-1 on page 88, too:

nx = 3 (Number of states)
ny = 1 (Number of outputs)
nu = 1 (Number of continuous inputs)
nv = 1 (Number of discrete inputs)
nL = 3 (Number of modes)

And has the following growth rate values, calculated using Np = 6, Nsim = 96 and Nt = 10
according to Algorithm 4.1 on page 50 using the script growthRate.m in Appendix A-2-10 on
page 165:

ρ ≈ 2.85 (Maximum growth rate)

ρ
Np

≈ 1.91 (Finite-horizon estimation of minimum expected growth rate)

ρcon
Np

≈ 1.94 (Finite-horizon estimation of minimum expected constrained growth rate)

ρ
Np

≈ 1.91 (Finite-horizon estimation of minimum growth rate)

ρcon
Np

≈ 1.94 (Finite-horizon estimation of minimum constrained growth rate)
(6-17)

Since there are no switching stochastics, the minimum expected growth rate is equal to the
minimum growth rate.

6-3-2 Objective function

Due to the employment of both discrete and continuous control, i.e., hybrid control, we expect
the system output y(k) to follow the reference signal r(k) at least as effectively as with only
discrete control. In this particular case, however, we expect the controller to perform better.
The application of continuous control to a structurally controllable system can push output
values up and closer to the reference value. Still, we aim to achieve a growth rate ρo that is
at least as low as the growth rate of the reference signal r(k):

ρo ≤ ρr

Bart de Jong Master of Science Thesis

6-3 Hybrid Control of a Mode-Constrained Deterministic SMPL System 103

Naturally, we want to minimise the distance |ρo−ρr|. Note that we cannot expect the system
to achieve equality between these two values. In order to not overshoot the reference signal at
a certain event step, the controller may at times decide to keep the system’s output too low
at earlier event steps. This peculiarity results from a single u(k) value that steers multiple
states, resulting in an underactuated system.

We utilise an objective function J(k) that is equal to the one introduced in Section 6-1-2 on
page 91:

J(k) = Jout(k) + βJin(k)

=
∑

˜̀(k)∈LN

{Np∑
i=1

[(
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)− r̃(k)

)
⊕ 1

]
i

+ β

Np∑
i=1

[−ũ(k)]i

with C̃(˜̀(k)) and D̃(˜̀(k)) defined as in Eq. (5-8), Eq. (5-9) and Eq. (5-10) on page 73, and
the vectors ˜̀(k), r̃(k), ṽ(k) and ũ(k) as in Eq. (5-7) on page 73. The value of β is set to
β = 1× 10−2 to balance the influence of the two cost functions Jout(k) and Jin(k).

6-3-3 Formulation of constraints

The setup under hybrid control is subject to the same five constraints that were discussed in
Section 6-1-3 on page 93:

1. The system state evolution is according to the description of Eq. (6-1) on page 88.

2. The switching behaviour is according to Eq. (6-2) on page 88.

3. The admissible discrete control inputs v(k) and discrete FSM state evolution are defined
by Figure 6-2 on page 90.

4. The continuous input signal u(k) and its rate of change are nonnegative.

5. The absolute difference between the continuous input signal u(k) and the nondecreasing
reference signal r(k) is bounded by a finite constant νmax as in Eq. (5-6) on page 68.

Their implementation into the MATLAB-script is as described in that section.

Master of Science Thesis Bart de Jong

104 Case Study

6-3-4 Optimisation problem

The aforementioned parts of the optimisation problem are summarised in the following de-
scription:

min
ũ(k), ṽ(k)

Jout(k) + βJin(k) (6-18a)

s.t. ỹ = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k) (6-18b)
˜̀(k) = φ̃(˜̀(k − 1), ṽ(k)) (6-18c)
xb(k + 1) = fFSM(xb(k), `(k)) (6-18d)
ṽ(k) ∈ ṽadm(k) (6-18e)
u(k) ≥ 0 (6-18f)
∆u(k + j) ≥ 0, j = 0, . . . , Np − 1 (6-18g)
|u(k + j)− ρr · (k + j)| ≤ νmax, j = 0, . . . , Np − 1 (6-18h)

6-3-5 Controller setup

The controller setup of this case is similar to the one of Section 6-1-5 on page 95 and consists
of 607 LMIs describing the constraints paired with a quadratic objective function with 111
optimisation variables. The MIQP problem described by YALMIP in MATLAB is solved
by Gurobi. The study is performed with a prediction horizon Np of 3 over a period of 200
event steps. The simulation performed by MATLAB version R2022a takes on average 6.6 s
on an HP ZBook Studio G5 with an Intel Core i7-8750H CPU with a base clock speed of
2.20 GHz and 16.0 GB of RAM. Appendix A-2-2 on page 137 contains the MATLAB script
used to perform the case study.

6-3-6 Results of the simulation

Figure 6-6 on page 107 shows the results of the MATLAB simulation. The difference signal
y(k)− r(k) is on average closer to 0 than in the first case study without continuous control.
Since the additional application of u(k) is the only difference between the two studies, it is
the sole cause of this improvement. Notably, the difference signal does not stay at 0 at all
times. At every third event step, as seen in Figure 6-7 on page 108, the difference drops down
to approximately −0.057.
To show the justification of the controller’s decision to allow a nonzero difference y(k)− r(k),
let us consider the system’s state at event step 20 and its future reference values:

x(20) ≈


42.00

41.87

41.19


r(20) = 42.00
r(21) = 44.20
r(22) = 46.40

Bart de Jong Master of Science Thesis

6-3 Hybrid Control of a Mode-Constrained Deterministic SMPL System 105

Given that `(21) = 1, the system may choose to employ a continuous signal of u(21) ≈ 39.32,
resulting in a state vector of:

x(21 | `(21) = 1, u(21) ≈ 39.32) ≈


42.70

44.20

44.14


Instead, the MPC selects a signal of u(21) ≈ 39.24, resulting in a state vector of:

x(21 | `(21) = 1, u(21) ≈ 39.24) ≈


42.70

44.12

44.14


As a last step, assuming `(22) = 1, the state vector is:

x(22 | `(22) = 1, u(21) ≈ 39.32, u(22) ≈ 41.52) ≈


45.66

45.21

46.48

⊕


41.95

46.40

46.21

 =


45.66

46.40

46.48



x(22 | `(22) = 1, u(21) ≈ 39.24, u(22) ≈ 41.52) ≈


45.66

45.21

46.40

⊕


41.95

46.40

46.21

 =


45.66

46.40

46.40


Evidently, even with u(22) = ε, the state vector x(22 | u(21) ≈ 39.32) would have an entry
larger than r(22) = 46.40. The only option is for the system to choose `(22) = 2, leading to:

x(22 | `(22) = 2, u(21) ≈ 39.32, u(22) ≈ 40.41) ≈


46.13

46.27

45.53

⊕


46.40

42.32

42.51

 =


46.40

46.27

45.53


Evidently, while being suboptimal at event step 21, the choice of u(21) ≈ 39.24 leads to a
significantly larger control value of u(22) ≈ 41.52 at event step 22. This positive difference is
reflected in the value of the objective function. Over the 200 event steps, the cost functions
have the following values:

Jout ≈ +26.5370
Jin ≈ −423.519
J ≈ −369.982

Forcing the controller to use u(22) ≈ 39.32 would lead to the following values:

Jout(u(22) ≈ 39.32) ≈ +26.5370
Jin(u(22) ≈ 39.32) ≈ −423.509
J(u(22) ≈ 39.32) ≈ −396.972

Master of Science Thesis Bart de Jong

106 Case Study

Thus, the system employs a suboptimal value of u(21) as a sacrifice for better long-term
results, underlining the efficacy of predictive control methods. With this, we justify the
nonzero difference y(k)− r(k) at regular event intervals.

Bart de Jong Master of Science Thesis

6-3 Hybrid Control of a Mode-Constrained Deterministic SMPL System 107

Figure 6-6: Simulation results of hybrid control of a mode-constrained deterministic SMPL system.
The plots show the output y(k) versus the reference r(k), the difference signals of y(k) − r(k) and
u(k) − r(k), the system mode `(k) and the difference between the states xi(k) and the reference signal
r(k). Furthermore, it shows the expected event step at which the output y(k) converges with the reference
signal r(k) based on the calculated growth rate ρcon

Np
of the system, shown in Eq. (6-17) on page 102.

Master of Science Thesis Bart de Jong

108 Case Study

Figure 6-7: Zoomed-in version of Figure 6-6 on page 107 showing periodic nonzero values of the difference
signal y(k)−r(k). This peculiarity is predicted in Section 6-3-2 on page 102 and justified in the discussion
of the results in Section 6-3-6 on page 104.

Bart de Jong Master of Science Thesis

6-4 Hybrid Control of a Mode-Constrained Stochastic SMPL System 109

6-4 Hybrid Control of a Mode-Constrained Stochastic SMPL Sys-
tem

The sections System description, Objective function, Formulation of constraints, Optimisation
problem and Controller setup discuss this case study’s specific modelling approach, and the
section Results of the simulation shows the outcome of the simulation. The setup is similar
to the one introduced in Section 6-1 on page 88 and in Section 6-3 on page 101.

6-4-1 System description

The system is represented in the DHSA-framework due to the stochastics in the switching
behaviour. It now consists of a SAS, an MS and an sFSM. The reader is referred to Section 6-1
on page 88 for a detailed explanation of the system.

SAS The switched affine system (SAS) takes the form of an SMPL system:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k)
y(k) = C ⊗ x(k)

where A(`(k)) ∈ R3×3
ε , B(`(k)) ∈ R3×1

ε and C ∈ R1×3
ε . The A, B and C matrices used in this

case study are shown in Section 6-2-1 on page 96 and Section 6-3-1 on page 101. Again, the
system is structurally controllable and structurally observable.

MS The mode selector (MS) is as depicted in Section 6-1 on page 88:

`(k) = φstoch(`(k − 1), v(k))
`(k) ∈ L = {1, 2, 3}, k ∈ N

P [L(k) = `(k) | `(k − 1), v(k)] =
{

0.8 for `(k) = v(k)
0.1 otherwise

where v(k) ∈ {1, 2, 3} is employed to alter the switching behaviour.

sFSM The stochastic finite state machine (sFSM) is explained in Section 6-1-1 on page 88
and visualised in Figure 6-2 on page 90.

The system dimensions are:

nx = 3 (Number of states)
ny = 1 (Number of outputs)
nu = 1 (Number of continuous inputs)
nv = 1 (Number of discrete inputs)
nL = 3 (Number of modes)

Master of Science Thesis Bart de Jong

110 Case Study

And has the following growth rate values, calculated using Np = 6, Nsim = 96 and Nt = 10
according to Algorithm 4.1 on page 50 using the script growthRate.m in Appendix A-2-10 on
page 165:

ρ ≈ 2.85 (Maximum growth rate)

ρ
Np

≈ 2.08 (Finite-horizon estimation of minimum expected growth rate)

ρcon
Np

≈ 2.09 (Finite-horizon estimation of minimum expected constrained growth rate)

ρ
Np

≈ 1.91 (Finite-horizon estimation of minimum growth rate)

ρcon
Np

≈ 1.94 (Finite-horizon estimation of minimum constrained growth rate)
(6-19)

Due to the switching stochastics, the minimum expected growth rate ρ
Np

differs from the
minimum growth rate ρ

Np
.

6-4-2 Objective function

As in the previous case study, we employ hybrid control in order to achieve a growth rate ρo
that is at least as low as the rate of change ρr of the reference signal r(k):

ρo ≤ ρr

and we aim to minimise the distance |ρo− ρr|. As a result of the uncertainty in the switching
behaviour, we expect the controller to be less effective than when applied to a deterministic
system. Indeed, the system needs to optimise for a future state that is unknown and unpre-
dictable. The optimisation problem is set up such that the controller does not stay cautious
in order to avoid overshooting r(k) with y(k); it merely minimises the expected overshoot as
illustrated by choice of objective function J(k):

J(k) = Jout(k) + βJin(k)

=
∑

˜̀(k)∈LN

{Np∑
i=1

[(
C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k)− r̃(k)

)
⊕ 1

]
i

+ β

Np∑
i=1

[−ũ(k)]i

with C̃(˜̀(k)) and D̃(˜̀(k)) defined as in Eq. (5-8), Eq. (5-9) and Eq. (5-10) on page 73, and
the vectors ˜̀(k), r̃(k), ṽ(k) and ũ(k) as in Eq. (5-7) on page 73. The value of β is set to
β = 1×10−2 in order to balance the influence of the two cost functions Jout(k) and Jin(k). As
a result of this objective function, we expect the system to overshoot the reference signal at
times. However, the controller will aim to minimise the positive difference y(k)− r(k) while
maximising u(k).

6-4-3 Formulation of constraints

The setup is subject to the same five constraints as the one for the deterministic system under
hybrid control:

Bart de Jong Master of Science Thesis

6-4 Hybrid Control of a Mode-Constrained Stochastic SMPL System 111

1. The system state evolution is according to the description of Eq. (6-1) on page 88.

2. The switching behaviour is according to Eq. (6-2) on page 88.

3. The admissible discrete control inputs v(k) and discrete FSM state evolution are defined
by Figure 6-2 on page 90.

4. The continuous input signal u(k) and its rate of change are nonnegative.

5. The absolute difference between the continuous input signal u(k) and the nondecreasing
reference signal r(k) is bounded by a finite constant νmax as in Eq. (5-6) on page 68.

Their implementation into the MATLAB script is as described in Section 6-1-3 on page 93.

6-4-4 Optimisation problem

The optimisation problem takes the following form:

min
ũ(k), ṽ(k)

Jout(k) + βJin(k) (6-20a)

s.t. ỹ = C̃(˜̀(k))⊗ x(k − 1)⊕ D̃(˜̀(k))⊗ ũ(k) (6-20b)
˜̀(k) = φ̃(˜̀(k − 1), ṽ(k)) (6-20c)
xb(k + 1) = fsFSM(xb(k), `(k)) (6-20d)
ṽ(k) ∈ ṽadm(k) (6-20e)
u(k) ≥ 0 (6-20f)
∆u(k + j) ≥ 0, j = 0, . . . , Np − 1 (6-20g)
|u(k + j)− ρr · (k + j)| ≤ νmax, j = 0, . . . , Np − 1 (6-20h)

6-4-5 Controller setup

The controller object described by YALMIP in MATLAB consists of 9355 LMIs describing
the constraints paired with a linear objective function with 2190 optimisation variables. Note
that the objective function has been linearised through the procedure discussed in Section 5-
3-1 on page 72, such that the resulting optimisation problem is an MILP one instead of an
MIQP one. The MILP study is performed with a prediction horizon Np of 3 for 200 event
steps. The simulation performed by MATLAB version R2022a takes on average 43 s on an
HP ZBook Studio G5 with an Intel Core i7-8750H CPU with a base clock speed of 2.20 GHz
and 16.0 GB of RAM. Appendix A-2-3 on page 147 contains the MATLAB script used to
perform the case study.

6-4-6 Results of the simulation

To find a lower bound on the growth rate of the reference signal, we employed Algorithm 4.2 on
page 59. Using a simulation horizon Nsim of 200 steps, equal to the simulation horizon of the

Master of Science Thesis Bart de Jong

112 Case Study

control case study, we sought to find the minimum offset o on the finite-horizon approximation
of the minimum expected growth rate ρ

Np
such that 95 % of the control cases would be

stabilisable using a discrete control sequence ṽ equal to the one employed to achieve ρ
Np

. We

used a multisample of cardinality 3.00×104, in order to make the statement with an accuracy
of 1 % and confidence 0.995. Figure 6-8 on page 113[0] shows the result of the investigation,
proposing an offset o ≥ 0.045, such that we want a reference signal with a growth rate ρr that
satisfies:

ρr ≥ ρcon
Np

+ o ≈ 2.09 + 0.045 = 2.135

This result confirms that a reference signal with a growth rate of ρr = 2.2 yields a stable
response. We keep such a signal for faster convergence and better disturbance rejection.

Figure 6-9 on page 114 shows the final case study’s simulation results. The red markers
in the second and third plots denote event steps where the mode was not as intended, i.e.,
`(k) 6= v(k), as a result of the modelled uncertainty. Notably, the desire of having ρo ≤ ρr for
all k > k0 with k0 a finite integer is not achieved. The most evident deviation starts at event
step 107, where several erroneous modes occurred close together. As seen in the third plot of
Figure 6-9 and in the zoomed-in version in Figure 6-10 on page 115, the system often operated
during that period in mode 3, the slowest mode according to Eq. (6-5) on page 90. Since the
reference growth rate ρr is close to the finite-horizon approximation of the minimum expected
constrained growth rate, as shown in Eq. (6-19) on page 110, there is not much room for the
controller to recover from the overshoot. Hence, it takes 16 steps to fall below 0 again.

Note that the difference signal y(k)− r(k) is expected to converge to 0 in 22 steps but does
so after only 17. This, too, is a result of uncertainty in the switching behaviour. Although
the mode switching has an error rate of around 27 % in the first 22 steps, as opposed to
the expected 20 %, it never erroneously operates in the relatively slow mode ` = 3. Thus,
convergence occurs faster than expected in this specific study.

Bart de Jong Master of Science Thesis

6-4 Hybrid Control of a Mode-Constrained Stochastic SMPL System 113

Figure 6-8: Minimum offset o necessary to obtain a probability of performance p̂N (0.5) = 0.95 with
accuracy ε = 0.01 and confidence 1 − δ = 0.995 as calculated using Algorithm 4.2 on page 59. The
algorithm proposes a minimum reference signal growth rate of ρr = ρ

Np
+ 0.045 ≈ 2.14.

Master of Science Thesis Bart de Jong

114 Case Study

Figure 6-9: Simulation results of hybrid control of a mode-constrained deterministic SMPL system.
The plots show the output y(k) versus the reference r(k), the difference signals of y(k) − r(k) and
u(k) − r(k), the system mode `(k) and the difference between the states xi(k) and the reference signal
r(k). Furthermore, it shows the expected event step at which the output y(k) converges with the reference
signal r(k) based on the calculated growth rate ρcon

Np
of the system, shown in Eq. (6-19) on page 110.

Bart de Jong Master of Science Thesis

6-4 Hybrid Control of a Mode-Constrained Stochastic SMPL System 115

Figure 6-10: Zoomed-in version of Figure 6-9 showing nonzero values of the difference signal y(k)−r(k).

Master of Science Thesis Bart de Jong

116 Case Study

Bart de Jong Master of Science Thesis

Chapter 7

Conclusion

This final chapter evaluates the research described in this report, consisting of the chapters
Preliminaries on page 5, Switching Max-Plus Linear Systems on page 27, Growth Rate of
SMPL Systems on page 39, MPC Stabilisability of SMPL Systems on page 65 and Case
Study on page 87. Section 7-1 on page 118 examines the obtained results and the steps
taken to get there and evaluates the contributions of this work to the scientific community.
Section 7-2 on page 121 proposes directions for future research based on the findings of this
work.

Master of Science Thesis Bart de Jong

118 Conclusion

7-1 Discussion and Contributions

Within the field of control theory, researchers and engineers aim to achieve satisfactory future
system behaviour in a world governed by uncertainty and complexity. Many times, in light
of efficiency and cost-effectiveness, uncertainty and complexity are discarded by introducing
large margins around the mean performance. Uncertainty in system behaviour is neglected
by considering worst-case scenarios or approximated by simulating the behaviour without
consideration of bounds on the uncertainty set.
As a means to reduce modelling complexity for a specific type of nonlinear systems, the
discrete-event systems (DESs), researchers produced the framework of switching max-plus
linear (SMPL) systems. This framework offers a way to elegantly capture the nonlinear
nature of maximisation and incorporate changes in system behaviour through switching. The
field of model predictive control (MPC) has been extended to incorporate such systems and
provide a powerful way of dealing with uncertainty and constraints. This research builds on
the promise of MPC to deal with uncertainty and constraints in the switching behaviour of
DESs. It poses a framework with which to assess the uncertain set of growth rates of SMPL
systems and promises to incorporate many types of constraints on the switching sequence
of such systems. Through simulations, this research validates the efficacy of the proposed
methods and further reinforces the power of MPC when applied to systems described by
max-plus algebra (MPA).
Chapter 2 on page 5 of this report offers a succinct introduction to MPA, MPC, graph theory,
and Monte Carlo (MC) randomised algorithms. Chapter 3 on page 27 builds on this foun-
dation by summarising the existing theory surrounding deterministic and stochastic SMPL
systems and proposes a way of incorporating constraints on the systems’ mode sequences. It
does so by utilising the universality of discrete hybrid automata (DHAs) and discrete hybrid
stochastic automata (DHSAs) introduced in the same two chapters. The report further ex-
plores the modest research on the growth rate of deterministic and stochastic SMPL systems
in Chapter 4 on page 39 and poses new definitions and approximations that are helpful when
assessing and predicting the behaviour of such systems. Chapter 5 on page 65 incorporates
these definitions and examines the stability conditions for this type of system and its stabil-
isability. Furthermore, it presents a general MPC framework for control within a specific set
of growth rates. Lastly, Chapter 6 on page 87 validates the research by exploring three case
studies that show the efficacy of the research discussed in earlier chapters.

7-1-1 Contributions of this research

The contributions of this research are summarised in the following four paragraphs.

Contribution 1 – Comprehensive literature review A large part of the report forms a
comprehensive review of the existing literature on max-plus algebra (MPA), the framework
of switching max-plus linear (SMPL) systems and model predictive control (MPC) applied
within that framework.

Contribution 2 – Growth rate definitions and approximations As an addition to the limited
research on growth rate of switching max-plus linear (SMPL) systems, this report offers a way

Bart de Jong Master of Science Thesis

7-1 Discussion and Contributions 119

to distinct various growth rates and take into account switching uncertainty and switching se-
quence constraints. It proposes computationally efficient algorithms to compute finite-horizon
approximations of the infinite-horizon definitions. Furthermore, it presents a framework to
assess the validity of these approximations.

Contribution 3 – Assessment of stability and stabilisability The report offers assessments
of the stability and stabilisability of mode-constrained switching max-plus linear (SMPL)
systems subject to deterministic or stochastic switching rules. This theory is paired with a
universal framework of model predictive control (MPC) that can be applied to such systems.

Contribution 4 – Validation through simulation Lastly, the previously mentioned contri-
butions are validated by exploring three case studies and performing simulations to show the
potency of the frameworks presented by this research.

7-1-2 Answers to the research questions

Together, the four contributions mentioned in the previous section answer the research ques-
tions posed in Section 1-2 on page 3 in the following way.

Research Question 1 – What is the state of the art of stabilising deterministic and stochas-
tic SMPL systems? The first research question has been answered in Chapter 4 on page 39
and Chapter 5 on page 65. A literature review on the subject has revealed that there exists
an SMPL-MPC framework for systems under deterministic or stochastic switching. How-
ever, it considers only stabilisability above the maximum growth rate ρ and neglects any
mode-constraints.

Research Question 2 – How can we incorporate mode constraints into the control frame-
work? Section 3-3 on page 34 proposes a way to incorporate automaton-based mode con-
straints by combining the framework of SMPL systems with the one of DHAs and DHSAs.
The incorporation of these constraints into the MPC controller is discussed in Section 6 on
page 87. The implementation into the control algorithm to exlude the possibility of violation
is discussed in Section 6-1-3 on page 93.

Research Question 3 – How can we quantify the performance of SMPL systems? The
theory presented in Chapter 4 on page 39 offers a way to quantify system performance by
measuring four growth rate quantities:

• Maximum growth rate ρ

• Expected growth rate ρ

• Minimum expected growth rate ρ

• Minimum growth rate ρ

Master of Science Thesis Bart de Jong

120 Conclusion

The chapter introduces finite-horizon approximations of these infinite-horizon values and eval-
uates them in a statistical validation framework. Through that framework, we devised an al-
gorithm to propose a lower bound on the growth rate of a system’s reference signal to ensure
stabilisability.

Research Question 4 – How can we stabilise deterministic and stochastic mode-constrained
SMPL systems using discrete and hybrid control? Section 5-3 on page 72 introduces a
framework to stabilise mode-constrained SMPL systems. Chapter 6 on page 87 offers three
exemplary control cases to validate the theory. In short, we extended the SMPL-MPC frame-
work to work for reference signals with growth rates lower than the maximum growth rate
ρ. Furthermore, we incorporated the mode constraints by simulating discrete-state system
behaviour using stochastic finite state machines (sFSMs). Lastly, we discussed a way of
converting mixed-integer quadratic programming (MIQP) problems that result from hybrid
control to occasionally more efficient mixed-integer linear programming (MILP) ones.

Section 7-2 explores directions for future research outside of the original scope of this research
or ones that were found to be appealing during the execution of the research.

Bart de Jong Master of Science Thesis

7-2 Recommendations for Future Research 121

7-2 Recommendations for Future Research

During the research, we were tempted to investigate many enticing branches that were con-
sidered outside of the scope of this thesis. Nonetheless, these branches could prove helpful in
understanding the topics and extending or generalising the frameworks. Furthermore, they
could increase the practical utility of the predominantly theoretical concepts of MPA and
SMPL systems. A selection of them is detailed in the following paragraphs.

Research bounds on the infinite-horizon growth rate metrics Unlike the approximations
proposed in this work that aim to be unbiased estimators of their infinite-horizon counterparts,
it would prove helpful in a practical sense to additionally find upper and lower bounds.
For example, considering that a system’s growth rate may be increased arbitrarily through
continuous control, it is helpful to know with certainty a minimum achievable growth rate.

Generalise the probability of performance as a function of the offset to other systems
Whereas the conclusions drawn from the probability of performance investigation are now
valid only for the system under investigation, it would be efficient to generalise the findings
to other systems. For example, one could research ways of predicting the order of magnitude
of the offset necessary to achieve a certain probability of performance without running the
time-consuming simulations. This prediction may be based on the structure of the system
matrices and the scale of their entries.

Investigate ways to make the algorithm to approximate infinite-horizon growth rate more
efficient As is, the algorithm to calculate the finite-horizon growth rate approximations
considers all possible mode sequences and control sequences over a certain horizon. However,
many sequences may have a negligible probability of occurrence, and a growth rate close to
the weighted average one. A way to improve the efficiency is to only consider sequences with a
probability of occurrence above a certain threshold while ignoring or even incorporating their
influence. Additional research is needed to investigate the bias that results from ignoring
certain sequences.

Investigate ways to make the MPC algorithm more efficient In a similar fashion, one
could improve the efficiency of the predictive control method by discarding certain unlikely
mode sequences. Furthermore, one could incorporate a control horizon Nc as an addition to
the prediction horizon Np and introduce control heuristics for the region in between. Also,
further research may reveal ways of optimising the form of the optimisation problem, yielding
faster computation times.

Find proofs for the stabilisability hypotheses Little effort has been put into the a posteriori
validation of the stabilisability hypotheses proposed in Section 5-2 on page 68. They are based
on theorems from earlier work but have not been formally proven or otherwise substantiated.
Future research may validate the hypotheses or propose alterations.

Master of Science Thesis Bart de Jong

122 Conclusion

Generalise findings to more general frameworks such as DHSAs or max-min-plus-scaling
(MMPS) systems Lastly, the definitions and frameworks targeted towards stochastic SMPL
systems with mode constraints may be generalised towards broader classes of systems, such
as all DHSAs, or MMPS systems.

Bart de Jong Master of Science Thesis

Appendix A

Appendices

Master of Science Thesis Bart de Jong

124 Appendices

A-1 Influence of the Parameter γ in the MPC Cost Function

This appendix visualises the influence of the parameter γ in the cost function of Eq. (5-15)
on page 79. It does so by showing the simulation results of the case study in Section 6-2 on
page 96 with the following values of the parameter:

• γ = 0, Visualised by the simulation results in Figure A-1

• γ = 0.01, Visualised by the simulation results in Figure A-2 on page 126

• γ = 1, Visualised by the simulation results in Figure A-3 on page 127

The influence of these parameter values is compared to the value that was used in the case
study of Section 6-2 on page 96:

• γ = 0.05, Visualised by the simulation results in Figure 6-5 on page 100

Results and interpretation The simulation with γ = 0 represents an objective function that
only aims to minimise the positive difference y(k)−r(k) and disregards the negative difference
r(k) − y(k). Therefore, any behaviour that leads to the output y(k) being smaller than the
reference value r(k) is deemed equivalent in value. This leads to the arbitrary behaviour of
Figure A-1, in which the difference r(k)− y(k) increases steadily after reaching zero.

A value of γ = 0.01 is a factor five smaller than the one used in the case study, which is
apparent from the system’s behaviour in Figure A-2 on page 126. In the visualisation of the
results, the output y(k) is seen to converge slowly from below to the reference r(k). Since the
optimisation algorithm considers the maximum of (y(k)− r(k)) and 0.01 · (r(k)− y(k)), it is
a lot more anxious about any positive difference y(k) − r(k) than any negative. Therefore,
the slower convergence compared to the case study’s results is attributed to the factor five
difference between the values of γ.

In contrast, for a value γ = 1, the system considers an equal penalty on both the positive
and negative difference between the reference signal r(k) and the system’s output y(k). It
is, therefore, expected that we see an equal deviation in both directions, as is confirmed by
Figure A-3 on page 127. The signal resembles a triangle wave with an apparent mean value of
0. While its rather large amplitude and period are likely an attribute of the small prediction
horizon, additional research is needed for confirmation.

The value of γ = 0.05 used in the case study results from the trade-off between convergence
speed and the strictness of the nonpositiveness of the difference signal y(k)− r(k). Different
applications may require different values of the parameter.

Bart de Jong Master of Science Thesis

A-1 Influence of the Parameter γ in the MPC Cost Function 125

Figure A-1: Simulation results of discrete control of a mode-constrained deterministic SMPL system with
γ = 0. The plots show the output y(k) versus the reference r(k), the difference signal of y(k)−r(k), the
system mode `(k) and the difference between the states xi(k) and the reference signal r(k). Furthermore,
it shows the expected event step at which the output y(k) converges with the reference signal r(k) based
on the calculated growth rate ρcon

Np
of the system, shown in Eq. (6-14) on page 97.

Master of Science Thesis Bart de Jong

126 Appendices

Figure A-2: Simulation results of discrete control of a mode-constrained deterministic SMPL system
with γ = 0.01. The plots show the output y(k) versus the reference r(k), the difference signal of
y(k) − r(k), the system mode `(k) and the difference between the states xi(k) and the reference signal
r(k). Furthermore, it shows the expected event step at which the output y(k) converges with the reference
signal r(k) based on the calculated growth rate ρcon

Np
of the system, shown in Eq. (6-14) on page 97.

Bart de Jong Master of Science Thesis

A-1 Influence of the Parameter γ in the MPC Cost Function 127

Figure A-3: Simulation results of discrete control of a mode-constrained deterministic SMPL system with
γ = 1. The plots show the output y(k) versus the reference r(k), the difference signal of y(k)−r(k), the
system mode `(k) and the difference between the states xi(k) and the reference signal r(k). Furthermore,
it shows the expected event step at which the output y(k) converges with the reference signal r(k) based
on the calculated growth rate ρcon

Np
of the system, shown in Eq. (6-14) on page 97.

Master of Science Thesis Bart de Jong

128 Appendices

A-2 Supporting MATLAB Scripts

A-2-1 Case1.mlx

The following script is a MATLAB live script.
1 %% Case 1: Discrete control of a mode -constrained deterministic system
2 % *File info:*
3 %%
4 % * Name: |Case1.mlx|
5 % * Author: Bart de Jong
6 % * Date: June , 2022
7 %%
8 % *Prerequisite software*
9 %%

10 % * MATLAB (Tested version: R2022a)
11 % * YALMIP (Tested version: R20200116)
12 % * GUROBI (Tested version: gurobi901)
13 %%
14 % *Prerequisite custom function files*
15 %%
16 % * |allSequences.m|
17 % * |checkError.m|
18 % * |findOffset.m|
19 % * |generateSemigroup.m|
20 % * |generateSupport.m|
21 % * |generateSystem.m|
22 % * |growthRate.m|
23 % * |modeConstraints.m|
24 % * |mpAdd.m|
25 % * |mpMulti.m|
26 % * |predictionModel.m|
27 %%
28 % *Prerequisite toolbox*
29 %%
30 % * Max -Plus Algebra Toolbox for Matlab - Copyright (C) 2016 Jaroslaw Stanczyk
31 % * Used for |mp_mcm.m| and supporting files
32 %%
33 %
34 %% Initialisation and settings
35 %
36 %
37 % *Clear workspace*
38
39 clearvars
40 %%
41 %
42 %
43 % *Preliminaries and general settings*
44
45 % Max -plus zero and one elements
46 other . eps = −inf ;
47 other . e = 0 ;
48
49 % Colour vector for figure elements
50 other . colourvec = {’#00 A6D6’ , ’#E03C31’ , ’#FFB81C’ , ’#6CC24A’ , ’#EC6842’ } ;
51

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 129

52 % Latex interpreter
53 set (0 , ’defaultAxesTickLabelInterpreter ’ , ’latex’) ;
54 set (0 , ’defaultLegendInterpreter ’ , ’latex’) ;
55 set (0 , ’defaultTextInterpreter ’ , ’latex’) ;
56 %%
57 %
58 %
59 % *Simulation settings*
60
61 Sim . Np = 3 ; % Prediction horizon
62 Sim . rho_r = 2 . 2 ; % Growth rate reference signal (constant in

reference signal)
63 Sim . kmax = 200 ; % Number of event steps in the simulation
64 Sim . maxnummode = 3 ; % Maximum number of same mode in a row
65 Sim . lineariseMIQP = false ; % Turn MIQP into MILP
66
67 Sim . nu_max = 10 ; % Maximum difference between input and reference
68 Sim . gamma = 0 . 0 5 ; % Weight in output cost function
69 %%
70 %
71 %% Construct SMPL system
72 %
73 %
74 % *Define dimensions of the SMPL system*
75
76 sys . nx = 3 ; % Number of states
77 sys . nu = 1 ; % Number of contimous inputs (u(k)) > 0
78 sys . ny = 1 ; % Number of outputs
79 sys . nL = 3 ; % Number of modes
80 sys . nv = sys . nL ; % Number of discrete inputs (v(k)) - v(k) is a scalar , not a

vector
81 %%
82 %
83 %
84 % *Generate SMPL system with no switching stochastics*
85
86 rng (9) % Seed for random number generator
87 [sys . A , ~ , sys . C , ~] = generateSystem (sys . nx , sys . nu , sys . ny , sys . nL) ; %

Construct autonomous system
88
89 % Define switching probabilities {0, 1}
90 sys . Ps = zeros (sys . nL , sys . nL , sys . nv) ;
91 for i = 1 : sys . nL
92 sys . Ps (: , i , i) = 1 ;
93 end
94 %%
95 %% Construct prediction model
96 %
97 %
98 % *Find all possible mode sequences over the prediction horizon and put them
99 % in a matrix*

100
101 [sys . seqm , sys . seqv , sys . Ps_tilde] = allSequences (sys . nL , Sim . Np , sys . Ps) ;
102 %%
103 %
104 %
105 % *Find all possible sequences that do not violate the mode -constraint*

Master of Science Thesis Bart de Jong

130 Appendices

106
107 sys . violate_con = sum (diff (sys . seqm , [] , 2) ==0, 2) > Sim . maxnummode −1; % Find all

mode sequences over horizon Np
108 sys . seqm_con = sys . seqm (~ sys . violate_con , :) ; % Select

the mode sequences
109 sys . seqv_con = sys . seqv (~ sys . violate_con , :) ; % Select

the control sequences
110 %%
111 %
112 %
113 % *Calculate* \tilde{A} *and* \tilde{C} *matrices for all possible mode
114 % sequences*
115
116 [sys . A_tilde , sys . C_tilde , ~ , ~] = predictionModel (sys . A , zeros (sys . nx , sys . nu ,

sys . nL) , sys . C , sys . seqm) ;
117 %%
118 %
119 %% Calculate deterministic (constrained) growth rate
120 %
121 %
122 % *Calculate values*
123
124 clear growth
125 growth . Np_GR = 2∗Sim . Np ; % Maximum period of cyclic mode sequences
126 [growth . seqm_GR , ~ , growth . Ps_tilde_GR] = allSequences (sys . nL , growth . Np_GR ,

sys . Ps) ;
127
128 [growth_append] = growthRate (sys . A , sys . C , growth . seqm_GR , growth . Ps_tilde_GR ,

" maxnummode " , Sim . maxnummode) ;
129 growth = cell2struct ([struct2cell (growth) ; struct2cell (growth_append)] , [

fieldnames (growth) ; fieldnames (growth_append)]) ;
130 %%
131 %
132 %
133 % *Plot results*
134
135 figure ; boxplot ([growth . rho_dbar_Np ; growth . rho_dbar_Np_con] , . . .
136 [repmat (" Unconstrained deterministic system " , [size (growth . rho_dbar_Np , 1) ,

1]) ; . . .
137 repmat (" Constrained deterministic system " , [size (growth . rho_dbar_Np_con , 1) ,

1])] , ’Whisker ’ , 2) ;
138
139 a = get (get (gca , ’children ’) , ’children ’) ; % Get the handles of all the objects
140 set (a (1 : 4) , ’Color’ , other . colourvec {5}) ;
141 set (a (5 : 6) , ’Color’ , other . colourvec {1}) ;
142
143 ylabel (’Growth rate $\overline {\ overline {\rho}}_{N_\mathrm{p}}$’ , ’Interpreter ’

, ’latex’) ;
144 grid minor
145 set (gca , ’TickLabelInterpreter ’ , ’latex’)
146 %%
147 %% Find admissible control inputs based on FSM state
148 %
149
150 [sys . adm_cont , sys . adm_cont_seq] = modeConstraints (Sim . maxnummode , sys . nv , sys .

seqv) ;
151 %%

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 131

152 %% Find lower bound on reference signal for required probability of perfomance
153 %
154
155 % Check for stochastics
156 Sim . ProbOfPerf = 0 . 9 5 ;
157 if any (sys . Ps (sys . Ps~=1)>0)
158 Nsim = 200 ; % Growth rate simulation horizon
159 maxit = 3.00 e4 ; % Number of samples
160 offsetRange = 0 . 2 ; % Maximum absolute offset
161 Sim . offsetPoP = findOffset (sys . A , sys . C , sys . Ps , Nsim , growth .

rho_dubar_Np_con , growth . rho_dbar_Np , growth . seqm , maxit , Sim . ProbOfPerf ,
offsetRange) ;

162 else
163 Sim . offsetPoP = 0 ;
164 end
165 fprintf ("− Offset necessary to obtain a probability of performance of %.2f with

given accuracy and confidence: %.2f\n" + ...
166 "− Minimum expected constrained growth rate including offset : %.2f", Sim.

ProbOfPerf , Sim.offsetPoP , growth.rho_dubar_Np_con + Sim.offsetPoP);
167 %% Setup MPC algorithm
168 %
169 %
170 % *Construct set of constraints*
171
172 Sim . constraints = [] ;
173
174 optimvar . t = sdpvar (repmat (Sim . Np , 1 , height (sys . seqm)) , ones (1 , height (

sys . seqm))) ; % Construct optimisation variables t
175 optimvar . x = sdpvar (sys . nx , 1) ; % Initial state
176 optimvar . ref = sdpvar (Sim . Np , 1) ; % Reference signal over

prediction horizon
177 optimvar . v = binvar (height (sys . seqv) , 1) ; % Vector denoting discrete

control sequence
178 optimvar . vseqpos = binvar (height (sys . seqv) , 1) ; % Vector denoting which mode

sequence is allowed
179
180 if Sim . lineariseMIQP
181 optimvar . tj = sdpvar (repmat (Sim . Np , 1 , height (sys . seqm) ∗height (sys . seqv)) ,

ones (1 , height (sys . seqm) ∗height (sys . seqv))) ;
182 Sim . Mt = growth . rho_bar ∗(Sim . kmax+1) ; % Upper bound on maximum of system ’s

output for y(0) <=0
183 Sim . mt = 0 ; % Lower bound on minimum of system ’s

output for y(0) >=0
184 end
185
186 for i = 1 : sys . ny∗Sim . Np % Loop over prediction horizon
187 for j = 1 : height (sys . seqm) % Loop over all possible mode sequences
188 for k = 1 : sys . nx % Loop over all states
189 Sim . constraints = [Sim . constraints , optimvar . t{j}(i) >= 1∗(sys . C_tilde

(i , k , j) + optimvar . x (k) − optimvar . ref (i))] ; % System
dynamics

190 Sim . constraints = [Sim . constraints , optimvar . t{j}(i) >= Sim . gamma ∗(
optimvar . ref (i) − (sys . C_tilde (i , k , j) + optimvar . x (k)))] ; %
System dynamics

191 end
192 if Sim . lineariseMIQP % Linearise optimisation problem
193 for k = 1 : height (sys . seqv)

Master of Science Thesis Bart de Jong

132 Appendices

194 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .
seqv)+k}(i) <= Sim . Mt∗optimvar . v (k)] ;

195 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .
seqv)+k}(i) >= Sim . mt∗optimvar . v (k)] ;

196 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .
seqv)+k}(i) <= optimvar . t{j}(i)−Sim . mt∗(1−optimvar . v (k))] ;

197 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .
seqv)+k}(i) >= optimvar . t{j}(i)−Sim . Mt∗(1−optimvar . v (k))] ;

198 end
199 end
200 end
201 end
202
203 Sim . constraints = [Sim . constraints , sum (optimvar . v)==1];

% Select a single discrete control sequence
204
205 for i = 1 : length (sys . seqv)
206 Sim . constraints = [Sim . constraints , optimvar . v (i)+~optimvar . vseqpos (i) <=

1 . 5] ; % Restrict control sequences
207 end
208 %%
209 %
210 %
211 % *Construct cost function*
212
213 Sim . options = sdpsettings (’solver’ , ’gurobi’) ; % Optimiser

settings
214 Sim . input_var = {optimvar . x , optimvar . ref , optimvar . vseqpos } ; % Input

variables
215 Sim . output_var = optimvar . v (:) ’ ; % Output

variables
216
217 Sim . objective_out = 0 ; % Initialise objective function
218
219 for i = 1 : Sim . Np % Loop over prediction horizon
220 for j = 1 : height (sys . seqm) % Loop over all possible mode sequences
221 for k = 1 : height (sys . seqv) % Loop over all possible control sequences
222 if Sim . lineariseMIQP
223 Sim . objective_out = Sim . objective_out + optimvar . tj {(j−1)∗height (

sys . seqv)+k}(i) ∗sys . Ps_tilde (1 , j , k) ;
224 else
225 Sim . objective_out = Sim . objective_out + optimvar . t{j}(i) ∗sys .

Ps_tilde (1 , j , k) ∗optimvar . v (k) ;
226 end
227 end
228 end
229 end
230
231 %%
232 %
233 %
234 % *Construct controller object*
235
236 Sim . controller = optimizer (Sim . constraints , Sim . objective_out , Sim . options , Sim .

input_var , Sim . output_var) ;
237 %%
238 %

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 133

239 %% Run simulation
240 %
241 %
242 % *Start loop for timing purposes*
243
244 % for z = 1:10; tic
245 %
246 % *Initialise control loop*
247
248 lpvar . V_imp = zeros (Sim . kmax+1, 1) ; % Implemented binary inputs
249 lpvar . output = zeros (Sim . kmax+1, 1) ; % System output
250 lpvar . mode = zeros (Sim . kmax+1, 1) ; % System mode
251 lpvar . diagnostics = zeros (Sim . kmax+1, 1) ; % Yalmip diagnostics
252 lpvar . output_det = zeros (Sim . kmax+1, 1) ; % Output determined by which

state
253
254 rng (1) ;
255 lpvar . num = rand (Sim . kmax+1 ,1) ;
256
257 lpvar . state (1 , :) = 3∗ zeros (1 , sys . nx) ; % Initial

state
258 lpvar . output (1) = mpMulti (sys . C (: , : , 1) , lpvar . state (1 , :) ’) ; % Initial

output
259 lpvar . mode (1) = 1 ; % Initial

mode
260 lpvar . output_det (1) = 0 ; % Which

state determines output
261
262 lpvar . state_FSM = zeros (sys . nL∗Sim . maxnummode , Sim . kmax+1) ; %

FSM state
263 lpvar . state_FSM (Sim . maxnummode∗lpvar . mode (1)−(Sim . maxnummode −1) ,1) = 1 ; %

First FSM state
264
265 Sim . c_ref = −2;
266 Sim . ref = Sim . rho_r ∗ (0 : Sim . kmax+sys . ny∗Sim . Np) ’+Sim . c_ref ; % Reference

output signal
267
268 lpvar . differenceY (1 , :) = lpvar . output (1 , :) − Sim . ref (1) ; % Difference

output and reference signals
269
270 Sim . exp_conv_steps = ceil ((lpvar . output (1)−Sim . c_ref) /(Sim . rho_r−growth .

rho_dubar_Np)) ;
271
272 % No errors have yet occured
273 lpvar . warnvar = false ;
274
275 showprogress = zeros (1 , 10) ;
276 progressval = linspace (0 , 1 , length (showprogress)+1) ;
277 %%
278 %
279 %
280 % *Start loop*
281
282 for k = 2 : Sim . kmax+1
283
284 % determine admissible discrete control inputs as a function of the FSM
285 % state

Master of Science Thesis Bart de Jong

134 Appendices

286 lpvar . vseqposloop = sys . adm_cont_seq{lpvar . state_FSM (: , k−1)==1}’;
287
288 % Run optimiser
289 lpvar . nameController = ’Sim.controller ’ ; % Choose controller
290 eval ([’[U, lpvar.diagnostics(k)] = ’ , lpvar . nameController , ’{transpose(

lpvar.state(k-1,:)), Sim.ref(k:k+Sim.Np -1), lpvar.vseqposloop };’]) ;
291
292 % Check for errors
293 checkError (lpvar . diagnostics (k) , lpvar . warnvar) ;
294
295 % Read output
296 lpvar . V_imp (k) = sys . seqv (abs (U−1)<1e−5, 1) ; % Save implemented binary

control input
297
298 % Advance to next mode based on probabilities in sys.Ps and v(k)
299 for i = 1 : sys . nL
300 if lpvar . num (k) < sum (sys . Ps (lpvar . mode (k−1) , 1 : i , lpvar . V_imp (k)))
301 lpvar . mode (k) = i ;
302 break
303 end
304 end
305
306 % Advance FSM state
307 for i = 1 : sys . nL
308 if lpvar . mode (k) == i
309 if ismember (find (lpvar . state_FSM (: , k−1)) , 1+(i−1)∗Sim . maxnummode : Sim .

maxnummode∗i−1)
310 lpvar . state_FSM (find (lpvar . state_FSM (: , k−1))+1,k) = 1 ;
311 elseif find (lpvar . state_FSM (: , k−1)) == Sim . maxnummode∗i
312 lpvar . state_FSM (: , k) = lpvar . state_FSM (: , k−1) ;
313 else
314 lpvar . state_FSM (1+(i−1)∗Sim . maxnummode , k) = 1 ;
315 end
316 end
317 end
318
319
320 % Advance system state
321 lpvar . state (k , :) = mpMulti (sys . A (: , : , lpvar . mode (k)) , lpvar . state (k −1 , :) ’) ;
322 lpvar . output (k , :) = mpMulti (sys . C (: , : , lpvar . mode (k)) , lpvar . state (k , :) ’) ;
323
324 % Check which state determines output
325 [~ , ind_os] = max (sys . C (: , : , lpvar . mode (k))+lpvar . state (k , :)) ;
326 lpvar . output_det (k) = ind_os ;
327
328 % Define error signals
329 lpvar . differenceY (k , :) = lpvar . output (k , :) − Sim . ref (k) ; % Difference

output and reference signals
330
331 % Display progress
332 for i = length (showprogress) :−1:1
333 if k/(Sim . kmax+1) >= progressval (i+1) && showprogress (i) == 0
334 disp (" progress : " + num2str (progressval (i+1)∗100) + " %")
335 showprogress (i) = 1 ;
336 break
337 end
338 end

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 135

339
340 end
341 %%
342 %
343 %
344 % *Check which modes are not according to plan*
345
346 lpvar . logical_mode = lpvar . V_imp (1 : end)==lpvar . mode (1 : end) ;
347
348 lpvar . xvec_c = nonzeros (double (lpvar . logical_mode) . ∗ (0 : Sim . kmax) ’) ; %

States during correct modes
349 lpvar . mode_c = lpvar . mode (lpvar . logical_mode) ; %

Correct modes
350
351 lpvar . xvec_nc = double (~ lpvar . logical_mode) . ∗ (0 : Sim . kmax) ’ ;
352 lpvar . xvec_nc = [lpvar . xvec_nc (1) ; nonzeros (lpvar . xvec_nc (2 : end))] ; %

States during incorrect modes
353 lpvar . mode_nc = lpvar . mode (~ lpvar . logical_mode) ; %

Incorrect modes
354 %%
355 %
356 %
357 % *Value objective functions*
358
359 lpvar . val_obj_out = sum (max (lpvar . differenceY , 0)) ; % Value output

objective function
360 lpvar . val_obj_in = 0 ; % Value input

objective function
361 lpvar . val_obj = lpvar . val_obj_in + lpvar . val_obj_out ; % Value combined

objective function
362 %%
363 %
364 %
365 % *Store runtime information*
366
367 % lpvar.runtime(z) = toc
368 % end
369 %%
370 %
371 %% Display results
372 %
373 %
374 % *Datatable*
375
376 VarNames = {’Event step’ , ’Mode’ , ’Control input v(k)’ , ’Output’ , ’Reference ’ ,

’Output determined by state #’ } ;
377 lpvar . dataTable = table (transpose (1 : Sim . kmax) , lpvar . mode (2 : Sim . kmax+1) , lpvar

. V_imp (2 : Sim . kmax+1) , lpvar . output (2 : Sim . kmax+1) , Sim . ref (2 : Sim . kmax+1) ,
lpvar . output_det (2 : Sim . kmax+1) , ’VariableNames ’ , VarNames) ;

378 disp (lpvar . dataTable)
379 %%
380 %
381 %
382 % *System signals*
383
384 % ---- Output vs reference ----
385 figure ;

Master of Science Thesis Bart de Jong

136 Appendices

386 ax1 = subplot (4 , 1 , 1) ; hold on
387 % Plot growth rates
388 v = [0 0 ; Sim . kmax growth . rho_dubar_Np_con∗Sim . kmax ; Sim . kmax growth . rho_bar∗

Sim . kmax] ;
389 f = [1 2 3] ;
390 patch (’Faces’ ,f , ’Vertices ’ ,v , ’FaceColor ’ , other . colourvec {4} , ’FaceAlpha ’ , . 5 , ’

EdgeColor ’ , ’none’) ;
391 % Plot data
392 stairs (0 : Sim . kmax , Sim . ref (1 : Sim . kmax+1) , ’Color’ , other . colourvec {5})
393 stairs (0 : Sim . kmax , lpvar . output (1 : Sim . kmax+1) , ’Color’ , other . colourvec {1})
394 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec

{2} , ’LineStyle ’ , ’--’)
395 % Other settings
396 legend (’Region of achievable growth rates’ , " $r (k)$ with $\rho_\mathrm{r}=$ " +

num2str (Sim . rho_r , 2) , . . .
397 ’$y(k)$’ , ’Expected first convergence ’ , ’Interpreter ’ , ’latex’ , ’Location ’ ,

’northwest ’)
398 xlim ([0 Sim . kmax+1]) ; grid on
399 title (’Output $y(k)$ vs reference $r(k)$’)
400 ylabel (’Time’)
401 hold off
402
403 % ---- Difference signals ----
404 ax2 = subplot (4 , 1 , 2) ; hold on
405 plot (0 : Sim . kmax , lpvar . differenceY (1 : Sim . kmax+1) , ’-o’ , ’Color’ , other .

colourvec {1})
406 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec

{2} , ’LineStyle ’ , ’--’)
407 legend (’$y(k)-r(k)$’ , ’Interpreter ’ , ’latex’)
408 xlim ([0 Sim . kmax+1]) ; grid on
409 title (’Difference signals ’)
410 ylabel (’Time’)
411 hold off
412
413 % ---- Mode sequence ----
414 ax3 = subplot (4 , 1 , 3) ; hold on
415 plot (lpvar . xvec_c , lpvar . mode_c , ’*’ , ’Color’ , other . colourvec {1})
416 plot (lpvar . xvec_nc , lpvar . mode_nc , ’*’ , ’Color’ , other . colourvec {2})
417 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , [0 sys . nL+1] , ’Color’ , other .

colourvec {2} , ’LineStyle ’ , ’--’)
418 legend (’$\ell(k) = v(k)$’ , ’$\ell(k) \neq v(k)$’ , ’Interpreter ’ , ’latex’)
419 set (gca , ’YTick’ , 0 : (sys . nL+1))
420 ylim ([0 sys . nL+1]) ;
421 xlim ([0 Sim . kmax+1]) ; grid on
422 title (’System mode $\ell(k)$’)
423 ylabel (’System mode $\ell(k)$’)
424 hold off
425
426 % ---- State differences ----
427 ax4 = subplot (4 , 1 , 4) ; hold on
428 p = plot (0 : Sim . kmax , lpvar . state (1 : Sim . kmax+1 , :)−Sim . ref (1 : Sim . kmax+1) , ’*’) ;
429 if sys . nx == 3
430 p (1) . Color = other . colourvec {1} ; p (2) . Color = other . colourvec {5} ; p (3) . Color

= other . colourvec {3} ;
431 end
432 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec

{2} , ’LineStyle ’ , ’--’)

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 137

433 legend (’$x_1(k) - r(k)$’ , ’$x_2(k) - r(k)$’ , ’$x_3(k) - r(k)$’ , ’Interpreter ’ ,
’latex’)

434 title (’Difference between states $x_i(k)$ and reference signal $r(k)$’)
435 xlabel (’Event step k’) ;
436 ylabel (’Time’)
437 xlim ([0 Sim . kmax+1]) ; grid on
438 hold off
439
440 % ---- Link axes ----
441 set (gca , ’TickLabelInterpreter ’ , ’latex’)
442 linkaxes ([ax1 , ax2 , ax3 , ax4] , ’x’)
443 %%
444 %
445 %
446 % *Clear meaningless variables*
447
448 clear ax1 ax2 ax3 ax4 vec a growth_append v f check_vec i j k p showprogress

progressval num_conseq_mode U VarNames vseqpos last_modes ind_os
val_conseq_mode Nsim maxit offsetRange

449 %%
450 %

A-2-2 Case2.mlx

The following script is a MATLAB live script.
1 %% Case 2: Hybrid control of a mode -constrained deterministic system
2 % *File info:*
3 %%
4 % * Name: |Case2.mlx|
5 % * Author: Bart de Jong
6 % * Date: June , 2022
7 %%
8 % *Prerequisite software*
9 %%

10 % * MATLAB (Tested version: R2022a)
11 % * YALMIP (Tested version: R20200116)
12 % * GUROBI (Tested version: gurobi901)
13 %%
14 % *Prerequisite custom function files*
15 %%
16 % * |allSequences.m|
17 % * |checkError.m|
18 % * |findOffset.m|
19 % * |generateSemigroup.m|
20 % * |generateSupport.m|
21 % * |generateSystem.m|
22 % * |growthRate.m|
23 % * |modeConstraints.m|
24 % * |mpAdd.m|
25 % * |mpMulti.m|
26 % * |predictionModel.m|
27 %%
28 % *Prerequisite toolbox*
29 %%
30 % * Max -Plus Algebra Toolbox for Matlab - Copyright (C) 2016 Jaroslaw Stanczyk

Master of Science Thesis Bart de Jong

138 Appendices

31 % * Used for |mp_mcm.m| and supporting files
32 %%
33 %
34 %% Initialisation and settings
35 %
36 %
37 % *Clear workspace*
38
39 clearvars
40 %%
41 %
42 %
43 % *Preliminaries and general settings*
44
45 % Max -plus zero and one elements
46 other . eps = −inf ;
47 other . e = 0 ;
48
49 % Colour vector for figure elements
50 other . colourvec = {’#00 A6D6’ , ’#E03C31’ , ’#FFB81C’ , ’#6CC24A’ , ’#EC6842’ } ;
51
52 % Latex interpreter
53 set (0 , ’defaultAxesTickLabelInterpreter ’ , ’latex’) ;
54 set (0 , ’defaultLegendInterpreter ’ , ’latex’) ;
55 set (0 , ’defaultTextInterpreter ’ , ’latex’) ;
56 %%
57 %
58 %
59 % *Simulation settings*
60
61 Sim . Np = 3 ; % Prediction horizon
62 Sim . rho_r = 2 . 2 ; % Growth rate reference signal (constant in

reference signal)
63 Sim . kmax = 200 ; % Number of event steps in the simulation
64 Sim . maxnummode = 3 ; % Maximum number of same mode in a row
65 Sim . lineariseMIQP = false ; % Turn MIQP into MILP
66
67 Sim . nu_max = 10 ; % Maximum difference between input and reference
68 Sim . beta = 1e−2; % Tuning parameter in cost function (beta > 0)
69 %%
70 %
71 %% Construct SMPL system
72 %
73 %
74 % *Define dimensions of the SMPL system*
75
76 sys . nx = 3 ; % Number of states
77 sys . nu = 1 ; % Number of contimous inputs (u(k))
78 sys . ny = 1 ; % Number of outputs
79 sys . nL = 3 ; % Number of modes
80 sys . nv = sys . nL ; % Number of discrete inputs (v(k)) - v(k) is a scalar , not a

vector
81 %%
82 %
83 %
84 % *Generate SMPL system with no switching stochastics*
85

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 139

86 rng (9) % Seed for random number generator
87 [sys . A , sys . B , sys . C , ~] = generateSystem (sys . nx , sys . nu , sys . ny , sys . nL) ;

% Construct nonautonomous system
88
89 % Define switching probabilities {0, 1}
90 sys . Ps = zeros (sys . nL , sys . nL , sys . nv) ;
91 for i = 1 : sys . nL
92 sys . Ps (: , i , i) = 1 ;
93 end
94 %%
95 %
96 %% Construct prediction model
97 %
98 %
99 % *Find all possible mode sequences over the prediction horizon and put them

100 % in a matrix*
101
102 [sys . seqm , sys . seqv , sys . Ps_tilde] = allSequences (sys . nL , Sim . Np , sys . Ps) ;
103 %%
104 %
105 %
106 % *Find all possible sequences that do not violate the mode -constraint*
107
108 sys . violate_con = sum (diff (sys . seqm , [] , 2) ==0, 2) > Sim . maxnummode −1;
109 sys . seqm_con = sys . seqm (~ sys . violate_con , :) ;
110 sys . seqv_con = sys . seqv (~ sys . violate_con , :) ;
111 %%
112 %
113 %
114 % *Calculate* \tilde{A}*,* \tilde{B}*,* \tilde{C} *and* \tilde{D} *

matrices
115 % for all possible mode sequences*
116
117 [sys . A_tilde , sys . C_tilde , sys . B_tilde , sys . D_tilde] = predictionModel (sys . A ,

sys . B , sys . C , sys . seqm) ;
118 %%
119 %
120 %% Calculate deterministic (constrained) growth rate
121 %
122 %
123 % *Calculate values*
124
125 clear growth
126 growth . Np_GR = 1∗Sim . Np ; % Maximum period of cyclic mode sequences
127 [growth . seqm_GR , ~ , growth . Ps_tilde_GR] = allSequences (sys . nL , growth . Np_GR ,

sys . Ps) ;
128
129 [growth_append] = growthRate (sys . A , sys . C , growth . seqm_GR , growth . Ps_tilde_GR ,

" maxnummode " , Sim . maxnummode) ;
130 growth = cell2struct ([struct2cell (growth) ; struct2cell (growth_append)] , [

fieldnames (growth) ; fieldnames (growth_append)]) ;
131 %%
132 %
133 %
134 % *Plot results*
135
136 figure ; boxplot ([growth . rho_dbar_Np ; growth . rho_dbar_Np_con] , . . .

Master of Science Thesis Bart de Jong

140 Appendices

137 [repmat (" Unconstrained deterministic system " , [size (growth . rho_dbar_Np , 1) ,
1]) ; . . .

138 repmat (" Constrained deterministic system " , [size (growth . rho_dbar_Np_con , 1) ,
1])] , ’Whisker ’ , 2) ;

139
140 a = get (get (gca , ’children ’) , ’children ’) ; % Get the handles of all the objects
141 set (a (1 : 4) , ’Color’ , other . colourvec {5}) ;
142 set (a (5 : 6) , ’Color’ , other . colourvec {1}) ;
143
144 ylabel (’Growth rate $\overline {\ overline {\rho}}_{N_\mathrm{p}}$’ , ’Interpreter ’

, ’latex’) ;
145 grid minor
146 set (gca , ’TickLabelInterpreter ’ , ’latex’)
147 %%
148 %
149 %% Find admissible control inputs based on FSM state
150 %
151
152 [sys . adm_cont , sys . adm_cont_seq] = modeConstraints (Sim . maxnummode , sys . nv , sys .

seqv) ;
153 %%
154 %% Find lower bound on reference signal for required probability of performance
155 %
156
157 % Check for stochastics
158 Sim . ProbOfPerf = 0 . 9 5 ;
159 if any (sys . Ps (sys . Ps~=1)>0)
160 Nsim = 200 ; % Growth rate simulation horizon
161 maxit = 3.00 e4 ; % Number of samples
162 offsetRange = 0 . 2 ; % Maximum absolute offset
163 Sim . offsetPoP = findOffset (sys . A , sys . C , sys . Ps , Nsim , growth .

rho_dubar_Np_con , growth . rho_dbar_Np , growth . seqm , maxit , Sim . ProbOfPerf ,
offsetRange) ;

164 else
165 Sim . offsetPoP = 0 ;
166 end
167 fprintf ("− Offset necessary to obtain a probability of performance of %.2f with

given accuracy and confidence: %.2f\n" + ...
168 "− Minimum expected constrained growth rate including offset : %.2f", Sim.

ProbOfPerf , Sim.offsetPoP , growth.rho_dubar_Np_con + Sim.offsetPoP);
169 %%
170 %
171 %% Setup MPC algorithm
172 %
173 %
174 % *Construct set of constraints*
175
176 Sim . constraints = [] ;
177
178 optimvar . t = sdpvar (repmat (Sim . Np , 1 , height (sys . seqm)) , ones (1 , height (

sys . seqm))) ; % Construct optimisation variables t
179 optimvar . x = sdpvar (sys . nx , 1) ;

% Initial state
180 optimvar . u = sdpvar (Sim . Np+1, 1) ;

% Construct optimisation
variables u (input)

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 141

181 optimvar . ref = sdpvar (Sim . Np , 1) ;
% Reference signal over

prediction horizon
182 optimvar . v = binvar (height (sys . seqv) , 1) ;

% Variable denoting with sequence of v(
k) is considered

183 optimvar . vseqpos = binvar (height (sys . seqv) , 1) ;
% Vector denoting which mode sequence

is allowed
184
185 if Sim . lineariseMIQP
186 optimvar . tj = sdpvar (repmat (Sim . Np , 1 , height (sys . seqm) ∗height (sys . seqv)) ,

ones (1 , height (sys . seqm) ∗height (sys . seqv))) ;
187 Sim . Mt = growth . rho_bar ∗(Sim . kmax+1) ; % Upper bound on maximum of system ’

s output for y(0) <=0
188 Sim . mt = 0 ; % Lower bound on minimum of system ’s

output for y(0) >=0
189 end
190
191 for i = 1 : sys . ny∗Sim . Np % Loop over prediction horizon for all

outputs
192 for j = 1 : height (sys . seqm) % Loop over all possible mode sequences
193 for k = 1 : sys . nx % Loop over all states
194 Sim . constraints = [Sim . constraints , optimvar . t{j}(i) >= sys . C_tilde

(i , k , j) + optimvar . x (k) − optimvar . ref (i)] ; %#ok <*AGROW > %
Autonomous system dynamics

195 end
196 for k = 1 : Sim . Np % Loop over prediction horizon
197 Sim . constraints = [Sim . constraints , optimvar . t{j}(i) >= sys . D_tilde

(i , k , j) + optimvar . u (k) − optimvar . ref (i)] ; % Controlled
system dynamics

198 end
199 if Sim . lineariseMIQP
200 for k = 1 : height (sys . seqv)
201 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .

seqv)+k}(i) <= Sim . Mt∗optimvar . v (k)] ;
202 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .

seqv)+k}(i) >= Sim . mt∗optimvar . v (k)] ;
203 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .

seqv)+k}(i) <= optimvar . t{j}(i)−Sim . mt∗(1−optimvar . v (k))] ;
204 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .

seqv)+k}(i) >= optimvar . t{j}(i)−Sim . Mt∗(1−optimvar . v (k))] ;
205 end
206 end
207 Sim . constraints = [Sim . constraints , optimvar . t{j}(i) >= 0] ;

% Disregard cost of y(k) if y(k
)<=r(k)

208 end
209 end
210 for i = 1 : sys . nu∗Sim . Np % Loop over prediction horizon
211 Sim . constraints = [Sim . constraints , optimvar . u (i) >= 0] ;
212 Sim . constraints = [Sim . constraints , optimvar . u (i+1) − optimvar . u (i) >=

0] ; % input should be nondecreasing
213 Sim . constraints = [Sim . constraints , optimvar . u (i) − optimvar . ref (i) <= Sim

. nu_max] ; % Input should be close to
reference signal

Master of Science Thesis Bart de Jong

142 Appendices

214 Sim . constraints = [Sim . constraints , optimvar . u (i) − optimvar . ref (i) >= −
Sim . nu_max] ; % Input should be close to
reference signal

215 end
216
217 Sim . constraints = [Sim . constraints , sum (optimvar . v) == 1] ;

% Select a single discrete
control sequence

218
219 for i = 1 : length (sys . seqv) % Loop over all possible control sequences
220 Sim . constraints = [Sim . constraints , optimvar . v (i)+~optimvar . vseqpos (i) <=

1 . 5] ; % Restrict control sequences
221 end
222 %%
223 %
224 %
225 % *Construct cost function*
226
227 Sim . options = sdpsettings (’solver’ , ’gurobi’) ; % Optimiser settings
228 Sim . input_var = {optimvar . x , optimvar . ref , optimvar . vseqpos } ;

% Input variables
229 Sim . output_var = [optimvar . u ; optimvar . v] ; % Output

variables
230
231 Sim . objective_in = 0 ;
232 Sim . objective_out = 0 ;
233
234 % J_out
235 for i = 1 : Sim . Np % Loop over prediction horizon
236 for j = 1 : height (sys . seqm) % Loop over all possible mode sequences
237 for k = 1 : height (sys . seqv)
238 if Sim . lineariseMIQP
239 Sim . objective_out = Sim . objective_out + optimvar . tj {(j−1)∗height (

sys . seqv)+k}(i) ∗sys . Ps_tilde (1 , j , k) ;
240 else
241 Sim . objective_out = Sim . objective_out + optimvar . t{j}(i) ∗sys .

Ps_tilde (1 , j , k) ∗optimvar . v (k) ;
242 end
243 end
244 end
245 end
246
247 % J_in
248 for i = 1 : Sim . Np % Loop over prediction horizon
249 Sim . objective_in = Sim . objective_in − Sim . beta∗optimvar . u (i) ;
250 for j = 1 : height (sys . seqv) % Loop over all v(k) sequences
251 end
252 end
253
254 %%
255 %
256 %
257 % *Construct controller*
258
259 Sim . controller = optimizer (Sim . constraints , Sim . objective_out+Sim . objective_in ,

Sim . options , Sim . input_var , Sim . output_var) ;
260 %%

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 143

261 %
262 %% Run simulation
263 %
264 %
265 % *Start loop for timing purposes*
266
267 % for z = 1:10; tic
268 %
269 % *Initialise control loop*
270
271 lpvar . U_imp = zeros (Sim . kmax+1, 1) ; % Implemented inputs
272 lpvar . V_imp = zeros (Sim . kmax+1, 1) ; % Implemented binary inputs
273 lpvar . output = zeros (Sim . kmax+1, 1) ; % System output
274 lpvar . mode = zeros (Sim . kmax+1, 1) ; % System mode
275 lpvar . diagnostics = zeros (Sim . kmax+1, 1) ; % Yalmip diagnostics
276 lpvar . output_det = zeros (Sim . kmax+1, 1) ; % Output determined by which

state
277 lpvar . state_det = zeros (Sim . kmax+1, sys . nx) ; % State determined by output

(logical)
278
279 rng (1) ;
280 lpvar . num = rand (Sim . kmax+1 ,1) ;
281
282 lpvar . state (1 , :) = zeros (1 , sys . nx) ; % Initial state
283 lpvar . output (1) = mpMulti (sys . C (: , : , 1) , lpvar . state (1 , :) ’) ;
284 lpvar . mode (1) = 1 ; % Initial mode
285 lpvar . output_det (1) = 0 ; % Which state determines output
286 lpvar . state_det (1 , :) = zeros (1 , sys . nx) ; % State determined by output
287
288 lpvar . state_FSM = zeros (sys . nL∗Sim . maxnummode , Sim . kmax+1) ;
289 lpvar . state_FSM (Sim . maxnummode∗lpvar . mode (1)−(Sim . maxnummode −1) ,1) = 1 ;

% First FSM state
290
291 Sim . c_ref = −2;
292 Sim . ref = Sim . rho_r ∗ (0 : Sim . kmax+sys . ny∗Sim . Np) ’+Sim . c_ref ; % Reference

output signal
293
294 lpvar . differenceY (1 , :) = lpvar . output (1 , :) − Sim . ref (1) ; % Difference output

and reference signals
295 lpvar . differenceU (1 , :) = 0 − Sim . ref (1) ; % Difference input and

reference signals
296
297 Sim . exp_conv_steps = ceil ((lpvar . output (1)−Sim . c_ref) /(Sim . rho_r−growth .

rho_dubar_Np_con)) ;
298
299 % No errors have yet occured
300 lpvar . warnvar = false ;
301
302 showprogress = zeros (1 , 10) ;
303 progressval = linspace (0 , 1 , length (showprogress)+1) ;
304 %%
305 %
306 %
307 % *Start loop*
308
309 for k = 2 : Sim . kmax+1
310

Master of Science Thesis Bart de Jong

144 Appendices

311 % determine admissible discrete control inputs as a function of the FSM
312 % state
313 lpvar . vseqposloop = sys . adm_cont_seq{lpvar . state_FSM (: , k−1)==1}’;
314
315 % Run optimiser
316 lpvar . nameController = ’Sim.controller ’ ;
317 eval ([’[U, lpvar.diagnostics(k)] = ’ , lpvar . nameController , ’{transpose(

lpvar.state(k-1,:)), Sim.ref(k:k+Sim.Np -1), lpvar.vseqposloop };’]) ; %#ok
<EVLEQ >

318
319 % Check for errors
320 checkError (lpvar . diagnostics (k) , lpvar . warnvar) ;
321
322 % Read output
323 lpvar . U_imp (k) = U (1) ; % Save implemented

control input
324 lpvar . V_imp (k) = sys . seqv (find (U ((Sim . Np+1)+1:end)) , 1) ; %#ok<FNDSB > %

Save implemented binary control input
325
326 % Advance to next mode based on probabilities in Ps and v(k)
327 for i = 1 : sys . nL
328 if lpvar . num (k) < sum (sys . Ps (lpvar . mode (k−1) , 1 : i , lpvar . V_imp (k)))
329 lpvar . mode (k) = i ;
330 break
331 end
332 end
333
334 % Advance FSM state
335 for i = 1 : sys . nL
336 if lpvar . mode (k) == i
337 if ismember (find (lpvar . state_FSM (: , k−1)) , 1+(i−1)∗Sim . maxnummode :

Sim . maxnummode∗i−1)
338 lpvar . state_FSM (find (lpvar . state_FSM (: , k−1))+1,k) = 1 ;
339 elseif find (lpvar . state_FSM (: , k−1)) == Sim . maxnummode∗i
340 lpvar . state_FSM (: , k) = lpvar . state_FSM (: , k−1) ;
341 else
342 lpvar . state_FSM (1+(i−1)∗Sim . maxnummode , k) = 1 ;
343 end
344 end
345 end
346
347 % Update state
348 lpvar . state (k , :) = mpAdd (mpMulti (sys . A (: , : , lpvar . mode (k)) , lpvar . state (k

−1 , :) ’) , mpMulti (sys . B (: , : , lpvar . mode (k)) , lpvar . U_imp (k))) ;
349 lpvar . output (k , :) = mpMulti (sys . C (: , : , lpvar . mode (k)) , lpvar . state (k , :) ’) ;
350
351 % State determined by input?
352 lpvar . state_det (k , :) = mpMulti (sys . B (: , : , lpvar . mode (k)) , lpvar . U_imp (k)) >=

mpMulti (sys . A (: , : , lpvar . mode (k)) , lpvar . state (k −1 , :) ’) ;
353
354 % Check which state determines output
355 [~ , ind_os] = max (sys . C (: , : , lpvar . mode (k))+lpvar . state (k , :)) ;
356 lpvar . output_det (k) = ind_os ;
357
358 % Define error signals
359 lpvar . differenceY (k , :) = lpvar . output (k , :) − Sim . ref (k) ; % Difference

output and reference signals

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 145

360 lpvar . differenceU (k , :) = lpvar . U_imp (k) − Sim . ref (k) ; % Difference
input and reference signals

361
362 % Display progress
363 for i = length (showprogress) :−1:1
364 if k/(Sim . kmax+1) >= progressval (i+1) && showprogress (i) == 0
365 disp (" progress : " + num2str (progressval (i+1)∗100) + " %")
366 showprogress (i) = 1 ;
367 break
368 end
369 end
370
371 end
372 %%
373 %
374 %
375 % *Check which modes are not according to plan*
376
377 lpvar . logical_mode = lpvar . V_imp (1 : end)==lpvar . mode (1 : end) ;
378
379 lpvar . xvec_c = nonzeros (double (lpvar . logical_mode) . ∗ (0 : Sim . kmax) ’) ;
380 lpvar . mode_c = lpvar . mode (lpvar . logical_mode) ;
381
382 lpvar . xvec_nc = double (~ lpvar . logical_mode) . ∗ (0 : Sim . kmax) ’ ;
383 lpvar . xvec_nc = [lpvar . xvec_nc (1) ; nonzeros (lpvar . xvec_nc (2 : end))] ;
384 lpvar . mode_nc = lpvar . mode (~ lpvar . logical_mode) ;
385 %%
386 %
387 %
388 % *Value objective functions*
389
390 lpvar . val_obj_out = sum (max (lpvar . differenceY , 0)) ;
391 lpvar . val_obj_in = Sim . beta∗sum(−lpvar . U_imp (1 : end −1)) ;
392 lpvar . val_obj = lpvar . val_obj_in + lpvar . val_obj_out ;
393 %%
394 %
395 %
396 % *Store runtime information*
397
398 % lpvar.runtime(z) = toc
399 % end
400 %%
401 %
402 %% Display results
403 %
404 %
405 % *Data table*
406
407 VarNames = {’Event step’ , ’Mode’ , ’Control input u(k)’ , ’Control input v(k)’ , ’

Output’ , ’Reference ’ , ’Output determined by state #’ , ’Is state determined
by input?’ } ;

408 lpvar . dataTable = table (transpose (1 : Sim . kmax) , lpvar . mode (2 : Sim . kmax+1) , lpvar .
U_imp (2 : Sim . kmax+1) , lpvar . V_imp (2 : Sim . kmax+1) , lpvar . output (2 : Sim . kmax+1) ,
Sim . ref (2 : Sim . kmax+1) , lpvar . output_det (2 : Sim . kmax+1) , mat2cell (lpvar .
state_det (2 : Sim . kmax+1 , :) , ones (1 , Sim . kmax) , sys . nx) , ’VariableNames ’ ,
VarNames) ;

409 disp (lpvar . dataTable)

Master of Science Thesis Bart de Jong

146 Appendices

410 %%
411 %
412 %
413 % *System signals*
414
415 % ---- Output vs reference ----
416 figure ;
417 ax1 = subplot (4 , 1 , 1) ; hold on
418 % Plot growth rates
419 v = [0 0 ; Sim . kmax growth . rho_dubar_Np_con∗Sim . kmax ; Sim . kmax growth . rho_bar∗

Sim . kmax] ;
420 f = [1 2 3] ;
421 patch (’Faces’ ,f , ’Vertices ’ ,v , ’FaceColor ’ , other . colourvec {4} , ’FaceAlpha ’ , . 5 , ’

EdgeColor ’ , ’none’) ;
422 % Plot data
423 stairs (0 : Sim . kmax , Sim . ref (1 : Sim . kmax+1) , ’Color’ , other . colourvec {5})
424 stairs (0 : Sim . kmax , lpvar . output (1 : Sim . kmax+1) , ’Color’ , other . colourvec {1})
425 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec

{2} , ’LineStyle ’ , ’--’)
426 % Other settings
427 legend (’Region of achievable growth rates’ , " $r (k)$ with $\rho_\mathrm{r}=$ " +

num2str (Sim . rho_r , 2) , . . .
428 ’$y(k)$’ , ’Expected first convergence ’ , ’Interpreter ’ , ’latex’ , ’Location ’ ,

’northwest ’)
429 xlim ([0 Sim . kmax+1]) ; grid on
430 title (’Output $y(k)$ vs reference $r(k)$’)
431 % xlabel(’Event step k ’);
432 ylabel (’Time’)
433 hold off
434
435 % ---- Difference signals ----
436 ax2 = subplot (4 , 1 , 2) ; hold on
437 p = plot (0 : Sim . kmax , [lpvar . differenceY (1 : Sim . kmax+1) lpvar . differenceU (1 : Sim .

kmax+1)] , ’-o’) ;
438 p (1) . Color = other . colourvec {1} ; p (2) . Color = other . colourvec {5} ;
439 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec

{2} , ’LineStyle ’ , ’--’)
440 legend (’$y(k)-r(k)$’ , ’$u(k)-r(k)$’ , ’Interpreter ’ , ’latex’)
441 xlim ([0 Sim . kmax+1]) ; grid on
442 title (’Difference signals ’)
443 % xlabel(’Event step k ’);
444 ylabel (’Time’)
445 hold off
446
447 % ---- Mode sequence ----
448 ax3 = subplot (4 , 1 , 3) ; hold on
449 plot (lpvar . xvec_c , lpvar . mode_c , ’*’ , ’Color’ , other . colourvec {1})
450 plot (lpvar . xvec_nc , lpvar . mode_nc , ’*’ , ’Color’ , other . colourvec {2})
451 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , [0 sys . nL+1] , ’Color’ , other .

colourvec {2} , ’LineStyle ’ , ’--’)
452 legend (’$\ell(k) = v(k)$’ , ’$\ell(k) \neq v(k)$’ , ’Interpreter ’ , ’latex’)
453 set (gca , ’YTick’ , 0 : (sys . nL+1))
454 ylim ([0 sys . nL+1]) ; xlim ([0 Sim . kmax+1]) ;
455 grid on
456 title (’System mode $\ell(k)$’)
457 % xlabel(’Event step k ’);
458 ylabel (’System mode $\ell(k)$’)

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 147

459
460 % ---- State differences ----
461 ax4 = subplot (4 , 1 , 4) ; hold on
462 p = plot (0 : Sim . kmax , lpvar . state (1 : Sim . kmax+1 , :)−Sim . ref (1 : Sim . kmax+1) , ’*’) ;
463 if sys . nx == 3
464 p (1) . Color = other . colourvec {1} ; p (2) . Color = other . colourvec {5} ; p (3) . Color

= other . colourvec {3} ;
465 end
466 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec

{2} , ’LineStyle ’ , ’--’)
467 legend (’$x_1(k) - r(k)$’ , ’$x_2(k) - r(k)$’ , ’$x_3(k) - r(k)$’ , ’Interpreter ’ ,

’latex’)
468 title (’Difference between states $x_i(k)$ and reference signal $r(k)$’)
469 xlabel (’Event step k’) ;
470 ylabel (’Time’)
471 xlim ([0 Sim . kmax+1]) ; grid on
472 hold off
473
474 % ---- Link axes ----
475 set (gca , ’TickLabelInterpreter ’ , ’latex’)
476 linkaxes ([ax1 , ax2 , ax3 , ax4] , ’x’)
477 %%
478 %
479 %
480 % *Clear meaningless variables*
481
482 clear ax1 ax2 ax3 ax4 vec a growth_append v f check_vec i j k p showprogress

progressval num_conseq_mode U VarNames vseqpos last_modes ind_os
val_conseq_mode mat Nsim maxit offsetRange

483 %%
484 %

A-2-3 Case3.mlx

The following script is a MATLAB live script.
1 %% Case 3: Hybrid control of a mode -constrained stochastic system
2 % *File info:*
3 %%
4 % * Name: |Case3.mlx|
5 % * Author: Bart de Jong
6 % * Date: June , 2022
7 %%
8 % *Prerequisite software*
9 %%

10 % * MATLAB (Tested version: R2022a)
11 % * YALMIP (Tested version: R20200116)
12 % * GUROBI (Tested version: gurobi901)
13 %%
14 % *Prerequisite custom function files*
15 %%
16 % * |allSequences.m|
17 % * |checkError.m|
18 % * |findOffset.m|
19 % * |generateSemigroup.m|
20 % * |generateSupport.m|

Master of Science Thesis Bart de Jong

148 Appendices

21 % * |generateSystem.m|
22 % * |growthRate.m|
23 % * |modeConstraints.m|
24 % * |mpAdd.m|
25 % * |mpMulti.m|
26 % * |predictionModel.m|
27 %%
28 % *Prerequisite toolbox*
29 %%
30 % * Max -Plus Algebra Toolbox for Matlab - Copyright (C) 2016 Jaroslaw Stanczyk
31 % * Used for |mp_mcm.m| and supporting files
32 %%
33 %
34 %% Initialisation and settings
35 %
36 %
37 % *Clear workspace*
38
39 clearvars
40 %%
41 %
42 %
43 % *Preliminaries and general settings*
44
45 % Max -plus zero and one elements
46 other . eps = −inf ;
47 other . e = 0 ;
48
49 % Colour vector for figure elements
50 other . colourvec = {’#00 A6D6’ , ’#E03C31’ , ’#FFB81C’ , ’#6CC24A’ , ’#EC6842’ } ;
51
52 % Latex interpreter
53 set (0 , ’defaultAxesTickLabelInterpreter ’ , ’latex’) ;
54 set (0 , ’defaultLegendInterpreter ’ , ’latex’) ;
55 set (0 , ’defaultTextInterpreter ’ , ’latex’) ;
56 %%
57 %
58 %
59 % *Simulation settings*
60
61 Sim . Np = 3 ; % Prediction horizon
62 Sim . rho_r = 2 . 2 ; % Growth rate reference signal
63 Sim . kmax = 200 ; % Number of event steps in the

simulation
64 Sim . maxnummode = 3 ; % Maximum number of same mode in a row
65 Sim . lineariseMIQP = true ; % Turn MIQP into MILP
66
67 Sim . nu_max = 10 ; % Maximum difference between input and

reference
68 Sim . beta = 1e−2; % Tuning parameter in cost function (

beta > 0)
69 Sim . alpha = zeros (1 , Sim . Np) ; % Weighting vector in cost function
70 %%
71 %
72 %% Construct SMPL system
73 %
74 %

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 149

75 % *Define dimensions of the SMPL system*
76
77 sys . nx = 3 ; % Number of states
78 sys . nu = 1 ; % Number of contimous inputs (u(k))
79 sys . ny = 1 ; % Number of outputs
80 sys . nL = 3 ; % Number of modes
81 sys . nv = sys . nL ; % Number of discrete inputs (v(k)) - v(k) is a scalar , not a

vector
82 %%
83 %
84 %
85 % *Generate SMPL system with switching stochastics*
86
87 rng (9)
88 [sys . A , sys . B , sys . C , sys . Ps] = generateSystem (sys . nx , sys . nu , sys . ny , sys . nL) ;
89 %%
90 %
91 %% Construct prediction model
92 %
93 %
94 % *Find all possible mode sequences over the prediction horizon and put them
95 % in a matrix*
96
97 [sys . seqm , sys . seqv , sys . Ps_tilde] = allSequences (sys . nL , Sim . Np , sys . Ps) ;
98 %%
99 %

100 %
101 % *Find all possible sequences that do not violate the mode -constraint*
102
103 sys . violate_con = sum (diff (sys . seqm , [] , 2) ==0, 2) > Sim . maxnummode −1;
104 sys . seqm_con = sys . seqm (~ sys . violate_con , :) ;
105 sys . seqv_con = sys . seqv (~ sys . violate_con , :) ;
106 %%
107 %
108 %
109 % *Calculate* \tilde{A}*,* \tilde{B}*,* \tilde{C} *and* \tilde{D} *

matrices
110 % for all possible mode sequences*
111
112 [sys . A_tilde , sys . C_tilde , sys . B_tilde , sys . D_tilde] = predictionModel (sys . A ,

sys . B , sys . C , sys . seqm) ;
113 %%
114 %
115 %% Calculate stochastic (constrained) growth rate
116 %
117 %
118 % *Calculate values*
119
120 clear growth
121 growth . Np_GR = 2∗Sim . Np ; % Maximum period of cyclic mode sequences
122 [growth . seqm_GR , ~ , growth . Ps_tilde_GR] = allSequences (sys . nL , growth . Np_GR ,

sys . Ps) ;
123
124 [growth_append] = growthRate (sys . A , sys . C , growth . seqm_GR , growth . Ps_tilde_GR ,

" maxnummode " , Sim . maxnummode) ;
125 growth = cell2struct ([struct2cell (growth) ; struct2cell (growth_append)] , [

fieldnames (growth) ; fieldnames (growth_append)]) ;

Master of Science Thesis Bart de Jong

150 Appendices

126 %%
127 %
128 %
129 % *Plot results*
130
131 figure ; boxplot ([growth . rho_dbar_Np ; growth . rho_dbar_Np_con] , . . .
132 [repmat (" Unconstrained stochastic system " , [size (growth . rho_dbar_Np , 1) , 1])

; . . .
133 repmat (" Constrained stochastic system " , [size (growth . rho_dbar_Np_con , 1) ,

1])] , ’Whisker ’ , 2) ;
134
135 a = get (get (gca , ’children ’) , ’children ’) ; % Get the handles of all the objects
136 set (a (1 : 4) , ’Color’ , other . colourvec {5}) ;
137 set (a (5 : 6) , ’Color’ , other . colourvec {1}) ;
138
139 ylabel (’Expected growth rate $\overline {\ overline {\rho}}_{N_\mathrm{p}}$’ , ’

Interpreter ’ , ’latex’) ;
140 grid minor
141 set (gca , ’TickLabelInterpreter ’ , ’latex’)
142 %%
143 %
144 %% Find admissible control inputs based on sFSM state
145 %
146
147 [sys . adm_cont , sys . adm_cont_seq] = modeConstraints (Sim . maxnummode , sys . nv , sys .

seqv) ;
148 %%
149 %
150 %% Find lower bound on reference signal for required probability of performance
151 %
152
153 % Check for stochastics
154 Sim . ProbOfPerf = 0 . 9 5 ;
155 if any (sys . Ps (sys . Ps~=1)>0)
156 Nsim = 200 ; % Growth rate simulation horizon
157 maxit = 3.00 e4 ; % Number of samples
158 offsetRange = 0 . 2 ; % Maximum absolute offset
159 Sim . offsetPoP = findOffset (sys . A , sys . C , sys . Ps , Nsim , growth .

rho_dubar_Np_con , growth . rho_dbar_Np , growth . seqm , maxit , Sim . ProbOfPerf ,
offsetRange) ;

160 else
161 Sim . offsetPoP = 0 ;
162 end
163 fprintf ("− Offset necessary to obtain a probability of performance of %.2f with

given accuracy and confidence: %.2f\n" + ...
164 "− Minimum expected constrained growth rate including offset : %.2f", Sim.

ProbOfPerf , Sim.offsetPoP , growth.rho_dubar_Np_con + Sim.offsetPoP);
165 %%
166 %
167 %% Setup MPC algorithm
168 %
169 %
170 % *Construct set of constraints*
171
172 Sim . constraints = [] ;
173 % Construct optimisation variables t

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 151

174 optimvar . t = sdpvar (repmat (Sim . Np , 1 , height (sys . seqm)) , ones (1 , height (
sys . seqm))) ;

175 optimvar . x = sdpvar (sys . nx , 1) ; % Initial state
176 optimvar . u = sdpvar (Sim . Np+1, 1) ; % Construct optimisation

variables u (input)
177 optimvar . ref = sdpvar (Sim . Np , 1) ; % Reference signal over

prediction horizon
178 optimvar . v = binvar (height (sys . seqv) , 1) ; % Variable denoting the

sequence of v(k)
179 optimvar . vseqpos = binvar (height (sys . seqv) , 1) ; % Vector denoting which mode

sequence is allowed
180
181 if Sim . lineariseMIQP
182 optimvar . tj = sdpvar (repmat (Sim . Np , 1 , height (sys . seqm) ∗height (sys . seqv

)) , ones (1 , height (sys . seqm) ∗height (sys . seqv))) ;
183 Sim . Mt = growth . rho_bar ∗(Sim . kmax+1) ; % Upper bound on maximum of

system ’s output for y(0) <=0
184 Sim . mt = 0 ; % Lower bound on minimum of

system ’s output for y(0) >=0
185 end
186
187 for i = 1 : sys . ny∗Sim . Np % Loop over prediction horizon for all

outputs
188 for j = 1 : height (sys . seqm) % Loop over all possible mode sequences
189 for k = 1 : sys . nx % Loop over all states
190 % Autonomous system dynamics
191 Sim . constraints = [Sim . constraints , optimvar . t{j}(i) >= sys . C_tilde (i ,

k , j) + optimvar . x (k) − optimvar . ref (i)] ;
192 end
193 for k = 1 : Sim . Np % Loop over prediction horizon
194 % Controlled system dynamics
195 Sim . constraints = [Sim . constraints , optimvar . t{j}(i) >= sys . D_tilde (i ,

k , j) + optimvar . u (k) − optimvar . ref (i)] ;
196 end
197 if Sim . lineariseMIQP
198 for k = 1 : height (sys . seqv)
199 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .

seqv)+k}(i) <= Sim . Mt∗optimvar . v (k)] ;
200 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .

seqv)+k}(i) >= Sim . mt∗optimvar . v (k)] ;
201 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .

seqv)+k}(i) <= optimvar . t{j}(i)−Sim . mt∗(1−optimvar . v (k))] ;
202 Sim . constraints = [Sim . constraints , optimvar . tj {(j−1)∗height (sys .

seqv)+k}(i) >= optimvar . t{j}(i)−Sim . Mt∗(1−optimvar . v (k))] ;
203 end
204 end
205 % Don ’t finish before reference
206 Sim . constraints = [Sim . constraints , optimvar . t{j}(i) >= 0] ; %

Disregard cost of y(k) if y(k)<=r(k)
207 end
208 end
209 for i = 1 : sys . nu∗Sim . Np % Loop over prediction horizon
210 % Input should be nonnegative , nondecreasing and close to reference signal
211 Sim . constraints = [Sim . constraints , optimvar . u (i) >= 0] ;
212 Sim . constraints = [Sim . constraints , optimvar . u (i+1) − optimvar . u (i) >= 0] ;
213 Sim . constraints = [Sim . constraints , optimvar . u (i) − optimvar . ref (i) <= Sim .

nu_max] ;

Master of Science Thesis Bart de Jong

152 Appendices

214 Sim . constraints = [Sim . constraints , optimvar . u (i) − optimvar . ref (i) >= −Sim
. nu_max] ;

215 end
216
217 Sim . constraints = [Sim . constraints , sum (optimvar . v) == 1] ; % Select a single

discrete control sequence
218
219 for i = 1 : length (sys . seqv) % Loop over all possible control sequences
220 Sim . constraints = [Sim . constraints , optimvar . v (i)+~optimvar . vseqpos (i) <=

1 . 5] ; % Restrict control sequences
221 end
222 %%
223 %
224 %
225 % *Construct cost function*
226
227 % Set controller options
228 Sim . options = sdpsettings (’solver’ , ’gurobi’) ; % Optimiser settings
229 Sim . input_var = {optimvar . x , optimvar . ref , optimvar . vseqpos } ;

% Input variables
230 Sim . output_var = [optimvar . u ; optimvar . v] ; % Output

variables
231
232 % Initialise objective functions
233 Sim . objective_in = 0 ;
234 Sim . objective_out = 0 ;
235
236 % Check if probability of switching depends on previous mode
237 if sum (abs (diff (sys . Ps_tilde , 1)) , ’all’) ~= 0
238 sys . modedependent = true ;
239 Sim . nL_loop = sys . nL ;
240 else
241 sys . modedependent = false ;
242 Sim . nL_loop = 1 ;
243 end
244
245 % Loop over all possible previous modes and make unique controller objects
246 for prev_mode = 1 : Sim . nL_loop
247
248 for i = 1 : Sim . Np % Loop over prediction horizon
249 for j = 1 : height (sys . seqm) % Loop over all possible mode sequences
250 if Sim . lineariseMIQP
251 for k = 1 : height (sys . seqv)
252 Sim . objective_out = Sim . objective_out + optimvar . tj {(j−1)∗height

(sys . seqv)+k}(i) ∗sys . Ps_tilde (prev_mode , j , k) ;
253 end
254 else
255 Sim . objective_out = Sim . objective_out + optimvar . t{j}(i) ∗reshape (

sys . Ps_tilde (prev_mode , j , :) , . . .
256 [1 length (optimvar . v)]) ∗optimvar . v ;
257 end
258 end
259 end
260
261 for i = 1 : Sim . Np % Loop over prediction horizon
262 Sim . objective_in = Sim . objective_in − Sim . beta∗optimvar . u (i) ;
263 for j = 1 : height (sys . seqv) % Loop over all v(k) sequences

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 153

264 Sim . objective_in = Sim . objective_in + Sim . beta∗optimvar . v (j) ∗Sim . alpha
(i) ∗sys . seqv (j , i) ;

265 end
266 end
267
268
269 %%
270 %
271 %
272 % *Construct controller per mode*
273
274 Sim . controller = optimizer (Sim . constraints , Sim . objective_out+Sim .

objective_in , Sim . options , . . .
275 Sim . input_var , Sim . output_var) ;
276
277 % Give controller a mode -specific name
278 Sim . nameController = [’controller ’ num2str (prev_mode)] ;
279 assignin (’base’ , Sim . nameController , Sim . controller) ;
280 end
281
282 %%
283 %
284 %% Run simulation
285 %
286 %
287 % *Start loop for timing purposes*
288
289 % for z = 1:10; tic
290 %
291 % *Initialise control loop*
292
293 lpvar . U_imp = zeros (Sim . kmax+1, 1) ; % Implemented inputs
294 lpvar . V_imp = zeros (Sim . kmax+1, 1) ; % Implemented binary inputs
295 lpvar . mode = zeros (Sim . kmax+1, 1) ; % System mode
296 lpvar . diagnostics = zeros (Sim . kmax+1, 1) ; % Yalmip diagnostics
297 lpvar . output_det = zeros (Sim . kmax+1, 1) ; % Output determined by which

state
298 lpvar . state_det = zeros (Sim . kmax+1, sys . nx) ; % State determined by output

(logical)
299 lpvar . state = zeros (Sim . kmax+1, sys . nx) ; % State vector
300 lpvar . output = zeros (Sim . kmax+1, sys . ny) ; % Output vector
301
302 rng (1) ;
303 lpvar . num = rand (Sim . kmax+1 ,1) ;
304
305 lpvar . state (1 , :) = zeros (1 , sys . nx) ; % Initial state
306 lpvar . output (1) = mpMulti (sys . C (: , : , 1) , lpvar . state (1 , :) ’) ;
307 lpvar . mode (1) = 1 ; % Initial mode
308 lpvar . output_det (1) = 0 ; % Which state determines output
309 lpvar . state_det (1 , :) = zeros (1 , sys . nx) ; % State determined by output
310
311 lpvar . state_FSM = zeros (sys . nL∗Sim . maxnummode , Sim . kmax+1) ;
312 lpvar . state_FSM (Sim . maxnummode∗lpvar . mode (1)−(Sim . maxnummode −1) ,1) = 1 ;

% First FSM state
313
314 Sim . c_ref = −2;

Master of Science Thesis Bart de Jong

154 Appendices

315 Sim . ref = Sim . rho_r ∗ (0 : Sim . kmax+sys . ny∗Sim . Np) ’+Sim . c_ref ; % Reference
output signal

316
317 lpvar . differenceY (1 , :) = lpvar . output (1 , :) − Sim . ref (1) ; % Difference output

and reference signals
318 lpvar . differenceU (1 , :) = lpvar . U_imp (1) − Sim . ref (1) ; % Difference input

and reference signals
319
320 Sim . exp_conv_steps = ceil ((lpvar . output (1)−Sim . c_ref) /(Sim . rho_r−growth .

rho_dubar_Np)) ;
321
322 % No errors have yet occured
323 lpvar . warnvar = false ;
324
325 showprogress = zeros (1 , 10) ;
326 progressval = linspace (0 , 1 , length (showprogress)+1) ;
327 %%
328 %
329 %
330 % *Start loop*
331
332 for k = 2 : Sim . kmax+1
333
334 % determine admissible discrete control inputs as a function of the FSM
335 % state
336 lpvar . vseqposloop = sys . adm_cont_seq{lpvar . state_FSM (: , k−1)==1}’;
337
338 % Check if due to stochastics the maximum number of consecutive modes
339 % is exceeded
340 if ~any (lpvar . vseqposloop)
341 warning (’Maximum number of consecutive modes exceeded ’)
342 for j = 1 : sys . nL
343 ind = strfind ([lpvar . mode (k−min (Sim . maxnummode+1, k−1) : k−1) ’ sys . seqv (

i , :)] , . . .
344 j∗ones (1 , Sim . maxnummode+1)) ;
345 if ~isempty (ind) && ind (1) == 1
346 for i = 1 : length (sys . seqv)
347 if sys . seqv (i , 1) ~= j
348 lpvar . vseqposloop (i) = 1 ;
349 end
350 end
351 end
352 end
353 end
354
355 % Run optimiser based on previous mode
356 if sys . modedependent
357 lpvar . nameController = [’controller ’ num2str (lpvar . mode (k−1))] ;
358 else
359 lpvar . nameController = ’controller1 ’ ;
360 end
361 eval ([’[U, lpvar.diagnostics(k)] = ’ , lpvar . nameController , . . .
362 ’{transpose(lpvar.state(k-1,:)), Sim.ref(k:k+Sim.Np -1), lpvar.vseqposloop

};’]) ;
363
364 % Check for errors
365 checkError (lpvar . diagnostics (k) , lpvar . warnvar) ;

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 155

366
367 % Read output
368 lpvar . U_imp (k) = U (1) ; % Save implemented

control input
369 lpvar . V_imp (k) = sys . seqv (find (U ((Sim . Np+1)+1:end)) , 1) ; % Save

implemented control input
370
371 % Advance to next mode based on probabilities in Ps and v(k)
372 for i = 1 : sys . nL
373 if lpvar . num (k) < sum (sys . Ps (lpvar . mode (k−1) , 1 : i , lpvar . V_imp (k)))
374 lpvar . mode (k) = i ;
375 break
376 end
377 end
378
379 % Advance FSM state
380 for i = 1 : sys . nL
381 if lpvar . mode (k) == i
382 if ismember (find (lpvar . state_FSM (: , k−1)) , 1+(i−1)∗Sim . maxnummode : Sim .

maxnummode∗i−1)
383 lpvar . state_FSM (find (lpvar . state_FSM (: , k−1))+1,k) = 1 ;
384 elseif find (lpvar . state_FSM (: , k−1)) == Sim . maxnummode∗i
385 lpvar . state_FSM (: , k) = lpvar . state_FSM (: , k−1) ;
386 else
387 lpvar . state_FSM (1+(i−1)∗Sim . maxnummode , k) = 1 ;
388 end
389 end
390 end
391
392 % Update state
393 lpvar . state (k , :) = mpAdd (mpMulti (sys . A (: , : , lpvar . mode (k)) , lpvar . state (k

−1 , :) ’) , . . .
394 mpMulti (sys . B (: , : , lpvar . mode (k)) , lpvar . U_imp (k))) ;
395 lpvar . output (k , :) = mpMulti (sys . C (: , : , lpvar . mode (k)) , lpvar . state (k , :) ’) ;
396
397 % State determined by input?
398 lpvar . state_det (k , :) = mpMulti (sys . B (: , : , lpvar . mode (k)) , lpvar . U_imp (k)) >=

. . .
399 mpMulti (sys . A (: , : , lpvar . mode (k)) , lpvar . state (k −1 , :) ’) ;
400
401 % Check which state determines output
402 [~ , ind_os] = max (sys . C (: , : , lpvar . mode (k))+lpvar . state (k , :)) ;
403 lpvar . output_det (k) = ind_os ;
404
405 % Define error signals
406 lpvar . differenceY (k , :) = lpvar . output (k , :) − Sim . ref (k) ; % Difference

output and reference signals
407 lpvar . differenceU (k , :) = lpvar . U_imp (k) − Sim . ref (k) ; % Difference

input and reference signals
408
409 % Display progress
410 for i = length (showprogress) :−1:1
411 if k/(Sim . kmax+1) >= progressval (i+1) && showprogress (i) == 0
412 disp (" progress : " + num2str (progressval (i+1)∗100) + " %")
413 showprogress (i) = 1 ;
414 break
415 end

Master of Science Thesis Bart de Jong

156 Appendices

416 end
417
418 end
419 %%
420 %
421 %
422 % *Check which modes are not according to plan*
423
424 lpvar . logical_mode = lpvar . V_imp (1 : end)==lpvar . mode (1 : end) ;
425
426 lpvar . xvec_c = nonzeros (double (lpvar . logical_mode) . ∗ (0 : Sim . kmax) ’) ;
427 lpvar . mode_c = lpvar . mode (lpvar . logical_mode) ;
428
429 lpvar . xvec_nc = double (~ lpvar . logical_mode) . ∗ (0 : Sim . kmax) ’ ;
430 lpvar . xvec_nc = [lpvar . xvec_nc (1) ; nonzeros (lpvar . xvec_nc (2 : end))] ;
431 lpvar . mode_nc = lpvar . mode (~ lpvar . logical_mode) ;
432 %%
433 %
434 %
435 % *Value objective functions*
436
437 lpvar . val_obj_out = sum (max (lpvar . differenceY , 0)) ;
438 lpvar . val_obj_in = Sim . beta∗sum(−lpvar . U_imp (1 : end −1)) ;
439 lpvar . val_obj = lpvar . val_obj_in + lpvar . val_obj_out ;
440 %%
441 %
442 %
443 % *Store runtime information*
444
445 % lpvar.runtime(z) = toc
446 % end
447 %%
448 %
449 %% Display results
450 %
451 %
452 % *Data table*
453
454 VarNames = {’Event step’ , ’Mode’ , ’Control input u(k)’ , ’Control input v(k)’ , ’

Output’ , ’Reference ’ , . . .
455 ’Output determined by state’ , ’State determined by input?’ } ;
456 lpvar . dataTable = table (transpose (1 : Sim . kmax) , lpvar . mode (2 : Sim . kmax+1) , lpvar .

U_imp (2 : Sim . kmax+1) , lpvar . V_imp (2 : Sim . kmax+1) , lpvar . output (2 : Sim . kmax+1) ,
. . .

457 Sim . ref (2 : Sim . kmax+1) , lpvar . output_det (2 : Sim . kmax+1) , mat2cell (lpvar .
state_det (2 : Sim . kmax+1 , :) , . . .

458 ones (1 , Sim . kmax) , sys . nx) , ’VariableNames ’ , VarNames) ;
459 disp (lpvar . dataTable)
460 %%
461 %
462 %
463 % *System signals*
464
465 % ---- Output vs reference ----
466 figure
467 ax1 = subplot (4 , 1 , 1) ; hold on
468 % Plot growth rates

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 157

469 v = [0 0 ; Sim . kmax growth . rho_dubar_Np_con∗Sim . kmax ; Sim . kmax growth . rho_bar∗
Sim . kmax] ;

470 f = [1 2 3] ;
471 patch (’Faces’ ,f , ’Vertices ’ ,v , ’FaceColor ’ , other . colourvec {4} , ’FaceAlpha ’ , . 5 , ’

EdgeColor ’ , ’none’) ;
472 % Plot data
473 stairs (0 : Sim . kmax , Sim . ref (1 : Sim . kmax+1) , ’Color’ , other . colourvec {5})
474 stairs (0 : Sim . kmax , lpvar . output (1 : Sim . kmax+1) , ’Color’ , other . colourvec {1})
475 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec

{2} , ’LineStyle ’ , ’--’)
476 % Other settings
477 legend (’Region of achievable growth rates’ , " $r (k)$ with $\rho_\mathrm{r}=$ "

. . .
478 + num2str (Sim . rho_r , 2) , ’$y(k)$’ , ’Expected first convergence ’ , ’

Interpreter ’ , . . .
479 ’latex’ , ’Location ’ , ’northwest ’)
480 xlim ([0 Sim . kmax+1]) ; grid on
481 title (’Output $y(k)$ vs reference $r(k)$’)
482 ylabel (’Time’)
483 hold off
484
485 % ---- Difference signals ----
486 ax2 = subplot (4 , 1 , 2) ; hold on
487 p = plot (0 : Sim . kmax , [lpvar . differenceY (1 : Sim . kmax+1) lpvar . differenceU (1 : Sim .

kmax+1)] , ’-o’) ;
488 p (1) . Color = other . colourvec {1} ; p (2) . Color = other . colourvec {5} ;
489 plot (lpvar . xvec_nc , lpvar . differenceY (lpvar . xvec_nc+1) , ’o’ , ’Color’ , other .

colourvec {2})
490 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec

{2} , ’LineStyle ’ , ’--’)
491 legend (’$y(k)-r(k)$’ , ’$u(k)-r(k)$’ , ’$\ell(k) \neq v(k)$’ , ’Interpreter ’ , ’

latex’)
492 xlim ([0 Sim . kmax+1]) ; grid on
493 title (’Difference signals ’)
494 ylabel (’Time’)
495 hold off
496
497 % ---- Mode sequence ----
498 ax3 = subplot (4 , 1 , 3) ; hold on
499 plot (lpvar . xvec_c , lpvar . mode_c , ’*’ , ’Color’ , other . colourvec {1})
500 plot (lpvar . xvec_nc , lpvar . mode_nc , ’*’ , ’Color’ , other . colourvec {2})
501 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , [0 sys . nL+1] , ’Color’ , other .

colourvec {2} , ’LineStyle ’ , ’--’)
502 legend (’$\ell(k) = v(k)$’ , ’$\ell(k) \neq v(k)$’ , ’Interpreter ’ , ’latex’)
503 set (gca , ’YTick’ , 0 : (sys . nL+1))
504 ylim ([0 sys . nL+1]) ; xlim ([0 Sim . kmax+1]) ;
505 grid on
506 title (’System mode $\ell(k)$’)
507 ylabel (’System mode $\ell(k)$’)
508
509 % ---- State differences ----
510 ax4 = subplot (4 , 1 , 4) ; hold on
511 p = plot (0 : Sim . kmax , lpvar . state (1 : Sim . kmax+1 , :)−Sim . ref (1 : Sim . kmax+1) , ’*’) ;
512 if sys . nx == 3
513 p (1) . Color = other . colourvec {1} ; p (2) . Color = other . colourvec {5} ; p (3) . Color

= other . colourvec {3} ;
514 end

Master of Science Thesis Bart de Jong

158 Appendices

515 line ([Sim . exp_conv_steps Sim . exp_conv_steps] , ylim , ’Color’ , other . colourvec
{2} , ’LineStyle ’ , ’--’)

516 legend (’$x_1(k) - r(k)$’ , ’$x_2(k) - r(k)$’ , ’$x_3(k) - r(k)$’ , ’Interpreter ’ ,
’latex’)

517 title (’Difference between states $x_i(k)$ and reference signal $r(k)$’)
518 xlabel (’Event step k’) ;
519 ylabel (’Time’)
520 xlim ([0 Sim . kmax+1]) ; grid on
521 hold off
522
523 % ---- Link axes ----
524 set (gca , ’TickLabelInterpreter ’ , ’latex’)
525 linkaxes ([ax1 , ax2 , ax3 , ax4] , ’x’)
526 %%
527 %
528 %
529 % *Clear meaningless variables*
530
531 clear ax1 ax2 ax3 ax4 vec a growth_append v f check_vec i j k p showprogress
532 clear progressval num_conseq_mode U VarNames vseqpos last_modes ind_os

val_conseq_
533 clear mode mat Nsim maxit offsetRange prev_mode controller1 controller2

controller3
534 %%
535 %

A-2-4 allSequences.m

1 function [seqm , seqv , Ps_tilde] = allSequences (nL , Np , Ps)
2
3 % Find all possible mode sequences over the prediction horizon and put them in

a matrix
4 seqm = zeros (nL^Np , Np) ; % Matrix containing all possible mode sequences
5 for i = 1 : Np % Loop over prediction horizon
6 vec = imresize ((1 : nL) ’ , [nL^i 1] , ’nearest ’) ;
7 seqm (: , Np+1−i) = repmat (vec , nL^(Np−i) , 1) ;
8 end
9

10 % Find all possible sequences of over the prediction horizon and put them in a
matrix

11 seqv = seqm ;
12
13 % Ps_tilde(i,m,v): Probability of advancing from mode i to mode sequence m
14 % given v_tilde(k)
15 Ps_tilde = zeros (nL , height (seqm) , height (seqv)) ;
16 for v = 1 : height (seqv) % Loop over all possible sequences of v
17 for i = 1 : nL % Loop over all possible previous modes
18 for j = 1 : height (seqm) % Loop over all mode sequences
19 Ps_tilde (i , j , v) = Ps (i , seqm (j , 1) , seqv (v , 1)) ;
20 for k = 1 : Np−1 % Loop over all modes in a sequence
21 Ps_tilde (i , j , v) = Ps_tilde (i , j , v) ∗ Ps (seqm (j , k) , seqm (j , k+1) ,

seqv (v , k+1)) ;
22 end
23 end
24 end
25 end

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 159

26
27
28 end

A-2-5 checkError.m

1 function [] = checkError (diagnostics , warnvar)
2 %UNTITLED Summary of this function goes here
3 % Detailed explanation goes here
4 if diagnostics ~= 0
5 warning ([’Yalmip error - ’ , yalmiperror (diagnostics)]) ;
6 if ~warnvar
7 warndlg (’Yalmip error , check warning messages ’)
8 warnvar = true ;
9 assignin (" caller " , " warnvar " , warnvar)

10 end
11 end
12 end

A-2-6 findOffset.m

1 function [offsetPoP] = findOffset (A , C , Ps , Nsim_vec , rdub_np , rdb_np , seqm ,
maxit , ProbOfPerf , offsetRange)

2
3 % Define parameters
4 nx = size (A , 1) ; % Number of system states
5 ny = 1 ; % Number of system outputs
6 nL = size (A , 3) ; % Number of system modes
7
8 numhor = length (Nsim_vec) ; % Number of simulation horizons
9

10 clrs = {’#00 A6D6’ , ’#E03C31’ , ’#FFB81C’ , ’#6CC24A’ , ’#EC6842’ } ;
11
12 % Define accuracy and confidence
13 delta = 0 . 0 0 5 ; % Confidence 1-delta
14 epsilon = sqrt (1/(maxit/log (2/ delta)) /2) ; % Accuracy
15
16 % Define parameters for growth rate calculation
17 Nt = 10 ; % Transient behaviour parameter
18
19 % Find minimum growth rate and sequence
20 [~ , indPoP] = min (abs (rdb_np−rdub_np)) ; % Find index of control sequence
21 ctrl_seq = seqm (indPoP , :) ; % Store corresponding control

sequence
22
23 % Extend control sequence to full horizon
24 ctrl_seq = repmat (ctrl_seq , [1 , ceil (max (Nsim_vec) /length (ctrl_seq))]) ;
25 ctrl_seq = ctrl_seq (1 : max (Nsim_vec)) ;
26
27 % Initialise growth rate vector
28 GR = zeros (maxit , numhor) ;
29
30 % Start parallel pool
31 p = gcp ;
32 if isempty (p)
33 parpool ;

Master of Science Thesis Bart de Jong

160 Appendices

34 p = gcp ;
35 end
36
37 % Perform multisample
38 for n = 1 : numhor
39 Nsim = Nsim_vec (n) ;
40 parfor j = 1 : maxit
41
42 % Initialise vectors
43 state = zeros (Nsim , nx) ; % State vector
44 state (1 , :) = zeros (1 , nx) ; % Initial state
45 mode = zeros (Nsim , 1) ; % Mode vector
46 mode (1) = 1 ; % Initial mode
47 output = zeros (Nsim , ny) ; % Output vector
48 output (1) = 0 ; % Initial output
49
50 % Construct random vector to support mode switching
51 rng (’shuffle ’) ;
52 num = rand (Nsim , 1) ;
53
54 % Simulate over simulation horizon
55 for k = 2 : Nsim
56
57 % Advance to next mode based on probabilities in Ps and v(k)
58 for i = 1 : nL
59 if num (k) < sum (Ps (mode (k−1) , 1 : i , ctrl_seq (k−1)))
60 mode (k) = i ;
61 break
62 end
63 end
64
65 % Update state and output
66 state (k , :) = mpMulti (A (: , : , mode (k)) , state (k −1 , :) ’) ;
67 output (k , :) = mpMulti (C (: , : , mode (k)) , state (k , :) ’) ;
68
69 end
70
71 % Calculate growth rate for each sample
72 GR (j , n) = (output (Nsim)−output(1+Nt)) /(Nsim−1−Nt) ;
73
74 end
75 end
76
77 % Close parallel pool
78 delete (p) ;
79
80 % Define linearly spaced offset parameter
81 offset = linspace(−offsetRange , offsetRange , 1e4) ;
82
83 % Plot probability of performance against offset
84 figure ;
85 for i = 1 : size (GR , 2)
86 subplot (size (GR , 2) ,1 , i)
87 hold on
88
89 % Calculate indices
90 frac = sum (GR (: , i)<=rdub_np+offset) /length (GR (: , i)) ;

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 161

91 indPoP = find (frac>=ProbOfPerf , 1) ;
92 [~ , ind0] = min (abs (offset)) ;
93
94 % Construct error region
95 xconf = [offset offset (end : −1:1)] ;
96 yconf = [frac+epsilon frac (end : −1:1)−epsilon] ;
97 yconf (yconf>1) = 1 ;
98 yconf (yconf<0) = 0 ;
99 p = fill (xconf , yconf , ’red’) ;

100 p . FaceColor = clrs {2} ;
101 p . FaceAlpha = 0 . 3 ;
102 p . EdgeColor = ’none’ ;
103
104 % Plot data
105 plot (offset , frac , ’Color’ , clrs {1})
106 yl = ylim ; xl = xlim ;
107 line ([offset (indPoP) offset (indPoP)] , [yl (1) frac (indPoP)] , ’LineStyle ’ , ’--

’ , ’Color’ , clrs {2})
108 line ([offset (ind0) offset (ind0)] , [yl (1) frac (ind0)] , ’LineStyle ’ , ’--’ , ’

Color’ , ’black’)
109 line ([xl (1) offset (indPoP)] , [frac (indPoP) frac (indPoP)] , ’LineStyle ’ , ’--’ ,

’Color’ , clrs {2})
110 line ([xl (1) offset (ind0)] , [frac (ind0) frac (ind0)] , ’LineStyle ’ , ’--’ , ’

Color’ , ’black’)
111
112 % Add text
113 marY = 0 . 0 1 5 ;
114 marX = range (offset) ∗marY ;
115 txt = " $o \approx $ " + " " + sprintf (’%.3f’ , offset (indPoP)) ;
116 text (offset (indPoP)+marX , 0+marY , txt , " HorizontalAlignment " , " left " , "

VerticalAlignment " , " bottom " , " Color " , clrs {2})
117
118 txt = " $\widehat{p}_N (0 . 5) \approx $ " + " " + sprintf (’%.2f’ , frac (ind0)) ;
119 text (min (offset)+marX , frac (ind0)+marY , txt , " HorizontalAlignment " , " left " , "

VerticalAlignment " , " bottom ")
120
121 txt = " $\widehat{p}_N (0 . 5) \approx $ " + " " + sprintf (’%.2f’ , frac (indPoP)) ;
122 text (min (offset)+marX , frac (indPoP)−marY , txt , " HorizontalAlignment " , " left

" , " VerticalAlignment " , " top " , " Color " , clrs {2})
123
124 txt = " $\epsilon \approx $ " + " " + sprintf (’%.2f’ , epsilon) ;
125 text (min (offset)+marX , 0+marY , txt , " HorizontalAlignment " , " left " , "

VerticalAlignment " , " bottom ")
126
127 ylabel (" $\widehat{p}_N (0 . 5) $ " , ’Interpreter ’ , ’latex’)
128 if i == size (GR , 2)
129 xlabel (’Offset o’ , ’Interpreter ’ , ’latex’)
130 end
131 title (" $\widehat{p}_N (0 . 5) $ as function of o for $N_\mathrm{sim}=$ "+

string (Nsim_vec (i)) + " and $1−\delta=$ " + sprintf (’%.3f’ , 1−delta) , ’
Interpreter ’ , ’latex’)

132 if i == 1
133 legend (’$\widehat{p}_N(0.5)\pm \epsilon$ ’ , ’$\widehat{p}_N(0.5)$’ , " $\

widehat{p}_N (0 . 5)=$ "+string (ProbOfPerf) , ’$o=0$’ , ’Interpreter ’ , ’
latex’ , ’location ’ , ’east’)

134 end
135 xlim ([min (offset) max (offset)])

Master of Science Thesis Bart de Jong

162 Appendices

136 yticks (0 : 0 . 2 : 1)
137 grid on
138 hold off
139
140 end
141
142 % Find minimum offset
143 offsetPoP = offset (indPoP) ;
144
145 % Plot histogram
146 figure ;
147
148 for i = 1 : length (Nsim_vec)
149
150 subplot (size (GR , 2) ,1 , i) ; hold on
151
152 histogram (GR (: , i) , 75 , ’Normalization ’ , ’probability ’ , ’FaceColor ’ , clrs {1})
153 ylim ([0 0 . 0 5])
154 line (repmat (mean (GR (: , i)) , [2 1]) , ylim , ’Color’ , clrs {2} , ’LineWidth ’ , 2 , ’

LineStyle ’ , ’:’)
155 line (repmat (rdub_np , [2 1]) , ylim , ’Color’ , clrs {2} , ’LineWidth ’ , 2)
156 if i == 1
157 legend (’ρ_{N_sim}’ , ’$E\left[\rho_{N_\mathrm{sim}}\ right]$’

, ’$\underline {\ underline {\rho}}_{N_\mathrm{p}}$’ , ’Interpreter ’ , ’
latex’)

158 end
159 xlim ([0 . 9 5 ∗ rdub_np 1 .05∗ rdub_np])
160 grid on
161 ylabel (’Relative probability ’ , ’Interpreter ’ , ’latex’)
162 if i == length (Nsim_vec)
163 xlabel (’Growth rate’)
164 end
165 title (" Distribution of sampled ρ_{N_sim} for $N_\mathrm{sim}=$

"+string (Nsim_vec (i)) , ’Interpreter ’ , ’latex’)
166
167 end
168
169 end

A-2-7 generateSemigroup.m

1 function varargout = generateSemigroup (n1 , n2 , m , Red , Fix , magn , vec , check_irr)
2 % Code by Abhimanyu Gupta
3
4 varargout = cell (1 , nargout) ;
5
6 if vec
7 A = zeros (n1∗n2 , m) ;
8 if ~Fix
9 Supp = zeros (n1∗n2 , m) ;

10 end
11 else
12 A = zeros (n1 , n2 , m) ;
13 if ~Fix
14 Supp = zeros (n1 , n2 , m) ;
15 end
16 end

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 163

17
18 if Fix
19 Supp1 = generateSupport (n1 , n2 , Red , check_irr) ;
20 end
21
22 for i = 1 : m
23 B = zeros (n1∗n2 , 1) ;
24 if ~Fix
25 Supp1 = generateSupport (n1 , n2 , Red , check_irr) ; %Generate support
26 end
27 nz = nnz (Supp1) ;
28 ai = rand (nz , 1) ; %Uniformly dist. matrix elements
29 % ai = randi(5,nz ,1);
30 ai = ai/sum (ai) ;
31
32 ind = logical (Supp1) ;
33 B (ind , :) = ai∗magn ;
34 B (~ind , :) = −inf ;
35
36 if ~vec
37 A (: , : , i) = reshape (B , [n1 , n2]) . ’ ;
38 Supp (: , : , i) = reshape (Supp1 , [n1 , n2]) . ’ ;
39 else
40 A (: , i) = B ;
41 Supp (: , i) = Supp1 ;
42 end
43 clear ind
44 end
45 varargout {1} = A ;
46
47 if nargout == 2
48 varargout {2} = Supp ;
49 end
50
51 end

A-2-8 generateSupport.m

1 function Supp = generateSupport (n1 , n2 , Red , check_irr)
2 % Code by Abhimanyu Gupta
3
4 %Assumption: all matrices are regular!
5
6 % n % # Nodes
7 % l % # Support matrices
8 if Red==1
9 % Reducible case

10 Supp = zeros (n1 , n2 , 1) ;
11 tmp = 0 ; %Counter
12 while tmp~=1
13 P = randi ([0 1] , n1∗n2 , 1) ;
14 P1 = reshape (P , [n1 , n2]) ;
15 reg = min ([sum (P1) , sum (P1 , 2) ’]) ;
16 if check_irr
17 I = (eye (n1)+P1) ^(n1−1) ; %Irreducibility => I>0 (elementwise)
18 if nnz (I)<n1^2&®~=0 %Reducibility and regularity check
19 tmp = tmp+1;

Master of Science Thesis Bart de Jong

164 Appendices

20 Supp = P ;
21 end
22 else
23 tmp = tmp+1;
24 end
25 end
26
27 elseif Red==0
28 % Irreducible case
29 Supp = zeros (n1∗n2 , 1) ;
30 tmp = 0 ; %Counter
31 while tmp~=1
32 P = randi ([0 1] , n1∗n2 , 1) ;
33 P1 = reshape (P , [n1 , n2]) ;
34
35 if check_irr
36 reg = min ([sum (P1) , sum (P1 , 2) ’]) ;
37 I = (eye (n1)+P1) ^(n1−1) ; %Irreducibility => I>0 (elementwise)
38 if nnz (I)==n1^2&®~=0 %Irreducibility and regularity check
39 tmp = tmp+1;
40 Supp = P ;
41 end
42 else
43 tmp = tmp+1;
44 end
45 end
46
47 else
48 % Random case
49 Supp = zeros (n1∗n2 , 1) ;
50 tmp = 0 ; %Counter
51 while tmp~=1
52 P = randi ([0 1] , n1∗n2 , 1) ;
53 P1 = reshape (P , [n1 , n2]) ;
54 if check_irr
55 reg = min ([sum (P1) , sum (P1 , 2) ’]) ;
56 if reg~=0 %Regularity check
57 tmp = tmp+1;
58 Supp = P ;
59 end
60 else
61 reg = max (P1) ;
62 reg2 = min (P1) ;
63 if reg−reg2~=0
64 tmp = tmp+1;
65 Supp = P ;
66 end
67 end
68 end
69
70 end
71
72 end

A-2-9 generateSystem.m

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 165

1 function [A , B , C , Ps] = generateSystem (nx , nu , ny , nL , magn)
2 % Based on code by Abhimanyu Gupta
3
4 if nargin == 4
5 magn = 10 ;
6 end
7
8 % Settings
9 % magn = 1000; % Scaling of matrix elements

10 Red = 0 ; % Reducible => Red = 1; Irreducible => Red = 0; Else random
11 Fix = 0 ; % Fixed support => Fix = 1, otherwise pseudorandom spport using

randi()
12 vec = 0 ; % Output as vectors => vec = 1 else as 3D arrays , keep it as it is
13
14 % Construct random semigroup
15 [A , ~] = generateSemigroup (nx , nx , nL , Red , Fix , magn , vec , 1) ; % Generate A-

matrices
16 [B , ~] = generateSemigroup (nx , nu , nL , 0 , 0 , magn , vec , 1) ; % Generate B-

matrices
17
18 C = zeros (1 , nx) ;
19 C = repmat (C , 1 , 1 , nL) ; % Define for each mode
20
21 Ps = zeros (nL , nL , nL) ;
22
23 for i = 1 : nL
24 for j = 1 : nL
25 for k = 1 : nL
26 if i == j
27 Ps (k , j , i) = 0 . 8 ;
28 else
29 Ps (k , j , i) = 0 . 2/ (nL−1) ;
30 end
31 end
32 end
33 end

A-2-10 growthRate.m

1 function [growth] = growthRate (A , C , seqm , Ps_tilde , varargin)
2
3 % Read inputs
4 names = varargin (1 : 2 : end) ;
5 values = varargin (2 : 2 : end) ;
6
7 % (default) Parameters
8 nL = size (A , 3) ;
9 nx = size (A , 1) ;

10 Np = size (seqm , 2) ;
11 Nt = 10 ;
12 maxnummode = 3 ;
13 seqv = seqm ;
14 scale = ceil (100/ Np) ;
15
16 % Switch calculations on/off for efficiency
17 CalcGRPerMode = 1 ;
18 CalcRB = 1 ;

Master of Science Thesis Bart de Jong

166 Appendices

19 CalcRDB = 1 ;
20 CalcConst = 1 ;
21
22 % Process inputs
23 for k = 1 : numel (names)
24 switch names{k}
25 case " Nt "
26 Nt = values{k } ;
27 case " maxnummode "
28 maxnummode = values{k } ;
29 case " seqv "
30 seqv = values{k } ;
31 case " CalcGRPerMode "
32 CalcGRPerMode = values{k } ;
33 case " CalcRB "
34 CalcRB = values{k } ;
35 case " CalcRDB "
36 CalcRDB = values{k } ;
37 case " CalcConst "
38 CalcConst = values{k } ;
39 case " scale "
40 scale = values{k } ;
41 end
42 end
43
44 % Check if Nt > Nt
45 if Nt >= Np∗scale
46 Nt = Np∗scale −1;
47 warning (" Nt set to " + num2str (Nt))
48 end
49
50 % Scale matrices
51 seqm = repmat (seqm , [1 scale]) ;
52 seqv = repmat (seqv , [1 scale]) ;
53 Np = scale∗Np ;
54
55 if CalcConst
56 % Mark rows that violate constraint
57 for i = 1 : size (seqm , 1)
58 if strfind (diff (seqm (i , :) , [] , 2)==0, ones (1 , maxnummode))
59 violate_con (i) = 1 ;
60 else
61 violate_con (i) = 0 ;
62 end
63 end
64 end
65
66 % --
67 % Growth rate per mode
68 % --
69 if CalcGRPerMode
70 for i = 1 : nL
71 growth . rho_mode (i) = mp_mcm (A (: , : , i)) ;
72 end
73 end
74
75 % --

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 167

76 % Maximum unconstrained growth rate
77 % --
78 if CalcRB
79 S_A = eps∗ones (nx) ; % Initialise max -plus addition of all A-

matrices
80 for ell = 1 : nL
81 S_A = mpAdd (S_A , A (: , : , ell)) ;
82 end
83 growth . rho_bar = mp_mcm (S_A) ;
84 end
85
86 % Check if switching probabilities depend on initial mode
87 % If not , don ’t loop over all initial modes
88 if sum (diff (Ps_tilde , 1 , 1) , ’all’) < 1e5
89 modeindependent = true ;
90 else
91 modeindependent = false ;
92 end
93
94 % --
95 % Finite -horizon unconstrained expected growth rate
96 % --
97 if CalcRDB
98 x0 = zeros (nx , 1) ; % Initial state
99 rate = zeros (size (seqm , 1) , 1) ;

100 EGR_mat = zeros (nL , size (seqv , 1)) ;
101 for i = 1 : size (seqm , 1) % Loop over all mode sequences
102
103 x_loop (: , 1) = x0 ;
104 y_loop = [] ; y_loop (1) = mpMulti (C (: , : , 1) , x_loop (: , 1)) ;
105 for j = 1 : Np % Loop over prediction horizon
106 x_loop (: , j+1) = mpMulti (A (: , : , seqm (i , j)) , x_loop (: , j)) ;
107 y_loop (j+1) = mpMulti (C (: , : , seqm (i , j)) , x_loop (: , j+1)) ;
108 end
109
110 % Growth rate of a certain mode sequence
111 rate (i) = (y_loop (end)−y_loop(1+Nt)) /(Np−Nt) ;
112
113 end
114 for k = 1 : nL−(nL−1)∗modeindependent % Loop over all initial modes
115 for l = 1 : size (seqv , 1) % Loop over all control sequences
116 % Expected growth rate for every initial mode and every control

sequence
117 EGR_mat (k , l) = reshape (Ps_tilde (k , : , l) , [1 size (seqv , 1)]) ∗rate ;
118 end
119 end
120
121 if modeindependent
122 EGR_mat = repmat (EGR_mat (1 , :) , [nL , 1]) ;
123 end
124
125 % Store values
126 growth . rho_dbar_Np = mean (EGR_mat , 1) ’ ;
127 growth . rho_dubar_Np = min (growth . rho_dbar_Np) ;
128 growth . rho_ubar_Np = min (rate , [] , ’all’) ;
129 end
130

Master of Science Thesis Bart de Jong

168 Appendices

131 % --
132 % Finite -horizon constrained expected growth rate
133 % --
134 if CalcConst
135 growth . rho_dbar_Np_con = mean (EGR_mat (: , ~ violate_con) , 1) ’ ;
136 growth . rho_dubar_Np_con = min (growth . rho_dbar_Np_con) ;
137 growth . rho_ubar_Np_con = min (rate (~ violate_con) , [] , ’all’) ;
138 growth . violate_con = violate_con ;
139 end
140
141 growth . seqm = seqm ;
142
143 end

A-2-11 modeConstraints.m

1 function [adm_cont , adm_cont_seq] = modeConstraints (maxnummode , nv , seqv)
2
3 adm_cont = cell (maxnummode∗nv , 1) ;
4
5 % Define admissible control inputs for next event step
6 for i = 1 : length (adm_cont)
7 adm_cont{i} = 1 : nv ;
8 if ismember (i , maxnummode : maxnummode : nv∗maxnummode)
9 vec = 1 : nv ;

10 vec (vec==i/maxnummode) = [] ;
11 adm_cont{i} = vec ;
12 end
13 end
14
15 % Define admissible control sequence over prediction horizon
16 adm_cont_seq = cell (maxnummode∗nv , 1) ;
17
18 for i = 1 : length (adm_cont_seq)
19 % Number of equal consecutive modes in a row
20 num_conseq_mode = rem (i−1, maxnummode)+1;
21 % Value of the mode
22 val_conseq_mode = floor ((i−1)/maxnummode)+1;
23
24 % Find for each control action the max number of modes in a row
25 last_modes = val_conseq_mode∗ones (length (seqv) , num_conseq_mode) ;
26 vec = [last_modes seqv] ;
27 vseqpos = ones (1 , length (seqv)) ;
28
29
30 for j = 1 : length (seqv)
31 for k = 1 : nv
32 check_vec = k∗ones (1 , maxnummode+1) ;
33 if ~isempty (strfind (vec (j , :) , check_vec))
34 vseqpos (j) = 0 ;
35 end
36 end
37 end
38
39 adm_cont_seq{i} = vseqpos ;
40 end
41

Bart de Jong Master of Science Thesis

A-2 Supporting MATLAB Scripts 169

42 end

A-2-12 mpAdd.m

1 function [Z] = mpAdd (X , Y)
2
3 [n1 , n2]=size (X) ;
4 [~ ,~]= size (Y) ;
5 Z=zeros (n1 , n2) ;
6
7 for i=1:n1
8 Z (i , :) = max ([X (i , :) ; Y (i , :)]) ;
9 end

10
11 end

A-2-13 mpMulti.m

1 function [Z] = mpMulti (X , Y)
2
3 [n1 ,~]= size (X) ;
4 [~ , n4]=size (Y) ;
5 C=zeros (n1 , n4) ;
6 oo=ones (1 , n4) ;
7
8 Z = zeros (n1 , n4) ;
9 for i=1:n1

10 Z (i , :) = max ((X (i , :) ’∗ oo)+Y) ;
11 end
12
13 end

A-2-14 predictionModel.m

1 function [A_tilde , C_tilde , B_tilde , D_tilde] = predictionModel (A , B , C , seqm)
2
3 [nx , ~ , nL] = size (A) ;
4 Np = size (seqm , 2) ;
5 nu = size (B , 2) ;
6 ny = size (C , 1) ;
7
8 % Construct A_tilde and C_tilde
9 A_tilde = repmat (mp_eye (nx , nx) , 1 , 1 , nL^Np) ; % Initialise with max -plus

identity matrix
10 C_tilde = zeros (ny∗Np , nx , nL^Np) ; % No initialisation necessary
11 for j = 1 : nL^Np % loop over all mode sequences
12 for i = 1 : Np % Loop over the prediction horizon
13 A_tilde (: , : , j) = mpMulti (A (: , : , seqm (j , i)) , A_tilde (: , : , j)) ;
14 C_tilde (i , : , j) = mpMulti (C (: , : , seqm (j , i)) , A_tilde (: , : , j)) ;
15 end
16 end
17
18 % Construct B_tilde and D_tilde
19 B_tilde = zeros (nx , nu , Np , Np) ;
20 D_tilde = zeros (ny∗Np , nu∗Np , nL^Np) ;
21 for p = 1 : nL^Np % Loop over all mode sequences

Master of Science Thesis Bart de Jong

170 Appendices

22 for i = 1 : Np % Loop over rows of B_tilde and D_tilde
23 for k = 1 : Np % Loop over columns of B_tilde and D_tilde
24
25 if i > k % Lower triangular entries of D_tilde
26 mat = B (: , : , seqm (p , k)) ;
27 for j = 1 : i−k
28 mat = mpMulti (A (: , : , seqm (p , k+j)) , mat) ;
29 end
30 B_tilde (: , : , i , k) = mat ;
31 elseif i == k % Diagonal entries of D_tilde
32 B_tilde (: , : , i , k) = B (: , : , seqm (p , i)) ;
33 elseif i < k % Upper triangular entries of D_tilde
34 B_tilde (: , : , i , k) = eps∗ones (nx , nu) ;
35 end
36
37 D_tilde (i , k , p) = mpMulti (C (: , : , seqm (p , i)) , B_tilde (: , : , i , k)) ;
38
39 end
40 end
41 end
42
43 end

Bart de Jong Master of Science Thesis

Bibliography

[1] M. Pesselse, Modelling and Optimal Scheduling of Inland Waterway Transport Systems
(MSc Thesis). PhD thesis, Delft University of Technology, 2022.

[2] J. C. Maxwell, “I. On governors,” Proceedings of the Royal Society of London, vol. 16,
pp. 270–283, 12 1868.

[3] R. Cuninghame-Green, “Minimax algebra,” Lecture notes in economics and mathematical
systems, vol. 166, 1979.

[4] T. J. van den Boom and B. De Schutter, “Modeling and control of switching max-
plus-linear systems with random and deterministic switching,” Discrete Event Dynamic
Systems: Theory and Applications, vol. 22, no. 3, pp. 293–332, 2012.

[5] A. Gupta, T. J. van den Boom, J. van der Woude, and B. De Schutter, “Framework for
Studying Stability of Switching Max-Plus Linear Systems,” IFAC-PapersOnLine, vol. 53,
pp. 68–74, 7 2020.

[6] A. Gupta, T. J. van den Boom, J. van der Woude, and B. De Schutter, “Structural
Controllability of Switching Max-Plus Linear Systems,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 1936–1942, 2020.

[7] A. M. Liapounoff, “Problème général de la stabilité du mouvement,” in Annales de la
Faculté des sciences de Toulouse: Mathématiques, vol. 9, pp. 203–474, 1907.

[8] W. Hahn, Stability of Motion, vol. 138. Springer, 1967.

[9] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Springer
Science & Business Media, 2008.

[10] B. Heidergott, G.-J. Olsder, and J. van der Woude, Max Plus at Work: Modeling and
Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications.
Princeton, New Jersey: Princeton University Press, 2005.

Master of Science Thesis Bart de Jong

172 Bibliography

[11] R. Cuninghame-Green, “Describing industrial processes with interference and approx-
imating their steady-state behaviour,” Journal of the Operational Research Society,
vol. 13, no. 1, pp. 95–100, 1962.

[12] F. Baccelli, G. Cohen, G.-J. Olsder, and J.-P. Quadrat, Synchronization and Linearity:
an Algebra for Discrete Event Systems. John Wiley & Sons Ltd, 1992.

[13] J. Gunawardena, An Introduction to Idempotency. Cambridge, U.K.: Publications of the
Newton Institute, 1998.

[14] J. Komenda, S. Lahaye, J.-L. Boimond, and T. J. van den Boom, “Max-plus algebra in
the history of discrete event systems,” Annual Reviews in Control, vol. 45, pp. 240–249,
2018.

[15] J. Braker, “Max-algebra modelling and analysis of time-dependent transportation net-
works,” in Proceedings of First European Control Conference, (Grenoble, France),
pp. 1831–1836, 1991.

[16] T. J. van den Boom and B. De Schutter, “Model predictive control for perturbed max-
plus-linear systems: A stochastic approach,” International Journal of Control, vol. 77,
no. 3, pp. 302–309, 2004.

[17] S. Masuda, H. Goto, T. Amemiya, and K. Takeyasu, “An Inverse System for Linear
Parameter-Varying Max-Plus-Linear Systems,” in Proceedings of the 41st IEEE Confer-
ence on Decision and Control, 2002., vol. 4, pp. 4549–4554, IEEE, 2002.

[18] J. H. Lee, “Model predictive control: Review of the three decades of development,”
International Journal of Control, Automation and Systems, vol. 9, no. 3, p. 415, 2011.

[19] C. R. Cutler and B. L. Ramaker, “Dynamic matrix control: A computer control algo-
rithm,” IEEE Transactions on Automatic Control, vol. 17, p. 72, 1979.

[20] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic control:
Applications to industrial processes,” Automatica, vol. 14, no. 5, pp. 413–428, 1978.

[21] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, J. P. Pickett, D. Hoiberg,
D. Clancy, P. Norvig, and J. Orwant, “Quantitative analysis of culture using millions of
digitized books,” science, vol. 331, no. 6014, pp. 176–182, 2011.

[22] M. Morari, C. E. Garcia, and D. M. Prett, “Model predictive control: Theory and
practice - A survey,” in IFAC Proceedings Volumes, vol. 25, pp. 335–348, 1989.

[23] E. Fernandez-Camacho and C. Bordons-Alba, Model Predictive Control in the Process
Industry. Springer, 1995.

[24] D. Clarke, C. Mohtadi, and P. Tuffs, “Generalized predictive control—Part I: The basic
algorithm,” Automatica, vol. 23, no. 2, pp. 137–148, 1987.

[25] L. T. Biegler, “Efficient Solution of Dynamic Optimization and NMPC Problems,” in
Allgöwer F., Zheng A. (eds) Nonlinear Model Predictive Control, vol. 26, pp. 219–243,
Basel: Birkhäuser Basel, 2000.

Bart de Jong Master of Science Thesis

173

[26] B. De Schutter and T. J. van den Boom, “Model predictive control for max-plus-linear
discrete event systems,” Automatica, vol. 37, no. 7, pp. 1049–1056, 2000.

[27] S. P. Boyd and C. H. Barratt, Linear Controller Design: Limits of Performance. Prentice
Hall Englewood Cliffs, NJ, 1991.

[28] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Pro-
gramming. SIAM, 1994.

[29] N. Guglielmi, O. Mason, and F. Wirth, “Barabanov norms, Lipschitz continuity and
monotonicity for the max algebraic joint spectral radius,” Linear Algebra and its Appli-
cations, vol. 550, pp. 37–58, 2018.

[30] B. De Schutter and W. Heemels, Lecture Notes on Modeling and Control of Hybrid
Systems. Delft Center for Systems and Control, Delft University of Technology, The
Netherlands, 2015.

[31] F. Dercole and F. Della Rossa, “Tree-based algorithms for the stability of discrete-time
switched linear systems under arbitrary and constrained switching,” IEEE Transactions
on Automatic Control, vol. 64, no. 9, pp. 3823–3830, 2018.

[32] F. D. Torrisi and A. Bemporad, “HYSDEL - A tool for generating computational hybrid
models for analysis and synthesis problems,” IEEE Transactions on Control Systems
Technology, vol. 12, no. 2, pp. 235–249, 2004.

[33] A. Bemporad and S. di Cairano, “Model-Predictive Control of Discrete Hybrid Stochastic
Automata,” IEEE Transactions on Automatic Control, vol. 56, pp. 1307–1321, 6 2011.

[34] R. Tempo, G. Calafiore, and F. Dabbene, Randomized algorithms for analysis and control
of uncertain systems: with applications. Springer, 2013.

[35] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the American statis-
tical association, vol. 44, no. 247, pp. 335–341, 1949.

[36] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, A Modern Introduction
to Probability and Statistics: Understanding why and how, vol. 488. Springer, 2005.

[37] J. Bernoulli, “Ars Conjectandi,” 1713.

[38] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations,” The Annals of Mathematical Statistics, pp. 493–507, 1952.

[39] L. R. Ray and R. F. Stengel, “A Monte Carlo approach to the analysis of control system
robustness,” Automatica, vol. 29, no. 1, pp. 229–236, 1993.

[40] T. J. van den Boom and B. De Schutter, “Modelling and control of discrete event systems
using switching max-plus-linear systems,” Control Engineering Practice, vol. 14, no. 10,
pp. 1199–1211, 2006.

[41] T. J. van den Boom and B. De Schutter, “Stabilizing model predictive controllers for ran-
domly switching max-plus-linear systems,” in 2007 European Control Conference (ECC),
pp. 4952–4959, IEEE, 2007.

Master of Science Thesis Bart de Jong

174 Bibliography

[42] T. J. van den Boom and B. De Schutter, “Model predictive control for switching max-
plus-linear systems with random and deterministic switching,” IFAC Proceedings Vol-
umes, vol. 41, no. 2, pp. 7660–7665, 2008.

[43] T. J. van den Boom and B. De Schutter, “Randomly switching max-plus linear systems
and equivalent classes of discrete event systems,” in 2008 9th International Workshop on
Discrete Event Systems, pp. 242–247, IEEE, 2008.

[44] B. De Schutter and T. J. van den Boom, “On model predictive control for max-min-plus-
scaling discrete event systems,” Technical Report Bds 00-04: Control Systems Engineer-
ing, Faculty of Information Technology and Systems, 2000.

[45] E. Sontag, “Nonlinear regulation: The piecewise linear approach,” IEEE Transactions
on automatic control, vol. 26, no. 2, pp. 346–358, 1981.

[46] V. Kozyakin, “The Berger-Wang formula for the Markovian joint spectral radius,” Linear
Algebra and Its Applications, vol. 448, pp. 315–328, 5 2014.

[47] X. Dai, “A Gel’fand-type spectral radius formula and stability of linear constrained
switching systems,” Linear Algebra and its Applications, vol. 436, pp. 1099–1113, 3 2012.

[48] Y. Wang, N. Roohi, G. E. Dullerud, and M. Viswanathan, “Stability analysis of switched
linear systems defined by regular languages,” IEEE Transactions on Automatic Control,
vol. 62, no. 5, pp. 2568–2575, 2017.

[49] K. M. Passino and K. L. Burgess, Stability Analysis of Discrete Event Systems, vol. 16.
Wiley-Interscience, 1998.

[50] C. Commault, “Feedback stabilization of some event graph models,” IEEE transactions
on Automatic Control, vol. 43, no. 10, pp. 1419–1423, 1998.

[51] G.-C. Rota and W. Strang, “A note on the joint spectral radius,” in Proceedings of the
Netherlands Academy, p. 379–381, 1960.

[52] J. N. Tsitsiklis and V. D. Blondel, “The Lyapunov exponent and joint spectral radius
of pairs of matrices are hard—when not impossible—to compute and to approximate,”
Mathematics of Control, Signals and Systems, vol. 10, no. 1, pp. 31–40, 1997.

[53] S. Gaubert, “Performance evaluation of (max,+) automata,” IEEE transactions on au-
tomatic Control, vol. 40, no. 12, pp. 2014–2025, 1995.

[54] Y. Chitour, G. Mazanti, and M. Sigalotti, “On the gap between deterministic and prob-
abilistic joint spectral radii for discrete-time linear systems,” Linear Algebra and Its
Applications, vol. 613, pp. 24–45, 3 2021.

[55] I. Daubechies and J. C. Lagarias, “Sets of matrices all infinite products of which con-
verge,” Linear algebra and its applications, vol. 161, pp. 227–263, 1992.

[56] P. Butkovič, “On tropical supereigenvectors,” Linear Algebra and Its Applications,
vol. 498, pp. 574–591, 6 2016.

Bart de Jong Master of Science Thesis

175

[57] M. Philippe, R. Essick, G. E. Dullerud, and R. M. Jungers, “Stability of discrete-time
switching systems with constrained switching sequences,” Automatica, vol. 72, pp. 242–
250, 10 2016.

[58] R. D. Katz, “Max-plus (A, B)-invariant spaces and control of timed discrete-event sys-
tems,” IEEE Transactions on Automatic Control, vol. 52, no. 2, pp. 229–241, 2007.

[59] E. Menguy, J.-L. Boimond, L. Hardouin, and J.-L. Ferrier, “Just-in-time control of timed
event graphs: update of reference input, presence of uncontrollable input,” IEEE Trans-
actions on Automatic Control, vol. 45, no. 11, pp. 2155–2159, 2000.

[60] T. J. van den Boom and B. De Schutter, “Properties of MPC for max-plus-linear sys-
tems,” European Journal of Control, vol. 8, pp. 453–462, 1 2002.

[61] A. Alessio and A. Bemporad, “A survey on explicit model predictive control,” in Non-
linear model predictive control, pp. 345–369, Springer, 2009.

[62] M. Johansson, “Piecewise linear control systems,” 1999.

[63] B. De Schutter and T. J. van den Boom, “MPC for continuous piecewise-affine systems,”
Systems and Control Letters, vol. 52, pp. 179–192, 7 2004.

[64] H. P. Williams, Model Building in Mathematical Programming. New York: Wiley, 3rd
editio ed., 1993.

[65] J. Stanczyk, “Max-Plus Algebra Toolbox for MATLAB,” 2016.

[66] G.-J. Olsder, K. Roos, and R.-J. van Egmond, “An efficient algorithm for critical circuits
and finite eigenvectors in the max-plus algebra,” Linear Algebra and its Applications,
vol. 295, no. 1-3, pp. 231–240, 1999.

[67] “MATLAB R2022a,” 2022.

[68] J. Löfberg, “YALMIP,” 2021.

[69] R. Bixby, Z. Gu, and E. Rothberg, “Gurobi,” 2008.

Master of Science Thesis Bart de Jong

176 Bibliography

Bart de Jong Master of Science Thesis

Glossary

List of Acronyms

DCSC Delft Center for Systems and Control
DES discrete-event system
MPC model predictive control
PTL plus-times linear
MPA max-plus algebra
MPL max-plus linear
MP-LPV max-plus linear parameter-varying
SMPL switching max-plus linear
RSMPL randomly switching max-plus linear
MMPS max-min-plus-scaling
PWA piecewise-affine
MLD mixed logical dynamical
LP linear programming
MILP mixed-integer linear programming
MIQP mixed-integer quadratic programming
LQG linear-quadratic-gaussian
HA hybrid automaton
DFA deterministic finite automaton
nDFA nondeterministic finite automaton
DHA discrete hybrid automaton
DHSA discrete hybrid stochastic automaton
FSM finite state machine
sFSM stochastic finite state machine

Master of Science Thesis Bart de Jong

178 Glossary

SAS switched affine system
EG event generator
MS mode selector
JSR joint spectral radius
LSR lower spectral radius
CJSR constrained joint spectral radius
SISO single-input single-output
LMI linear matrix inequality
MC Monte Carlo
PDF probability density function
MSE mean square error

List of Symbols

∆ Difference operator; ∆x(k) = x(k)− x(k − 1)
Γi A polyhedral partition of the space Rnw

ρo Asymptotic output growth rate
ρs Asymptotic state growth rate
ρ Expected growth rate of a switching max-plus linear (SMPL) system based on

controlled stochastic evolution, given a discrete control sequence (pronounced
‘rho double bar’)

ρNp(k) Expected growth rate over the prediction horizon Np

ρ Maximum growth rate of an SMPL system under autonomous evolution (pro-
nounced ‘rho bar’)

ρNp(k) Upper bound on the finite-horizon growth rate µNp

ρNp(k) (Expected) finite-horizon growth rate over the prediction horizon Np

ρ Best case minimum growth rate of an SMPL system based on controlled deter-
ministic switching (pronounced ‘rho underbar’)

ρ
Np

(k) Lower bound on the finite-horizon growth rate µNp(k)
ρ Minimum expected growth rate of an SMPL system based on controlled stochas-

tic evolution (pronounced ‘rho double underbar’)
ρ
Np

(k) Minimum expected growth rate over the prediction horizon Np

ε Zero element in a dioid
ξi Cycle time vector representing the asymptotic average time between event oc-

currences

` Mode of an SMPL system
N The set of natural numbers
R Real numbers

Bart de Jong Master of Science Thesis

179

Rq Vector space of q-tuples of real numbers
Rq×q Vector space of q × q real matrices
Rε Equal to R ∪ {ε}
1n Max-plus algebraic unity vector of all zeros of dimension n
1n Vector of all zeros of dimension n
E Max-plus zero matrix
G(A) A directed graph associated with a matrix A ∈ Rn×nε , consisting of the pair

(V (A), E(A)
L Set of all modes of an SMPL system {1, . . . , nL}
R Semiring
Rmax The max-plus algebra (Rε, ⊕, ⊗, ε, e)
n Set of all positive integers up to n
E Max-plus identity matrix
e Unit element in a dioid
Nc Control horizon MPC
Np Prediction horizon MPC
Nt Parameter used to reduce influence from transients in the calculation of finite-

horizon growth rate µNp(k)
nL Number of modes of an SMPL system
nu Number of continuous system inputs
nv Number of discrete system inputs
nx Number of system states
ny Number of system outputs
u(k) Input vector with length nu
w(k) Full state vector with length nw of a type-1 SMPL system
x(k) State vector with length nx
y(k) Output vector with length ny
z(k) Switching variable with length nz in an SMPL system description
> Symbol to denote transpose

\ Relative complement, i.e., A\B is the set of objects that belong to A and not B
‖A‖max The maximal finite entry of matrix A
‖A‖min The minimal finite entry of matrix A
‖x‖∞ The supremum norm of vector x
‖x‖P The projective norm of vector x
¬ Logical inverse
� Max-plus Schur product
⊕ Addition in a dioid (pronounced ‘oplus’)
⊗ Multiplication in a dioid (pronounced ‘otimes’)
�i A vector operator where the entries stand for ≤ or <

Master of Science Thesis Bart de Jong

180 Glossary

Bart de Jong Master of Science Thesis

Index

Alphabet, 17, 89
Arc, 16

incoming, 16
outgoing, 16

Associativity, 7
Automaton, 17

discrete hybrid stochastic automaton, 19
finite, 17

Buffer level, 6, 40, 66

Circuit, 12, 16
average weight, 12

Class, 16, 44
final, 17
initial, 17

Commutativity, 8
Concurrency, 10
Control

continuous, 29, 69
discrete, 29, 69
hybrid, 29, 69

Control horizon, 14
Controllability

structural, 30
weak structural, 30

Cost function, 14
Cutting plane algorithm, 15

DHSA, 19
Discrete hybrid stochastic automaton, 19
Discrete-event system, 6
Distributivity, 8

Eigenvalue, 9

Eigenvector, 9
Ellipsoid algorithm, 15
Event, 6
Event generator, 18
Explicit equation, 11

Finite state machine, 17, 18, 97
stochastic, 89

Frobenius normal form, 16
FSM, 97

sFSM, 89

Graph
communication, 12, 16
directed, 16, 17
strongly connected, 16, 17
weighted, 16

Graph theory, 16
Growth rate, 40, 66

output, 40
state, 40

Idempotency, 8
Interior-point algorithm, 15

Language
regular, 17, 34, 37

Letter, 17
Linear Parameter-Varying System, 11

Matrix
irreducible, 16
permutation, 16

Max-plus Schur product, 9
Maximal finite entry, 10

Master of Science Thesis Bart de Jong

182 Index

Minimal finite entry, 10
Mode selector, 88, 97
MPC, 13

SMPL, 77
MS, 88, 97

Node, 16
Norm

Hilbert’s, 10
projective, 10
supremum, 10

NP-hardness, 43

Observability
structural, 30

Output growth rate, 40

Partition
polyhedral, 32

Path, 16
Piecewise-Affine system, 33

type-d, 33
Power

max-plus algebraic, 9
Prediction horizon, 14

Receding horizon control, 14
Reference signal, 73
RSMPL system, 31

SAS, 88, 96
Semigroup, 69
Semiring, 8

idempotent, 8
sFSM, 89
SMPL system, 28

mode-constrained, 34
type-1, 31
type-2, 32

Spectral radius, 42
joint spectral radius, 43

Stabilisability, 68
Stability, 40, 66

max-plus Lipschitz, 66
max-plus strongly bounded-buffer, 66
max-plus weakly bounded-buffer, 66

State growth rate, 40
Structural controllability, 30

Structural finiteness, 33
Structural observability, 30
Switched affine system, 18, 88, 96
Switching variable, 28
Synchronised system evolution, 40
System

autonomous, 29
autonomous MPL, 11
controlled, 29
deterministic MPL, 10
discrete-event, 6
implicit MPL, 11
linear parameter-varying, 11
MPL, 10
nonautonomous, 29
open-loop, 29
parameter-varying MPL, 11
plus-times linear, 14
PWA, 33
SMPL, 28
uncertain MPL, 11

Throughput, 40
Timing issues, 77
Transition function, 17

Uncertainty
parametric, 11, 31

Unit element, 8

Vertex, 16

Weak structural controllability, 30
Word, 17, 37

Zero element, 8

Bart de Jong Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	Preface and Acknowledgements

	Main Matter
	Introduction
	The State of the Art
	The Aim of this Thesis
	Formulation of the research questions
	Justification of the research questions

	Preliminaries
	The Max-Plus Algebra
	An introduction to the algebra
	Properties of the algebra
	Matrices and spectral theory
	Norms in the max-plus algebra
	Max-plus linear systems

	Model Predictive Control
	Graph Theory and Discrete Automata
	General graph theory
	Discrete finite automata
	Discrete hybrid automata
	Discrete hybrid stochastic automata

	Monte Carlo Randomised Algorithms
	Monte Carlo method for estimating the expectation of random variables
	Monte Carlo method for performance functions

	Switching Max-Plus Linear Systems
	Deterministic Modelling
	Stochastic Modelling
	Randomly switching max-plus-linear systems
	Type-1 and type-2 switching max-plus-linear systems

	Automaton-Based Mode Constraints

	Growth Rate of SMPL Systems
	Growth Rate of Deterministic SMPL Systems
	Asymptotic growth rate
	Maximum growth rate: `rho bar'
	Minimum growth rate: `rho underbar'
	Finite-horizon approximations of the maximum and minimum growth rate

	Growth Rate of Stochastic SMPL Systems
	Asymptotic (minimum) expected growth rate: `rho double bar' and `rho double underbar'
	Infinite-horizon approximation of `rho double bar'
	Finite-horizon approximation of `rho double bar' and `rho double underbar'
	Extension to mode-constrained systems

	Accuracy of the Finite-Horizon Approximations
	The influence of the transient behaviour parameter on the approximation accuracy
	The influence of the prediction horizon on the approximation accuracy
	Compare approximation to the empirical mean using a Monte Carlo algorithm

	MPC Stabilisability of SMPL Systems
	Stability of SMPL systems
	Stabilisability of SMPL Systems
	Stabilisability of a mode-constrained deterministic system under discrete control
	Stabilisability of a mode-constrained deterministic system under hybrid control
	Stabilisability of a mode-constrained stochastic system under hybrid control

	A Stabilising Model Predictive Controller
	Model predictive control for general SMPL systems
	Discrete control of a mode-constrained deterministic SMPL system
	Hybrid control of a mode-constrained deterministic SMPL system
	Hybrid control of a mode-constrained stochastic SMPL system

	Case Study
	Problem Setup
	System description
	Objective function
	Formulation of constraints
	Optimisation problem
	Controller setup

	Discrete Control of a Mode-Constrained Deterministic SMPL System
	System description
	Objective function
	Formulation of constraints
	Optimisation problem
	Controller setup
	Results of the simulation

	Hybrid Control of a Mode-Constrained Deterministic SMPL System
	System description
	Objective function
	Formulation of constraints
	Optimisation problem
	Controller setup
	Results of the simulation

	Hybrid Control of a Mode-Constrained Stochastic SMPL System
	System description
	Objective function
	Formulation of constraints
	Optimisation problem
	Controller setup
	Results of the simulation

	Conclusion
	Discussion and Contributions
	Contributions of this research
	Answers to the research questions

	Recommendations for Future Research

	Appendices
	Appendices
	Influence of the Parameter `gamma' in the MPC Cost Function
	Supporting MATLAB Scripts
	Case1.mlx
	Case2.mlx
	Case3.mlx
	allSequences.m
	checkError.m
	findOffset.m
	generateSemigroup.m
	generateSupport.m
	generateSystem.m
	growthRate.m
	modeConstraints.m
	mpAdd.m
	mpMulti.m
	predictionModel.m

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

	Index

