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Two models for the micro- and macro-analysis of masonry structures are presented. For the micro

modeling of masonry, an interface failure criterion that includes a straight tension cut-off, the 

Coulomb friction law and an elliptical cap is proposed. The inelastic behavior includes tensile strength 

softening, cohesion softening, compressive strength hardening/softening and coupling between ten

sile and shear failure. It is shown that the model is capable of describing the local interaction of both 

masonry components and of reproducing, in a detailed manner, observed experimental behavior. 

For the macro-modeling, an anisotropic continuum model that includes a Rankine type yield surface 

for tension and a Hill type yield surface for compression is proposed. Anisotropic elasticity is 

combined with anisotropic plasticity, in such a way that totally different behavior can be predicted 

along the material axes, both in tension and compression. It is shown that, for sufficiently large 

structures, the global response of masonry can be well predicted even without the inclusion of the local 

interaction between the masonry components. 
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1 Introduction 

Masonry is the oldest building material that still finds wide use in today's building industries. 

Important new developments in masonry materials and applications occurred in the last decades 

but the techniques to assemble bricks and blocks are essentially the same as the ones developed ten 

thousand years ago. Naturally, innumerable variations of masonry materials, techniques and 

HERON. Vol. 40. No.4 (1995) ISSN 0046-7316 

313 



314 

applications occurred during the course of times, influenced by the local culture and wealth, 

the knowledge of materials and tools, the availability of material and architectural reasons. 

The most important characteristic of masonry construction is its simplicity. Laying pieces of stone 

or bricks on top of each other, either with or without cohesion via mortar, is a simple, though 

adequate technique that has been successful ever since remote ages. Other important characteristics 

are the aesthetics, solidity, durability and low maintenance, versatility, sound absorption and fire 

protection. Loadbearing walls, infill panels to resist seismic and wind loads, prestressed masonry 

cores and low-rise buildings are examples of constructions where the use of structural masonry is 

presently competitive. However, innovative applications of structural masonry are hindered by the 

fact that the development of design rules has not kept pace with the developments for concrete and 

steel. The underlying reason is the lack of insight and models for the complex behavior of units, 

mortar, joints and masonry as a composite materiaL Existing calculation methods are mainly of 

empirical and traditional nature and the use of numerical tools for the analysis or design of 

masonry structures is rather inCipient. 

The fundamental point of today's research in structural masonry is thus to rationalize the engineering 

design of structural masonry. Considerable research effort has been made in the last two decades but 

progress has been hindered by the lack of communication between analysts and experimentalists. 

In fact, a combined experimental! numerical basis is the key to validate, extend and improve exist

ing methods as indicated by the integrated research program of CUR (1994). At the present stage of 

knowledge, numerical simulations are fundamental to provide insight into the structural behavior 

and support the derivation of rational design rules but nonlinear finite element analyses will be 

always helpful for the validation of the design of complex masonry structures under complex loading condi

tions. In particular, computations beyond the limit load down to a possibly lower residual load are 

needed to assess the safety of the structure. Aside from failure analysis, also the serviceability limit 

states can be successfully validated with numerical analyses. Another important aspect is the safety 

of existing structures under existing or new loading conditions, with an emphasis in the preserva

tion of historical structures. Reliable numerical models are necessary to assess and strengthen existing 

masonry structures. The final point is the need to improve the performance of masonry buildings in under

developed countries. It is remarkable that over one-third of the world's popUlation still leaves in earth 

houses today, Dethier (1982), for modern western technology has failed, both financially and 

socially, to satisfy the local increasing demand of cheap housing. Research must be carried on tech

niques that use local materials, are kept as simple as possible and do not increase significantly the 

cost, which is not merely a question of transferring existing technology. 

At the present stage, we have introduced the importance of sophisticated numerical tools, capable 

of predicting the behavior of the structure from the linear stage, through cracking and degradation 

until complete loss of strength. This objective can only be achieved if accurate and robust constitu

tive models are complemented with advanced solution procedures of the system of equations 

which results from the finite element discretization (it is tacitly assumed that the finite element 

method is adopted to simulate the structural behavior). The present article focuses on the nonlinear 

analysis of unreinforced masonry structures which can be approximated as being in a state of plane 

stress, such as panels and shear walls. The structures under consideration are subjected to short 

time static loads, which are not necessarily proportional but, in essence, monotonical. The main 

goal of this article is to present advanced numerical tools for the analysis of masonry structures. 



The proposed models were developed in the doctoral thesis project of the first author and have 

been implemented in the DIANA finite element code, which has been used in all the analyses. 

2 Approaches towards computational modeling of masonry structures 

Only recently the masonry research community began to show interest in sophisticated numerical 

tools as an opposition to the prevailing tradition of rules-of-thumb and empirical formulae. The fact 

that little importance has been attached to numerical aspects is confirmed by the absence of any 

well established models. The difficulties in adopting existing numerical tools from more advanced 

research fields, namely the mechanics of concrete, rock and composite materials, are hindered by 

the particular characteristics of masonry. Masonry is a composite material that consists of units and 

mortar joints, see Fig. la. A comprehensive analysis of masonry, hereby denoted detailed micro

modeling, must then include a representation of units, mortar and the unit / mortar interface, see 

Fig. lb. In this case units and mortar in the joints are represented by continuum elements whereas 

the unit-mortar interface is represented by discontinuous elements. The Young's modulus, 

Poisson's ratio and, optionally, inelastic properties of both unit and mortar are taken into account. 

The interface represents a potential crack / slip plane with initial dummy stiffness to avoid inter

penetration of the continuum. This enables the combined action of unit, mortar and interface to be 

studied under a magnifying glass. Such a representation of masonry leads to large memory and 

time requirements and a simplified micro-modeling of masonry will be preferably used here, see 

Fig. Ie. In this case expanded units are represented by continuum elements whereas the behavior of 

the mortar joints and unit-mortar interface is lumped in discontinuous elements. Each joint, 

consisting of mortar and the two unit-mortar interfaces, is lumped into an "average" interface 
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Fig. 1. Modeling strategies for masonry structures: (a) masonry sample; (b) detailed micro-modeling; 

(c) simplified micro-modeling; (d) macro-modeling. 
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while the units are expanded in order to keep the geometry unchanged. Masonry is thus considered 

as a set of elastic blocks bonded by potential fracture / slip lines at the joints. Accuracy is lost since 

Poisson's effect of the mortar is not included. 

Micro-modeling approaches are suited for small structural elements with particular interest in 

strongly heterogeneous states of stress and strain. The primary aim of micro-modeling is to closely 

represent masonry from the knowledge of the properties of each constituent and the interface. 

The necessary experimental data must be obtained from laboratory tests in the constituents and 

small masonry samples. Several attempts to use interfaces for the modeling of masonry were 

carried out in the last decade with reasonably simple models, see e.g. Anthoine (1992) for 

references. In particular, gradual softening behavior and all failure mechanisms, namely tensile, 

shear and compressive failure, have not been fully included. 

In large and practice-oriented analyses the knowledge of the interaction between units and mortar 

is, generally, negligible for the global structural behavior. In these cases a different approach can be 

used, hereby denoted macro-modeling, where a distinction between individual units and joints is not 

made, see Fig. 1d. Instead the material is regarded as an anisotropic composite and a relation is 

established between average masonry strains and average masonry stresses. This is clearly a 

phenomenological approach, meaning that the material parameters must be obtained from 

masonry tests of sufficient size und8r homogeneous states of stress. A complete macro-model must 

reproduce an orthotropic material with different tensile and compressive strengths along the 

material axes as well as different inelastic behavior for each material axis. 

A reduced number of orthotropic material models specific for masonry has been proposed, see e.g. 

Anthoine (1992) and Louren~o (1996) for references. It is not surprising that so few macro-models 

have been implemented due to the intrinsic complexity of introducing orthotropic behavior. 

The models proposed in the past have not been widely accepted due to the difficulties of formulat

ing robust numerical algorithms and representing satisfactorily the inelastic behavior. 

It is noted that one modeling strategy cannot be promoted over the other because different appli

cation fields exist for micro- and macro-models. Micro-modeling studies are necessary to give a 

better understanding about the local behavior of masonry structures. This type of modeling applies 

notably to structural details, but also to modern building systems like those of concrete or calcium

silicate blocks, where window and door openings often result in piers that are only a few block 

units in length. These piers are likely to determine the behavior of the entire wall and individual 

modeling of the blocks and joints is then to be preferred. Macro-models are applicable when the 

structure is composed of solid walls with sufficiently large dimensions so that the stresses across or 

along a macro-length will be essentially uniform. Clearly, macro-modeling is more practice ori

ented due to the reduced time and memory exigencies as well as a user-friendly mesh generation. 

This type of modeling is most valuable when a compromise between accuracy and efficiency is 

needed. 



3 Basics of single and multi surface plasticity 

In this study the finite element method is adopted to simulate the structural behavior. A mathe

matical description of the material behavior, which yields the relation between the stress and strain 

tensor in a material point of the body, is necessary for this purpose. This mathematical description 

is commonly named a constitutive model. Constitutive models will be developed here in a plastic

ity framework according to a phenomenological approach in which the observed mechanisms are 

represented in such a fashion that simulations are in reasonable agreement with experiments. It is 

not realistic to try to formulate constitutive models which fully incorporate all the interacting 

mechanisms of a specific material because any constitutive model or theory is a simplified represen

tation of reality. It is believed that more insight can be gained by tracing the entire response of a 

structure than by modeling it with a highly sophisticated material model or theory which does not 

result in a converged solution close to the failure load. The theory of plasticity is well established 

and sound numerical algorithms have been implemented, e.g. Simo et al. (1988). It is a natural 

constitutive description for metals, but it can also be used for quasi-brittle cementitious materials 

loaded in triaxial compression and shear-compression problems where inelastic non-recoverable 

strains are observed. The incapability of the theory to reproduce the elastic stiffness degradation of 

quasi-brittle materials subjected mainly to tension cannot be accepted for cyclic loading but, for 

monotonic loading conditions, good results have been found, e.g. Feenstra (1993) and Louren<;o 

(1996). 

In the following, we introduce the basic aspects of the theory of single and multisurface rate 

independent plasticity. A fundamental notion in the plasticity theory is the existence of a yield 

function that bounds the elastic domain. Yielding can only occur if the stresses crsatisfy the general 

yield criterion 

[(cr, a(7(» o (1) 

where the yield stress value a is a function, commonly named hardening law, of the scalar 7(, which 

is introduced as a measure for the amount of hardening or softening. In general, however, it is 

extremely complex to describe the material behavior with a unique yield surface in an appropriate 

maImer and one must resort to the theory of multisurface plasticity. In this case the elastic domain is 

defined by a number of functions ft < 0 which define a composite yield surface. Loading / unloading 

can be conveniently established in standard Kulm-Tucker form by means of the conditions. 

o (2) 

where Ili is the plastic multiplier rate. Plastic behavior is characterized by a non-unique stress

strain relationship with the presence of irreversible strains on load removal. This is obtained by the 

usual decomposition of the strain rate vector t in an elastic, reversible part, t' and a plastic, 

irreversible part, t P 

(3) 
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where the elastic strain rate is related to the stress rate by the elastic (constitutive) stiffness matrix D 

as 

0- = Dte (4) 

For single surface plasticity, the assumption of an associated flow rule yields 

(5) 

and a non-associated flow rule yields 

(6) 

where g is the plastic potential. In the case of strain hardening (or softening) the scalar K reads 

(7) 

where the equivalent plastic strain rate t ep ' must be always positive and increasing. The simplest 

combination of this kind which is dimensionally correct is 

(8) 

Another possibility is to define the equivalent plastic strain rate from the plastic work per unit of 

volume in the form 

(9) 

which gives 

(10) 

For multisurface plasticity the intersection of the different yield surfaces defines corners. Without 

lack of generality it is assumed that the composite yield surface is defined by two yield surfaces. 

According to Koiter's generalization, Koiter (1953), the plastic strain rate i! in the corner is 

obtained from a linear combination of the plastic strain rates of the two yield surfaces, reading 

(11) 

The yield surfaces can also be explicitly coupled by introducing composite hardening scalar rates 

Kf and 1Q 

(12) 

where KI = KI(tj) and K2 = K2(t~) are defined according to one of eqs. (8,10). The superscript c 

refers to composite. 



4 Micro-modeling: A composite interface model for masonry 

Micro-models are, probably, the best tool available to understand the behavior of masonry. 

The benefit of using such an approach is that all the different failure mechanisms can be considered. 

In the following, attention is given to a simplified modeling strategy, in which interface elements 

are used as potential crack, slip or crushing planes. A composite interface model, which includes a 

tension cut-off for mode I failure, a Coulomb friction envelope for mode II failure and a cap mode 

for compressive failure, is presented. In addition, interface elements are considered to model 

potential cracks in the units. The complete description of the numerical implementation in modern 

plasticity concepts is given elsewhere, see Louren.;o (1996), and will not be reviewed here. 

4.1 Adopted modeling strategy 

An accurate micro-model must include all the basic types of failure mechanisms that characterize 

masonry, viz. (a) cracking of the joints, (b) sliding along the bed or head joints at low values of 

normal stress, (c) cracking of the units in direct tension, (d) diagonal tension cracking of the units at 

values of normal stress sufficient to develop friction in the joints and (e) "masonry crushing", 

commonly identified with splitting of units in tension as a result of mortar dilatancy at high values 

of normal stress, as illustrated in Fig. 2. It is clear from the described phenomena that (a,b) are joint 

mechanisms, (c) is a unit mechanism and (d,e) are combined mechanisms involving units and 

joints. The question remains of how to consider all phenomena in the model. The approach fol

lowed here is to concentrate all the damage in the relatively weak joints and in potential pure ten

sion cracks in the units placed vertically in the middle of each unit, see Fig. 3. These potential cracks 

in the units are able to reproduce a jump from one head joint to the other (immediately below or 

above), which is a typical masonry characteristic. The joint interface yield criterion has then to 

include all the mechanisms referred above except uniaxial tensile cracking of the unit. By limiting 

the compressive / shear stress combinations, diagonal tension cracking of the units and masonry 

crushing, failure mechanisms (d,e) in Fig. 2, can be incorporated in the model. 

Interface elements permit discontinuities in the displacement field and their behavior is described 

in terms of a relation between the tractions t and relative displacements ilu across the interface. 

The linear elastic relation between these generalized stresses and strains can be written in the 

standard form as 

(J = DE (13) 

where, for a 2D configuration, (J = {(J, r}T, D = diag {kn, k,} and E = {ilun' ilU,lT, with nand s denoting 

the normal and shear components, respectively. The elastic stiffness matrix D can be obtained from 

the properties of the two masonry components (units and mortar) and the thickness of the joint. 

Fig. 3 showed that, due to the zero thickness inherent to the interface element formulation, the size 

of the units has to be expanded by the mortar thickness hm in both directions. It follows that the 

elastic properties of the "expanded unit" and the "interface joint" must be adjusted to yield correct 

results. Due to the relative dimensions of mortar and unit, it is assumed that the elastic properties of 

the unit remain unchanged. Then the components of the elastic stiffness matrix D read, CUR (1994), 
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Fig. 2. Masonry failure mechanisms: 

(a) joint tension cracking; (b) joint slipping; (c) unit direct tension cracking; (d) unit diagonal 

tension cracking; (e) masonry crushing. 

:J ...... . 
Potential crack 
in the unit 

zero thickness ! 
h" + h m 

Continuum elements 
(units) --~ 

Interface elements 
·oints) 

Fig. 3. Suggested modeling strategy. Units (u), which are expanded in both directions by the mortar 

thickness, are modeled with continuum elements. Mortar joints (m) and potential cracks in the units 

are modeled with zero-thickness interface elements. 



(14) 

where Eu and Em are the Young's moduli, Gu and Gm are the shear moduli, respectively, for unit and 

mortar and hm is the actual thickness of the joint. The stiffness values obtained from these formulae 

do not correspond to a penalty approach, which means that overlap of neighboring units subjected 

to compression will become visible. This is a phenomenological representation of masonry crushing 

because the failure process in compression is, in reality, explained by the microstructure of units 

and mortar and the interaction between them. 

4.2 The composite interface model 

Cap models originated in the field of soil mechanics. The introduction of a spherical cap for the 

Drucker-Prager model was firstly made by Drucker et al. (1957) for the purpose of describing plastic 

compaction and enhance the behavior in hydrostatic compression. Since then the name "cap 

model" has been adopted for a broad set of models which include a compressive cap, e.g the well

known Cam-clay model of Roscoe and Burland (1968). Recently the numerical algorithm has been 

revised by Hofstetter et al. (1993) with the use of unconditionally stable closest point projection 

return mappings, tangent operators consistent with the integration algorithm and proper handling 

of the corners. Cap models have been, in general, limited to associated plasticity and hardening of 

the cap while the other yield surfaces remained in ideal plasticity. 

For the application envisaged here the behavior found experimentally leads to a more complex 

model. Masonry joints have extremely low dilatancy and the model must be formulated in the con

text of non-associated plasticity. Also softening behavior should be included for all modes of the 

composite yield surface. 

The rate independent interface model is defined by a convex composite yield criterion which con

sists of a tension cut-off fl ((), 1(1)' the Coulomb friction model f2 ((), 1(,), and an elliptical cap f3 ((), 1(3)' 

see Fig. 4. 

Cap 
Mode 

/ 
/ 

/ 

,.. ,.. 
, , , 

Coulomb 
Friction 

Mode 

/ , 
I ' 

I Intermediate yield surface' , 

~ 

11'1 

t Tension 
--~--------------~~--~--~--~~~~ Mode 

Initial yield surface 

Fig. 4. Proposed model for interfaces. An "interface cap model". 
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4.2.1 The ten s ion cut - 0 ff c r i t e rio n 

For the tension cut-off, the yield function reads 

(15) 

where the yield value 0"1 reads (exponential softening) 

(16) 

In the above j, is the tensile strength of the joint or, more precisely, of the unit-mortar interface, 

which is, generally, the weakest link, and GI is the mode I fracture energy. An associated flow rule 

and a strain softening hypothesis are considered. Assuming that only the normal plastic relative 

displacement controls the softening behavior, eq. (7) yields 

(17) 

4.2.2 The C 0 u 10m b f ric t ion c r i t e rio n 

For the Coulomb friction mode, the yield function reads 

where the yield value 0"2 reads (exponential softening) 

In the above c is the cohesion of the unit-mortar interface, rp is the friction angle and GP is the 

mode II fracture energy. A non-associated plastic potential gz, 

g2 = Irl + a tanljl-c 

with a dilatancy angle ljI and a strain softening hypothesis are considered. Assuming that the 

softening behavior is controlled by the shear plastic relative displacement, eq. (7) yields 

4.2.3 The com pre s s i vee ape r i t e rio n 

For the cap mode, a centered ellipsoid is used. The yield function is now given by 
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(18) 

(19) 

(20) 

(21) 

(22) 



where C" is a material parameter which controls the contribution of the shear stress to failure and 

0-3 is the yield value. 

For the hardening / softening behavior the law shown in Fig. 5 is adopted, where the subscripts i, 111, 

P and r of the yield value 0- denote respectively, the initial, medium, peak and residual values. 

The peak value o-p equals the masonry compressive strength fm' This approach, in which several 1( 

and 0- values are adjusted to fit the stress-displacement curve obtained experimentally, can be used 

for interface elements because a direct relation between stresses and displacements is established. 

Using matrix notation, eq. (22) can be rewritten in a form more amenable to computational 

implementation, as 

iiI' 
I I ----,--------,--------------

Fig. 5. Hardening/softening law for cap mode, 

21\3 _ 1\1 
Kp K~ 

with m = 2 0"111 - 0" p 

I\m - Kp 

(23) 

where the projection matrix P equals diag {2,2 C,,}. An associated flow rule and a strain hardening/ 

softening hypothesis are considered. This yields, upon substitution in eq. (8), 

(24) 

4.2.4 Corner regimes 

The corners of the composite yield surface are singular points that have been handled according to 

Lourenco (1996). 

One important feature of the composite yield surface is the coupling of tension and shear softening 

because both phenomena are related to the bond or adhesion between unit and mortar. Here, 

isotropic softening is assumed, which means that the percentages of the cohesion and tensile 

strength softening are equal throughout the entire degradation process. Experimental results for 

mixed (shear-tension) stress paths are not available because, as reported by Van der Pluijm (1993), 
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even for low compressive confining stresses brittle results are found with potential instability of the 

test set-up. The assumption of isotropic softening comes only by physical reasoning because any 

amount of coupling between tension and shear can be introduced in the model. However, it seems 

natural to assume equal degradation of strength because both phenomena are due to the breakage 

of the same bridges that exist at micro-level between unit and mortar. 

The cap and shear modes are assumed to be uncoupled. Again, the physical reasoning behind this 

assumption is clear. The shear mode represents a unit-mortar interface phenomenon whereas the 

cap mode represents, basically, masonry crushing. 

4.3 Example of application 

324 

Traditionally, experiments in shear walls have been adopted by the masonry community as the 

most common in-plane large test. Yet, little understanding still exists about the behavior of this type 

of structures. In this article, attention is devoted to shear wall tests carried out in the Netherlands, 

see Raijmakers and Vermeltfoort (1992) and CUR (1994), because most of the parameters necessary 

to characterize the material model are available from micro-experiments. 

The analyzed shear wall, here denoted by wall JD, has a width/height ratio of one with dimensions 

990 x 1000 mm', built up with 18 courses, from which 16 courses are active and 2 courses are 

clamped in steel beams, see Fig. 6. In this figure, the arrow with a circle indicates a displacement. 

The wall is made of wire-cut solid clay bricks with dimensions 210 x 52 x 100 mm3 and 10 mm thick 

mortar, prepared with a volumetric cement:lime:sand ratio of 1:2:9. A vertical precompression 

uniformly distributed force equal to 0.30 Nlmm2 is applied, before a horizontal load is monotoni

cally increased under top displacement control d in a confined way, i.e. keeping the bottom and top 

boundaries horizontal and precluding any vertical movement, see Fig. 6. 

30 Nlmm2 

70 

1000 

70 

990 

Steel 
Beams 

Dimensions 
in [111m] 

Fig. 6. Loads for wall JO: (a) phase 1 vertical loading; (b) phase 2 - horizontal loading under 

displacement control. 

The experimental crack patterns for two successfully carried out tests are shown in Fig. 7. Horizon

tal tension cracks develop at the bottom and top of the wall at an early loading stage but, ultimately, 

a diagonal stepped crack leads to collapse, simultaneously with cracks in the bricks and crushing of 

the compressed toes. 



0.30 Nlmm 2 0.30 Nlmm2 

Fig. 7. Wall JD. Experimental failure patterns for two different tests. 

For the numerical analysis, units are represented by plane stress continuum elements (S-noded) 

while line interface elements (6-noded) are adopted for the joints and for the potential vertical 

cracks in the middle of the unit. Each unit is modeled with 4 x 2 elements. For the joints, the 

composite interface model described in this article is adopted and, for the potential cracks in the 

units, a simple mode J cracking model with exponential tensile softening and immediate drop to 

zero of the shear stress after initiation of the crack is assumed. The analysis was carried out with 

direct displacement control. 

The micro-properties for the different materials are obtained from Raijmakers and Vermeltfoort 

(1992) and CUR (1994), see Table 1 to Table 3. Note that an elastic dummy stiffness is considered for 

the potential cracks in the bricks. The hardening / softening law for the cap mode is defined by the 

set {0'3, J(3}, = {(jm/3, O.O);(jm' 0.09);(jml2, 0.49);(jn/7, + co)} 

Table 1. Wall JD. Properties for the potential brick cracks. 

1.0 X 106 Nlmm 3 1.0 x J 06 Nlmm3 2.0 Nhmn 2 0.OSNlmm2 

Table 2. Wall JD. Elastic properties for the bricks and joints. 

Brick Joint 

E v 

16700 Nlmm 2 0.15 S2;l1O;S2 Nlmm 3 36;50;36 Nlmm3 
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Table 3. Wall JD. Inelastic properties for the joints. 

Tension Shear Cap 

GI c tan</> tamp GP 

0.25 Nlmm 2 0.018 Nmmlmm2 1.4 h Nlmm2 0.75 0.0 0.125 Nmmlmm 2 10.5 Nlmm2 9.0 

The comparison between numerical and experimental load-displacement diagrams is shown in 

Fig. 8. The experimental behavior is satisfactorily reproduced and the collapse load can be well 

estimated. The sudden load drops are due to cracking in a single integration point of the potential 

cracks in a brick and opening of each complete crack across one brick. The walls behave in a rather 

ductile manner, which seems to confirm the idea that confined masonry can withstand substantial 

post-peak deformation with reduced loss of strength. 

60.0 

40.0 \ 
\ 
'--------

20.0 

0.0 
0.0 1.0 

Experimental 
Numerical 

2.0 3.0 
Horizontal displacement d [mmJ 

Fig. 8. Wall JD. Load - displacement diagrams. 

4.0 

The behavior of the wall is well captured by the model as illustrated in Fig. 9 and Fig. 10. In these 

figures, the word "damage" is used for the equivalent plastic strain from each mode of the com

posite interface model. Note that the "damage" of the compressive cap is only shown in the soften

ing regime, not during hardening. Initially, two horizontal tension cracks develop at the bottom and 

top of the wall. A stepped diagonal crack through head and bed joints immediately follows. 

This crack starts in the middle of the wall and is accompanied by initiation of cracks in the bricks, 

see Fig. 9. Under increasing deformation, the crack progresses in the direction of the supports and, 



finally, a collapse mechanism is formed with crushing of the compressed toes and a complete 

diagonal crack through joints and bricks, see Fig. 10. 
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Fig. 9. Wall /D. Results of the analysis at a displacement of2.0 mm: (a) deformed mesh; (b) damage . 
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Fig. 10. Wall /D. Results of the analysis at a displacement of 4.0 mm: (a) deformed mesh; (b) damage. 
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5 Macro-modeling: An anisotropic continuum model 

The analysis of masonry structures built from a large number of units and joints can only be carried 

out with macro-models, in which a relation between average stresses and strains in the composite 

material is established. The effective constitutive behavior of masonry features anisotropy arising 

from the geometrical arrangement of units and mortar, even if the properties of these constituents 

are isotropic. It might be expected that, to model masonry as a composite, sound numerical imple

mentations of anisotropic plasticity models, which are generalizations of existing isotropic realiza

tions, will be required. 

The modern plasticity framework is general enough to apply equally well to both isotropic and 

anisotropic plasticity models. However, it appears that while many anisotropic plasticity models 

have been proposed from purely theoretical and experimental standpoints, e.g. Hill (1948) and Tsai 

and Wu (1971), only a few numerical implementations and calculations have actually been carried 

out. An example is given by the work of de Borst and Feenstra (1990) which fully treated the 

implementation of an elastic-perfectly-plastic Hill yield criterion. In principle, hardening behavior 

could be simulated with the fraction model of Besseling (1958) but not much effort has been done in 

this direction. A more recent attempt is given for example in Swan and Cakmak (1994), which 

included linear tensorial hardening in the Hill yield criterion. 

This article presents a composite yield criterion suitable for the modeling of anisotropic materials 

under plane stress conditions. Individual yield criteria are considered for tension and compression, 

according to different failure mechanisms. The former is associated with a localized fracture 

process, denoted by cracking of the material, and, the latter, is associated with a more distributed 

fracture process which is usually termed as crushing of the material. 

!i.I The anisotropic continuum model 
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An accurate analysis of masonry structures in a macro-modeling (or composite) perspective 

requires a material description for all stress states. The yield surface to be presented next combines 

the advantages of modern plasticity concepts with a powerful representation of anisotropic mate

rial behavior, which includes different hardening / softening behavior along each material axis. 

It is noted that a representation of an orthotropic yield surface in terms of principal stresses only is 

not pOSSible. For plane stress situations, which is the case of the present study, a graphical represen

tation in terms of the full stress vector (ax' ay' 'l"xy) is necessary. The material axes are assumed to be 

defined by the bed joints direction (x direction) and the head joints direction (y direction). Other 

possible representation can be obtained in terms of principal stresses and an angle e. The angle e 
measures the rotation between the principal stress axes and the material axes. Clearly, different 

principal stress diagrams are found according to different values of e. 
The approach followed here consists of an extension of conventional formulations for isotropic 

quasi-brittle materials to describe orthotropic behavior. Formulations of isotropic quasi-brittle 

materials behavior consider, generally, different inelastic criteria for tension and compression. 

In the present article, an extension of the work of Feenstra and de Borst (1996), who utilized this 

approach for concrete with a Rankine and a Drucker-Prager criterion, will be presented. In order to 



model orthotropic material behavior, a Hill type* yield criterion for compression and a Rankine 

type** yield criterion for tension, see Fig.ll, will be proposed. Coupling between the two yield 

criteria is not present. The complete description of the numerical implementation has been 

presented elsewhere, see Lourenco (1996), and will not be reviewed here. 

Hill type yield surface Rankine type yield surface 

Fig. 11. Proposed composite yield surface with iso-shear stress lines. Different strength values for tension 

and compression along each material axis. 

5.1.1 Discretization aspects 

The softening behavior of masonry is modeled with a smeared approach in which the damaged 

material is still considered as a continuum in which the notions of stress and strain apply. With this 

assumption, the localized damage can be represented by the scalar /(, which is related by an 

equivalent length to the released energy per unit cracked area, Gf • In a finite element calculation this 

equivalent length should correspond to a representative dimension of the mesh size so that the 

results obtained are objective with regard to mesh refinement, see BaZant and Oh (1983). 

The equivalent length, denoted by h, depends in general on the chosen element type, element size, 

element shape, integration scheme and even on the particular problem considered. In this study it is 

assumed that the equivalent length is related to the area of an element by, see Feenstra (1993), 

(25) 

in which w, and W'l are the weight factors of the Gaussian integration rule as it is tacitly assumed 

that the elements are always integrated numerically. The local, isoparametric coordinates of the 

integration points are given by sand 7). The factor lXh is a modification factor which is equal to one 

for quadratic elements and equal to J2 for linear elements, see Rots (1988). 

* The word type is used here because the original author. see Hill (1948). assumed a three-dimensional formulation. 

The influence of the out-of-plane direction is generally unknown and will not be considered. The adopted yield sUiface 

should. in fact, be considered as a paJ1icuiar case of the complete quadratic formulation from Tsai and Wu (1971). 

** The word type is used here because the Rankine yield criterion represents the material strength along the maximum 

principal stress. For an anisotropic material such definition is clearly not possible. The proposed yield surface for tension 

will be derived from the original Rankine yield criterion but represents solely a fit of experimental results. 
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The inelastic work gf is defined by the integral 

g f = (j dE = (j dEF f T f T (26) 

which corresponds to the area under the stress-strain diagram for uniaxial loading. 

Assuming that the inelastic work gf is uniformly distributed over the equivalent length, the relation 

between the fracture energy Gr and the work gf is given by 

(27) 

This results in a material model related to the energy which has to be dissipated due to the 

irreversible damage in the material. The concept of an eqUivalent length has been used extensively 

in the analysis of concrete structures. In this study, this concept will be used to model the tensile 

and compressive softening behavior of masonry, although it is recognized that the latter mecha

nism is physically more a volume-driven process than a surface-driven process. 

5.1.2 A Rankine type criterion 
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The expression for the Rankine yield criterion can be written, see Lourenco (1996), as 

(28) 

where the single scalar T<.", is used to control the amount of softening. Setting forth a Rankine type 

yield surface for an orthotropic material, with different tensile strengths along the x, y directions is 

now straightforward if eq. (28) is modified to 

(29) 

where the parameter IX, which controls the shear stress contribution to failure, reads 

(30) 

Here, /'x' /,y and Tu are, respectively, the uniaxial tensile strengths in the x, y directions and the pure 

shear strength. Note that the material axes are now fixed with respect to a specific frame of 

reference and it shall be assumed that all stresses and strains for the elastoplastic algorithm are 

given in the material reference axes. Eq. (29) can be recast in a matrix form as 

1 

fl = (~ePt~)2 + ~7!"T~ (31) 



where the projection matrix P t reads 

(32) 

the projection vector 7r reads 

(33) 

the reduced stress vector ~ reads 

~ = (J- 17 (34) 

the stress vector (J and the back stress vector 17 read 

(J = {(Jx (Jy 'xy} T 

17 = {o-tl(/(t) o-d/(t) O}T 
(35) 

Exponential tensile softening is considered for both equivalent stress-equivalent strain diagrams, 

with different fracture energies (Glx and Gly ) for each yield value, which reads 

(36) 

It is noted that the equivalent length h, d. eq. (25), can lead to a snap-back at the constitutive model 

if the element size is large. Then, the concept of fracture energy which has been assumed is no 

longer satisfied. In such a case, the strength limit has to be reduced in order to obtain an objective 

fracture energy by a sudden stress drop, resulting at a certain stage in brittle failure, see Rots (1988). 

A non-associated plastic potential g] 

(37) 

is considered, where the projection matrix Pg represents the Rankine plastic flow and reads 

(38) 

The inelastic behavior is described by a strain softening hypothesis, cf. eq. (7), given by the maxi

mum principal plastic strain sf as 

.p .p 
. - . f - Ex + Ey ~ J( . P _ . p)2 ( . P )2 
/(t - E - 2 + 2 Ex Sy + Yxy (39) 
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which reduces to the particularly simple expression! 

(40) 

5.1.3 A Hill t y pee r i t e rio n 
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The simplest yield surface that features different compressive strengths along the material axes is a 

rotated centered ellipsoid in the full plane stress space ((JyJ (Jyand [xy). The expression for such a 

quadric is 

(41) 

where A, B, C and D are four material parameters such that B2 - 4AC < 0, in order to ensure 

convexity. For the numerical implementation the yield surface can be advantageously recast in a 

square root matrix form and the variables can be defined in a more amenable way. Thus, the 

proposed yield surface is rewritten as 

I 

f2 = (~(JTp,(J)2 - 0",(/(,) (42) 

where the projection matrix P, has been selected as 

2~'2(/(') fJ 0 
(J,! ( /(,) 

P, = 2 ~c1 (/(,) fJ 0 
(J,2( /(cl 

(43) 

0 0 2]' 

the yield value a, is given by 

(44) 

and the scalar /(, controls the amount of hardening and softening. The current yield stress values 

along the materials axes (ad ( /(,) and 0",2 ( /(,» follow the inelastic law given below as a function 

of the material compressive strengths along the material axes, respectively fmx and fmy. It is noted 

that the fJ and r values introduced in eq. (43) are additional material parameters that determine the 

shape of the yield surface. The parameter fJ controls the coupling between the normal stress values, 

i.e. rotates the yield surface around the shear stress axis, and the parameter r controls the shear 

stress contribution to failure. 

The inelastic law proposed in the previous section for the elliptical cap is again adopted here. 

Parabolic hardening followed by parabolic/ exponential softening is considered for both equivalent 

stress-equivalent strain diagrams, with different compressive fracture energies (Gf,x and Gky) along 

the material axes. The problem of mesh objectivity of the analyses with strain softening materials is 

a well debated issue, at least for tensile behavior, and the stress-strain diagram must be adjusted 



according to a characteristic length h to provide an objective energy dissipation. The inelastic law 

shown in Fig. 12 features hardening, softening and a residual plateau of ideally plastic behavior. 

A redefined compressive fracture energy Gfci (shaded area in Fig. 12) corresponds only to the local 

contribution of the o-ci - 1\", diagram, where the subscript i refers to the material axis. The peak 

strength value is assumed to be reached simultaneously on both materials axes, i.e. isotropic 

hardening, followed by anisotropic softening as determined by the different fracture energies. 

For practical reasons, it is assumed that all the stress values for the inelastic law are determined 

from the peak value o-pi = f mi as follows: o-ii = U mi, o-mi = U mi and 0-,. = ~f mi' The equivalent 

plastic strain ~, corresponding to the peak compressive strength, is assumed to be an additional 

material parameter. 

a- - a-
with mi = 2 ml pi 

1(mi - Kp 

Fig. 12. Hardening/softening law for compression. 

An associated flow rule and a work hardening/ softening hypothesis are considered. This yields, 

upon substitution in eq. (10), 

. 1 T.p -; 
1\", = =-(J t: = .ICc 

(J", 

5.2 Comparison with experimental data of masonry strength 

The most complete strength data of biaxially loaded masonry is given by Page (1981,1983) who 

tested 102 panels of half-scale solid clay brick masonry, with dimensions 360 x 360 x 50 mm3• 

(45) 

The panels were loaded proportionally in the principal stress directions (J1 and (J"2 along different 

orientations e with respect to the material axes. The comparison between the experimental values 

and the model is given in Fig. 13. Globally, good agreement is found. The uniaxial compressive 

strength parallel to the bed joints seems to be overpredicted by the model, see Fig. 13a, which is due 

to a debatable definition of failure in the experiments for these loading conditions (early splitting of 

the bed joints in tension). 
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Fig. 13. Comparison between the plasticity model and experimental results from Page (1981,1983). 

Material parameters: hx = 0.43 Nlmm'; hy = 0.32 Nlmm'; f= = 8.74 Nlmm' ; fmy = 8.03 Nlmm'; 

a= 1.26; /3= -1.17; Y= 9.59. 

5.3 Example of application 
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It has been pointed out before in this article that, traditionally, experiments in shear walls have been 

adopted by the masonry community as the most common in-plane large test. In this study, atten

tion is devoted to the results of hollow clay brick masonry shear wall, denoted by wall W, obtained 

at ETH Zurich, see Ganz and Thurlimann (1984). This test is well suited for the validation of the 

model, not only because they are large and feature well distributed cracking, but also because most 

of the parameters necessary to characterize the model are available from biaxial tests. Fig. 14 shows 

the geometry of the wall, which consists of a masonry panel of 3600 x 2000 x 150 mm3 and two 

flanges of 150 x 2000 x 600 mm3• Additional boundary conditions are given by two concrete slabs 

placed in the top and bottom of the specimen. Initially, the wall is subjected to a vertical load 

uniformly distributed over the length of the wall, which equals 0.61 Nlmm'. This is followed by the 

application of a horizontal force F on the top slab along a horizontal displacement d. 

The experimental crack patterns at peak and ultimate load are shown in Fig. 15. The wall shows a 

very ductile response with tensile and shear failure along the diagonal stepped cracks. 



Dimensions 
in [mml 

200 
>' x 

,-

Fig. 14. Wall W. Geometry and loads. 
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For the numerical analysis linear plane stress continuum elements and constant strain triangles in a 

cross diagonal patch with full Gauss integration were utilized. A regular mesh of 24 x 15 4-noded 

quadrilaterals is used for the panel and 2 x 15 cross diagonal patches of 3-noded triangles were used 

for each flange. The analysis was carried out with indirect displacement control with line searches, 

whereas the snap-backs are traced with COD control over the most active crack. It is noted that the 

self-weight of the wall and the top slab is also considered in the analyses. The properties of the com

posite material are obtained from Ganz and Thiirlimann (1982), see Table 4 and Table 5. It is noted 

that the flanges have the width of a single unit and the failure in the x direction (equivalent to the 

out-of-plane direction of the panel) is determined by the tensile and compressive strength of the 

clay brick. These new inelastic properties of the flanges read:.f.x = 0.68 Nlmm2 and Imx = 9.5 Nlmm2• 

Table 4. Wall W. Elastic properties. 

2460Nlmm2 5460 Nlmm' 0.18 1130 Nlmm2 

The comparison between numerical and experimental load-displacement diagrams is given in 

Fig. 16. Good agreement is found. The low initial vertical load combined with the confinement 

provided by the flanges and the top concrete slab yields an extremely ductile behavior. 

The unloading found at d = 2.0 mm is due to the mode I crack opening of the left flange. 

335 



Table 5. Wall W. Inelastic properties. 

Tension regime 

a 

0.28 Nlmm' 0.05 Nlmm 2 1.73 0.02 Nmmlmm 2 0.02 Nmmlmm 2 

Compression regime 

y Gfcx Gfcy KP 

1.87 Nlmm 2 7.61 Nlmm 2 -1.05 1.20 5.0 Nmmlmm' 10.0 Nmmlmm2 8 x 10--4 

(a) 

(b) 

Fig. 15. Wall W. Experimental failure patterns: (a) peak; (b) end stage, Ganz and Thiirlimann (1984). 
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The behavior of the wall is depicted in Fig. 17 and Fig. 18 in terms of deformed meshes, where the 

center node of the crossed diagonal patch of the flanges is not shown in order to obtain a more 

legible picture, and cracked Gauss points. Cracks are plotted normal to the tensile principal plastic 

strain directions with a thickness proportional to the tensile equivalent plastic strain, being the 

lowest 5% values discarded in order to obtain legible pictures. The comparison between experimen

tal and numerical results is more difficult than in the case of micro-models because units and joints 

are not modeled. However, reasonable agreement seems to be found. Initially, extensive diagonal 

cracking of the panel is found, see Fig. 17b. This is accompanied by flexural cracking of the left 

flange. At this stage, cracking of the panel is, basically, governed by the Mohr's circle as a relatively 

uniform state of stress in the panel is found. Upon increasing horizontal loading, cracking tends to 

concentrate in a large shear band going from one corner of the specimen to the other, which is 

accompanied by flexural cracking of the right flange, see Fig. 18. At this ultimate stage, a well 

defined failure mechanism is formed with a final shear band going from one corner of the specimen 

to the other and intersecting the flanges. This means that cracks rotate significantly after initiation 

governed by Mohr's circle to failure in a sort of shear band, which agrees well with the experiments, 

see Fig. 15. Even at the ultimate stage the stress values are considerably below the maximum 

compressive strength in the vertical direction which confirms that failure is exclusively governed 

by the tension regime. 

It is not surprising that the plasticity model can capture the significantly large rotations of cracks 

because the Rankine yield surface resembles the rotating crack model, see Feenstra (1993) and 

Louren<;o et al. (1995). 
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Fig. 17. Wall W. Results of the analysis at a displacement of2.0 mm: (a) (incremental) deformed mesh; 

(b) cracks 
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Fig. 18. Wall W. Results of the analysis at a displacement of12.0 mm: (a) deformed mesh; (b) cracks. 

6 Finalrentarks 
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Masonry is a composite material that consists of units and mortar, normally arranged in a periodic 

manner. The interface between units and mortar acts as a plane of weakness and is, largely, 

responsible for the inelastic behavior. A detailed modeling strategy must then include units, mortar 

and interface. However, such a modeling strategy is unwieldy and the computational inefficiency 

becomes prohibitive in the analysis of large structures. Simplified approaches are thus preferred in 

the present article, namely, a micro-modeling strategy, where joints are modeled with zero-thickness 

interface elements, and a macro-modeling strategy, where a relation is established between average 

masonry stresses and average masonry strains, under the assumption of a homogeneous material. 

In a micro-modeling approach, units are modeled with continuum elements and joints are modeled 

with interface elements. All inelastic phenomena are lumped in the relatively weak joints via a 

composite interface model. This (plasticity) model comprehends three different failure mechanisms, 

namely, a straight tension cut-off for mode I failure, the Coulomb friction model for mode II failure 

as well as an elliptical cap for compression and combined shear / compression failure. 

Validation of the model against an experiment carried out in a shear wall was successful. This gives 

a good impression about the adopted modeling strategy and provides a good understanding of the 

failure mechanisms involved in the analyzed structures. The (micro-)model is particularly suited 

for small structures and structural details where the interaction between units and mortar is of pri-



mary interest. It is noted that, for large structures, the memory and time requirements become too 

large and, if a compromise between accuracy and economy is needed, a macro-modeling strategy is 

likely to be more efficient. 

In a macro-modeling approach, units and joints are smeared out in a homogeneous continuum 

where a relation is established between average masonry stresses and average masonry strains. 

An orthotropic continuum model has been presented, which consists of a Rankine type yield crite

rion for tensile failure and a Hill type yield criterion for compressive failure. It is assumed that the 

failure mechanism of masonry loaded in tension and compression is governed by crack growth at 

the micro-level. Furthermore it is assumed that the internal damage associated with each failure 

mechanism can be modeled using internal parameters which are related to a fracture energy in 

tension and a compressive fracture energy. This energy-based (plasticity) model resorts to the well 

known crack band theory to obtain objective results with respect to the finite element mesh size. 

The model is capable of predicting independent, in the sense of completely diverse, behavior along 

the material axes. A comparison with experimental observations in a shear wall test shows good 

agreement. 
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