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Asphalt mixtures with high porosities (known as porous asphalt (PA) mixes) are becoming a popular
choice among road authorities as it provides better skid resistance while also reducing tire-pavement
noises. Towards the design and manufacture of PA mix pavement, the evaluation of the mechanical prop-
erties of PA mixes is of great importance. To predict the mechanical properties of PA mixes, microme-
chanical models have been considered as an effective tool. In most research studies, continuum-based
micromechanical models, i.e. the Self-consistent model, the Mori-Tanaka model, etc. are widely used
to predict the stiffness of asphalt mixtures. However, the limitation of these models is that they cannot
describe the characteristics of individual particles and thus they cannot provide accurate predictions. On
the other hand, the discrete-based micromechanical model (DBMM) which simulates a granular material
as an assembly of bonded particles seems to be a promising alternative. Limited research studies have
focused on studying the utilization and the applicability of this model for asphalt mixes. Therefore, this
paper aims to propose a framework to use DBMM and to evaluate its performance in estimating a PA
mix’s stiffness. Based on the obtained results, both the merits and limitations of this model were
highlighted.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to the advantage of improving wet skid resistance and
reducing hydroplaning and ‘‘splash and spray” effects, asphalt mix-
tures with high porosities, known as porous asphalt (PA) mixes,
have attracted the attention of many researchers and engineers
[1–4]. PA mixes can be considered as environmental-friendly
materials since they are capable of reducing pavement-tire interac-
tion induced noises. All these advantages motivate the wide use of
PA mixes in some countries such as the Netherlands where PA
mixes surface more than 80% of the highways [5].

In order to come up with a proper PA mix design, a good estima-
tion of the mechanical properties of a given mix is often required.
Commonly available pavement analysis tools such as 3D-move [6],
together with the mechanical properties of the mix, can be used to
estimate the lifetime expectancy of the designed pavements under
critical loading conditions. In practice, in order to determine a
mix’s mechanical properties, a series of laboratory tests are often
conducted. However, such laboratory tests are usually not only
expensive but also time-consuming.
In order to reduce experimental work, researchers [7,8] have
made efforts to obtain mechanical properties of an asphalt mixture
directly from the properties of its constituents. These empirical/
semi-empirical relationships have been broadly used for estimat-
ing the mechanical properties of asphalt mixtures [9,10]. However,
such models contain various parameters that are calibrated on the
basis of a large amount of experimental data. The need for calibra-
tion limits the applicability of empirical/semi-empirical models as
the determined values of the parameters are only applicable to the
mixtures they are calibrated for [11].

With the above realization, researchers started to look for the-
oretical relationships to predict the mechanical properties of
asphalt mixtures. In recent decades, micromechanical models
which are developed on the basis of basic mechanical theories
(such as continuum mechanics) have drawn the attention of many
researchers [12–18]. Among different types of micromechanical
models, numerical micromechanical models, which are developed
based on finite element method (FEM) and/or discrete element
method (DEM), have been favored by many researchers [12–15]
mainly because these models can describe almost realistic
microstructures of asphalt mixtures (i.e. different sizes and shapes
of aggregates). However, the description of such complex
microstructures requires the development of a huge number of
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finite or discrete elements. This indicates that powerful computa-
tional facilities are always needed to analyze the mechanical prop-
erties of asphalt mixtures, and it always takes a long time to obtain
the predicted results.

Furthermore, although the microstructure of asphalt mixtures
can be realistically described using FEM or DEM, accurate predic-
tions still rely on the calibration of some input parameters. For
example, experimental results are typically needed to calibrate
the parameters of the contact constitutive models between two
particles when DEM is used to simulate the mechanical properties
of asphalt mixtures [12,13].

On the other hand, analytical micromechanical models can be a
promising alternative to determine the mechanical properties of
asphalt mixtures in a more effective way. These models simplify
the descriptions of the microstructure of asphalt mixtures. For
example, aggregates are typically modelled as identical spherical
or ellipsoidal particles. However, these simplified descriptions
allow obtaining analytical solutions to the mixture’s mechanical
properties. Therefore, in comparison to FEM and DEM, analytical
micromechanical models are much less time and facilities-
consuming. Furthermore, although analytical micromechanical
models cannot realistically describe the microstructure of asphalt
mixtures, their capabilities of accurately predicting the mechanical
properties of the mixtures have been reported in many research
studies [19,20].

Currently, research work regarding analytical micromechanical
models has mainly focused on the continuum-based microme-
chanical models (CBMM), such as the Self-consistent (SC) model
[21], the Mori-Tanaka (MT) model [22], the Differential model
[23], the generalized Self-consistent (GSC) model [24], etc. These
models are developed based upon a matrix-inclusion system
where an inclusion is embedded into a continuous matrix [25].
Although CBMM could provide accurate predictions for materials
with low concentrations of particles, the predictions at high con-
centrations did not match well with the experimental results,
especially at low frequencies [16–18].

Researchers postulated that the inaccuracies of the predictions
could be related to the fact that CBMM do not sufficiently account
for the stiffening effect of particles’ interactions [16,17]. In a com-
posite, particles’ interactions are always associated with the char-
acteristics of individual particles, such as their sizes, shapes,
locations, etc. On the contrary in CBMM, all the particles are repre-
sented as one phase, which makes it impossible for the models to
include these characteristics.

In recent years, few micromechanical models where a specific
microstructure of a composite can be defined have also been used
by pavement researchers [26]. For example, in the physical interac-
tion model [26], different sizes of individual particles are embed-
ded into a continuous matrix, see Fig. 1. On the basis of the
distribution of the particles and their different sizes, the stiffness
Inclusions

Matrix

Fig. 1. Illustration of the physical interaction model.

2

of the composite can be estimated by quantifying the stiffening
effects of individual particles and their interactions.

Although the physical interaction model provides a way to con-
sider the characteristics of individual particles, it is only suitable
for composites without or with few air voids, such as mastic and
dense asphalt mixtures. This is because the matrix in the model
is considered to be continuous. However, in a PA mix, since there
is a high content of air voids, the matrix phase is expected to be
discontinuously located among densely packed aggregate particles.
Therefore, in order to accurately predict the mix’s mechanical
properties, a different micromechanical model which can reason-
ably describe the microstructure of the mix is required.

In comparison to the physical interaction model, the discrete-
based micromechanical model (DBMM) [27–29] potentially pro-
vides a better way to describe the particles’ interactions in PA
mixes. This model simulates a bonded granular material as a
particle-on-particle skeleton bonded by binder layers. This
arrangement is naturally expected to represent a more reasonable
and realistic microstructure for PA type mixes. Moreover, such a
model has the capability to include several geometrical parameters
to describe the characteristics of individual particles, for example,
the radius of the particles, the average number of contacts per par-
ticle, etc.

Solutions to the effective moduli of a bonded granular material
using DBMM have been derived by different researchers [27,29]. In
this study, solutions provided by Dvorkin, et al [27] were used and
thus DBMM will be referred to as Dvorkin’s model in the following
sections. Dvorkin’s model has been successfully used to predict the
modulus of granular materials bonded by elastic binders such as
frozen sand, glass beads packs, etc. [30]. According to the elastic–
viscoelastic corresponding principle [31], models for elastic mate-
rials can be used for viscoelastic materials as well. Therefore, it is
highly possible that Dvorkin’s model could be used for estimating
the modulus of asphalt materials. However, limited research stud-
ies have provided thorough investigations in this area. For exam-
ple, Zhu and Nodes [28] used Dvorkin’s model to simulate the
creep behaviour of asphalt mixtures, limiting their study to some
randomly assumed geometrical parameters, whereas, it is obvious
that the values of geometrical parameters significantly affect the
predictions.

In light of the above discussions, the main aim of this study is to
investigate the performance of Dvorkin’s model on predicting the
modulus of PA mixes. The scope of this study includes:

� to propose a framework for predicting the modulus of PA mixes
using Dvorkin’s model;

� to evaluate the performance of Dvorkin’s model based upon the
experimental results of the complex modulus of PA mixes.

In order to make this paper understandable for readers, it has
been arranged in different sections. The first and second sections
will introduce and provide background information about Dvor-
kin’s model. The proposed framework for predicting the effective
moduli of PA mixes using Dvorkin’s model will be elaborated in
the subsequent section. In the fourth section, materials character-
istics and performed laboratory tests will be presented. The fifth
section will discuss the obtained model parameters. The last two
sections will describe the predicted results and conclusions.
2. Background knowledge

2.1. Dvorkin’s model

In Dvorkin’s model, the overall effective moduli of a granular
material are derived by homogenizing the stiffness of an assembly
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of two-bonded particle systems that orient in different directions.
This section first describes the stiffness of a two-bonded particle
system, on the basis of which, a homogenization technique is intro-
duced to obtain the effective (homogenized) moduli of a bonded
granular material.

2.1.1. Stiffness of a two-bonded particle system
A two-bonded particle system consisting of two equal-sized

spheres and a layer of binder is illustrated in Fig. 2a. The spherical
particles are assumed to have an arbitrary radius R, with the binder
layer radius of a and a minimum height of 2 h0. It is noted here that
generally, particles in a granular material have different sizes and
irregular shapes. Since closed-form solutions for calculating the
stiffness of a two-bonded particle system with irregular shapes
and different sizes have not yet been accurately derived, past
researchers have considered these particles as spheres with uni-
form sizes [27,29].

In Dvorkin’s model, the stiffnesses of a two-bonded particle sys-
tem S are defined as:

Fn ¼ Sndn; Fs ¼ Ssds ð1Þ
where F is the applied force on the system; d is the displacement of
the centre of one particle relative to the median plane (the x axis);
and the subscripts n and s denote the normal and the tangential
direction, respectively.

The value of d is related to the displacement of the binder layer’s
surface (represented as V and U in the normal direction and the
tangential direction, respectively) as well as that of the sphere’s
surface (represented as v and u in the normal direction and the tan-
gential direction, respectively), see Eqs. (2) and (3).

dn ¼ vðxÞ � VðxÞ ð2Þ

ds ¼ uðxÞ � UðxÞ ð3Þ
In order to calculate the displacement of the binder layer,

researchers [27] proposed a solution for a similar problem assum-
ing a thin binder layer as an elastic base. In this solution, V(x) and U
(x) were related to the stress along the interface r via Eqs. (4) and
(5), respectively. Furthermore, since the contact region is small as
compared to the particle, v(x) and u(x) can be approximated as the
surface’s displacement of an elastic half-space [27], see Eqs. (6) and
(7), respectively.

rnðxÞ ¼ �2Gbð1� mbÞ
1� 2mb

VðxÞ
hðxÞ ð4Þ
Fig. 2. A two-bonded

3

rsðxÞ ¼ �Gb
UðxÞ
hðxÞ ð5Þ

vðxÞ ¼ 1� mp
pGp

Z p

0
du

Z b

0
rnðrÞds ð6Þ

uðxÞ ¼ 1
2pGp

Z p

0
du

Z b

0
rs rð Þð1� mpsin2uÞds ð7Þ

where

b ¼ xcosuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2sin2u

q

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ s2 � 2xscosu

p
mb and Gb are the Poisson’s ratio and the shear modulus of the

binder layer, respectively; mp and Gp are the Poisson’s ratio and
the shear modulus of the particles, respectively; h(x) is the half-
thickness of the binder layer, which can be approximated as

hðxÞ ¼ h0 þ x2

2R
ð8Þ

By combining Eqs. (2), (4) and (6) or Eqs. (3), (5) and (7), the dis-
placement of the binder layer’s surface can be obtained giving a
non-zero constant value of d, see Eqs. (9) and (10). These two equa-
tions are known as the Volterra integral equations of the second
kind. Since this type of integral equations is too complicated to
be solved analytically, a numerical technique was used, see Appen-
dix A. Once the displacement of the binder layer’s surface is known,
the value of r can be computed from Eqs. (4) and (5). The value of F
is determined by integrating r on the whole area of the interface,
see Eqs. (11) and (12).

dn þ VðxÞ ¼ Kn

Z p

0
du

Z b

0

VðrÞ
h rð Þ ds ð9Þ

ds þ UðxÞ ¼ Ks

Z p

0
du

Z b

0

UðrÞ
h rð Þ ð1� mpsin2uÞds ð10Þ

where

Kn ¼ � 2Gb

pGp

ð1� mpÞð1� mbÞ
1� 2mb

Ks ¼ � Gb

2pGp
particle system.
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Fn ¼
Z a

0
rnðxÞ � 2px � dx ð11Þ

Fs ¼
Z a

0
rsðxÞ � 2px � dx ð12Þ

It is noted that the above solutions were developed for particles
bonded by an elastic binder layer. According to the elastic–vis-
coelastic corresponding principle, these solutions can be used for
viscoelastic materials by replacing the elastic moduli of the binder
layer with the complex moduli of the viscoelastic binder layer.

2.1.2. Homogenization technique
In order to upscale the mechanical properties of a two-bonded

particle system to the effective moduli of a granular material, a
homogenization technique is needed. As the first step, an assembly
of bonded particles, as illustrated in Fig. 3, is considered as a rep-
resentative volume element (RVE) of a bonded granular material.
In the RVE, the particles are considered as spheres with a uniform
radius of R; and all the binder layers are assumed to have a radius
of a and a minimum height of 2 h0.

Two spheres r and s, which are initially in contact with each
other, have the position vectors of X(r) and X(s) in the global coor-
dinate system, respectively. Under a deformation u subjected to
the boundary of the system, the centers of r and s also undergo dis-
placements, represented as u(r) and u(s), respectively. By using the
kinematic hypothesis that the strains throughout the packing are
uniform, the values of u(r) and u(s) can be calculated via Eq. (13).

uðrÞ
i ¼ eij

� �
: XðrÞ

j ;uðsÞ
i ¼ eij

� �
: XðsÞ

j ð13Þ
where heiji is the average strain applied on the packing.

By symmetry, it can be obtained that the center of the median
plane between the sth and the rth particles undergoes a displace-
ment of (u(r) + u(s))/2. Thus, relative to the median plane’s center
point, the displacement of the rth sphere center is (u(r)-u(s))/2. This
relative displacement can be separated into a normal component
dn (Eq. (14)) and a shear component ds (Eq. (15)). The total force
F on the sth sphere due to its contact with the rth sphere is given
as the sum of the force in the normal direction and that in the tan-
gential direction, see Eq. (16). By substituting Eq. (13) into Eq. (16),
the value of F can be further written as Eq. (19).

dn ¼ 1
2

uðrÞ � uðsÞ� � � IðsrÞ� �
IðsrÞ ð14Þ
Fig. 3. A pack of bonded spherical particles with uniform sizes.
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ds ¼ 1
2

uðrÞ � uðsÞ� �� dn ð15Þ

FðsrÞ ¼ Sn � Ssð Þ 1
2

uðrÞ � uðsÞ� � � IðsrÞ� �
IðsrÞ þ Ss

1
2

uðrÞ � uðsÞ� �� �
ð16Þ

FðsrÞ ¼ Sn � Ssð Þ 1
2
eh i : XðrÞ � XðsÞ

	 

� IðsrÞ

� �
IðsrÞ

þ Ss
1
2
eh i : XðrÞ � XðsÞ

	 
� �
ð17Þ

Furthermore, it is defined that I is the unit vector along the line
of centers of two particles:

IðsrÞ ¼ XðsÞ � XðrÞ

2 Rþ h0ð Þ ð18Þ

Substituting Eq. (18) into Eq. (17), the value of F can be further
given as

F srð Þ
i ¼ Sn � Ssð Þ � Rþ h0ð Þ eh iklIðsrÞk IðsrÞl

	 

IðsrÞi

þ Ss � Rþ h0ð Þ eh iijIðsrÞj

	 

ð19Þ

The average stress field hri of the granular material with a total
volume V is related to the stresses within individual particles by
using the following equation:

rh iij ¼
1
V

X
Np

Z
Vs

rðsÞ
ij dV ð20Þ

where rij
(s) is the stress within the sth particle; Vs represents the vol-

ume of the sphere and Np is the number of all the particles within V.
By using the divergence theorem, the value of rij

(s) can be calcu-
lated from the traction on the surface of the particle:Z
Vs

rðsÞ
ij dV ¼ 1

2

Z
Ss

x0is
ðsÞ
j þ x0js

ðsÞ
i

	 

dS ð21Þ

where Ss is the surface of the sth particle; x’ denotes the position
vector of a point on Ss relative to the center of the particle; s(s)

denotes the traction across Ss. From Fig. 3, it can be seen that the
value of s(s) is nonzero only at the position where the particle con-
tacts with other particles. Therefore, Eq. (21) can be further written
asZ
Vs

rðsÞ
ij dV ¼ 1

2

X
n

x0iF
ðrsÞ
j þ x0jF

ðrsÞ
i

	 

ð22Þ

where n is the number of contacts per particle.
Since the contact area between the sth and the rth particle is

small, the value of x’ at the contact area can be approximated by
the position vector of the center of the contact area relative to
the center of the sth particle:Z
Vs

rðsÞ
ij dV ¼ 1

2

X
n

1
2

XðrÞ
i � XðsÞ

i

	 

FðrsÞ
j þ 1

2
XðrÞ

j � XðsÞ
j

	 

FðrsÞ
i

� �
ð23Þ

By substituting Eq. (23) into Eq. (20), the value of hri can be
written as

rh iij ¼
1
2V

X
Np

X
n

1
2

XðrÞ
i � XðsÞ

i

	 

FðrsÞ
j þ 1

2
XðrÞ

j � XðsÞ
j

	 

FðrsÞ
i

� �
ð24Þ

This value can be further expressed as Eq. (25) by substituting
Eq. (19) and Eq. (18) into Eq. (24).

rh iij ¼
Rþ h0ð Þ2
2V

X
Np

X
n

2 Sn � Ssð Þ eh iklIðsrÞk IðrsÞl

	 

IðrsÞi IðrsÞj

þSs eh ijkIðrsÞk IðrsÞi þ eh iikIðrsÞk IðrsÞj

	 

2
64

3
75 ð25Þ
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Assuming that the geometry of the packing is statistically iso-
tropic and the distribution probability of the contact points over
the surface of a sphere is uniform, the summation in Eq. (25) can
be represented in terms of averages:

rh iij ¼
Rþ h0ð Þ2nNp

2V
2 Sn � Ssð Þ eh iklIkIlIiIj

� �þ Ss eh ijkIkIi
D E

þ eh iikIkIj
� �	 
h i

ð26Þ
where the brackets <�> denote the average over all uniformly dis-
tributed unit vector I.

In Eq. (26), the total volume of the system V can be given as

V ¼ Vp

/p
ð27Þ

where Vp and /p denote the volume and the volume fraction of the
particles in the RVE, respectively. When all the particles are spheres
with uniform sizes, the value of Vp is given as

Vp ¼ 4
3
pR3Np ð28Þ

Combining Eqs. (27) and (28), the value of Np/V can be
expressed as

Np

V
¼ 3

4
/p

pR3 ð29Þ

Therefore, Eq. (26) can be further written as

rh iij ¼
3n/p Rþ h0ð Þ2

8pR3 2 Sn � Ssð Þ eh iklIkIlIiIj
� �þ Ss eh ijk IkIih i þ eh iikIkIj

� �	 
h i
ð30Þ
2.1.3. Effective moduli of a bonded granular material
The stiffness tensor C* of a bonded granular material can be

derived from Eq. (30) as

C�
ijkl ¼

3n/p Rþ h0ð Þ2
16pR3 4 Sn � Ssð Þ IiIj IkIl

� �þ Ss IkIih idjl þ IkIj
� �

dil þ IlIih idjk þ IlIj
� �

dik
� �� �

ð31Þ

According to the relationships in Eq. (32) and the definition of
the stiffness tensor for an isotropic material in Eq. (33), the Young’s
modulus E* of a bonded granular material can be calculated using
Eq. (34). By substituting the determined values of Sn and Ss from
Eq. (1) into Eq. (34), the value of E* can be obtained.

IiIj
� � ¼ 1

3
dij; IiIjIkIl

� � ¼ 1
15

dijdkl þ dikdjl þ dikdjk
� � ð32Þ

C�
ijkl ¼

G� 2G� þ E�ð Þ
3G� � E� dijdkl þ G� dikdjl þ dildjk

� � ð33Þ

E� ¼ n/p Rþ h0ð Þ2
4pR3

2Sn þ 3Ss
4Sn þ Ss

Sn ð34Þ

where n denotes the coordination number; /p is the volume frac-
tion of the particles; R represents the radius of the particles; h0
refers to the minimum distance between adjacent particles; and
Sn and Ss denote the stiffnesses of a two-bonded particle system
in the normal and in the tangential direction, respectively.

3. Proposed framework to predict stiffness of PA mixes

The proposed framework for predicting the stiffness of PAmixes
contains three main steps, see Fig. 4. A PA microstructure was
assumed to be consisting of randomly packed spherical particles,
mortar, and air voids. The total volume of mortar was categorized
into two functional groups. Some mortar layers that are located
between adjacent particles play a major role in binding particles
5

together, and thus they were defined as the ‘‘binding mortar lay-
ers”; whereas the remaining parts only play a role in coating indi-
vidual particles, and thus they were defined as the ‘‘coating mortar
layers”.

To predict the stiffness of PA mixes, the mechanical, volumetric
and geometric properties of every phase are required. Generally,
the mechanical and the volumetric properties can be directly mea-
sured from laboratory tests. Additionally, five geometric parame-
ters need to be determined: (1) the radius of the spherical
particles, (2) the thickness of the coating mortar layers, (3) the
minimum thickness of the binding mortar layers, (4) the average
coordination number, and (5) the radius of the binding mortar lay-
ers. These geometric parameters may also be measured using
advanced technologies such as digital image processing. However,
this method is difficult to be implemented since the values of all
these geometric parameters vary with different locations. Thus,
in this study, a different method that can be used to determine
the geometric parameters of the proposed microstructure in a
much easier but reasonable way was proposed, see Appendix B.

In the proposed microstructure, the properties of both the bind-
ing mortar layers and the coating mortar layers affect the stiffness
of a PA mix. However, Dvorkin’s model can only predict the stiff-
ness of a skeleton framework consisting of particles, air voids
and the binding mortar layers. Therefore, in the last step, a differ-
ent methodology was employed to include the effect of the coating
mortar layers in the model.

3.1. Proposed microstructure model for PA mixes

The microstructure model for PAmixes, see Fig. 5, was proposed
according to the literature [32]. Individual particles (modelled as
identical spheres with a uniform radius of R) are initially covered
by mortar layers with a uniform thickness of t. When the
mortar-covered aggregate particles pack together, the minimum
distance between adjacent particles, represented as 2 h0, has an
initial value of 2 t, see Fig. 5a. It was assumed that during the com-
paction process, the value of h0 decreases, and depending on the
amount of the compaction work, the value of h0 ranges from t
(without any compaction effort) to 0 (two particles contact each
other), see Fig. 5b. It is noted here that during the compaction,
not only the value of h0 decreases but also the relative positions
of aggregate particles change. However, since the change of the
particles’ positions is difficult to be analytically described, the pro-
posed microstructure model did not take this phenomenon into
account.

The volume of the binding mortar layer between two adjacent
particles is illustrated in Fig. 6a. The binding mortar layers, with
a radius of a, are assumed to be composed of two parts, see
Fig. 6b. When two particles are compacted closer, their coating
mortar layers overlap each other to form one part of the binding
mortar layer with a radius of a1. Due to the overlap of the coating
mortar layers, some mortar is squeezed out and forms the other
part of the binding mortar layer with a radius of a2.

3.2. Procedures to calculate the stiffness of PA mixes

According to the literature [30], contributions to the stiffness of
a mix made by the binding mortar layers and the coating mortar
layers are different. The binding mortar layers play a major role
in providing the stiffness of the mix because they enable the dis-
crete particles to work together as a skeleton framework. By con-
trast, the coating mortar layers contribute to the stiffness of the
mix by filling the air voids in the skeleton framework.

In light of the above discussions, the following procedure was
proposed to calculate the stiffness of PA mixes. At first, the stiffness
of the skeleton framework consisting of aggregate particles and the
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binding mortar layers was predicted using Dvorkin’s model, see
Fig. 7a. This skeleton framework was further equivalent as a two-
phase composite with air voids embedded into a continuous
matrix. This two-phase composite’s stiffness was assumed to be
the same as the skeleton framework. The air voids’ volume fraction
in the two-phase composite was equal to the sum of the volume
fractions of the air voids and the coating mortar layers in the PA
mix. Based on the stiffness of the composite and the volume frac-
tion of each phase, the matrix’s stiffness can be back-calculated.

At last, the coating mortar layers were added into the skeleton
framework to form the PA mix. This was equivalent to the process
that the same volume of mortar was embedded into the matrix of
the two-phase composite. As a result, a three-phase composite,
consisting of the matrix, coating mortar layers and air voids, was
formed, see Fig. 7b. The volume fractions of the coating mortar lay-
ers and the air voids in this three-phase composite were the same
as those in the PA mix. Based on the stiffness and the volume frac-
tion of each phase, the stiffness of the three-phase composite was
calculated. The stiffness of the PA mix, which was equal to the stiff-
ness of the three-phase composite, became known as well.

Since the matrix in the two-phase composite and the three-
phase composite was continuous, the back-calculation of the
matrix’s stiffness and the calculation of the stiffness of the three-
phase composite can be achieved using CBMM. In this study, the
SC model was preferred over others due to the following reasons:
(a) this model can be easily solved to back-calculate the stiffness of
the matrix (comparing to the GSC model and the Differential
model) [33]; and (b) it can provide more accurate predictions when
the volume fraction of inclusions is lower than 50% (comparing to
the Dilute model and the MTmodel) [34]. Appendix B describes the
procedure to back-calculate the matrix’s stiffness of a two-phase
composite using the SC model.

Up to now, previous sections briefly introduced Dvorkin’s
model and presented a framework to predict the stiffness of PA
mixes. The next part of the research was to evaluate the
a. Skeleton framework equiva

b. PA mix equivalent as 

Fig. 7. Procedures to calculate
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performance of Dvorkin’s model on the basis of laboratory investi-
gation. Using a Dynamic Shear Rheometer (DSR) device, frequency
sweep tests were conducted on laboratory prepared mortar speci-
mens to obtain input parameter Gb; while the PA mix specimens’
complex Young’s modulus Emix, which was used to evaluate the
performance of the model, was measured from uniaxial cyclic com-
pressive tests.
4. Materials and tests

4.1. Specimen preparation

4.1.1. PA mix specimens
In this study, in order to evaluate the performance of Dvorkin’s

model for PA mixes with different skeleton frameworks, two types
of PA mix materials (PA mix-A and PA mix-B) were considered. PA
mixes were designed according to the Dutch standard [35,36]. For
both mixes, the gradation of the aggregates and their respective
densities are shown in Table 1, and the content of asphalt binder
with a penetration of 70–100 was 4.3%. The density of the binder
was assumed as 1030 kg/m3.

Three replicates of PA mix specimens for uniaxial compressive
tests were prepared following the AASHTO T 342-11 standard
method [37]. A gyratory compactor was firstly used to make PA
mix specimens with a size of U150 mm � H170 mm. In order to
generate different skeleton frameworks, different compaction
efforts were performed. The number of the gyrations for making
PA mix-A specimens was 5 cycles while for PA mix-B, 40 cycles
were performed. As a result, a more air voids content of 18% was
achieved for PA mix-A whereas the air voids content of PA mix-B
was 13.2%. Since the final size of PA mix specimens for stiffness
measurement is 100 mm in diameter and 150 mm in height, spec-
imens from the gyratory compactor were further cored and cut.
lent as a two-phase composite

a three-phase composite

Matrix

Air voids

Mortar

Aggregates

Matrix

Air voids

Mortar
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the stiffness of PA mixes.



Table 1
Gradation of aggregates in the PA mix specimens.

Size (mm) 22.4 16 11.2 8 5.6 2 0.5 0.063 filler

Gradation (% Passing) 100 98 77 44 22 15 14 4 0
Density (kg/m3) 2686 2686 2686 2678 2670 2673 2658 2658 2638
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4.1.2. Mortar specimens
All the volumes of the asphalt binder, filler and sand (<0.5 mm)

in the mix were used to make mortar specimens. By normalizing
the proportion of each size of the sand with respect to the maxi-
mum size, the gradation of the sand in the mortar was obtained,
see Table 2. The asphalt binder’s content in the mortar was com-
puted as 23% according to the content of asphalt binder (4.3%)
and the proportion of the sand ((1–4.3%)�14% = 13.4%) in the mix.

The dimension of the mortar specimens is shown in Fig. 8a. The
middle part, with a diameter of 6 mm and a height of 12 mm, is
used to measure the material’s properties; while the end parts,
where steel rings with a height of 4 mm and a thickness of
1 mm were fixed, are used to clamp the specimens on the testing
machine. A special mould was used to make these specimens,
see Fig. 8b. It is highlighted that due to the high asphalt binder con-
tent, when the mortar material was heated up to around 160 �C, it
could smoothly flow. Therefore, there was no compaction work
applied during the preparation. More details on the preparation
of mortar specimens can be found in reference [38].

4.2. Laboratory tests

4.2.1. Frequency sweep test
Frequency sweep tests with a frequency range from 20 Hz to

0.1 Hz were conducted at five different temperatures of �10 �C,
4 �C, 21 �C, 37 �C and 54 �C. At each temperature, in order to guar-
antee the mortar behaves as a linear viscoelastic material, a con-
stant small strain from 10le to 200le was used.

4.2.2. Uniaxial cyclic compressive test
Universal Testing Machine (UTM), see Fig. 9, was used to con-

duct uniaxial cyclic compressive tests at seven different tempera-
tures, �10 �C, 4 �C, 21 �C, 37 �C, 45 �C, 54 �C and 60 �C, and six
different frequencies of 20 Hz, 10 Hz, 5 Hz, 1 Hz, 0.5 Hz and
0.1 Hz. Forces were measured via the load cell at the top of the
specimen and the displacement was measured via three Linear
Variable Differential Transformer sensors. During all the tests, a
constant strain with an amplitude of 10le was controlled.

5. Specified values of the input parameters in Dvorkin’s model

Using the proposed method in Section 3, the values of the
parameters (i.e. mechanical parameters, volumetric and geometric
parameters) in the proposed microstructure were determined on
the basis of the materials’ properties. In this section, these deter-
mined values will be presented.

5.1. Mechanical parameters

The master curves of the dynamic shear modulus |Gb| and the
phase angle db of the mortar at a reference temperature of 21 �C
were constructed according to the time–temperature
Table 2
Sand gradation in the mortar.

Size (mm) 0.5 0.18

Gradation (% Passing) 100 62
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superposition principle, see Fig. 10. It can be observed that with
the decrease of frequencies, the value of |Gb| keeps decreasing to
be close to zero, and meanwhile the value of db increases to be
approximately 90�. This can be related to the fact that the volume
fraction of the fine particles in mortar is not high enough to form a
particle-on-particle skeleton, and thus its behavior is governed by
asphalt binder.

The values of other mechanical parameters mb, Gp and mp were
obtained from the literature [16,39] as mb = 0.4, Gp = 20.8 GPa
and magg = 0.27. It is highlighted that the value of mb is expected
to be sensitive to test frequency and temperature. However, due
to the difficulty of measuring the radial deformation of a mortar
specimen, it was difficult to directly measure mb from laboratory
tests. Therefore, a constant value of mb between 0.35 and 0.5 is gen-
erally assumed in the literature [16].

5.2. Volumetric and geometrical parameters

As mentioned earlier, the values of /v for PA mix-A and PA mix-
B were 18% and 13.2%, respectively. According to the content and
the density of asphalt binder, and the aggregate gradation and their
respective densities, the values of /b and /p for PA mix-A were cal-
culated as 20% and 62%, respectively, while for PA mix-B, these val-
ues were 20.8% and 66%, respectively.

Since PA mix-A and PA mix-B contain the same aggregate gra-
dations and the same asphalt binder contents, the values of R
and t are identical for both mixes. The value of R was calculated
as 4 mm using Eq. (B.1). The value of b was calculated as 0.24 from
the values of /b and /p using Eq. (B.3). Once the value of b was
known, the value of t in Eq. (B.5) was computed as 0.39 mm.

As can be seen in Fig. B.2, when the air voids contents are 18%
and 13.2%, the values of h0/t are approximately equal to 0.58 and
0, respectively. Therefore, the values of h0 were estimated as
0.22 mm and 0 mm for PA mix-A and PA mix-B, respectively. Using
the values of /v, R, t and h0, the values of /0 were calculated as
0.268 and 0.340 using Eq. (B.12) for PA mix-A and PA mix-B,
respectively. The values of n were further obtained as 11.5 and
9.5 for PA mix-A and PA mix-B, respectively. On the basis of the
obtained values of R, t and h0, the values of a were computed as
1.67 mm and 2.53 mm using Eq. (B.16) for PA mix-A and PA
mix-B, respectively. Furthermore, using the values of /b, R, t, h0,
n and a, the values of /b_b were computed from Eqs. (B.18)-
(B.19) as 9.4% and 20.3% for PA mix-A and PA mix-B, respectively.
The values of /b_c were further obtained using Eq. (B.20) as 10.6%
and 0.7% for PA mix-A and PA mix-B, respectively. The calculated
results of all the parameters as well as the number of the figures
and/or equations that were used for determining these parameters
are summarized in Table 3.

Comparing the values of the geometric parameters between PA
mix-A and PA mix-B, it can be found that different compaction
effort affects individual phases in terms of not only their volumet-
ric properties in the macroscale but also their geometric properties
0.125 0.063 Filler

39 29 0
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Fig. 8. Mortar specimens’ preparation.

Fig. 9. Uniaxial cyclic compressive tests for PA mixes.

Table 3
Values of volumetric and geometric parameters.

Parameters PA mix-A PA mix-B Equations and/or Figures

/b 20% 20.8% NA
/p 62% 66% NA
/v 18% 13.2% NA
R 4 mm 4 mm Eq. (B.1)
t 0.39 mm 0.39 mm Eq. (B.5)
h0 0.22 mm 0 mm Fig. B.2
n 11.5 9.5 Eqs. (B.9) and (B.12)
a 1.67 mm 2.53 mm Eq. (B.16)
/b b 9.4% 20.3% Eqs. (B.17)–(B.19)
/b c 10.6% 0.7% Eq. (B.20)
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in the microscale. A larger amount of compaction effort decreases
the average distance between adjacent particles (or the average
thickness of the binding mortar layers). When two particles
become closer, a higher proportion of the coating mortar layers
overlap each other to form the binding mortar layers. Therefore,
a. Dynamic shear modulus
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with the decrease of the distance between adjacent particles, the
radius, as well as the total volume of the binding mortar layers,
increases. On the other hand, more compaction effort decreases
the average coordination number. This can be explained by the fact
that when the particles become closer, less space around one par-
ticle is provided for other particles to surround it.

6. Results and discussions

6.1. Predicted results of PA mixes’ modulus

In Fig. 11, both the experimental results and the predicted val-
ues of Emix (represented in terms of dynamic Young’s modulus |
Emix| and phase angle dmix) are presented. It can be seen that the
experimental values of |Emix| show asymptotic behaviour both at
very high frequencies and very low frequencies. In addition, with
the decrease of frequencies, the experimental results of dmix
b. Phase angle
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a. |Emix|-f curve for PA mix-A b. |δmix|-f curve for PA mix-A
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Fig. 11. Comparison of tested and predicted Emix.
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increase initially and decrease after a peak point. It is highlighted
here that previous research work [38], concluded that these beha-
viours of PA mixes are strongly related to the characteristics of the
stone-on-stone skeleton in the mix.

Fig. 11 also shows a comparison between the experimental and
the predicted values. From the plots, it can be seen that Dvorkin’s
model can predict Emix and dmix quite well for frequencies higher
than around 0.1 Hz. This shows that Dvorkin’s model works well
within specified frequencies.

In order to check the viability of Dvorkin’s model, predicted
results were compared against commonly used CBMM in Fig. 11.
The Differential model was chosen over other models because pre-
vious research studies showed that the Differential model provided
better predictions for PA mixes [17]. As can be seen in Fig. 11, at
higher frequencies, for a loosely compacted PA mix (i.e. PA mix-
A), the predicted results of |Emix| and dmix do not show significant
differences between Dvorkin’s models and the Differential model.
Whereas, for a densely compacted PA mix (PA mix-B), Dvorkin’s
model provides better predictions. This can be related to the fact
that Dvorkin’s model is developed mainly for densely packed gran-
ular materials [30]. Apart from the volumetric properties of each
phase, Dvorkin’s model also takes into account the stiffening
effects of the geometric characteristics of individual particles and
mortar layers. Therefore, in comparison to the Differential model,
Dvorkin’s model can account for the inter-particle interactions
more accurately.

The limitation of Dvorkin’s model can also be clearly seen from
the plots of Fig. 11 that at lower frequencies, the predicted values
of |Emix| are lower than the expected values. Moreover, the
10
predicted results of dmix do not show the expected decreasing
trend. One of the possible reasons could be that the values of some
input parameters, i.e. h0, n, a and mb, should change with frequen-
cies/temperatures rather than being constants over the whole fre-
quency range. With this realization, in order to further understand
the limitation of Dvorkin’s model, the sensitivity analysis of the
predicted stiffness on these parameters was conducted. In the fol-
lowing section, the results of the sensitivity analysis are presented.

6.2. Sensitivity analysis of predicted results to input parameters

In the previous analysis, the geometrical characteristics of the
proposed PA mix’s microstructure were considered to remain
unchanged. However, this assumption may not be true because
the external loads, i.e. the gravity and the applied load, may change
the values of geometrical parameters (i.e. h0, n and a). With the
increase of temperatures and the decrease of frequencies, the mor-
tar layers become softer and easier to deform. Consequently, the
distance between adjacent particles, i.e. the value of h0, is expected
to decrease. Meanwhile, the change of h0 also induces the change
of n and a, which can be easily derived from Eqs. (B.9)–(B.12)
and Eq. (B.16).

The above discussion indicates that the use of constant values of
h0, n and a in the whole frequency range can be one reason for the
poor performance of Dvorkin’s model in Fig. 11. Additionally, a
constant value of mb was assumed in the predictions. As mentioned
earlier, the value of mb is frequency- and temperature-dependent.
Therefore, it is also possible that the inaccuracy of the predictions
results from the assumption of a constant value of mb. With these
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realizations, in this section, the values of h0 and mb were varied to
check if the performance of the model can be improved. It is noted
that sensitivity analysis was conducted by taking PA mix-A as an
example.
6.2.1. The sensitivity of predicted Emix on h0
As discussed above, the value of h0 is expected to decrease with

the decrease of frequencies, therefore, three lower values of h0
(<0.22 mm) were used to predict Emix in the sensitivity analysis.
Table 4 shows the calculated results of n and a for different values
of h0 using Eqs. (B.9)–(B.12) and Eq. (B.16), respectively. It can be
seen that with the decrease of h0, the values of n and /b_c decrease
while the values of a and /b_b increase. The reasons for the changes
of n, a, /b_b and /b_c with the value of h0 have been explained in the
previous section (see Section 5.2).

Fig. 12 presents the predicted |Emix|-f and dmix-f curves using the
values of h0, n and a in Table 4. It can be observed that with the
decrease of h0, PA mixes become stiffer, which is reflected by an
increase of predicted |Emix| and a decrease of predicted dmix. This
can be explained by the fact that with the decrease of two particles’
distance, the total volume of the binding mortar layers, which
make the main contribution to the load-bearing capacity of the
mix, increases. Meanwhile, when two particles become closer,
their interactions become stronger. As can be derived from Eqs.
(4) and (5), the stresses at the mortar-particle interface increase
with the decrease of h0. When the interactions between adjacent
particles become stronger, their stiffening effect on the mix
becomes more significant.

Further investigations of the plots in Fig. 12 show that the
shapes of the predicted |Emix|-f and dmix-f curves do not signifi-
cantly change with different values of h0. At very low frequencies,
even when h0 is close to 0, the predicted values of |Emix| are still
much lower than the experimental results. Moreover, the pre-
dicted values of dmix do not show a significant decrease. These
observations indicate that the predictions are not likely to be accu-
rate even if the values of the geometric parameters change.
Table 4
Values of input parameters with the change of h0.

Parameters h0/t n

Values 0.58 11.5
0.25 9.1
0.125 8.8
0 8.5

a. |Emix|-f curve for PA mix-A

1E-2

1E+0

1E+2

1E+4

1E-6 1E-2 1E+2 1E+6

|E
m

ix
| 

(M
P

a
)

Reduced f (Hz)

Test
h0/t=0
h0/t=0.125
h0/t=0.25
h0/t=0.58

Fig. 12. The sensitivity of pred

11
Therefore, it can be concluded that the inaccurate assumption of
geometric parameters is not the main reason to explain the poor
performance of the model at high temperatures/low frequencies.
With this realization, further investigation was conducted to eval-
uate the influence of another assumed parameter mb on the pre-
dicted results.
6.2.2. The sensitivity of predicted Emix on vb
The predicted results of Emix using different values of vb are

shown in Fig. 13. With the increase of mb, the predicted values of
|Emix| increase whereas the predicted values of dmix decrease. When
the value of mb reaches around 0.5, the predicted values of |Emix|
become much higher than the experimental values whereas the
values of dmix are far below. It can be postulated that if higher val-
ues of tb are used at lower frequencies, the predicted values of |
Emix| and dmix may match with the experimental results. In order
to understand the effect of tb on the predicted results of Emix,
and to figure out if increasing the value of tb is a logical way to
improve the accuracy of the predictions, the effect of tb on the
behavior of the binder layers was investigated.

In Dvorkin’s model, the properties of the binder layers are
described using Eqs. (4) and (5). The stiffness of the binder layer
in the normal direction Sn_b (2 Gb(1-mb)/(1-2mb)) is a function of
both Gb and mb. Fig. 14 shows the calculated results of Sn_b/2Gb

(or (1-mb)/(1-2mb)) when the value of mb ranges from 0 to 0.5. It
can be observed that when mb is smaller than 0.45, the value of Sn_-
b/2Gb is not higher than 6. This indicates that when mb is smaller
than 0.45, the value of Sn_b is at most 12 times of Gb. Since Gb is
much lower than the stiffness of aggregates, the value of Sn_b
should be much lower than the stiffness of aggregates as well. In
this case, the normal stiffness of the two bonded particles (Fn/dn)
and the predicted stiffness of the mix are governed by the softer
binder layer. Therefore, in Fig. 13, it was observed that when mb
is equal to 0.3 and 0.4, the predicted results of |Emix| and dmix follow
the same shapes as |Gb| and db (see Fig. 10), respectively.
a (mm) /b_b /b_c

1.67 9.4% 10.6%
2.2 13.5% 6.5%
2.35 14.9% 5.1%
2.53 17.3% 2.7%

b. |δmix|-f curve for PA mix-A
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On the contrary, when mb is higher than 0.45, the value of Sn_b
increases significantly. When mb approaches 0.5, Sn_b becomes infi-
nite, which indicates that the binder layer behaves as a rigid body.
In this case, when Fn is applied, only aggregates deform and thus
the predicted modulus of the mix relies on the properties of the
aggregates. Since the aggregates are stiffer and behave as elastic
materials, the predicted properties of the mix (see Fig. 13) tend
to be stiff (high value of |Emix|) and elastic (low values of dmix) as
well.

From the above discussions, it can be concluded that the effect
of mb on predicted |Emix| and dmix is related to the assumption that
with the increase of mb, the mortar layer behaves like a rigid body.
In this case, when two aggregate particles approach each other, the
mortar layer does not have any deformation, while only aggregates
deform. However, in a real PA mix, when mb approaches 0.5 at high
temperatures or low frequencies, it is expected that the mortar
layer behaves more like a viscous material that easily deforms
under loading, while the deformation of the stiff aggregates is
much less significant. It is obvious that in these two cases, the
properties of the mortar layer are different. Therefore, although
the predictions with higher values of tb may match with the exper-
imental results numerically, the physical mechanism behind these
predictions does not seem to be realistic.
12
6.3. Limitation of Dvorkin’s model and possible explanations

Predicted results in Fig. 11 show that Dvorkin’s model performs
better in predicting the modulus of PA mixes at higher frequencies
than CBMM, especially for mixes with densely packing aggregate
particles; however, it still fails to provide accurate predictions at
lower frequencies. Following sensitivity analyses further reveal
that it is impossible (or unreasonable) to improve the accuracy of
the predictions at lower frequencies by varying the values of input
parameters.

The limitation of Dvorkin’s model can be related to the assump-
tion that in a bonded granular material, a load is always transferred
through the mortar layers between adjacent particles. This
assumption is clearly reflected by Eqs. (2) and (3), where the total
deformation of a two-bonded particle system is the sum of the
deformation of the particles and the deformation of the mortar
layer. This assumption is suitable at low temperatures/high fre-
quencies because, at these conditions, the mortar layer between
two particles is stiff enough to transfer a high level of load from
one particle to the other. Even if a direct particle-on-particle con-
tact area forms at the same time, since the total particle-mortar
contact area is expected to dominate over the particle-on-particle
contact area, the overall stiffness of the mix is governed by the
behavior of the mortar layers.

On the other hand, at high temperatures/low frequencies, the
mortar layers are too soft to effectively transfer loads among adja-
cent particles. Comparing to the soft mortar layers, direct particle-
on-particle contacts are supposed to play a leading role in provid-
ing the load transfer capacity for the mix. In this case, the assump-
tion in Dvorkin’s model is not applicable anymore, and thus the
predictions start to differ from the experimental results.
7. Conclusions

This study presented a methodology to use Dvorkin’s model to
predict the stiffness of PA mixes. The predicted results were com-
pared to those from commonly used CBMM and the experimental
values. In order to improve the accuracy of the predictions at lower
frequencies, the sensitivity of the predicted results on geometrical
characteristics of the mix and the Poisson’s ratio of the binder layer
was analysed. In the end, the limitation of Dvorkin’s model was
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highlighted. Based on the obtained results, the following conclu-
sions can be drawn:

� In the proposed microstructure model, a PA mix was simulated
as an assembly of identical spherical particles that are covered
by a uniform thickness of mortar layers and bonded together
by binding mortar layers.

� Geometric parameters were determined in a way that: the
radius of the spherical particles was determined from the aggre-
gate gradation; the thickness of the coating mortar layers was
determined from the mortar content; the minimum distance
between two adjacent particles and the coordination number
were determined from air voids content, and the radius of the
binding mortar layers was finally determined on the basis of
the values of other parameters.

� Based on the proposed microstructure model, the stiffness of PA
mixes was calculated in three steps. At first, the stiffness of the
skeleton framework consisting of aggregate particles and the
binding mortar layers was predicted using Dvorkin’s model.
Then the matrix’s stiffness of an equivalent two-phase compos-
ite, whose stiffness was identical to that of the skeleton frame-
work, was back-calculated using the Self-consistent model. At
last, by adding the coating mortar layers in the matrix, the stiff-
ness of PA mixes was calculated using the Self-consistent model
again.

� Dvorkin’s model describes a more realistic microstructure for
PA type mixes. This model takes several geometrical character-
istics of the aggregate particles and the mortar layers into
account. Therefore, the utilization of Dvorkin’s model is benefi-
cial to better understand how the characteristics in the micro-
scale affect the mechanical properties of a mix. Furthermore,
in a wide range of high frequencies, Dvorkin’s model can pro-
vide accurate predictions not only for loosely compacted PA
mixes but also for PA mixes with densely packed aggregate
particles.

� Dvorkin’s models showed inaccurate predictions at lower fre-
quencies: the predicted dynamic moduli were significantly
lower than the experimental results, and moreover, the pre-
dicted phase angle did not show a decreasing trend. These poor
performances cannot be significantly improved by varying the
values of the geometric parameters. By varying the Poisson’s
ratio of the mortar layers, the predictions may match the exper-
imental results numerically. However, the physical mechanism
behind these predictions that the mortar layers behave like a
rigid body does not seem to be realistic.

� The limitation of Dvorkin’s model is related to the assumption
that in a bonded granular material, a load is always transferred
through the mortar layers between adjacent particles. This
assumption is valid at higher frequencies, while at lower fre-
quencies, the load is supposed to be mainly transferred through
the direct particle-on-particle contacts.

� In future research work, the capability of Dvorkin’s model to
accurately predict the stiffness of PA mixes at higher frequen-
cies will be further validated using PA mixes with different gra-
dations and binder contents. Furthermore, Dvorkin’s model will
be modified to take into account the contribution from the
direct particle-on-particle contacts. This modification may be
achieved by using Hertzian contact theory to describe the
mechanical responses of two contacting particles.
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Appendix A. Numerical solutions to the displacement of binder
layer

In this study, a numerical method was used to calculate V(x)
and U(x). In the following paragraphs, the steps for solving V(x)
in Eq. (9) are presented and the same method can be used to solve
U(x) in Eq. (10). It is noted that the method used in this study was
developed on the basis of the basic approaches for solving the
Volterra integral equations of the second kind [40].

The calculation of V(x) can be made in three steps:

� Step1: choose the points where the value of V(x) is calculated. In
the range from 0 to a, N + 1 discrete points of x with an identical
distance between neighboring points, x0, x1,. . ., xN, are chosen.
By substituting these points into Eq. (9), N + 1 equations are
obtained, see Eq. (A.1). The following steps aim to solve these
N + 1 equations to obtain the values of V(x) at different points
of x.

dn þ VðxiÞ ¼ Kn

Z p

0
du

Z xicosuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

i
sin2u

p
0

�
Vð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ s2 � 2xiscosu

q
Þ

h0 þ x2
i
þs2�2xiscosu

2R

ds; i ¼ 0; 1; :::; N ðA:1Þ

� Step 2: discretize the variables. The variable u is identically dis-
cretized into N + 1 discrete points in the range from 0 to p,
u0, u1,. . ., uN. The discretization of s is dependent on the value
of xi. In order to solve the N + 1 unknowns of V(xi) in Eq. (A.1),
it is required that no other unknowns are introduced. This
means that for a certain value of xi, the discretized values of s,
s0, s1,. . ., sni, should satisfy Eq. (A.2). Thus, the values of sj can
be calculated by using Eq. (A.3). Eq. (A.3) is a quadratic equation
and the roots are given as Eq. (A.4). It is noted here that since
the upper boundary of s is a function of xi, the number of the
discretized points of s (represented by ni in Eqs. (A.3)–(A.4)) is
dependent on the value of xi.

Vð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ s2j � 2xisjcosuk

q
Þ ¼ VðxjÞ; i ¼ 0; 1; :::; N ðA:2Þ

x2i þ s2j � 2xisjcosuk ¼ x2j ; j ¼ 0; 1; :::; ni ðA:3Þ

sj ¼ xicosuk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j � x2i sin

2uk

q
; j ¼ 0; 1; :::; ni ðA:4Þ

� Step 3: solve the integral equation. By substituting all the dis-
cretized points of u and s into Eq. (A.1), the discretized form
is written as Eq. (A.5). The values of V(xi) can be obtained by
solving these N + 1 equations. In Eq. (A.5), xk

u and wj
s are the

weights of the discrete points of uk and sj, respectively. If the
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trapezoidal rule is used for approximating the integral values,
the values of xk

u and wj
s are equal to 1 for the middle points

while they are equal to 0.5 for the points at the boundaries.
hu is the distance between two neighboring points for u, which
is equal to p/N. hijs is the distance between two neighboring
points for s, which can be automatically known once the values
of sj are obtained.

dn þ VðxiÞ ¼ Kn

XN
k¼0

huxu
k

Xni
j¼0

hs
ijx

s
j
VðxjÞ
h0 þ

x2
j

2R

; i ¼ 0; 1; :::; N

ðA:5Þ
Appendix B. Method to determine geometrical parameters

In the proposed microstructure in Fig. 5b, five geometric param-
eters, i.e. R, t, h0, n and a, are required to predict the mix’s effective
modulus. In this appendix, the proposed methods to determine
these parameters are presented. Once the geometric parameters
are known, the volume fractions of the binding mortar layers
/b_b and the coating mortar layers /b_c can be further determined.
Thus, the proposed method to determine /b_b and /b_c is intro-
duced as well.

B.1 Calculation of R

In Dvorkin’s model, aggregate particles are modelled as identi-
cal spheres. However, in an asphalt mix, the size of the aggregate
particles is generally not uniform but graded. Therefore, in order
to specify the value of R, it is necessary to obtain a representative
size of the aggregate particles in the mix. For this purpose, a com-
monly used mathematical method of averaging different sizes of
graded aggregate particles was utilized [41], see Eqs. (B.1) and
(B.2):

R ¼
XN�1

i¼1

/i �
di þ diþ1

2
ðB:1Þ

with

/i ¼
Piþ1 � Pið Þ=qiPN�1

j¼1 Pjþ1 � Pj
� �

=qi

ðB:2Þ

where Pi+1 and Pi are the percentages passing the sieve i + 1 and
sieve i by the total weight of aggregates, respectively; qi is the den-
sity of aggregates retained on sieve i; /i is the volume fraction of
aggregate particles retained on sieve i; N is the aggregates’ total
grades by sieving, i.e., 0.063 mm, 2 mm, 5.6 mm, etc.; and di+1
and di are the diameters of sieve i + 1 and sieve i, respectively.

B.2 Calculation of t

The value of t can be determined according to the binder con-
tent b in the mix, which is defined as

b ¼ Vb

Vb þ Vp
¼ /b

/p þ /b
ðB:3Þ

where Vb and /b denote the volumes and the volume fraction of the
mortar layers, respectively.

Assuming that individual particles are surrounded by mortar
layers with identical thicknesses, the value of Vb can be calculated
using Eq. (B.4).

Vb ¼ Np � 43pR
3 1þ t

R


 �3

� 1

" #
ðB:4Þ
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By substituting Eqs. (28) and (B.4) into Eq. (B.3), the value of b
can be written as

b ¼ 1� 1

1þ t
R

� �3 ðB:5Þ

Since the value of b is known from the values of /b and /p, the
value of t can be computed from Eq. (B.5).

B.3 Calculation of h0

As mentioned earlier, the value of h0 is related to the com-
paction effort. Since the compaction effort can be reflected by the
air voids content, the value of h0 can be determined according to
the air voids content of the mix.

Fig. B1 shows the relationship between the air voids content of
the mix /v c and the number of compaction cycles N during the
compaction process. The value of /v c was calculated according
to the height of the specimens H, Eqs. (B.6)–(B.8).

/vc ¼
V total � Vmass

V total
ðB:6Þ

V total ¼ 1
4
p� 1502 �H ðB:7Þ

Vmass ¼ Wmass

qmax
ðB:8Þ

where Vtotal denotes the total volume of the specimen; Vmass and
Wmass denote the volume and the weight of the real mass of the
specimen; and qmax is the maximum density of the mix, which
can be obtained from the density of each constituent.

Before any compaction effort is applied (when N = 0), the value
of h0 is expected to be equal to t. In this case, the corresponding
value of /v c is 0.22, see Fig. B1. With the increase of the com-
paction effort, the value of h0 decreases and thus the value of
/v c decreases as well. After conducting a large amount of com-
paction effort, h0 is expected to be gradually close to 0, and mean-
while, /v c shows a gradually stable value of 0.13. It is highlighted
here that in Fig. B1, there is no point where the tangent to the
curve is horizontal; however, by fitting the curve using an expo-
nential function (/v c ¼ ae�bN þ c; where a, b and c are fitting
parameters), it was obtained that the minimum value of /v c was
0.13 (c = 0.13). Therefore, it was stated that /v c gradually reached
a stable value of 0.13.

Using the values of h0 and /v c in the above mentioned two
extreme cases, the relationship between h0/t and /v c was assumed
to be expressed as a simple linear function, see Fig. B2. From this
Fig. B1. Relationship between air voids content and number of compaction cycles.
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relationship, once the air voids content of the PA mix specimen is
known, the value of h0/t can be obtained.

Two points are worth noting here:

� For PA mix specimens with different gradations and binder con-
tents, the relationship between h0/t and /v c should be different
since the packing conditions of the aggregates are different.
Therefore, in order to build such a relationship for a certain type
of PA mix, there is no need to compact more samples with dif-
ferent gradations.

� A linear function may not be the most suitable one to describe
the relationship between h0/t and /v c. However, since h0 is a
geometric parameter in the microscale, it is difficult to deter-
mine other values of h0 during the compaction process. Sophis-
ticated image processing techniques may be a promising
method to solve this issue; however, such work is beyond the
scope of this study. Furthermore, the agreement between the
experimental results and the predictions, which will be shown
in the later section, verifies that using such a simple linear func-
tion is acceptable.

B.4 Calculation of n

For a PA mix system in Fig. 5b where spherical particles are cov-
ered by mortar layers, it is difficult to directly determine its aver-
age coordination number n. However, for a ‘‘dry” packing system
consisting of only identical spheres, researchers [42] have pro-
posed that its coordination number nd can be estimated on the
basis of the air voids content of the system /d, see Fig. B3. The rela-
y = -0.0374x + 0.6956
R² = 0.9764
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Fig. B3. Relationship between the coordination number and the air voids content in
a packing system of identical spheres.
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tionship between nd and /d can be developed by plotting their val-
ues in different regular packings, i.e. a simple cubic packing (nd = 6,
/d = 0.4764), a tetragonal sphenoidal packing (nd = 8, /d = 0.3954),
a pyramidal packing (nd = 10, /d = 0.3019) and a tetrahedral pack-
ing (nd = 12, /d = 0.2595). As shown in Fig. B3, the value of nd shows
an almost linear increase with the decrease of /d. Therefore, a
regressed linear equation, see Eq. (B.9), can be given to describe
the relationship between nd and /d.

/0 ¼ �0:0374nþ 0:6956 ðB:9Þ
On the basis of the relationship in Fig. B3, researchers [42] fur-

ther developed a method to determine the average coordination
number of a packing system where the binding mortar layers were
included. Using a similar method, the value of n was determined in
this study.

In order to determine the value of n, a reference packing system
is introduced, see Fig. B4. In the reference system, individual parti-
cles have the same configurations as those in the PA mix in Fig. 5b.
This indicates that the coordination number in the reference sys-
tem remains the same as n. However, particles in the reference sys-
tem are covered by mortar layers with a thickness of h0 instead of a
thickness of t. Due to the change of the mortar layers’ thickness,
the air voids content in the reference system changes to a value
of /0.

Since the minimum distance between adjacent particles in the
PA mix system is 2 h0, particles covered with a mortar layer of h0
in the reference system are supposed to just touch each other.
Therefore, the arrangement of the mortar-coated particles in the
reference system can be considered as the same as a dry packing
system consisting of spheres with a uniform radius of (R + h0).
Accordingly, the relationship between n and /0 can be described
using the relationship in Eq. (B.9).

Total volumes of the particles and the mortar layers Va
’ in the

reference system (see Fig. B4) can be calculated using Eq. (B.10),
and thus the total volume of the reference system can be given
as Va

’ /(1- /0). It is further assumed that more mortar materials
are located around the particles in Fig. B4 to form the PA mix sys-
tem in Fig. 5b. Since the total volume of the system cannot change,
the relationship in Eq. (B.11) must satisfy.

V 0
p ¼ Np � 43p Rþ h0ð Þ3 ðB:10Þ

Vb þ Vp

1� /v
¼ V 0

p

1� /0
ðB:11Þ
R+h
0

Fig. B4. A reference packing system.
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where /v is the air voids content of the PA mix.
By substituting Eqs. (28), (B.4) and (B.10) into Eq. (B.11), the

value of /v can be expressed as

/v ¼ 1� 1� /0ð Þ � 1þ sð Þ3
1þ cð Þ3

ðB:12Þ

where c = h0/R. By combining Eqs. (B.9) and (B.12), the value of n
can be determined for a given value of /v.

B.5 Calculation of a

It was mentioned in Section 3.1 that the binding mortar layer is
composed of two parts. One part (with a radius of a1) is formed
because two mortar-coated particles overlap each other and the
other part (with a radius of a2) comes from the mortar that is
squeezed out, see Fig. B5a. On the basis of this assumption, a math-
ematical relationship that the volume of the cylinder V1 (bounded
by the red line in Fig. B5b) is identical to that of the spherical cap V2

(bounded by the green line) can be obtained:

H1 � pa2 ¼ p
3
� H2

2 � 3 Rþ tð Þ � H2½ � ðB:13Þ

where H1 and H2 are the heights of the cylinder and the spher-
ical cap, respectively, and their values can be computed using Eq.
(B.14) and Eq. (B.15), respectively.

H1 ¼ Rþ h0ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ tð Þ2 � a2

q
ðB:14Þ

H2 ¼ Rþ tð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ tð Þ2 � a2

q
ðB:15Þ

By substituting Eqs. (B.14) and (B.15) into Eq. (B.13), the follow-
ing relationship can be obtained:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sð Þ2 � a2

q
� 1þ cð Þ

� �
a2 ¼ 1

3
1þ sð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sð Þ2 � a2

q� �2

� 2 1þ sð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sð Þ2 � a2

q� �

where a = a/R. With the calculated values of t and h0 from the
previous steps, the value of a can be determined from Eq. (B.16).

B.6 Calculation of /b b and /b c

As illustrated in Fig. B6, the volume of half of the binding mortar
layer between two adjacent particles vb_b can be calculated by sub-
tracting the volume of a spherical cap from the volume of a
cylinder, see Eq. (B.17). The total volume of the binding mortar lay-
a. squeezed out 

mortar b. Rela

Squeezed out mortar

Fig. B5. Illustration f
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ers in a PA mix Vb_b is equal to the value of vb_b multiplying by the
average coordination number n and the total number of the parti-
cles Np, see Eq. (B.18). Once the value of Vb_b is known, the value of
/b_b and /b_c can be easily obtained on the basis of the total vol-
ume and the volume fraction of the mortar layers, see Eq. (B.19)
and Eq. (B.20).

vbb ¼ p� a2 � h0 þ H3ð Þ � p
3
�H2

3 � 3R� H3ð Þ ðB:16Þ

Vbb ¼ Np � n � vbb ðB:17Þ
with

H3 ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p

/bb ¼ Vbb

Vb
� /b ðB:18Þ

/bc ¼ 1� /bb ðB:19Þ
where Vb is obtained from Eq. (B.4).

Appendix C. SC model for calculating matrix’s stiffness of a two-
phase composite and the stiffness of a three-phase composite
(as represented from Ref. [43])

The SC model assumes inclusions embedded into an infinite
effective medium that possesses the same properties as the com-
posite itself. Considering both the matrix and the inclusions are
isotropic materials and the inclusions are spheres, the bulk modu-
lus K and the shear modulus G of a N-phase composite can be
expressed as

Keff ¼ Km þ
XN
r¼2

/rðKr � KmÞð3Keff þ 4GeffÞ
3Kr þ 4Geff

ðC:1Þ

Geff ¼ Gm þ
XN
r¼2

5/rGeff ðGr � GmÞð3Keff þ 4GeffÞ
3Keffð3Geff þ 2GrÞ þ 4Geffð2Geff þ 3GrÞ ðC:2Þ

where and the subscripts ‘‘m”, ‘‘r” and ‘‘eff” denote the matrix
phase, the inclusion phase r and the effective medium, respec-
tively;/ denotes each phase’s volume fraction.

For the calculation of the stiffness of the equivalent two-phase
composite in Fig. 7a, Eqs. (C.1) and (C.2) can be reduced as Eqs.
(C.3) and (C.4), respectively. It is noted that since the inclusion
phase in the composite is air voids, the stiffness of the inclusion
phase is zero.
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Fig. B6. Illustration for the volume of the ‘‘binding mortar layer”
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Keff ¼ Km þ /2ð�KmÞð3Keff þ 4GeffÞ
4Geff

ðC:3Þ
Geff ¼ Gm þ 5/2Geffð�GmÞð3Keff þ 4GeffÞ
9KeffGeff þ 8G2

eff

ðC:4Þ

where /2 is equal to the addition of /v and /b c; and Keff and Geff are
identical to the moduli of the skeleton framework in Fig. 7a. Once
the values of Keff and Geff are known, the values of Km and Gm can
be easily derived as:

Km ¼ 4KeffGeff

4 1� /2ð ÞGeff � 3/2Keff
ðC:5Þ
Gm ¼ Geff 9Keff þ 8Geffð Þ
3Keff 3� 5/2ð Þ þ 4Geff 2� 5/2ð Þ ðC:6Þ

Furthermore, in order to calculate the stiffness of PA mixes as a
three-phase composite in Fig. 7b, Eqs. (C.1) and (C.2) can be rear-
ranged as:

Keff ¼ Km þ /2ðK2 � KmÞð3Keff þ 4GeffÞ
3K2 þ 4Geff

þ /3ð�KmÞð3Keff þ 4GeffÞ
4Geff

ðC:7Þ
Geff ¼ Gm þ 5/2Geff ðG2 � GmÞð3Keff þ 4GeffÞ
3Keffð3Geff þ 2G2Þ þ 4Geffð2Geff þ 3G2Þ

þ 5/3Geffð�GmÞð3Keff þ 4GeffÞ
9KeffGeff þ 8G2

eff

ðC:8Þ

where /2 and /3 are equal to /b c and /v, respectively; and K2 and
G2 are equal to Kb and Gb, respectively. It is noted here that it is dif-
ficult to obtain explicit solutions for Keff and Geff from Eqs. (C.7) and
(C.8); thus, a numerical method, i.e. the Newton-Raphson method,
was applied in this study. The details about how to use this method
can be found elsewhere [38].
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