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Disclaimer on open-source contributions

As part of the effort to increase and promote reuse in the hardware design space, the following
items are published as open-source:

* hardware design: https://github.com/VOXNIHILI/chameleon,
* meta-learning benchmarking suite: https://github.com/VOXNIHILI/meta-learning-arena,
* all experimental machine learning data: https://wandb.ai/douwe/meta-learning-arena,

* all vector-graphics figures: https://drive.google.com/file/d/1447Nd-1guDoKupiJSHBD_
PKoScaEVtCt/view?usp=sharing.

Furthermore, throughout the course of this thesis, contributions were made to the following
open-source repositories:

PyTorch (machine learning framework): https://github.com/pytorch/pytorch,

QPyTorch (reduced bitwidth simulation): https://github.com/Tiiiger/QPyTorch,

Harvard Multilingual keyword spotting project: https://github.com/harvard-edge/
multilingual_kws,

AudioLoader (collection of PyTorch speech datasets): https://github.com/KinWaiCheuk/
AudioLoader.
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"I didn’t have time to write a short letter,
so I wrote a long one instead."” — Mark Twain
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Abstract

The growing interest in edge computing is driving the demand for more efficient deep learning models
that fit into resource-constrained edge devices like Internet-of-Things (IoT) sensors. The challenging
limitations of these devices in terms of size and power has given rise to the field of tinyML, focusing
on enabling low-cost machine learning on edge devices. Up until recently, the work in this space was
primarily focused on static inference scenarios. However, a prominent issue with this is that models
cannot adapt post-deployment, leading to robustness issues with shifting data distributions or the intro-
duction of new features in the data. However, at the edge, full on-device retraining, or communicating
all new data to a central server, is infeasible: this necessitates the development of data-efficient learning
algorithms to adapt locally and autonomously from streaming data. This challenge at the intersection of
edge computing and data-efficient learning is currently an open challenge.

In this thesis, we propose to solve this challenge with meta-learning. To clarify in which way the ap-
plication of meta-learning is the most suitable for edge hardware, for the first time, a principled approach
for meta-learning at the edge is outlined and investigated in three parts.

The first part of this thesis details the selection of a suitable neural network architecture for few-shot
learning over sequential data. By not being fixated on one architecture from the start, it is possible to
explore different approaches to learning over sequences of temporal data, leading to the identification
of the most effective architecture for generalizing from limited temporal examples. The quantitatively
evaluated architectures are a recurrent neural network (RNN), a gated recurrent unit (GRU), a long-short-
term memory (LSTM) and a temporal convolutional network (TCN). We show that TCNs outperform all
architectures, while GRUs and LSTMs have a lower activation memory requirement. However, the
latter require a linearly increasing number of multiplications with input sequence length, while it scales
logarithmically for TCNs. Our results show that TCNs therefore provide the most favorable trade-off for
low-cost temporal feature extraction at the edge.

The second part of the thesis focuses on the algorithmic developments of the few-shot learning setup.
Building on recent results from machine learning research, we highlight how meta-learning techniques
primarily rely on learning high-quality features that generalize well. Taking into account hardware-driven
considerations such as memory and compute overheads and through detailed quantitative analyses, we
demonstrate that the best performance-cost trade-off is reached with a simple supervised pre-training
scheme, where on-chip learning is performed by comparing the outputs of a TCN-based feature extractor
with Manhattan distance. We also analyze the impact of quantization on this trade-off and, accordingly,
we select a scheme with 4-bit logarithmic weights and 4-bit unsigned activations.

Building on these results, the third and final part of the thesis covers the design and implementation
of an application-specific integrated circuit (ASIC) for few-shot learning from temporal data at the edge,
taped out in a TSMC 40-nm technology node with a sub-mm? core area, which we codename Chameleon.
The design follows a typical accelerator-style architecture and supports per-layer variable kernel sizes for
up to 16 TCN layers. Processing such networks takes place in a 16 x 16 processing-element (PE) array
performing bit shifts instead of multiplications thanks to the use of logarithmic weights. To benchmark
Chameleon, we select two tasks consisting in 5- and 20-class, single-shot classification of never-seen-
before handwritten characters from the Omniglot dataset, for which we obtain accuracies of 97.9% and
93.6%, respectively. Furthermore, we show that these on-chip learning capabilities do not degrade the
efficiency of regular classification tasks. Indeed, streaming inference for real-time 16-ms-latency key-
word spotting can be done at a clock speed of only 4.38 kHz, yielding a 93.5-% classification accuracy
on the Google Speech Commands (GSC) dataset.

Our results pave the way for low-cost few-shot learning over temporal data, at the edge. By en-
abling edge devices to perform this local and data-efficient learning, these devices will be able to adapt
autonomously to shifting data distribution or new features altogether, while maintaining user privacy.



Nomenclature

Al Artifical Intelligence

ANIL Almost No Inner Loop

ASIC Application-Specific Integrated Circuit
CL  Continual Learning

DL  Deep Learning

FOMAML First-Order MAML

GSC Google Speech Commands

KD Knowledge Distillation

KWS KeyWord Spotting

LLMs Large Language Models

LR  Logistic regression

LSTM Long Short-Term Memory
MAML Model-Agnostic Meta-Learning
ML  Machine Learning

MSE Mean-squared error

MSWC Multilingual Spoken Words Corpus
NIL No Inner Loop

PN  Prototypical Networks

PTQ Post-Training Quantization

QAT Quantization-Aware Training
RNN Recurrent Neural Network

STE Straight-through estimator

TCN Temporal Convolutional Network
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1 Introduction

Along with the increasing interest in edge computing [[1], there is a growing need for deploying
deep learning (DL) models on edge devices [2]], enabling networked smart end-nodes and sen-
sors that form the backbone of the Internet-of-Things (IOT) ecosystem [2]. However, the size
and power limitations of these devices contrast with the processing requirements for traditional
neural networks [2]. This challenge led to the creation of a new machine learning branch called
tiny machine learning (tinyML). [3].

However, most modern tinyML devices are currently focusing on inference [2], exhibiting
mostly static edge intelligence. This means that the machine learning model has to be trained
before deployment [4] and is not able to adapt post-deployment, resulting in a system that
cannot accommodate for data distribution shifts over time [2]] or new features in data altogether.
While the former can cause smart sensors to become unreliable after deployment [5]], the latter
can cause models to fail in situations that were not predicted before deployment [6]].

One possible way to combat this problem is to upload locally sourced data to a centralized
server, where it is used to extend the original training dataset [2]. The model then has to be
retrained from scratch in order to emulate an independent and identically distributed (i.i.d.)
dataset, which is necessary to ensure that the new data is taken into account during learning,
without forgetting the original information [7]]. After this, the new model has to be downloaded
to the edge device, which is then able to perform accurate inference on the new data. However,
this approach not only costs time, meaning that real-time data changes cannot be dealt with on-
the-fly [4], it also requires the device to record, store, upload and download data throughout its
life cycle. Furthermore, while the majority of developments linked to edge computing and low-
cost machine learning models has historically focused on static image recognition, streaming
data (e.g., temporal information such as sound or video) is actually much more representative
of real-world edge scenarios, which implies the use of neural network architectures that are able
to maintain a state over time.

As conventional retraining is therefore not an option for edge devices, on-device-learning
emerges as a key requirement. However, a new challenge arises at the intersection of edge
computing and data-efficient learning, which requires a minimal amount of data to acquire
knowledge and adapt to new tasks. This challenge necessitates the development of learning
algorithms that excel in scenarios where the use of conventional training methods is not feasible.
Overall, endowing edge devices with the ability to learn new tasks and features from their
environment with little data will directly contribute to:

* data privacy, which is increased by keeping the user data on-chip [1]], [8],

* long-term robustness, which is improved as changes in tasks over time can be dealt with
locally and in real time,

* electronic waste reduction, thanks to a longer device life cycle,
* maintenance costs reduction, thanks to a reduced reliance on over-the-air updates,

* a reduced dependence on communication network reliability in non-urban areas, as the
cloud is removed from the learning process.

These advantages underscore the importance of advancing algorithms that have this ability.
Meta-learning, a machine learning framework where models learn to learn efficiently, is among
the most promising candidates to enable data-efficient learning at the edge. Therefore, the main



research question of this thesis is as follows:

"How can meta-learning unlock low-cost adaptation to temporal data for deep neural net-
work accelerator hardware at the edge?"”

To address this question, we highlight how meta-learning primarily relies on performing
efficient feature extraction, allowing for the use of simple training and evaluation methods. We
also show that temporal convolutional networks (TCNs) can be used as excellent feature ex-
tractors for temporal data. Building on this, we propose a TCN accelerator that fully removes
the need for on-device gradient computation for few-shot learning, keeping the cost of learning
good features where resources are abundant, i.e. in servers and cloud environments. The pro-
posed approach also generalizes to continual learning for shifting data distributions, closing the
loop back to robust edge intelligence. The main contributions of this work are:

* afirst in-silico TC accelerator implementation,

* afirst accelerator for few-shot learning, which performs on-chip temporal data classifica-
tion via meta-learning and continual learning.

Guiding the reader towards these points, the thesis is structured as follows. First,
tion 2| introduces relevant background information for understanding the developments at the
core of this work. then compares multiple architectures for sequence classification
tasks, among which one is selected for hardware implementation. Next, performs an
initially a qualitative, then quantitative, analysis on meta-learning algorithms, from which the
meta-learning algorithm and quantization approach for hardware implementation are chosen.
The silicon implementation, which is based on these three design decisions, is then covered
in Finally, presents the conclusion of the thesis by looking back and an-
swering the main research question. An outlook for key applications and future work is also
provided.

'A TCN as defined by Bai et al., using exponentially increasing dilation and residual layers. 1D residual
networks, also a type of TCNs, are excluded as they cannot be processed in a streaming fashion.
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2 Background

In this section, the required background information for the claims made in this thesis will be
presented. First, in meta-learning and its suitability for edge computing will be
discussed, after which in the neural networks used in this work will be introduced.
Finally, covers the fundamentals of network quantization, which is necessary for
deploying deep neural networks on edge devices.

2.1 Meta-learning

Meta-learning forms the core of the developments in this thesis. Therefore, a broad overview
of the matter will be provided in this section. First, in the need and applicability
of meta-learning will be discussed. After that, in|[Section 2.1.2|a mathematical formalization of
meta-learning is provided to aid the understanding of various meta-learning methods. Following
this, presents an overview of the meta-learning landscape, from which a subset of
the methods will be covered in This subset will then be qualitatively compared in

Three meta-learning benchmarks will then be discussed in Finally,
in|Section 2.1.7} continual learning and its synergies with meta-learning will be explored.

2.1.1 The need for data-efficient learning

The potency of modern machine learning models, as exemplified by the likes of AlphaGo [9],
GPT-4 [10] and Llama 2 [11]], emanates from the processing of vast volumes of (simulated)
data. For example, the training set for Llama2 consisted of two trillion (1012) tokens [[11]. Yet,
environments where data quantity and computational resources are constrained are excluded
from the successes achieved by such models: a challenge therefore emerges at the intersection of
edge computing and data-efficient learning. In the space where conventional training paradigms
find themselves tested, this challenge gives rise to the need for data-efficient and low-compute
learning algorithms, which have the following advantages:

* data privacy is increased through keeping the user data on-chip [8]],

* long-term robustness is improved as changes in tasks over time can be dealt with locally
and in real-time,

* electronic waste is reduced due to a longer device life cycle,

* maintenance costs will be lower by reducing reliance on over-the-air updates.

One possible pathway to such ideal algorithms is through the application of meta-learning,
which is a machine learning approach where models learn how to learn, enabling them to adapt
quickly to new tasks with limited data. Using meta-learning avoids the need for large-scale
data collection at the edge before a model can be extended with new capabilities: instead of
requesting a user to repeat a set of gestures over several epochs before they can be classified,
only a few examples are required for each new gesture.

Overall, meta-learning provides a promising pathway toward true edge intelligence, en-
abling more privacy-friendly systems and allowing for deployment in more unpredictable sce-
narios.



2.1.2 Formalizing meta-learning

In this section, a formal definition of meta-learning will be established, in order to have a stan-
dardized framework for the later evaluation of various meta-learning methods. Note that for the
entirety of this section, the mathematical formalization from Hospedales et al. [[12] is followed.

Starting off, first, conventional machine learning is formally introduced. For this, the fol-
lowing symbols are defined:

* 0: the parameters of the model. 6" are the optimal (inducing the lowest loss) model
parameters,

feo: the predictive model with parameters 6,

@: the information about how to perform learning, also referred to as "meta-knowledge".
This can be a network architecture, initial network parameters, an optimization algorithm
such as gradient descent or parameters that guide the learning, such as the learning rate:
meta-knowledge can therefore be seen as a set of hyperparameters,

* D= {(x1,y1),..,(xn,yn)}: an N-sample dataset containing samples (x;) with corre-
sponding labels (y;). D™ is a subset of D and represents the training dataset,

* L: the loss function, measuring the error between the ground-truth labels (y;) and pre-
dicted (¥;) outputs.

Using these symbols, supervised learning can be formalized as

Vi = fo (xi), (1)
Dtrain c D, (2)

0" =argminL (Dtrain; 0, co) ) 3)
0

Note that [Egs. (T)| to [(3)| can be represented by an optimization loop as shown in [Fig. 1]
since [Eq. (3)| cannot always be solved for explicitly and therefore requires an approximation by
iteration. There are two important assumptions in this case [[12]]:

* o is fixed or chosen by the user before training,

* fg is trained from scratch for every new task/dataset.

Consequently, specifying different values for @ can have a drastic impact on the perfor-
mance of the final learned model. However, when the search space is very large, manually
finding the optimal @ can be impractical. For example, when @ represents all possible op-
timization hyperparameter values, it is not feasible to find the optimal set of values by hand,
which is a well-known issue for large machine learning workloads [13].

The key idea of meta-learning is to view conventional machine learning as a process that can
itself be optimized. Indeed, meta-learning is often referred to as "learning to learn" (a term first
coined by Thrun et al. in [[14]), indicating that unlike conventional machine learning methods,
where a model is learned, it is learned how to optimally learn a model.
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Figure 1: Overview of the conventional supervised learning pipeline. Hyperparameters @ can influence
both the optimization and the neural network as per the definition. The left-bottom circular arrow indi-
cates that the steps in this figure, starting from the training dataset D"" and ending with the updated
parameters, 6, are repeated multiple times until 6 ~ 6*.
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Figure 2: Splitting of dataset D for meta-learning (on the left) into Dgource, Drarget» Dval and for conven-
tional supervised learning (on the right) into D" Dt and DY, Note how in the supervised setting,
every split has the same classes, while in the meta-learning scenario, every split has unique classes.

This formalization indicates that meta-learning can be viewed as a bilevel optimization prob-
lem [12]: there is an inner loop, where a model is learned (equivalent to supervised learning)
and an outer loop, where this learning process is itself learned.

Therefore, in contrast to supervised learning, with meta-learning, ® is learned and not
assumed fixed. This means that an optimal value is found by a learning algorithm, just like this
is the case for 6. Furthermore, instead of being trained from scratch for every new task, fg is



now meta-trained through a set of M tasks, with a source dataset Dy, defined as

support ~query () M
Dsource = (Dsource aDsource> ;
i=1 “4)

DSOUI’CC - D

This source dataset represents all the data that is available for meta-training before deploy-
ment. It consists of a support set and a guery set, which can be assimilated to the training (D)
and test (D) sets in conventional machine learning, respectively. This structure is displayed
in where also the validation sets (D¥2!) are shown for both meta-learning and supervised
learning.

Formalizing the extra level of optimization/learning for @ [12] through this set of tasks,
which is referred to as "meta-training", gives

M o
o' = argmin )’ L™ (DGR 070 (0), o). 5)
® =
st. 0" (@) = argmin L™* (DEEE?;’;“"); 0, w) , (6)
6

where L™ and LK represent the objectives in the outer and inner loops, respectively and
®* is the set of optimal hyperparameters. They can differ but do not have to: for example,
when dealing with a set of regression tasks, both objectives are equal to the Euclidean distance
function.

Graphically, the full nested optimization is shown in Note that the inner loop of this
figure is exactly the same as in where DSUPPOTt — pUrain apd 7ask — 1, Putting and
[Eq. (6)] side by side, it can indeed be seen that regular machine learning reduces to purely the
inner loop. Also, similar to the assumptions for conventional machine learning, parameters @
are fixed in the inner loop during meta-training.

After completing the meta-training phase, the learned meta-knowledge @ is used for training
the base model for a new target task 7, taken from a set of Q tasks in a target dataset Dyyrget (also

see [Fig. 2):

¢
Dtarget = { (Df;r%%(t)rtvD ?;Zre};) } )
i=1 (7)
Dyarget C D,

Dyource N Dtarget =0.

The target support set Df;rpg%(fn

for learning a new task, while the target query set D?algeyt is the data used for inference after the
examples have been shown. Training with each of the Q target tasks is called "meta-testing":

represents the example data that the user provides to the model

0" — argmin L' (DIR7: 05007 @®)
0
i = oo (x¥ud"). ©

Meta-testing is exactly the same as the inner loop of meta-training and consequently the
same as supervised learning (see [Fig. I)). However, comparing [Eq. (8)|to[Eq. (3)] it can be seen
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Figure 3: Graphical depiction of the bilevel optimization scheme of meta-learning. Dashed arrows
represent information flow in the outer loop, whereas continuous lines represent information flow in the
inner loop.
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that the learning on the support set now benefits, after meta-learning, from the learned meta-
knowledge about the algorithm to use, which is handpicked in the conventional case rather than
part of an optimization problem.

Considering the full formalization, it can now be put into the context of learning at the edge.
Firstly, the process of meta-training always occurs off-chip, typically carried out in environ-
ments such as the cloud or a local GPU cluster. Conversely, the phase of meta-testing is exclu-
sively executed on-chip. This means that the design or complexity of the outer loop (Eq. (5))
does not influence the design or operation of the edge device that should perform learning.
Consequently, an edge device that supports a certain inner loop for meta-testing automatically
supports the deployment of any meta-learning method using that inner loop.

2.1.3 Taxonomy

With the formalization of meta-learning outlined, the different types of meta-learning methods
can now be considered. However, due to the large variety in approaches [12], first, a meta-
learning taxonomy is defined, from which a subset is selected for further study in this thesis.

In this section, the taxonomy as introduced by Hospedales et al. [12] is used. This taxonomy
contains the following three axes (see|Fig. 4):

. : defining how to learn. This indicates the choice of optimizer/learning
algorithm for outer-loop optimization in meta-training (see[Eq. (5)),
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Figure 4: The meta-learning landscape, following the taxonomy proposed by [[12]. Highlighted boxes
indicate what is investigated in the thesis. Image adapted from [12]].

* Meta-Representation: defining what to learn. This relates to the contents of ®,

* Meta-Objective: defining why to learn. This relates to the goal of the meta-learning setup,
which is set by choosing Ly, (see [Eq. (5)), the task distribution and the interactions
between both optimization levels [12].

Considering the meta-training formalization of to [(6)l the mentioned axes can be
color-coded as follows:

M . .
0" =aremin ) L7 (DIRE:0°0 (@), ), (10
i=1
st. 0" () = alrgéninLtaSk (ng‘ﬁi’g’ét("); 0, w) . (11)

For each axis, highlighted boxes in indicate the selection of the meta-learning land-
scape for this thesis. This subset is chosen to fit the use case of this work: few-shot sequential
data classification at the edge. Few-shot indicates here that only a low number of samples is
available for training, which is often the case at the edge. Meta-training is then used to train
a model for such few-shot classification tasks. Generally, few-shot learning can be seen as a
subset of meta-learning: a model learns to classify previously unseen inputs using k labeled
examples (shots). The number of classes that the model learns for a new task is referred to as
ways. A visual overview of this can be found in Based on this use case, the following
explanation outlines the selected subset for each axis and the rationale behind these choices.

 Starting with the meta-optimizer axis, only methods that use gradient descent for op-
timization are considered. Reinforcement learning is often used when fg or Ly, 1S
non-differentiable [[12], while evolutionary algorithms only work well for smaller models
[12]]. Since, in this thesis, fully differentiable neural networks for classification will be
used, containing a minimum of 10k parameters, gradient-based methods are best suited
for this situation.

* For the meta-representation axis, only parameter initialization and black-box model/ em-
beddings are considered. This choice is made as the other meta-representations do not
have a straightforward hardware implementation (see |Section 4.1J).



* Finally, in this work, there is only a single meta-objective as per the use case. The three
marked options together form this objective: few-shot multi-task offline learning. A few-
shot learning setup is chosen, as it is assumed that a low number of examples/shots (1-20)
will be available at the edge. The reason for the objective being multi-task, is that after
meta-training, the learner is expected to solve any task taken from the Dy,roer set instead of
simply solving one specific task. More specifically, the model is trained to learn different
classes for every task as shown in where for task i, the classes horse, dog and worm
are learned, while in task i + 1 the classes piano, polar bear and lion are learned. Lastly,
offline indicates that during meta-testing, only inner-loop updates are performed, while in
the online case, outer-loop updates can be performed during meta-testing, which does not
correspond to the selected edge scenario.

Since only the meta-representation axis is not yet fixed by the research question of this
thesis, this axis will be the main focus of the next section.
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Meta-
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&
<

v

3 different classes (ways) with 2 samples per class (shots)

Figure 5: Example of meta-training and meta-testing with a 3-way 2-shot task

2.1.4 Meta-learning algorithms

Using the formalization and categorization described, this section will cover different meta-
learning algorithms, grouped by meta-representation ().

Note that while the black-box model and embeddings are combined to form one category
in the taxonomy of in this work, they are treated separately as they vary significantly at
a high level. However, it is possible to formulate all embedding methods as special forms of
black-box models [12], hence why they are shown combined.

2.1.4.1 Learning an initialization In the first category, @ represents the initial values of the
neural network parameters for the inner optimization step (see [Eq. (6)] and [Eq. (8)). Model-
agnostic meta-learning (MAML) [[15]] is one of the most popular algorithms in this space [12]].
The goal of MAML is to learn a good network initialization so that only a few steps of gradient
descent are required to update the network for a new task, instead of requiring many iterations.

’Image adapted from https://iclr-blog-track.github.io/2022/03/25/understanding_mtr_
meta/,
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Within the context of edge computing, this translates to the inner-loop edge device adapting
with only a few iterations. In the steps of MAML are displayed. The foreach loop
represents the inner optimization loop as per [Eq. (6)} while line 12 represents the outer opti-
mization loop as per Note that performance can be improved by performing multiple
gradient descent steps in the inner loop (i.e. kK > 1). This inner-outer optimization is repeated
until convergence or after a fixed number of repetitions. After convergence, meta-testing is
performed to calculate the final performance.

Algorithm 1: Pseudocode for meta-training via model-agnostic meta-learning
(MAML) where g indicates the gradient. Based on [16].

Data: step size hyperparameters &, B; number of inner loop gradient descent steps k
1 initialize @ with any strategy;

2 repeat

3 foreach Dglo)me € Dsource do

4 initialize 6; with w;

support(i uery (i i

S take {Dsog?ce ( )aDgouchS )} = Dgo)urce;

6 for i < O to k do

7 evaluate g = Vel.LmSk (nggﬁgt(l), 6:);
8 update 6; < 6;+ a.g;

9 end

10 evaluate test loss L; = L%k (DSSSiZe(’), 0:);
11 end
12 update ® + o — 3 ZDﬁQurceeDsome VolLi;

13 until convergence;

One of the downsides of MAML is that it requires computing second-order gradients for all
parameters in the network. This can be seen by substituting lines 6-10 (assuming k& = 1) into
line 12 in after which the V operator appears twice (see [Eq. (12)). This makes
training, especially for larger networks, rather slow. To resolve this, the authors propose a first-
order approximation of MAML (FOMAML) [15]], where the red part in is treated as a
constant [17]]. This results in almost equivalent performance compared to regular MAML.

o—o-B ¥ Vol (DERI 6+aver et (DN 6)) a2
Dséurce eDsource

Due to its flexibility, MAML has inspired many derivative works. MAML++ [18] extends
MAML with a set of changes to the meta-training procedure to stabilize training. Reptile [17]]
builds on top of the first-order MAML approximation by repeatedly sampling tasks and up-
dating w with a gradient equal to the difference in weights before and after each task (see

Alg ).
Sign-MAML [19] also uses the first-order approximation method, but only considers the
sign of the gradient. Orthogonally, MetaSGD [20] uses a vector a instead of a scalar for o in

Algorithm 1|and makes it learnable by updating it after line 12 viaa<—a— 3}, =0 VaL;.

source 6DSOUTCC

etaCurvature [21]] is similar to MetaSGD, but uses a matrix M instead of a vector a. Overall,
while all of these methods improve the baseline in data efficiency or generalization performance,
MAML remains a simple yet elegant initialization baseline for meta-learning [[18]].
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Algorithm 2: Pseudocode for Reptile. Based on [[17].
Data: step size hyperparameter ¢; number of inner loop gradient descent steps k
1 initialize @ with any strategy;
2 foreach Dﬁi)m € Dgource do
3 initialize 6; with ®;
s | take (D3 DI} = Diiree:
5 for i < Oto kdo

6 evaluate g = Vg L/ (ngggcoert(i), 0:);
7 update 6; < 6;+ a.g;
8 end
9 update ® < o+ a(6; — w);
10 end

2.14.2 Feed-forward models In feed-forward or black-box meta-learning approaches, @
represents the parameters of a model that provides a direct feed-forward mapping from the sup-
port samples (D%'PP°™) to parameters required to perform predictions on query samples (DIUY)
[12]. Therefore, in contrast to initialization-based methods, feed-forward meta-learning meth-
ods do not require gradient updates to solve [Eq. (8)|

One well-known feed-forward method is the simple neural attentive meta-learner (SNAIL)
proposed by Mishra et al. [22]. SNAIL effectively converts meta-learning to a sequence-to-
sequence task, as shown in In written language, a prompt for such a task would be:
"5 times 3 is 15; 6 times 3 is 18; 4 times 3 is 12; 8 times 3 is __". The model then, in an
autoregressive fashion, predicts after three labeled examples (supports) the outcome of the last
(queried) sample.

Supervised Learning
Predicted Label Y.

(Examples, Xz Xio X X,
Labels)

Figure 6: Overview of SNAIL. (x;_3,y;_3) to (x,_1,y;—1) represent the support samples DS"PP" while
(x;,yr) represents a single query sample from D", Figure taken from [22].
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Another idea in feed-forward approaches is a concept called hypernetworks [23]], where a
network generates the parameters of another network. In terms of formalization, a hypernetwork
with parameters @ generates parameters 6 for a main network based on DSUPPOT,

The main network operates similarly to a typical neural network, as it is responsible for
mapping raw inputs to their intended targets. Conversely, the hypernetwork receives inputs that
encapsulate weight structure information and produces the corresponding weights for a given
layer.

layer index
and other information
about the weight

Figure 7: Visualization of a hypernetwork. Black connections and parameters are part of the main
network, whereas orange connections and parameters are part of the hypernetwork; g1, g» and hy, h; are
the activations from the hidden layers of the hypernetwork and the main network, respectively. The main
network weights Wy, Wy, etc. are subsequently generated from the hypernetwork. Taken from [23]].

Recently, Zhao et al. applied this technique to few-shot learning [24], achieving similar
performance to Meta-SGD [20]. A similar approach is proposed by Qiao ef al. in [25], where
the final-layer parameters of the model are predicted from the activations of the support data
( Dsupport).

Orthogonally, Rusu et al. propose latent embedding optimization (LEO) in [26], which ef-
fectively combines MAML with a feed-forward model in the inner loop. In this approach, a
latent code z that has lower dimensionality than 6 is conditioned on D*'PP°" through parameters
. This vector z is then mapped to parameters 6 which perform the classification. This pro-
cess is visualized in The main advantage of this approach is that MAML now does not
optimize in the high-dimensional space of 6, but in the low-dimensional space of z [26].

—————— data-dependent init
DtT adaptation
T -+ -decoding

Figure 8: Visualization of the key idea from LEO, where optimization now takes space in the lower
dimensional space Z instead of ®. Taken from [26].
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2.1.4.3 Metric learning In embedding methods or metric learning, @ represents the param-
eters of an embedding network, generating M-dimensional vector representations from input
samples (see [Fig. 9). Using these embeddings, the classification of unseen samples can be
performed without any gradient updates, similar to feed-forward methods. As the exact way
classification is performed varies per algorithm, a detailed workout of metric learning following

the formalization of meta-learning is provided in

Embedding vector Embedding vector

-0.78 . F -0.89
7 3 0.43 ) ¢ 0.55
v j ® 1.01 " -1.23
. 0.98 0.76
pey. -0.03 %2 0.21
0.12 -0.67

Input Embedder Input Embedder

Figure 9: Example of generating an M = 6-dimensional embedding from an input image. Notice how
the dimensionality of the input is severely reduced, going from a full-color image to only six scalars.

Prototypical networks are one of the most popular metric learning algorithms, proposed by
Snell et al. in [27]. In this method, the M-dimensional embeddings for each sample x; of class
k in a set of labeled examples S are averaged into a "prototype" ¢ [27]:

o = ﬁ Y foln). (13)
(Xiyi) €Sk

[llustrated in is that classification then takes place by comparing the embedding
from the query sample with the prototypes of all support classes through a distance function
d: RM x RM — [0, +o0) [27]. The class of the prototype with the lowest distance to the query
embedding is assigned to the query. Since any distance metric d works in this setting, two
popular distance metrics are compared: squared Euclidean distance and cosine distance. The
authors then empirically find that squared Euclidean distance gives better few-shot classification
accuracy.

As opposed to prototypical networks, which are trained with a set of tasks using the bi-level
meta-learning structure, the Baseline++ method from Chen et al. [28] simply pre-trains an
embedder using normal supervised learning on all data in Dggyrce. Evaluation is then performed
using cosine distance between support and query embeddings, similar to prototypical networks.

Note that metric learning methods do not have to rely on a distance algorithm by definition.
For example, matching networks [29] use an attention mechanism over the support embeddings
combined with the query embeddings to predict the class of the query sample (see
while, in relation networks [30]], a "relation module" that produces a similarity score between
support and query samples is employed (see [Fig. 12). However, even with such constructions,
metric learning methods suffer from one downside compared to initialization-based and feed-
forward-based methods: they only work for classification problems [1l]. For example, during
classification, the output embedding is used to compare with other embeddings. This is due to
the fact that embeddings do not mean anything for the continuous input and output space of
regression tasks.
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Class 0 Class 1 Class 2

0.40 0.15 0.10
Sample 0 ' (0.15) > (080) ‘ <0.30>

Samole 1 0.50 0.10 0.05
ampie 0.20 0.85 0.40

0.45 l 0.20 0.00
Sample 2 <0.25> <0.90> (0.35)

0.45 0.15 0.05
Average embeddings: 0.20 0.85 0.35

Query sample

Distances:
‘ (g;g) — > | 0.78 0.07 0.55

Figure 10: Example evaluation of a prototypical network in a 3-way 3-shot scenario with Euclidean
distance as a loss function. The class of the prototype with the lowest distance is assigned to the incoming
query sample. The trapezia represent the embedder.

Figure 11: Matching network architecture for a 4-way 1-shot problem with one query sample, where gg
and fy are two (potentially identical) embedders and X is an attention mechanism. Taken from [29].

2.1.5 Qualitative algorithm comparison

Having covered a variety of meta-learning methods, a qualitative comparison is displayed in
It lists all the discussed methods, ordered by appearance in the text and line-separated
by meta-representation. Per method, the key idea(s), the on-chip friendliness, as well as the key
advantages and disadvantages are listed.
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embedding module relation module

Feature maps concatenation

Relation One-hot
score vector

fw 9o u

Figure 12: Relation network architecture for a 5-way 1-shot problem with one query sample, where f
is any embedder and g is the relation network. Taken from [30].

For brevity reasons, on-chip friendliness is a visual score based loosely on three criteria:
meta-testing complexity (or the control complexity thereof), total required computation steps
and memory usage. The first aspect mainly affects design complexity and testability, while
the second impacts the real-time constraints as well as power usage. The third aspect not only
concerns power usage but also the total silicon area and thus the overall cost.

Among the surveyed methods, the need for gradient descent during meta-testing is consid-
ered one of the largest disadvantages as it negatively affects all three aspects: it significantly
increases complexity, requires more computation steps than pure inference and needs larger
memories to store the intermediate activations for gradient calculation. Next to this, extra mod-
ules besides the main network during meta-testing are also considered a disadvantage as they
directly imply extra hardware overhead.

The two highest-scoring methods in this on-chip friendliness score are prototypical networks
[27] and the Baseline++ method from [28]. Both of them then do not require on-chip gradient
descent and only compare embeddings during meta-testing. This means that, on top of the
network, extra on-chip storage is only required for the averaged embeddings. However, neither
of them is state-of-art in terms of few-shot classification accuracy compared to some of the
more complex methods such as MAML++ [18] or LEO [26]].

Hence, in order to accelerate the adoption of meta-learning for edge devices, novel yet sim-
ple methods (i.e. gradient-free) are required that offer similar or better few-shot classification
accuracy than the more complex methods.

2.1.6 Benchmarks

Beyond qualitative comparisons, in order to quantitatively compare the performance of different
meta-learning methods, standardized benchmarks are required. This section covers two such
benchmarks: [Section 2.1.6.1|reviews the Omniglot dataset [31] while [Section 2.1.6.2|discusses
(few-shot) keyword spotting. Both of these will be used as guiding tasks throughout this work,
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Qualitative comparison between the introduced meta-learning methods.
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not only for the software but also for the hardware design.

This means that the most widely adopted dataset for comparing meta-learning methods,
minilmageNet [29] (discussed in [Appendix B)), is not used in this thesis. The reason for this is
that this work focuses on few-shot sequence classification: while converting a color image to a
sequence is definitely possible, much semantic information is lost when doing so.

2.1.6.1 Omniglot The Omniglot dataset [31] consists of handwritten characters from a di-
verse range of writing systems and was introduced in 2015 by Lake et al. to address the chal-
lenge of one-shot learning.

The dataset contains characters from 50 alphabets, including but not limited to, Armenian,
Hebrew, Cyrillic, Korean, Japanese and Braille. It comprises a collection of 1,623 different
characters, each handwritten by 20 different people, resulting in a total of 32,460 distinct char-
acter images. displays a subset of alphabets and characters contained in the dataset.

b y - E 2 ! ) K o ¥
h ’ T : & B 3 wm
R Y M al = v U T Ej ©
il 3 Y .y S : A 2 T v
E ¥ Y Tt A ¢ M = s
Armenian  Hebrew Cyrillic Korean Japanese Braille Gujarati  Arcadian  Sanskrit  Futurama

Figure 13: A selection of characters for various alphabets in the training split of the Omniglot dataset.

Each character image is grayscale and 105 by 105 pixels in size. The images can be resized
to, e.g. to 28 x 28 pixels as in the MNIST dataset [29] [27], so that smaller neural networks can
be used. However, unlike the MNIST dataset of handwritten digits [32]], the Omniglot dataset
also contains the stroke data for all characters, which was released in 2019 [33]].

As this work focuses on streaming applications at the edge, inputting static images of char-
acters into a model is not immediately representative of the desired application. However, due
to its widespread adoption and low compute requirements, using Omniglot eases comparison
between previous meta-learning approaches, hence it will be used in this work. Nevertheless,
to emulate a streaming setting, the pixel rows of a single image can be concatenated from top
to bottom to form a sequence (see [Fig. 14)). This procedure is taken from Le et al. [34], where
it was used to convert the MNIST digit images [32] to sequences for temporal classification by
a recurrent neural network (RNN).

The Omniglot dataset has two splits: a background and an evaluation split, containing 964
and 659 characters, respectively. Originally, the background set was meant for meta-training
and the evaluation set for meta-testing [33]. However, Vinyals et al. created a new split with
1200 characters for meta-training in 2016 [29], which was subsequently used by key papers in
the meta-learning domain [15] [27]. Another extension from the same authors was to create
three new classes from each character by rotating it in multiples of 90 degrees, yielding 4800
classes in total.

Increasing the number of classes in the meta-training set makes the task at hand easier since
more data is available for training while less data is available to test on. However, to provide
a fair comparison to other methods that mainly use this split, the 1200-class rotation-extended
split from Vinyals ef al. is also employed in this work.
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Figure 14: Sample conversion from an Omniglot image to a sequence, where the highlighted row in the
2D image is mapped to the highlighted slice in the flattened 1D sequence.

2.1.6.2 Few-shot keyword spotting While Omniglot and minilmageNet are well-recognized
datasets for few-shot learning, both are static image-only datasets at their core. As this work
focuses on streaming applications, a keyword-spotting (KWS) benchmark is chosen that deals
with real-world sequential data, which is a supervised learning task where a model tries to de-
tect when one or two words are spoken [35]]. A real-world application of keyword spotting is to
trigger the voice assistant of a smartphone or tablet to launch. For example, at any point, while
the assistant is switched off, a user can say "Hey [name of company]", after which the assistant
program is launched and starts listening for the next voice input query. This query, usually mul-
tiple words or a sentence, can then be processed in a cloud environment with more computing
power to perform the voice-to-text operation. The initial keyword spotting task needs to take
place in an always-on fashion directly on the device, as it otherwise would require a continuous
streaming of device audio to the cloud, which is not scalable to many clients, increases privacy
risks and would require a significant energy footprint for communication [35]].

As a popular real-world streaming application, there are many software implementations
[36] [37] [38] and edge hardware implementations [39] [40] [41] [42] that target keyword spot-
ting. Also, various public datasets are available [35]] [43] in this domain.

Feature extraction Keyword spotting is rarely performed on the raw audio of the keywords.
Instead, it is common to extract mel-frequency cepstral coefficients (MFCCs) features from the
audio and feed these features into a neural network [44]. These features are extracted from
windows of the digital audio signal, where each window has a typical length of 25-32 ms with
an overlap of 10-16 ms [44]. This means that every 10-16ms, a new feature vector for process-
ing in the neural network becomes available. Each feature vector contains between 10 and 40
MEFCCs [43]].

Datasets The most frequently used dataset for benchmarking keyword spotters is the Google
speech commands (GSC) dataset [35]. It contains 35 classes / unique keywords with a total
of 105,289 1-second utterancef] sampled at 16 kHz (see for the visualization of a data

3This sample count is for version 2 of the dataset; version 1 contained 64,727 samples [35]. Unless specified
otherwise, the V2 variant is used by default in this work.
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sample). Also included is a set of minute-long clips that contain background noise, such as a
recording of someone doing the dishes and a clip of generated white noise.
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Figure 15: Sample audio waveforms for the "Yes" and "No" keywords from the V2 Google speech
commands dataset [35]].

The standard evaluation procedure is to spot ten words: "Yes"”, "No", "Up", "Down", "Left",
"Right", "On", "Off", "Stop" and "Go". Randomly sampled clips from the remaining 25 words
form an 11th class "Unknown word", while a 12th class "Silence" contains randomly selected
1-second clips from the background recordings. The goal is to correctly classify the keywords
while minimizing false positives for the non-keyword words and background sounds, accurately
representing the expected input from a real-world deployment [335].

Another dataset for keyword spotting is the Multilingual Spoken Words Corpus (MSWC)
[43]]. This dataset contains 340,000 unique keywords from 50 languages with a total of 23.4
million 1-second clips. The benchmark setup for MSWC is a 761-class supervised learning
classification task: 760 keywords and one silence class (1.4 million samples, taken from nine
languages).

Baseline task definition = Before going into the few-shot KWS task definition, a baseline
supervised learning task is defined. This is done as there is very little literature in on-chip
learning via meta-learning, meaning that it might prove hard to compare this thesis’ hardware
design with other designs purely based on meta-learning performance.

Therefore, the 12-class GSC variant will be used as a supervised keyword spotting task.
This variant is chosen as it is the most popular benchmark for edge hardware and will therefore
allow for a fair comparison with many hardware designs.

Few-shot task definition GSC and MSWC do not directly present a true few-shot benchmark

scenario. To adapt keyword spotting to a realistic few-shot scenario, it is assumed that the user
can train the model at the edge to spot new keywords with only a few user-generated examples.
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For example, instead of "Hey [name of company]", a user can enable their virtual assistant
with the words "Wake up [any name]". However, compared to few-shot image classification,
few-shot keyword spotting is not as popular in the literature. Because of this, there is not yet
one commonly agreed-on method to benchmark this task. Therefore, a few possibilities are
outlined, after which a single format is selected.

In [46l], Chen et al., formulate an N+M way few-shot learning scenario, where N and M
are the number of new classes and fixed classes, respectively. The dataset used in this setup
is the GSC dataset. Fixed classes are classes that are known a priori, in this case, "Unknown
word" and "Silence" (M = 2). Two tasks were created to fit this scenario: digit classification
using digits zero to nine (see [Fig. 16) and command classification using the commands from
the standard evaluation procedure of GSC. Next to these ten (N = 10) user-defined keywords,
five keywords form the "Unknown word" set, while the remaining twenty keywords form the
meta-training (Dgource) s€t from which tasks can be sampled [46].
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Figure 16: Digit classification task as presented in [46]. Figure adapted from [46]].

For the MSWC dataset, next to the supervised learning setup, Mazumber et al. also define
a 1+2—wayﬂ 5-shot learning task in [47]. The 1-way is a new keyword from any of the fifty
languages, while the +2-way again represents the "Unknown word" and "Silence" categories.
For the "Unknown word" category, 128 samples from a set of 5000 utterances are sampled for
each few-shot task.

Alternatively, in [48]], Jung et al. create a large-scale keyword dataset called LibriSpeech
Keywords (LSK), consisting of 1,000 keyword classes extracted from the LibriSpeech corpus
[49]. This dataset acts as the pre-training set, after which fine-tuning is performed on GSC. For
this, the same ten-digit keywords as in [46]] are selected as the user-defined set; 15 keywords
then form the "Unknown word" set and the remaining ten command keywords (the same key-

4Originally described as 3-way, but using the notation from [46] here.
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words as in the standard evaluation procedure of the GSC dataset), form the meta-training set.
Overall, this setup corresponds to a 10+1-way task.

While these are not the only approaches for few-shot keyword spotting [S0] [S1], each of
them provides a slightly different setup on a different dataset, as summarized in To
select a final benchmark in this work, in order to keep development time under control, the
primary criterion will be the ease of use. Firstly, the LSK — GSC approach can be discarded,
as Jung et al. did not open source their dataset. Also, since the benchmark does not contain a
silence class, it is not entirely realistic for deployment in an edge device, where most of the input
audio will be silent. Between the MSWC few-shot approach and the GSC-based approach, it is
clear that the GSC-based approach is favorable to ensure a low iteration time, as training will
be 14 x faster with 14 x fewer data. Therefore, the 10+2-way command classification task from
Chen et al. [46] is chosen as the few-shot keyword spotting benchmark task for this thesis.

Table 2: Comparison of the three discussed few-shot keyword-spotting benchmarks. Bold means best.

Approach name N+M-way MSWC few-shot LSK — GSC few-
problem [46] [47] shot [49]]

Used dataset(s) Google Speech- MSWC [43]] LibriSpeech Corpus
Commands [35]] [49], GSC [35]]

Total sample count 105,289 1,455,300 l,OO0,00(ﬂ

# of meta-training classes 2042 760+1 1000+10+1

# of meta-testing classes ~ 10+2 25642 10+1

Ways benchmarked 10+2 1+2 O+1

Shots benchmarked 1,5,10 5 1,5,10

Public data release Yes No Yes

Public split release Yes N No

2.1.7 Continual learning

Complementary to the concept of meta-learning is continual learning (CL), which refers to
the fact that neural networks should not only be able to learn from little data, but also to keep
learning new tasks sequentially without forgetting previous knowledge, similar to animals. For
this reason, CL is sometimes also referred to as incremental learning or lifelong learning [8]].

In continual learning, there are two tracks [2]]: learning from new/unseen data belonging to
known classes, called domain-incremental CL and learning from new/unseen data containing
entirely new classes, called class-incremental CL. While both tracks relate to meta-learning,
class-incremental CL is closest to few-shot classification as new classes are learned and hence
links to the contents of this thesis.

While CL does not mandate the use of little data for learning new tasks by definition, this
is still a very desirable property at the edge. Such a few-shot continual-learning ability brings
the same advantages as those obtained through meta-learning (e.g., privacy-friendly, low main-
tenance costs), with the ability to keep learning, a key benefit since the outside world evolves
continuously [52]]. Compared to regular few-shot learning, where the gained knowledge from
the previous task is progressively erased when learning on a new task, in CL, knowledge can

accumulate. This is visualized in

SThis value is estimated from Table 3 in the paper
%https://github.com/harvard-edge/multilingual_kws/issues/41
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Figure 17: Illustration of class-incremental continual learning versus few-shot learning. The faded
classes are learned during continual learning but progressively forgotten in few-shot learning.

The main challenge in continual learning is tackling catastrophic forgetting/inference [33],
which refers to the phenomenon where, as the neural network gains new knowledge, it starts
to forget previously learned knowledge. A few of the key approaches that aim to tackle this
problem are discussed next.

In [52]], Aljundi et al. propose to penalize weight changes of important networks weight
while learning a new task, allowing at the same time to overwrite less important weights. Al-
ternatively, Pellegrini ef al. present a technique called latent replay [4]. This builds on top of
the rehearsal strategy for continual learning, where some of the input samples from previously
learned tasks are stored and added to the training set of a new task [54]. With latent replay,
instead of storing the data in the input space, activations at some intermediate layer are stored
and used for rehearsal, significantly reducing compute and memory requirements with respect
to the naive baseline. Notably, meta-learning can also be used to tackle catastrophic forgetting:
the goal is then to learn how to "not forget". MAML [15]] is often used as the baseline algorithm
for this [55] [56].

Currently however, none of these approaches is completely able to alleviate the catastrophic
forgetting phenomenon: therefore, an open challenge remains in learning quickly for little data.

2.2 Classifying time-series data

In this section, two neural network architectures for classifying and processing time-series data
will be covered. Note that any network designed to perform sequential data classification can
also perform few-shot sequential data classification when part of a meta-learning framework
(see[Section 2.1.4).

The reason for focusing on classifying time-series or sequential data is that at the edge,
streaming data is much more common than static data such as images. Examples of such
streaming data at the edge are biological signals such as heart rate or blood oxygen over time
[S7], environmental data such as temperature, humidity or air quality metrics [S8], communica-
tion data such as human speech [35] or animal behavior [59] and surveillance video for traffic
monitoring [60] or anomaly detection [61]].

For classifying sequential data, different architectures are available. Excluding hybrid archi-
tectures or ensemble approaches, key base architectures are: transformers [62]], recurrent neural
networks (RNNs), temporal convolutional residual networks (TC-ResNets) [63]] and temporal
convolutional networks (TCNs) [[64]).
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Transformers demonstrated state-of-art performance on tasks with large amounts of data
(4.5 and 36 million sentence pairs [62] for two translation tasks) [62], however, they perform
on par or worse compared to TCN and RNN architectures for a variety of tasks that have one or
two orders of magnitude less training data (1 million words for a language modeling task) [635]].
Furthermore, popular transformer architectures such as BERT [66] only support input sequences
of up to 512 tokens, which is limiting even for the Omniglot task having 784 tokens per timestep.
Similarly, TC-ResNets [63] have not been demonstrated on sequences beyond 150 timesteps. In
addition, traditional transformers have memory requirements that scale quadratically with input
sequence length [67]].

In contrast, RNNs and TCNs have been demonstrated on tasks with 16,000 timesteps [68]]
and have a required memory size that is constant (RNNs) or grows logarithmically (TCNs) with
sequence length, which is beneficial for hardware design. Therefore, as the datasets used in
this thesis are in the order of 100k samples with relatively high sequence lengths, all under
the constraints of a custom hardware implementation, only RNNs and TCNs
(Section 2.2.2)) are considered for further study.

2.2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are ANNs with recurrent connections, capable of learning
temporal dependencies from sequential input data. Until the arrival of the transformer archi-
tecture [62]], these models were the dominant sequence transduction models [62], having effec-
tively become the de facto standard for sequence modeling tasks [64].

Figure 18: Basic structure of an RNN. Note that the hidden states are dependent on each other, inducing
recurrence.

The basic structure of an RNN consists of three layers [69]: an input layer, a recurrent
hidden layer and an layer (Fig. 18). The data entering into the input layer is made up of
a time-ordered sequence of vectors [69]: {xp,X1...,x;—1,% }.

h, = acty, (Wux; + Wraph, 1 + bp)

s.t.  ho = init() (14

y, = act, (Wyoh, +b,) (15)

Initially, two fully-connected layers parameterized by Wy and Wy in map the
current input (x;) and the previous hidden state (h;_;), together with bias bj, through activation
function acty,, into the current hidden state h, [69]]. This hidden state is what forms the recurrent
connection between the hidden layers, as shown in Through training, the hope is then
that all necessary information to make the next prediction is embedded/stored in the hidden
state. Since for the initial input (xp), the hidden state is not yet computed, an initialization
function init;, can be used to define h.
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Finally, the values y, of the output layer are computed using the current hidden state h;. For
this, a linear layer parametrized by weight W and bias b, through activation function act, is
used (see [Eq. (I5)) [69].

Commonly, both activation functions are nonlinear functions such as sigmoid or tanh
with the aim of representing increasingly complex features in deeper layers [69]. This is pos-
sible since such functions can draw nonlinear boundaries between layers [69], as opposed to
stacked linear layers with linear activation functions, which can be represented by a single lin-
ear layer [70].

Sigmoid tanh RelLU
1.0 A 1.0 5
0.81 0.5 ]
0.6 3 A
> > 0.0 >
0.4 2
0.2 =051 14
0.0 1 -1.0 1 0 A
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
X X X

Figure 19: Overview of the sigmoid tanh and rectified linear unit (ReLU) activation functions. Note the
difference in y-limits per plot.

Overall, RNNs provide a simple paradigm for modeling time-series data. However, this
simplicity has consequences for training such networks. While RNNs can readily be optimized
using stochastic gradient descent (SGD), due to the recurrence of the hidden state, gradients can
vanish or explode [[71]]. This effect causes the network to stop learning long-range dependencies
and occurs especially when dealing with extended temporal depths.

Another issue is the lack of data parallelism within examples during RNN training [62]].
This is also an effect of the hidden state: it is not possible to make a prediction for y, and y, | in
parallel, as in order to compute y,, |, h; first needs to be computed, prohibiting parallelization
over the temporal axis within training examples [62]. This problem is most critical for long
sequences with high-dimensional x; vectors, where due to memory limitations, batch processing
across multiple examples is restricted [62].

Tackling the first issue are long short-term memory (LSTM) networks [72] from Hochreiter
et al. As one of the most popular RNN variants, LSTMs have effective gating mechanisms (dot
products weighing the inputs and outputs, see built into their architecture to reduce
the effects of vanishing and exploding gradients. This leads them to have effectively two hidden
states: ¢; and h;.

Another popular, more recently proposed RNN architecture is the gated recurrent unit (GRU)
[73]] (see [Fig. 20b). Compared to LSTMs, GRUs have a lower overall memory requirement, as
there is only a single hidden state h;,. However, they still include the gating mechanisms, which
is what made LSTMs so effective.

Note that the LSTM and RNN basically both provide a different equation only for the hidden
state calculation of Then, independent of the RNN architecture, the linear layer of
[Eq. (15)]is usually added on top of h; to compute the final output. For example, for classification,
this linear layer is used to compute the last time step logits y,.

"https://kvitajakub.github.i0/2016/04/14/rnn-diagrams/
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Figure 20: Architecture diagrams of two RNNs. The w-boxes represent matrix multiplication with
weights w and X represents a dot-product. Multiple purple boxes below a yellow box indicate that the
inputs in the yellow box are added together before passing through the activation function. Figures are
taken fromﬂ

2.2.2 Temporal Convolutional Networks

Orthogonal to RNNs are temporal convolutional networks (TCNs) [64]. While both neural
network types have been developed for sequence modeling, the former is based on recurrence
and therefore has a hidden state (see while the latter is fully szateless. Furthermore, as
the name implies, TCNs are based on the convolution operation.

TCNs were, in large part, inspired by WaveNets [68], proposed by Van den Oord ef al.. A
WaveNet is a deep convolutional neural network designed for generating raw audio waveforms:
since raw audio has a very high temporal resolution, at a minimum of 16,000 samples per
second, WaveNets were specifically designed to handle such long temporal dependencies.

The TCN [64]] architecture then is effectively a simplified WaveNet with the following char-
acteristics [64]:

1. the convolutions in the architecture are causal: there can be no information leakage from
the future to the past,

2. the architecture can perform arbitrary-length sequence-to-sequence modeling (meaning
that both the input and the output are same-length sequences), similar to RNNs,

3. TCNs can look further back into the past to make predictions than RNNs, using a combi-
nation of very deep networks, residual layers and dilated convolutions.

The first point is crucial, as for sequence-to-sequence modeling, dependencies on future
input cause a chicken-and-egg problem: namely, to compute the next output, first, the next
output is needed. In contrast to RNNs (i.e. GRUs or LSTMs), which are already inherently
causal as only past and current inputs can be used to compute the current output through the
current hidden state (see|Fig. 18)), convolutions are not causal by construction. This is visualized
in with a normal one-dimensional convolution, it is possible that the output at time ¢
depends on an input in the future, # + 1. With a causal convolution, as shown in the
output at time ¢ always only depends on current or past inputs.

This causal convolution forms the main building block of a TCN: every layer in the net-
work is a 1D causal convolution, where the length of each hidden layer is kept the same as
the input sequence length, to fulfill point 2. One-dimensional instead of the more common

two-dimensional convolutions (compare with are used, as 2D convolutions
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Figure 21: Regular 1D single-channel convolution. Figure 22: Causal 1D single-channel convolution.

are mainly suited for inputs with two main dimensions, such as images, having a width and a
height. Sequential data on the other hand only has one dimension: the width or time dimen-
sion. Note that when performing 1D convolutions on multichannel sequences, the operation
(see is nearly the same as a single-channel 2D convolution, except that there is now
only one (horizontal) sliding axis.
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Y\chj\nne]s
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Figure 23: 1D single-channel Figure 24: 2D single-channel Figure 25: 1D multichannel convo-
convolution with kernel size 3 convolution with a 3 x 3 kernel lution with kernel size 3, input se-
and input sequence length 5. on a 5 x 5 input image. quence length 5 and 3 channels.

To achieve a large receptive field size (i.e. the total input sequence length that the network
can receive), as per point 3, using only stacked 1D causal convolutions requires that the network
should either be very deep or that it should have large-sized filters [64]. This is because the
receptive field size of normal stacked causal convolutional layers only grows linearly with the
depth of the network [64].

Therefore, TCNs instead use dilated causal convolutions, which is also what allowed WaveNets
[68] to handle such large contexts. In a dilated convolution, there are d — 1 elements of space
between the filter elements of the kernel. In TCNs, this dilation doubles every layer, resulting
in an exponentially growing receptive field size with network depth [64]. visualizes
this structure. Based on the kernel size k (assuming it is the same in every layer), the number of
layers n and the dilation exponent base dexp of the network, the receptive field size r of a TCN

can then be calculated using [Eq. (16), taken fronﬂ and [[74]:

n
r(n,k,dexp) = 14+ Y 2+ (k—1) dexp' . (16)
=1

$https://github.com/locuslab/TCN/issues/44#issuecomment-677949937

26


https://github.com/locuslab/TCN/issues/44#issuecomment-677949937

. N N . N N ~i) (2[" 510)

Jo Y1 Y2 Yyr-2Yr-1yr Lo

Residual block (k, d) Residual block (k=3, d=1) ;(1) 5(1)
“T—1 T

Dropout
? +

d=4 —— Convolutional Filter
ReLU \denti 7l
S lentity Map (or 1x1 Conv)
WeightNorm /
t
Dilated Causal Conv /
d —9 + 1x1 Conv
- Dm;}cut (optional)
RelU %/ /’/7

=]

T

¥

To T1 T2

=Y

Tr_2TT-1 2T

(a) Stacked dilated convolutions. (b) Residual block definition. (c¢) Residual block usage.

Figure 26: Overview of the TCN architecture elements. Taken from [[64]].

Furthermore, inspired by the residual block for deep convolutional neural networks [75],
every TCN layer (see also has this residual-block structure, where a layer can be
bypassed, as shown in [Fig. 26b| However, unlike the original block, the authors also include
spatial dropout [76] for regularization and weight normalization [77]. Finally, a 1 X 1 convolu-
tion (i.e. a matrix-vector multiplication) is optionally applied in case the incoming and outgoing
channel counts do not match [64].

Completing the architectural description, in order to perform classification, a classification
head is added to the last output step activation (in the same way as[Eq. (I5)).

The design of the TCN gives the architecture several benefits compared to RNNs [64]. The
first one is that TCNs have stable gradients throughout the network while performing back-
propagation, as the data flows not through time but through the depth of the network (compare
[Fig. 18| with[Fig. 26a). TCNs therefore do not suffer from vanishing/exploding gradients. TCNs
also offer processing parallelism as they are stateless, enabling the efficient utilization of com-
putational resources. Moreover, their low memory requirements during training make them
computationally efficient [64]. However, it is important to note that the receptive field of a TCN
is fixed (per[Eq. (16)] unlike in an RNN, where it could theoretically be infinite). Therefore, one
should be careful not to reuse a TCN designed for a short context window in a situation where
much more context is required, as it might result in a performance drop[64]].

2.3 Neural network quantization

In order to deploy modern deep neural networks on low-power edge hardware where mem-
ory is limited, quantization is an essential ingredient. Therefore, in this section, background
information about this process is provided.

First, in the necessity of quantization is discussed, after which the fundamen-
tals of quantization are outlined in Following this, one way to perform training
for quantized neural networks is discussed in Finally, discusses the

possible choices for number representations in quantization.

2.3.1 The need for quantization

As mentioned earlier, modern deep neural networks are capable of performing increasingly
complex tasks [9] [11]. However, such systems do not only require vast amounts of data for
training (as mentioned in [Section 2.1.T)), they also come with a high computational and memory
cost [78]. Therefore, to deploy modern deep networks on edge devices having limited memory
and compute resources, it is key to effectively minimize the footprint of neural network pro-
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cessing. Quantization, i.e. the process of reducing the bit width of neural network weights,
activations, biases etc., is one of the most effective ways to do this [/8]: it namely jointly
reduces the network’s memory footprint, power and latency.

This originates from the fact that quantization affects the hardware execution of neural net-
works at the two most power-consuming levels: computation and data transfer. Starting with
the former, demonstrates that the energy per addition operation increases linearly with
bit-width while the energy per multiplication scales quadratically with bit-width, as multiplica-
tion is effectively a chained addition. This means that switching from 32- to 8-bit numbers saves
a factor of 4 in addition energy and a factor of 16 in multiplication energy. More savings can
be gained by using simpler number representations: notice how the energy for floating-point
operations in is always higher than its integer counterpart.

Concerning the latter, indicates that, the smaller the memory, the lower the energy to
access a fixed-bitwidth word will be: it also shows how off-chip data access to DRAM incurs a
significant energy penalty. Again, going from 32- to 8-bit operands makes the required memory
size a factor 4 smaller, leading to both lower energy per access and lower overall access count.

However, neural network quantization does not come without a cost: noise introduced by
the loss of resolution in operators can unfortunately significantly decrease the accuracy of the
network [[78]].

2.3.2 Quantization fundamentals

With the need for quantization outlined, this section will dive into the core fundamentals. First,
in [Section 2.3.2.1] the main operation affected by quantization is introduced. Following this,
in |[Section 2.3.2.2] the basic quantization operation is explained, after which [Section 2.3.2.3|
covers the conversion back to floating point. Then, [Section 2.3.2.4{ discusses the difference
between symmetric and asymmetric quantization operations. Finally, [Section 2.3.2.5|compares
per-tensor and per-channel quantization.

2.3.2.1 Multiply-accumulate operation Processing modern ANNs mainly involves per-
forming multiply-accumulate (MAC) operations in the form of matrix-vector multiplications:
y = Wx+b. This operation forms the basis of matrix-matrix multiplication and convolution
[78]], commonly found in ANNSs.

An example hardware implementation of a block processing this matrix-vector multiplica-
tion can be seen in where the operational equations are:
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In a non-quantized setting, all of these variables would be 32-bit floating point (FP32) val-
ues. However, in the quantized version of this operation, the weights (W, ,,), biases (b,), inputs
(x,) and accumulators (A,) are all integers of a given bit width. Note that this bit width does
not have to be the same between these three types of values. Subsequently, [Eq. (I7) can be
computed in fixed-point/integer arithmetic, which is considerably cheaper than the equivalent
FP32 computation, even if the bit width remains 32 (as per [Fig. 27).

Input values

Weight values
SJ10}e|NWNJ2Y

Figure 29: Overview of a hypothetical matrix-vector multiplier block. Figure taken from [78].

In order to convert floating-point operations to their fixed-point counterparts, a scheme for
converting FP32 values to quantized integers is required. For this,[Eq. (I9)|provides a simplified
conversion:

=g X" x, (19)

where x is the floating point value that should be converted, X the approximated (after quan-
tization) x, sy a floating-point scale value, and x™™ the quantized value corresponding to x. For
example, if x = 0.0912 and s, = 0.001, then x"' =91 and £ = 0.091. The difference & — x is
due to the integer approximation and is the first type of quantization error: the rounding error.

As not only the inputs (x) but also the weights (W) need to be quantized to perform[Eq. (I7)|
and [Eq. (I8)] in fixed-point, a scale sy is also defined for the weights. The resulting fully
quantized equations are then [[78]]

An = l;n + ZCn,m
m
= l;n + ZWn,mxm
m
= b+ Z (st,ifl,L) (sxxj;;t>
m

7 int _int
=b,+ SWSxZWn,me ,
m

(20)
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where A, b, are the approximated A, and b, and W,if‘,}l, x},‘}t are the quantized weights and in-
puts. While s, and sy could be combined into one scale value via multiplication, using separate
values makes it easier to, for example, use different quantization schemes for the activations
and weights. As these two floating-point scales are moved out of the summation in
it means that all MAC operations can now be performed in fixed-point [/8]]. Note that the ac-
cumulation in is usually performed in a higher bit width than the operands to avoid
overflow.

The bias was left as an approximated value in [Eq. (20)| as its quantization approach varies
from strategy to strategy. Usually, however, the combined weight and activation scale is used

for the bias scale s, [80]:

A, = by + swsx ZWmt xint

n.mm
m
_ bint Wint int
=Sp0,, + SwSx n,m%m
m

= (swsx) by + swsx Y Wamm' @1
m

int int _int
= SwSx (b;ln + ZW};T:nx:;ll ) .
m

Defining s, like this allows for only a single scaling operation (i.e. a floating point multi-
plication), which makes the required hardware simpler. Finally, due to this scaling by swsx, A,
also becomes a floating-point value. However, as the current layer’s output A, is the next layer’s

input activation x,,, A, should be requantized before going back into the MAC array. This step
is called requantization and it is effectively the inverse of [Eq. (19)]

2.3.2.2 Quantization As briefly touched upon, quantization is the process of mapping floating-
point values to the integer grid [/8]: this section introduces the mapping scheme used through-
out this thesis

The asymmetrical quantization or uniform affine quantization scheme is the most commonly
used scheme [78]], as it can be readily implemented using hardware that supports fixed-point
arithmetic (see [Fig. 29). The scheme builds on top of the simplified quantization approach
of [Eq. (19)] and depends on three parameters: an already-introduced quantization scale s, the
quantization zero-point z and the bit width of the quantized number b, which are an FP32 value
and two integers, respectively. Furthermore, the following other symbols are defined:

* x: any real number that requires quantization,

* Xint: the quantized number, an integer.
A real number x is then mapped to the unsigned integer grid {0, ...,2° — 1} via [78]:

Xint = clamp (H 420,20 — 1) , 22)
S

where | -] is the round-to-nearest operation and the clamp function is defined as [78] (plotted
in[Fig. 30), where a and c are the lower and upper clipping limits respectively.

a, x<a,
clamp (x;a,c) =< x, a<x<c, (23)
c, xX>c¢
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From [Eq. (22)} it can be seen that % controls the step size of the quantization: for example,
when s is large, a large change in x is required to change xj,; while when s is small, only a small

change in x results in a large change in xiy (see[Fig. 31).
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— clamp(x; 1, 3)
-=-=-a=1
-==-c=3
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(S R el ]

P

Figure 30: Plot of the clamp function for a = 1 and ¢ = 3.

The function of the zero-point, z on the other hand, is less evident: z is the scaled-and-
rounded value corresponding to the real O (the "zero-point") in the x domain, ensuring that the
real O is always quantized without error [78]].

Xint
oo
1
\
1
\

00 02 04 06 0.8 1.0 00 02 04 06 0.8 1.0

Figure 31: Effect of the quantization scale s on the step size of the quantization.

2.3.2.3 Dequantization After the mapping or quantization step, dequantization is performed
to compute the approximated real value from the quantized value (similar to[Eq. (I9)):

x~L=5Xip—2)- (24)
Substituting [Eq. (22)|into [Eq. (24)] the so-called "quantization function" is obtained [[78]:

£=q(x;s,2,b) = <c1amp Q)ﬂ +2;,0,2" — 1) —z) . (25)
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Subsequently, the grid limits (g,i» and guqy) of the quantization in [Eq. (25)] can be com-
puted. Any value of x that lies outside these limits is clipped to the limits, inducing the first type
of quantization error, called clipping error [78]:

dmin = —5%,

Gmax =527 —1—2).
As an effect, a trade-off between the clipping and rounding error is introduced. By choosing

a larger s, the clipping error is reduced as the clipping bounds grow (p, however, the
Eq. (22)) [

(26)

rounding error is increased as it lies in the range [—%s, %s} (based on 78l].

As mentioned before, s is stored in a floating-point format [78]]; however, an alternative is
to use power-of-two scale values [78]. This limits the possible scale values to 2%, where sexp
is any integer [78]]. Multiplying by the scale can then be done via a cheap bit shift, instead of
via an FP32 multiplication.

2.3.2.4 Symmetric vs. asymmetric quantization In the previous section, the mapping pro-
cedure for the asymmetric quantization scheme was covered. However, for the special case of
z =0, a symmetric quantization scheme is extracted.

The advantage of a symmetric scheme is that the zero-point offset does not have to be
considered while computing [Eq. (I7)] However, due to the lack of zero-point, the only way to
represent negative numbers now is by using a signed integer grid:

Xing = clamp (M b=l gb=1 _ 1) . 27)
S

Symmetric signed schemes prove most useful in situations where the to-be-quantized values
are symmetric around zero, whereas the symmetric unsigned scheme can be used for ReLU
activated values [78]]. For a visual overview of these different schemes, see [Fig. 32

Symmetric signed Symmetric unsigned
S * Xint8 S+ Xuint8
-128 127 255
Lo ol foeld ol ti el
0 "; max 0 ‘}J max
Asymmetric
S(Xuints - Z)
0 255
Lo loa bbb
min = —sz § 0 max

Figure 32: An overview of the different quantization grids for » = 8. The floating-point grid is in black
and the integer quantized grid is in blue. Figure taken from [78]].

As separate scales for the weights and activations were defined in this built-in
flexibility now also allows for choosing a symmetric or asymmetric quantization scheme for
each of these. Most commonly, however, asymmetric activation quantization and symmetric
weight quantization are used [78]. To understand this, consider using asymmetric quantization
for the weights (W) and activations/inputs (x)

int
Wn,mx = Sw (Wnym - Zw) Sx (xint - Zx)

= swSxWintXint — SW 2w SxXint — SWSxZxWint + SwZwSx2x,

(28)
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where z,, is the zero-point for W and z, the zero-point for x. While the blue part in [Eq. (28))|
can be pre-computed and added to the bias for the operation, the red part depends on x;j,¢ and is
therefore not known in advance. Therefore, to avoid the computational overhead of this term,
often only the activations are quantized asymmetrically.

2.3.2.5 Per-tensor and per-channel quantization So far, every weight matrix has its own,
unique scale and optionally zero-point (see [Eq. (28))): this is called per-tensor quantization.
Instead, with per-channel quantization, every output channel has its own zero-point and scale
[78]. At the cost of extra parameters, this method can increase a quantized model’s performance
when the distribution of weight values varies significantly between channels.

Per-channel quantization can also be performed for the activations. However, while in per-
channel weight quantization, sy has only to be replaced by sw ,, in keeping the overall
same equation structure, for per-channel activation quantization, every MAC entry in the sum-
mation term also requires a different scale sy ,,. This is not preferred, as it introduces many
extra scaling operations [78]. Hence, usually, only per-channel weight scaling is considered.

2.3.3 Quantized training

In this section, the way neural networks are prepared and converted to a quantized format for
deployment on inference accelerators is discussed.

Starting off, there are two main approaches for quantizing networks: post-training quantiza-
tion (PTQ) and quantization-aware training (QAT). The easiest of the two approaches is PTQ,
as no retraining is required [78]. However, PTQ can have issues reaching desirable accuracies
on bit widths of 4 or less [[78]. As in this thesis, minimizing the power consumption of the hard-
ware is very important, which can partially be achieved by using low bit width representations
(see [Fig. 27), it was chosen to focus on QAT directly.

Therefore, first, in [Section 2.3.3.1] quantization-aware training is explained. Then,
tion 2.3.3.2|covers how residual layers are dealt with in this framework. Finally, [Section 2.3.3.3]
discusses the integration of the batch normalization [81] operation during training and before
deployment.

2.3.3.1 Quantization-Aware Training In QAT, the quantization function is part
of the network’s computational graph during the backward and forward pass. However, a direct
implementation of this will not work, as the basic quantization operation (see contains
a round-to-nearest operation. Backpropagating through this operation results in a gradient that
is zero or undefined everywhere [/8].

To solve this, Bengio et al. [82] proposed the straight-through estimator (STE), which ap-
proximates the gradient of the round-to-nearest operation to be 1. Formally, this can be written
as (refer to [78]] for more details on the full gradient definition of [Eq. (22)):

Iyl
— =1 29
Iy (29)
Using this equation, also the gradients through the quantization operation are defined. Sub-
sequently, backpropagation can now be applied to train a quantized network. In the
forward graph and backward graph are illustrated for a dummy convolutional layer. In the for-
ward pass, the quantization function (Eq. (25)) is computed in the quantizer blocks as defined:

however, in the backward pass, this function is replaced by STE. Therefore, the backward pass
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in QAT using STE is exactly the same as a normal backward pass: the quantizer block is ef-
fectively bypassed. Through QAT, not only are the neural network weights directly optimized
for quantized inference, also all the scales and zero-points are now learnable parameters and
optimized through gradient descent [78]].

—

B

“ Quantizer Weights

Input

—» Backward

—— Forward

Figure 33: Forward and backward computational graph with quantizer blocks for activations and
weights. W and y are the FP32 weights and outputs, while W and § are the quantized weights and
outputs, respectively. Figure taken from [78]].

Please note that contrary to what the name might suggest, QAT is rarely performed starting
from a randomly initialized model. Commonly, QAT is preceded by FP32 training [78]], where
the FP32-trained model then forms the starting point for QAT.

2.3.3.2 Residual layer handling When quantizing neural network models that have residual

connections (see [Fig. 34), such as the TCN architecture discussed in[Section 2.2.2] special care

to be dedicated to quantization of the weights in the residual path.

Y

X

F(x) Weight layer identity

F(x) +x
ReLU

Figure 34: Residual layer block with ReLU activation function, where F (x) is any function that maps x.
Figure based on [73].

This is due to the fact that the quantization operation of [Eq. (25)|is not a linear operation
[83]: g(a+Db) # q(a)+q(b). As such, performing the summation and then quantizing is
not the same as summing quantized values. Assuming that the weight layer F(x) is y = Wx,
which y = swsxW™x™ when quantized and assuming that the output after residual summation
(F(x)+x) is @ = s,a™, the final quantized output is:

aint — Sx xint + SWSx Wintxint (30)
Sa Sa

It can now be seen that two separate scaling operations are required (unlike with the normal

quantization function, [Eq. (25)), before performing the residual addition. Therefore, dedicated
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hardware support is required to process neural networks with residual connections, as the oper-
ation does not fit in a standard quantized inference engine.

2.3.3.3 Batch normalization folding Batch normalization [81]], where the output of a linear
layer is normalized before scaling and offsetting it, has become an essential building block of
modern convolutional networks. While it was not originally part of the architectural description
of the discussed network types (Section 2.2.1| and [Section 2.2.2)), both LSTMs [84]] and TCNs
can be extended with this block to improve classification performance possibly.

The batch normalization operation is defined as follows:

R

BatchNorm (x) y(\/m) + 8, (31)
where y and f are learnable parameters (in other words, optimized by gradient descent) and
U and o are the exponential moving average mean and variance of the incoming x batches dur-
ing training, all of them defined per-channel. Both tt and o are fixed during inference, meaning
that before deployment on an edge device, the batch normalization operation can be folded [83]]
[80] into the previous linear layer’s weights. This effectively removes the complete batch nor-
malization step from the network, with the operation absorbed by the linear layer computation.
For a linear layer with weights W and inputs x passing through a batch normalization layer

y = BatchNorm (Wx), the folding for the kth channel is defined as:

yx = BatchNorm (W .x)

Wk,:x — Hy

=% | —F—— | tB«
\/Oi+€
(32)
W,.
_ YWk x4 Yk
\/Oi+€ \/Or+e
= W.x+by
where Wk,: and ﬁ « can subsequently be defined as:
- W,
W, = YWk,
\/Or+E
(33)

Yl

\/Or+€

When dealing with batch normalization layers in QAT, a simple but effective strategy is to
statically, in other words, before QAT, fold the batch normalization layers into the pre-trained
FP32 network’s weights [/8]]. After this, the batch normalization layer can be removed from
the network

Bi=Bi -

2.3.4 Number representations

So far, quantization has been discussed in the context of converting to n-bit integer formats.
However, the definition of quantization is not limited to using integer number representations
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Figure 35: Comparison of weight distribution for a 4-bit (16 levels) uniform and base-2 logarithmic
format. Note how the logarithmic weights are much more densely distributed close to zero than further
away from zero.

only. Therefore, one other number representation will be discussed in this section: the non-
uniform base-2 logarithmic quantization scheme.

In this scheme, first introduced by Miyashita et al. [86], all the quantized values are powers
of two, for example, %, 4, 16, 2 and 64. Such a scheme has multiple advantages compared to
linear quantization:

1. the distribution of the weights of a neural network is often non-uniform (high concentra-
tion around zero) [87]: this is naturally supported by a logarithmic definition (see[Fig. 35,

2. integer quantization methods incur a significant drop in accuracy when less than 8 bits are
used [86], however for logarithmic weights, even with 3-bits the original floating point
accuracy can be nearly maintained [86],

3. there is no need for multiplier hardware, saving area and power, as all computations can
be performed via bit shifts [86].

In a similar format to[Eq. (25)] (the linear quantization function), a quantization function for
this logarithmic scheme can be defined, per [87]:

0, x=0,
¥ = LogQuant (x;»,FSR) = ¢ . . 34
* &Q (x ) {ZX, otherwise (34)
where:
%= clip (Uog2 (Ix))];FSR — 22, FSR> 35)
0, x < min,
clip (x;min, max) = < max — 1, x > max, (36)

x, otherwise

where FSR is the full scale range and determines the maximum and minimum quantization
exponent: in a QAT setting, this scale is optimized through gradient descent. Furthermore, in

36



the case of signed quantization, the sign of x can be prepended to [Eq. (34)] requiring one extra
bit of storage. Notably, this quantization function prevents zero-valued weights, as all weights

near zero are promoted to the minimum quantization level [87].

Based on this quantization function, there are two main scheme variants: the first variant
quantizes both the weights and activations using base-2 logarithmic quantization, while the
second one only quantizes either the weights or activations logarithmically whereas the other
values are quantized linearly. To compare these two, the dot product y = w - x is defined, where
x € R" is the input and w € R” is the weight vector. Starting with the former variant:

n
wix~ Z Witk
i=1

-

I
—_

1

bitshift(1,w; + %),

(37)

where the bitshift(a,c) function shifts value a by c bits to the left. Next, defining the latter

variant (in this case, only x is logarithmically quantized):

n
wa ~ Z Wi+ 2%
i=1

|

i=1

bitshift(w;, %),

(38)

Note that in [Eq. (38)] w can also be an FP32 vector, as in floating-point, this operation is

simply an addition of each X; with the exponent part of each w;.

Depending on the required memory savings (see representation sizes in[Fig. 36)), the desired
performance (see and the functionality offered by the considered hardware, a scheme
from the above options should be selected.

IEEE 754 single precision floating point

= sign - mantissa - 2¢exponent-127

Logarithmic representation
— sign . zexponent

Linear representation
= sign - mantissa

1 bit

8 bits

A

23 bits

\4

. Positive .. .
Sign Positive mantissa
exponent
1 bit n bits
<>
. Positive
Sign
exponent
1 bit n bits
. Positive
Sign .
mantissa

Figure 36: Bitwise overview of three different number representations: FP32, base-2 logarithmic repre-

sentation and linear/integer representation.
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Table 3: Accuracy of various quantized models on ImageNet [88]], where "Act" is activations, "Conv"
indicates the convolutional weights and "FC" refers to the fully connected weights. "L4" means logarith-
mic quantization with 4 bits, while U3 stands for uniform quantization with 3 bits. Data from [87] [86].

Quantization Top-5 accuracy Top-1 accuracy
Act Conv FC  AlexNet [89] VGGI16 [90] ResNet-18 [75] ResNet-50 [75]
FP32 FP32 FP32 78.3 89.2 69.76 76.13
FP32 4L 8U - - 69.87 76.38
FP32 4L 4L - - 69.53 76.31
L4 FP32 4L 76.8 89.5 - -
L4 us 4L 73.6 85.1% - -
L4 L5 4L 70.6 83.4 - -
L3 FP32 FP32 76.9 89.8 - -
L4 FP32 FP32 76.9 89.8 - -
U3 FP32 FP32 77.1 83.0 - -
U4 FP32 FP32 77.6 89.4 - -
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3 Network design

In this section, neural networks for the three benchmarks of this thesis will be designed. These
neural networks will all be based on the same architecture type, for which hardware support
will then be developed.

This is done in two parts: first, in the neural network type will be selected by
considering various metrics for RNNs and TCNs, after which derives the architec-
tural hyperparameters of the selected network type per task.

3.1 Architecture type choice

In this section, the two neural network architectures covered in the background section, RNNs
and TCNs, will be compared on various levels, after which an architecture is selected for im-
plementation in hardware.

Initially, compares the performance between the two approaches to sequence
modeling, after which investigates the training characteristics of the network
types. These two sections use empirical data from Bai er al. [64]. Next, covers
the hardware considerations per architecture. Then, in based on the information
presented in the previous sections, the final network type is chosen.

3.1.1 Performance

This section compares the performance between RNNs (LSTMs, GRUs, pure RNNs) and TCNs
on four widely used benchmarks for recurrent neural networks. In[Section 3.1.1.1[to [3.1.1.3]
first the used datasets are discussed, after which summarizes the performance of
the networks on these datasets.

3.1.1.1 Sequential & permuted MNIST As briefly touched upon in {Section 2.1.6.1| se-
quential MNIST is a task where the MNIST handwritten digit images have to be classified,
although the images are now presented as a sequence. In permuted MNIST (P-MNIST) [34]],
the order of the pixels is permuted randomly: this permutation is the same for all samples (see
[Fig. 37), however, it can be different between training for multiple separate models.

These two tasks are included in the performance comparison as they are classification tasks
(although not few-shot) over a relatively long sequence length of 784 timesteps. Furthermore,
the data looks visually very similar to the Omniglot data, hence the performance of a model on
this task is likely a good proxy metric for performance on Omniglot with the same model.

3.1.1.2 Adding problem The adding problem is a task that was first introduced by Hochre-
iter et. al [[/2]. In this task, a 2D input is presented at every timestep for a total sequence length
T': the first dimension contains zeros everywhere except for two entries that are 1 and the second
dimension is a random number in [0, 1]. The aim is then to find the sum of the two values that
were marked with a 1. Note that in every sequence, the positions of the two one-valued entries
change and the random numbers are regenerated. The mean-squared error (MSE) is used as the
loss function for this task. displays an example adding task.

This task is included in the benchmark selection, as it is a test that can be used to understand
how long networks can remember. By training a model for each (increasing) value of 7" and
monitoring the loss, it can be determined how far back the network can look. The value for T
at which the loss suddenly increases indicates this point.
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Figure 37: Two P-MNIST samples. Note how the permuted locations are the same for the two samples.
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Figure 38: Example task for the adding problem.

3.1.1.3 Copy memory In this task, first introduced by Arjovsky et. al [91], every input
sequence comprises a length of 7'+ 20. The initial ten values are drawn at random from the
numbers 1 through 8, while the remaining values are set to zero, excluding the final 11 entries,
which are occupied by the digit 9 (with the first 9 serving as a separator). The objective is then
to generate an output sequence with the same length as the input sequence, where all values
are zero except for the final ten values occurring after the separator. In this segment, the model
needs to replicate the ten values it encountered at the beginning of the input. Similarly to the
adding problem, the copy problem is also an effective memory test and also uses MSE as the
loss function. An example copy memory task is shown in

Expected output

[e]fe][e]fo][o][o]{o]lo]lo]lo][o]lo][o]-[o][e][e][x][z][s][2][s][s][«][s][5][2]
ENIRAIEN|ENEN ENEN|EN|EN EY 0N e | OV X1 | 2 B | e R Y X Y e Y

Input T

Figure 39: Example copy memory task.

3.1.1.4 Results In the performance of the four models (LSTMs, GRUs, pure RNNs
and TCNs) on the previously discussed benchmarks are shown. For each benchmark, the pa-
rameter count between the models is approximately the same to make sure that none of the
models have a performance advantage in that respect. The exact hyperparameters used for each
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model across these tasks are reported by Bai et al. in [64]].

Table 4: Performance results from four network architectures on the discussed four sequence modeling
tasks. " indicates that higher metrics are better, ! indicates that lower metrics are better. Bold highlights
the best performance per task. Data taken from [64].

Task Model Size () LSTM GRU RNN TCN
Sequential MNIST (accuracy’) 70K 87.2 96.2 21.5 99.0
Permuted MNIST (accuracyh) 70K 85.7 87.3 253 97.2
Adding problem T = 600 (loss’) 70K 0.164 5.3e-5 0.177 5.8e-5
Copy memory T = 1000 (loss’) 16K 0.0204 0.0197 0.0202 3.5e-5

It can be clearly seen that the TCN architecture systematically outperforms the recurrence-
based architectures. While the GRU is still on par with the TCN in sequential MNIST and in the
adding problem, for P-MNIST and the copy memory task, it is surpassed by the TCN. Further-
more, the pure RNN performs severely worse than any of the other architectures. Therefore, the
pure RNN architecture is removed from the network selection options: in the following, only
the LSTM, GRU and TCN will be considered.

Next to pure performance, the effective receptive field can be compared between the ar-
chitectures. Recurrent architectures theoretically have an infinite effective receptive field or
memory [64], as they do not have any architectural limits to how many inputs a network can
maintain in its working memory, unlike TCNs (see[Eq. (I6)). To compare the effective receptive
field size of recurrent networks with that of the TCN, the copy task can be used. shows
the accuracy of the different modes on the copy for increasing values of 7. All models trained
for this experiment contained 10k parameters.

—— TCN (10K)
100 —— | STM (10K)
—— GRU (10K)
g g --- Random Guess
5
Q
o
< 60
jo2)
=
8 40
'—
20
0
0 50 100 150 200 250

Sequence length T
Figure 40: Accuracy on the copy memory task for sequences of different lengths 7'. Taken from [64]].
It can be seen that as T increases, the accuracy of the GRU and LSTM drops asymptomati-
cally to random guessing performance, while the TCN has 100% accuracy throughout all values
of T. While this is a purely synthetic task, it demonstrates that TCNs are able to have a longer
effective receptive field size than the GRU or the LSTM.
3.1.2 Training properties

Next, the training speed and convergence speed will be compared between the different archi-
tectures. The training speed (or wallclock time per epoch) is relevant, since in meta-learning,
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often either small batch sizes are used or double derivatives need to be calculated, further slow-
ing down training. The training convergence, i.e. how fast the network reaches a desired per-
formance, is also an appropriate metric, since in few-shot learning, only a few examples are
available to update the network. Therefore, an architecture that converges in fewer gradient
steps is preferred.

Comparing training speed on tasks with sequences between 100-16,000 elements, it is
demonstrated that TCNs are approximately 1.5-3x slower than RNNs (Table 5)). Notably, the
difference increases for longer sequences: this is likely due to the fact TCNs require more layers
to fully cover the increasing input length, requiring more computation.

Table 5: Comparison of training speed per epoch on various-length tasks. All training hyperparameters
were kept the same for each task. Own data.

Seconds per epoch

Task Model size Length LSTM TCN LSTM speed-up
KWS (MFCC) 17k 115 2.87 3.79 1.32x
Sequential MNIST 70k 784 14.57 26.04 1.79x
KWS (raw data) 30k 16,000 31.62 88.32 2.79x

To compare the convergence speed, the adding problem will be used, as it tests learning
over long timescales in a challenging setup. In the loss progression during this task
with T' = 200 can be seen, while in the loss progression for this task with 7' = 600 is
shown. All the networks in both tests have approximately the same parameter count.

0.25 —— TCN 7x27, k=6 (70K) 0.25 —— TCN 8x24, k=8 (70K)
—— LSTM, (70K) —— LSTM (70K)
020k —— GRU (70K) 0.20 | —— GRU (70K)
n ‘ \ [2}
n (%2}
2 0.15 9 0.15
D (@]
] <
3 3
g 0.10 fid 0.10

e
ol |NREEAN

0.00,

0 1000 2000 3000 4000 5000 6000 7000 o 1000 2000 3000 4000 5000 6000 7000
Iteration Iteration
(a) T =200. (b) T = 600.

Figure 41: Loss progression on two adding problems for three different sequence modeling architec-
tures. The TCN is found to converge at a minimum 12X faster than the LSTM and 2 x faster than the
GRU. Figure adapted on [64].

F1g. 41| clearly demonstrates that TCNs learn much quicker and converge rapidly to a near-
zero loss solution. The GRU is second-best (approximately 2x slower than the TCN), while
the LSTM only converges in the 7 = 200 case, but after 12X as many iterations as the TCN
required.

So while the LSTM is faster to train per iteration, it takes significantly more iterations to
converge. Offsetting this, the TCN is very roughly speaking 4 x faster than the LSTM, while
the GRU is approximately 50% faster than the TCNEI

“Note that the seconds per epoch were not published for the adding task by Bai et al.. Therefore, due to time
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(b) TCN (with k = 2) receptive field. Taken from [68]].

Figure 42: Comparison between RNN and TCN architectures showing the receptive field from and
information flow through the networks. Thick arrows indicate information flow to the final output, while
dashed lines indicate information flow to other outputs.

The reason that TCNs converge faster is likely due to the fact that the gradients are more
stable through the network (explored in[Section 2.2.2), as they do not have to flow through time
but through the depth of the network. This can be seen when comparing the flow of information
between [Fig. 42a] and [Fig. 42bl 1t is clear that the longest path through the network scales
linearly with input length in the case of the RNN, while it scales logarithmically for a TCN.

3.1.3 Hardware considerations

Since the selected neural network architecture has to be implemented in hardware, it is im-
portant to compare the hardware implications of each of the network types. Therefore, in this
section, the required activation memory size (Section 3.1.3.1]) and the number of multiplication
operations (Section 3.1.3.2)) are derived per architecture.

3.1.3.1 Activation memory size The reason for picking the activation memory size as a
metric is that it has a direct impact on both the power usage and the on-chip area. Namely, a
larger activation memory size means that a physically larger memory is required, which takes
up more silicon area and uses more power overall. The required weight memory size on the
other hand is purposefully not considered in this thesis. The reason for this is that the weight
memory size will be chosen based on a high-level requirement on the maximum number of
parameters, in other words, independently from the architecture.

Now, for each network type, the required activation memory size is calculated. This calcu-
lation is based on the following assumptions:

* aclassification setting is assumed, similar to what is required during few-shot learning,

constraints, it was decided to measure training speeds using already configured benchmarks, which the adding task
was not.
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* only the last timestep output of the network is used for classification,
¢ the batch size is 1,
* each input vector is presented sequentially,

¢ all computations are performed greedily. This means that as soon as a new input comes
in, all computations that can be performed, will be performed: for example, when the 4th
input is available in only the two states above the input will be calculated after
which new inputs are awaited.

Under these assumptions, [Eq. (39)|is found:

Asize LsSTM = 61y + 1,
Asize,GRU = 4 -y + 1, (39)
Asize, TCN = 2nk -np + k- n;,

where ny, is the number of hidden units in the case of the LSTM and GRU and the number of
channels in every layer in case of the TCN. While, by definition, the number of channels does
not have to be the same in every TCN layer, for simplicity this is assumed here. n; then is the
dimensionality of the input and » is the number of layers and & is the kernel size in the TCN.

Based on [Eq. (39)] [Fig. 43| displays a plot of the total network parameter count versus the
activation value count per network for many combinations of n; and »; for all architectures and
n and k for the TCN.
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Figure 43: Parameter count versus activation values count for LSTMs, GRUs and TCNs. The approxi-
mated bound is a scaled square-root function.

It can be seen that while for LSTMs and GRUs, the number of values to keep in memory is
high when the network is large, for TCNs even small networks can have a very high requirement
on the number of values to keep in memory.

Filling in the specifications from the network architectures used for sequential MNISTEGI,
results in the following activation memory size requirements:

10The hidden size of the GRU network was estimated from its parameter count, as the authors did not publish
this information in [[64].
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AgizeLsTm = 6-130+1 =780
Agize GrRU =4 - 150+ 1 =601 (40)
Asize,TCN =2-8-7-25+7-1=12807

Clearly, the TCN has the largest activation memory requirement for this task, with the LSTM
and GRU being comparable to each other. More generally speaking, on average, TCNs require
more values to be stored in the activation memory than its recurrent counterparts.

3.1.3.2 Required multiplications The total required multiplications are compared between
the three architectures as it is a proxy metric (assuming that a fixed number of multiplications
can be computed per second) for the inference time and energy per inference (a result of the
number of multiplications and number of weight accesses).

In this regard, [Eq. (41) [Eq. (42)| and [Eq. (43)| display the number of multiplications for
the LSTM, GRU and TCN respectively under the same assumptions stated in [Section 3.1.3.1}
[Egs. (41)|to[(42)] are taken from Rezk et al. [92]]; where T is the input sequence length, whereas
[Eq. (43)|is derived in this thesis, with r referring to [Eq. (16)| and again assuming that all inter-
mediate layers in the TCN have the same channel count.

MeountLstv = T (4n + 4njn; + 3ny,) 41)

Meountgru = T (315 + 3nym; + 3ny,) (42)

n i, =0
Mcount,TeN = 11 Zk (” (l7k7 dexp) —k+ 1) ({;:7 other;vise )
i=1 ’ (43)

1 0, [#n,
3 (k+ ({ni/l’lh, otherwise )> (r 1k, dexp) = 2k +3)

In three different scenarios are plotted: in each scenario, every network has the
presented number of parameters and input channels. This means that for the LSTM and GRU,
the minimum number of hidden units has to match that parameter count has to be calculated
knowing n;. For the TCN, at every receptive field size value, the combinations of k and n are
found that have the smallest r still larger than the required receptive field. Knowing k, n and n;,
ny, for the TCN can then be found in the same way as for the LSTM and GRU.

Fig. 44| shows that the TCN always requires a lower number of multiplications than its
recurrent counterparts. also shows that the number of operations increases linearly for
the GRU and LSTM (due to the multiplication with 7 in [Egs. (41)] to [(42)) while it increases
logarithmically for the TCN.

This means that for a given network size, sequence length and sequence dimensionality, the
inference time of a TCN network is always lower (assuming the same number of multiplications
per second) thus requiring less energy due to reduced runtime.

3.1.4 Final choice

With all of the above in mind, the final network can be chosen. First, the results from the
previous sections will be briefly summarized.

Initially, showed that TCNs have superior performance across the board com-
pared to LSTMs, GRUs and RNNs, although GRUs were not too far off. However, in the

45



Parameter count = 15k Parameter count = 75k Parameter count = 250k

L6 Le7 Input channels = 16 1e7 Input channels = 1 1e8 Input channels = 48
— TCN — TCN 251 — TCN
141 LSTM 7 LSTM LSTM

| — GRuU | — Gru | — GRu

=
N]
o
N
o

=

=)
L

]
L

=
5}
|

o

o

IS
L

o
o
w
s
=
<)
L

I

IS

N
N

Number of multiplications

o
wn

Number of multiplications
Number of multiplications

o
N
N
—

o
o
o
L
o
o

(') 2(')0 4(')0 6(')0 8(')0 10'00 (') 2(')0 4(')0 6(')0 8(')0 10'00 (') 2(')0 4(')0 6(')0 8(')0 10'00
Receptive field size (r) Receptive field size (r) Receptive field size (r)
Figure 44: Comparison of the number of multiplications between TCNs, GRUs and LSTMs for various

network configurations on tasks with increasing receptive field. Note the difference in scaling factor for
the three y-axes.

effective history size experiment, TCNs were a clear winner. Due to very poor performance,
the pure RNN was then dropped from the list of options. Then, in their training
characteristics of the remaining three architectures were compared: TCNs converge in less iter-
ations but also need more training time per iteration. Putting these metrics together, GRUs are
the best option in this respect. Finally, showed that both recurrent architectures
generally require fewer activations to be stored, but that TCN's require far fewer multiplications
in all settings.

It is then decided to pick the TCN architecture. It exhibits the best performance, has a very
good memory and requires the least number of iterations to converge (very important for meta-
learning). However, it does come at the expense of training time and on-chip activation memory
size, both of which have to be investigated further to see if there are possible improvements for
these downsides.

3.2 Network designs per benchmark

With the architecture type chosen, in this section, the structural hyperparameters of one network
per benchmark will be chosen. First, briefly discusses how k and n should be
chosen per task based on the input sequence length, after which presents the final
network architectures per benchmark.

3.2.1 Receptive field size considerations

In a TCN, the structure of the network defines a physical limit to the maximum receptive field
size (as per [Eq. (16)). Therefore, care has to be taken in selecting k and n. Note that in a TCN,
by definition, every layer could have a different kernel size and channel count, in the following
it is assumed that the kernel size & is the same throughout the network.

Plotting as a heatmap (dexp = 2 is assumed) makes it easier to consider which
combinations of k and n can be used for a certain task. Ideally, one of the combinations results
in a receptive field exactly equal to the data length of the task. However, if that is not the case,
one of the combinations with the lowest receptive field values still above the input sequence
length should be used. This lower limit should be respected as otherwise, the network will not
receive the full input sequence.
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Figure 45: Heatmap plot of |[Eq. (16)} Each box contains the receptive field size for the given kernel size
k and layer count n. dexp = 2 is assumed for this plot, the default value for TCNs.

For networks with a higher receptive field size than input length, the input can simply be
left-padded with zeroes. This is not a problem in cases where the network has a slightly higher
receptive field size than the input sequence length, however, for large differences, the network
will have parameters that are never used, thus obsolete.

3.2.2 Final designs

In this section, the final TCN architectures for the three selected tasks will be discussed. The
reason for pre-designing these architectures instead of optimizing them is that multiple experi-
ments need to be performed with each of the networks: having a stable baseline therefore aids
in comparing the results of these experiments.

First, the network for the 12-class KWS task will be covered in [Section 3.2.2.1l After
this, the few-shot KWS network architecture is derived in [Section 3.2.2.2] Finally, the TCN
architecture for sequential Omniglot is derived in [Section 3.2.2.3| Serving as an overview for
this section, displays the final parameters for the three discussed architectures.

Note that while the original TCN architecture [64] shipped with weight normalization [[77],
in this thesis batch normalization is applied. Furthermore, to avoid excessive hyperparameter
optimization, a dropout [76] value of 0.025 was selected for all architectures. Finally, although
not shown in the Kaiming weight initializer [93]] is chosen over random weight ini-
tialization for all TCNss, as this initializer is specifically designed for ReLU-activated networks,
including the TCN.

3.2.2.1 12-class KWS Starting off, the network architecture for the 12-class KWS task is
discussed (leftmost column in [Table 6). Note that in this model, the channel count values are

"ncludes batch normalization parameters (as discussed in [Section 2.3.3.3)) but excludes linear layer
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Table 6: Final TCN network designs for the three benchmark tasks of this thesis.

Dataset/task 12-class KWS Few-shot KWS Sequential Omniglot

k 7 7 5

n 3 3 7

Receptive field size 85 85 1017

Channels [16,16,32] [48,48,64] [32,32,32,48,48,48,43|
Input dimensionality 32 32 1

Dropout 0.025 0.025 0.025

Weight norm No No No

Batch norm Yes Yes Yes

Parameter counf'l] 21,484 114,784 116,960

all divisible by 16 to make sure that it will be easy to design the core compute block of the
hardware designF_ZI

For this architecture, it was desired to have a model size of around 20k parameters to allow
for a fair comparison with other hardware designs that often use network sizes slightly below
and above this value [39] [44] [42] [40] [94].

It was chosen to have more channels in deeper layers instead of the other way around,
as deeper layers in convolutional neural networks form more refined representations [935]] and
therefore benefit from having more channels available. Next to this, large convolutional neural
networks [[75] [90] increase their channel count with depth, as a testimony to this. In the end,
only the last layer in this network uses 32 channels, as using 32 channels in any of the other
layers increases the parameter count to approximately 30k, 50% more than the desired network
size.

Furthermore, a window size of 32 ms and a stride of 16 ms were used for MFCC feature
extraction, yielding a total of 63 steps from each audio sample (16,000 original timesteps).
These values were selected as they are often used by other accelerator designs [40] [94] [44]],
again making comparing the design of this thesis against other designs easier.

While most of these works extract 40 MFCCs per frame, in this work it is chosen to extract
32 MFCCs per frame. This was done as 40 is not exactly divisible by 16, leading to lower-
than-100% utilization in the case of a 16 x 16 multiplier array, while 32 is exactly divisible by
16. While 48 could have also been chosen as it is also divisible by 16, it was decided to use 32
MEFCC:s since there are no hardware designs that use close to 50 MFCCs while there are worrks
that use 30 MFCCs [42]. Furthermore, using 48 coefficients would make comparisons against
40D methods unfair, as the task would be made easier through the higher quality of information
stored in this dimensionally larger space.

Finally, the exact values of k =7 and n = 3 for this network were found by using the con-
figuration lowest receptive field size still larger than 63 (see [Fig. 45)), making sure that most of
the network parameters are part of the computational graph.

3.2.2.2 Few-shot KWS Next, the network architecture for the few-shot keyword spotting
task is explained (second column, [Table 6). While for this task, the exact same network archi-
tecture as described previously could be used, since the input format is the same, it was decided

120ften, compute array sizes of 2 x 2, 4 x 4, or 8 x 8 are used. By choosing channel values that are a multiple
of 16, these compute arrays will always be 100% utilized during processing.

48



to keep the choice of k = 7, n = 3 but increase the channel count for each layer until a desired
model size.

This model size is based on the the size of the 2D convolutional neural network used in the
original work for the 10+2 few-shot keyword spotting task [46]. It has a total of 134,400 param-
eters: however, for such a network, assuming standard 8-bit weights, more than 134 kB on-chip
memory is required. It is presumed here that this thesis’ design will not have more storage than
128 kB, as most have other edge hardware designs have a total (for weights, activations and
biases) storage capacity ranging from 30 [40] [42] to 75 [41] to 100 [94] or maximum 130 [39]
kB.

Therefore, it was chosen to tailor the model so that the parameter count is close to 110k
instead, matching the size sequential Omniglot architecture (see [Table 6). The channel dimen-
sions per layer are again divisible by 16 and the number of channels is once more increased
with increasing network depth, until the maximum number of parameters is reached.

3.2.2.3 Sequential Omniglot Lastly, the network architecture for the sequential Omniglot
task is explained (rightmost column, [Table 6). This architecture originates mainly from two
points: it was designed to have the lowest receptive field size, still larger than 784 while having
approximately the same parameter count as the 64-64-64-64 architecture.

29 15 28 184

0 100 70 38 2 x 2 pool size 100 | 184

Y

12 12 7 2 12 45
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Figure 46: Single-channel 2 x 2 max-pooling operation.

This architecture, first described by Vinyals et al. [29] is the most commonly used network
to benchmark few-shot learning on images. The reason for requiring the TCN architecture to
have roughly the same parameter count as this architecture is to make sure that these two models
but also approaches based on either model can be compared fairly.

The 64-64-64-64 network has four modules, each performing a 3 x 3 convolution with 64
output channels followed by batch normalization [81] a ReLU (see function and 2 x 2
max-pooling operation (see [Fig. 46). It has a total number of parameters equal to 111,936,
compared to 116,960 in the TCN.

Finally, also in this network, all channel dimensions are divisible by 16 and the number of
channels increases with increasing network depth until the maximum number of parameters is
reached.

49



4 Algorithmic development

This section delves into the software aspects of the contributions made by this thesis. More
specifically, after selecting a meta-learning algorithm and a quantization scheme, a pipeline for
meta-training and quantization will be developed.

Initially, within the hardware limitations that must be considered during the
meta-learning algorithm development will be discussed. then contains a discussion
of various approaches to meta-learning, after which, in[Section 4.3} a quantitative comparison
is done between selected methods, thereby allowing for the final meta-learning algorithm to be

chosen. Moving on, [Section 4.4} outlines the quantization scheme selection. Finally, [Section 4.

lists the final performance results of the quantized models on the three benchmarks of this thesis.

4.1 Hardware-driven considerations

In this section, the main hardware-driven considerations that should be taken into account for the
meta-learning algorithm selection will be outlined. These points were already briefly brought
up in the description of the On-chip friendly? column of and will be discussed in more
depth here. First, we remind here three points that chiefly impact the relation between a meta-
learning algorithm and its corresponding hardware implementation:

* memory overhead or increased activation and parameter storage compared to regular in-
ference during meta-testing,

* processing overhead during meta-testing compared to regular inference,
* complexity of controlling the meta-testing process.

The first point is considered as increasing the storage size requirement for the activations and
parameters, on top of what is required for inference, requires physically larger memories, which
impacts the power and area footprints. Reducing the memory required for few-shot learning at
the edge is therefore a key study point in multiple works [1] [6] [96].

The second point concerns the increased computation originating from a meta-learning
method. For example, in initialization-based meta-learning methods, higher bit-precision [96]]
or different numerical representations [1]] are required to avoid substantial accuracy loss dur-
ing backpropagation, a key step in such algorithms. Next to increased computation at a tensor
level through more expensive number representations, the increase can also come from requir-
ing more on-chip iterations [[1] [6]. Therefore, requiring re-training with gradient calculation
and the use of extra meta-learning-related modules on top of the main network are considered
strong drawbacks.

Finally, the last point is concerned with the hardware design complexity of orchestrating the
meta-testing phase. Designing a controller for inference only for a specific network architecture
is already not simple, however, extending this controller or building more controllers to man-
age gradient flow in the case of initialization-based methods or attention operations such as in
matching networks [29] is even more costly.

In this thesis, the goal for the hardware design is to perform the inner loop (meta-testing)
of a meta-learning algorithm on-chip. Therefore, none of the points concerns the meta-training
phase: as this phase happens completely off-chip on commodity hardware, any overhead there
does not affect the hardware design for the inner-loop/meta-testing phase. This does not mean
that the complexity of the outer loop does not matter at all, as it can for example increase
training time: it is simply independent from the on-chip meta-testing process.
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4.2 From model-agnostic meta-learning to supervised pre-training

With the hardware-driven considerations in mind, the algorithmic development can begin. As
the title of this section indicates, this section discusses recent findings in the meta-learning
realm, indicating that double-derivative-based algorithms such as MAML (see |Section 2.1.4.1)
can be replaced by much simpler and faster algorithms, while improving performance.

First, in the origin of the effectiveness of MAML for few-shot learning is
covered. Continuing, discusses the performance of two very simple baselines to
underline the found effectiveness origin, after which, in[Section 4.2.3] pre-training an embedder
is considered as an alternative. Finally, draws a conclusion from the evaluated
work in this section.

4.2.1 Features or adaptation?

The MAML [135] algorithm has grown hugely popular since its release, almost becoming syn-
onymous with meta-learning. However, the reasons for its effectiveness remained unclear [97]:
is it due to the network initialization with parameters @ already containing high-quality features,
or is o trained for rapid adaptation?

Raghu et al. introduced this question in [97] and investigated it in an ablation study of
MAML with two experiments. In the first experiment, successive layers of a CNN are frozen to
prevent inner-loop adaptation (Eq. (6)). Empirically, it is shown that even when all the layers of
the network (except for the classification head) are frozen, few-shot classification is barely af-
fected [97]]. Furthermore, Raghu et al. also demonstrate that the parameters in the network only
change very little before and after inner-loop adaptation [97]]. Both of these findings seem to
indicate that the inner loop is not very effective: to investigate this further, the authors therefore
introduce the Almost No Inner Loop (ANIL) algorithm (Fig. 47).
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Figure 47: Comparison between the MAML and ANIL algorithms, where the blue line represents the
outer loop and the dashed red line the inner loop. In ANIL, only the parameters of the classification head
(Bpeqaq) are updated in the inner loop, while all other network parameters (0;, 6,) stay fixed. Figure taken
from [97]).

ANIL is effectively the same as MAML, except that in the inner loop, only the classification
head is updated: all parameters of the CNN are frozen, where the CNN is now considered as
an embedder (Fig. 48)). In terms of formalization (Section 2.1.2), @ then represents all initial
network parameters (CNN + classification head), while 6 corresponds to the parameters of the
classification head.

Benchmarking ANIL in few-shot classification and reinforcement learning tasks demon-
strates that ANIL matches the performance of MAML [97]. Based on this, it can be concluded
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Figure 48: Schematic overview of the embedder and classification head in a neural network. The em-
bedder can be any function or neural network (e.g., a CNN) that produces an embedding vector from an
input.

that MAML seems to predominantly rely on feature reuse, with the network body (embed-
der) already extracting good features before performing the inner-loop update. Besides, ANIL
demonstrates that these features do not benefit from inner-loop updates: they rely on outer-
loop training. However, the classification head still requires inner-loop adaptation: Raghu et
al. therefore pose that, if good features have already been learned by the embedder, what ex-
actly is the contribution of the head?

To investigate this, they propose the No Inner Loop (NIL) algorithm. It works as follows:
first, standard meta-training using MAML or ANIL is performed, after which prototypical-
like evaluation is performed during meta—testingE-I In two few-shot classification tasks, NIL
performs similar or better compared to MAML and ANIL. This further demonstrates that the
embedder learned during meta-training conditions the performance of MAML-based few-shot
learning.

While the ANIL and NIL experiments focused on MAML’s effectiveness, which is an
initialization-based meta-learning approach (see [Section 2.1.4.1)), Raghu et al. also pose the
same question for feed-forward and metric-learning methods. These methods often jointly en-
code the support set before making any predictions on the query set: consider for example
relation networks in matching networks in and SNAIL in This way, the
model can learn a new task rapidly by adapting to the support samples.

Alternatively, the samples can be encoded independently, like in Prototypical Networks,
shown in after which a distance metric can be used to compare the encodings and per-
form classification. This is purely a feature reuse setting, as there is no task-specific information
used [97]].

Putting the performance of these two types of methods side-by-side, Raghu et al. demon-
strate that the difference in classification accuracy on minilmageNet is small (below 5%). There-
fore, it is concluded that also for feed-forward and metric learning methods, feature reuse is the
key ingredient for few-shot learning.

3Raghu et al. chose ANIL for meta-training and used cosine distance as a distance metric during meta-testing,
not averaging support embeddings per class.

52



4.2.2 Simple baselines

In a seminal work by Chen et al. [28], comparable results were found for simple pre-training
meta-learning schemes. Two methods called Baseline and Baseline++ are proposed: in the
former, training is performed in the same way as in [98] while in the latter an embedding is
learned for each class during supervised pre-training. In both cases, during meta-testing, the
embedder parameters are kept fixed. Few-shot classification is then performed by fine-tuning
a linear classifier on the support embeddings (Baseline), or an embedding is learned for each
class from the support embeddings (Baseline++).

Comparing the performance of the Baseline model with re-implemented versions of other
meta-learning algorithms, it is shown that the Baseline method with data augmentation performs
comparably to the other methods (Table 7). Previous Baseline implementations did not include
data augmentation, leading to overfitting due to the low amount of samples per class (as per [99]],
600 in the case of minilmageNet) and were therefore never competitive.

Table 7: 5-way classification performance on minilmageNet. All non-baseline methods were re-
implemented by Chen et al. [28]. "Baseline*" indicates the results without data-augmented training.
Reported numbers include 95% confidence intervals. All data taken from [28]].

Method 1-shot 5-shot

Baseline [28]] 42.11 £ 0.71 62.53 +0.69
Baseline™ [28]] 36.35 £ 0.64 54.50 4+ 0.66
Baseline++ [28]] 48.24 +0.75 66.43 £+ 0.63
MatchingNet [29] 48.14 +0.78 63.48 + 0.66
ProtoNet [27]] 47.74 + 0.84 66.68 + 0.68
MAML [15] 46.47 £0.82 62.71 £0.71
RelationNet [30] 49.31 £0.85 66.60 £ 0.69

In [Table 7| it is also demonstrated that the Baseline++ method performs significantly bet-
ter than the Baseline method and even performs comparably to other meta-learning methods,
further solidifying the hypothesis that meta-learning performance primarily relies on feature ex-
traction. As the Baseline++ method performs well via reducing the intra-class variation during
training (by forcing samples of the same class to have the same embedding), Chen ef al. then
explore the use of deeper embedders, referred to as backbones, which can inherently reduce
intra-class variation [28]].
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Figure 49: Few-shot classification accuracy with increasing backbone depth. Figure taken from [46].
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Results on the CUB datasetEl in demonstrate that as a backbone increases its number
of layers, the performance difference between different methods quickly reduces, meaning that
the performance difference between different meta-learning methods would be significantly
smaller if the intra-class variations were all reduced by a deeper embedder. However, for the
minilmageNet dataset, the results are not as clear-cut. This is likely due to the fact that there is
a larger domain difference between the classes in meta-training and in meta-testing compared
to CUB [28]. When meta-training on minilmageNet and performing meta-testing on CUB, it
is shown in that the Baseline method outperforms other meta-learning methods listed
with a large margin. This demonstrates that only as the domain difference grows larger, the
adaptation based on a few novel class instances becomes more important with respect to solely
reducing intra-class variation [28]].
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Figure 50: 5-way 5-shot classification with a ResNet-18 as embedder. Figure taken from [46].

4.2.3 Pre-training an embedder

Building on the line of work in feature-reuse and simple baselines, Yonglong et al. [98] propose
another very simple method. First, supervised training on all classes in the meta-training set is
performed (as in Baseline and Baseline++). Then, during meta-testing (see [Fig. 5T)), a logistic
regressor (LR) is learned on top of this representation from the support samples, after which
query samples can be classified. This means that, similar to ANIL and NIL, the embedder is
kept fixed during meta-testing.

This elegant baseline outperforms the current state of the art on four few-shot benchmarks,
including minilmageNet. Furthermore, since a supervised pre-training scheme is used, it is
easy to apply many of the techniques used in supervised learning to improve classification
performance. Therefore, Yonglong et al. investigate the performance of self-distillation, a form
of knowledge distillation (KD) and unsupervised learning.

In KD, a student model is trained not with the true class labels, but with the distribution
of class probabilities output by the last layer of a pre-trained teacher model (Fig. 52). In self-
distillation, both models have the same architecture and are trained for the same task. The self-
distillation strategy used by Yonglong et al. is the Born-Again [102] method: at each step, the
embedding model of kth generation is trained with knowledge transferred from the embedding
model of (k — 1)th generation.

14The CUB-200-2011 dataset (short: CUB) by Wah er al. [100] contains 200 classes from 11,788 images of
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Figure 51: Meta-testing procedure for a 5-way 1-shot task. All samples are embedded in feature vec-
tors. A logistic regressor (parameters W, b) is trained on the support embeddings, after which the query
embedded is classified using the trained logistic regressor. Figure taken from [98]].
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Figure 52: Schematic of knowledge distillation as proposed by . Figure taken from .

A quantitative comparison of these pre-training methods against other meta-learning meth-
ods is shown in[Table 8} the dataset used for this comparison is minilmageNet (see[Appendix BJ).
The network architecture is the same for all methods in the table and is a 64-64-64-64 topology,
as discussed in[Section 3.2.2.3|

It can be seen that the two pre-training methods in the last two rows of outperform
most methods, except for pre-training without distillation in the 1-shot case, where SNAIL
performs slightly better. This further strengthens the claim from Raghu er al. [97]] that feature-
reuse is the dominant factor in the effectiveness of meta-learning methods.

Overall, self-distillation only increases few-shot minilmageNet classification performance
across benchmarks by 0.4% for the 64-64-64-64 architecture, but it allows for a 2-3% accuracy
gain for a ResNet-12 model (12.42M parameter@, demonstrating its effectiveness. Over-
all, with and without self-distillation, state-of-the-art few-shot learning performance is achieved
through this simple pre-training scheme compared to other methods using the same architecture.

Performing nearest-neighbor classification with cosine distance yields equivalent perfor-
mance in the 1-shot setting, both with and without distillation. Similar results using only the
distance between embeddings after pre-training were obtained by Chen et al. [105]. Overall,
these results strongly underline the strength of simple approaches based on feature extraction.

birds.
I5Estimated by performing a parameter count with PyTorch [104] on the ResNet-12 model in this repository:
https://github.com/kjunelee/MetalptNet/tree/master
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Table 8: Accuracy comparison between different meta-learning methods using a 64-64-64-64 architec-
ture on minilmageNet. Bold indicates the best performance in a column. Data taken from the respective

works.

424

minilmageNet 5-way
Method 1-shot 5-shot
Matching networks [29]] 46.67 £2.77  60.0?7 £2.77
FO-MAM [15] 48.07 £1.75 63.15+091
MAML [15] 4870 £1.84 63.11+0.92
Prototypical networks (Eucl. distance) [27] 49.42+0.78 68.20 + 0.66
Reptile [17]] 47.07£0.26 62.74 £0.37
MAML++ [18] 52.15+£0.26 68.32+0.44
Meta-SGD [20] 5047 £1.87 64.03 £0.94
Meta-Curvature (1-step, MC1) [21]] 53.37 £0.88 68.47 £0.69
SNAIL [22] 5571 £0.99 68.88 £0.92
ANIL [97]] 46.77 £047 61.5? £0.5?
NIL [97] 48.0?7 £0.77 62.2? £0.5?
LR on embedder [98]] 5525 +0.58 71.56 £0.52
Distilled LR on embedder [98]] 55.88 +0.59 71.65 %+ 0.51

Key takeaways

In this section, the key takeaways and findings from the discussed work are highlighted and
related back to the hardware-driven considerations from [Section 4.1k

popular initialization-based meta-learning methods such as MAML [[15] rely on feature-
reuse for their performance [97] and the same is true for methods that jointly encode
samples,

reusing a fixed embedder from simple baselines that are trained not episodically, but in-
stead in a supervised manner on the complete meta-training set, results in state-of-the-art
performance,

data augmentation is required for increased performance in these baselines, due to the low
sample count per class [28] in the commonly used meta-learning benchmarking datasets,

reducing intra-class variation is key in currently-defined few-shot learning problems [28],

supervised pre-training schemes allow for simple extensions to other non-meta-learning
techniques, such as distillation [98]], unsupervised [98]] or self-supervised learning, allow-
ing for further expansion of performance or applications in fields with little or no labeled
data.

When considering the hardware-driven considerations, it can be concluded that these sim-
ple methods using fixed embedders are not only beneficial in terms of performance compared to
initialization and joint-embedding-based methods, but also in terms of the corresponding hard-
ware design, especially in the case of distance-based evaluation. In this case, the only memory
overhead comes from storing embeddings: no on-chip gradient calculations are required and
classification can simply be done via a single distance computation, introducing little extra con-
trol complexity. For LR, more memory is required as the gradients of the regressor parameters
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have to be stored and processing overhead is induced as multiple gradient steps are required to
fine-tune it.

Therefore, due to their hardware friendliness and high performance, in the following quanti-
tative meta-learning method comparison, only the performance of distance-based classification
methods will be evaluated on the two few-shot learning tasks of this thesis. This includes Pro-
toNets [27], NIL (trained via MAML) [97] and supervised pre-training with classification from
distances between embeddings [98]]. While distillation and unsupervised learning for the pre-
training phase could have also been in the mix, they are left for future work as they mostly
provide an additional orthogonal direction that can be investigated in combination with any of
the aforementioned techniques.

4.3 Meta-learning algorithm choice

In this section, the four mentioned distance-based meta-learning methods will be compared
quantitatively. First, in the four remaining meta-learning algorithms will be com-
pared quantitatively, after which explores the possibilities for distance metrics
that can be used for embedding comparison. Finally, in based on information
presented in this section, a meta-learning algorithm is chosen for implementation in hardware.

4.3.1 Quantitative meta-learning method comparison

This section covers the quantitative meta-learning method comparison between the remaining
distance-based meta-learning methods. [Section 4.3.1.1|discusses the (sequential) Omniglot per-
formance, while [Section 4.3.1.2|discusses the few-shot keyword spotting performance.

4.3.1.1 Sequential Omniglot We report inthe performance on Omniglot (sequential
Omniglot in the case of the TCN). The TCN architecture follows [Section 3.2.2.3| while the
performance of the 64-64-64-64 architecture is included for reference. For clarity, pre-training
an embedder is abbreviated as PTE in

Table 9: Comparison of meta-learning approaches on Omniglot, using both the TCN and 64-64-64-64
architecture. Both prototypical networks were trained in 60-way, 5-query shot setup. The TCN with NIL
was trained in a 20-way setup. All NIL training was done using MAML. Accuracy with 95% confidence
intervals is shown.

S-way 20-way
Network Approach 1-shot S-shot 1-shot S-shot
TCN NIL 92.60£0.31 9698 +£0.20 79.61 £0.24 89.80+0.18
TCN ProtoNet 98.10+0.52 99.60 £0.39 92.90 £0.48 98.02 +£0.40
TCN PTE (Eucl. w/ aug.) 97.94+0.15 99.57+0.07 93.62+0.13 98.68 +£0.06
TCN PTE (cos.) w/aug. 98.21 £0.16 99.66 £0.06 94.46 £0.12 98.75 +0.06
TCN PTE (Eucl.) 96.09 £0.19 - - -
64-64-64-64 NIL [97]] - - 96.7 £0.3 98.0 +0.04
64-64-64-64 ProtoNet [27] 98.8 99.7 96.0 98.9
64-64-64-64 PTE (cos.) w/aug. 97.56+0.16 99.48 £0.07 92.51+£0.15 98.07 +0.07
64-64-64-64 PTE (Eucl.) 95.38 +0.23 - - -
64-64-64-64 MAML [15] 98.7 £04 999 £0.1 958 £03 989 0.2
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To combat overfitting on the meta-training set with PTE (as described in [Section 4.2.7),
data augmentation was performed on the meta-training data. For this, the RandomAff ine@
transformation from PyTorch [104] is used: rotations are disabled but images are scaled with
a factor between 0.8 - 1.2 and are translated by a maximum of 15% in both the horizontal and
vertical directions. All PTE training was performed with the same hyperparameters to avoid
excessive over—optimization

From it can be seen that NIL performs significantly worse than all other methods,
which might however originate from a suboptimal inner-loop learning rate selection as only one
NIL experiment was performed for this specific model-dataset configuration. Furthermore, it
can be seen that augmentations lead to a non-negligible increase in accuracy of 2% for the 5-
way 1-shot case. For TCNs, ProtoNet and PTE using cosine similarity with data augmentation
perform similarly for the 5-way cases, while for the 20-way case, PTE outperforms the ProtoNet
approach.

4.3.1.2 Few-shot keyword spotting For the few-shot keyword spotting task, the command
classification taskﬁ defined by Chen et al. [46] is used. While also a digit classification task is
defined in this work (see[Section 2.1.6.2)), the command classification task was chosen as it was
empirically found to be harder [46].

Before meta-training, the dataset was balanced as its classes have a large variety in the
number of samples, as shown in Note that, due to the low number of overall classes
(32), it is not possible to define a separate meta-validation set. Therefore, the validation split
from classes in the meta-train set is used as the meta-validation set. To combat overfitting for
PTE on the meta-train dataset, the following augmentations@] are applied:

* time shifts in the range [—100, 100] ms (as done in [37] [45]] [108]),

* background noise with a probability of occurrence of 0.15 with a uniformly sampled scale
in [0,1].

After these augmentations, the audio data is converted to MFC samples with a window
size of 32 ms and a stride of 16 ms (see|Section 3.2.2.1). All PTE training was performed with
the same hyperparameters to avoid excessive over—optimization@ then shows the few-
shot command classification performance, with the last three rows from the original work by
Chen et al. included to provide a baseline performance across the shot range.

demonstrates that the PTE approach using the TCN architecture and data augmen-
tation outperforms the original approach (fixed-position MAML [46]) by a large margin. Com-
paring the TCN against the 64-64-64-64 architecture, with both using the Euclidean distance

https://pytorch.org/vision/main/generated/torchvision.transforms.RandomAffine.html

"The Adam [106] optimizer was used with a learning rate of 0.0005 for a total of 70 epochs, while after 50
epochs the learning rate is multiplied by 0.1

¥Data splits taken from https://github.com/Codelegant92/STC-MAML-PyTorch/blob/master/data/

19While the SpecAugment transformations from Park et al. [107] are sometimes also applied [37] [108], they
were not used in this work as the PyTorch [104] modules related to SpecAugment do not support multiple masks
as used in these works.

20The last stage of the MFCC algorithm, a discrete cosine transform (DCT), is skipped as it was empirically
found (see that after QAT, the performance of quantized models trained on GSC with DCT in the
MEFCC pipeline is significantly lower than the ones without DCT (-6%).

2IThe Adam [106] optimizer was used with a learning rate of 0.0005 for a total of 70 epochs, while after 50
epochs the learning rate is multiplied by 0.1
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Figure 53: Class wise sample distribution for the command classification few-shot learning task as
defined by Chen et al. [46]. The silence class is not shown. Shared unknown indicates the classes
combined into an unknown class, which are the same classes for meta-training and meta-testing.

Table 10: Comparison of meta-learning approaches on 10+2-way few-shot command classification,
using both the TCN and 64-64-64-64 architecture. The prototypical network was trained in a 22-way,
5-query shot setup with Adam and a learning rate of 0.001. The TCN with NIL was trained in a 20-way
setup. All NIL training was done using MAML. Accuracy with 95% confidence intervals is shown.

Network Approach 1-shot 5-shot 10-shot
TCN NIL w/aug 35.82+0.27 49.67+0.33 53.68 £0.30
TCN |ProtoNet w/ aug 1092+0.53 850+£0.16 8.33+0.00
TCN PTE (Eucl.) w/ aug 4438 +0.31 66.44 +0.31 70.98 +0.31
TCN PTE (cos.) w/ aug 49.08 £0.32 67.90+0.33 72.34+0.29
TCN |PTE (Eucl.) 41.54+£0.29 63.34 +£0.34 68.80+0.31
64-64-64-64 PTE (Eucl.) w/ aug 2724 £ 1.15 3727+1.44 43.36+1.52
64-64-64-64 Training on support set [46] 17.03 £0.48 22.42+0.33 25.6 +0.26
64-64-64-64 MAML [46] 33.35+£0.80 50.31£0.50 57.34+0.41
64-64-64-64 Fixed-position MAML [46] 39.54 +0.62 52.20+0.51 59.36 +0.39

metric and data augmentation, it can be seen that the TCN architecture offers a significant per-
formance benefit compared to the baseline 2D convolutional architecture: this can be attributed
to the fact that a 2D convolution on a sequence only convolves across feature-wise sections
(Fig. 54a), while a 1D convolution convolves across the entire feature-space (Fig. 54b).

For this benchmark, ProtoNets perform significantly worse than any of the other approaches,
reducing to random-guessing performance in the 10-shot case. Furthermore, NIL with a TCN
can be seen performing close to baseline MAML performance. Finally, similarly to
cosine distance outperforms Euclidean distance across all shots, while the applica-
tion of data augmentation also measurably increases performance.

4.3.2 Embedding distance metric comparison

As the chosen set of meta-learning setups relies on distance calculation between embeddings,
a careful evaluation of the different distance metrics available should be performed. While
normally, in the context of few-shot learning, only Euclidean (Eq. (46)) and cosine distance
(Eq. (47)) are considered, for completeness, Manhattan distance (Eq. (44)) and the dot-product

(Eq. (43)) are also included.
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Figure 54: Comparison of data aggregation between 2D and 1D convolutions over a sequence with
length T'.
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In the teal-highlighted part is the definition of cosine similarity. The linear trans-
formation to obtain the cosine distance is required to transform cosine similarity into a true
distance metric, since by definition, distance is always larger than or equal to zero (therefore,
the dot product is also not defined as a distance metric in [Eq. (45)). A visualization of the
Manhattan, Euclidean and cosine distance metrics in 2D-space (n = 2) is shown in[Fig. 53]

First, the three metrics are compared on a computational level, considering hardware im-
plementation. It can immediately be seen that both [Eq. (46)| and [Eq. (47) contain a square root
in their definition, an operation that is not trivial to implement in hardware. Luckily, in the
case of the Euclidean distance, its definition can be squared without changing the meaning of
the distance metric. However, squaring would not remove the / operator. There-
fore, instead of considering the arg min of the cosine distance for hardware implementation, the
argmax of the squared cosine similarity will be used. This will yield the same classification
results, even though it is not a valid distance metric anymore. Taking the above into account,
displays the number of primitive operations per (revised) distance metric.

Computationally speaking, Manhattan distance is the lightest, while cosine similarity is the
heaviest. Furthermore, cosine distance is the only distance metric containing a division due to
normalization (Eq. (47)). The dot-product is the lightest among the metrics that require multi-
plication, as for example the cosine distance essentially uses three dot products in its definition.
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Figure 55: Comparison of Manhattan, Euclidean and cosine distance. Each colored set of points repre-
sents one 2D support and one 2D query embedding. D, indicates the distance between these two points.

Table 11: Number of primitive operations per (revised) distance metric. Bold indicates the best value
per row.

Manhattan distance Dot product (Euclidean distance)’ (Cosine similarity)?

# of additions 2n—1 n—1 2n—1 3n—3
# of multiplications 0 n n 14+3n+1
# of divisions 0 0 0 1

Next, contains the few-shot learning performance on sequential Omniglot trained
using PTE, where for multi-shot evaluation, the embeddings were averaged. Cosine distance is
the clear winner here, providing the best performance in all cases. Manhattan distance performs
the second best, which is impressive considering that it is by far the simplest metric.

Table 12: Comparison of distance metrics on Omniglot, using the Omniglot TCN architecture meta-
trained via PTE. For a k-shot setup where k£ > 1, the support embeddings are averaged. Accuracy with
95% confidence intervals is shown. Bold indicates the best value per column.

5-way 20-way

Metric 1-shot 5-shot 1-shot 5-shot
Manhattan distance 97.85+0.16 99.67 +0.06 93.64+0.13 98.74 + 0.06
(Euclidean distance)2 9794 +£0.15 99.57+0.07 93.62+0.13 98.68 +0.06
(Cosine similarity)2 98.21 + 0.16 99.66 + 0.06 94.46 +0.12 98.75 + 0.06
Dot product 97.74 £0.16 99.53+0.07 93.58+0.13 98.57+0.07

Notably, Snell et al. [27] found that squared Euclidean distance actually outperformed co-
sine similarity (Manhattan distance was not considered) on 5-way minilmageNet by an average
2-% accuracy advantage in the 1-shot case and by up to 16.7% in the 5-shot case, which led to
the selection of the Euclidean distance in the ProtoNet implementation. It is assumed that this is
due to the fact that cosine distance is not a Bregman divergence (same for Manhattan distance),
while the squared Euclidean distance (Mahalanobis distance) is [27]. For Bregman divergences
[109], it has been demonstrated that the cluster representative resulting in the smallest distance

61



to its assigned support points is the cluster mean: averaging the support embeddings thus yields
optimal cluster representatives when a Bregman divergence is used [27].

Finally, it is noted that there is an equivalent view with a linear layer for two of the metrics.
Namely, the dot product can be reinterpreted as a linear layer without bias, where the weights of
the layer are the averaged support embedding. Also, the Euclidean distance can be reinterpreted
as a linear layer [110], as also noted by the ProtoNet [27] authors. The distance between an
averaged embedding or prototype s/ /k in a k-shot setup, where s/ is the sum of all the k-shot
embeddings for class j and an unseen incoming embedding x is

. - 2
- - 2 (s 2y s{
Euclidean distance T X|=D i = ; < X;

22_” J_ _2
ij—Z s; — kx;

i=1 (49)

2 . j 2
Dy o< Z (s{—kxl)

1

~.

D? o< Z <le —|—k2xl~2 — 2ks{ xi> .
i=1
However, as the term } /' | kle-z is the same for all other distances between x and prototypes,
as it only depends on x, it can be removed as it does not change the definition with respect to o<:

n

D? o< Z (slj — 2ks{x,->
i=1

i " (50)
D? o Zs{ — Zst{x,-.
i=1 i=1
Then, equivalently:
2
(51

n
st. bj=Y sI", W;=—2ks
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From|Eq. (51), it is clear that with the bias b; and weight W ;, a linear layer for output neuron
Jj 1s formed.

4.3.3 Final choice

To summarize, for sequential Omniglot (Section 4.3.1.1]), it was found that PTE with cosine
distance and data augmentation performs best for all cases, closely trailed by ProtoNets for the
5-way scenarios. NIL lagged significantly behind the other approaches, while it was shown
that, for PTE, the use of data augmentation increases performance in all scenarios.

Considering the few-shot keyword spotting task (Section 4.3.1.2), with a smaller meta-
training class count than sequential Omniglot but with more samples per class, it was again
demonstrated that using data augmentation with PTE increases classification accuracy for all
shots and that combining this with cosine distance gives the best overall performance. Pro-
toNets were non-performant for this benchmark, while NIL with data augmentation was able to
match the performance of MAML.
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Reviewing the distance metric evaluation, it was shown that the Manhattan distance is, com-
putationally speaking, the simplest metric. It overall achieves a balanced performance that is
on par with Euclidean distance and is only slightly outperformed in the 1-shot case by cosine
similarity, which is the most computationally-heavy distance metric.

Based on these results, PTE with Manhattan distance under data augmentation is selected
following a three-fold rationale. First, PTE demonstrates high and predictable performance
across the two benchmarks. Second, it also allows, through its simple definition, for future
extension with other methods such as distillation. Finally, the use of Manhattan distance allows
for low-cost on-chip learning with no tangible accuracy penalty.

4.4 Quantitative quantization scheme comparison

In this section, various quantization schemes will be compared, after which one will selected
for hardware implementation. Before that, all common points between the tested schemes are
outlined as follows.

» All biases are quantized using the combined weight and activation scale, as it only re-
quires a single scaling operation (Section 2.3.2.1)), using a 16-bit symmetric signed quan-
tizer.

* It was opted to use asymmetric activation quantization and symmetric weight quantiza-
tion, as when both quantizers are asymmetric, computational overhead is introduced via
an extra term (Section 2.3.2.4).

* Unsigned activation quantization is used, as the TCN architecture applies ReLU (see
after every convolution operation, yielding activations that are strictly positive in
the range [0, ).

» Signed weight quantization is used to accommodate negative and positive weights.

* Only power-of-two scale values are used to reduce hardware complexity (Section 2.3.2.3).

* QAT is performed for all experiments on all schemes to ensure maximum performance,
also for low-bit-width quantization schemes (Section 2.3.3)).

* The residual layers in the TCN are handled as per|Section 2.3.3.2]

* All batch-normalization operations are folded prior to training (Section 2.3.3.3).

The considered number representations for these experiments are the uniform representa-
tion for both weights and activations and the logarithmic representation for weights (see
for more details for each format). Notably, logarithmic activation quantization was
not considered as a linear-to-logarithmic conversion is required after accumulation in the case
of uniform weights, while for logarithmic weights a logarithmic-to-linear conversion is required
before accumulation [86] or accumulation has to be performed in the log-domain [86] via look-
up tables [111]] [112] [113], increasing hardware design and software simulation complexity.

Further, orthogonal to the original proposition of logarithmic quantization [86] but similar to
the work of Przewlocka-Rus et al. [114], the implemented logarithmic quantizer has a learnable
full-scale range (FSR), which removes the hyperparameter tuning for the scale per layer as done
in the original work. All quantization-related code was implemented using Brevitas [[115]].
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In the quantization experiments for sequential Omniglot are discussed, after
which discusses the results from the quantization experiments for 12-class KWS.
Finally, in a conclusion is drawn from this data and a quantization scheme for
hardware implementation is selected.

4.4.1 Sequential Omniglot

For the first set of quantization experiments, it was chosen to use the sequential Omniglot task.
There are two key reasons for choosing this benchmark:

* since the main focus of this work is few-shot learning, the performance impact of quanti-
zation on few-shot learning is critical,

* from the two few-shot learning benchmarks in this thesis, Omniglot is the only one that
has published work regarding quantization [1] [6], making comparisons easier.

With this in mind, shows the performance on 5-way 1-shot sequential Omniglot
using the architecture proposed in[Section 3.2.2.3| for various combinations of logarithmic and
uniform quantization. QAT for all networks in this table was performed with the same hyper-
parameters to avoid excessive over-optimization

Table 13: Comparison of test accuracy (with 95% confidence intervals) on 5-way 1-shot sequential
Omniglot for various combinations of quantizers. Ux means unsigned uniform quantization with x bits,
while Sx and Lx indicate the same for a signed uniform quantizer and logarithmic quantizer respectively.
C stands for per-channel scaling while T stands for per-tensor scaling. Some experiments were not
performed due to unsatisfactory performance by experiments with larger bit widths in the same row or
column, as indicated by arrows and x.

Weight quantization
Activation Linear Logarithmic
quantization S8 S6 S4 S3 L8 L6 L5 L4 L3
T: 97.99 £ 0.16 T: 97.39 £0.17

U8 C 97682018 97.53+0.17,  196.15+0.21  87.55+0.33 C 95402022 97.13+0.18 97.02+0.19 97.21+0.17, 20.00 £ 0.00
T: 92.10 £0.27 T: 96.57 £ 0.21

U4 9746+0.18 163.85+0.51 C 91962029 20.00 £0.00, 196.33+0.19, 96.79£0.18 97.12+0.19 C 96725019

U3  9581+0.23 91.29+0.29, 89.16 +0.31 X 20.00 + 0.00 — — — X

shows that for all linear weight quantization schemes, the accuracy steadily de-
creases with lower activation quantization. Also, for iso activation bit widths, the accuracy
decreases expectedly with lower weight bit width. Overall, the best combination is S8 / US8. It
can also be seen that the combination S6-U4 has an unusually low accuracy: for two different
learning rates in this configuration, the accuracy fell from ~ 97% to a 20-% (random guessing)
validation accuracy after, which the performance increased again.

For the logarithmic weight quantizers in the accuracy at iso activation bit widths
is very similar: this could indicate that the logarithmic quantizer does not use the extra levels of
quantization that are available for higher weight bit widths. Indeed, the average percentage of
available quantization levels used for 8- and 4-bit logarithmic weights versus
under 8-bit activations is 19.4% and 91.4% respectively. Furthermore, while at 8-bit weights,
linear weight quantization outperforms logarithmic quantization, at 4-bit weights, the situation
is reversed: in the case where 4-bit activations are used, logarithmic quantization performs 4%
better.

22The Adam [106] optimizer was used with a learning rate of 0.001 and a weight decay of 7e — 4 for a total of
200 epochs. Training started from a pre-trained FP32 model on this task, wherein all dropout layers were disabled

prior to QAT. The Omniglot data setup is the same as in[Section 4.3.1
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Figure 56: Histogram of quantized and weights for each tensor in the sequential Omniglot TCN

for 8-bit logarithmic weights and 8-bit unsigned activation quantization.

Comparing per-channel (C) and per-tensor (T) quantization in for both types of
weight quantization shows that per-tensor (T) quantization always performs better, except in
the L4 / U4 scheme, where the difference is not significant. Furthermore, 3-bit activation quan-
tization does not work with logarithmic quantizers (see L8 / U3 experiment, where accuracy
is reduced to random guessing), while it does maintain accuracy under linear weight quanti-
zation. A similar situation occurs for 3-bit-weight quantization, where the linear quantization
scheme maintains adequate accuracy but the logarithmic scheme reduces to random guessing
performance.

Comparing with other works that performed quantized Omniglot (Table 14), it can be seen
that, regardless of the quantization approach, the PTE strategy performs similarly for 5-way
1-shot compared with the AI strategy [6]], which requires on-chip gradient descent.

23 Acronym stands for adaptation at inference quantization, where the MAML [[15]] inner-loop is executed in
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Figure 57: Histogram of quantized and weights for each tensor in the sequential Omniglot TCN

for 4-bit logarithmic weights and 8-bit unsigned activation quantization.

Table 14: Accuracy (%) comparison of quantized meta-learning approaches on Omniglot, both using the
64-64-64-64 architecture. The quantization scheme is noted as the format name, followed by weight bit
width — activation bit width — gradient bit width — error bit width. Data taken from the respective works.

5-way 20-way
Network Method Quantization 1-shot 5-shot 1-shot 5-shot
64-64-64-64 AIQ [6] S4-4-8-4 97 99.2 - 95.5
64-64-64-64 qL2L [1] BFPPU-4-4-4 7518 91.15 4638 69.62

hardware at inference-level bit widths [6].
24Block floating-point [116].
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4.4.2 12-class KWS

For the second set of quantization experiments, the 12-class KWS task was chosen as the se-
lected network is less deep and has fewer parameters than the sequential Omniglot model and
thus should be more sensitive to quantization noise. For training the FP32 model, the training
data is augmented using the same approach as in [Section 4.3.1.2] except during QAT. Also,
the training dataset was class-wise balanced, as the original dataset has a large class imbalance
(Fig. 58). Finally, the same MFCC approach as in[Section 4.3.1.2]is used for all data splits.
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Figure 58: Class sample distribution for the 12-class KWS task.

Similar to QAT for all networks in this table was performed with the same
hyperparameters to avoid excessive over—optimization@ Furthermore, due to the unsatisfactory
performance of 3-bit activations and weights and of per-channel quantization, these quantiza-
tion combinations will be skipped for the 12-class KWS task. The results using the remaining
combinations can be found in Note that the final accuracy of the FP32 model is
94.76%.

Table 15: Comparison of test accuracy on 10+2-way keyword spotting using the GSC dataset for various
combinations of quantizers. Ux means unsigned uniform quantization using x bits while Sx and Lx
indicate the same for a signed uniform quantizer and logarithmic quantizer, respectively.

Weight quantization
Activation Linear Logarithmic
quantization S8 S6 S4 L8 L6 L5 L4

U8 90.86/ 92.35| 92.73| 92.33] 92.51| 92.76| 92.61
U4 92.85 192.78| 92.01 92.80 [93.09 93.44/ 93.45

2The Adam [106] optimizer was used with a learning rate of 0.002 and a weight decay of 5e — 4 for a total of
200 epochs. Training started from a pre-trained FP32 model on this task, wherein all dropout layers were disabled
prior to QAT.
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shows much less of a clear trend compared to Across the board, the

combinations with 4-bit activations perform better than the ones with 8-bit activations. Fur-
thermore, for the same weight and activation bit width, the logarithmic quantizers perform
generally better: decreasing the number of bits available for the weights actually increases per-
formance for the logarithmic weight quantizers. This is not the case for the linear quantizers.
The best-performing combination is then the L4 / U4 combination, while the worst-performing
combination is U8 / S8.

4.4.3 Quantization scheme choice

Summarizing, for sequential Omniglot (Section 4.4.1)), it was found that S8 / U8 quantization re-
sulted in the highest accuracy, while 3-bit weight/activation quantization severely degraded the
performance. Furthermore, per-channel quantization was shown not to be effective. It was also
demonstrated that, for the same activation bit width, the bit width of logarithmic weights can be
reduced from 8 to 4 without incurring a (significant) accuracy penalty. Finally, under low-bit-
width weights and activations, logarithmic weights performed better than linear weights.

Considering the 12-class KWS task with a smaller neural network (Section 4.4.2), it was
shown that logarithmic quantization performed better than linear quantization, while the use of
a lower activation bit width improved performance.

Based on these results, a logarithmic weight quantization and unsigned activation quanti-
zation of both 4-bits is selected. This scheme allows for (i) using both smaller weight and
activation memories at the same network size, (ii) removing the need for multiplier hardware
and (iii) only incurring a small (1.4-%) accuracy penalty for the few-shot learning scenario,
while performing the best in the 12-class KWS task.

4.5 Final performance

In this section, the final (quantized) performance on the three benchmarks of this thesis is re-
ported. For the 12-class KWS task, the FP32 accuracy is 94.76%, while the quantized per-
formance 1s 93.45% (-1.31%). For few-shot keyword spotting, the accuracies are reported in
while [Table 17| shows the results for sequential Omniglot.

shows that for the few-shot KWS task, the quantized model loses about 3% accu-
racy for each of the number of shots, while in the effect of quantization is really only
visible in the 1-shot cases. Overall, these results demonstrate the possibility of using for low
bit-width weights and activations for meta-learning at the edge.

Table 16: Final quantized performance on 10+2-way few-shot command classification. Accuracy with
95% confidence intervals is shown.

Quantization 1-shot 5-shot 10-shot
FP32 /FP32 /FP32| 4438 +0.31 66.44+0.31 70.98 +0.31
L4/U4/S16/ 41.46+031 62.483+0.32 67.31+0.31

Table 17: Final quantized performance on Omniglot. Accuracy with 95% confidence intervals is shown.

5-way 20-way
Quantization 1-shot 5-shot 1-shot 5-shot
IFP32/FP32/FP32| 97.94+0.15 99.57+0.07 93.62+0.13 98.68 +0.06
L4/U4/S16 96.57 £0.21 99.34+£0.09 90.54 £0.17 97.94 +0.08
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5 Hardware implementation

With the network and meta-learning algorithm selection complete, in this section, the chip de-
signed for few-shot learning over sequential data is discussed. It is codenamed Chameleon.
This name is chosen as a chameleon (see [Fig. 59) is able to make small changes to its colors
to adjust to its environmentFEl (for example, turning to a darker shade of their color), similar to
how this chip only makes small changes in the network when it is adapting to new classes. In-
terestingly, only in 2015, the same year that the Omniglot dataset was released and ResNets
were introduced [[75], the exact way chameleons did this was uncovered. Teyssier et al. showed
in [117] that chameleons shift color through actively restructuring a lattice of nanocrystals,
which, depending on how densely they are packed, reflects different color wavelengths of light.

Figure 59: Photograph of a panther chameleon

Chameleon is a fully digital design, implemented using (System)Verilog. All code is written
in a parameterized fashion, meaning that it is trivial to change parameters such as the activa-
tion bit widths or compute array size. The final design has been taped out in a 40-nm TSMC
technology node in its low-power (LP) MS/RF plus 1.1V/2.5V flavor. As at the time of writing
this thesis, the hardware has not yet been produced, all performance metrics in this section that
relate to the hardware, such as power consumption, are based on post-layout simulations@

This section is organized as follows. Starting off, outlines the key requirements
for the design. Then, in related hardware designs for processing sequential data
are presented. Next, presents the high-level architecture of the design. After the
architectural overview, the various blocks of the architecture are explored in more detail. First,
presents the connectivity of the design, after which the design of the network con-

troller is discussed in Then, covers the design of the PE array. After

this, [Section 5.7] presents the memory structure, Next, covers the few-shot learning
implementation, while finally, in[Section 5.9] the proposed design of this thesis is compared to

the state of the art.

26Contrary to popular belief, chameleons are not able to blend into any background.

27Image taken from https://www.wallpaperflare.com/chameleon-on-branch-of-tree-animals-
reptile-schuppenkriechtier-wallpaper-wqdvq (Creative Commons license)

“Unless otherwise specified.

69


https://www.wallpaperflare.com/chameleon-on-branch-of-tree-animals-reptile-schuppenkriechtier-wallpaper-wqdvq
https://www.wallpaperflare.com/chameleon-on-branch-of-tree-animals-reptile-schuppenkriechtier-wallpaper-wqdvq

5.1 Requirements

In this section, the requirements for the hardware design are presented. The requirements are
defined in a SMART way, where SMART is an acronym that stands for Specific, Measurable,
Attainable, Relevant and Timely. The full list is presented below. Note that CHA stands for
"Chameleon". The driving requirements, which influenced the design the most, have been
highlighted.

+ CHA-LIM-01: the maximum silicon area of the design shall be 4 mm?, including the
padring.

* CHA-LIM-02: the chip shall store all network parameters required for processing on-
chip.

* CHA-CORE-01: the chip shall be able to perform classification of input sequences.

— CHA-CORE-01.01: the chip shall support linear layers connected to TCN net-
works.

— CHA-CORE-01.02: the chip shall be able to compute the argmax of the output of
a linear layer.

— CHA-CORE-01.03: the chip shall support continuous classification, meaning that
classification is performed at every timestep.

* CHA-CORE-02: the chip shall be able to perform continuous regression.

* CHA-CORE-02: the chip shall support TCN processing.

CHA-CORE-01.01: the chip shall support a streaming dataflow / sequential pro-
cessing approach.

CHA-CORE-01.02: the chip shall support variable-channel 1D convolutions.

* CHA-CORE-01.02.01: the chip shall support variable kernel size from 1 to 9
for different networks.

* CHA-CORE-01.02.02: the chip shall support increasing dilation with a dila-

tion factor (dy) of 2.
x CHA-CORE-01.02.03: the chip shall support 20-way, 20-shot few-shot test-
ing.
— CHA-CORE-01.03: the chip shall support the processing of the network with 1-24
layers.

CHA-CORE-01.04: the chip shall support variable input dimensionality size and
variably-dimensioned input.

CHA-CORE-01.05: the chip shall support ReLU activation computation.
CHA-CORE-01.06: The chip shall support residual layers.

* CHA-CORE-03: few-shot learning shall completely take place on-chip, requiring only
neural network inputs without any other communication.

— CHA-CORE-03.01: the chip shall be able to find the support embedding with the
lowest distance to the input embedding.
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— CHA-CORE-03.02: the chip shall be able to average input embeddings.

* CHA-NUMERIC-01: the chip shall support computation with weights in the 4-bit loga-
rithmic format.

* CHA-NUMERIC-02: the chip shall support computation with 4-bit unsigned activa-
tions.

* CHA-NUMERIC-03: the chip shall support computation with 16-bit biases.
* CHA-NUMERIC-04: the chip shall support computation with 4-bit unsigned scales.

* CHA-COMM-01: the chip shall use an SPI communication protocol for configuring the
parameters, as well as for reading and writing to all SRAMs.

* CHA-COMM-02: the chip shall have an input port that receives the sequential inputs for
processing, separate from the SPI.

* CHA-COMM-03: the chip shall have an output port that outputs the regression values or
classification results, separate from the SPI.

* CHA-USAB-01: the chip shall have enough SRAM memory space to store 120k param-
eters.

* CHA-USAB-02: the chip shall have an internal clock generator with a minimum speed
of 50 MHz and a maximum speed of 250 MHz.

* CHA-USAB-03: the chip shall allow for monitoring the internal clock frequency.

5.2 Related work

With the requirements covered, in this section, recently developed digital hardware designs that
share an axis of similarity with this design are introduced. Microcontroller-only implementa-
tions are not discussed as their approaches, limitations and possibilities, vary significantly from
the field programmable gate array (FPGA) and silicon designs relevant to this thesis. The same
goes for analog, spiking, memristor- and computing-in-memory-based implementations.

In FPGA and application-specific integrated circuit (ASIC) designs for TCN
acceleration are covered, after which covers non-TCN based accelerators for the
keyword spotting task.

5.2.1 TCN acceleration

In [44], Giraldo et al. propose a batch and real-time processing scheme for TCN inference
as part of a 65nm concept ASIC for keyword spotting. It has an advanced set of features to
maximize power savings, namely sprinting, dynamic voltage and frequency scaling (DVFES)
and power gating (PG). Furthermore, a cascaded classifier is introduced which only enables
the TCN classifier when voice is detected, thereby allowing for further power savings. During
real-time inference, the design consumes 25 uW.

Similarly, Bernardo et al. [41] propose a TC-ResNet [63] accelerator for keyword spotting
in the form of a 22nm concept ASIC. Instead of a cascaded classifier, a conditional classifier
is developed, where if a confidence metric is not high enough in a layer, the processing of that
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sample is stopped to save power. The design also supports PG and uses 8.2 uW during real-time
inference.

In [42]], He et al. design an FPGA implementation for a TENet [118]], a derivative architec-
ture of the TC-ResNet. Furthermore, a simplified MFCC algorithm is employed to save power
on the feature extraction. It can operate at a clock speed of 90 kHz for real-time inference,
during which 209 mW is consumed.

Orthogonally, Jain et al. [39]] present a 22 nm in-silico full system-on-chip (SoC) consisting
of a RISC-V CPU and a custom ML accelerator for inference of CNNs, RNNs, SVMs, autoen-
coders and TCNs. During real-time keyword spotting with a TCN, the total power consumption
s 193 uW.

Carreras et al. present a quantitative evaluation for TCN inference using FPGAs in [/4].
This exploration is performed with an FPGA-based CNN inference accelerator, which is ex-
tended to run TCNs in a streaming and batched fashion, similar to [44]. The final design was
tested using three different benchmarks, with the system using approximately 3.3 W.

Also focused on optimizing TCN inference, Ibrahim et al. [119] propose a data-flow trans-
formation to convert a dilated convolution to a non-dilated convolution. This approach is part
of a 40-nm concept design for a gesture recognition case study using an ultrasound sensor.
Unfortunately, no power consumption metrics are reported.

5.2.2 Keyword-spotting acceleration

In [40], Giraldo et al. propose a 65nm in-silico LSTM accelerator for keyword spotting. One of
the unique features of this design is that it uses approximate computing techniques via look-up
tables (LUTs). During inference, it consumes 5 pW.

In another work from Giraldo et al. [94], a speech-triggered wake-up mixed-signal system-
on-chip is presented that can directly interface with an analog microphone, perform MFCC
feature extraction as well as KWS and speaker verification (SV). It is taped out in a 65nm CMOS
process and uses 10.6 uW in typical real-time scenarios. The supported network architecture is
again an LSTM with a fully connected layer.

Another LSTM-based KWS solution is proposed by Chong in [120] in a 40nm CMOS
process. Similar to [94]], the MFCC extraction also runs on-chip in this design. Different from
[94] is that the accelerated LSTM model is pruned and compressed to reduce the parameter and
operation count. During real-time inference, 2.51 uW is used at an accuracy of 90.6% on the
10-way Google Speech Commands task, which is however extracted from simulation results
and not validated in silicon.

In [121], Shan et al. propose a 510nW wake-up KWS chip. Similar to [94)], MFCC fea-
ture extraction is performed on-chip using a serial FFT-based approach, instead of the regular
parallel approach. The network used is a binarized depthwise separable CNN, taped out in
28-nm CMOS. However, only the accuracy results for 1- and 2-way keyword classification are
clearly presented in the paper, with the accuracy for the more common 10-way classification
task discussed as "less than 90%".

Also using a CNN is [[122], where Lu ef al. present a depthwise separable convolution
accelerator simulated in 28 nm CMOS. Two special features are the use of an approximate
MAC unit and a streaming convolution reuse approach. Unfortunately, Lu ef al. are not very
transparent on their power usage for the complete design.

Combining the convolutional and recurrent paradigm, Liu et al. [123] propose a one-dimensional
convolutional recurrent neural network (ID-CRNN) accelerator with on-chip MFCC feature
extraction in a 22-nm process. Similar to [122], approximate computing is used. The power
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consumption of the design ranges from 1.4 uW (for 1 keyword + unknown category) to 2.1 yW
(for 5 keywords + unknown category) during real-time inference, also resulting from simulation
results that are not validated in silicon.

5.3 High-level architecture

In this section, the high-level architecture of the hardware design will be introduced. It was
decided to follow a typical accelerator-style architecture, with memories, controllers and com-
pute modules clearly separated, similar to the hardware designs covered in [Section 5.2} [Fig. 60|
shows a visual overview of the architecture for Chameleon.
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Figure 60: High-level architectural overview for Chameleon. A color-coded legend is displayed on the
right.

The chip has three separate interfaces. The SPI interface is used for configuring the network
weights, structure and (few-shot) processing options, where the latter two are stored in the
configuration registers. The SPI interface can also be used to read out the contents of all the
memories and key internal registers. The high-speed input bus is then used to receive the per-
timestep feature vectors, while the high-speed output bus sends the processing results.

The processing side of the design consists of a processing element (PE) array connected
to a post-processing block in a pipelined fashion. The PE array effectively is a highly paral-
lel matrix-vector compute-unit while the post-processing block handles various tasks, such as
rescaling the PE array outputs, performing the activation computation and finding the argmax
of the output vector.

Which weights and activations go into the PE array is orchestrated by the network controller:
this block generates all the control signals to process a TCN according to its structure and makes
sure that all data is loaded and written back properly.
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The few-shot and continual-learning controller then operates completely independently from
the network controller and overwrites signals coming out of the network controller when few-
shot learning is performed. The chip also has a power-down controller, handling when the
power can be removed from some of the weight and bias memories. A small finite-state ma-
chine (FSM) is used to keep track of the global system state.

The memories that Chameleon has can be divided into four categories: weight storage, bias
storage, activation storage and input storage. Both the weight and the bias memory have a
subsection that is always on, while the rest of these memories can be turned off to save power
when executing small networks. All memories consist of TSMC SRAM IPs, except for the
input memory, which is a custom block that uses registers to store data. If the first layer is
being processed, data from the input memories flow into the PE array, otherwise, data from the
activation memory does so.

Finally, the design includes an embedded clock generator for operation at clock frequencies
larger than 50 MHz. Below this frequency, the clock can be provided externally.

The different parts of the architecture, that were briefly touched upon here, will now be
explored in more detail in the following sections.

5.4 Connectivity

After having considered the complete high-level architecture, this section details the way the
hardware connects to the outside world. First, will discuss the SPI bus (CHA-
COMM-01), after which will discuss the high-speed in and out buses (CHA-
COMM-02, CHA-COMM-03).

5.4.1 SPI bus

In this design, the SPI bus is the main communication port. It can be used for the following
tasks:

* configuring the chip,

» programming the weights and biases,

reading back the weights and biases,
* reading out the (input) activations,
* inspecting on-chip registers.

The SPI protocol was chosen over other protocols such as I2C or UART for simplicity and
the availability of recent silicon-proven open-source implementations in Verilog [[124].

Compared to a standard SPI implementation, the SPI bus on Chameleon only has three
pins (see [Table T8)), where the chip-select (CS) pin has been omitted as no multi-chip setup is
foreseen.

As the SPI protocol does not define the structure of the data stream, this needs to be defined
a priori so that the client and server can communicate correctly. visualizes the message
structure for interfacing with Chameleon, where the size of each message is 32 bits.

Before reading data from or writing any data to Chameleon, an instruction message is sent
from the server to the client (see[Fig. 61)). This message consists of four parts: the read-write bit,
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Table 18: Pins of Chameleon’s SPI bus. Client refers to Chameleon, server refers to an external device.

Pin Direction Width Description

SCK  Input 1-bit SPI clock generated by SPI server
MOSI Input 1-bit Master (server) output, slave (client) input
MISO Output 1-bit Master (server) input, slave (client) output.

32 bits
o < >
on
3
5
8 Write (0) .
5 Code Start address Number of transactions
= Read (1)
=
2 < > < > < 5
Tbit 4bits 16 bits s 11 bits g

01010010101000101110010110010110

Number of transactions

01101001101001110100010101001010

Figure 61: Structure of an SPI transaction, including packet formatting in the implemented SPI protocol.

a 4-bit code, the 16-bit start address of the transaction and the number of transactions encoded
over the remaining 11 bits.

The read-write-bit indicates whether data will be written to (0) or read from (1) the chip
after the instruction message. The code contains which part of the chip should be read from or
written to. The following mapping from code values to storage elements is defined:

1. configuration registers (write only), internal registers referred to as "pointers" (read-only),
2. weight memory (read and write access),

3. bias memory (read and write access),

4. activation memory (read and write access),

5. input memory (read and write access).

Note that, finally, the 4th bit is not used anymore as there are only five locations. While this
bit could have been repurposed for the number of transactions, this was not pursued due to time
constraints.

Next, the start address is 16 bits wide and indicates the address from which reading or
writing should start. Finally, the 11-bit number-of-transactions field contains how many 32-bit
messages (so not addresses) should be received or transferred.

Based on this instruction message format, the following steps during SPI communication

are defined as follows (see[Fig. 62):
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1. the server sends an instruction message (a[31:0] in [Fig. 62)) to the client, requesting a
read or write from multiple addresses (see instruction message format in [F1g. 61)),

2. in the case of a write request, the server starts sending bits sequentially, while in the case
of a read request, the client starts sending out bits sequentially. While bits are transferred
sequentially, both from the server and client side, they are virtually grouped in packets of
32 bits,

3. after the number of 32-bit packets (d[31:0] in [Fig. 62))) transferred equals the specified
number of transactions from the instruction message, Chameleon is awaiting a new in-
struction message.

The SPI bus only operates when the SPI clock (SCK) is active. To disable SPI communica-
tion, SCK can simply be pulled low, effectively acting as a chip-select.

(a) SPI write 32 SCK cycles for instruction 32 SCK cycles for data field (write)

<

- sck L M1 L1717 LI ILIL-"1rLrrl
server | most A faear) - Xam X el ) CTET) CIED) (D €100 €10D

a[31]
Chip {MISO

(b) SPI read

T

 325CK cycles for instruction 32 5CK cycles for data field (readl

<pi { sck L T 1 L1111 rrr-1rLri

a[31]
Server MOSI

/ \<a[30]X:... :X a[1] X al0] }
Chip {MlSO d[31] X d[3o1 Y -.. d[o]

Figure 62: SPI timing diagram. Based on a figure from [124].

T

5.4.2 High-speed in and out buses

In order to have high-speed communication between Chameleon and external devices, high-
speed in and out buses were created, which stem from requirements CHA-COMM-02 and
CHA-COMM-03. They were introduced to create a more realistic hardware design, where
data goes in and out of the chip over a fast, parallel bus instead of over SPI, which is serial.

These buses use a four-phase handshake protocol for asynchronous communication. See
[Fig. 63|for a timing diagram of communication via this protocol: the four phases are visualized
with arrows.

DATA /X data X7/

REQ a\ ».C
ACK »b’ >Ed

_ e

Figure 63: Timing diagram of the four-phase handshake protocol.
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When data is coming from an external device, the REQ line will be pulled high (a in
as soon as new data is available on the DATA line. Then, as soon as the ACK line goes high
(b), indicating that the data has been received correctly, the REQ line goes low (b — ¢) and
Chameleon will not care about the state of the DATA line anymore. When REQ is back to a low
state, ACK will go low again as well (¢ — d).

When outputting data, the above-mentioned steps are unchanged, except that the DATA and
REQ line are controlled by Chameleon and the ACK line is an external input.

Originally, the input bus was intended to have 32 wires, but to avoid a pad-limited design, it
was opted to go for 16 wires instead. The DATA line from the output bus then has 8 wires.

5.5 Network controller

In this section, the design of the network controller is discussed. This module is responsible
for generating all the control signals to perform streaming inference with a TCN-type network
(fulfilling CHA-CORE-02).

As opposed to more standard architectures optimized for batched inference, Chameleon
focuses on streaming (i.e. batch-size-1) inference (Fig. 64), where after every time 7, a new
input feature from a single sample is processed and an output is generated, is that it is the most
realistic deployment scenario for few-shot learning edge hardware. For example, an edge device
for keyword spotting will only receive the outputs of one microphone. Compared to batched
inference, streaming inference results in less parallelism and thus fewer data reuse opportunities.
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Figure 64: Batched inference with batch size 3 on a sequence of length 10 where each feature is 4D. In
streaming inference, the batch size is 1.

Considering this, first, in various controller alternatives from prior work in
this space are reviewed, after which one base approach is chosen in[Section 5.5.2| [Section 35.5.3|
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then presents the controller implemented based on this approach.

5.5.1 Survey of process and control alternatives

This section discusses various approaches to controlling TCN acceleration. For each approach,
the used dataflow, activation memory required (assuming fixed-size weight memory, as per
[Section 3.1.3.1)), the required implementation and supported TCN features (i.e. dilation and
residual layers) are considered.

In [42], He et al., use a control unit that reads a 64-bit instruction per layer, which contains
all details required to process that layer. The memory addresses and enable signals are then gen-
erated by an address-generation unit based on this configuration. A weight-stationary dataflow
is employed: this means that the neural network weights are loaded once from the mem-
ory and kept in a compute block, after which they are reused across multiple cycles before new
weights are loaded. Using this dataflow, the network is processed layer by layer: this implies a
batched-inference process and not a streaming one, as to compute the first layer, all timesteps
need to have been received first, see [Fig. 65a). For this, three activations memories are used:
two of these are used as ping-pong buffers for reading and writing the activations in parallel,
while the third one is used to store residual path values. Using this approach, the design has an
activation memory to weight memory size ratio of 32.5% at an activation memory size of 6.5
kB. The control unit does not support dilation.

Y0 M| y2 y3 Y4 Y5 Y6 Y7 Yo Y1 Y2 Y3 Y4 Y5 Y6 y7

X0 X1 X2 X3 X4 X5 X6 X7 X0 X1 X2 X3 X4 X5 X6 X7

(a) Layer-by-layer TCN inference. (b) TCN streaming inference as performed by [44]]
and [[74]. Image inspired by [44]].

Figure 65: Schematic overview of layer-by-layer and streaming processing for a TCN. Values in red
are computed in the current inference pass (after receiving x9) while values in blue were computed in
previous passes. Values in yellow are previously received inputs while the value in teal is the current
input.

In [44], Giraldo et al. follow a similar approach: the architecture includes an instruction
memory that contains, for each layer, the hyperparameters and configuration variables required
for its execution. A separate module then controls the PEs and memory accesses. In contrast
to [42], the processing in this work focused on dilated convolutions, for which two processing
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modes are proposed: batched inference and streaming inference. In the streaming mode, the
computational graph of the TCN is traversed greedily (Fig. 65b): as soon as a new input is
available, all intermediate values and outputs that can be computed, will be computed. However,
the handling of residual layers is not discussed. The convolution operation in the network
is computed like a vector-matrix multiplication, which is the same operation used in an FC
layer: a partial output-stationary dataflow is therefore used for processing the TCN [125] where,
for every cycle, new weights are loaded but the output of the computation is not immediately
written back to the memory. Two activation memories are used in a ping-pong configuration
with a balanced activation memory to weight memory size ratio of 100%, with a large activation
memory of 64 kB. However, note that this large activation memory is likely the result of also
supporting inference with a batch size of 64.

Carreras et al. /4] also propose a streaming and batched inference approach to execute
TCNs on an existing CNN accelerator. Their streaming processing of the TCN is nearly the
same as in [44]], however residual layers, as well as variable dilation values, are now considered.
Unlike [44] however, a RISC-V CPU instead of a custom hardware module is the inference
controller. The memory implications for streaming inference are not discussed.

Finally, in [119]], Ibrahim et al. propose a data-flow transformation converting a dilated
convolution to a non-dilated convolution. This removes the need to scale the delays between
input samples going into MAC units. The dataflow processes a TCN layer by layer, similar to
[42]. Unfortunately, Ibrahim et al. do not consider residual layers in their approach and require
a relatively large 20-kB activation memory (weight memory size not provided).

5.5.2 Controller choice

Table 19: Comparison between different TCN inference control methods. Bold indicates best perfor-
mance in row while - indicates that the work does not explicity mention what is used.

He et al. [42] Giraldo et al. [44] Carreras et al. [74] Ibrahim et al. [119]

Dataflow W.eight Partigl output i i
stationary stationary
Processing style Layer-by-layer Streaming Streaming Layer-by-layer
Activation memory overhead 32.5% 100% - -
Supports dilation? No Yes Yes Yes
Support residual path? Yes No Yes No
Implementation Instruction + Instruction + RISC-V Configurable
address-generator address-generator controller address-generator

To make a decision on which method to use for controlling the inference, the described
approaches are compared side-by-side in which shows that only the approach from
Carreras et al. [74] supports both dilation and residual layers. Furthermore, as in this thesis
it is desired to maximally reduce the size of the activation memory, a streaming approach is
preferred as fewer values have to be kept in memory at the same time (compare the blue blocks
in[Fig. 65a) with[Fig. 65b). Therefore, only the approach from Carreras et al. remains. However,
their processing controller was implemented in a separate CPU, which is not desirable for a
small accelerator like Chameleon.

Therefore, as Giraldo et al. [44] have demonstrated that a similar approach can be imple-
mented as a configurable hardware module, it is decided to (i) follow the greedy streaming
inference from both works, (ii) to implement it in a dedicated hardware controller as in [44] and
(iii) to expand it to support residual layers.
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5.5.3 Implementation

The final implemented controller supports:

p TCN layers followed by g FC layers, where 2p + g < 32 (CHA-CORE-01.03),
* up to 32n channels per layer, where n is the size of the PE array,
* per-layer configurable kernel size with any kernel size from 1 to 16 (CHA-CORE-01.02.01),

* residual layers (CHA-CORE-01.06): optionally, an identity operation can be scheduled
in case the incoming and outgoing channel count is the same, otherwise a 1 x 1 convolu-
tion is scheduled,

* a global flag to enable or disable dilation in all TCN layers,

* streaming and finite-length sequence classification (CHA-CORE-01), as well as stream-
ing and finite-length sequence regression (CHA-CORE-02).

YO Y1 y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 | Y11 Y12 Outputs
FC layer
Convolutional
layer 3
L TCN
— layer 1
Convolutional
layer 2
Convolutional
layer 1
- TCN
— layer 0
Convolutional
layer 0
Inputs

Figure 66: Computational graph for a 2-layer TCN with kernel size 3 that is connected to a classification
layer. The processing order is indicated by the numbers in the boxes: every step increase represents one
convolution operation. Since every second convolutional layer needs to include a residual path, some
boxes contain two numbers: one for performing the convolution and one for the residual step.

The controller generates, every cycle, a weight, bias, input activation and output activation
address and provides the required signals to enable reading and writing from the respective
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memories. As discussed, the TCN structure is traversed greedily: illustrates the com-
putation order for a 2-layer TCN. This means that there is no weight or activation reuse, as in
every step different weights and activations are required.

To support residual layers, every time an activation has been computed that allows for an-
other convolution to be performed in the next odd-numbered layer (e.g., in after step
20 is computed, step 21 in convolutional layer 1 can be computed), the value along the residual
path is computed, the convolution is performed and its result is added.

As the controller operates in a streaming fashion, it can be the case the processing has to be
halted to wait for input data. For example, if after step 4 in feature vector x5 has not yet
been sent to Chameleon, processing cannot continue. The controller detects such situations and
stops processing until a new input is ready, after which processing resumes.

The controller is fully PE-array-size-agnostic, as it operates in terms of blocks instead of
channels, where each block then is an c-dimensional feature vector that is fed to the PE array.
It is implemented as a low-footprint FSM that requires < 0.1 kB of registers.

5.6 Processing element array

In this section, the processing element (PE) array of Chameleon is discussed, as per the structure
shown in[Fig. 60] This array, a matrix-vector multiplier unit, performs all computations required
to do few-shot learning and to perform inference on TCNs (CHA-CORE-02).

First, discusses the design of individual PEs, then [Section 5.6.2] covers their
integration into an array as well as the related design choices. Finally, covers the
post-processing and argmax block.

5.6.1 Processing element design

The PE is a core building block of an accelerator: it is often replicated many times and organized
in a grid to form the main compute module of a design, e.g. a MAC array (see [Section 2.3.2.1]).
The design of the PE is linked to requirements CHA-NUMERIC-01 and CHA-NUMERIC-02.
When uniform weights are used, the PE is simply a n, X n,, multiplier, where n, and n,,
are the numbers of bits used for the activations and weights respectively, possibly accounting
for signed operands. However, as Chameleon uses logarithmic weights, the PE is now a signed
shift unit, a parameterized Verilog implementation of which is shown in
partial-output stationary dataflow is used (K/C), similar to an FC layer deployment.

Listing 1: Parameterized description of the PE.

module pe
#(parameter WEIGHT_BIT_WIDTH = 4, parameter INPUT_BIT_WIDTH = 4,
localparam OUTPUT_BIT_WIDTH = INPUT_BIT_WIDTH + (2x*x
WEIGHT_BIT_WIDTH) /2)

input [INPUT_BIT_WIDTH-1:0] in,

input [WEIGHT_BIT_WIDTH-1:0] weight,

output signed [OUTPUT_BIT_WIDTH-1:0] out
)

wire weight_sign;
wire [WEIGHT_BIT_WIDTH-2:0];

assign {weight_sign, weight_abs} = weight;
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wire signed [OUTPUT_BIT_WIDTH-1:0] out_abs = in << weight_abs;
assign out = weight_sign == 1’bl ? -out_abs : out_abs;

endmodule

As visible in first the sign and weight value are separated, after which the input
is shifted to the left by weight value bits. Then, based on the sign, where 1 indicates that the
weight is negative while O indicates that it is positive, the value is negated or not.

To make this more concrete, [Egs. (52)to[(53)|show an example PE operation with weight w
and input activation x:

stored as

W= —641g= — (26> storedas 1110,,  x =139 = 1101, (52)

stored as

w-x=—(1101; << 6) = —1101000000, ——— 111111001100, = —832,9 (53)

where 1¢ indicates that a number is decimal and , indicates that a number is binary. Note
that that the signed output of w - x is stored in 2s complement format.

The equation for calculating the bit width of this output is shown in on line 2,
namely 7, + (2™~1). This can derived as follows: it is possible to shift the input (n, bits) a
maximum of 2! — [ bits. Adding the maximum shift value (the maximum amount of zero
bits that could be appended to the input) and bit width of the activation yields n, + 2™~ 1 — 1.
Then, to account for the sign of the output, one extra bit is required, canceling out the —1 and
resulting in n, + (2™~ 1).

Putting this together, contains a schematic of the PE outlined in where

the final bit widths for Chameleon are filled in.
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Figure 67: Schematic of a processing element for operation with a 4-bit logarithmic weight and 4-bit
uniform input.

5.6.2 Array design

In this section, the integration of the PE into an array is discussed. For Chameleon, the PEs are
organized in a grid with dimensions n X n: these dimensions are kept parameterized throughout
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this section, as the final values are optimized in conjunction with the available TSMC SRAMs
later. The grid is designed specifically for an output-stationary (OS) [125] dataflow. This
dataflow keeps the partial sums of convolutional and fully-connected layers stationary (i.e. they
stay in local registers), aiming to minimize the energy required for reading and writing the
partial sums [125].

In the n x n grid integration is shown: the general structure is the same as the
conceptual MAC array of Following the standard definition of the OS dataflow [123],
every input activation (in[0]—in[n — 1]) is horizontally streamed across the PE array, while each
PE receives a unique weight value. Per column, the outputs of the PEs are then added together
using an adder tree, resulting in n partial sum values.
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Figure 68: Schematic overview of an n x n PE grid as used in Chameleon.

In this grid, each PE performs one MAC, which is executed as a shift-accumulate (SAC)
operation, per cycle. Therefore, to feed the entire grid of PEs, an input vector of 4n bits and
a weight matrix of 4n bits has to be retrieved from the memories every cycle, to enable it to
produce a partial-sum vector of 12n bits every cycle.

5.6.3 Post-processing

From the PE grid, the n partial sums flow directly into the post-processing module (as shown in
Fig. 60). The post-processing module then contains two blocks: an aggregator and
an activator (Fig. 69b).
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In the aggregator block, the partial sums from subsequent cycles are added to compute a
complete sum. The MUX in every column (Fig. 69a) switches between adding the bias or the
value in the accumulator register to the incoming partial sum, based on the load bias signal.
In the first cycle of an operation that requires multiple partial sums to be added, the 1oad bias
is high: the partial sum + bias is now stored in the per-column accumulator register. After this
cycle, the signal can go low as each subsequent partial sum has to be added to the bias and
previously computed partial sums, stored in the accumulator.

load
bias

Scale ° ° .......... ° °

Out Out .............. Out Out
(0] (1] [n-2] [n-1]

(b) Scaling and activating n accumulators to compute 7 final outputs.

Figure 69: Schematic overview of the two blocks in the post-processing module of the PE array.

After completing the computation of all the partial sums, the n accumulator registers contain
the final, complete sums. Following the quantization function, these sums have to be scaled
Eq. (25); since per-tensor power-of-two scale values are used, this operation can be performed
by bit shifting the accumulators in all columns by scale bits (Fig. 69b). After this, the ReLU
activation function is applied to the scaled accumulators (CHA-CORE-01.05). Finally, the 4
LSBs per column are taken and written back to the memories.

5.7 Storage

In this section, the selection of memory elements to store the neural network weights, biases
and activations will be discussed. As the dimensions of the PE array were kept variable through

n, the optimal value of n will first be determined in Then, covers
the neural network weights storage, followed by [Section 5.7.4| where the storage of the biases is
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discussed. discusses the activation storage configuration. Finally, in ??, the way
the incoming inputs are stored is discussed.
5.7.1 Generic storage setup

In this section, the storage configuration of Chameleon will be discussed. We had access to the
following five memory types in the selected 40nm node:

a dual-port SRAM, allowing two reads, two writes, or one read and one write at the same
time,

two single-port SRAMs,

a high-performance single-port SRAM,
* a one-port register file,

* atwo-port register file, allowing one read and one write at the same time.

Before being able to select the optimal memory types, the required storage sizes for pro-
cessing each of the three developed networks (see need to be determined. These
values are displayed in[Table 20} the weight and bias counts are calculated using PyTorch [[104],
while the number of activations required comes from simulating the behavior of the TCN con-

troller (see[Section 5.5).

Table 20: Number of weights, activations, and biases to be stored for the three benchmarks of this thesis.

# of weights # of activations # of biases

12-class KWS 21,296 704 188
Few-shot KWS 114,352 1,856 432
Sequential Omniglot 116,304 2,688 656

For each of the columns, the maximum is taken as the minimum storage requirement per
type: in this case, the design of the network for sequential Omniglot dictates all the maxima.
From these maxima and the bit widths for each of the three value types, the closest power-of-
two products{?] to the total required bits are derived: the first value in this product indicates
the SRAM word size, while the second value indicates the number of SRAM rows. These are
1024 x 512 (64 kB), 256 x 64 (2 kB), 64 x 64 (0.5 kB) for the weights, activations and biases,
respectively. This means that taking the weight memory as an example, the shapes 2048 x 256
and 128 x 4096 are also added to the search space.

Knowing the required memory sizes, it is possible to loop back to the PE array requirements.
As mentioned in for the weight (resp. activation) memory, a word size of 4n?
(resp. 4n) is required to make sure that the PE array can produce new outputs at every cycle.
Subsequently, this means that the bias needs a word size of 16n to load all the biases for the PE
array in a single cycle. However, while the interaction between the PE array and the weight and
bias memories is read—onlym the interaction between the PE array and the activation memory
is both read and write.

Power-of-two products are used as most of the available memories have a width and depth that are powers of
two.
30These values do not change during inference.
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Therefore, the weight storage configuration chosen is a single-port SRAM that fulfills the
dimensions 4n” x 2!7n~2, while the bias configuration chosen is a single-port SRAM that fulfills
the dimensions 16n x 28n~!. However, as parallel read and write capabilities are required for
the activation memory, a single-port memory will not suffice.

Considering other hardware designs, usually two single-port SRAMs are used in a ping-
pong configuration [44]] [39] to allow for reading and writing activations to and from the PE
array in the same cycle; for processing networks with residual connections, often a third single-
port SRAM is added [42] [41]]. However, for this design, there is also the possibility of using
dual-port memories.

Comparing the two dual-port memories available, i.e. an SRAM and a register file, the for-
mer has a 25-% higher leakage current, a 3.0 (resp. 1.5x) higher read (resp. write) current and
a 50-% larger area than the latter for the same storage size. When putting the register file option
side-by-side with a triple single-port SRAM configuration, the register file solution demon-
strates 50% lower area and 5.0 x lower leakage. Therefore, the activation storage configuration
for Chameleon consists of a single two-port register file with dimensions n x 2!2n2~!. The final,
parameterized storage configuration, including all memories, is then shown in [Fig. 70

Read ‘
<>
A
n
PE array [€
Read
oa P Weight memory 217 /42
A
\4
)2, Activation 4n2
memory Write Read
\4 8
A 2°/n Bias memory
<>
4n
16n

Figure 70: Final parametrized storage configuration of Chameleon, with a single-port weight SRAM
and bias SRAM and a two-port

5.7.2 PE array size determination

With the parameterized PE array and storage configuration outlined, in this section, the optimal
value of n will be determined by considering the maximum TOPS/W and minimum real-time
power. To be able to do this, the following assumptions are made:

« the leakage of the PE array is assumed to scale with n?, where the leakage value from
n = 16 is used as a baseline value,

* only the leakage power from the memories and PE array is taken into account, as it is
assumed that the remaining blocks have negligible leakage,
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the dynamic power of the PE array is assumed negligible during real-time operation and is
assumed to be absorbed by the power required for reading the memories during maximum
frequency operation,

* the minimum clock speed required to maintain real-time processing is used to calculate
the lowest power while the maximum internal clock speed (250 MHz) is used to evaluate
maximum TOPS/W,

* an operating voltage of 1.1V is used,

the activation memory is read from every cycle, but written to only f,t % of the cycles,

the weight memory is read from every cycle, but the bias memory is only read from fpjas
% of the cycles,

fact and fpias are task-dependent and computed by simulating the TCN controller,

the read and write current per cycle from all memories are taken from TSMC documen-
tation,

the maximum word size and depth for all memories are 128 and 8096 respectively, mean-
ing that in case a larger word size or depth than these values is required, multiple memo-
ries are used,

for each value of n, the lowest power memories possible are selected that fulfill the di-
mensions and total storage capacity of not considering area.

shows the results of this approach, where for five values of n, the maximum TOPS/W
and minimum power for real—timeE] sequential Omniglot was found. It can be seen that a PE
array size of 2 gives the lowest real-time power, with n = 4 trailing it closely, but this comes at
the cost of peak TOPS/W. Going from n =4 to n = 8, 16,32, at every step, both a 50% increase
in minimum power and in maximum TOPS/W is taking place while going fromn =16ton =32
more than doubles the minimum power at less than 20% increase in TOPS/W.

It it then decided to choose both n = 4 and n = 16, effectively creating a 4 x 4 subsection
in the n = 16 PE array. This is made possible by the fact that a separate power rail can be used
for some of the memories: all memories that are required for n = 4 operation are always-on,
while the memories that are only required for n = 16 can be turned on and off, depending on the
configured effective PE array size. Furthermore, the memories required for n = 4 can be reused
during n = 16 operation. However, the leakage of the PE array for this new n = 4 configuration
remains the same as for n = 16, as the full PE array is always on.

As the total weight and bias storage capacity in the n = 4 case is lower than the n = 16
case, this mode is specially developed for KWS scenarios with small networks. then
displays the maximum TOPS/W and minimum power for KWS, where it is clear that the use of
a subsection mode not only allows for maintaining a high TOPS/W since n = 16, it also enables
a very low minimum power, even lower than the n = 2 case due to the reduced memory size.
Furthermore, during n = 4 operation, now achieves higher TOPS/W than n = 8.

Therefore, n = 16 is chosen for Chameleon. In the remainder of this section, it is then
covered, per memory type, how the values for both regular and subsection operations are stored.

312.6 images per second (about 2000 time steps per second), which was empirically found by writing 100
characters.
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Figure 71: Maximum TOPS/W and minimum real-time power for n = 2,4,8,16,32 while performing
sequential Omniglot. Both y-axes are made relative to not display any technology-dependent informa-
tion.
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Figure 72: Maximum TOPS/W and minimum real-time power for n = 2,4,8,16,32 while performing
KWS. Both y-axes are made relative to not display any technology-dependent information.

5.7.3 Weight storage

In this section, the neural network weights storage is discussed. As explained in
the neural network weights that can be used in Chameleon are 4 bits wide and since the final
matrix-vector multiplier can perform a multiplication of a 16D vector with a 16 x 16 matrix
every cycle, the total word size is 1024. This is achieved by horizontally (word-wise) stacking
8 memories with word size 128 and 512 rows.

shows how the weights from a single memory word of 256 elements of 4 bits are
inserted into the 16 x 16 PE array. In situations where the kernel size is a multiple of 16 x 16,
multiple words are used as shown in[Fig. 74, where the words are stored in a row-kernel-column
order to maintain output stationary when using subsequent weights.

shows how, in order to support 4 x 4 operation, one of the 128 x 512 memories is
replaced by two 64 x 512 memories that are stacked depthwise during 4 x 4 operation, with
all the other weight memories switched off. This means that in 4 x 4-mode, a network with
a maximum size weight count of 16,384 can be deployed. The current KWS network has
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Figure 73: Overview of insertion of 16 x 16 word into the PE array.

21,296 parameters and therefore future work will investigate smaller TCNs that still achieve
good classification accuracy, to make full use of the subsection mode.

5.7.4 Bias storage

In this section, the neural network bias storage is discussed. As explained in [Section 4.4.3|
the neural network biases that can be used in Chameleon are 16 bits wide and since the final
matrix-vector multiplier can perform an addition with a 16D vector with every cycle, the total
word size is 256. This is achieved by horizontally (word-wise) stacking two memories with a
word size of 128 and 128 rows. This is larger than the required memory size for the biases as
for future workPZI, support is required for very deep networks with a large (> 1000) number of
biases.

Thus far the storage of the scale values for quantized inference has not been touched upon.
While they could also be stored in an array of registers, it was decided to store them together
with the biases as each bias is loaded at the same time a scale value is needed, saving energy
and area. However, since 4-bit scale values (CHA-NUMERIC-0) are required and since the
entire word size is already used by the biases, it was decided to instead use a bias bit-width of
15 to allow for storing the 4-bit scale.

Furthermore, as shown in to support both 16 x 16 and 4 x 4 operations, similar to
the weight memories, one of the 128 x 128 memories is split into two 64 x 128 (splitting them
has less than 5% overhead in terms of leakage and read power) and the effective layout can be
reconfigured at run-time.

32Raw audio keyword spotting at 16 kHZ
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Figure 74: Weight memory layout for 16 x 16 operation.

5.7.5 Activation storage

In this section, the neural network activation storage is discussed. As explained in[Section 5.7.1}
a two-port register file is used for this. With n = 16, this means that the register file has a word
size of 64 and a depth of 256. However, while studying the access pattern induced by the
TCN controller (Fig. /7)), it was shown that the feature-vectors inputs for inference are accessed
significantly (twice as often) more than the most accessed intermediate activation address: in
total, for this network, the inputs are read from 1200 times while the intermediate activations
are only read 700 times. Therefore, to save energy on these input reads, it was decided to, next
to the two-port register file, also use a separate register-based input memory.

Furthermore, due to the real-time processing support of Chameleon, situations can occur
where both the input memory and the activation memory need to be written to in parallel, the
former to store a new input and the latter to store an output from the PE array, causing write-
contentions. However, this streaming nature also allows for a small input memory, as only
k x input channel count values have to be kept in the input memory at all times, instead of
the entire input sequence, which is the case for 1D ResNets [63] as they cannot be processed
stream-wise. The number of rows in this input memory was determined to be 32 (0.25 kB):
this means that networks with a k x input channel count/16 < 32 are supported, for example, a
network with k = 7 and 64 input channels fits into this memory.

It was also considered splitting the two-port register file into multiple pieces to more ef-
ficiently support the 4 x 4 subsection mode, as the input memory is already able to store a
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Figure 75: Weight memory layout reconfiguration for 16 x 16 and 4 x 4 operation.

To PE array To PE array
16 x 16 mode
64
2
< > R —> 4 x 4 mode
64 x
64 x || 64 x
128 128 || 128 128 x 128 128
256 128 x 128
16 x 15-bit biases | 4-bit scale
64 x
128
Legend
Powered off 4x 15-bit biases | 4-bit scale

Figure 76: Bias memory layout reconfiguration for 16 x 16 and 4 x 4 operation.

significant amount of the total used values and since the two most suitable split leads to 20%
higher leakage and 20% read current, it was decided to stick with one activation memory.
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Figure 77: Access count per activation address during 16 x 16 operation, split between inputs and inter-
mediate activations.

5.8 Few-shot learning

In this section, the hardware implementation for on-chip few-shot learning is discussed (CHA-
CORE-03). As there exists no accelerator-style hardware design yet that performs few-shot
learning by comparing embeddings with Euclidean distance, an approach from scratch had to
be developed.

Ideally, few-shot learning can be integrated in such a way that it does not introduce any extra
inference/meta-test cycles compared to regular inference while requiring little extra hardware.
Since Chameleon already supports inference of TCNs with linear layers and since computing
the Euclidean distancelﬂ between an embedding and a prototype can be performed as a linear
layer (see [Equation 5T)), it was chosen to pursue an implementation based on this.

A key advantage of this linear layer mapping is that the computation can simply be con-
trolled by the TCN controller and performed in the PE array. This approach is also suitable for
regular inference accelerators, without requiring extra hardware and complex control. A major
downside for Chameleon however, is that extra multipliers are required in the PE array, on top
of the shifters, to perform the Euclidean distance computation, as all activations are positive
integers (i.e. not in logarithmic format). However, as Chameleon is an experimental design, the
trade-off was made to include multipliers in the PE array to demonstrate this mapping, accepting
the leakage and area overhead.

Before this linear layer computation can be done, first the bias and weight vector per class
have to be computed from the support embeddings. This is handled by the few-shot learning
controller, as it is not part of regular TCN inference. The implemented few-shot learning con-
troller is effectively an address-generator module, similar to the TCN controller (Section 3J.5).
After waiting until all the embeddings from the specified number of support shots have been
computed and stored in the activation memory (always outside the address range used for TCN
inference), it initiates the prototype computation. In this operational phase, all control signals
from the TCN controller are overridden by those of the few-shot learning controller.

To then compute the prototype/average support embedding, every support embedding is fed
into the PE array, multiplied by 1/k and accumulated in the accumulators. The division by
k is done via a LUT that controls the PE array: for example, a division by 5 is performed

33 As the full results of the experiments in|Section 4.3.2| were not available by the tapeout deadline, the Euclidean
distance was implemented in hardware as it is a standard choice [27] [[126] that is hardware-friendly.
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by multiplying all support embeddings, prior to accumulation, with 13, after which the final
accumulated value is scaled by 27°: this results in an effective division by 5, since 13-276
0.20 = 1.

The separate entries of the embedding vector are the squared and summed in one cycle and
written to the bias memory, while at the same time, the averaged embedding is written to the
weight memory. While performing inference on unseen sample belonging to one of the learned
classes, the embedding computation is followed by a linear layer computation using the learned
weights and biases, from which the class can be determined.

Chameleon is designed to be ways-agnostic: before performing few-shot learning, the num-
ber of ways that will be learned does not have to be specified. Therefore, Chameleon also has
a natural continual learning extension: next to a pre-trained classification layer, any number
of extra classes can be learned. In practice, the maximum number of ways is limited to the
maximum number of ways regular classification supports, which is 256.

5.9 Comparison with the state of the art

In this section, the final silicon implementation of Chameleon is compared to state-of-the-art
keyword spotting accelerators and few-shot learning hardware. shows the layout of the
Chameleon chip with the top mask image overlaid.

First, in[Table 21 Chameleon is put side-by-side with other KW'S accelerators. It can be seen
that Chameleon’s 0.954 mm? post-shrink core area is relatively similar to other designs, while
Laika [40] from Giraldo ef al. stands out with a 3 x lower core area than Chameleon, normalized
to a 40-nm node. Furthermore, the total on-chip memory for Chameleon comparable to that of
the other designs.

Looking at the peak efficiency in GOPS/W of the accelerators in[Table 21] it can be seen that
Chameleon comes out on top, being about 40% more efficient than TinyVers [39]]. Regarding
real-time power usage, the LSTM accelerator from Giraldo ef al. demonstrates the lowest value
for a KWS accelerator, although it can only classify four keywords. From the accelerators that
have been demonstrated on GSC, Vocell [94]], also from Giraldo et al. demonstrates the lowest
power metric. For Chameleon, two values are reported, these are the values for assumedf]4 x 4
and performed 16 x 16 operation. Comparing the clock speeds required for real-time operation,
it can be seen that Chameleon can operate at a relatively low frequency with respect to the other
hardware accelerators, even in 4 X 4-mode.

Furthermore, Chameleon demonstrates the best classification accuracy from all silicon de-
signs, only losing out to the TENet implementation [42] on an FPGA. Most importantly, it is
the only design that is not just able to perform regular KWS, but also few-shot KWS, at an
accuracy of 41.5% (better than the previous FP32 state-of-the-art [46] of 39.54 £ 0.62 %) while
only receiving one example for 10 keywords. This comparison demonstrates that Chameleon
can perform few-shot learning at the edge while maintaining high efficiency for low-cost KWS
inference compared to state-of-the-art inference-only designs.

Comparing Chameleon with other few-shot learning hardware in [Table 22| it can be seen
that Chameleon is the only fabricated silicon implementation. Looking at the supported number
of ways and shots, Chameleon is the most flexible, as it supports a maximum number of ways
and shots of 256 and 32 respectively. Furthermore, considering the accuracy of Chameleon, it
can be seen that the only approach that significantly outperforms it, is deployed on an NVIDIA
Jetson Nano, which is by no means edge-friendly in terms of power usage.

34 Assumed, as the current KWS network cannot fit in the memories associated to the 4 x 4-mode.
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Overall, Chameleon demonstrates high accuracy on few-shot learning tasks, while operating
at a minimum power budget without negatively impacting regular inference performance.
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Figure 78: Layout of Chameleon captured inside Virtuoso, where the top-layer metal mask has been

overlaid for visibility.
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Comparison of hardware architectures for keyword spotting. * indicates an estimated value,

while ’-’ indicates missing information.
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Comparison of hardware-tested approaches for few-shot learning. * indicates an estimated

value, while ’-” indicates missing information.

Table 22
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6 Conclusion and outlook

In this section, first, a brief summary of the work presented in this thesis will be given, after
which a conclusion is drawn and the latest trends and possible directions for future
work are provided.

Coming back to the original research question ("How can meta-learning unlock low-cost
adaptation to temporal data for deep neural network accelerator hardware at the edge?"), the
following three key claims are extracted:

1. it was demonstrated that TCNs, compared to RNNs, provide a low-cost neural network
architecture for few-shot learning over sequential data at the edge. TCNs not only out-
perform all recurrent architectures on the four discussed benchmarks, they also have a
more favorable scaling of operations with input sequence length, compared to recurrent
architectures.

2. Building on recent results from machine learning research, it was then shown how meta-
learning techniques chiefly rely on learning high-quality features. Considering hardware-
related factors like memory and computing resources, it was concluded that a super-
vised pre-training approach, involving on-chip learning by comparing network outputs
via Manhattan distance, achieves the best performance-cost trade-off. Additionally, it
was demonstrated that a resolution as low as 4 bits for the weights and activations can be
used thanks to logarithmic weight quantization.

3. The hardware implementation then brings the network architecture and meta-learning
approach together, in a 40-nm sub-mm? chip code-named Chameleon. Chameleon is both
the first in-silico TCN accelerator and the first accelerator to perform on-chip temporal
data classification via meta-learning and continual learning.

Demonstrating a low-cost and data-efficient on-chip learning scheme for temporal data clas-
sification has the potential to positively impact edge devices in multiple avenues, by increasing
data-privacy, reducing electronic waste and maintenance costs and allowing for adaptive opera-
tion even in areas with limited connectivity.

6.1 Latest trends

Below, two of the latest trends for some of the aspects in this work are provided:

* equiangular basis vectors (EBV) [130] for few-shot distance-based classification: EBV
is a drop-in replacement for a linear layer using fixed equi-distance embeddings between
classes,

* pre-training the embedder on a larger spoken keywords dataset, such as MSWC [43]]. This
has recently been investigated by Rusci et al. [131]].

6.2 Future work

In the following list, an overview of possible directions for future work is provided:

* distilled quantization [132], where quantization and distillation are performed in parallel
to increase the quantized model’s performance,
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using a projector layer (a second linear layer) as is often done in self-supervised learning
(1331,

an investigation into the optimal embedding dimensionality for Euclidean distance com-
parison,

fine-tuning the embedder after PTE using ProtoNets [27], as done in [126] by Hu et al.,
keyword spotting on raw audio data,
pre-training the embedder via unsupervised learning, as done in [98]],

experiment with on-chip linear-to-logarithmic conversion to allow for removal of multi-
pliers in the design.
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A Metric learning formalization

Considering the formalization in[Section 2.1.2} 6 in the inner loop (see [Eq. (6)) is then the set of

embeddings generated from the support examples (DS"PP™) Using the formalization notation
L'k g

") (@) — argmin L' (DAE:6,0) = £ (XA (54)
0
‘ . . . 2
st LIk (Digﬁfff .0, w) = (f ® (nggf%%n(l)> - 9> )

Where f, is the neural network with parameters @ that generates embeddings.

B minilmageNet

The minilmageNet dataset was created by Vinyals et al. [29] as a more lightweight alternative to
the original ImageNet dataset [88]]. The minilmageNet subset is curated for few-shot learning,
containing 100 classes with 600 samples per class of size 84 x 84 pixels (see for a set
of sample images from the minilmageNet dataset). In the original version, 80 classes were used
for training and 20 for testing [29]. However, since the exact splits were not made public [99]],
Ravi et al. [99] proposed a 64-16-20 training-validation-testing split with 100 randomly selected
600-sample classes, which has been widely adopted by the few-shot learning community [98]
[30] [19]].

Another dataset that uses a subset of the original ImageNet dataset for few-shot learning is
"Meta-Dataset" [134]. The Meta-Dataset is effectively a dataset of 10 datasets, where gener-
alization performance can be measured across all datasets, after training only on the ImageNet
subset or after training on all datasets.

C MFCC with and without discrete cosine transform com-
parison

This appendix contains

Bhttps://www.kaggle.com/datasets/arjunashok33/miniimagenet
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Figure 79: Sample images from the minilmageNet [29] dataset. Image taken fromlﬂ

Table 23: Performance comparison between full MFCC and MFCC without discrete cosine transform
(DTC) with and without quantization (via QAT) for three different TCN architectures. W/ A /B indicates
the weight, activation and bias quantization respectively. * indicates that the run was stopped early due
to low validation accuracy, which is the accuracy displayed for those runs.

Architecture # of parameters With DCT? FP32/¥P32/ 14/U4/ S8/U8/S16

FP32 S16 S16

7x[16,16,32] 21,484 Yes 94.50 87.46 86.76
3x[16,16,32,32,32] 22,764 Yes 94.56 71.23* -
3x[32,16,16,32,32] 22,764 Yes 94.38 68.90* -

7x[16,16,32] 21,484 No 94.76 93.79 91.63

3x[16,16,32,32,32] 22,764 No 95.69 93.13 92.92

3x[32,16,32,32,32] 22,764 No 95.60 92.94 90.00
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