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1 Introduction

In this report several theories of beam equations will be treated. The aim for
this report is to get a better understanding of the beam equations and its appli-
cations. The goal is to solve a non-tensioned beam with one damped boundary
and one simply supported. This will be done with the help of the Timoshenko
beam theory.

Before this goal is reached, first the Euler-Bernoulli and Rayleigh theories will
be treatend. This is as an introduction to the Timoshenko beam theory, since
this theory is an extention of the previous two.

The idea behind this report came from the Erasmus bridge in Holland, Rot-
terdam. Under some weather conditions, rain fall and a heavy wind, the stay
cables of this bridge began to resonate. Which could have collapsed the bridge.
Luckily this was prevented by adding damping on the end of these stay cables.

The question is how much damping does one stay cable need in order to be
stable under those conditions. Since a stay cable is under tension, it can be
assumed that this behaves like a beam under tension. For simplicity, in this
report the beam is un-tensioned.

First three beam theories (Euler-Bernoulli, Rayleigh and Timoshenko) will be
explained. Then the damped boundary conditions will be introduced and an
attempt will be made in solving the un-tensioned Timoshenko beam.
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2 Notation

When introducing the beam theories several constants/functions will be used.
Here is a summary of these

w(x, t) − transverse displacement of the beam compared to the centerline.
u, v, and w − represent the components of displacement parallel

to x, y, and z, directions respectively.
f(x, t) − external force.
M(x, t) − bending moment.
F (x, t) − shear force.
V [m3]− volume of the beam
A [m2]− cross sectional area A = y · z.
ρ [N/m3]− density of the beam.
δ − variation inintegrating, used in Hamilton′s Principle.
G [Pa]− shear modulus
k − shear correction factor
E [Pa]− Young′s modulus
I [m4]− moment of inertia with respect to the y − axis.
g [m/s2]− gravitational acceleration
l [m] length of the beam
π − strain energy
εij − strain component
σ − stress component
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3 Equations of motion

The equation of motion of a vibrating beam can be derived by using the dynamic
equilibrium approach, variational method, or integral equation formulation [1].
In the following section the variational method will be used to derive the Euler-
Bernoulli equation.

3.1 Euler-Bernoulli beam theory

This theory is the most basic theory for beams. To derive the equation of mo-
tion for a beam that is slender, a small piece of the beam will be analysed.

The rotation of cross sections of the beam is neglected compared to the trans-
lation. In addition, the angular distortion due to shear is considered negligible
compared to the bending deformation.

The transverse displacement of the centerline of the beam is given by w, the
displacement components of any points in the cross section, when plane sections
remain plane and normal to the centerline, are given by

u = −z ∂w(x, t)

∂x
v = 0 w = w(x, t). (3.1)

This can be seen from the following figure:

Figure 1: Deformed beam

Where it is assumed that the displacements are small, such that tanα ≈ α.
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The component of strain and stress corresponding to this displacement field are
given by:

εxx =
∂u

∂x
= −z ∂

2w

∂x2
εyy = εzz = εxy = εyz = εzx = 0,

σxx = −Ez∂
2w

∂x2
σyy = σzz = σxy = σyz = σzx = 0.

(3.2)

The strain energy of the system can be expressed as

π =
1

2

∫∫∫
V

(σxxεxx + σyyεyy + σzzεzz + σxyεxy + σyzεyz + σzxεzx)dV

=
1

2

l∫
0

EI

(
∂2w

∂x2

)2

dx. (3.3)

Here I denotes the area moment of inertia of the cross section of the beam about
the y axis, which stands orthogonal on the x and z axis in Figure 1

I = Iy =

∫∫
A

z2dA. (3.4)

More information about the strain energy can be found in the Appendix.

The kinetic energy T of the beam is given by

T =
1

2

l∫
0

∫∫
A

ρ

(
∂w

∂t

)2

dAdx =
1

2

l∫
0

ρA

(
∂w

∂t

)2

dx. (3.5)

The work done by the transverse load f(x, t) is given by

W =

l∫
0

f(x, t)w(x, t)dx. (3.6)

Thus, Hamilton’s principle states that:

δ

t2∫
t1

(π − T −W )dt = 0, (3.7)

where δ is the variation between two moments of time t1 and t2. Detailed in-
formation about the Hamilton Principle can be found in the Appendix.
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Making use of the defined variables, this is rewritten to

δ

t2∫
t1

1

2

l∫
0

EI

(
∂2w

∂x2

)2

dx− 1

2

l∫
0

ρA

(
∂w

∂t

)2

dx−
l∫

0

f(x, t)w(x, t)dx

 dt = 0.

(3.8)
Thus the generalized Hamilton’s principle gives1

δ

t2∫
t1

(π − T −W )dt =

t2∫
t1

{
EI

∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣l
0

− ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣l
0

 dt+


l∫

0

[
∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρA

∂2w

∂t2
− f

]
δwdx

 dt.(3.9)

From this the transverse vibration beam equation can be obtained, together
with the boundary conditions

∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρA

∂2w

∂t2
= f(x, t), (3.10)

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣l
0

= 0, (3.11)

− ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣l
0

= 0. (3.12)

The first equation describes the motion of a slender beam. Equation (3.12),(3.11)
give the boundary conditions.

Equation (3.11) gives us the options, at x = l:

1. ∂w
∂x = constant, in that way, the variation on w, δ

(
∂w
∂x

)
, equals zero, or

2. EI ∂
2w
∂x2 = 0.

and equation (3.12) gives the following at x = l:

1. w = constant , or

2. − ∂
∂x

(
EI ∂

2w
∂x2

)
.

Any combination between these two sets of boundary conditions will result in a
solvable problem at x = l.

The same applies at x = 0. Since the problem is a fourth order problem, there
are also four boundary conditions needed. So there are two boundary conditions
needed at x = l and two at x = 0.

1derivation can be found in the appendix.
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3.2 Rayleigh beam theory

The second theory that we will consider is Rayleigh’s theory. In this theory
the inertia due to the axial displacement of the beam is included. This effect is
called rotary inertia.
The reason is that since the cross section remains plane during motion, the axial
motion of points located in any cross section undergoes rotary motion about the

y axis. Using u = −z
(
∂w

∂x

)
, see (3.1) from the Euler-Bernoulli derivation, the

axial velocity is given by:
∂u

∂t
= −z ∂

2w

∂t∂x
, (3.13)

and hence the kinetic energy associated with the axial motion is given by:

Ta =
1

2

l∫
0

∫∫
A

ρ

(
∂u

∂t

)2

dAdx =
1

2

l∫
0

∫∫
A

z2dA

 ρ

(
∂2w

∂t∂x

)
dx =

=
1

2

l∫
0

ρI

(
∂2w

∂t∂x

)2

dx. (3.14)

The term associated with Ta in Hamilton’s principle can be evaluated as

Ia = δ

t2∫
t1

Tadt = δ

t2∫
t1

1

2

l∫
0

ρI

(
∂2w

∂t∂x

)2

dxdt =

=

t2∫
t1

l∫
0

ρI
∂2w

∂t∂x
δ

(
∂2w

∂t∂x

)
dxdt. (3.15)

Using integration by parts with respect to time, (3.15) gives

Ia = −
t2∫
t1

l∫
0

ρI
∂3w

∂t2∂x
δ

(
∂w

∂x

)
dxdt. (3.16)

Using integration by parts with respect to x of (3.16) yields

Ia =

t2∫
t1

[
−ρI ∂3w

∂t2∂x
δw

∣∣∣∣l
0

+

l∫
0

∂

∂x

(
ρI

∂3w

∂t2∂x

)
δwdx

 dt. (3.17)

Because the theory of Rayleigh is an extention of the Euler-Bernoulli theory,
the energy term Ia can be used in the derivation of the Euler-Bernoulli theorem.
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To get the equation of motion of a beam with rotary inertia, e.g. Rayleigh’s
theory, add −Ia to the equation of (3.9). Which results in

∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
ρI

∂3w

∂t2∂x

)
+ ρA

∂2w

∂t2
= f(x, t), (3.18)

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣l
0

−
[
∂

∂x

(
EI

∂2w

∂x2

)
− ρI ∂3w

∂t2∂x

]
δw

∣∣∣∣l
0

= 0. (3.19)

For a uniform beam, the equation of motion and the boundary conditions can
be expressed as

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI ∂4w

∂t2∂2x
= f(x, t), (3.20)

EI
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣l
0

= 0, (3.21)

(
EI

∂3w

∂x3
− ρI ∂3w

∂t2∂x

)
δw

∣∣∣∣l
0

= 0. (3.22)

The boundary conditions are dealt with in the same way as with the Euler-
Bernoulli beam theory. Further, remark that when the rotary inertia is neglected
the original Euler-Bernoulli theorem remains.
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3.3 Timoshenko beam theory

The effect of shear deformation, in addition to the effect of rotary inertia, is con-
sidered in this theory. To include the effect of shear deformation, first consider
a beam undergoing only shear deformation as indicated in Figure 2:

Figure 2: Shear deformation

Here a vertical section, such as PQ, before deformation remains vertical (P’Q’)
after deformation but moves by a distance w in the z direction. Thus, the
components of displacement of a point in the beam are given by:

u = 0 v = 0 w = w(x, t). (3.23)

The components of strain can be found as:

εxx =
∂u

∂x
= 0 εyy =

∂v

∂y
= 0

εzz =
∂w

∂z
= 0

εxy =
∂u

∂y
+
∂v

∂x
= 0 εyz =

∂v

∂z
+
∂w

∂y
= 0

εzx =
∂u

∂z
+
∂w

∂x
=
∂w

∂x
(3.24)

The shear strain εzx is the same as the rotation β(x, t) = ∂w
∂x experienced by

any fiber located parallel to the centerline of the beam, as shown in figure 2.
The components of stress corresponding to the strains indicated by (3.24) are
given by:

σxx = σyy = σzz = σxy = σyz = 0, σzx = σzx = G
∂w

∂x
. (3.25)
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Equation (3.25) states that the shear stress σzx is the same (uniform) at every
point in the cross section of the beam. Since this is not true in reality, Timo-
shenko used a constant k, known as the shear correction factor, in the expression
for σzx as:

σzx = kG
∂w

∂x
.

The total transverse displacement of the centerline of the beam is given by (see
figure 4):

w = ws + wb, (3.26)

Figure 3: Shear deformation

Figure 4: Rotary deformation and total deformation

and hence the total slope of the deflected centerline of the beam is approximated
by:

∂w

∂x
=
∂ws
∂x

+
∂wb
∂x

. (3.27)

Since the cross section of the beam undergoes rotation due only to bending, the
rotation of the cross section can be expressed as:

φ =
∂wb
∂x

=
∂w

∂x
− ∂ws

∂x
=
∂w

∂x
− β, (3.28)

where β =
∂ws
∂x

is the shear deformation or shear angle. An element of fiber

located at a distance z from the centerline undergoes axial displacement due
only to the rotation of the cross section (shear deformation does not cause any
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axial displacement), and hence the components of displacement can be expressed
as:

u = −z
(
∂w

∂x
− β

)
= −zφ(x, t), v = 0, w = w(x, t). (3.29)

Thus now we have added the equations for the motion of a particle under shear
and bending deformation. Because of that, the stress- and strain components
will be different. These will change in the following way:

εxx =
∂u

∂x
= −z ∂φ

∂x
,

εyy =
∂v

∂y
= 0 εzz =

∂w

∂z
= 0,

εxy =
∂u

∂y
+
∂v

∂x
= 0,

εyz =
∂v

∂z
+
∂w

∂y
= 0,

εzx =
∂u

∂z
+
∂w

∂x
= −φ+

∂w

∂x
.

(3.30)

The components of stress corresponding to the strains of (3.30) are given by

σxx = −Ez∂φ
∂x
,

σzx = kG

(
∂w

∂x
− φ

)
,

σyy = σzz = σxy = σyz = 0. (3.31)

Thus the strain energy of the beam can be determined as

π =
1

2

∫∫∫
V

(σxxεxx + σyyεyy + σzzεzz + σxyεxy + σyzεyz + σzxεzx)dV =

=
1

2

l∫
0

∫∫
A

[
Ez2(

∂φ

∂x
)2 + kG(

∂φ

∂x
− φ)2

]
dAdx =

=
1

2

l∫
0

[
EI

(
∂φ

∂x

)2

+ kAG

(
∂φ

∂x
− φ

)2
]
dx.(3.32)

The kinetic energy of the beam, including rotary inertia, is given by

T =
1

2

l∫
0

[
ρA

(
∂w

∂t

)2

+ ρI

(
∂φ

∂t

)2
]
dx. (3.33)
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The work done by the external distributed load f(x, t) is given by

W =

l∫
0

f(x, t)w(x, t)dx. (3.34)

Application of the extended Hamilton’s principle gives

δ

t2∫
t1

(π − T −W )dt = 0.

when substituting the strain- and kinetic energy and the work done, will result
in

t2∫
t1


l∫

0

[
EI

∂φ

∂x
δ

(
∂φ

∂x

)
+ kAG

(
∂φ

∂x
− φ

)
δ

(
∂w

∂x

)
− kAG

(
∂w

∂x
− φ

)
δφ

]
dx

−
l∫

0

[
ρA

∂w

∂t
δ

(
∂w

∂t

)
+ ρI

∂φ

∂t
δ

(
∂φ

∂t

)]
dx−

l∫
0

fδwdx

 dt = 0 (3.35)

The integrals in (3.35) can be evaluated using integration by parts (with respect
to x or t). This work is quite cumbersome and will be left for the Appendix. In
the end the following differential equations of motions are derived for w and φ:

− ∂

∂x

[
kAG

(
∂w

∂x
− φ

)]
+ ρA

∂2w

∂t2
= f(x, t)

− ∂

∂x

(
EI

∂φ

∂x

)
− kAG

(
∂w

∂x
− φ

)
+ ρI

∂2φ

∂t2
= 0

(3.36)

With these boundary conditions

kAG

(
∂w

∂x
− φ

)
δw

∣∣∣∣l
0

= 0, (3.37)

EI
∂φ

∂x
δφ

∣∣∣∣l
0

= 0. (3.38)

When assuming that the beam is uniform, then the set of formulas (3.36) be-
come:

∂φ

∂x
=
∂2w

∂x2
− ρ

kG

∂2w

∂t2
+

f

kAG
, (3.39)

−EI ∂
2φ

∂x2
− kAG∂w

∂x
+ kAGφ+ ρI

∂2φ

∂t2
= 0. (3.40)
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Modifying these equations results in

ρA
∂2w

∂t2
= kAG(

∂2w

∂x2
− ∂φ

∂x
) + f (3.41)

ρI
∂2φ

∂t2
= EI

∂2φ

∂x2
+ kAG(

∂w

∂x
− φ) (3.42)

From this form it is easy to see what these equations mean. The first one de-
scribes the forces that act on the beam, the second one makes clear what affects
the angle of the beam.

Although this form is quite convenient, it is still a coupled system which could
be simplified. This can be done by differentiating (3.40) with respect to x. Then

a term

(
∂φ

∂x

)
appears and equation (3.39) can be used.

−EI ∂
2

∂x2

(
∂φ

∂x

)
− kAG∂w

∂x
+ kAGφ+ ρI

∂2

∂t2

(
∂φ

∂x

)
= 0. (3.43)

Which leads to

EI
∂4w

∂x4
+ρA

∂2w

∂t2
−ρI

(
1 +

E

kG

)
∂4w

∂t2∂x2
+
ρ2I

kG

∂4w

∂t4
+
EI

kAG

∂2f

∂x2
− ρI

kAG

∂2f

∂t2
−f = 0

(3.44)
When analysis free vibrations then f(x, t) = 0, thus (3.44) reduces to

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

(
1 +

E

kG

)
∂4w

∂t2∂x2
+
ρ2I

kG

∂4w

∂t4
= 0 (3.45)

The terms in this formula are not that trivial at first sight. Therefore all terms
will be discussed:

• EI ∂
4w

∂x4
+ ρAwtt,

– this term is also present in the Euler-Bernoulli theory;

• −ρI ∂
2w

∂t2
,

– this term denotes the effect of rotary inertia, this comes from the
Rayleigh theory;

• − E

kG

∂4w

∂t2∂x2
+
ρ2I

kG

∂4w

∂t4

– The last two terms with the factor involving kG in the denominator,
represent the influence of shear deformation.

– The last term involves the fourth order derivative to the time. Rotary
inertia is eliminated by setting terms containing ρI equal to zero (but
not EIρ). Shear flexibility is eliminated by letting G → ∞. Thus,
this last term is a coupling term which exists only if both effects are
present.[5, p. 154]
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4 Separation of variables

4.1 Timoshenko beam theory

In this section the general solution of the Timoshenko beam theory will be
derived:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

(
1 +

E

kG

)
∂4w

∂t2∂x2
+
ρ2I

kG

∂4w

∂t4
= 0. (4.1)

The method of separation will be used by setting w(x, t) = X(x)T (t).

The method of separation can also be used with the equations (3.39) and (3.40),
where the external force f ≡ 0.
By defining w(x, t) = X(x)T (t) and φ(x, t) = Y (x)T (t) the following equations
are obtained

d2X

dx2
(x) + a1X(x)− dY

dx
(x) = 0, (4.2)

d2Y

dx2
(x) + a2Y (x) + a3

dX

dx
(x) = 0, (4.3)

d2T

dt2
(t) + λT (t) = 0, (4.4)

a1 =
λρ

kG
, a2 =

ρλ

E
− a3, a3 =

kAG

EI
.

Here the external force f(x, t), that is present in (3.39) and (3.40), is already set
to zero to simplify the equations. The factor λ is the separation factor, which
will be larger than zero. This is done so that the time factor T (t) in the solution
w(x, t) will be an oscilliating function.
By displaying the Timoshenko theory in this way, the spatial factor Y (x) of the
bending function φ(x, t) can be written as a function of X(x)

Y (x) = − 1

a3

[
d3X

dx3
(x) + (a1 + a3)

dX

dx
(x)

]
. (4.5)

This is very convenient when dealing with a damped boundary condition later.

For now equation (4.1) will be used. Substituting w(x, t) = X(x)T (t) in this
equation gives

EI
d4X

dx4
T + ρA

d2T

dt2
X − ρI

(
1 +

E

kG

)
d2T

dt2
d2X

dx2
+
ρ2I

kG

d4T

dt4
X = 0. (4.6)

Dividing by X(x)T (t) will simplify the formula, resulting in

EI d4X
dx4

X
+
ρAd2T

dt2

T
−
ρI
(
1 + E

kG

)
d2T
dt2

d2X
dx2

TX
+

ρ2I
kG

d4T
dt4

T
= 0. (4.7)
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The mixed derivative term is causing trouble. By differentiating the equation
with respect to x, the terms depended on time can be separated.

d

dx

(
EI d4X

dx4

X

)
+

d

dx

(
ρAd2T

dt2

T

)
− d

dx

(
ρI
(
1 + E

kG

)
d2T
dt2

d2X
dx2

TX

)
+

d

dx

(
ρ2I
kG

d4T
dt4

T

)
= 0,

(4.8)

d

dx

(
EI d4X

dx4

X

)
− d

dx

(
ρI
(
1 + E

kG

)
d2T
dt2

d2X
dx2

TX

)
= 0, (4.9)

d

dx

(
EI d4X

dx4

X

)
− d

dx

(
ρI
(
1 + E

kG

)
d2X
dx2

X

)
d2T
dt2

T
= 0, (4.10)

d2T
dt2

T
=

d
dx

(
EI d4X

dx4

X

)
d
dx

(
ρI(1+ E

kG ) d2X
dx2

X

) = −λ, (4.11)

d2T

dt2
= −λT (t). (4.12)

This result can be used to remove the mixed partial derivative term. Note that
d4T
dt4 = λ2T (t), which simplifies the separated equation to

EI d4X
dx4

X
− λρA+ λ

ρI
(
1 + E

kG

)
d2X
dx2

X
+ λ2

ρ2I

kG
= 0. (4.13)

Multiply by X(x), divide by EI, rearranging terms will result in

d4X

dx4
+
λρI

EI

(
1 +

E

kG

)
d2X

dx2
+

λ

EI

(
λ
ρ2I

kG
− ρA

)
X = 0. (4.14)
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4.2 Eigenvalue analysis

Assuming that X(x) =
∑4
i=1 cie

rix, this equation will transform to a fourth
order polynomal which we want to solve for r. Since all the powers of r are
even, the substitution r2 = s is made. That way the quadratic formula can be
applied to

s2 + bs+ c = 0⇒ s1 =
−b+

√
∆

2
, s2 =

−b−
√

∆

2
. (4.15)

Where

b =
λρI

(
1 + E

kG

)
EI

,

c =
λ

EI

(
λ
ρ2I

kG
− ρA

)
.

and ∆ = b2 − 4c.

Before proceeding further, remark that the term ∆ can be simplified.

∆ = b2 − 4c =
λ2ρ2I2

(
1 + E

kG

)2
(EI)2

− 4
λ

EI

(
λ
ρ2I

kG
− ρA

)
=

= λ2ρI

(
1− E

kG

)2

+ 4λEA. (4.16)

Define r1 =
√
s1, r2 = −√s1, r3 =

√
s2 and r4 = −√s2.

4.2.1 Real-valued eigenvalues

It is usefull to know how the function X(x) is affected by the value of λ. First,
assume that λ ∈ R and is larger than zero.

It is clear that ∆ > 0 and b > 0 for all values of λ. The root s1 is positive if

√
∆ > b⇒ b2 − 4c > b2 ⇒ −4c > 0.

In order to have 0 > c, λ must satisfy kGA
ρI > λ. It is obvious that the root s1

will be negative if λ > kGA
ρI .

By definition of s2, this root will always be negative if λ > 0 and realvalued.
Therefore, the roots r3 and r4 will be complex-valued which implies that these
can be written as a combination of cos and sin.

Thus when kGA
ρI > λ, then r1, r2 are positive, the function X(x) is

X(x) = C1e
r1x + C2e

−r1x + C3 cos(r3x) + C4 sin(r3x). (4.17)
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When λ > kGA
ρI then all the roots ri are complex, thus

X(x) = C1 cos(r1x) + C2 sin(r1x) + C3 cos(r3x) + C4 sin(r3x). (4.18)

When λ = 0 then the differential equation d3X
dx3 = 0 has to be solved. The

solution for this is

X(x) =
1

6
c1x

3 +
1

2
c2x

2 + c3x+ c4. (4.19)

4.2.2 Complex-valued eigenvalues

When the eigenvalues are complex, then the square root over an complex number
has to be calculated. This is defined as

√
i =

√
2

2
(1 + i).

Thus the result of the square root of a complex number, is still a complex
number.
In the previous situation, all roots ri were also complex-valued which gives us,
in most cases, the same version of X(x). Since it could happen that one complex
value of λ cancels out all the complex part.

First assume that this situation is possible. Defining λ = α + βi and setting

α = − 2EA

ρI
(
1− E

kG

)2 , then the square root
√

∆ will have no complex part.

Since ∆ has no complex part left, it has to be negative, such that it becomes
pure imaginairy. This is because the other term in the root si, b, will always
have a complex part which needs to be cancelled out by the complex part of

√
∆.

With the assumption on α and for β the assumption
−4E2A2k4G4

(ρ2I2β2(−kG+ E)4)
> β,

the term
√

∆ is now pure imaginairy and has to cancel out with the term

Im(b) =
βρI(1 + E

kG )

EI
.

But remark that the assumption on β makes it less than zero. Which is not
desired, since λ > 0. Thus there is no complex value of λ such that s1 or s2
becomes positive real-valued.

Thus if λ is complex then the general solution will always be of the form

X(x) = D1 cos(r1x) +D2 sin(r1x) +D3 cos(r3x) +D4 sin(r3x). (4.20)
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5 Damped boundary condition

The type of boundary affects the shape of the solution. Here are some boundary
conditions that can occur

• clamped/fixed end(s)

• pinned/hinged end(s)

• free end(s)

• damped end(s)

under all condition different mathematical restrictions are applied. In this sec-
tion the restrictions for a damped cantileverd beam will be considered. For
completeness there is a mass attached to both ends [7]. The damped boundary
is located at x = l, the boundary conditions for that point are given by

m

(
∂2w

∂t2
(l, t)

)2

= −F (l, t)− α1
∂w

∂t
(l, t), (5.1)

Im

(
∂2φ

∂t2
(l, t)

)2

= −M(l, t)− β1
∂φ

∂t
(l, t). (5.2)

Here m and Im represent the mass and area moment of inertia of m respectively.
The factors α1 and β1 respresent the damping constants, which are nonnegative.

The shear force is defined as F (x, t) = kAG(∂w∂x (x, t) − φ(x, t)), the moment is

M(x, t) = EI ∂φ∂x , where k is the shear coefficient.

The boundary at the point x = 0, where the beam is clamped, is given by

w(x, t) = 0, (5.3)

∂w

∂x
(x, t) = 0. (5.4)

In order to use these boundary conditions to solve the system, separation of
variables must be used on these conditions. Therefore, set w(x, t) = X(x)T (t)
and φ(x, t) = Y (x)T (t), then the boundary conditions result in

m

(
X(l)

d2T

dt2
(t)

)2

= −kAG
(

dX

dx
(l)T (t)− Y (l)T (t)

)
− α1X(l)

dT

dt
(t), (5.5)

Im

(
Y (l)

d2T

dt2

)2

= −EI dY

dx
(l)T (t)− β1Y (l)

dT

dt
(t), (5.6)

X(0) = 0, (5.7)

dX

dx
(0) = 0. (5.8)
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As defined earlier, Y (x) = − 1
a2

[
d3X
dx3 + (a1 + a3)dX

dx

]
. Using this in the bound-

ary conditions will make sure that everything is in terms of X(x).

Letting the mass m tend to zero will simplify the boundary conditions, but the
difficulty lies in the fact that there is a dependency on T (t). When the terms
are reorganized and a new separation constant C is introduced. Eventually, the
following boundary conditions apply

kAG

α1

(
dX

dx
(l)− Y (l)

)
+ CX(l) = 0, (5.9)

EI
dY

dx
(l) + Cβ1Y (l) = 0, (5.10)

dX

dx
(0) = 0, (5.11)

X(0) = 0. (5.12)

where T (t) has to satisfy
dT

dt
(t) = CT (t).

Remark that dT
dt = CT ⇒ d2T

dt2 = C dT
dt = C2T and that d2T

dt2 = −λT . Thus
C2 = −λ. Which results in C ∈ C

The way in which the boundary conditions will be implemented are as followed

kAG

(
1

a2

d3X

dx3
(l) + (1 +

a1 + a3
a2

)
dX

dx
(l)

)
+ α1

√
−λX(l) = 0,(5.13)

−
√
−λβ1

a2

d3X

dx3
(l) + EI

d2X

dx2
(l)−

√
−λβ1

a1 + a3
a2

dX

dx
(l) + a1EIX(l) = 0,(5.14)

dX

dx
(0) = 0,(5.15)

X(0) = 0.(5.16)
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6 Specific beam

In this section the unknown material constants will be given the following value

1. E = 207 · 109 Pa

2. I = 1
12 (0, 05) · (0, 15)3 = 14, 063 · 10−6 m4

3. G = 79, 3 · 109 Pa

4. ρ = 76, 5 · 103 N/m3

5. k = 5
6

6. A = 0, 05 · 0, 15 = 0, 0075 m2

7. L = 1 m

These values were found in [1, p. 379]. With these values the Timoshenko beam
theory can be explicitly analysed, especially the eigenvalues.
The Timoshenko beam will be analysed in two different situations. One with a
clamped and a free end and one with, in addition, a damped boundary. With
the given values, the Timoshenko beam equation becomes

2, 911041·106
∂4w

∂x4
+573, 75

∂2w

∂t2
−4, 445725727

∂4w

∂2x∂2t
+1, 245400127·10−6

∂4w

∂t4
= 0

(6.1)
After seperation of variables, substituting X(x) = erx and r2 = s into those
equations will result in

s2 + 1, 527194473 · 10−6λs+ 4, 278195076 · 10−13λ2 − 1, 970944414 · 10−4λ = 0.
(6.2)

In which s can be solved and thus the general solution of X(x) can be deter-
mined.

X(x) = er1x + er2x + er3x + er4x (6.3)

where

r1(λ) = 1·10−13
√
−7.635972 · 1019λ+ 10 ·

√
1.552612 · 1037λ2 + 1.970944 · 1046λ,

r2(λ) = −r1(λ),

r3(λ) = 1·10−13
√
−7.635972 · 1019λ− 10 ·

√
1.552612 · 1037λ2 + 1.970944 · 1046λ,

r4(λ) = −r3(λ).
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The relation between r1, r2 and r3, r4 is quite obvious. But could there also be
a relation between r1 and r3? The reason to investigate this is to simplify the
matrix that is obtained after introducing the boundary conditions.

Since the eigenvalues are assumed to be positive, the following graphs shows the
result of r1 and r3 from λ ∈ [1; 5 · 108]

Figure 5: values of r1, r3 with positive real lambda’s

Remark here that r3 is fully imaginairy.

22



The following situation that can occur is that λ is fully imaginairy. In that case
the next figure shows the relation between r1 and r3

Figure 6: values of r1, r3 with pure positive complex lambda’s

Notice how r1 and r3 converge to eachother. But this does not mean that there
is a value λ0 such that r1(λ0) = r3(λ0). They do obtain the same value at some
point, but not on the same time.

In conclussion, for real/complex positive eigenvalues there is no connection be-
tween the two roots r1 and r3.
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6.1 Boundary - Cantilevered

Before the damping is attached to the beam, the beam will have one end free
and one clamped. Investigating this situation will be usefull when the damped
beam is analysed. If the damping coefficient is neglected with the damped beam,
then the solution must be exactly the same as with the clamped/free-end.

The boundary conditions for the clamped/free-end beam are given by [9]

w(0, t) = 0, ∂φ
∂x (l, t) = 0,

φ(0, t) = 0, 1
L
∂w
∂x (l, t)− φ(l, t) = 0.

Set w(x, t) = X(x)T (t), φ(x, t) = Y (x)T (t) and substituting the function (4.5),
X(x) must satisfy

X(0) = 0, d2X
dx2 (l) + a1X(l) = 0,

d3X
dx3 (0) + (a1 + a3)dX

dx (0) = 0, d3X
dx3 (l) + (a1 + a2 + a3)dX

dx (l) = 0.

Substituting the functionX(x) in the boundary conditions will result in a system
with unknowns c1, c2, c3, c4 and λ. Since this is a linear problem, this will be
written in matrix form


1 1 1 m1

r31 + r1a1 + r1a3 −r1a1 − r1a3 − r31 r33 + r3a1 + r3a3 m2

r1e
r1(a1 + a2 + a3 + r21) −r1e−r1(a1 + a2 + a3 + r12) r3e

r3(r23 + a1 + a2 + a3) m3

er1(r21 + a1) e−r1(r21 + a1) er3(r23 + a1) m4



c1
c2
c3
c4

 =


0
0
0
0

 .
(6.4)

m1 = 1 m2 = −r3a1 − r3a3 − r33
m3 = −r3e−r3(r23 + a1 + a2 + a3) m4 = e−r3(r23 + a1)

Where r1 and r3 are the roots of equation (6.2). The constants a1, a2 and a3
are determined by the properties of the material, the values of these are in this
case given by

a1 = 1.164444 · 10−7λ a2 = 3.742857 · 10−8λ− 602.678571

a3 = 602.678571 a1 + a2 + a3 = 1.538730 · 10−7λ
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In order to obtain a system that is solvable, the determinant of this matrix must
be zero. In order to do this, there are several options

1. Construct this matrix in Maple, then calculate the whole (symbolic) de-
terminant,

2. Construct this matrix in Matlab, then try different values of λ to calculate
the determinant,

3. Choose a value for λ such that one whole row, or column, will be zero,

4. Simplify the determinant by organising all terms and factors and try to
find easier solutions,

In all cases, values for λ will be positive and real-valued. This is due the
boundary conditions, since there is no damping.
The first option gives the following result

Figure 7: Complex plot of the determinant of the matrix

this is obtained by letting Maple do all the work. The figure shows that there
is only one solution for the determinant, that is λ = 0.
The values for lambda range from 1 to 104 in this case. Notice, however, that
the difference between the real and complex values are very large.
To check wether Maple was working properly, the program Matlab was also used
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Figure 8: Complex plot of the determinant of the matrix

Again, the difference between the real and complex values are almost the same
as with the program Maple.
But still there is no non-trivial root found with these methods.

The next method is to find a way to obtain all zero entries in one matrix row
or column. By inspection it is obvious that it is not possible to obtain a zero
column. Since there is always a 1 on the first row.

But could it be possible to obtain one row with zeros? One of the following
system of equations needs to be solved

r1 = 0 and r3 = 0 (6.5)

r21 + a1 = 0 and r23 + a1 = 0, or (6.6)

a1 + a2 + a3 + r21 = 0 and a1 + a2 + a3 + r23 = 0, or (6.7)

r21 + a1 + a3 = 0 and r23 + a1 + a3 = 0. (6.8)

The first option is possible, but then a very trivial solution has been obtained.
The other three options do not have a solution either. Because r1 = h1 +

√
h2

and r3 = h1 −
√
h2. When analysing the second option, this means that the

following equation has to be satisfied

2h1 + 2a1 +
√
h2 −

√
h2 = 0⇒ h1 + a1 = 0.

Because both h1 and a1 only have one factor λ, the only solution that is availible
is λ = 0. This situation also applies to the last two options.
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The last method to try and solve this determinant is to organise the whole de-
terminant in a simpler form. This has been tried, but failed aswell. Eventually
there was a simpler form for the determinant, but this did not help to find a
solution for lambda.

6.1.1 Boundary - Cantileverd and Damped

In this section the damping is attached to the free end of the boundary. Thus
the following system needs to be solved

X(x) = D1 cos(r1x) +D2 sin(r1x) +D3 cos(r3x) +D4 sin(r3x). (6.9)

Subject to

kAG

(
1

a2

d3X

dx3
(l) + (1 +

a1 + a3
a2

)
dX

dx
(l)

)
+ α1

√
−λX(l) = 0(6.10)

−
√
−λβ1

a2

d3X

dx3
(l) + EI

d2X

dx2
(l)−

√
−λβ1

a1 + a3
a2

dX

dx
(l) + a1EIX(l) = 0(6.11)

dX

dx
(0) = 0(6.12)

X(0) = 0(6.13)

The mathematical details of the damped boundary is already treated in a pre-
vious section. Writing the boundary conditions in matrix form, a matrix depen-
dend on λ is obtained. Just like before, the determinant of this system needs to
be zero.

Again, the same problem arrises... Which totally blocked the way this report
was going..
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7 Conclussion

After several months of working on this report, the obtained result is not what
I expected. I can come up with much reasons why I could not obtain the result
I wanted. But in the end I think I am just not good enough to reach my goals.

What I wanted is to learn how the beam theories were made up. Followed by
choosing the right boundary conditions. The next stop was to solve this deter-
minant, such that the frequencies can be determined and the PDE can be solved.

The next step for me was to apply the damped boundary condition and after
that an external force. With this system I wanted to have some function for the
external force that should represent the weather conditions rain and wind.

With that I could variate the damping in such a way that the beam would not
begin to resonate. The whole time the beam would be un-tensioned. In the end
the term for a tensioned beam would be added.

But this whole idea stopped when I was not able to solve the determinant. Until
today I still have no idea how to fix this, while others seem to have figured it
out, I just could not find out how.

I really am ashamed that I do not have the results I wanted. But apparently
research does not always the way you want.
One last thing is that I have truely learned much during this project, but I still
need to learn a lot more.
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8 Appendix

8.1 Real valued constants

To confirm that these values are realistic in the section with the special beam.
Looking around on the internet the following values of some materials were
found

Density(kg/m3) Shear modulus(Pa) Elasticity modulus(Pa)
aluminium 2700 25, 5 69
copper 8940 44, 7 103− 124
steel 7750− 8050 79, 3 210

8.2 Shear stress correction factor k

In the derivation of Timoshenko’s theorem there has been assumed that the
shear stress σzx is not the same at every point in the cross section of the beam.
For this a constant k is used, such that: σzx = kG∂w

∂x .

This constant k is called the shear stress correction factor. In recent decades,
considerable study of this coefficient has been made. A summary of some of
the various methods developed for selecting k may be found in the article by
Cowper [6]. He also developed a procedure for determining values of k for low
frequency vibrations which are quite consistent with the static, 3-dimensional
theory of elasticity. Some of his results are summarized in the following table

shape k

Rectangle plaatje 10(1+ν)
12+11ν

Circle plaatje 6(1+ν)
7+6ν

Hollow circle plaatje 6(1+ν)(1+m2)2

(7+6ν)(1+m2)2+(20+12ν)m2

Ellipse plaatje 12(1+ν)n2(3n2+1)2

(40+37ν)n4+(16+10ν)n2+ν

Semicircle plaatje (1+ν)
1.305+1.273ν

Thin-walled circular tube plaatje 2(1+ν)
4+3ν

Thin-walled square tube plaatje 20(1+ν)
48+39ν

Table 1: Shear stress correction factors k according to Cowper[6]

where m = b\a, n = a/b and ν is Poisson’s ratio.
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8.3 Potential Energy

The potential energy of an elastic body (U) is defined as

U = π −WP , (8.1)

where π is the strain energy and WP is the work done on the body by the
external forces (−WP is also called the potential energy of the applied loads).
If the potential energy is expressed in terms of the displacement components
u, v, and w, the principle of minimum potential energy gives, at the equilibrium
state,

δU(u, v, w) = δπ(u, v, w)− δWP (u, v, w) = 0. (8.2)

Where the variation is to be taken with respect to the displacement in (8.2),
while the forces and stresses are assumed constant. The strain energy of a linear
elastic body is given by:

π =
1

2

∫∫∫
V

~εT~σdV (8.3)

where ~εT is the transposed strain vector, ~σ the stress vector and V is the volume
of the body. By using the stress-strain relations

~σ = [D]~ε (8.4)

where [D] is the elasticity matrix, thus the above equation 8.3 can be expressed
as

π =
1

2

∫∫∫
V

~εT [D]~εdV (8.5)

If there were some initial strains in the problem, equation 8.5 is substracted
with the term 1

2

∫
V

∫∫
~εT [D]~ε0dV .

The work done by the external forces can be expressed as

WP =

∫∫∫
V

~̄φT~udV +

∫∫∫
S2

~̄ΦT~udS2 (8.6)

where the vectors are defined as followed:

~̄φ =

 φ̄x
φ̄y
φ̄z

 ~̄Φ =

 Φ̄x
Φ̄y
Φ̄z

 ~u =

 u
v
w


Using 8.5 and 8.6 the potential energy can be expressed as

U(u, v, w) =
1

2

∫∫∫
V

~εT [D](~ε− 2~ε0)dV −
∫∫∫
V

~̄φT~udV −
∫∫∫
S2

~̄ΦT~udS2 (8.7)
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As you can see, the initial strain ~ε0 is implemented. Thus, according to the
principle of minimum potential energy, the displacement field ~u(x, y, z) that
minimizes U and satisfies all the boundary conditions is the one that satisfies
the equilibrium equations. In the principle of minimum potential energy, we
minimize the functional U , and the resulting equations denote the equilibrium
equations while compatibility conditions are satisfied identically.
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8.4 Hamilton’s Principle

For an elastic body in motion, the equation of dynamic equilibrium for an
element of the body can be written, using Cartesian tensor notation, as:

σij,j + φi = ρ
∂2ui
∂t2

i = 1, 2, 3 (8.8)

where ρ is the density of the material, φi is the body force per unit volume
acting along the xi direction, ui is the component of displacement along the xi
direction, the σij,j denotes the stress tensor:

σij =

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 (8.9)

and

σij,j =
∂σi1
∂x1

+
∂σi2
∂x2

+
∂σi3
∂x3

(8.10)

with x1 = x, x2 = y, x3 = z and u1 = u, u2 = v, u3 = w.
The solid body is assumed to have a volume V with a bounding surface S. This
surface is assumed to be composed of two parts S1, S2. Where the displacements
ui are prescribed on S1 and surface forces (tractions) are prescribed on S2.

Now consider a set of virtual displacements δui of the vibrating body which
vanishes over the boundary surface S1, where values of displacements are pre-
scribed, but are arbitrary over the rest of the boundary surface S2, where surface
tractions are prescribed. The virtual work done by the body and surface forces
is given by ∫∫∫

V

φiδuidV +

∫∫
S

ΦiδuidS (8.11)

where Φi indicates the prescribed surface force along the direction ui. Although
the surface integral is expressed over S in equation (8.11), it needs to be inte-
grated only over S2, since δui vanishes over the surfce S1, where the boundary
displacements are prescribed. The surface forces Φi can be represented as

Φi = σijνj ≡
3∑
j=1

σijνj i = 1, 2, 3 (8.12)

where ~ν = [ν1ν2ν3]T is the unit vector along the outward normal of the surface S
with ν1, ν2 and ν3 as its components along the x, y, and z directions, respectively.

By substituting (8.12), the second term of (8.11) can be written as∫∫
S

σijδuiνjdS (8.13)
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Using Gauss’s theorem, expression (8.13) can be rewritten in terms of the volume
integral as∫∫

S

σijδuiνjdS =

∫∫∫
V

(σijδui),jdV =

∫∫∫
V

σij,jδuidV +

∫∫∫
V

σijδui,jdV

(8.14)
Because of the symmetry of the stress tensor, the last term in equation (8.14)
can be written as∫∫∫

V

σijδui, jdV =

∫∫∫
V

σij [
1

2
(δui,j + δuj,i)]dV =

∫∫∫
V

σijδεijdV (8.15)

where εij denotes the strain tensor:

εij =

 ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 =

 εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 (8.16)

In view of the equations of dynamic equilibrium, (8.9), the first integral on the
right hand side of (8.14), can be expressed as∫∫∫

V

σij,jδuidV =

∫∫∫
V

(
ρ
∂2ui
∂t2

− φi
)
δuidV (8.17)

Thus, the second term of expression (8.11) can be written as∫∫
S

ΦiδuidS =

∫∫∫
V

σijδεijdV +

∫∫∫
V

(
ρ
∂2ui
∂t2

− φi
)
δuidV (8.18)

This gives the variational equation of motion∫∫∫
V

σijδεijdV =

∫∫∫
V

(
φi − ρ

∂2ui
∂t2

)
δuidV +

∫∫
S

ΦiδuidS (8.19)

This equation can be stated more concisely by introducing different levels of
restrictions. If the body is perfectly elastic, (8.19) can be stated in terms of the
strain energy density π0 as

δ

∫∫∫
V

π0dV =

∫∫∫
V

(
φi − ρ

∂2ui
∂t2

)
δuidV +

∫∫
S

ΦiδuidS (8.20)

or

δ

∫∫∫
V

(
π0 + ρ

∂2ui
∂t2

δui

)
dV =

∫∫∫
V

φiδuidV +

∫∫
S

ΦiδuidS (8.21)
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If the variations δui are identified with the actual displacements
∂ui
∂t

dt during a

small time interval dt, equation (8.21) states that in an arbitrary time interval,
the sum of the energy of deformation and the kinetic energy increases by an
amount that is equal to the work done by the external forces during the same
time interval.

Treating the virtual displacements δui as functions of time and space not identi-
fied with the actual displacements, the variational equation of motion, equation
(8.20), can be integrated between two arbitrary instants of time t1 and t2 and
we obtain:

t2∫
t1

∫∫∫
V

δπ0dV dt =

t2∫
t1

dt

∫∫∫
V

φiδuidV+

t2∫
t1

dt

∫∫
S

ΦiδuidS−
t2∫
t1

dt

∫∫∫
V

ρ
∂2ui
∂t2

δuidV

(8.22)
Denoting the last term in equation (8.22) as A, inverting the order of integration,
and integrating by parts leads to

A =

∫∫∫
V

= ρ
∂2ui
∂t2

δuidV

∣∣∣∣t2
t1

−
∫∫
V

dV

t2∫
t1

∂ui
∂t

(
ρ
∂δui
∂t

+
∂ρ

∂t
δui

)
dt (8.23)

In most problems, the time rate of change of density of the material, ∂ρ∂t , can be
neglected. Also, we consider δui to be zero at all points of the body at initial
and final time t1 and t2, so that δui(t1) = δui(t2) = 0.

With this information, equation (8.23) can be rewritten as

A = −
t2∫
t1

∫∫
V

ρ
∂ui
∂t

∂δui
∂t

dV dt = −
t2∫
t1

∫∫
V

ρ
∂ui
∂t

δ
∂ui
∂t

dV dt (8.24)

= −
t2∫
t1

δ

∫∫
V

1

2
ρ
∂ui
∂t

∂ui
∂t

dV dt = −
t2∫
t1

δTdt (8.25)

where

T =
1

2

∫∫
V

ρ
∂ui
∂t

∂ui
∂t

dV (8.26)

is the kinetic energy of the vibrating body. Thus equation (8.22) can be ex-
pressed as

t2∫
t1

δ(π − T )dt =

t2∫
t1

∫∫∫
V

φiδuidV dt+

t2∫
t1

∫∫
S

ΦiδuidSdt (8.27)
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where π denotes the total strain energy of the solid body

π =

∫∫∫
V

π0dV (8.28)

If the external forces acting on the body are such that the sum of the integrals on
the right-hand side of equation (8.27) denotes the variation of a single function
W (known as the potential energy of loading), we have∫∫∫

V

φiδuidV +

∫∫
S

ΦiδuidS = −δW (8.29)

Then equation (8.27) can be expressed as

δ

t2∫
t1

Ldt =

t2∫
t1

(π − T +W )dt = 0 (8.30)

where
L = π − T +W (8.31)

is called the Lagrangian function and equation (8.30) is known as Hamilton’s
principle. Note that a negative sign is included, as indicated in equation (8.29),
for the potential energy of loading (W). Hamilton’s principle can be stated in
words as follows:

The time integral of the Lagrangian function between the initial time t1 and the
final time t2 is an extremum for the actual displacements (motion) with respect
to all admissible virtual displacements that vanish throughout the entire time
interval: first, at all points of the body at the instants t1 and t2 , and second,
over the surface S1, where the displacements are prescribed.

Hamilton’s principle can be interpreted in another way by considering the dis-
placements ui(x1, x2, x3, t), i = 1, 2, 3, to constitute a dynamic path in space.
Then Hamilton’s principle states: Among all admissible dynamic paths that
satisfy the prescribed geometric boundary conditions on S1 at all times and the
prescribed conditions at two arbitrary instants of time t1 and t2 at every point
of the body, the actual dynamic path (solution) makes the Lagrangian function
an extremum.
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8.5 Derivation Timoshenko Integral calculations

8.5.1 1

The following was already defined

T =
1

2

l∫
0

[
ρA

(
∂w

∂t

)2

+ ρI

(
∂φ

∂t

)2
]
dx, (8.32)

π =
1

2

l∫
0

[
EI

(
∂φ

∂x

)2

+ kAG

(
∂φ

∂x
− φ

)2
]
dx, (8.33)

W =

l∫
0

f(x, t)w(x, t)dx. (8.34)

All that was left was to calculate the following integral

δ

t2∫
t1

(π − T −W )dt = 0. (8.35)

or the integral

t2∫
t1


l∫

0

[
EI

∂φ

∂x
δ

(
∂φ

∂x

)
+ kAG

(
∂φ

∂x
− φ

)
δ

(
∂w

∂x

)
− kAG

(
∂w

∂x
− φ

)
δφ

]
dx

−
l∫

0

[
ρA

∂w

∂t
δ

(
∂w

∂t

)
+ ρI

∂φ

∂t
δ

(
∂φ

∂t

)]
dx−

l∫
0

fδwdx

 dt = 0 (8.36)

This integral will be evaluated part by part with the help of partial integration
with respect to t and x as stated before

t2∫
t1

l∫
0

EI
∂φ

∂x
δ

(
∂φ

∂x

)
dxdt =

t2∫
t1

EI ∂φ
∂x
δφ

∣∣∣∣l
0

−
l∫

0

∂

∂x

(
EI

∂φ

∂x

)
δφdx

 dt,
(8.37)

t2∫
t1

l∫
0

kAG

(
∂w

∂x
− φ

)
δ

(
∂w

∂x

)
dxdt =

t2∫
t1

kAG (∂w
∂x
− φ

)
δw

∣∣∣∣l
0

−
l∫

0

kAG
∂

∂x

(
∂w

∂x
− φ

)
δwdx

 dt,
(8.38)

−
t2∫
t1

l∫
0

ρA
∂w

∂t
δ

(
∂w

∂t

)
dxdt = −

t2∫
t1

l∫
0

ρA
∂2w

∂t2
δwdxdt, (8.39)
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−
t2∫
t1

l∫
0

ρI
∂φ

∂t
δ

(
∂φ

∂t

)
dxdt = −

t2∫
t1

l∫
0

ρA
∂2φ

∂t2
δφdxdt. (8.40)

Substitution of the equations (8.37)-(8.40) into equation (8.36) will result in the
following

t2∫
t1

{
kAG

(
∂w

∂x
− φ

)
δw

∣∣∣∣l
0

+ EI
∂φ

∂x
δφ

∣∣∣∣l
0

+

+

l∫
0

[
∂

∂x

〈
kAG

(
∂w

∂x
− φ

)〉
+ ρA

∂2w

∂t2
− f

]
δwdx+

+

l∫
0

[
− ∂

∂x

(
EI

∂φ

∂x

)
− kAG

(
∂w

∂x
− φ

)
+ ρI

∂2φ

∂t2

]
δφdx

 dt = 0 (8.41)

From this the boundary conditions and differential equations for w and φ can
be determined.

− ∂

∂x

[
kAG

∂

∂x

(
∂w

∂x
− φ

)]
+ ρA

∂2w

∂t2
= f(x, t)

− ∂

∂x

(
EI

∂φ

∂t

)
− kAG

(
∂w

∂x
− φ

)
+ ρI

∂2φ

∂t2
= 0

(8.42)

Which is the desired result.

8.5.2 2

The variations in (3.8) can be evaluated using integration by parts. This is done
for each integral with respect to x separately, to obtain for the first integral:

t2∫
t1

l∫
0

EI

(
∂2w

∂x2

)2

dx =

t2∫
t1

[
EI

∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣l
0

− ∂

∂x

(
EI

∂2w

∂x2

)
δw

∣∣∣∣l
0

+

l∫
0

∂2

∂x2

(
EI

∂2w

∂x2

)
δwdx

 dt.
(8.43)

Here integration by parts is used twice, such that the factor
∂2δw

∂x2
disappears

and turns into δw, which is desired since we want the variation in w.
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The second integral

δ

t2∫
t1

 l∫
0

ρA

(
∂w

∂t

)2

dx

 dt,
becomes

=

l∫
0

(
ρA

∂w

∂t
δw

∣∣∣∣l
0

)
dx−

l∫
0

 t2∫
t1

ρA
∂2w

∂t2
δwdt

 dx

= −
t2∫
t1

 l∫
0

ρA
∂2w

∂t2
δwdx

 dt. (8.44)

Note that here the integration by parts is done with respect to time, along with
the fact that δw = 0 at t = t1 and t = t2 to obtain the result of (8.44).

The last integral on which the variations works gives

δ

t2∫
t1

 l∫
0

fwdx

 dt =

t2∫
t1

l∫
0

fδw dxdt. (8.45)

Here the factor δw is already present so there is no need of doing any kind of
integration.
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