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Parameter Estimation for the Jiles–Atherton
Model in Weak Fields
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The purpose of this article is to estimate the parameters of the Jiles–Atherton hysteresis model, based on minor-loop measurement
data in weak applied fields. The well-known hysteresis model by Jiles and Atherton serves as a basis of this article with an extension
for the closure of minor loops. In order to represent minor loops correctly, a dissipative factor is introduced. A methodology to
obtain the initial magnetization of a specimen is defined, based on an expansion in terms of higher order Gaussian functions.
The methodology is implemented within a finite-element method using an interconnection between MATLAB and COMSOL. This
interconnection allows the investigation of potentially large ferromagnetic objects to be calibrated to the proposed ferromagnetic
model in weak fields. The proposed methodology was verified using an original approach. The approach relies on the use of a
sensor array that makes it possible to detect local variations of magnetic properties in steel plates. Material parameters for our
test specimen are successfully obtained by means of experimental data, using the shuffled frog leaping optimization algorithm.
An analysis of the obtained results shows that the calibrated model is able to represent the measurement data accurately.

Index Terms— Dissipative factor, experimental validation, ferromagnetism, hysteresis, initial magnetization, inversion,
Jiles–Atherton model, minor-loop closure, parameter estimation, steel sheets.

I. INTRODUCTION

ACCURATE modeling of ferromagnetic behavior requires
a complete representation of the material hysteresis

properties. Over the past century, a large number of phenom-
enological and mathematical–physical models were presented
to describe this behavior, with various successes. Well-known
examples are the mathematical models by Della Torre [37],
Play & Stop models [3], [28], [29], the hysteresis model pro-
posed by Tellinen [35] and Ziske and Bödrich [44], a simple
formalism that is based on physics-based concepts described
by Jiles and Atherton [17] and Zirka et al. [43], the energy-
variational model by Henrotte and Hameyer [12], François-
Lavet [24], and Prigozhin et al. [30] and simplistic models
such as the hysteresis model by Kachniarz et al. [20]. It is
interesting to note that the Rayleigh model is related to the
Preisach model [14], while the Play & Stop models are a
generalization of the Preisach methodology.

These models each have their own challenges and advan-
tages considering the representation of the model of the nature
of ferromagnetism, numerical stability of implementations
and effective descriptions of parameter estimation algorithms.
All are able to capture a large portion of the nonlinear
ferromagnetic behavior, while for a subset of these models
extensions to temperature, and temporal- and stress-related
effects are known. However, if one analyzes the numerical
stability of the proposed models, it can be observed that, for
example, implementations of the Rayleigh and Jiles–Atherton
model exhibit numerical difficulties, as the magnetic field H
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can change of value rapidly as a response of material to its
magnetizing field. Sophisticated numerical solvers are then
necessary to obtain stable integration of these models by, for
example, incorporating an inner-iterative scheme that stabilizes
the numerical integration. Such an inner-iterative scheme is
also proposed for the energy-variational model [30].

One drawback of the Jiles and Atherton model is that the
model results lead to properties that are not observed in the
experimental data. In the original model, minor loops are not
closed which leads to unfavorable behavior in the hysteresis
curve as the model encounters difficulties in representing a
hysteresis curve. In [1], [4], [7], [8], [15], [17], [22], and [27],
the authors address and discuss possible modifications to the
Jiles and Atherton model to resolve this issue. In contrast,
Preisach modeling, the Play & Stop models and the Energy-
variational model (and others) ensure minor loop closure.

In more detail, the following adjustments have been
proposed to the model of Jiles and Atherton to resolve the
above-mentioned issue. Jiles and Atherton [17] proposed a
modification of the differential equation that describes the
irreversible component of the magnetization, Carpenter [4]
describes scaling factors to ensure closure of minor loops.
Furthermore, in the original paper of Jiles and Atherton [17]
the dependencies of the material parameter k on the magnetiza-
tion are discussed. It seems that taking k constant leads to such
nonclosure behavior too. Leite et al. [27] introduced a slight
modification of the irreversible component of the magnetiza-
tion in order to close minor loops. By introducing a dissipative
factor R in the differential equation that describes irreversible
magnetization, it is possible to properly close minor loops.
In particular, the factor R depends on the magnetic field value
at a reversal point of a minor loop. We will refer to this
modified version of the model by Jiles and Atherton as the
JA+R model, to emphasize the addition of this dissipative

0018-9464 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 03,2020 at 05:58:45 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1258-0092


7300510 IEEE TRANSACTIONS ON MAGNETICS, VOL. 56, NO. 4, APRIL 2020

factor R. This extended hysteresis model will serve as our
choice of the model throughout this article.

In order to find a good fit between measured hysteresis
curves and a hysteresis model, a parameter fit algorithm
is required to find the optimal material parameters. Many
numerical procedures and algorithms have been explored
and proposed [18], [27], [33], [42]. This is a challenging
problem because of the nonlinear nature of hysteresis. It is
common practice to consider the major hysteresis loop for
the determination of the parameters. However, obtaining the
major loop of a specimen requires the application of large
applied field strengths which imposes extra requirements on
the measuring equipment. It is also likely that such procedures
severely limit the size of a specimen that can be investigated.
There are numerous papers concerning parameter estimation,
for example, parameter estimation for JA [1], [10], [11], [27],
[39] and estimation of the parameters of Play & Stop models
[28], [29] in which the authors use slightly minor hysteresis
loop measurement data because of the difficulty in measuring
major hysteresis curves due to either the strong demagnetizing
fields or the required applied field strengths. Among these
papers, optimization algorithms are proposed to find a feasible
set of parameters in the JA model. It has been observed that
the genetic algorithm showed effective applications in finding
these sets of parameters. However, one should be careful with
applying the genetic algorithm, as the convergence may only
be local.

The main contribution of this article is the following. Using
JA+ R, we have developed a methodology that estimates the
material parameters in the JA+ R model based on minor
loop hysteresis curve measurements. This methodology is
applied on large ferromagnetic objects, such as square steel
plates; other geometrical shapes and ferromagnetic materials
are also possible. Furthermore, we assume that the material
parameters are uniform over the domain of the object and
we assume the material is anisotropic (though the proposed
methodology is defined for the general case of inhomogeneous
and anisotropic material). Therefore, only a small number of
material parameters are sought. Based on the measurements
of minor loops, in which we vary the weak background field
in the order of a few hundred microtesla, an estimation of the
material parameters and the dissipative factor is done using a
population-based search algorithm, which searches for a global
optimum.

It is important to note that the current choice of the hystere-
sis model is not a core aspect of this methodology. In principle,
it is possible to use alternative hysteresis models for which
the parameters can be estimated using the same scheme.
The emphasis in the current paper is on the determination
of material parameters in weak fields. All aspects of this
proposed methodology are implemented in the finite-element
software package Comsol Multiphysics and controlled
by MATLAB.

This article has the following structure. In Section II-A,
the methodology used in the proposed formalism is discussed.

In Section II-B, we give the general PDE that describes
the temporal evolution of the magnetization. In Section II-C,
we propose a method to determine the magnetization

distribution based on measurements and a collection of
higher order Gaussian functions. This class of radial basis
functions can be used to describe magnetization globally.
In Section II-D, we define a parameter estimation method
to determine the material properties of a ferromagnetic body.
This parameter estimation method is based on measurement
data of minor loops and the shuffled frog leaping algorithm
(SFLA) [31].

In Section IV, we apply the proposed methodology to
a collection of ferromagnetic specimens to obtain a set of
material parameters for JA + R. This is based on both the
determination of the initial magnetization distribution and
the optimization solver SFLA. We analyze the results and
the behavior of the optimization process.

In Section V, we conclude this article and discuss
future recommendations. The appendixes contain an extra
explanation about the proposed algorithm based on a flowchart
diagram and a table in which values can be found that are used
to bound the search space for the chosen numerical solver.

ASSUMPTIONS

Throughout this article, the following assumptions hold.

1) Uniform background field in the vicinity of the
geometry.

2) Anisotropic material, where tensors are given by
diagonal matrices hence only the principal axes are taken
into account.

3) Homogeneous material, i.e., the material parameters do
not depend on the location inside the geometry. This
assumption reduces the complexity of the problem at
stake significantly.

II. FERROMAGNETIC HYSTERESIS

In this section, a brief recap on the hysteresis model of Jiles
and Atherton is given. For more details, see [2], [17], [27],
[32], and [37]. The main result of this section is an adapted
Jiles and Atherton model, which we call the JA + R model,
that includes both the magneto-mechanical effect up to elastic
deformations and the possibility to close minor loops. Closing
minor loops is essential for an accurate estimation of material
parameters described in Section II-D, based on minor loop
measurements.

The starting point is the definition of the effective field. The
effective field reads

He = H + Hm (1)

where H is the total magnetic field in [ A m−1], Hm = αM
is the Weiss field in [ A m−1], and α is the field parameter.
The magnetization M is due to magnetic domain motion and
is given in [ A m−1]. Note that the total field is considered
inside the material. Therefore, the magnetic field H reads

H = Ha + Hd (2)

where Ha is the applied background field and Hd is the
demagnetizing field. Note that the value of the demagnetizing
field depends on the position within the ferromagnetic body
and follows from finite-element computations [16], [19].
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Fig. 1. Illustration of non-closure of minor loops in the model of Jiles
and Atherton. Here, two minor loops are shown on both the increasing
and decreasing branch of the minor loop. Non-closure of the minor loop is
observed as the endpoint of the minor loop does not coincide with the starting
point of the minor loop.

1) Anhysteretic and (ir)Reversible Magnetization: When a
material starts in the demagnetized state, the ferromagnetic
behavior is described by the anhysteretic magnetization curve.
The anhysteretic magnetization curve in the i th direction reads

(Man(He))i = (Ms )iL
(�He�

ai

)
(He)i

�He� , i ∈ {x, y, z} (3)

where L(x) = coth(x) − 1/x is the Langevin function, (Ms )i

is the saturation magnetization value in [ A m−1] in the i th
direction and ai is a constant in [ A m−1].

The magnetization is considered the sum of a reversible
component Mrev and irreversible component Mirr

M := Mirr + Mrev, Mrev = c(Man − Mirr) (4)

where Mirr and Mrev are in [ A m−1], and c is the domain
rotation loss matrix. Note that when c = I , then M is
completely reversible and Mirr = 0 = 0.

2) Dissipative Factor for Minor-Loop Closure: The
non-closure of minor loops in the model by Jiles and Atherton
is an artifact that shows a lack of resemblance of JA compared
to experimental data. As an example, a hysteresis curve and
two minor loops are shown in Fig. 1, based on JA.

In [27], a dissipative factor is introduced that is used to close
minor loops in the traditional Jiles and Atherton formalism.
Note that the value of the dissipative factor for a minor
loop depends on the amplitude of the corresponding applied
field. The adapted differential equation [2] describing vectorial
behavior of the irreversible magnetization reads

dMirr = [χ−1(Man − RM)dHe]+ (5)

where χ and R are diagonal matrices given by

χ =
⎡
⎣ χ1 0 0

0 χ2 0
0 0 χ3

⎤
⎦ and R =

⎡
⎣ R1 0 0

0 R2 0
0 0 R3

⎤
⎦ . (6)

Here, Ri > 0 are dissipative factors and χi = kiδi where ki is
the pinning parameter in [ A m−1] in the i th direction and δi

is the sign of the slope of the i th component of the effective
field, δi = sign(d(He)i ). Furthermore, [x]+ := max{0, x} is
recognized as the linear activation function.

3) Anisotropic Material: In this article, the simplest case of
anisotropic material is considered, i.e., only along the principal
axes inside the material, behavior may differ. This implies that
the domain rotation loss c and the field parameter α takes on
the following form:

c =
⎡
⎣ c1 0 0

0 c2 0
0 0 c3

⎤
⎦ and α =

⎡
⎣ α1 0 0

0 α2 0
0 0 α3

⎤
⎦ . (7)

Note that the anisotropy assumption is already reflected in the
definitions of χ and R.

A. General Form of PDE for JA + R

Based on the modeling principles discussed in the previous
sections, the JA + R hysteresis model is defined. The general
partial differential equation describing the temporal evolution
of M(t) in time reads

dM
dt

= c
dMan

dt
+ (I − c)

dMirr

dt
(8)

for a given initial magnetization distribution M|t=0 = M0. For
numerical consistency, it is necessary to indicate the value of
δi (t = 0) because the slope of the effective field is unknown
at t = 0. We choose this value based on the right derivative
of the applied field Ha , that is

δi (t = 0) ≡ lim
t↓0

(Ha)i (t) − (Ha)i (0)

t
(9)

where we tacitly assume that this signal is known a priori.
The derivative of Mirr(t) with respect to t follows from (5)

after differentiation with respect to t :

dMirr

dt
=

[
χ−1(Man − RM)

dHe

dt

]+
. (10)

Note that (10) follows easily after applying the chain rule:
dMirr

dt
=

(
∂Mirr

∂He

)
dHe

dt
(11)

to (5) for both cases [x]+ = 0 and [x]+ = x to yield (10).

III. INITIAL MAGNETIZATION DISTRIBUTION M0

1) General Approach: The initial magnetization distribution
is, in general, unknown. In order to find or approximate the
magnetization initially, an inverse problem has to be solved.
Solving inverse problems in magnetostatics is a challenging
task [5], [6], [40], [41], which often requires additional reg-
ularization techniques for stable solutions. However, in the
proposed approach below no regularization is considered.

Defining an inverse problem for finding the magnetization
distribution is typically based on a finite-element method
approach. In such cases, the magnetization is described by
local basis functions. Typical choices for such basis functions
are zeroth order (constant functions) and linear basis functions.
Higher order basis functions are usually avoided because of
their complexity. Another argument is that higher order basis
functions tend to be too smooth and, therefore, fall short in
representing the solution space for M.

Here, we propose a “global approach” for finding M. The
magnetization distribution is described by a collection of
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Fig. 2. Two examples of higher order Gaussian functions, A = 1 and
Px = Py = 1 (left) and A = 1 and Px = Py = 3 (right).

Fig. 3. Example of a distribution of nine 2-D higher order square Gaussian
functions, σx = σy = 0.05, Px = Py = 1.5 and A = 1 for all Gaussian
functions.

higher order Gaussian functions.1 A higher order rectangular
Gaussian function in 2-D with amplitude A ∈ R, center
(xc, yc) and spreads σx , σy > 0 reads

f (x, y)= A exp

⎛
⎝−

(
(x − xc)

2

2σ 2
x

)Px

−
(

(y − yc)
2

2σ 2
y

)Py
⎞
⎠ . (12)

Here, the powers Px and Py are used to control the decay
of the function. Larger values for Px and Py lead to a flat-
top and a rapid Gaussian fall-off to zero. Two examples of
these higher order Gaussian functions are given in Fig. 2.
Notice that in the limit as Px , Py → ∞, higher order Gaussian
functions correspond to basis functions with compact support.
An example of a collection of Gaussian functions is given
in Fig. 3, which can be used to approximate any constant
function defined on a (square) domain. This choice of global
functions also allows us to introduce magnetic anomalies
inside a magnetized object.

2) Determination of M0: In the remainder of this section,
without loss of generality, consider a magnetized plate �.
Furthermore, assume a priori that centers (x, y) ∈ �, spreads
σx , σy > 0 and the powers Px , Py > 0 are fixed for a
collection of Gaussian functions { fi (Ai )}n

i=1. Hence, only the
amplitudes of the Gaussian functions are unknown and can be
chosen freely.

1Finally, recall the following result from Approximation Theory: for a
square interval [0, 1]2 the set of all Gaussian functions is dense in the function
space C([0, 1]2, R). Therefore, any component of a magnetization can be
approximated with arbitrary accuracy by a collection of n Gaussian functions,
for sufficiently large n ∈ N.

The aim is to find the magnetization M of the plate �. This
is done based on measurements of the magnetic induction field
B at sensor locations surrounding the plate.

To that end, observe that a Gaussian function fi (Ai )
describes a magnetization distribution Mi = fi (Ai )ui on �,
where ui is a unit vector. For example, if for all i ≤ n ui = ux ,
then the x-component of the magnetization is sought.

Subsequently, this magnetization produces a magnetic
induction field Bi (Ai ) in sensor locations r1, r2, . . . , rN ∈ �c.
To determine the initial magnetization, the following linear
problem has to be solved:

Â = arg min
A1,A2,...,An∈R

∥∥∥ n∑
i=1

Bi (Ai ) − Bm

∥∥∥2

2
(13)

where Bm is a vector that contains the measured values of the
magnetic field in the sensor locations r1, r2, . . . , rN and Â =
[A1, A2, . . . , An]T is a vector containing the optimal values
for amplitudes A1, A2, . . . , An . Note that the resulting vector
Â depends on the collected measurement data, and the sensor
locations. To find the optimal sensor locations, one should vary
the locations and investigate the sensitivity of the solution and
fit with respect to these variations. However, finding optimal
sensor locations is, in general, a very complex problem.

To obtain acceptable sensor configurations, one can derive
configurations on the basis of minimization of the norm
of the Fisher information matrix (FIM) method [21], [38].
Alternatively, the determinant or the trace of the FIM is also a
possibility. An alternative method is to minimize the expected
Bayesian loss function that uses the inverse of the FIM as
a measure for the quality of the sensor configuration [34].
However, information about the (model) noise is necessary,
which can be hard to obtain.

IV. PARAMETER ESTIMATION OF JA + R

In this section, we discuss the estimation of material para-
meters in the JA + R model. First note that there is a total of
18 parameters that fully define the model, summed up in the
following matrices:

Jiles–Atherton ≡

⎡
⎢⎢⎢⎢⎣

α1 α2 α3
(Ms)1 (Ms )2 (Ms )3

a1 a2 a3
c1 c2 c3
k1 k2 k3

⎤
⎥⎥⎥⎥⎦

Dissipative factor ≡ [
R1 R2 R3

]
(14)

where the parameters in the first, second, and third columns
in (14) correspond to the ferromagnetic behavior in the x-,
y- and z-directions, respectively. In the later part of this
report, we assume for simplicity that the dissipative factors
are constant such that the parameters can be stored in a single
parameter vector, denoted by p ∈ R

18. Indeed, the values of
R1, R2, R3 may vary in the model.

A. Forward Problem

In this section, we define the forward problem that serves
as a foundation for the derivation of the parameter estimation
problem. In particular, the main result in this section is the
definition of Bc[p], which is a vector that consists of computed
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magnetic induction field values at sensor locations for a given
applied magnetic field signal.

Let Ba :[0, tend] → R
3 be an applied background field signal

and let � denote a ferromagnetic object. Furthermore, assume
that the initial magnetization M|t=0 = M0 is known. Given a
fixed set of material parameters for JA + R, the solution to the
forward problem is the magnetic induction field caused by the
magnetization of � at a collection of measurement locations
for t ∈ [0, tend], when the background field signal is applied
to �.

If M = {r1, r2, . . . , rK } denotes a set of K measurement
locations, then Bc(t) ∈ R

3K is a vector that contains the
magnetic induction field at the measurement locations at time
t ∈ [0, tend].

If {t1, t2, . . . , tT } ⊂ [0, tend] denotes a sample of time
instants, then we may form vector Bc[p] ∈ R

3K T by
concatenating the vectors Bc(t1), Bc(t2), . . . , Bc(tT ) at the
corresponding time instances

Bc[p] = Vec(Bc(t1), Bc(t2), . . . , Bc(tT )). (15)

B. Minimization Problem

The idea behind parameter estimation is as follows: based
on a collection of N measured minor loops, with T measure-
ments per loop at K measurement locations, the task is to find
a feasible collection of parameters p̂ ∈ R

18 such that there is
a good fit between the measured minor loops, and the minor
loops computed by the FEM implementation in COMSOL.
To measure the fit, the residual

Res := Bm − Bc[p] (16)

is chosen. Here, the vector Res ∈ R
3K NT is the residual

between the measured minor loops Bm and the computed
values of the minor loop Bc[p] for a given parameter
vector p. If the residual is small, then corresponding parameter
vector p is a feasible solution to the parameter estimation
problem.

To define the minimization problem, we introduce the root
mean square error (RMSE)

J (p) =
√

ResT WRes
n

, n ≡ 3K NT . (17)

The positive-definite diagonal matrix W contains weights that
can be used to control the importance of each measured point
on the minor loop. For example, one should relax the fit near
the tip points of the minor loop, to increase the performance of
the parameter estimation. This is achieved by choosing weights
wii relatively small for tip point measurements, compared to
the weights for other measurements.

C. Solving the Minimization Problem

To find the optimal values that best fit the (measured) data,
a memetic metaheuristic called the SFLA is applied [23]. The
SFLA is a population-based cooperative search inspired by
frogs that work together to find food. The algorithm contains
both elements of local search and global information exchange,
and it is shown to be very efficient for finding traditional Jiles
and Atherton parameters [31].

Fig. 4. Measurement facility “CLAViS” that contains a coil configuration to
change the ambient field in three directions.

Choosing a particular bounded search space increases the
speed of convergence significantly. This is done by choos-
ing suitable boundaries for the unknowns. The minimal and
maximal values for the above-mentioned parameters in the
JA + R model are given in Appendix A. These bounds are
based on successively applying the SFLA to learn the behavior
of the optimization process and the already known material
parameters found in the literature [18], [25], [26], [36].

Finally, in Appendix B a flowchart is shown that describes
the complete parameter estimation procedure based on the
initial magnetization distribution and the SFLA.

V. MEASUREMENT SETUP

In this section, the experimental setup is explained briefly.
A measurement facility is available consisting of a coil con-
figuration and a magnetic sensor array. The rectangular coil
configuration can change the local ambient magnetic field
by imposing a uniform magnetic field in all three directions.
Fig. 4 shows a picture of the coil structure. Inside the cage
the background field can take values of the form:{

Bapp ∈ R
3 : |(Bapp)i | ≤ 400μT for i = x, y, z

}
. (18)

The sensor array consisting of 112 sensors is placed
56 mm below the object. To measure the magnetic field,
HMC5983 Triple Axis Compass magnetometers are
used. Depending on the set gain, the sensor noise is approx-
imately 1 up to 3 μT. A schematic overview of this sensor
array is found in Fig. 5.

VI. EXPERIMENTAL RESULT

In this section, we apply the proposed parameter fit to
steel specimens. The goal is to obtain the material parameters
for JA + R. The assumptions of homogeneity and isotropy
imply that there is no spatial dependence in the material
parameters. Therefore five material parameters are sought, plus
a dissipative factor for each measured minor loop.

A. Specimen Description

In this experiment, four different specimen (I–IV) are
investigated. Each specimen is a square metal plate with sides
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Fig. 5. Schematic overview of the sensor array.

Fig. 6. Steel plate above sensor array.

of 300 mm. Specimens I and III have a thickness of 5 mm, II
and IV have a thickness of 2 mm.

Each plate is placed parallel to the sensor array in the cage
and is measured at a distance of 56 mm above the array. Fig. 6
shows a steel plate within the coil structure on top of the sensor
array.

In the remainder of this section, we take the measurement
and results of specimen I as a guideline. The results of the
other specimen are similar except for specimen III. This is
likely due to the prior deperming procedure applied to this
specimen, which made the initial magnetization distribution
estimation procedure additionally complicated.

B. Measuring a Minor Loop

At the start of a measurement, the background field is set
to 0μT in x-, y-, and z-directions, which is from here on
defined as t1. Then, the background field is varied in the
x-direction for one full period with an amplitude of μT, where
A ∈ {100, 200, 300, 400}. During this period, five distinctive
time instants are defined:

1) tA, the starting point when the background field is 0μT;
2) tB , after the background field has been increased to μT

in x-direction;
3) tC , after the background field is reduced to 0μT;
4) tD , after the background field is set to μT in x-direction;
5) tE , when the background field is increased back to 0μT.

Fig. 7. Scenario: sinusoidal background field of increasing and measurements
at several instances.

Fig. 8. Specimen 1. Top: measured Bx -field at t1. Bottom: corresponding
computed Bx-field based on the initial magnetization distribution estimation.

In total, the experiment consists of measuring four minor loops
subsequently. See Fig. 7 for clarification of the described
scenario. The first measurement (at time t = t1) is used to
determine the initial magnetization distribution M0, and we
refer to Section II-C for more details on this specific routine.

C. Initial Magnetization Determination

First the initial magnetization of specimen I is determined.
The measurement of the magnetic induction field (the
x-component Bx ) of specimen I in zero field at time t = t1
is given in Fig. 8. This is a measurement in which the
background field is canceled by the coil cage.

Applying the method in Section II-C leads to the following
initial magnetization distribution for which the x-component
of the magnetization is given in Fig. 9. Here, the collection
of higher order Gaussian functions is chosen such that the
resulting condition number of the linear problem is low.
This is done by choosing functions that are (almost) linearly
independent. By tuning the values of σx and σy such that
the resulting support of the Gaussian functions is small,
one can achieve such independences. Finally, solving the
linear problem is done using standard Gaussian elimination
(or equivalently using an LU decomposition of the coefficient
matrix).

After solving the linear problem of finding the amplitudes
(Ai )

n
i of the Gaussian functions, the corresponding initial
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TABLE I

JA + R PARAMETERS OBTAINED USING SFLA

Fig. 9. Specimen 1: estimated initial magnetization at time t1. Only the
x-component of the initial magnetization is shown, as this is the dominant
component of the vector field.

magnetization distribution is found and given in Fig. 9. The
erratic behavior that is seen in the initial magnetization distri-
bution is caused by COMSOL when the solution to the linear
problem was imported to COMSOL. COMSOL translates the
continuous magnetization distribution to a discretized version
on a mesh for further finite-element computations.

The resulting computed magnetic induction field for the
obtained initial magnetization distribution is found in Fig. 8.
Compared to the measured field, there is a good agreement.
The difference between the computed and measured values
in terms of the RMSE is sufficiently small, and therefore we
accept the estimation of this initial magnetization distribution.

D. Parameter Estimation Results

Using the initial magnetization distribution from the previ-
ous subsection, the JA + R material properties are obtained
using forward simulations within the SFLA as described in
Section IV-B. The optimal parameter values for all specimen
are found in Table I. In particular, the dissipative factors R for
specimen I for minor loops of amplitude 100, 200, 300, and
400μT are, respectively, R100 = 1.5, R200 = 1.2, R300 = 1.1,
and R400 = 1.0. Note that these values are consistent with the
reasoning in [27], in which it is assumed that the values of R
are decreasing with increasing field strength, and such that R
is bounded below by 1.

It is observed that applying the SFLA multiple times on the
same problem may result in different sets of parameters for
which the functional takes (approximately) the same minimal
value. This implies that based on minor loop measurements
the set of parameters is not unique. A consequence is that
these material parameters cannot be used in the region of
the hysteresis curve outside the 400-μT minor loop, as it is
expected that the hysteresis curve outside this region is poorly
described by the obtained material parameters. Fortunately,
for our applications, this is not a limitation because we stay
within the 400-μT region for a given initial magnetization
distribution.

Fig. 10. Specimen 1: relative error and RMSE.

E. Error Analysis of SFLA Results

The resulting computed magnetic induction field based on
the initial magnetization from Fig. 9 and optimal JA + R
parameters from Table I subjected to a hysteresis loop of
400μT for specimen I is given in Fig. 11. Based on visual
inspection, a good agreement is seen between the measured
fields and the computed fields by the proposed model.

The result of error calculations for the first specimen is
given in Fig. 10. Observe that the relative error is smaller for
larger minor loops. This is explained by the fact that for larger
background fields the hysteresis effects are more pronounced,
such that discrepancies between the measured and computed
fields are relatively small. It can be observed that, as expected,
the relative error becomes rather large when the background
field is zero since the measured fields are much closer to 0μT
than whenever the background field is nonzero. Therefore,
no strong conclusions can be made by interpreting the values
of the relative error.

A better quantity to considering is the RMSE which aver-
ages all absolute errors along the measurement locations.
Observe that this error does not exceed 2μT whenever the
background field is zero. This error is within the sensor noise
level, hence the model represents our measurements very well
in these cases. Unfortunately, there is a large peak in the
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Fig. 11. Specimen 1: measured (left) and computed (right) magnetic
induction field component Bx at tA, tB , . . . , tE for a 400-μT minor loop
measurement. Note that all field components (Bx , By, Bz) are used in the
computations.

RMSE computed during a 400-μT minor loop. A plausible
explanation for this is that an error occurred while doing a
measurement and that the coil configuration did not produce
the correct background field. Similar arguments may hold for
other minor loops, although it is not completely clear if the
larger RMSE is due to malfunctioning of the equipment or due
to the performance of the model.

Note that for measurements in zero background field, there
is a significant discrepancy between the measured and com-
puted magnetic induction field. Nevertheless, there is a good
agreement between the measured and computed 400-μT minor
loop with a maximum RMSE error of 6μT. Overall, the RMSE
is 10% (see Fig. 11) of the average measured field strength
which indicates a good fit.

In general, it is also observed that there is a better agree-
ment between the model and measurements for larger field
strength amplitude. This makes sense since high amplitude
field variations make larger hysteresis effects better visible.
In total, based on error computations we conclude that we
correctly found material parameters for the JA + R model and
our model reproduces the measured data accurate enough.

F. Computational Effort

Finally, we look at the computational effort of SFLA.
The computation time is rather long. For each specimen
there are 1000 evaluations of the forward problem required
within the SFLA to find a good fit. This translates to a total
computation time of approximately 24 h on a high-end CPU.

TABLE II

JA + R PARAMETER BOUNDARIES FOR SFLA

The computational burden is mainly caused by communication
between MATLAB and COMSOL. COMSOL is used to
compute the forward simulations that the SFLA requires in the
optimization problem. However, each evaluation of such a for-
ward simulation requires a fresh call to the COMSOL engine,
which drastically increases the computation time. Indeed,
a more sophisticated implementation of the method reduces
the computation time significantly by integrating SFLA into
COMSOL, so there is no need to rebuild the model every time.

VII. CONCLUSION

This article presented a method to estimate the material
parameters of homogeneous anisotropic material in the Jiles
and Atherton Model framework in weak applied fields. This
estimation is based on both the hysteresis model that we refer
to as JA + R and the optimization algorithm called the SFLA.
Based on a collection of minor loop measurements for steel
plates in weak fields, we have shown that material parameters
of a number of specimen can be obtained at the required
accuracy.

The choice to use only minor loop measurements is not
common and we have shown that it is possible to only use
such measurements with accurate results. This increases the
applicability of material estimation properties, while in other
related work only material parameters are obtained using
major loop measurements. Such measurements are not trivial
and may not be achievable in practice. Therefore, our method
is applicable in finding the material parameters in a more
general setting.

The material parameters that we have found are similar
to values found in the literature for different alloys of steel.
This gives us confidence that our application of the proposed
methodology is correctly performed. Also, it is shown that the
RMSE, whenever the results are compared to the measure-
ments, is small enough. It is further noted that the performance
of the method is better when the initial magnetization is not
too small. Deperming a specimen increased the complexity of
finding material parameters, and therefore this is an important
observation for future experiments.

The first indications show that the obtained values have
some predictive power to model ferromagnetic behavior for
weak fields inside the region that is used to obtain the
parameters. However, more research and measurements are
required to further investigate this predictive power in more
detail, e.g., how to interpret the nonuniqueness of obtained
material parameter set, as different sets are solutions to the
minimization problem as described in Section IV-B.

Future steps are to apply the methodology to experimental
data to obtain the material parameters for the full anisotropic
tensor case. Furthermore, the use of regularization to increase
the robustness of the solutions to the parameter estimation is
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Fig. 12. Algorithm for determination of material parameters. First, measured
data of the magnetic induction field B is loaded into the algorithm. Based on
the initial magnetization distribution, the sensitivity matrix M is created and
M0 is computed. Then the SFLA is used to find the optimal set of material
parameters that fits the measured data in an optimal way.

valuable and must be incorporated in further extensions of the
proposed model. This will reduce the effect of noise to the
solutions. Lastly, the predictive performance of the obtained
parameters is still ongoing research and must be understood
in more detail.

APPENDIX A
TABLE OF JA+R PARAMETER BOUNDARIES FOR SFLA

A set of JA + R parameter boundaries for SFLA are given
in Table II. Recall that using such bounds reduces the compu-
tation time to execute the SFLA and speeds up the convergence
of the algorithm. The values of the boundaries should be

chosen in such a way that one avoids the introduction of bias
in the solution. In this article, the values are based on both
known values from the literature for steel alloys, as mentioned
in Section III-B.

APPENDIX B
PARAMETER ESTIMATION FLOWCHART

In this appendix, a flowchart for the proposed parameter
estimation is presented. Based on the initial magnetization
distribution estimation and the SFLA, an optimization process
is defined to find the optimal values of the parameters in the
JA + R model. The flowchart can be found in Fig. 12.

To clarify the flowchart, note that M is the coefficient matrix
based on the collection of higher order Gaussian functions with
unknown amplitudes. Note that the linear problem mentioned
in (13) can be translated to a linear system of the form

MA = b (19)

from which the initial magnetization distribution can be
computed.
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