
 
 

Delft University of Technology

Context-based cyclist path prediction using Recurrent Neural Networks

Pool, Ewoud; Kooij, Julian; Gavrila, Dariu

DOI
10.1109/IVS.2019.8813889
Publication date
2019
Document Version
Accepted author manuscript
Published in
Proceedings IEEE Symposium Intelligent Vehicles (IV 2019)

Citation (APA)
Pool, E., Kooij, J., & Gavrila, D. (2019). Context-based cyclist path prediction using Recurrent Neural
Networks. In Proceedings IEEE Symposium Intelligent Vehicles (IV 2019) (pp. 824-830). IEEE.
https://doi.org/10.1109/IVS.2019.8813889

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IVS.2019.8813889
https://doi.org/10.1109/IVS.2019.8813889


Context-based cyclist path prediction using Recurrent Neural Networks

Ewoud A. I. Pool 1, Julian F. P. Kooij 1 and Dariu M. Gavrila 1

Abstract— This paper proposes a Recurrent Neural Net-
work (RNN) for cyclist path prediction to learn the effect
of contextual cues on the behavior directly in an end-to-end
approach, removing the need for any annotations. The proposed
RNN incorporates three distinct contextual cues: one related to
actions of the cyclist, one related to the location of the cyclist on
the road, and one related to the interaction between the cyclist
and the egovehicle. The RNN predicts a Gaussian distribution
over the future position of the cyclist one second into the future
with a higher accuracy, compared to a current state-of-the-art
model that is based on dynamic mode annotations, where our
model attains an average prediction error of 33 cm one second
into the future.

I. INTRODUCTION

An important case for self-driving vehicles is that they
can reduce the number of traffic accidents. To facilitate
a driving style that is not only safe but also comfortable
and time-efficient, self-driving vehicles need to anticipate,
i.e. predict where other road users are likely to be in the
near future. Contextual information, such as spatial layout
[1], [2], [3], or class-specific visual cues (a car blinker, an
cyclists’ outstretched arm, etc) [4] can be used to improve
the accuracy of such predictions compared to using positional
information only.

Vulnerable Road Users (VRUs) (i.e. pedestrians and cy-
clists) are particularly challenging road users to deal with.
They can rapidly switch between various motion modes,
such as walking or standing. Separate models are often
learned for each of the identified modes [2], [5]. The various
contextual cues need to be integrated into a predictive model
to assess which mode the VRU will switch to, and when
the VRU will do so, e.g. in a Dynamic Bayesian Network
(DBN) [4]. Because of the small amount of parameters in
these handcrafted models, their effectiveness can be shown
even in small datasets crafted towards a specific scenario.
They furthermore have the advantage that their inner working
can be inspected, and their performance be explained (a plus
in the context of functional safety).

On the other hand, handcrafted models require additional
effort of identifying the different dynamic modes, as well
as manually labeling the specific dynamic mode of each
track at every moment. This scales poorly with dataset
size. Furthermore, the switch between two modes is usually
gradual, creating a gray area between two modes where it
is not directly clear to which it should belong. As a result,
the learned models for each mode will reflect the manual
annotations rather than the real world situation. A solution

1) Intelligent Vehicles group, Cognitive Robotics department,
Technical University Delft, The Netherlands; {E.A.I.Pool,
J.F.P.Kooij, D.M.Gavrila}@tudelft.nl;

Longitudinal

L
at

er
al

RNN

ct−1

RNN

ct

xt−1 xt

RNN RNN . . . RNN

p (xt+n|y0:t)

Static context Dynamic context

∆ẏ

∆y

T = ∆y
∆ẏ

Object context

Context cues ct

Fig. 1: A schematic overview of the position and context
features used in the proposed RNN. In the used dataset,
the static context is the distance to the intersection where
the cyclist might turn left. The dynamic context is the
time it would take for the vehicle to overtake the cyclist
assuming they maintain their current velocity. The object
context indicates the confidence of a trained detector whether
the cyclist is raising their arm. The RNN receives this
information at every time step, and combines it with the
position of the cyclist to predict a Gaussian distribution over
the future position of the cyclist.

for these issues is to use Recurrent Neural Networks (RNNs),
which learn everything jointly in an end-to-end fashion.
However, it is not known if an RNN can combine the various
types of context cues in VRU path prediction on the small-
scale datasets found for such context cues.

In this paper, we investigate if RNNs can incorporate
context cues as effectively as the DBN from [4]. We show
that the highest accuracy is obtained when all context cues
are incorporated in the model, and outperform the DBN
even on the small dataset. Additionally, we demonstrate
that training without the annotated dynamic modes can be
beneficial, revealing the actual moment where the dynamic
modes switch. Finally, we explore the possible improvement
in accuracy by increasing the amount of training data, and
show that some contextual cues are more robust to anomalous
behavior than others.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 

dgavrila
Sticky Note
Proc. of the IEEE Intelligent Vehicles Symposium, Paris (France), 2019. 



II. PREVIOUS WORK

In VRU path prediction, the goal is to model the dynamic
behavior of VRUs in order to accurately predict their future
location for time horizons longer than the immediate future
(say, 0.5 s). The predictions can be improved by integrating
various kinds of contextual cues. These are roughly divided
into environment context cues and object-related context
cues.

Environment context cues refers to the influence of the
world surrounding the VRU on their path. These are static
effects such as an expectation where VRUs prefer to walk
to [3], or the VRU’s preference to traverse certain kinds of
semantic areas (sidewalks, grass, zebra crossings, etc.). One
way of implementing this is implemented through Inverse
Reinforcement Learning (IRL) [1], [6], but it is also possible
to learn the weights directly using a neural network [7]. IRL
is conditioned on the goal destination of the VRU, but it is
possible to estimate the goal online jointly with the future
path. For instance, Rehder et al. [8] estimate the goal using a
neural net that combines image data with the previous path of
the VRU. Ballan et al. [9] learn preferred routes directly on
image data rather than the semantic information, and show
that the learned knowledge is transferable to new locations.
Another approach is to directly encode the structure of the
road ahead to limit the possible paths that the VRU can
take [2]. Dynamic objects can also influence the future path
of VRUs. Social Force Models [10], [11] model the influence
that nearby VRUs have on each other.

Object-related context cues relate to the visual appearance
of the VRU himself. Many papers have focused on predicting
whether a pedestrian will cross the street or not based on
such features. Keller and Gavrila [12] do this by predicting
the dense optical flow of the VRU’s image, using Gaussian
Process Dynamic Models (GPDM). Quintero et al. [5] use
GPDM on a 3D joint model that is extracted from the visual
and depth image of the pedestrian. VRU-related context
cues also include whether the VRU is aware of his or her
surroundings. Kooij et al. [4] incorporate both the risk of
collision and the pedestrian’s awareness thereof into a DBN
to accurately predict the future position of a pedestrian who
might cross the road. Additionally, they show the same DBN
structure can also be used to predict the future position of a
cyclist who might turn left at a coming intersection. A closely
related field that also uses context cues is intent prediction
for VRUs. Here, context cues can also be used to predict the
intent of a VRU, such as the pose [13], or do the intention
prediction directly on the image data [14].

Path prediction also requires a dynamic model to propa-
gate the positional and contextual information into the future.
One approach is to create separate models for different
kinds of behavior and predict which behavior is currently
most likely [4], [5], which makes the entire model more
interpretable to users. However, due to the non-linearity in
VRU path prediction some research has pursued RNNs to get
an improved prediction accuracy, such as Long Short Term
Memory networks (LSTMs) [10], [11]. Bhattacharyya et

al. [15] use LSTMs to predict future positions of pedestrians
directly in the image plane. Besides LSTMs, there are also
other RNNs to process time series, such as a Gated Recurrent
Unit (GRU) which uses fewer parameters while keeping a
similar performance as an LSTM [16]. An RNN can also
predict a Gaussian distribution directly [17]. RNNs cannot
implicitly handle missing data. Posner and Ondrúška [18]
add an extra binary input to each measurement to mark if
the measurement has data or not. Fraccaro et al. [19] attempt
to combine the best of Kalman filters and neural networks
by assuming that the dynamic latent space of the neural net
is in fact a Kalman filter, allowing them to use the exact
inference, prediction and smoothing of a Kalman filter for
the dynamics.

To train and validate the methods mentioned above,
there are several datasets available, such as the Stanford
Drone (SD) dataset [9], the Tsinghua-Daimler Cyclist (TDC)
dataset [20] and the very recently released Eurocity Persons
(ECP) dataset [21]. The SD dataset involves an aerial view
from a high altitude however, and therefore does not contain
any VRU-related context cues. The TDC and ECP datasets
are recorded from a vehicle and therefore do contain VRU-
related context cues, but because they are originally intended
for detection the annotations have a low frame-rate, at most
5 fps. Instead, we use the dataset from our baseline DBN [4].

The proposed RNN combines the non-linear predictive
abilities of RNNs with contextual features, and is trained
without any additional manual annotations on the dynamic
modes. Because of the relatively small size of the dataset,
we do not focus on the challenge of handling missing data,
but instead perform all evaluations on the smoothed data
available in the dataset of [4].

The contributions of this paper are, firstly, an end-to-
end approach to incorporate context cues for path prediction
through an RNN, that performs competitively to the state-of-
the-art even though it is trained on a small dataset. Secondly,
we show that the RNN that was trained without annotated
dynamic modes can learn the switch in dynamic earlier than
a model with explicit annotations. Thirdly, we evaluate the
advantage of additional data for each of these context cues,
and show the importance of realistic training data. Our RNN
is able to compute predictions for multiple objects in real
time (4ms per frame when computing 50 tracks at once)
thanks to the ubiquity of GPU-based neural net frameworks,
in this case Pytorch [22].

III. METHODOLOGY

The goal is to predict a probability distribution over the
position x at every time step t, n steps into the future.
The probability distribution depends on all the previous
measurements, y0:t, and is written as p (xt+n|y0:t).

Predicting this probability distribution is the compact de-
scription of the problem, where there are many different ways
to compute the effect of the observed measurements on the
predicted distribution. In this paper we model the probability
distribution as a Gaussian distribution, and incorporate the
measurements through an RNN.



GRU

WencWdec

−
h0,dec

h0

ỹ0

u0

GRU

WencWdec

−
h1,dec

h1

ỹ1

u1

GRU

WencWdec

−
h2,dec

h2

ỹ2

u2

h3

Fig. 2: An overview of how the RNN processes the mea-
surements over time. This figure shows the incorporation of
inputs over three time steps.

A. Inference

A sequence of measurements y0:T from time 0 to time T
consists at each time step t of two-dimensional position xt,
and a vector of multiple contextual cues ct. The data given
as input to the RNN at a time step t, noted as ỹt, are the
difference in position between two time steps, xt−xt−1, and
context variables: ỹt = [xt−xt−1, ct]

>. At t0 the difference
in position is taken as zero.

The architecture of the RNN can be split up into two
steps: processing the inputs over time, and the prediction.
How the RNN processes inputs is shown in fig. 2. The main
component is a Gated Recurrent Unit (GRU), which is used
over an LSTM because of its reduced amount of parameters,
something that is desirable for small datasets.

The hidden layer ht, a vector with 32 elements, is decoded
into an expected input, which is subtracted from the actual
input, and the result ut is fed into the GRU:

ut = Wenc (ỹt −Wdec(ht)) (1)

= Wenc

([
xt − xt−1

ct

]
−
[
Wpos(ht)
Wcues(ht)

])
, (2)

where Wdec(ht) = wencht +benc, a regular linear layer with
wenc and benc as trainable parameters. All other functions
W (·) are linear layers as well, with their own trainable
parameters.

When predicting, the signal that is fed into the GRU is
computed as

ut = Wenc (0) . (3)

All future hidden states ht+2, . . . , ht+n are then computed
as shown in fig. 3. The estimated future position x̂t+n and
covariance Σt+n is then computed as follows:

x̂t+n = xt +

n∑
i=1

Wpos(ht+i) (4)

[
l[0] l[1] l[2]

]>
= Wcov(ht+n) (5)

σ1 = exp (l[0]) (6)

σ2 = exp (l[1]) (7)

ρ = tanh (l[2]) (8)

Σt+n =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
. (9)

This method of computing the 2D covariance in an RNN
(eqs. (6) to (9)) is taken from [17].

B. Training

The RNN is trained by minimizing the log likeli-
hood loss of the predicted Gaussian distribution. The
trained parameters are those of the GRU, the layers Wenc,
Wpos,Wcues,Wcov , and h0. To ensure that the output of the
RNN is a consistent path, we compute the loss not just n
time steps ahead, but over the entire range of 1 over n steps
ahead.

Additionally, two regularization methods are used to re-
duce the ability of the RNN to overfit on the data. Firstly,
all data is normalized. The mean and variance of ỹt in
the training data are computed. The input ỹt is scaled and
translated according to this mean and variance before it is
fed to the RNN. The inverse of the scaling and translation is
applied on the output of each prediction step in eq. (4), i.e.
Wpos(ht+i). The covariance matrix that is estimated by the
RNN is not scaled in any way. Secondly, during training, we
reset the hidden state ht back to the initial hidden state h0

with a probability of 5% at every time step.

IV. DATASET

The RNN described in the previous section is trained and
evaluated on the tracks from the cyclist scenario in [4].
This dataset contains 51 tracks of a cyclist approaching an
intersection. These are recorded with a stereo-camera setup at
16 fps from a moving vehicle that drives behind the cyclist.
At the intersection, the cyclist can either continue straight
or turn left. The dataset contains the longitudinal and lateral
position of the cyclist in a global reference frame, as well
as three additional contextual features, which are pictured in
fig. 1. The first context feature is the distance of the cyclist to
the intersection directly along the main axis of the road. The
second feature is the time it takes for the vehicle to overtake
the cyclist, if they would both keep moving with the same
velocity. This feature indicates how critical the situation is
for the cyclist if he wishes to turn to the left. The third
feature indicates whether the arm of the cyclist is raised.
This is given as a confidence in the range [0, 1] as computed
by a Naive Bayesian Classifier. Further details on the feature
extraction can be found in [4].

Each track turning left also has one specific frame defined
as the moment where the cyclists is first visibly starting to
turn. The amount of frames until the turning event happens
is used to temporally align all the tracks in a semantically
meaningful way. This is indicated as the Time To Event
(TTE). Similarly, such a point is also defined for all straight
tracks. The frame TTE = 0 is selected as the first frame on
which the cyclist is past the point on the intersection where
25% of all turning tracks have turned left.

The tracks are divided into several subscenarios, based on
whether the cyclist turned left or went straight, whether the
arm was raised or not, and on how critical the situation was.
These subscenarios are divided into two categories: normal
and anomalous behavior, based on whether it is a usual scene



GRU

Wenc

ht

Wpos

−
ỹt

ht,dec

+
xt

GRU

Wenc

ht+1

Wpos

zeros

+
x̂t+1

GRU

Wenc

ht+2

Wpos

zeros

+
x̂t+2

. . .

. . .

GRU

Wenc

Wpos

zeros

+
x̂t+n−1

Wcov

ht+n

Comb
p (xt+n|y0:t)

Fig. 3: An overview of how the RNN predicts p (xt+n|y0:t) at a time step t. The layers Wenc and Wpos are shared with
the temporal update process (see fig. 2). The block in the bottom right, labeled Comb, is the combination of eqs. (4) to (9).

Subscenario Occurrences

non-critical arm not raised straight/turn 6/6
non-critical arm raised turn 6

critical arm not raised straight 10
critical arm raised turn 7

non-critical arm raised straight 5
critical arm raised straight 4
critical arm not raised turn 7

TABLE I: Breakdown of the number of tracks in the cyclist
dataset for the normal (above the line) and anomalous (below
the line) subscenarios [4].

in real traffic. For instance, raising your arm before turning
left is considered normal behaviour, but raising your arm
and continuing straight is anomalous. The breakdown of the
amount of tracks over each subscenario is given in table I.

Finally, some of the tracks from the dataset contain frames
without position information. Because the proposed RNN has
no explicit way to handle missing data, we use the smoothed
tracks as described in [4] for both training and evaluation.

V. RESULTS

We evaluate the predictive abilities of the RNN with the
DBN from [4] as a baseline. We do not compare to other
baselines from [4] such as the Linear Dynamical System
(LDS) because those performed worse than the DBN. The
RNN is, as mentioned, evaluated on the smoothed tracks, so
the results from [4] have been re-evaluated on the smoothed
tracks as well. As in [4], we look at the average predictive
log-likelihood 16 steps (one second) into the future, around
the point where the cyclist may or may not turn left: the
range TTE ∈ [−15, 15]. Therefore, the loss is computed over
n = 16 steps during training. Additionally, we compare the
average Euclidean error between the predicted mean 16 steps
into the future and the measurement position in the same
range TTE ∈ [−15, 15].

The models are evaluated with Leave-One-Out (LOO)
cross-validation. Each RNN is trained using the Amsgrad
[23] algorithm for 2000 iterations, with a learning rate of
0.0015. The RNN is implemented in Pytorch [22].

A. Ablation study

We first assess the effectiveness of the two regularization
methods from section III-B, data normalization and hidden
state resetting. The RNN with all three contextual features
is trained and evaluated on the tracks from the normal
subscenarios. With both regularization methods, the proposed
RNN achieves an average prediction log-likelihood of 0.81.
Without normalization, the prediction log-likelihood drops to
−5.85. Without resetting the hidden layer during training, it
drops to −0.61. This shows that both regularization methods
help improve the accuracy of the RNN, and they are therefore
used in all following experiments.

B. Baseline comparison

Next, we compare the prediction log-likelihoods of the
RNN to that of the DBN from [4]. Here, we train and
evaluate on the tracks from the normal subscenarios.

To check the effectiveness of each contextual feature, we
train every combination of the three features. This is shown
in table II. What contextual features are used in each RNN
is indicated by one to three letters: an I if the RNN used
the distance to Intersection (static context), a T if the RNN
used the Time until the vehicle could overtake (dynamic
context), and an A if it used the probability that the Arm
was up (object context). The RNN that uses no additional
features (i.e only the relative position between each time
step) is named “No features”. The RNN that uses all three
features (ITA) is also referred to as the “full model” in the
text.

Starting at the left of the table, it is seen that the RNN
with no features already outperforms the DBN on the normal
subscenarios. They also both show a large difference between
the predicted log-likelihood of the straight subscenarios and
that of the turning subscenarios. Furthermore, we see that the
addition of one feature (the columns I, T and A) improves
the likelihood even further. While combining two features
does not improve the log-likelihood, the full model (ITA)
does improve over the other RNNs, and attains the highest
log-likelihood. The full model also attains the lowest log-
likelihood on the anomalous data, which indicates that it
can successfully incorporate the contextual information, as



Evaluated on DBN No features I T A IT IA TA ITA

All normal subscenarios −1.71 −0.42 0.68 0.40 0.51 0.47 0.57 0.36 0.81
Normal turning subscenarios −2.68 −1.21 0.06 −0.58 −0.32 −0.28 −0.17 −0.70 0.34
Normal straight subscenarios −0.04 0.79 1.63 1.90 1.79 1.64 1.73 2.00 1.55

All anomalous subscenarios −5.94 −9.47 0.42 −5.54 −5.07 −1.22 −9.72 −8.76 −11.48

TABLE II: The log-likelihood of the predictions 16 steps (one second) in the future, averaged over the period TTE ∈
[−15, 15]. The models are only trained on tracks from the normal subscenarios. The best performing model is shown in
bold. For the RNNs, the letters indicate which features were available to the RNN: I if the RNN used the distance to
Intersection, a T if the RNN used the Time until the vehicle could overtake, and an A if it used the probability that the
Arm was up.

Prediction start Ground truth Full track ITA I IA

0 1 2

−25

−24

−23

−22

−21

−20

lateral position (m)

lo
ng

itu
di

na
l

po
si

tio
n

(m
)

(a) Predictions at TTE = −71

0 1 2

−9

−8

−7

−6

−5

−4

lateral position (m)

(b) Predictions at TTE = −7

0 1

−5

−4

−3

−2

−1

0

lateral position (m)

(c) Predictions at TTE = 10
Fig. 4: Predictions over time on one specific track, for three RNNs trained on the normal subscenarios. The predictions are
made from the point marked with a black x for 16 future positions. The ellipses show the 2-sigma interval of the predictions,
16 time steps ahead. The true position at the predicted time step is shown with a black dot. When the cyclist is far from
the intersection, fig. 4a, the covariances are elongated and narrow. Further on, the RNNs what will happen after turning but
before the turn starts (TTE = −7, fig. 4b). Here, the covariance becomes wider, and the predictions become slightly curved
at the end. After the cyclist has turned, fig. 4c, the uncertainty is even wider.

.



the only difference between the normal and anomalous
subscenarios is the interpretation of the contextual cues.

When comparing the average Euclidean error, the full
model outperforms the other models as well, albeit only
slightly: 33 cm when evaluated on the tracks from the normal
subscenarios. The other RNNs with features have an error
between 34 cm and 35 cm, the RNN with no features has
an error of 49 cm.

A qualitative comparison of the predictions is shown in
Figure 4. This figure shows the predictions of the three
best-performing RNNs (ITA, I and IA) on one track at four
different moments. The figure show that the predicted path
of each RNN is very similar, and that all predicted paths
accurately follow the true path of the cyclist.

Furthermore, the RNNs have learned to have a varying
uncertainty over time. The uncertainty ellipse is very elon-
gated early on in the track, when the cyclist is going straight
(fig. 4a). As it gets closer to the point where the cyclist
turns left, the uncertainty ellipse increases in width (fig. 4b).
After the cyclist has turned (fig. 4c), the uncertainty in the
longitudinal direction is also reduced.

C. Adding anomalous data

To analyze the impact of the dataset size, we perform
the same evaluations on a larger set of tracks. For this, we
train the RNNs on the tracks from both the normal and the
anomalous subscenarios. This increases the available tracks
during training to 501. We still evaluate on the tracks of the
normal subscenarios only.

The prediction log-likelihoods of this experiment are
shown in table III (the top row is a repeat of the top row
from table II to make the comparison easier). Many RNNs
attain a higher log-likelihood on the tracks from the normal
subscenarios when trained on all data than when only trained
on the data from the normal subscenarios. Moreover, the best
performing RNN on the normal subscenarios is an RNN that
is trained on anomalous data as well (RNN IA). Apparently,
to learn the most accurate prediction of what cyclists will
do from this dataset, we must include the examples of what
cyclists will not do.

We argue that this is because these models learn better
motion dynamics, which are independent of the anomalous
context cues. When combined with the fact that the RNN
can learn highly nonlinear trajectories, this means that the
anomalous tracks provide additional examples to further
improve its predictions. A similar case can be made for the
distance to intersection feature. The four RNNs trained on
all data with the best performance on the tracks from the
normal subscenario (column I, IT, IA and ITA) all have this
feature in common.

The prediction log-likelihood of the full model on the
normal subscenarios has decreased after training on the entire
dataset: from 0.81 to 0.77. It also no longer outperforms
all other RNNs. To analyze why, fig. 5 shows the predicted

1The total dataset is 51 tracks, but the one track used for evaluation in
each LOO fold is, of course, left out for training.

−20 −15 −10 −5 0 5 10 15
−6

−4

−2

0

2

Time-To-Event (steps)

pr
ed

ic
tio

n
lik

el
ih

oo
d

@
16

st
ep

s
(-

)

ITA IT
IA DBN

Fig. 5: The mean (lines) and one-sigma standard deviation
(shaded area) of the log-likelihood of the predictions over
time on all tracks in the normal turning subscenarios. The
full model has a much lower prediction error than the other
RNNs from TTE = −16 to TTE = −8.

likelihood over time for all tracks from the normal turning
subscenarios, centered around TTE = 0. This graph shows
the log-likelihood of a prediction made at that specific TTE,
e.g. the point at TTE = −10 shows likelihood of the
prediction for TTE = 6. The results are shown for the three
best RNNs trained on all subscenarios, as well as the DBN
trained on only the normal subscenarios (as this was the
best-performing DBN). The RNNs generally outperform the
DBN, especially past TTE = 0 where the linear model for
turning of the DBN can no longer accurately predict the
nonlinear turning motion of the cyclist. Furthermore, the
graph shows that the full RNN has a low log-likelihood at
TTE = −13, a moment where it predicts the location of the
cyclist that has started turning left, but before having seen
the cyclist actually do so. This indicates that the RNN has
overfitted on the data. For completeness, the prediction log
likelihood for the normal straight tracks is shown in fig. 6.

Finally, fig. 5 also shows that the RNNs increase in
accuracy starting around TTE = −10, a moment where it
makes a prediction of what happens after the turn, without
having seen it. That means that the RNN is able to detect that
the cyclist will turn over half a second before the annotated
point of turning. We want to stress that this does not mean the
RNN can see the turn over half a second before the annotator
could. Instead, it shows that while the annotation of TTE = 0
was very consistent, it was not necessarily the moment where
the dynamics change. This highlights the advantage of end-
to-end learning approaches that do not depend any human-
annotated information.

VI. CONCLUSION

In this paper, we described a Recurrent Neural Network
(RNN) for predicting a Gaussian distribution over the future
VRU position that incorporates various types of contextual
cues and learn distinct dynamic modes. The RNN can be



Used training data No features I T A IT IA TA ITA

Normal subscenarios only −0.42 0.68 0.40 0.51 0.47 0.57 0.36 0.81
Normal and anomalous subscenarios −0.25 0.77 0.26 0.55 0.88 0.93 0.61 0.77

TABLE III: The effect of different training sets on the log-likelihood of the predictions on tracks from the normal
subscenarios, 16 steps (one second) in the future, averaged over the period TTE ∈ [−15, 15]. The best performing RNN is
shown in bold. The letters indicate which features were available to the RNN: I if the RNN used the distance to Intersection,
a T if the RNN used the Time until the vehicle could overtake, and an A if it used the probability that the Arm was up. The
best performing model when evaluating on only the normal subscenarios, is a model trained on anomalous data as well.

−20 −15 −10 −5 0 5 10 15
−6

−4

−2

0

2

Time-To-Event (steps)

pr
ed

ic
tio

n
lik

el
ih

oo
d

@
16

st
ep

s
(-

)

ITA IT
IA DBN

Fig. 6: The mean (lines) and one-sigma standard deviation
(shaded areas) of the log-likelihood of predictions over time
for all tracks in the normal straight subscenarios. All RNNs
perform similar in this case, and outperfrm the DBN.

trained in an end-to-end fashion, removing the need for any
ground-truth annotations. We showed that this RNN predicts
the future position of the cyclist with an accuracy that is
competitive with that of a method where the effects of the
context cues on the dynamics modes was explicitly modeled
(i.e. handcrafted). This RNN attains an average prediction
error of 33 cm when predicting the future position one
second into the future. Furthermore, the accuracy of the
prediction scales with the amount of training data, in some
cases even when the training data is not representative of the
test data, and improves over training with only normative
data. We consider this as a strong argument in favor of
investigating methods that exploit large-scale naturalistic
datasets (e.g. [21]) without the need for manual annotations
of complex behaviors.

ACKNOWLEDGMENT

This work was supported by the European Community
(within the PROSPECT project, grant agreement nr. 634149)
and by the Dutch Science Foundation NWO-TTW (within
the SafeVRU project, nr. 14667).

REFERENCES

[1] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in Proc. of the ECCV, 2012, pp. 201–214.

[2] E. A. I. Pool, J. F. P. Kooij, and D. M. Gavrila, “Using road topology
to improve cyclist path prediction,” in Proc. of the IEEE IV, 2017, pp.
289–296.

[3] I. Batkovic, M. Zanon, N. Lubbe, and P. Falcone, “A computationally
efficient model for pedestrian motion prediction,” in Proc. of the IEEE
ECC, 2018, pp. 374–379.

[4] J. F. P. Kooij, F. Flohr, E. A. I. Pool, and D. M. Gavrila, “Context-
Based Path Prediction for Targets with Switching Dynamics,” IJCV,
vol. 127, no. 3, pp. 239–262, 2019.

[5] R. Quintero, I. Parra, D. F. Llorca, and M. Sotelo, “Pedestrian
intention and pose prediction through dynamical models and behaviour
classification,” in Proc of the IEEE ITSC, 2015, pp. 83–88.

[6] V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto, “Intent-aware long-
term prediction of pedestrian motion,” in IEEE ICRA, 2016, pp. 2543–
2549.

[7] S. Huang, X. Li, Z. Zhang, Z. He, F. Wu, W. Liu, J. Tang, and
Y. Zhuang, “Deep learning driven visual path prediction from a single
image,” IEEE Trans. on Image Processing, vol. 25, no. 12, pp. 5892–
5904, 2016.

[8] E. Rehder, F. Wirth, M. Lauer, and C. Stiller, “Pedestrian prediction
by planning using deep neural networks,” in IEEE ICRA, 2018, pp.
1–5.

[9] L. Ballan, F. Castaldo, A. Alahi, F. Palmieri, and S. Savarese,
“Knowledge transfer for scene-specific motion prediction,” in Proc.
of the ECCV, 2016, pp. 697–713.

[10] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chan-
draker, “Desire: Distant future prediction in dynamic scenes with
interacting agents,” in Proc. of the IEEE CVPR , 2017, pp. 336–345.

[11] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proc. of the IEEE CVPR , 2016, pp. 961–971.

[12] C. G. Keller and D. M. Gavrila, “Will the pedestrian cross? A study
on pedestrian path prediction,” IEEE Trans. on ITS, vol. 15, no. 2, pp.
494–506, 2014.

[13] O. Ghori, R. Mackowiak, M. Bautista, N. Beuter, L. Drumond,
and F. Diego, “Learning to Forecast Pedestrian Intention from Pose
Dynamics,” in Proc. of the IEEE IV, no. Iv, 2018, pp. 1277–1284.

[14] S. Zernetsch, V. Kress, B. Sick, and K. Doll, “Early start intention
detection of cyclists using motion history images and a deep residual
network,” Proc. of the IEEE IV, pp. 1–6, 2018.

[15] A. Bhattacharyya, M. Fritz, and B. Schiele, “Long-term on-board
prediction of people in traffic scenes under uncertainty,” in Proc. of
the IEEE CVPR , 2018, pp. 4194–4202.

[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” in NIPS
Workshop on Deep Learning, 2014.

[17] A. Graves, “Generating sequences with recurrent neural networks,”
arXiv preprint arXiv:1308.0850, 2013.

[18] P. Ondruska and I. Posner, “Deep tracking: Seeing beyond seeing using
recurrent neural networks,” in Proc. of the AAAI, 2016.

[19] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled
recognition and nonlinear dynamics model for unsupervised learning,”
in NIPS, 2017, pp. 3601–3610.

[20] X. Li, F. Flohr, Y. Yang, H. Xiong, M. Braun, S. Pan, K. Li, and
D. M. Gavrila, “A new benchmark for vision-based cyclist detection,”
in Proc. of the IEEE IV, 2016, pp. 1028–1033.

[21] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “EuroCity Per-
sons: A Novel Benchmark for Person Detection in Automotive Con-
text,” IEEE Trans. on Pattern Analysis Machine Intelligence, DOI
10.1109/TPAMI.2019.2897684, 2019.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” in NIPS, 2017.

[23] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” in Proc. of the ICLR, 2018.


	Introduction
	Previous Work
	Methodology
	Inference
	Training

	Dataset
	Results
	Ablation study
	Baseline comparison
	Adding anomalous data

	Conclusion
	References

