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Abstract

A novel multiscale method for multiphase flow in heterogeneous fractured porous me-
dia (F-MsRSB) is devised. The discrete fine-scale system is governed on the basis
of embedded fracture modelling approach, which benefits from independent grids for
heterogeneous rock (matrix) and lower-dimensional high-flow-rate fracture domains.
Given this fine-scale discrete system, following the algebraic multiscale method for
fractured media (F-AMS) [1, 2], F-MsRSB imposes independent coarse grids on ma-
trix and fracture fine-scale cells. Matrix and fracture basis functions are then solved
following the restriction smoothed procedure (MsRSB) [3], allowing for more flexibility
and improved robustness in treatment of complex geometrical features and heteroge-
neous coe�cients. These basis functions construct the prolongation operator which
maps between the coarse- and fine-scale systems. Similar to F-AMS, F-MsRSB al-
lows for general coupling of matrix and fracture basis functions, thus e�cient for
treatment of large variety of fracture conductivities. In addition, it has the advan-
tage of adaptive global smoothing strategies to update the basis functions, as in the
original MsRSB for non-fractured media. F-MsRSB is conservative, described and
implemented in an algebraic form. More important, employing it to unstructured and
rectilinear grids for fractured media is straightforward. Through several challenging
test cases for single and multiphase flow, using realistic and synthetic fracture maps
along with heterogeneous matrix, it is concluded that F-MsRSB is quite e�cient and
accurate for heterogeneous fractured media. Benefiting from the two recent multiscale
developments, F-AMS and MsRSB, F-MsRSB casts a new approach to treat complex
large-scale fractured porous media. The work of this thesis will be made available in
the public domain as a module for the open-source MATLAB Reservoir Simulation
Toolbox (MRST) developed by SINTEF Applied Mathematics.
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Chapter 1

Introduction

Accurate simulation of multiphase flow in natural porous media represented on
high-resolution computational grids is computationally demanding. Fine-scale petro-
physical properties like permeability are often highly heterogeneous, change over sev-
eral orders of magnitudes, and, in general, do not entail scale separation [4]. This
computational challenge has motivated the development of several multiscale methods,
which solve accurate coarse-scale systems constructed by the use of locally-computed
basis functions [5–16]. Once the coarse-scale system is solved, its solution is inter-
polated into the original fine-scale resolution using the sub-resolution of the basis
functions. Among the proposed multiscale methods, multiscale finite-volume (MSFV)
methods not only provide mass-conservative solutions at fine-scale, which is a crucial
property for convergent solution of transport equations, but also enable relatively sim-
ple inclusion of the type of multiphase flow equations seen in contemporary reservoir
models [6, 17–22].

Multiscale methods compute approximate solution having the original fine-scale
resolution so that their error (or residual) can be calculated with respect to the fine-
scale discrete system. As such, one can achieve systematic strategies for reducing
the error through iterative procedures that combine the multiscale solver with a fine-
scale smoother [23–26]. Iterative multiscale methods are scalable and deliver mass-
conservative solutions after any MSFV stage. The latter property makes them unique
compared with alternative advanced solvers, such as multigrid methods [27]. Recent
developments of the MSFV method include extensions to compressible and composi-
tional non-linear displacements [28, 29], unstructured grids [14, 30], and fully-implicit
simulations [31]. While these important developments, combined, cast a promising
framework for next-generation simulators, they have been focused mainly on address-
ing challenges due to complex fluid physics, highly heterogeneous rock properties, and
complex computational mesh geometries.

Many geological formations—including hydrocarbon reservoirs, underground water
resources, and geothermal energy production fields—are naturally fractured. Fig. 1.1
shows outcrop examples of naturally fractured porous rocks. Outcrops give a fairly
reasonable idea of the type of rocks one may find beneath the Earth’s surface. It helps
to understand how complex fracture networks, such as the ones shown in the figure,
may influence fluid behaviour and pressure distribution throughout a reservoir made
of the same type of deposits. Fractures are highly conductive channels which, for most
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Chapter 1. Introduction

practical purposes, exist in a lower-dimensional space compared to the porous ma-
trix. Physical properties inside fractures and their length scales can be very di↵erent
from those of the surrounding rock, adding significantly to the computational chal-
lenges, specially once realistic length scales and complex fracture network maps are
considered. As a result, a variety of modelling approaches and numerical methods for
di↵erent types of fractured reservoirs have been proposed [32–43,43–47]. Among them,
the embedded fracture modelling approach [1,37–39,48,49] benefits from independent
grids for fracture and matrix, a promising approach for naturally fractured reservoirs
and also for cases with dynamic fracture creations and closure of, e.g., geothermal
systems. Note that small-scale fractures (smaller than fine-scale grid cells) are ho-
mogenized within the matrix porous rock, forming e↵ective matrix conductivities [37].
This approach, similar to other discrete-fracture-modelling (DFM) approaches, lead
to detailed fine-scale discrete systems (for matrix and fracture unknowns) with high
contrasts within the entries, which are clearly much more challenging to be solved
e�ciently than non-fractured heterogeneous cases. Therefore, it is highly important
to develop e�cient multiscale methods for fractured formations.

(a) (b)

(c) (d)

Fig. 1.1: Outcrop images of naturally fractured rocks

Early attempts at developing multiscale methods for fractured media were based
on a mixed finite-element formulation in which high-conductive fractures were either
represented explicitly as volumetric objects [40] or the fracture-matrix interaction was
modelled by the Stokes–Brinkmann equations [41, 50]. Within the MSFV framework,
Hajibeygi et al. [1] developed the first multiscale method for fractured porous media, in

2 of 36 F-MsRSB



Chapter 1. Introduction

which additional fracture basis functions were introduced to map each fracture network
into one coarse-scale degree of freedom (DOF). Later, Sandve et al. [51] used the MSFV
method to develop e↵ective coarse-scale MINC-type model for fracture networks. Very
recently, the treatment of fracture network was extended in a general formulation by
proposing an algebraic multiscale solver for fractured media (F-AMS) [2, 52]. In the
F-AMS, fracture basis functions were introduced on the basis of a coarsening ratio
inside fracture domain, similar as in the matrix rock. Results of F-AMS, when only
a few fracture DOFs were used, illustrated that such a multiscale map for fractured
domains is quite e�cient. Similar to all MSFV and AMS methods, F-AMS relies
on coarse and dual-coarse grids imposed on the provided fine-scale grid cells. While
the former is used to construct mass-conservative coarse-scale systems, the latter is
employed to compute local basis functions. However, geological complexities and the
use of complex grid geometries make the construction of these two coarse grids quite
challenging. Recently, the multiscale restriction smoothed basis (MsRSB) method was
devised by Møyner and Lie to overcome this complexity [3]. The MsRSB is unique in
the way the basis functions are computed, yet leads to a stable and robust treatment
of complex heterogeneous coe�cients [53], as well as realistic flow physics for improved
and enhanced oil recovery [54, 55]. It is therefore favourable to use this method as a
basis when seeking to extend multiscale simulation approaches for more complex frac-
tured media.

In the work presented in this thesis, a multiscale restricted smoothed basis method
for fractured media (F-MsRSB) is developed. Following F-AMS [2,52], F-MsRSB con-
structs basis functions for fractures and matrix in a general way, allowing for di↵erent
level of coupling between them. In addition to F-AMS, though, F-MsRSB constructs
its multiscale formulation on the basis of the MsRSB approach. This would facilitate its
extension towards complex geometries while maintaining its e�ciency for highly het-
erogeneous challenging scenarios such as the SPE10 comparative test case [56]. Unlike
previous works, the performance of F-MsRSB is investigated for realistic fracture mod-
els with complex fracture networks. Transmissibility-weighted connectivity graphs of
independent fractures are decomposed using the METIS software [57], leading to an
automatic coarsening strategy for fractures. Following the traditional algebraic mul-
tiscale formulations, F-MsRSB can easily be adapted to account for complex physics
such as compressibility [26] and gravity [58] as discussed in [54] for the MsRSB method.
To facilitate implementation, specially for complex fracture networks, here, fracture
cells are introduced into the discrete systems through non-neighbouring connections
(NNC), see [44, 45, 62].

Through several two- and three-dimensional cases with highly heterogeneous co-
e�cients, F-MsRSB is found to e�ciently compute approximate solutions of good
quality. Furthermore, in order to allow for error control and reduction strategies,
especially for multiphase flow scenarios, the method is combined with a fine-scale
smoother, ILU(0) [25, 26, 59]. While low-frequency errors are resolved by the coarse-
scale system in F-MsRSB, the fine-scale smoother resolves high-frequency errors, the
combination of which leads to an e�cient (scalable) iterative multiscale solver for frac-
tured media. These iterations are applied adaptively and infrequently just to maintain
user-prescribed accuracy. Note that application of block smoothers near wells and frac-
tures is also possible. It is easy to perform block smoothing using the solver strategy

Swej Shah, TU Delft 3 of 36



Chapter 1. Introduction

proposed and implemented for the numerical results of this thesis. Several multiphase
flow cases are considered in which the adaptive iterative F-MsRSB is employed to e�-
ciently compute high-quality solutions for the flow equations. All of these systematic
single- and multiphase flow cases reveal that F-MsRSB is an e�cient and versatile mul-
tiscale method for naturally fractured reservoirs with highly heterogeneous coe�cients.

This thesis is structured as follows – The fine-scale discrete system for flow in frac-
tured porous media is described in Chapter 2. Then, in Chapter 3, AMS and MsRSB
are revisited. The development of F-MsRSB is presented in Chapter 4. Numerical
results for single- and multi-phase flow for both 2D and 3D heterogeneous reservoirs
are presented in Chapter 5. Finally, the thesis is concluded in Chapter 6.

4 of 36 F-MsRSB



Chapter 2

Governing equations and fine-scale
system

Mass conservation for a compressible phase ↵ out of nph phases, flowing in a porous
medium in the absence of capillary forces reads,

@(�⇢↵S↵)

@t
�r · (⇢↵�↵ · (rp� g ·rz)) = q↵⇢↵ 8 ↵ 2 [1, . . . , nph], (2.1)

For incompressible fluids, density is constant with respect to space and time, leading
to

@

@t
(�S↵)�r · (�↵ ·rp) = q↵ 8 ↵ 2 {1, . . . , nph}, (2.2)

where Darcy’s law is employed to replace phase velocity u↵ with pressure gradient
rp. Here, gravitational and capillary e↵ects are both neglected. Moreover, nph is the
number of phases (and components), S↵ and �↵ are phase saturation and mobility,
respectively. Note that �↵ = kkr↵/µ↵ holds, where the positive-definite permeability
tensor, k, is typically highly heterogeneous at multiple scales. Also, relative perme-
ability, kr↵ and phase viscosity, µ↵, are given functions of primary unknowns p and S.
These balance equations, along with the constraint that all phases fill the pore volume,
i.e.,

nphX

↵=1

S↵ = 1, (2.3)

form a well-posed system of equations for (nph + 1) unknowns. Sequential approaches
derive a pressure equation, which is solved first, then phase velocities are obtained to
subsequently solve nph�1 transport equations (2.2). The nph-th saturation is obtained
using the constraint (2.3). To obtain the pressure equation, i.e.,

�r · (�t ·rp) = qt, (2.4)

phase balance equations (2.2) are summed up and the time-dependent term (accumu-
lation) cancels out due to the constraint (2.3). Total mobility, �t and total source
terms qt are obtained by summing their phase-wise counterparts.

For fractured porous media, following the hierarchical fracture model approach,
small-scale fractures are homogenized and represented by an e↵ective matrix perme-
ability k

m 2 Rn. Fractures with larger length scales are then explicitly represented
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Chapter 2. Governing equations and fine-scale system

with an embedded fracture modelling approach (EFM). Important to note is that the
fracture elements can cross over matrix cells, or be confined at their interfaces. In the
latter case, EFM reduces to alternative discrete fracture modelling approaches. Note
that fractures are lower dimensional manifolds, due to their extremely small apertures,
i.e., kf 2 Rn�1. In this case, pressure equation can be expressed as

�r · (�
t

·rp)m +  mf = qmt on ⌦m ⇢ Rn (2.5)

and
�r · (�

t

·rp)f +  fm = qmt on ⌦f ⇢ Rn�1 (2.6)

where superscripts m and f represent matrix and fracture quantities, respectively. Mass
exchange between fracture and matrix cells,  mf and  fm, are modelled as

 fm = CI �⇤
t (p

f � pm) = � mf , (2.7)

where CI is the fracture-matrix conductivity index [1, 39]. Interaction of a matrix
element i and a fracture element j is defined as

CI =
Ai�j

hdii�j

, (2.8)

where Ai�j is the fracture plate area and hdii�j is the average distance between i and
j. More information about EFM and the calculation of its parameters can be found
in [1]. An advantage of EFM is that the fracture and matrix grids are independent
and, thus, suited for many realistic scenarios such as naturally fractured reservoirs and
dynamic fracture generation and closures.

Finite volume discretization of Eq. (2.5) and Eq. (2.6) leads to the fine-scale
system Ap = q for matrix and fracture pressure unknowns, i.e.,

2

6664

Amm Amf Amw

Afm Aff Afw

Awm Awf Aww

3

7775

2

6664

pm

pf

pw

3

7775
=

2

6664

qm

qf

qw

3

7775
, (2.9)

where w super-index denotes external well (source) terms [4]. Obviously, Afw and Awf

will be zero, if no well is drilled into the fracture domain.

The formulation of this thesis is developed into the open-source Matlab simulator
MRST [60, 61], in which fractures are introduced using non-neighbouring connections
(NNC) [44,45,62]. In addition, a sequential implicit strategy has been followed for the
multiphase flow studies depicted in this thesis.

Large-scale heterogeneous formations with complex fracture network maps, along
with high contrasts between fracture and matrix properties, make Eq. (2.9) quite
challenging to solve using any classical numerical methods. To resolve this computa-
tional challenge, a multiscale restriction smoothed basis method for fractured media
(F-MsRSB) is developed. The F-MsRSB benefits from the previously developed multi-
scale methods for fractured media [1,2] and the MsRSB formulation for non-fractured
systems [3].
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Chapter 3

Multiscale Restriction Smoothed
Basis Method (MsRSB)

In this chapter, MsRSB [3] is described in algebraic form [25, 26]. More precisely,
a general algebraic formulation of multiscale methods is first introduced before we
continue to describe the specific prolongation and restriction operators of the MsRSB
method. This chapter will cast the foundation of the next chapter in which the novel
development of this thesis, i.e., F-MsRSB, is presented.

3.1 Algebraic multiscale formulation

To avoid solving Ap = q (Eq. (2.9)) directly on the fine scale, multiscale methods
introduce a coarse-scale system,

(RAP)| {z }
Ac

pc = Rq|{z}
qc

, (3.1)

which has much smaller size (i.e., nc ⇥ nc) than the original fine-scale system (i.e.,
nf ⇥nf ). The Restriction operator R maps the fine-scale system into the coarse scale,
while the Prolongation operator P interpolates the coarse-scale solution into the fine-
scale original resolution [18]. Once the coarse-scale system is solved, an approximate
fine-scale solution p0 is obtained by an interpolating formulation, i.e.,

p0 = Ppc. (3.2)

Combining Eq. (3.1) and Eq. (3.2), the AMS procedure can be summarized as

p ⇡ p0 = P(RAP)�1R| {z }
M�1

ms

q. (3.3)

Similar to AMS, MsRSB imposes a coarse grid on top of the provided fine-scale grid.
Inside each coarse grid cell (coarse control volumes), a fine-scale grid cell is selected
as coarse node. Coarse cells ⌦c

K form a non-overlapping partition of the domain.

For the restriction operator, there are two di↵erent choices, either to use R = PT ,
which will lead to a Galerkin-type formulation, or to use a finite-volume restriction
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Chapter 3. Multiscale Restriction Smoothed Basis Method (MsRSB)

procedure [6], which can be stated as discrete integration operator over coarse control
volumes ⌦c, i.e.,

Ri,K =

(
1 if ⌦i ⇢ ⌦c

K

0 otherwise.
(3.4)

As shown in [3, 53], the MsRSB method is not very sensitive to the choice of restric-
tion and herein we use the finite-volume operator to ensure that we can reconstruct
fine-scale conservative velocities.

The prolongation operator is constructed by solving localized flow problems, and
the way these flow problems are set up varies from one method to another. However,
in all multiscale methods, the prolongation operator P is defined so that it stores basis
function �K associated with coarse block ⌦c

K in its K-th column, i.e.,

Pi,K = �K(xi) 8i 2 {1, . . . , nf}, 8K 2 {1, . . . , nc}. (3.5)

Here, �K(xi) is the value of basis function �K at i-th fine-grid cell, xi.

Both the original MSFV method [6] and its state-of-the-art extension (AMS) [25,26]
rely on a secondary coarse partition, defined as the dual to the primal coarse grid, over
which the basis functions �K are locally computed. While it is possible to extend con-
servative multiscale methods based on a dual-grid formulation to stratigraphic and
other types of unstructured grids [21, 30, 51, 63], it has proved to be di�cult, if possi-
ble, to develop satisfactory dual-primal partitions for a grid with complex geometries.
Moreover, localization errors induced by strong permeability contrasts across block
boundaries introduce instabilities in the corresponding multipoint coarse-scale stencil.
This motivated the development of a multiscale two-point flux-approximation formu-
lation [14], in which an implicitly defined dual grid is used to compose elementary
flow solutions into localized basis functions. In the MsRSB method, however, local
supports for basis functions are defined based on interaction regions, which are rela-
tively simple to define even for very complex grids. Once these interaction regions are
obtained, restriction-smoothed basis functions are computed by employing a modified
form of the damped-Jacobi smoothing approach, similar as in smoothed-aggregation-
based multigrid methods [64–66]. In the following sections, the MsRSB interaction
regions and basis functions are briefly explained. Detailed explanations can be found
in [3, 53].

3.2 Coarse grid and interaction regions

Basis function �K can have non-zero values only in the interaction region IK . For
the specific case of MSFV, e.g., IK reduces to the set of dual-coarse grid cells overlap-
ping with the K-th coarse block. Thus, by construction, the basis function �K and
consequently the K-th column of P is set to 0 outside IK .

Interaction region of a coarse block ⌦c
K (see Fig. 3.1) is constructed by creating a

local triangulation, using cell and shared-face centroids of all immediate geometrical
neighbours of ⌦c

K [3]. This ensures that for a Cartesian grid without fractures, the
coarse system has the same multipoint flux stencil as in the original MSFV method.
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Interaction regions for fractured coarse blocks are, because of their (potentially severe)
geometrical complexities, computed by a di↵erent procedure, which will be described
in the next chapter (See Table 4.1).

Interaction boundary BK is defined as the set of all fine cells that are topological
neighbours of the outermost cells in the interaction region IK . This leads to the
definition of a global boundary G which is a union of all BK 8 K 2 {1, . . . , nc}, i.e.,

G = B1 [B2 [ · · · [Bnc . (3.6)

Fig. 3.1 illustrates B and G for a 2D rectangular cartesian and an unstructured
hexagonal grid. For a Cartesian grid geometry, G becomes equivalent to the set of all
dual-coarse boundary cells, i.e., similar to the classical MSFV method. Finally, indices
of all coarse blocks whose interaction regions overlap with each fine cell i inside G, i.e.
xi, are stored in the set Hi, i.e.,

Hi = {K|xi 2 IK ,xi 2 G}. (3.7)

3.3 MsRSB prolongation operator

As mentioned earlier, basis functions are calculated iteratively, having non-zero
values only inside the corresponding interaction regions. To obtain basis functions, a
constant value of 1 for each coarse block is set as initial value, i.e.,

P0
i,K =

(
1 if xi 2 ⌦K

0 otherwise
(3.8)

This is followed by computing the iterative increments

d̂K = �!D�1APn
K , (3.9)

where A is the fine scale system, D is the diagonal entries of A (D = diag(A)), and !
is a relaxation (or damping) parameter, which is set to 2/3 for all simulations of this
thesis.

Due to the local supports for basis functions, the increments d̂K must be restricted
to have non-zero values only inside IK . This is done by setting Pn

K outside the inter-
action region to 0 and normalizing all other basis functions that have non-zero values
at the boundary cells BK , i.e.,

diK =

8
>>>><

>>>>:

d̂iK � PiK

P
J2Hi

d̂iJ

1 +
P

J2Hi
d̂iJ

if i 2 IK , i 2 G

d̂iK if i 2 IK , i /2 G

0 if i /2 IK .

(3.10)

This modified increment is now used to update the prolongation operator, i.e.,

Pn+1
K = Pn

K + dK . (3.11)
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(a) Interaction boundary B(2,2) (b) Global boundary G

(c) Interaction boundary B(3,3) (d) Global boundary G

Fig. 3.1: Highlighted cells in turquoise colour are the interaction region for a coarse
node (a and c). Also shown in yellow, in the same plots (a and c), are the interaction
boundary cells. Shown on the right are the global boundary cells G, highlighted in
yellow (b and d). The top row shows a rectangular grid with a uniform coarse partition,
while the bottom row presents a hexagonal grid with an unstructured coarse partition.

To measure convergence of the basis functions, a local error eK is defined outside G,
and basis functions are assumed to be converged if ||e||1  tol, where

eK = max
i

(|d̂iK |), i /2 G. (3.12)

Note that modification proposed in Eq. (3.10) enforces a local support for the fi-
nal basis functions to be used to construct a sparse prolongation operator. Fig. 3.2,
Fig. 3.3 and Fig. 3.4 show the e↵ect the modification in Eq. (3.10) has on basis
function calculation for homogeneous 1D, homogeneous 2D, and several 2D perme-
ability fields, respectively. MSFV basis functions are also shown in comparison with
restriction smoothed basis functions in the latter.

Without the modification proposed in Eq. (3.10), each basis function would it-
eratively grow to spread across the entire domain. For a conservative discretization
scheme such as finite volume, row sum of system matrix A will always be zero, i.e.P
j

Aij = 0. By virtue of using disjoint or non-overlapping coarse partitions, Eq. (3.8)

ensures that the row sum of the prolongation matrix is always 1. It can then be math-
ematically verified that every successive Jacobi iteration over this initial guess would
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always honour a partition of unity in the prolongation matrix, i.e.
P
K

PiK = 1. For a

homogeneous domain, this would entail PiK = 1/nc 8 i 2 {1, . . . , nf}, K 2 {1, . . . , nc}
since every fine cell receives an equal contribution from each of the nc global basis
functions.

Restricting the spread of basis functions in this manner is similar to the concept
of a reduced boundary condition at dual cell boundaries as in classical MSFV. It is
important to note that this modification localizes each basis function and is ultimately
the source of error in the multiscale solution.

0 20 40 60 80 100
0

0.5

1
Initial Guess

0 20 40 60 80 100
0

0.5

1
Iterations: 5

0 20 40 60 80 100
0

0.5

1
Iterations: 10

0 20 40 60 80 100
0

0.5

1
Iterations: 25

0 20 40 60 80 100
0

0.5

1
Iterations: 50

0 20 40 60 80 100
0

0.5

1
Converged

Fig. 3.2: Restriction smoothed basis function computed iteratively over a 100 m long
1D homogeneous domain with 20 m coarse blocks. Vertical axis gives the basis function
value for the 3rd coarse block. Tolerance for convergence = 10�3.
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Fig. 3.3: Restriction smoothed basis function for coarse block (2,2) computed iter-
atively over a 60 ⇥ 60 homogeneous domain with 3 ⇥ 3 coarse blocks. Tolerance for
convergence = 10�3.
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(a) Homogeneous (b) Patchy (c) Channelized

0 0.2 0.4 0.6 0.8 1

MsRSB basis functions

(d) (e) (f)

MSFV basis functions

(g) (h) (i)

Fig. 3.4: Illustration of the restriction smoothed basis functions (d-f) and classical
MSFV basis functions (g-i) for three di↵erent permeability fields: homogeneous (a),
heterogeneous patchy-field (b) and heterogeneous channelized field (c).
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Chapter 4

MsRSB for Fractured Media
(F-MsRSB)

In densely fractured reservoirs, phase transport predominantly takes place through
fractures. Their permeability is generally several orders of magnitude higher than the
matrix average and as a result, they alter the flux field across a reservoir quite signifi-
cantly. Therefore, it would be preferable to have a multiscale formulation for fractures
in addition to one in the matrix. Note that by virtue of fracture connectivity defined
through NNC, the MsRSB solver for non-fractured media can handle presence of frac-
tures without any special treatment. However, this is neither preferable nor practical
because without a separate coarsening inside fractures, the conventional multiscale for-
mulation will not be able to accurately account for their impact on reservoir pressure.

4.1 Algebraic formulation

The F-MsRSB method is devised on the idea of introducing basis functions for both
matrix and fracture domains, similar to F-AMS [2], i.e., p ⇡ p0 = [p0m p0f ]

T , where

p0m =
ncmX

j=1

�m,m
j pc,mj +

NfnX

i=1

ncfiX

j=1

�fi,m
j pc,fij (4.1)

and

p0f =
ncmX

j=1

�m,fi
j pc,mj +

NfnX

i=1

ncfiX

j=1

�f,fi
j pc,fij , (4.2)

where p0m and p0f are F-MsRSB approximate matrix and fracture pressure at fine-scale,
respectively. In addition coarse-scale solutions, in matrix and fracture, are denoted
as pc,m and pc,f , respectively. There exist ncm matrix coarse blocks, and the fracture
network i has ncfi coarse cells. Each fracture network can consist of several connected
fracture plates (lines for 2D domains), and in total, there are Nfn number of discon-
nected fracture networks. Moreover, �m,m and �m,f are basis functions for matrix
coarse cells with superscripts m,m and m,f denoting values in the matrix and fracture
domains, respectively. Both �f,f and �f,m are fracture basis functions with superscript
f,f representing the values inside the corresponding fracture network and superscript
f,m denoting contributions inside the matrix domain. Hence, the prolongation operator
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can be written as

P =

2

6666666666664

...
...

...
...

�m,m
1 · · · �m,m

ncm
�f,m

1 · · · �f,m
ncf

...
...

...
...

...
...

...
...

�m,f
1 · · · �m,f

ncm
�f,f

1 · · · �f,f
ncf

...
...

...
...

3

7777777777775

nf⇥nc

, (4.3)

where nf = (nm
f + nf

f ) and nc = (ncm + ncf ) are total degrees of freedom (matrix and
fractures) at fine and coarse scales.

Generally, fractures are much more conductive than the matrix rock. Full con-
sideration of both fracture and matrix coarse solutions, pcm and pcf , for interpolated
fracture pressure, p0f , can lead to improved convergence properties. However, such an
approach results in much denser prolongation operators. Therefore, the improvement
in convergence rate may not necessarily o↵set the computational cost of additional op-
erations associated with it. Numerical studies of F-AMS for 3D problems (considering
CPU time), support the idea of eliminating the e↵ect of matrix coarse pressure in the
fracture pressure interpolation, i.e., setting �m,f = 0. In this thesis, the same sparse
operator is considered.

Next, the interaction region and the procedure for calculating basis functions for
fractured media are explained.

4.2 Interaction regions and basis functions

The interaction region for each fracture coarse block is generated based on a topo-
logical distance or connectivity based algorithm. More precisely, the interaction region
for a fracture coarse cell includes all fine cells located inside the sphere (circle in 2D)
with radius d = d�/ae residing in a radial index space. The constant factor � is in
the range of (0, 1), and a is the fracture aperture. It is clear that the interaction re-
gion will include no fine-cell except those overlapping with the fractures, if � = 0 is
considered. In the other extreme, i.e., if � = 1, all fine cells within the distance equal
to the inverse of aperture will be considered. For the numerical examples studied in
this thesis, the value of � = 1/4 is used. An overview of the procedure to generate the
fracture interaction region is presented in Table 4.1.

Fig. 4.1 illustrates coarse grids and interaction regions inside which basis functions
are compactly supported for a test case with 30 ⇥ 30 matrix and 20 fracture cells.
Furthermore, Fig. 4.2 shows basis functions inside the matrix rock (belonging to both
fracture and matrix coarse nodes).
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Table 4.1: Algorithm for generating fracture interaction regions

Initialize: A = Adjacency matrix for the fine-scale system, d = d�/ae and m = 1

1: for J 2 {1, ..., ncf} do
2: Ii,J = 1 if xi 2 ⌦c

J , Ii,J = 0 otherwise
3: while m < d do
4: IJ = A⇥ IJ
5: m = m+ 1
6: end while
7: end for

(a) (b) (c)

Fig. 4.1: Illustration of multiscale grids for matrix and fracture (a) with interaction
regions for matrix (b) and fracture (c) for a case with 30⇥ 30 matrix and 20 fracture
fine-scale cells. Multiscale coarse grid contains 3⇥ 3 matrix blocks and 2 blocks inside
the fracture. Here, a = 1/25 and, consequently, d = 7.
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0 0.2 0.4 0.6 0.8 1

(a) �m,m
5 (b) �f,m

1 (c) �f,m
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(d)
ncmP
j=1

�m,m
j (e)

ncfP
j=1

�f,m
j

Fig. 4.2: Matrix and fracture basis functions for the system described in Fig. 4.1
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Chapter 5

Numerical Results

The developed F-MsRSB method is implemented and integrated with the free,
open-source Matlab Reservoir Simulation Toolbox (MRST) [60, 61, 67, 68]. In this
chapter, we investigate the performance of F-MsRSB for many challenging test cases.
The numerical examples involve both 2D and 3D heterogeneous media. Next, the
sensitivity of the method to coarse-grid resolution for fracture domain (coarse degrees
of freedom – DOF) is studied. Then, its performance for heterogeneous rock formations
is analysed through a realistic fracture map obtained from an outcrop, and for a
statistically generated fracture map. Using an outcrop map is a unique test case in
the literature of multiscale methods for fractured media. For the statistical map,
we use METIS [57] to generate an unstructured partition for a fine-scale hexagonal
grid representing the matrix rock. Finally, three test cases with 3D heterogeneous
matrix properties along with 2D fracture plates are considered, in order to provide the
scientific community with a reliable assessment of the devised F-MsRSB method.

5.1 Sensitivity to Coarse DOF in fracture

In this test case, single phase flow in a 100 ⇥ 100 m2 homogeneous domain is
considered. The e↵ect of coarsening ratio in fracture domain on the multiscale solution
accuracy and on its preconditioning properties is studied. The matrix permeability
is set to 1 Darcy and kf/km = 10000. Fluid viscosity is 1 cP. The matrix contains
100⇥ 100 fine-scale grid cells. As shown in Fig. 5.1, the matrix contains one fracture
network containing 200 fine-scale grid cells. A coarsening ratio of 10⇥ 10 is fixed for
matrix domain, while the coarsening ratio for fracture is varied from 1 to 50 (some
cases are shown in Fig. 5.2). By increasing the coarse DOF in the fracture, the F-
MsRSB pressure solution improves (Fig. 5.3). This finding is consistent with that of
F-AMS [2].

Fig. 5.3 shows pressure solutions after 1 multiscale cycle for di↵erent fracture
coarsening ratios. As a quantitative error measurement, F-MsRSB pressure error is
calculated using a scaled 2nd norm given as

✏p =

vuut
P

i2nf
(pfsi � pms

i )2 ⇥ ⌦i
P

i2nf
(pfsi )2 ⇥ ⌦i

. (5.1)
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P 
= 

1 P = 0

Fig. 5.1: First test case which contains 100⇥ 100 matrix and 200 fracture cells at fine
scale, with homogeneous 2D rock formation. The left and right boundaries are subject
to Dirichlet values of 1 and 0, respectively.

 

(a) 1 DOF in fracture

 

(b) 5 DOF in fracture

 

(c) 10 DOF in fracture

Fig. 5.2: F-MsRSB coarse grids for matrix and fractures. The matrix coarse grid
consists of 10⇥ 10 fine cells, while the fracture coarse cells are varied from 1 (200 fine
cells in 1 block) to 5 (40 cells in each block) and 10 (20 cells in each block).

For di↵erent fracture coarse-scale grid sizes, the F-MsRSB errors are also provided in
Fig. 5.3. Similar to F-AMS, the condition number of the F-MsRSB coarse system also
improves with increasing DOF in fracture at coarse scale. This leads to higher iterative
convergence rates, as shown in Fig. 5.4, if F-MsRSB is combined with ILU(0) in an
iterative multiscale procedure [2]. Convergence is determined on the basis of setting a
threshold value for the scaled residual norm, i.e., ||rb||2 = ||Ap� q||2/||q||2.

5.2 F-MsRSB for heterogeneous fractured media

To study the F-MsRSB for heterogeneous fractured media, two fracture maps
are considered: (1) the fracture map is extracted from an outcrop of dimensions
246.3m ⇥ 283.1m; (2) a statistical fracture model for an unstructured perpendicu-
lar bisector or PEBI grid is generated. The heterogeneous rock property is assumed to
include homogenized small-scale fractures in addition to the conventional heterogeneity
variations in the matrix rock.
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(b) F-MsRSB - 1 DOF in fracture
(✏p = 2.36⇥ 10�3)
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(c) F-MsRSB - 5 DOF in fracture
(✏p = 2.02⇥ 10�3)
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(d) F-MsRSB - 10 DOF in fracture
(✏p = 1.67⇥ 10�3)

Fig. 5.3: Reference and F-MsRSB pressure for the first test case as shown in Fig. 5.1.
F-MsRSB solutions are presented for di↵erent fracture coarsening ratios.

Outcrop fracture map

The fracture coordinates are scaled from an outcrop photo [69] to fit a domain of size
1000m⇥ 1000m, as shown in Fig. 5.5a. The fine-scale grid contains 100⇥ 100 matrix
and 2074 fracture cells (over 94 disconnected fracture networks). The F-MsRSB grid
contains 15⇥15 matrix and 155 fracture coarse cells. Fig. 5.5b shows the permeability
of the matrix formation. Fracture permeability is set to 1000 Darcy.

We consider two-phase flow, with quadratic relative permeability curves and unit
viscosity ratio between the phases. Fluid is injected at a constant rate in cell (1,100),
while fluids are produced in the opposite corner (100,1) at constant pressure. Fig. 5.6
shows the saturation maps obtained after one F-MsRSB cycle (no iterations) compared
with reference fine-scale solutions, both obtained using a sequentially-implicit strategy.
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Fig. 5.4: Convergence of F-MsRSB+ILU(0) for di↵erent DOF in fracture.
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Fig. 5.5: Matrix coarse grid showing well locations and fracture map extracted from
an outcrop (a); Logarithm of the corresponding permeability field in the matrix (b).

Clearly, the higher the resolution of fracture coarse grid, the more accurate the F-
MsRSB results.

Saturation error is calculated as

✏S =
maxi2nf

���|Sfs
i � Sms

i |⇥ ⌦i�i

���

maxi2nf

���|Sfs
i |⇥ ⌦i�i

���
, (5.2)

which, because it is scaled with pore volume, gives a very strict measure of the error
in the spatial mass distribution for incompressible fluids.

As mentioned before, multiscale solutions can be improved by increasing the num-
ber of degrees of freedom per fracture network or by applying iterations (in combination
with ILU(0), similar to [1, 2, 58]). Fig. 5.7b reports the saturation calculated at the
producer grid block whereas Fig. 5.7b shows overall saturation errors. After only a
few iterations of the two stage (F-MsRSB + ILU(0)) cycle, the multiscale fluid dis-
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(a) Finescale: 0.25 PVI (b) Finescale: 0.50 PVI (c) Finescale: 0.75 PVI

(d) F-MsRSB: 0.25 PVI (e) F-MsRSB: 0.50 PVI (f) F-MsRSB: 0.75 PVI
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Fig. 5.6: Reference saturation profile compared with saturation maps obtained after
one F-MsRSB cycle at di↵erent PV injected. Absolute errors in saturation are also
shown in (g)-(i).

tribution is virtually identical to the reference solution. Convergence to a tolerance
of 0.1 takes 8 iterations for this outcrop model whereas a tolerance of 0.01 is reached
after 20 iterations. One can also employ a local block solver around the fractures and
wells [12].
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Fig. 5.7: Saturation at producer grid-block (a) and global saturation error (b) for
outcrop model as a function of simulation time measured in pore-volume-injection.
Shown are the corresponding results for non-iterative F-MsRSB and iterative F-MsRSB
with the tolerances of 0.1 and 0.01 on the pressure solves.

Statistical fracture model

A 1000m ⇥ 500m heterogeneous domain with permeability and porosity sampled
from the 10-th layer of the SPE10 dataset [56] is considered and shown in Fig. 5.8.
Similar as in previous test case, fracture permeability and porosity are 1000 Darcy
and 0.50, respectively. PEBI grids are employed for the matrix at fine scale, which
is a voronoi map over a uniform triangulation in the region. Fine-scale grid contains
4726 cells for matrix and 2207 cells for fractures. There exist 55 disconnected fracture
networks in the domain. Both matrix and fracture are coarsened using METIS [57] to
give 100 coarse cells for each domain (fracture and matrix) as shown in Fig. 5.8a.

Incompressible oil and water phases with quadratic relative permeabilities are con-
sidered. The reservoir is initially filled with oil having a viscosity of 5 cP. Water with a
lower viscosity of 1 cP is injected from a well near the bottom left corner at a constant
rate. Production occurs at constant pressure near the top right corner of the domain.
Fig. 5.9 shows the saturation maps after 1 cycle of (F-MsRSB + ILU(0)) for injec-
tion amounts of 0.2, 1.0 and 1.8 pore volumes (PVI). The initial multiscale solution
is already quite accurate, and after 1 smoothing-iteration step the multiscale and ref-
erence solutions are virtually identical. Fig. 5.10 compares bottom-hole pressure in
the injector and oil rate in the producer as computed by the fine-scale reference solver
and F-MsRSB for di↵erent iterative tolerances in the pressure solves.

5.3 3D models

In this section, we study the performance of F-MsRSB for three examples in which
the matrix domain is described in 3D and fractures are planar 2D surfaces.
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Fig. 5.8: Matrix coarse grid with 100 DOF, fracture map and well locations (a);
Petrophysical rock properties sampled from the 10th layer of the tarbert formation in
the SPE10 dataset (b and c).

Two intersecting fracture planes

The fine grid for the first 3D example consists of 50 ⇥ 50 ⇥ 50 matrix cells and 2
fracture plates, each with 100⇥ 30 fracture grid cells. The fracture plates cross in the
middle of the domain, as shown in Fig. 5.11a. Injection occurs at a constant rate at
the bottom-left corner, while production takes place from the top-right corner, both
through horizontal wells. Matrix permeability is shown in Fig. 5.11b. The F-MsRSB
grid contains 20 ⇥ 20 ⇥ 20 matrix blocks and 12 ⇥ 4 (for each plate) fracture blocks.
Fracture permeability is set to 104 Darcy. The matrix coarsening ratio is chosen such
that the e↵ect of fracture coarsening ratios will be more pronounced in the F-MsRSB
results. Fig. 5.12 shows pressure solution obtained after 1 F-MsRSB step. In addition,
Fig. 5.13 presents the convergence behaviour for di↵erent coarse grid resolutions for
fracture plates. As for the small matrix coarsening ratio, it is observed that small
increase in number of fracture DOF leads to significantly improved convergence rates.

Depositional bed model

As another 3D example, a corner-point grid model is considered with a wavy depo-
sitional bed and several degenerate cells. A similar model has been used in the litera-
ture [11]. Pinch-outs, occurring mainly due to the accounting of erosional features, are
a common reason behind unstructured cell connections in stratigraphic corner-point
grids. They lead to degenerate cells with faces of zero area resulting in a complex grid
geometry. With the addition of heterogeneity, it becomes quite a challenging test case
for multiscale methods [14,21]. In order to improve the e�ciency of F-MsRSB prepro-
cessing steps (such as computing fracture-matrix transmissibility) for this challenging
grid geometry, first the CI factors (Eq. (2.8)) are calculated globally for each fracture
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(a) Finescale: 0.2 PVI (b) F-MsRSB: 0.2 PVI

(c) Finescale: 1.0 PVI (d) F-MsRSB: 1.0 PVI

(e) Finescale: 1.8 PVI (f) F-MsRSB: 1.8 PVI

Fig. 5.9: Saturation maps for fine-scale reference and F-MsRSB after 1 cycle of itera-
tion (F-MsRSB + ILU(0)) at di↵erent simulation times.
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Fig. 5.10: Production and injection quantities at well locations for the statistical 2D
fracture map.

plane. Then, they’re computed for each fracture-matrix overlapping discrete grid cell.

The fine-scale grid contains 30⇥30⇥100 matrix with 222 hexahedral fracture cells
per fracture plate. As shown in Fig. 5.14a, there exist 6 fracture plates, and the
domain is subject to Dirichlet boundary conditions on the left and right faces, while
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(a) Fracture planes and wells.
(b) log10(km) [m2] and F-MsRSB coarse par-
tition.

Fig. 5.11: Illustration of the first 3D case, with a fine-scale grid that contains 50⇥50⇥
50 matrix cells and two intersecting fracture planes that each contain 100⇥30 fracture
cells. Also shown on the right is heterogeneous matrix permeability map, along with
the imposed 20⇥ 20⇥ 20 coarse grid used by F-MsRSB.

(a) Reference solution (b) Multiscale solution

Fig. 5.12: Reference and multiscale pressure solution after 1 F-MsRSB cycle for single
phase flow in the simple 3D model. Each fracture plane is logically partitioned into
12⇥ 4 blocks.

all other faces are subject to no-flow condition. As shown in Fig. 5.14, F-MsRSB
employs 10 ⇥ 10 ⇥ 9 coarse cells for matrix, and only 2 coarse cells for each fracture
plate. In addition, fracture aperture is 0.04m. The matrix permeability distribution
is provided in Fig. 5.14b, and kf = 10000 D, resulting in quite large contrasts in the
permeability values throughout the entire model.
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Fig. 5.13: Convergence property of the F-MsRSB + ILU (0) solver for various coarse
grid resolutions per fracture plane. Each fracture plane is of size 100⇥30 at fine scale.

P = 1 P = 0

(a) Model outline, fractures, and boundary conditions

(b) log10(km) [m2] (c) �m

Fig. 5.14: Matrix grid with fracture planes and boundary conditions (a); Logarithm
of permeability map (b) and matrix porosity (c)
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Fig. 5.15 shows pressure solutions obtained after 1 F-MsRSB step. It is clear
that F-MsRSB and reference solutions are in good agreement, even with such a large
coarsening ratio for fractures. The absolute di↵erence between the two solutions is
depicted in Fig. 5.15c, with the pressure error (✏p) being 8.79⇥ 10�4.

(a) Reference (b) F-MsRSB (c) |pms � p

fs|

Fig. 5.15: Reference and multiscale pressure solution for single phase flow in the bed
model with 2 degrees of freedom per fracture plane.

Reduced Model 2 of SPE10 with fracture networks

As the final test case in this section, the challenging SPE10 permeability is ex-
tracted from the full model (which contains 60 ⇥ 220 ⇥ 85 fine cells) for a fine-scale
grid size of 30⇥110⇥40 [56]. As shown in Fig. 5.16, complex fracture plates (located
between layers 11 through 30) are obtained by extruding the statistical maps, similar
to the ones used for one of the 2D test cases. The model contains 31 disconnected
fracture networks, which are discretized using 13, 880 fine-scale grid cells.

(a) 3D Test Case 3 (b) Scaled top view.

Fig. 5.16: 5-spot well locations in the 3D Test Case 3, with 31 disconnected fracture
networks. Shown on the right is the top view of the model.
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Fig. 5.17 shows the matrix rock properties (permeability and porosity). All frac-
tures have permeability value of 1000 Darcy. F-MsRSB grids contain 6⇥22⇥8 matrix
and 181 fracture coarse cells in total. Each fracture coarse cell contains 80 fine-scale
fracture cells on average.

(a) log10(km) [m2] (b) �m

Fig. 5.17: Petrophysical properties for the 30 ⇥ 110 ⇥ 40 domain sampled from the
full SPE10 dataset

A waterflood experiment has been considered for the duration of 5 PVI, using
quadratic relative permeability values. Water of viscosity 1 cP is injected into the reser-
voir which is initially filled with 100% oil of viscosity 10 cP. As shown in Fig. 5.16a,
five wells are placed in a 5-spot pattern with a fixed rate injector in the middle and 4
fixed-pressure producers at the corners.

F-MsRSB results are presented in Fig. 5.18 at the location of injection and pro-
duction, compared with reference fine-scale solutions. As shown, one iteration of (F-
MsRSB+ILU(0)) leads to significantly improved solutions. The initial multiscale so-
lution residual is approximately 0.1, which reduces to approximately 0.01 after only
one smoothing iteration. Convergence to a tolerance of 10�3 and subsequently to 10�4

takes around 5 and 15 average iterations, respectively, per time step.
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Fig. 5.18: Solution at the location of wells for the 3D Test Case 3. F-MsRSB solu-
tions are shown for di↵erent tolerances of pressure solution, compared with reference
solutions.
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Chapter 6

Conclusion

In this thesis, a novel multiscale framework for fractured porous media (F-MsRSB)
was introduced. The method benefited from the most recent developments within the
multiscale community, namely F-AMS and MsRSB, yet devised a unique approach
for robust and e�cient treatment of fractured media. E�ciency and accuracy of the
devised multiscale method, F-MsRSB, was analysed for many challenging test cases,
including a realistic fracture map extracted from an outcrop. These extensive studies
were quite unique in the multiscale community. F-MsRSB is formulated and im-
plemented in an algebraic form into the open-source MATLAB Reservoir Simulation
toolbox, MRST (Sintef ICT, Dept. Applied Mathematics). This development, thus,
is open to the public scientific community; another important contribution of this work.

Through a set of single- and multiphase test cases it was found that F-MsRSB
can e�ciently simulate models of fractured porous media with highly heterogeneous
coe�cients and produce approximate solutions with a prescribed fine-scale residual
accuracy. The numerical test cases also included complex wells. By using an adaptive
iterative strategy, one can trade accuracy for computational e�ciency, and still pro-
duce mass-conservative, approximate solutions on the fine scale.

Ongoing research includes consideration of more challenging fluid and rock physics,
along with integration of F-MsRSB into the in-house C++ simulator for comparisons
of CPU e�ciency.
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