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[1] At river bifurcations, water and sediment are divided over two branches. The
dynamics of the bifurcation determine the long-term evolution (centuries) of the
downstream branches, potentially leading to avulsion, but the dynamics are poorly
understood. The long-term evolution can only be studied by one-dimensional models
because of computational costs. For such models, a relation describing the sediment
division is necessary, but only few relations are available and these remain poorly tested so
far. We study the division of sediment and the morphodynamics on a timescale of decades
to centuries by idealized three-dimensional modeling of bifurcations with upstream
meanders and dominantly bed load transport. An upstream meander favors one bifurcate
with more sediment and the other with more water, leading to destabilization. The
bifurcations commonly attain a highly asymmetrical division of discharge and sediment
after a few decades to a few centuries, depending on combinations of the relevant
parameters. Although past work on avulsions focused on slope advantage, we found that
bifurcations can be quasibalanced by opposing factors, such as a bifurcate connected to the
inner bend with a downstream slope advantage. Nearly balanced bifurcations develop
much slower than unbalanced bifurcations, which explains the observed variation in
avulsion duration in natural systems. Which branch becomes dominant and the timescale
to attain model equilibrium are determined by the length of the downstream bifurcates,
the radius of the upstream bend, a possible gradient advantage for one bifurcate and,
notably, the width—depth ratio. The latter determines the character of the bars which may
result in overdeepening and unstable bars. The distance between the beginning of the
upstream bend and the bifurcation determines the location of such bars and pools, which
may switch the dominant bifurcate. In fact, when the bifurcation is quasibalanced by
opposing factors, any minor disturbance or a different choice of roughness or sediment
transport predictor may switch the dominant bifurcate. The division of sediment is nearly
the same as the division of flow discharge in most runs until the discharge division
becomes very asymmetrical, so that a bifurcate does not close off entirely. This partly
explains the sustained existence of residual channels and existence of anastomosing rivers
and the potential for reoccupation of old channel courses. We develop a new relation
for sediment division at bifurcations in one-dimensional models incorporating the effect of
meandering. The flow and sediment divisions predicted by two existing relations and
the new relation for one-dimensional models are in qualitative agreement with the
three-dimensional model. These one-dimensional relations are however of limited value
for wider rivers because they lack the highly three-dimensional bar dynamics that may
switch the direction of bifurcation evolution. The potential effects of bed sediment
sorting, bank erosion, and levee formation on bifurcation stability and avulsion
duration are discussed.
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1. Introduction
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Figure 1. Histogram of avulsion duration in the Rhine
derived from the reconstructed avulsions and the '*C
datings of the beginning and ending of channel belt activity
presented in the works by Berendsen and Stouthamer
[2000] and Stouthamer and Berendsen [2001]. These data
exclude about 30 bifurcations that would have ““avulsion”
durations for the entire period of activity of their upstream
channels (E. Stouthamer, personal communication, 2005).
Note that the ending of channel belt activity itself is
governed by bifurcations and avulsion even further
upstream.

120 bifurcations in the past 8000 years, some of which
were destabilized within a few decades after their
creation, whereas other ones were stable for many centuries
[Stouthamer and Berendsen, 2000, Figure 1]. This striking
contrast has not been explained. In addition, bifurcation
studies so far concentrated on straight channels while
ignoring effects of meander bends just upstream of the
bifurcation.

[3] An avulsion site is at least temporarily a bifurcation
because the new channel develops while the old one is still
active. Also, anabranching or anastomosing rivers by def-
inition have bifurcations, of which long-term pattern stabil-
ity suggests stable bifurcations. The local morphology of
the bifurcation determines its further development, such as a
resistant lip in the levee at the entrance of the new channel
[Slingerland and Smith, 1998], the amount of sediment
entering the new bifurcate [Wang et al., 1995; Bolla
Pittaluga et al., 2003; Smith et al., 1998; Slingerland and
Smith, 1998], the angle of the bifurcation on the upstream
flow direction [Bulle, 1926; Klaassen et al., 1993; Federici
and Paola, 2003; Bertoldi et al., 2006], migrating bars
[Hirose et al., 2003; Miori et al., 2006a] and the presence of
an upstream meander favoring one bifurcate with more
sediment and the other bifurcate with more discharge
[Kleinhans et al., 2006]. Human interference by spur dikes,
levees, groynes, meander cutoffs and canals may signifi-
cantly affect the further evolution, though not always as
intended [van de Ven, 1976].

[4] In physical process terms, the bifurcation is unstable
if one channel receives less sediment than its transport
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capacity, so that it erodes, and the other channel receives
more than its transport capacity, so that it silts up. Hence the
division of flow and sediment determines the bifurcation
stability or avulsion duration.

[s] The division of flow and sediment is affected by a
combination of regional factors, i.e., upstream and down-
stream boundary conditions, and local factors. Regional
factors commonly are external as they comprise the bound-
ary conditions that are unaffected by the local evolution.
The local factors commonly are internal because they
evolve as a result of the internal system dynamics (bar
and meander dynamics). Yet the downstream boundary
conditions in nature may change due to bifurcation dynam-
ics in rivers with significant backwater effects. For example,
a delta connected to one bifurcate may prograde [Parker et
al., 2006] or be removed by nearshore processes [Swenson,
2005], mouth bars may migrate and levees may prograde
[Edmonds and Slingerland, 2007], or tidal inlets may
evolve [Stouthamer, 2005], or the hydraulic resistance or
other characteristics of one bifurcate changes, for example
due to vegetation development or other changes in the
floodplain. This will affect the discharge division of
the bifurcation if these downstream developments are within
the backwater adaptation length or significantly change the
downstream water level by backward migrating erosion or
sedimentation [Kriele et al., 1998; Kleinhans et al., 2007a].
In addition, bifurcations that are part of a braided, distrib-
utary, anabranching or anastomosing network will be af-
fected by changes in discharge from upstream due to
upstream bifurcation or avulsion evolution [Makaske et
al., 2002; Stouthamer, 2005; Bertoldi et al., 2006]. Hence
the temporal and spatial scale of interest depends on the aim
of the study, and we will demonstrate that external factors
strongly affect the bifurcation evolution. In short, we study
an open system that is sensitive to its initial and boundary
conditions in addition to internal processes [Kleinhans et
al., 2005].

1.2. Objectives and Setup

[6] In order to understand bifurcations and avulsion, the
local water and sediment transport division must be
understood. Since this is affected by initial and boundary
conditions as well as internal processes, combinations are
needed of observations, historical maps, historical data and
geological reconstructions with models [Kleinhans et al.,
2005]. However, two-dimensional and three-dimensional
models are computationally too expensive for long-term
morphological predictions, and precise historical input data
are usually unavailable. A one-dimensional model could
then be used, but this has to be extended with a “nodal
point relation” for dividing the sediment at the bifurcation.
Nodal point relations that capture the most relevant
processes are difficult to formulate, not in the least
because these relevant processes are not entirely under-
stood. An empirical formulation is not feasible as accurate
measurements of bed level evolution and sediment transport
rates at meandering river bifurcations are rare for single
events [Kleinhans et al., 2007b; Frings and Kleinhans,
2008] and nonexistent for periods long enough to cover
significant changes in morphology and discharge division.
We therefore focus on systematic idealized modeling with
a three-dimensional model. The definition of the model is
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loosely based on the river Rhine in the Netherlands but
results are also presented in nondimensional form to
facilitate generalization.

[7] The objectives of the work presented here are to
understand the causes of bifurcation (in)stability in mean-
dering rivers and the wide range of avulsion durations, and
to test and improve nodal point concepts to aid future one-
dimensional modeling. In particular, we seek understanding
of the effect of (1) meander bends of varying radii and
lengths upstream of the bifurcation, (2) bar dynamics
upstream of the bifurcation, (3) differences in gradient and
length of the downstream bifurcates, (4) floods compared to
a sustained representative constant discharge, and (5) com-
binations of counteracting effects.

[8] In the theory chapter, we first review existing nodal
point concepts for one-dimensional models and their
assumptions to be tested by the three-dimensional model-
ing. Since their main shortcoming is that bends upstream of
the bifurcation are neglected, we then summarize a simpli-
fied version of the theory underlying the three-dimensional
model that explains bar dynamics in bends. Based on this,
we hypothesize how the bar behavior of the upstream
channel may affect the sediment division at bifurcations.
Then we propose a new nodal point relation based on the
simplified theory. The methods chapter summarizes the
setup, numerical aspects, boundary conditions and settings
of the one-dimensional and three-dimensional models. The
sensitivity to the grid size is first assessed by comparing
results with finer and coarser grids. After presenting the
main three-dimensional modeling results, extra sensitivity
analyses are carried out to assess the effect of an alternative
way to schematize bifurcations and of choices of sediment
transport and roughness formulations. In the subsequent
chapter the three-dimensional model results are compared in
detail to one-dimensional nodal point concepts and one-
dimensional model runs. After discussing the effects of bars
and the applicability of nodal point relations in detail, the
general implications for bifurcation stability and avulsion
duration are discussed. Furthermore, effects are discussed
that were ignored in the modeling, namely bed sediment
sorting, bank erosion and floodplain formation. Finally the
results are used to explain the sustained existence of
residual channels and anastomosing rivers, and conclusions
are drawn.

2. Theory and Hypotheses on Sediment
Distribution at Bifurcations

[9] We will first review how bifurcations have been
incorporated in one-dimensional models, in particular the
relations by Wang et al. [1995] and by Bolla Pittaluga et al.
[2003] which predict the sediment division at the bifurca-
tion in response to the flow division. Both relations ignore
upstream bars and bends. The theory for bars and bends
used in the three-dimensional flow model is simplified to
two dimensions. Through analysis of the simplified theory
we formulate hypotheses for the effects of upstream channel
bends and bars on a bifurcation. Moreover, we will use the
simplified theory to formulate a new nodal point relation for
one-dimensional models that is consistent with the three-
dimensional model. Finally we will list the aspects and
assumptions of the two published relations and the new
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relation that will be tested against the three-dimensional
model runs.

2.1. Nodal Point Concepts for One-Dimensional
Models

[10] A one-dimensional model of a river with a bifurca-
tion consists of three branches connected by a node. At the
node, discharge and sediment supply from the upstream
branch (1) is divided over the two downstream branches
(the bifurcates 2, 3). The division of flow discharge Q; into
0,, O3 at the nodal point follows from mass conservation,
the condition that the water levels in the three branches are
equal at the nodal point and the characteristics of the
bifurcates. The division of sediment cannot be determined
from these conditions alone: a nodal point relation is needed
to divide the upstream depth—width-integrated sediment
transport Qg1 = W,qs over the two bifurcates as Oy, Os,
where W = width and g = specific transport rate. The nodal
point relations by Wang et al. [1995] and Bolla Pittaluga et
al. [2003] are briefly reviewed below to describe main
aspects and assumptions that will be tested with the three-
dimensional model results.

[11] It must be noted here that the model by Slingerland
and Smith [1998] is in fact also a nodal point relation, but
one that refers to the initial stages of avulsion. Slingerliand
and Smith [1998] incorporate only suspended load sediment
as the bed load cannot enter the new bifurcate yet because
of the entrance lip. Our scope is limited to the evolution of
already well-developed bifurcates.

[12] The Wang et al. [1995] relation is hypothetical:

e@w o
Qs3 Q3 s

where k can be determined empirically. Braided river
simulation models, landscape simulation models and delta
architecture models often implicitly assume a constant &,
usually £ = 1.

[13] Wang et al. [1995] found from a nonlinear stability
(phase-plane) analysis that bifurcations are stable for k£ > n/3
and unstable for k£ < n/3, where n = effective power on flow
velocity u to calculate the sediment transport as g, = mu”.
For Engelund and Hansen [1967] n = 5; for all transport
equations n > 3. Intuitive understanding of their findings is
offered as follows. As u = C(hS)"?, with C = Chézy
roughness coefficient, S = slope and specific discharge ¢ =
hu, it follows that the sediment transport capacity in a
bifurcate is g oc ¢, whereas equation (1) expresses that
the sediment supply at the upstream boundary is g5 x ¢*.
Suppose the discharge of one bifurcate decreases. The effect
of k> n/3 would be a much larger decrease of the sediment
input than the decrease of the sediment transport capacity.
Consequently, the bed of the closing bifurcate is scoured to
some extent, which increases the flow discharge capacity of
this channel. So & > n/3 stabilizes the bifurcation. On the
other hand, & < n/3 inevitably leads to closure of one of the
bifurcates. The rate of closure depends on the sediment
transport rate into the closing bifurcate and its width and
the length of the channel fill [Kleinhans et al., 2006].

[14] Bolla Pittaluga et al. [2003] presented a nodal point
relation that assumes k& = 1 (division of sediment propor-
tional to flow discharge), but also allows for the deflection
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of the bed load vector on a transverse slope, which emerges
as one bifurcate silts up whereas the other deepens. Hence
an important assumption of this model concept is that the
bed levels in the bifurcates extend to the area upstream of
the bifurcation, thus creating a transverse bed slope. This
assumption is corroborated by some experimental evidence
[Bolla Pittaluga et al., 2003]. As a result of the deflection
the bifurcation often stabilizes, because the transverse slope
decreases the sediment transport into the closing bifurcate.
In addition, the modeled bifurcations stabilize for conditions
close to incipient motion because they used the Meyer-Peter
and Mueller [1948] transport predictor which contains a
threshold for motion. Upstream meander bend effects are
ignored. Miori et al. [2006b] added erodible banks by
allowing a bifurcate to widen by relaxation to a regime-
type equation. Symmetrical bifurcations were always unsta-
ble as a result of the erodible banks and developed to a
highly asymmetrical discharge division.

[15] The Bolla Pittaluga et al. [2003] relation is formu-
lated as follows. The velocity in the main flow direction is
calculated from u = Q,/(h,W;) with &, at the end of branch
1, where discharge is assumed to be equally distributed over
the cross-section. The transverse flow velocity v is calcu-
lated from the flow discharge O, that crosses a line dividing
the upstream channel of the two bifurcates:

1 Wy — W-
Q},:5<Qz—Qg—Ql#)

2
A (2)

so that v can be calculated as:

Oy
hlale (3)

where aw W) is a defined length immediately upstream of
the bifurcation along which the flow and sediment cross the
dividing line between the two bifurcates. As such, awW; is
the distance upstream of the bifurcation at which the
transverse slope should disappear. Bolla Pittaluga et al.
[2003] experimentally derived that 2 < awy < 3, approxi-
mately, and found that the results are not sensitive to ay. At
the bifurcation, the sediment Qy; transported at the end of
branch 1 is divided over the first cells of the two bifurcates
proportional to their widths but corrected for transverse
sediment flux. Sediment transport g, takes place in the
transverse direction because the sediment transport vector is
deflected on the transverse slope:

qsy = tan /BsQSl/Wl (4)

wherein tan 3, follows from:
6, = arctang (5)

and

r oz
V0 by

tan 3, = sin 3, —

(6)

where 6z/0y = transverse slope and » = 0.3—1 is specified.
(Note that from equation (14) it can be calculated that
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r = 1.16 for typical conditions of the three-dimensional
models presented in this paper). The transverse transport rate
is subtracted from one bifurcate and added to the other as:

W
=— so W, 7
Qx2 W2 n W3 Qxl +QA)()5W 1 ( )
and from mass conservation Oy = Qs — (Os. In the

numerical solution by Bolla Pittaluga et al. [2003] the
transverse slope just upstream of the bifurcation is calculated
as:

% _ 22,1] z31 (8)
) W

where zpicare,1 15 the bed level of the first cell of bifurcate
i = 2, 3. Together with the distance aw W, this represents
the assumed extension of the bifurcate bed levels into the
upstream channel. This completes the nodal point relation
as now the sediment division between the bifurcates can be
calculated.

2.2. Flow and Sediment Transport in Meander Bends

[16] In the nodal point relations described above up-
stream bars and bends are ignored. Before hypotheses for
their effects on bifurcations are developed, the theory used
in the three-dimensional flow model is simplified below to
two dimensions in combination with the equations for
sediment transport and a parameterization for secondary
flow in bends.

[17] Both the spiral flow and transverse bed gradients
found in meandering rivers deflect the sediment transport
from the main flow direction, which is relevant for us just
upstream of a bifurcation. The bed shear stress 7 in the s
(main flow) direction can be written as [Struiksma et al.,
1985]:

uvu? +v?

= pg ©)

where p = fluid density, g = gravitational acceleration
(9.8 m/s?), u = flow velocity in s direction, v = flow
velocity in n direction. The bed shear stress for the n
(transverse) direction can be written as:
Ty = Tgtan 3, (10)

where the direction (3, of the bed shear stress vector

including the effect of spiral flow is [Struiksma et al.,
1985]:

v h
t =——arctan4 — 11
an 3. L —arctand o (11)
with spiral flow coefficient 4 given as:

(12)

where € = a calibration coefficient of order O(1) for the
spiral flow intensity, x = 0.4 Von Karman’s constant, 7 =
water depth, R = radius of curvature of the streamlines.
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This relation is based on the assumptions of gentle bends
(about R/W > 2 which is true for all cases presented
here) and a logarithmic velocity profile.

[18] Note that the three-dimensional model, contrary to
the above 2DH approach, does not assume a logarithmic
velocity profile nor gentle bends. Yet in the three-
dimensional model the sharpness of bends is somewhat
limited by cell size and the requirement of cell orthogo-
nality. We also note that the simplified theory above has
been implemented in a quasi-three-dimensional (two-
dimensional) version of the Delft three-dimensional sys-
tem, which is significantly faster than, and gives similar
results as the full three-dimensional model for river mor-
phology in general [Lesser et al., 2004] and the present
bifurcations in particular [Kleinhans et al., 2006].

[19] On a sloping bed the direction (3, of the sediment
transport will deviate from that of the shear stress. For the
combination of a transverse slope and spiral flow, Struiksma
et al. [1985] derived:

sing, — L&
tan 3, = f(19) ?; (13)
COSﬂT _%gc

where 6z/6y = transverse slope and 6z/6x = longitudinal
slope. The bed slope effect on sediment transport is
calculated with an empirical function for f{#) derived from
flume experiments by Talmon et al. [1995], which has been
validated for numerous field cases within the Delft three-
dimensional model system [see also Struiksma et al., 1985;
Lesser et al., 2004]:

16) =9 (i)w\/@

(14)
where 0 is the nondimensional shear stress (Shields number)
defined as

T

0d=———
(py — p)gDso

(15)

in which p, = density of sediment and p = density of water.

2.3. Hypothesized Effect of Bars and Overdeepening
on Bifurcation Dynamics

[20] Through analysis of the simplified theory summa-
rized above we will now formulate hypotheses for the
effects of upstream channel bends and bars on a bifurcation.

[21] From the previous section it follows that the direc-
tion of sediment transport may differ from the direction of
depth-averaged flow because of gravitational effects on
transverse and longitudinal slopes and because of spiral
flow. If a bend is situated just upstream of a bifurcation, the
bifurcate connected to the inner bend may therefore receive
relatively more sediment and the bifurcate connected to the
outer bend may therefore receive relatively more water.
Thus a bifurcation may be destabilized or stabilized by an
upstream bend. A second hypothesis is that combinations
may exist of bend radii at the bifurcation and slope
advantages of the bifurcate connected to the inner bend that
counteract exactly, so that the bifurcation is nearly balanced
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and the avulsion duration is much longer than in more
unbalanced situations.

[22] A third hypothesis is related to the dynamics of bars
at bifurcations, which requires more explanation. The
steady bed topography in river bends can be understood
as a combination of a transversely sloped bed depending on
the local channel curvature and a pattern of steady alternate
bars induced by upstream variations (or perturbations) in
channel curvature. Struiksma et al. [1985] identified four
characteristic length scales in the linearized equations for
the steady alternate bars, namely the adaptation length of the
flow \:

e

A = ——
W 2g

(16)

the adaptation length of a bed disturbance A:

A = %h(%) "0

the wavelength of the bar L:

A 1 A AN =3\
2r— = — N2 22E) — 1
"L, 2\/(”+ Y (A) ( 2 ) (18)

and the damping length Lp.
A LA n-3
Lp 2\ N\ 2

[23] The character of bar dynamics (L, and Lp) is a
function of AJ/)\, (sometimes called Interaction Parame-
ter IP), which depends strongly on the width—depth ratio
Wih (Figure 2). For narrow and deep channels the bars
are overdamped, i.e., the transverse slope in bends adapts
within a short distance to the bend radius, approximating
the axisymmetrical profile for infinitely long bends (so
that tang3, = 0) that can be derived from equations (11),
(12), and (13). This bend profile and the associated spiral
flow may affect the transverse slope associated to the
bifurcation.

[24] For wider and shallower channels, the bars are
underdamped. This leads to overdeepening of the outer-
bend pool and associated enhancement of the bar in the
inner bend just downstream of the entrance of the bend or
other perturbations (such as sudden widening, narrowing,
bank irregularities and groynes). If bars are underdamped in
a bend just upstream of a bifurcation, then the transverse
slope at the bifurcation will depend on the length of the
bend upstream of the bifurcation.

[25] For very wide and shallow channels, the bars be-
come unstable and theoretically grow in height downstream
of the perturbation. Unlike overdamped and underdamped
bars, unstable bars depend not only on perturbations up-
stream but also on perturbations downstream. The resulting
bed topography in this condition ranges from pronounced
finite-amplitude alternating bars to braided channel patterns
[Mosselman et al., 2006]. Overdeepening and unstable bar
behavior may cause the transverse slope at the bifurcation to

(19)
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Figure 2. Regimes of bars generated at a perturbation as a
function of width (a) and of A/, (b) [after Struiksma et al.,
1985]. Overdamped bars (left in b) disappear rapidly,
allowing the bend morphology to approximate the axisym-
metrical situation over a short length; underdamped bars
need more length to damp out and lead to overdeepening in
bends, and unstable bars grow in amplitude and initiate
more bars downstream. Circles indicate model settings of
series 5 in Table 1.

be reversed compared to that in the narrower channels,
which would reverse the bifurcation evolution.

[26] The effect of migrating alternating bars on a bifur-
cation, in contradistinction from the unstable but nonmi-
grating bars discussed above, may maintain a bifurcation as
quasistable with a fluctuating discharge division [Miori et
al., 2006a] or a switch bifurcation (main flow switching to
the opposite bifurcate [Hirose et al., 2003]).

[27] In short, we hypothesize that the bifurcation dynam-
ics will depend strongly on the width—depth ratio and on
the length of the upstream bend (the beginning of which
acts as the perturbation that initiates bars). Given that the
river Rhine historically had a width—depth ratio on the
transition from underdamped to unstable bars [Schoor et al.,
1999], this effect will be addressed in the three-dimensional
modeling by specifying realistic river widths spanning these
two regimes (here 288, 378, 504, 630 and 900 m). The
predicted bar wavelength L, is about 4.0 km for 288 m
width, 4.8 km for 378 m, 7.9 km for 504 m and does not
exist for 630 and 900 m. However, the bars will be shorter
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in the beginning as they develop from the initial plane bed,
which is relevant for the decisive period of bifurcation
evolution. The bars will be damped faster as they migrate
into the narrower bifurcates.

2.4. New Nodal Point Relation for Bifurcations
With a Bend Upstream

[28] In this section we use the simplified theory to
formulate a new nodal point relation for one-dimensional
models. Note that the two-dimensional theory has been
implemented in the two-dimensional version of Delft
three-dimensional, which give nearly the same morpholog-
ical results for bends and bifurcations [Lesser et al., 2004,
Kleinhans et al., 2006]. Thus the nodal point relation
developed below is more or less consistent with the three-
dimensional model, albeit simplified to one-dimensional.

[20] The Bolla Pittaluga et al. [2003] nodal point relation
was developed for braided rivers. Compared to meandering
rivers, braided rivers have relatively straight, shallow chan-
nels where spiral flow can perhaps be neglected. In mean-
dering rivers, which are of interest for the present paper,
spiral flow in bends just upstream of bifurcations cannot be
neglected. Significantly, extra sediment transport g, takes
place in the transverse direction due to spiral flow, although
counteracted by the transverse slope. We will extend the
Bolla Pittaluga et al. [2003] relation with the deflection by
bend flow based on the simplified theory for flow and
sediment transport in bends presented earlier. The relations
are the same as given in the previous section, except that
equation (13) is used for the transverse slope deflection
which is combined with the deflection by bend flow by
equation (11). For clarity we present the full set of equations
again below.

[30] To start, v/u is calculated from u = Q/(h;W;) (with
hy at the end of branch 1) and v from the flow discharge O,
that crosses the dividing line within a distance of awW;
upstream of the two bifurcates as in equation (2):

(20)

0.-3(0-0- 0 )

Wy + W;
so that v can be calculated as:

__ 9%
V=
/’ll()éle

(1)

Following Bolla Pittaluga et al. [2003], 1 < ayw < 3. At the
bifurcation, the sediment (O transported at the end of
branch 1 is divided over the first cells of the two bifurcates
proportional to their widths. Sediment transport g, takes
place in the transverse direction because the sediment
transport vector is deflected on the transverse slope:
qsy = tan 5,041 /W (22)
Herein, tan (; is not equation (6) combined with equation (5)
as in the work of Bolla Pittaluga et al. [2003], but the
formulations including spiral flow from the work of
Struiksma et al. [1985] (equation (13) combined with
equation (11) and equations (12) and (14)) as follows.
[31] On a sloping bed the direction Gy of the sediment
transport deviates from that of the shear stress due to
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gravitational effects. For the combination of gravitational
effects and spiral flow, [Struiksma et al., 1985] derived
equation (13):

sin 3 ! %
tan 8, = /(19) fSy (23)
cos (3 %
TJ(0) ox
Herein (equation (11)):
8. = arctan” — arctan 42 (24)
;- — arc anu arctan R
wherein the spiral flow coefficient is (equation (12)):
2 _8
A= e (1 . C) (25)

with calibration coefficient € (¢ = 1 in the three-dimensional
model but will be larger in the one-dimensional model) and
under the assumption of gentle bends. The bed slope effect
on sediment transport is calculated according to Talmon et
al. [1995, equation (14)]:

16) =9 (%)03@

(26)

[32] Having calculated the transverse sediment flux due
to a transverse slope and spiral flow, we then continue with
the same equations as in the work of Bolla Pittaluga et al.
[2003]. The transverse transport rate is subtracted from one
bifurcate and added to the other as:

W
72W3 Os1 + gy Wy

QxZ = W, +

(27)

and from mass conservation Qg = O — Os. In the
numerical solution of the work of Bolla Pittaluga et al.
[2003] the transverse slope just upstream of the bifurcation
is evaluated from the bed levels of the first cells of the
bifurcates (2, 3) as:

Az _ 22,1l — 31 (28)
Ay 24

Together with the distance aw W, this forms the extension
of the bifurcate bed levels into the upstream channel. This
completes the new nodal point relation including the effect
of an upstream bend and consistent with a simplified
version of the theory underlying the three-dimensional
model.

2.5. Tested Aspects and Assumptions of Nodal Point
Concepts

[33] The nodal point concepts for one-dimensional mod-
els contain a number of aspects and assumptions, which will
be tested with the three-dimensional model outcomes:

[34] (1) Wang et al. [1995] assume a constant k indepen-
dent of the stage of development of the closing and opening
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bifurcate, or both stable bifurcates, and independent of flow
conditions such as floods.

[35] (2) Bolla Pittaluga et al. [2003] assume that the
transverse slope just upstream of the bifurcation extends
into the upstream branch over a length of the order of 7,
which remains constant over time. This also implies that the
transverse transport O, extends over the same distance.

[36] (3) The new nodal point concept presented in
section 2.4 assumes that sediment deflection by the spiral
flow occurs over the same upstream length as the trans-
verse slope.

[37] (4) The bar regime in the upstream channel is
assumed to be overdamped in all nodal point concepts
(Figure 2). Upstream bar dynamics will affect the flow
direction and the deflection of sediment transport on the
transverse slope.

[38] Particularly the last issue has been discussed in the
past few years, as Tubino and Bertoldi [2005] identified an
influence upstream of the bifurcation for the unstable bar
regime, in addition to the upstream influence of the down-
stream boundary condition for water motion. Underdamped
bars will affect the transverse slope depending on the length
of the bars and the distance between the bifurcation and a
perturbation upstream (such as the beginning of the mean-
der bend or a bank irregularity). In addition, the transverse
slope will also be affected by perturbations downstream if
the bars are unstable.

3. Methodology and Model Description

[39] We will test the nodal point relations and their
underlying assumptions in the following steps. Bifurcation
evolution as modeled in three-dimensional will be studied in
detail for a range of scenarios. Then the flow division
calculated in the three-dimensional model will be used to
predict the sediment division according to the nodal point
relations, and compared to the sediment division calculated
in the three-dimensional model. Finally, the nodal point
relations will be implemented in a one-dimensional
model to compare the morphodynamic evolution to
three-dimensional model results.

[40] This chapter is set up as follows. First the one-
dimensional and three-dimensional model setup and their
boundary conditions are described. Numerical aspects of the
three-dimensional model are summarized. Then the scenar-
ios with the three-dimensional model are summarized to
provide an overview of all the runs and the sensitivity
analyses. Next, alternative model grids are presented for
representing bifurcations. Finally, a first sensitivity analysis
is performed; we compared model results with grids finer
and coarser than used throughout the paper.

3.1.

[41] To test the nodal point relations, a simple one-
dimensional research model was set up as follows. The
flow in the one-dimensional model is based on the Bélanger
equation (backwater formulation, gradually varied flow)
with the White—Colebrook roughness predictor. The divi-
sion of flow discharge O, into O,, O5 at the nodal point
follows from mass conservation and the other specifica-
tions: the backwaters up the bifurcates are iterated by
varying ,, Qs until their water levels at the nodal point
are equal. The morphology is then updated (first order) by

One-Dimensional Model Setup
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application of the Exner sediment conservation law with the
sediment transport gradient based on the predictor by
Engelund and Hansen [1967] for all locations except the
upstream points of the bifurcates where the nodal point
relation is applied.

[42] Each branch has a length of 6 km with a step size of
150 m as in the three-dimensional model. The one-dimen-
sional model is run for 50 years with a (morphological) time
step of 0.05 year. The specified model parameters are
exactly the same as in the three-dimensional model: up-
stream discharge (Q = 2500 m’/s), width (W, = 504 m, W, =
W5 = W1/2), Nikuradse roughness length (ks = 0.15 m) and
grain size (D = 2 mm). The initial bed was plane and had a
slope of § =1 x 10~* m/m, except where the slope of one
downstream channel was deliberately increased as in the
three-dimensional model. The downstream water levels
were equal to those in the corresponding three-dimensional
runs. The upstream sediment transport input was such that
the bed level at the upstream boundary did not change
during the runs.

3.2. Three-Dimensional Model Setup

[43] The Delft three-dimensional morphodynamic model
system was used (version FLOW3.53.01.00, 17 February
2006). The model solves the nonlinear shallow-water equa-
tions. Lesser et al. [2004] present the full hydrodynamic
equations of Delft three-dimensional. These equations are
quasi-three-dimensional in the sense that the vertical mo-
mentum equation has been reduced to the hydrostatic
pressure equation by assuming that vertical flow acceler-
ations are negligible compared with gravity. The three-
dimensional model thus consists of several (10 in our case)
layers that are coupled through the hydrostatic pressure
equation and a continuity equation for mass conservation.
This allows an approach in which the horizontal sizes of the
computational grid are much larger than the vertical sizes.
The flow was calculated according to Lesser et al. [2004] on
a staggered grid by a second-order ADI scheme based on
the dissipative reduced phase error scheme. A third-order
upwind ADI transport scheme was used for the standard k—
¢ turbulence closure model [Stelling and Leendertse, 1991].
The time step of the flow was 30 seconds to ensure
numerical stability as evaluated by the Courant criterion
for fluid advection. An initial period of 50 minutes (or more
for longer models) without morphological updating was
allowed to stabilize the flow, which was accomplished
within the calculation accuracy in about half that time
(measured by the convergence of water depth, discharge
and velocity to a constant value in time).

[44] Total load transport was computed at cell centers; a
first-order upwind Lax scheme was used to determine the
bed level changes [Lesser et al., 2004]. Grid cells were
converted to dry cells for water depths # < 0.1 m. Erosion
and sedimentation during a single time step (specified for
flow calculation) are very small so that the flow is not
affected by morphological change. For more time-efficient
calculation, a large number of morphological time steps can
be done for each flow time step, expressed as a morpho-
logical multiplication factor. The results (bed level change,
discharge and sediment division) were not significantly
different (i.e., less than 1%) for model runs with factors
between 1 and 200. The factor chosen for the model runs
presented in this paper was 100.
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[45] The imposed boundary conditions are upstream flow
discharge, upstream sediment input and downstream water
levels. The discharge was constant at O = 2500 m*/s. Using
the flow conditions of the upstream channel and the same
transport predictor as in the model, this discharge annually
transports an amount of sediment that is equal to the
calculated transport using the complete discharge record
of the river Rhine of the past century. Initially the discharge
is equally divided over the flow width but the distribution is
allowed to develop over time as the morphology down-
stream changes. Given the straight upstream section in all
grids this is not significantly affecting the bar pattern
evolution in the downstream bend.

[46] The downstream water levels were chosen such that
the flow was uniform initially, which results in equal
downstream water levels for cases of equal downstream
gradients S, = S3. The initial bed was plane and had a
gradient of S =1 x 10~* m/m, except where the gradient of
one downstream channel was deliberately increased. The
roughness formulation was Darcy—Weissbach with Nikur-
adse roughness length k5, = 0.15 m, and the sensitivity to this
choice will be assessed by some runs with a constant Chézy
roughness factor C instead.

[47] The sediment transport at the upstream boundary is
calculated at transport capacity, preventing bed level change
at the boundary. The sediment transport predictor, unless
mentioned otherwise, is Engelund and Hansen [1967] and
the sensitivity to this choice will be assessed later by
comparing with runs where Van Rijn [1984a, 1984b] was
used. The sediment is uniform with size D5y = 2 mm (used
in the work of Engelund and Hansen [1967]) and Do, =
8 mm (only used in the work of Van Rijn [1984a] for grain-
related shear stress), resulting in dominant bed load trans-
port. The effect of finer sediment (Dsy = 0.5 mm, Doy =
1.5 mm) with dominant suspended load transport will be
assessed later.

3.3. Bifurcation Schematization and Grid Creation

[48] The grids of the three-dimensional model were
curvilinear (Figure 3). The grids were generated automati-
cally as concatenated straight and curved sections to ensure
repeatability. The grids were orthogonalized as much as
possible in an automated procedure minimizing deviations
from orthogonality of adjacent cell midpoints by iterative
adaptation of cell shape and position while minimizing
gradients in cell size and width—length ratio. The average
length of the grid cells was 150 m. The width of the cells
was 28 m (so that the channel width becomes W, = 504 m)
for the standard models, 35 m (W; = 630 m) and 50 m
(W, =900 m) for the wider, and 21 m (#; = 378 m) and
16 m (W, = 288 m) for narrower models. The flow was
divided vertically into 10 layers of equal thickness (0.47 m
initially for 4.7 m water depth), which was automatically
adapted to water depth changes during a model run [Lesser
et al., 2004]. All three branches had the same lengths and
consisted of 40 cells each (6 km), resulting in a grid of
80 cells long, 18 wide and 10 thick. Grids were generated
with varying upstream bend radii, whereby short bends
were 17 cells long and long bends were 35 cells long; both
downstream of a straight stretch (Figure 3). Downstream
of the bifurcation a constant bend radius of R/W; = 20 was
specified. Several runs with a bend with a single straight
downstream channel are presented to compare how the bed
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Figure 3. Example grids of a short bend (top; series 1, 2 in Table 1), long bend (middle; series 6), and
schematized as a bend with a thin impervious dam (bottom; series 8); all with R/W; =10 and W = 504 m.
The flow is from right to left. Insets shows details at the bifurcation. The upstream channel has index 1,
the bifurcate connected to the upstream outer bend (top) has index 2, and that connected to the inner bend

(bottom) has index 3 in this paper.

upstream of the bifurcation would have evolved in the
absence of the bifurcation.

[49] To split one channel into two at a bifurcation in a
curvilinear grid, two rows of cells had to disappear down-
stream of the bifurcation for numerical reasons (see inset in
Figure 3). To ensure that W, + W5 = W, the width of the
cells downstream of the bifurcation was increased (see
Kleinhans et al. [2006] for two-dimensional runs with
W, + W5 > Wi). The transition to this increased width was
done gradually in the five cells upstream of the bifurcation.
This choice is based on observations in natural bifurcations
and on a rule of thumb that the upstream distance of
influence of a disturbance, in this case the bifurcation, is
of the order of the channel width.

[s0] Some results of an alternative way to schematize a
bifurcation are presented: by specifying an infinitely thin,
impervious dam (hereafter “thin dam”) along the center-
line of the downstream half of the aforementioned bends
(Figure 3). The thin dam disconnects the cells on its sides
and thus divides the downstream half of the grid into two
entirely independent (but parallel) bifurcates. As the dam
is infinitely thin, it was not necessary to correct the cell
width in the bifurcates and the channel width just upstream
of the bifurcation was the same as further upstream since
no cells had to disappear contrary to the bifurcated grid.
Hence any difference in model result between the bifur-
cated grid and the thin dam grid are due to the (absence of
a) bifurcation “bluff” or the grid cell widening.

[s1] To demonstrate the negligible grid dependence of the
general results, several cases with halved grid cell sizes
(horizontal) are presented (160 x 40 x 10 cells) as well as
cases with doubled grid cell sizes. Coarse grids were created
by doubling the grid cells in size in the horizontal direc-
tions. The bluff at the bifurcation is still 2 cells wide as in

the standard grids, but its width is necessarily larger because
grid halving was not exactly possible for the bifurcated grid.
Thus differing results between coarse and standard grids can
be ascribed either to the coarseness of the grid or the
different bluff. Fine grids were created by halving the grid
cells in the horizontal directions. The bluff at the bifurcation
became 4 cells wide with the same total width as in the grids
of standard resolution used in the rest of this paper. In
addition, one alternative fine grid was created in which the
bluff was only two cells wide (as in the standard grid) so
that the bluff was two times narrower than in the standard
grid. This alternative run was done with equal slopes in the
bifurcates.

3.4. Model Scenarios and Generality of the Results

[52] The model settings presented in this paper were
loosely based on the river Rhine but designed such that a
large range of conditions occurring in natural rivers is
covered. Table 1 summarizes the runs.

[53] The first series was to assess the effect of varying
bend radius upstream of the bifurcation. As gradient advan-
tage is often cited as a cause of successful avulsion, the
second series was to increase the gradient in the bifurcate
connected to the inner bend. These runs were all done with
relatively short bifurcates while backwater effects are
known to be important and the length of the bifurcate
may determine the timescale of closure. Therefore a third
series was done with bifurcates as long as those in the Rhine
delta, which are much longer than the backwater adaptation
length. Assessing the importance of floods is computation-
ally expensive because the morphological multiplication
factor can no longer be used. Floods are therefore applied
for a limited duration only and for cases where the bifur-
cates are nearly symmetrical as well as for cases where one
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Series N Figure Number RIW, Grid Type Description
1 8 7? 2,4, 6,8, 10,20, 50, 100 bifurcating varying upstream bend radius,
6 km long branches, 50 years duration
2 6 8 4,10, 100 bifurcating increased gradient of inner-bend branch: S5 = 1.15,
3 4 9 4, 10 bifurcating downstream branch length 31 km and 106 km,
200 years duration
4 4 9, 10 bifurcating downstream branch length 106 km, discharge varied
5 4 11, 12 left 10 bifurcating varying widths: W, = 288, 378, 504 (from series 1),
630, 900 m
6 5 11, 12 right 10 bifurcating longer upstream bend than series 1—5; widths as series 5
7 4 11, 13 left 10 bend no bifurcation, W, = 288, 504 m, short and long bend
8 4 11, 13 right 10 thin dam bifurcation schematized as bend
(as series 7) with thin impervious dam to split bifurcates
9 3 14a, 14b 4, 10, 100 bifurcating constant Chézy roughness instead of constant Nikuradse kg
10 8 14g, 14h 2,4,6,8, 10, 20, 50, 100 bifurcating finer sediment: D5y = 0.5 mm instead of Dsy = 2.0 mm
11 2 14c, 14d 10, 100 bifurcating Van Rijn [1984a, 1984b] sediment transport
predictors instead of Engelund and Hansen [1967]
12 8 14e, 14f 2,4, 6,8, 10, 20, 50, 100 bifurcating finer sediment: Dsy = 0.5 mm and
Van Rijn [1984a, 1984b] transport predictors
13 4 4e, 4f 4, 10, 100 bifurcating halved grid cells (fine grid), 3 runs with S3 = 1.15,;
one run with narrow bluff and S5 = S, for
R/W, =4, 100 years duration
14 3 4a, 4b 4,10, 100 bifurcating doubled grid cells (coarse grid), S3 = 1.15,;

100 years duration

“For R/W; = 10: 3, 6, 11a, 15a—15e, 16; for R/W; = 4: 15f—15j, for R/W, =

4, 10, 100: 4c, 4d. The series label is used as reference in this paper. N is the

number of runs in the series. Figure number refers to the figures where these series are presented and grid type is explained in section 3.5. See Kleinhans et

al. [2006] for more model runs in two-dimensional mode.

bifurcate already nearly closed off (series 4) as it may be
conceived that nearly closed bifurcates are much more
affected by floods. In the fifth series the width—depth ratio
was varied and in the sixth series the length of the upstream
bend was increased as both determine bar dynamics at the
bifurcation and therefore potentially affect the long-term
evolution of a bifurcation.

[s4] Series 7—14 in Table 1 are intended for comparison
and as sensitivity analyses. To ascertain the effect of the
presence of a bifurcation on the upstream bend, runs were
done without bifurcations and with exactly the same bends,
as well as runs with an alternative representation of bifur-
cation in a grid (series 7 and 8). Several choices of friction
formulation, sediment transport predictors and sediment
sizes made in the initial model setup were based on
measurements in the river Rhine, on modeling experience
and understanding of theory. The sensitivity of the results to

these choices was assessed in series 9—12. Finally, the
sensitivity of the results to the grid resolution was assessed
by comparison of model results to finer and coarser grids
(series 13, 14). The grid resolution results will already be
presented in the next section to ascertain the validity of our
main results.

[55] To put our results in a general perspective, we
compare a number of basic nondimensional parameters of
the model settings and real terrestrial rivers (Table 2). The
nondimensional numbers refer to the specified grids and to
the flow and sediment dynamics (of initial stages). The
numbers are compared with parameters calculated for the
river data set by Van den Berg [1995] and empirical
relations provided by Bridge [2003] and Camporeale et
al. [2005]. The comparison demonstrates that our results are
well within natural ranges of parameters for large meander-
ing and nearly braided rivers, although natural braided

Table 2. Nondimensional Numbers Representing the Model Runs in Comparison to Real-World Values Reported in or Derived From

Literature®
Description Parameter Model Series Real World References

Relative bifurcate length Ly 3/ Agw 0.25-4 1,3 Rhine bifurcates [Stouthamer and Berendsen, 2001] have lengths of
10-200 km for similar flow conditions; lake deltas
[Edmonds and Slingerland, 2007] have very short, evolving bifurcates

Width—depth ratio Wilhy 44-163 5 data in Van den Berg [1995]: Wi/hy = 110 + a factor of 2 for
meandering and (wider) braided rivers

Relative bend radius (width) — R/W; 2-100 1 relations in Bridge [2003, Table 5.6]: R/W; = 3—14, so our models include
nearly straight and rather sharp-bended meandering rivers

Relative bend radius (depth) hC*(8gR) <7 x 1073 1 relations in Camporeale et al. [2005, Figure 5 and 6]:
hC*(8gR) ~ 4 x 1072,
so our models refer to gentle bends in shallow rivers

Froude number Fr 0.14-0.17 all data in Van den Berg [1995]: 0.1 < Fr < 0.5 for sand-bed rivers;
0.1 < Fr < 0.9 for gravel bed rivers

Shields number 0 0.12-0.8 5, 10 data in Van den Berg [1995]: 0.26 < 6§ < 0.99 with decreasing 6
for increasing Ds

Interaction parameter IP = A/ 0.5-10 5 data in Van den Berg [1995]: 0.1 <IP < 10 for 10 < W,/h; < 100 with a

factor 10 spread

“The column Model refers to the values imposed on or derived from the three-dimensional modeling; Series refers to the model series in Table 1.

10 of 31



‘W08454 KLEINHANS ET AL.: BIFURCATIONS IN MEANDERING RIVERS 'W08454
1 1 1 .
C standard E fine
0 100 grid grid
0.8 0.8 0.8 100
0.6 10 0.6 0.6
(@) .
=0 = alternative
g
0.4 0.4 0.4
10
0.2 0.2 0.2
4
0 A coarse grid 0 0
0 50 100 O 50 100 O 50 100
time (yr) time (yr) time (yr)
B coarse grid D standard grid F fine grid :
10° 4 10° 4,10/ 110° y
0‘3
=10° 10° °
(%)
(¢)
100,10 100
107 107 2| = alternative
0.1 1 10 0.1 1 10 0.01 0.1 1 10
Q,/Q, Q,/Q, Q,/Q,

Figure 4. Comparison of discharge and sediment division in the coarse (series 15 in Table 1), standard
(as in the rest of this paper, series 2), and fine grids (series 14). (a, c, e) Time series of discharge for the
inner-bend bifurcate. Labels indicate R/I¥;: bend radius R as a multiple of the upstream channel width
Wy. (b, d, f) Sediment and discharge division over the bifurcates. The dashed line in (e) and (f) represents
the alternative fine grid with a smaller bluff of only two cells wide and S, = S5. The dotted parts of the
lines in (b) and (f) represent the 50—100 year time span, during which the closure process in the coarse

and fine grids is demonstrated to be similar to the

rivers are even wider and shallower. However, our focus
was on meandering rivers. The bend radii modeled here are
not the sharpest found in nature, for which the model cannot
be applied with the present grid, but do include sharp to
gentle (nearly straight) river reaches.

3.5. Sensitivity to Grid Size

[s6] In this section we present several tests to ascertain
the sensitivity of our results to the chosen grid size (series 1,
2, 13, 14 in Table 1). These tests were all done with the
“standard” 12 km long grids with short bifurcates and short
upstream bends of R/W; = 4, 10, 100 and with a 10%
steeper slope of the inner-bend bifurcate (except for one fine
grid with a narrower bluff), so that the bend and slope
advantage effect compete (this will be explained in detail in
the results chapter). The model results are the most sensitive
to the small net effect near the critical combination of bend
radius and inner-bend slope where the bend and slope
advantages (nearly) cancel out. In such settings the model
results are also sensitive to grid effects which we will
employ here to assess the effect of grid size.

[57] The fine grid runs have similar behavior as the
standard grid (compare Figure 4e and 4f with Figures 4c

standard grid.

and 4d, and Figure 5). In particular, the direction of
evolution of the bifurcations is the same: for the bends with
R/Wy =4, 10 the bend effect overcomes the slope advantage
of the inner-bend bifurcate while for the gentler bend the
slope effect is dominant. In detail, there are differences: the
gentle-bend run in the standard grid stabilizes the discharge
division sooner than in the fine grid run. The discharge
change in the first 25 years is within a few percent for
standard and fine grids but particularly in the closing phase
the fine grid models keep their closing bifurcate open for
a much longer time while the final discharge asymmetry
is more pronounced. The sediment division (Figures 4d
and 4e) is also within a few percent until the discharge
ratio of the bifurcates is more than 10. Below that ratio, the
04/0q; plotted versus O,/Qs (Figures 4b, 4d, and 4f) is a
straight line in double logarithmic space, which means a
constant power k in equation (1). This means that the final
near-closure process in the finer grid differs from the coarser
grid (discussed later).

[58] The final equilibrium discharge division of the alter-
native fine grid with the narrow bluff is more asymmetrical
than the one of the normal grid (Figure 4), which is due to
the finer bed level structure of the closing bifurcate, where
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Figure 5. Sedimentation—erosion pattern (scale in meter)
of the three-dimensional model at 7= 5 years with coarse,
standard, and fine grid (R/W; = 10 from series 15, 2, and 14
in Table 1).

some cells become dry while others remain active. This
suggests that the bifurcates with even smaller bend radii
would have had more (instead of less) asymmetrical
equilibrium discharge divisions with finer grids. The
morphology is also very similar but slightly more pro-
nounced (plotted as dashed lines in Figure 15). The
discrepancy of O3/Q; between fine and standard grid is at
most 10% (for ¢ = 30 year and R/W; = 100), or, the time
discrepancy at which the same discharge is attained is
10 years (for t =30—-40 year, R/W; = 100 and Q3/Q; = 0.9).

[s9] The general behavior of the coarse grids is similar to
that of the standard grids (compare Figures 4a and 4b to
Figures 4c and 4d). A major difference is that the bifurca-
tion with R/W; = 10 has flipped: the slope effect dominates
over the bend effect in the coarse grid whereas the bend
effect dominates in the standard and fine grid. In addition,
the sediment division in the coarse grid is different (an
increasing power k) after a shorter period and when the
bifurcate discharge ratio is above 5 (compared with 10 for
fine grid runs). The reason for the deviating behavior of the
coarse grid is the initial formation of an extended scour hole
just downstream of the bifurcation in the inner-bend bifur-
cate. This scour hole was also observed in the standard grid
and particularly with other sediment transport predictors,
but there its deepening was reversed due to the infilling of
the inner-bend bifurcate. As said before, this difference may
well be due to the wider bluff in the coarse grid rather than
the coarser grid itself. In the coarse grid the scour became a
few cells long, as in the standard grid, so it was much more
extended spatially because the grid cell size was twice as
large.
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[60] In general, the same conclusions can be drawn from
the coarse, standard and fine grids: at certain combinations
of upstream bend radius and downstream slope advantage of
the inner-bend bifurcate, these two effects cancel out so that
the bifurcation remains quasistable. Near the critical combi-
nations the model runs are extremely sensitive to initial and
boundary conditions and the grid cell size. These grid size
dependence tests therefore demonstrate that the chosen
standard grid size is adequate for the modeling of general
bifurcation behavior. The most important parameters, namely
flow and sediment division, converged for the chosen grid
size compared with finer grids, although this does not imply
that other modeled parameters have converged as discussed
by Hardy et al. [2003]. The precise model results are sensitive
to the grid resolution, mostly because of the formation of
local scour near the bifurcation and because the representa-
tion of bar and bend morphology is better on finer grids. For
fine grids, the power k remains constant for higher ratios of
upstream/downstream discharge than in coarser grids, which
means that the final closure process differs for fine grids.

4. Results

[61] In this chapter we present the model results that are
most relevant for understanding real bifurcations. These are
the effect on bifurcation evolution of an upstream bend in
competition with the effect of a downstream slope advan-
tage of the bifurcate connected to the inner bend. Further-
more, the effect of the length of the bifurcates is studied
relative to the backwater adaptation length. Next some
results are presented on the effect of floods on the long-
term morphodynamics. Finally the effects of upstream
channel width—depth ratio and the length of the upstream
bend are presented because these factors determine bar
dynamics which may affect bifurcation evolution.

4.1. Morphodynamics at the Bifurcation and
Effect of Bend Radius

[62] The general morphological development in the three-
dimensional model with a width of W, = 504 m and an
upstream bend radius of R/W; = 10 is shallowing of the
bifurcate connected to the inner bend and deepening of the
outer-bend bifurcate (Figure 6 and series 1 in Table 1). In
the first few model years alternating bars develop from the
plane bed and migrate downstream. After some time, a fixed
bar develops in the inner bend upstream of the bifurcation.
Meanwhile, a bar and pool migrate side-by-side into the
bifurcates and become fixed in position as well. The rate of
bar development and migration depend on the bend radius:
the sharpest bends have the fastest development of a fixed
bar. The morphological evolution of similar bends without
bifurcations will be compared later.

[63] For all bend radii (series 1 in Table 1), the model
always predicts a development to a stable, highly asymmet-
rical discharge division. The outer-bend bifurcate becomes
dominant when the downstream conditions in the two
bifurcates are equal (Figure 7a). The division of sediment
transport is fairly similar to that of the flow (Figure 7b).
Initially the flow and sediment division fluctuates in a
damped, quasiperiodic manner (phase 1). This is caused by
the development and migration of the bars from an initially
plane bed. This is seen as the kinks in Figure 7b in the first
10 years and the fluctuations in the lower-left corner of
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Figure 6. Sedimentation—erosion pattern (scale in meter)
of the three-dimensional model with R/W; = 10 (series 1 in
Table 1). At T = 20 years, the bed elevation difference
between the bifurcates is so large that the upstream bend
profile is no longer visible on this color scale.

Figure 7b. Later (phase 2) the flow and sediment are
increasingly discharged into one bifurcate and the bifurcates
silt up or scour along their whole length, but mostly in
their upstream parts. This is seen in Figure 7a as the
declining O5/Q, ratio and in Figure 7b as the straight lines
between 1 < 0-/Qz < 10. Because of the proximity of the
fixed downstream water level, the smaller discharge leads to
a downstream increasing flow depth associated with flow
deceleration which further enhances the aggradation of this
bifurcate.

[64] Notably, in the final stages (phase 3) (0./O; > 10)
the sediment transport declines more rapidly than the
discharge, thereby apparently increasing £ from a value
below to a value above the stability threshold & = n/3 where
n = 5 for the Engelund and Hansen [1967] transport
predictor. This is caused by two factors. The first factor is
the increasing transverse slope of the bed into the closing
bifurcate, which deflects the sediment transport into the
larger bifurcate. The second factor is the increasing relative
roughness ky/h as k; = 0.15 (constant) while the water depth
h decreases. This affects the transport rate, which is propor-
tional to C*h>? [Engelund and Hansen, 1967], whereas the
discharge is proportional to C A", The discharge in the
closing bifurcate then stabilizes at a small but nonzero value.
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[65] The model-derived k is slightly larger for sharper
bends (also see later graphs), particularly for R < SW for
which the final discharge division is slightly less asymmet-
rical than for gentler bends. Apparently the bend effect on
the flow and sediment division is so large that £ is larger in
sharper bends than in gentle bends initially. This difference
is perhaps affected by the emergence of a scour hole in the
inner-bend bifurcate just downstream of the bifurcation,
which attracts flow and thus keeps the bifurcate more open.

4.2. Effects of a Downstream Gradient Advantage

[66] Avulsions commonly take place because of a gradi-
ent advantage of the new flow direction over the old
channel. To test the effect of an increased gradient in one
bifurcate, this gradient increase was specified in the initial
bed levels and the downstream water levels were adjusted to
ensure initial uniform flow. For these runs #; = 504 m and
the bend radii R/W; = 4, 10, 100 (series 2 in Table 1).

[67] The effect of the upstream bend can be counteracted
by increasing the gradient of the inner-bend bifurcate
(Figure 8a). Thus this parameter combination determines
the direction of bifurcation evolution; that is, the choice
which bifurcate becomes dominant. For a gradient increase of
30% (not reported) the inner-bend bifurcate always domi-
nates. For a gradient increase of only 10% (S5 = 1.1 x 10™*
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Figure 7. Effect of bend radius on bifurcation evolution
according to three-dimensional model (series 1 in Table 1).
(a) Time series of discharge for the inner-bend bifurcate.
Labels indicate R/W;: bend radius R as a multiple of the
upstream channel width ;. (b) Sediment and discharge
division over the bifurcates compared with the Wang et al.
[1995] model. For explanation of phases, see text.
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Figure 8. (a) Effect of increased gradient of the inner-bend
bifurcate compared with cases with equal gradients (series 2
in Table 1). Time series of discharge for the inner-bend
bifurcate (S, = S; and three-dimensional model in all cases).
Also shown are the results for the fine grid with R/W; = 4.
(b) Sediment and discharge division over the bifurcates for
all runs shown in (a). The cases with R/W; = 10, 100 and
S3 = 5] lie on top of the asymmetric case.

as in the one-dimensional model) the inner-bend bifurcate
dominates for gentle bends (R/W = 100) whereas the outer-
bend bifurcate dominates for sharper bends (R/W = 10). The
nodal point relation remains similar to that in other runs
(Figure 8b). In other words, a larger gradient (0—20%) in one
bifurcate can be counteracted by upstream meander bend
flow depending on the position of the steeper bifurcate along
the meander. Hence combinations exist of bend radius and
downstream gradients for which the bifurcation remains
quasibalanced for a longer time.

4.3. Effects of Longer Bifurcates

[68] Avulsions are affected by their distance to the sea or
lake relative to the backwater adaptation length. Four runs
were done with extra long bifurcates (series 3 in Table 1):
two were the normal model (with L = 6 km long bifurcates)
extended to 31 km bifurcates (with R/W; = 4, 10), and the
other two were extended to 106 km bifurcates (also R/W| =
4, 10). The backwater adaptation length (at which the water
level has adapted for 63%) can be estimated as Agyw =~
h/3S ~ 25 km, so that the longest model is much longer
than Agw. As presented earlier, the 6 km short bifurcates
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(connected to the upstream inner bend) silt up rapidly,
particularly for a sharper bend. In contrast, the 31 km
bifurcate silts up more slowly and the 106 km bifurcate
aggrades much more slowly than the 6 km bifurcate with
the same upstream bend radii (Figure 9a).

[69] The silting up apparently occurs in three distinct
phases: (1) an initial bar formation phase in the upstream
bend, (2) the stabilization of the bar pattern upstream of the
bifurcation while the initial bars migrate through and out of
the bifurcates, and (3) the gradual silting up of one bifurcate
and erosion of the other. In the first phase (see Figures 7a
and 9a: 0—10 year for 6-km long bifurcates; 0—20 year for
31 km long bifurcates with R/W; = 10) a bar migrates from
upstream into the bifurcate which rapidly destabilizes the
bifurcation (wiggles near Q,/05 = 1 in Figures 7b, 8b, and
9b). The bars were excited by the initial migrating alternat-
ing bars upstream of the bifurcation, and hence decayed
when the upstream bend attained a near-equilibrium mor-
phology, so that a finite train of about ten bars migrates
through the bifurcates. The second phase is after 10 years
for 6 km long bifurcates, after 20 years for 31 km long
bifurcates, and not clearly distinguishable in the discharge
division for 106 km long bifurcates. In this phase the train
of bars migrates out of the bifurcates, which obviously takes

106 km R/W=10
106 km R/W=4
31 km R/W=10
31 km R/W=4

6 km R/W=10

6 km R/W=4
early floods

late floods

100
time (yr)

150 200

B N early floods

+ late floods
=106 km R/W=10
= = 106 km R/W=4
— Wang

Figure 9. Effect of longer bifurcates (R/W; = 4, 10; series
3 in Table 1) and of natural discharge fluctuations (series 4)
on the discharge division (a) and the sediment division (b).
(a) Time series of discharge through the inner-bend
bifurcate for various bend radii and bifurcate lengths. The
natural discharge fluctuations (early after 50 years and late
after 200 years) were applied to the 106 km, R/W; = 4 run.
(b) Sediment division for the natural discharge fluctuations
as symbols and as lines for the constant discharge.
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Figure 10. Effect of variable discharge (series 4 in Table 1) on the inlet step based on the discharge
through the channel of the Rhine in 19912000 (minus overbank flow). (a) Time series of upstream and
downstream discharge (inner-bend bifurcate, late run; see Figure 9 for timing). (b) Width-averaged bed
levels at the entrances of the bifurcates for the early and late run (and also indicated for constant
discharge). (c) Power k as defined by Wang et al. [1995] derived from the three-dimensional model

results for early and late run.

a longer time in the longer bifurcates and has less effect
because the length of the train relative to the bifurcate
length is smaller. In the third phase (when O, and Q5 differ
a factor of 5-20) the large upward bed slope into the
closing bifurcate and the relative roughness become so large
that sediment can no longer enter (Figures 6, 7b, and 9b)
and the bifurcates stabilize.

[70] The runs with the long bifurcates clarify one aspect
of the runs with the normal, short bifurcates: the difference
in sediment division (Figure 9b). The sharper bends initially
silt up more rapidly than the gentler bends, but their second
phase commences much earlier so that eventually the silting
up occurs more slowly than in the gentler bends. In phase 1
k > 1 whereas in phase 2 £ > 5/3. This higher power occurs
early in the sharper bend runs because the bend effect on the
flow and sediment division is stronger so that it initially
deviates more from k = 1.

4.4. Effect of Varying Discharge

[71] In the model results presented so far, the discharge
was constant at (Q = 2500 m’/s). At this value the same
amount of sediment is transported annually as for the
complete discharge record of the past century. It was
assumed that floods did not significantly affect bifurcation

evolution, because the morphological adaptation timescale
of the entire closing bifurcate is of the order of decades
(depending on bifurcate length) whereas a flood takes place
within a month. Hence feeding the model with this constant
discharge or feeding it with the discharge record would not
result in very different large-scale morphology of a single
branch (given absence of bank erosion/accretion). However,
the variable discharge might affect the local bar develop-
ment at the bifurcation, and since the bifurcation evolution
is affected by local bars this must be investigated.

[72] As a realistic boundary condition, a time series of
discharge through the channel of the Rhine in the period
1991-2000 was specified for the R/W; = 4 run with 106 km
long bifurcates. This discharge record (Figure 10a) is just
used as an exemplary natural time series and the roughness
length is kept constant. This particular model run with long
bifurcates (>A\gw) was chosen because the specified down-
stream water levels are far away from the bifurcation so that
using a constant water level rather than a stage—discharge
relation, which is unknown, does not affect the flow in the
vicinity of the bifurcation. It is computationally too expen-
sive to run the model for 200 years without the morpho-
logical multiplication factor. Therefore the time series was
applied to the morphology calculated for constant discharge
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Figure 11. Effect of channel width on the discharge

division over time (all bends have R/W; = 10). (a) Short
upstream bend (series 5 in Table 1). (b) Long upstream bend
(series 6).

(discussed in the previous section) in two stages of the
bifurcation evolution: after 50 (hereafter called “early’”) and
after 200 years (“late”) of constant discharge (Figure 9a and
series 4 in Table 1).

[73] The late run shows larger discharge fluctuations than
the early run (Figure 9a). While the minor bifurcate grad-
ually closes off in terms of rising bed levels and decreasing
average discharge, it continues to experience large floods
and hence a more “flashy” discharge regime. The discharge
peaks lead to increased inlet step heights, in particular for
the late run, but this is partly counteracted by erosion
immediately after the discharge peak (Figure 10b). The
net effect of discharge variation in contrast to constant
discharge is nearly negligible. Only for the late run with
its larger discharge fluctuations the closing bifurcate silts up
more rapidly (=0.01-0.02 m/a), because the floods cause
higher water levels at the bifurcation, leading to a more
symmetrical flow division, more sediment supply and less
flow deceleration in the closing bifurcate.

[74] The power k of the Wang et al. [1995] nodal point
concept was derived from model results by fitting a power
function through the sediment transport (dependent vari-
able) and discharge ratios (independent) in a window of five
time steps moved along the entire time series. The & for the
natural discharge series is highly variable, with peaks at low
discharge when the steps become more pronounced, and
dips at peak and falling discharge when the steps are eroded
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(Figure 10c). As expected, at high discharges the water
depths in both bifurcates increases and becomes more equal,
so that the sediment can also be divided more equally
(depending on the preflood morphology). Plotted as a nodal
point relation (Figure 9b) this causes scatter on otherwise
fairly similar trends of the sediment division as a function of
discharge division. In other words, floods do not significantly
affect the bed evolution of model bifurcations compared with
other effects studied in this paper. We obviously ignore bank
erosion and floodplain processes for which floods are im-
portant in real bifurcations as will be discussed later.

4.5. Effect of Width—Depth Ratio and of Upstream
Bend Length

[75] In section 2.3 an effect of width—depth ratio on the
bar dynamics was predicted, and as a consequence of this
an additional effect was predicted of the location of the
overshoot, which is here determined by the distance
between the bifurcation and the beginning of the bend,
which acts as the perturbation that generates the steady
alternate bars. The results are compared with bends with-
out bifurcations.

[76] The effect of the width—depth ratio on the discharge
division and overall bifurcation morphology in the three-
dimensional model results is dramatic (Figure 11 and series 5
in Table 1): between W = 288-378 m the bifurcation
switches from a dominant inner-bend bifurcate to a dominant
outer-bend bifurcate.

[77] The effect of the length of the upstream bend (see
Figure 3 middle compared to with top) is also quite dramatic
(series 6 in Table 1). The dominant bifurcates for W, = 504
and 630 m are switched from the outer to the inner bend.
The widest channel (#; = 900 m) also develops in the same
direction, but slower than the narrower channels. For the
narrower channels the results are less clear, particularly
when compared with the alternative schematization of
bifurcations by a thin dam (Figure 3 bottom grid, see
discussion). For the 288 m wide channel the inner-bend
bifurcate always dominates, which is due to a scour hole in
that bifurcate just downstream of the bifurcation which
attracted the flow. A similar scour hole also developed
initially in the inner-bend bifurcates with larger widths (also
see Figure 6) but was quickly removed there by the inner-
bend bar extending from the upstream bend into the inner-
bend bifurcate, leading to a dominant outer-bend bifurcate
in all cases. This indicates that the bifurcation behavior
“bifurcates™ at a certain width 288 < W < 378 m (but see
the sensitivity analysis on the model schematization) due to
bar behavior differences for different width/depth ratios as
explained further below. This contrasts to the switching
behavior of a certain bend radius combined with a gradient
advantage of the inner-bend bifurcate (Figure 8a) which
may happen for arbitrary width—depth ratios given enough
additional gradient.

[78] To further illustrate the effect of bar behavior on the
change of direction in bifurcation evolution, longitudinal
profiles near the outer-bend bank are shown in Figure 12
(short bends on the left hand side, long bends on the right).
The results illustrate the switch of dominant channel and the
underdamped to unstable bar behavior for increasing chan-
nel width. For comparison to the case without the bifurca-
tion, additional runs were done of bends without bifurcations
with a straight downstream section (Figure 13 and series 7 in
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Figure 12. Long profiles for standard bifurcation grids of the bed level at the right bank (in the outer
bend of the upstream branch and into the right bifurcate) at various times for bifurcations of various
channel widths (top to bottom). (left) Short upstream bends (series 1 in Table 1). (right) Long upstream
bends (series 6). The bifurcation is at exactly 6 km, and the flow is from left to right. The shades from
light to dark indicate 1.6, 6.4, 12.7, 25.3, and 50 years (R/W; = 10).

Table 1). An alternative schematization of bifurcations by a
thin dam (Figure 13 and series 8 in Table 1) will be discussed
later.

[79] The 288 m wide bends have fairly damped bar
dynamics as predicted (Figure 13, top four panels). The
longer bend clearly shows more of the overshoot phenom-
enon with a deep pool and high bar superimposed on the
overall bend morphology. The 504 m wide bends (Figure 13,
bottom four panels), on the other hand, show unstable
growing bars that increase in wavelength while migrating
downstream. For the long bend this starts further upstream

than for the short bend, so that a bar top is present in the
outer bend at the location of the bifurcation, whereas the
short bend has a bar trough at the same location. This
explains the difference between the bifurcation with W =
504 m and a short or long bend (Figure 12): the outer-bend
bifurcate in the short-bend run is initially deepened by the
bar trough whereas it is aggraded by the bar top in the long-
bend run.

[so] The second bar top in the bend model (Figure 13,
long bend with W, = 504, top right in the graph) shows
nonlinear effects of small water depth by its sharp point and
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Figure 13. (left) Long profiles for short bends without bifurcations (series 7 in Table 1) and with
bifurcations schematized as bends with a thin dam along the second half (series 8). (right) The same, with
long upstream bends. Bed levels are at the right bank (in the outer bend of the upstream branch) at various
times for two bifurcations with short and long upstream bends (downstream sections is straight). The
bifurcation is at exactly 6 km (indicated by dashed line) and the flow is from left to right. The shades
from light to dark indicate 1.6, 6.4, 12.7, 25.3, and 50 years (R/W; = 10). Compare with Figure 12.

shorter length. Such effects are also clear in the nearly
closed bifurcates. The profiles of the very shallow bifurcates
are irregular because a braided pattern is developed due to
the large width—depth ratios.

[s1] For the runs with the extra long bifurcates the bar
evolution (not shown) is very similar to their short-bifurcate
counterparts. The growing bars migrate into the bifurcates
where they stabilize their wavelength at about 4 km and
gradually migrate out of the model domain.

[s2] Finally, the transition from the bed level in the
upstream channel to the bed levels in the bifurcates takes

place just upstream of the bifurcation over a length of about
1-2 W, in agreement with the assumption by Bolla Pittaluga
et al. [2003]. This upstream influence is present in very
narrow and very wide upstream branches alike regardless of
the bar damping (Figure 12).

5. Sensitivity Analysis

[83] In this chapter we present the sensitivity of our
results (series 9—12 in Table 1) to various choices in the
model schematization, namely the roughness formulation,
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Figure 14. Sensitivity analysis of model results. (a, c, e, g) Time series of discharge for the inner-bend
bifurcate. Labels indicate R/;: bend radius R as a multiple of the upstream channel width ;. (b, d, f, h)
Sediment and discharge division over the bifurcates. The thin dashed lines (in all subfigure s) are the
standard runs with Engelund and Hansen [1967], Darcy-Weisbach roughness with ks =0.15 m and D5, =
2 mm sediment (series 1 in Table 1). (a, b) The effect of using a constant Chézy roughness (series 9). (c, d)

The effect of using Van Rijn [1984a] (series 11). (e,

f) The effect of using fine sediment (Dsy = 0.5 mm)

and Van Rijn [1984a] (series 13). (g, h) The effect of using fine sediment (D5 = 0.5 mm) and Engelund

and Hansen [1967] (series 10).

the grain size and the sediment transport predictor. More-
over, results from a different type of bifurcation grid are
compared with the standard grid results presented above
(series 8).

5.1. Sensitivity to Roughness, Grain Size and
Transport Formulations

[84] In this section a number of extra tests are presented
to indicate the sensitivity of our results to choices of
roughness formulation (series 9 in Table 1), grain size
(series 10 and 12 in Table 1) and the transport formulation
(series 11 and 12 in Table 1). These tests were all done with
the “standard” 12 km long grids with short bifurcates and
short upstream bends of 4 W < R < 10 W (Figure 14).

[s5s] Runs with a constant Chézy roughness value rather
than a constant Nikuradse roughness length led to longer
timescales (Figure 14a), but the nodal point relation was
very similar in that it shows the same three distinct phases:
same initial fluctuations, period of constant power & and the
same near-closure behavior of highly increasing Qg,/Qg; for
a nearly constant O,/Q; (Figure 14b). The constant Chézy
roughness (1) damps the underdamped bars more than with

constant roughness lengths, (2) causes the bars to migrate
downstream more slowly, and (3) causes the asymmetry of
bed levels of the bifurcates to develop more slowly. This
agrees with the expected behavior based on the equations,
because Lp is inversely proportional to C while C (using a
constant Nikuradse roughness length) varies with water
depth. So when a bar develops, the water depth above it
is decreased and for constant Nikuradse roughness this
results in a smaller C, which then increases Lp and
consequently amplifies the bar behavior.

[s6] It takes longer before morphological equilibrium is
reached if the Van Rijn [1984a, 1984b] sediment transport
predictors are used instead of the Engelund and Hansen
[1967] predictor (Figures 14c and 14d). The nodal point
relation was similar to the standard settings (but more
erratic) in that it shows the same three distinct phases.
However, the morphology was different in two aspects. The
amplitude of the bars was much larger. This was partly due
to the problem that the Van Rijn [1984a, 1984b] sediment
transport predictors in the Delft three-dimensional system
contain a hard threshold for the initiation of motion, which
strongly affects shallow bars, but also due to the absence of
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a correction for slope effects in the relations for transport
rate and critical shear stress. Hence the alternating bars
increased in height relative to the model runs with the
Engelund and Hansen [1967] predictor, and, moreover,
deep scours developed near the opposite bank. Similar
behavior was observed for some runs with the Meyer-Peter
and Mueller [1948] predictor (not shown). The deep scour
and very high bars caused the more erratic result of the
sediment division, which we therefore attribute to the
missing slope effects with this sediment transport predictor
and its sensitivity to slope effects and incipient motion.

[87] When the grain size is decreased to D5y = 0.5 mm,
the morphology reacts much faster due to the higher
sediment mobility (Figures 14e—14h). Hence the bifurca-
tion destabilizes much faster and at smaller Q,/Q; ratios.
The models were also run for the combination of fine
sediment and the Van Rijn [1984a, 1984b] predictor for
comparison to the Engelund and Hansen [1967] predictor
with the same fine sediment. In these runs the sediment was
more mobile than in the standard sediment with 6 ~ 0.5 and
the suspended sediment transport rate was two to three
times as large as the bed load transport rate.

[s8] The transverse slope in the bends is larger for the
finer sediment, and the wavelength of the bars is slightly
larger. The nodal point relation of the Van Rijn [1984a,
1984b] predictor (Figures 14e and 14f) with the fine sedi-
ment (in contrast to that with the coarse sediment) is within a
factor of 2 of the nodal point relation with Engelund and
Hansen [1967] with the coarser sediment. The better agree-
ment between the two predictors, despite the difference in
sediment size, is because the aforementioned problems in
the work of Van Rijn [1984a, 1984b] with critical shear
stress on slopes is less relevant in the fine sediment.
However, the results with the work of Engelund and Hansen
[1967] and the fine sediment (Figures 14g and 14h) are less
satisfactory (more irregular), which is due to the very high
sediment transport rates. This could be improved by chang-
ing the entire model setup with smaller time steps and other
adaptations, but this is outside the scope of the present paper.

[s9] Despite the problems with predictors with a thresh-
old of motion and with high transport rates it is clear from
this and other experiences that the overall behavior of the
bifurcation and the trend of the nodal point division remains
similar, even if a different roughness formulation or sedi-
ment transport predictor leads to somewhat different bar
dynamics and morphological timescales. Using different
sediment transport predictors the timescale of adaptation
of 05/Q; is within a factor 2, which is entirely reasonable
given the uncertainties of the predictors. Nevertheless,
bifurcations at sensitive combinations of downstream slope
advantage and upstream bend radius are very sensitive to
bar dynamics at the bifurcation, such as those with upstream
channel widths of 288—378 m. In such critical conditions a
different roughness formulation or sediment transport pre-
dictor (and/or slope effects) would give great uncertainties
in the direction of evolution of the bifurcates. The inherent
unpredictability of bifurcations will be discussed later.

5.2. Sensitivity to Bifurcation Schematization

[90] Below we present some tests to ascertain the sensi-
tivity of our results to the chosen schematization of the
bifurcation (series 8 in Table 1). These tests were all done
with the “standard” 12 km long grids with short bifurcates
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and short upstream bends of 4 W < R < 100 W (Figure 3
top). The schematization of the bifurcation used so far has a
bluff facing the flow at the bifurcation. The grid cells are
defined by the nodes (corner points of the cells). To
bifurcate the flow and sediment transport, one row of nodes
has to disappear. As that row provides the corner points to
two adjacent rows of cells, a strip of two cells wide
disappears from the grid (see middle inset in Figure 3).
The resulting bluff may have affected our results.

[o1] An alternative way to define a grid with a bifurcation
in the Delft three-dimensional system is by specifying a thin
dam on the centerline of the second half of a bend, which
splits the channel laterally into two channels (Figure 3
bottom). This has the advantage that all nodes remain
active, contrary to the standard bifurcations in this paper,
so that the upstream channel does not have to be widened
and the cells of the downstream channels do not have to be
widened. Hence differences between this schematization
and the standard bifurcated grids can be ascribed to the
differences in bluff width and channel widening upstream of
the bifurcation. The disadvantage of this grid is that the
bifurcates cannot be given different directions which makes
it less applicable for practical applications.

[92] Several model runs with thin dams and short bends
with R/W; = 4—100 were compared with the runs presented
above, and found to give very similar results for /=504 m
(see Figure 11 for discharge and compare Figures 12 and 13
for morphology). The bar patterns are also very similar.
However, for W = 288 m the thin dam bifurcations differ
from the standard bifurcations (Figure 11): the opposite
bifurcate dominates. In fact, the thin dam bifurcations
behave as expected: the same bifurcates dominate as for
wider channels and the adaptation time is longer because
the closure of one bifurcate is not accelerated by an
unstable bar as in the wider runs. The standard bifurcations
with ' =288 m, on the other hand, developed scour holes
just downstream of the bifurcation which attracted so much
flow that the opposite bifurcate was kept open. This scour
hole was not developed in the thin dam models.

[93] These results mean that the bifurcations with
narrower channels presented in this paper are sensitive
to the manner in which the bifurcation grids have been
schematized. However, the general conclusions remain
valid: at certain combinations of upstream bend radius
and downstream slope advantage of the inner-bend bifur-
cate, these two effects cancel out so that the bifurcation
remains quasistable. The model runs are obviously the
most sensitive to initial and boundary conditions and
schematization near the critical combinations where bifur-
cations are quasibalanced.

6. Test of Nodal Point Concepts With
Three-Dimensional Model Results

[04] We first compare the division of flow discharge and
of sediment transport as derived from the three-dimensional
model results to those calculated by nodal point relations for
sediment division based on the flow division from the three-
dimensional model results. This will be used to test the
underlying assumptions of the nodal point relations. Then
we present results of one-dimensional model calculations of
morphodynamics with the new nodal point relation for some
bifurcations where the upstream bend and a downstream
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slope advantage compete, and compare these results to the
three-dimensional model results for an integral evaluation of
the one-dimensional model concepts embedded in a one-
dimensional model.

6.1.

[os] One important parameter determining the deflection
of the sediment transport is the angle of the shear stress. In
the Bolla Pittaluga et al. [2003] concept this angle is based
on the ratio of depth-averaged streamwise to transverse flow
velocity u/v. The transverse flow velocities calculated by the
three-dimensional model are shown in Figures 15 and 16.
The model results show some transverse flow due to the
bends, but most prominently in the zone 1—2 km upstream
of the bifurcation. More importantly, the bend morphology
shows the overshoot phenomenon with a deeper scour and
higher shoal at the entrance of the bifurcation compared
with further downstream (Figures 15a, 15e, 15f, and 15j).
The high shoal obviously reduces the flow through this
bifurcate. The overshoot is not incorporated in the one-
dimensional concept so that the bifurcate may be expected
to silt up less fast and perhaps not at all.

[o6] The transverse discharge as defined in the nodal
point concepts was derived from the model results as
follows. The true transverse discharge was calculated with
equation (2) from discharges through cross-sections in the
three branches in the three-dimensional model. The trans-
verse discharge and sediment transport were also derived
from the model results over the midchannel line of 01/
upstream of the bifurcation (“local” in Figure 17) and over
the full length of the upstream branch (“all” in Figure 17).
The latter need not be exactly the same because the model
adjusts the distribution of discharge over the upstream
boundary depending on the morphology.

[07] Within the first 10 years (phase 1), the bed adapts
rapidly to the bend flow (Figure 17a) while the flow divides
over the bifurcates at 1-2 W, upstream of the bifurcation
(Figures 15 and 16). The deviations from a simple symmet-
rical flow division (given that W, = W) are caused by the
bed adaptation and initial bars. Later the discrepancy be-
tween the true O, and the local O, (across the channel
centerline with length 1 W, upstream of the bifurcation)
increases (Figure 17a). This is due to the three-dimensional
bar pattern just upstream of the bifurcation including that
associated with the overshoot phenomena, and due to the
redistribution of flow that took place further upstream
(Figure 15b) after the bed adapted to the downstream closing
bifurcate (Figures 15h, 15i, and 15j). Hence the deviations
are partly the result of the artificial development of bend-
related morphology from an initially plane bed upstream of
the bifurcation, while the one-dimensional concept assumes
an equal distribution of specific discharge over the cross-
section upstream (equation (2)) and partly from the dynam-
ics caused by the presence of the bifurcation, which are
difficult to separate. In short, deviations between the local
transverse flow discharge in the one-dimensional concepts
and in the three-dimensional model are considerable and will
cause deviations in transverse sediment flux.

Division of Flow Discharge

6.2. Division of Sediment Transport

[98] In the one-dimensional nodal point concepts the
transverse sediment flux depends on the transverse flow
discharge (and the transverse bed slope and spiral flow). To
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test the transverse sediment flux parts of the one-dimen-
sional nodal point concepts independently of the discharge
division parts (which were shown above to deviate from the
three-dimensional model results), the transverse sediment
flux calculation done below will be based on transverse
flow and bed levels from the three-dimensional model. The
transverse sediment flux O, is extracted from the three-
dimensional model runs across the centerline upstream of
the bifurcation. This was done over a length of 1 W,
(“local”) or alternatively over the full length (““all”’) of
the upstream branch, the same as for transverse flow
discharge discussed above. The water depths and bed levels
in the three-dimensional model were averaged over areas
per branch just upstream and downstream of the bifurcation
over the full widths of the bifurcates and over lengths of
1 w,.

[99] Several comparisons between the three-dimensional
model and the nodal point relations are shown (Figure 17).
For R/W, = 10, the transverse sediment flux according to the
Bolla Pittaluga et al. [2003] concept is nearly a factor of
two too large (Figure 17b, full lines) compared with the
three-dimensional model results, whereas the new relation
(equation (27)) overpredicts by a factor of 1.5, indicating
that including the spiral flow improves the nodal point
relation. However, the three-dimensional model with the
gentle bend has a poorer agreement than with sharper bends
(Figure 17d), demonstrating that the transverse sediment
flux is not only affected by the spiral flow but also by the
three-dimensional bar pattern.

[100] The predictions of transverse sediment flux by the
concept agree better with the full transverse flux in the
three-dimensional model across the entire centerline (“all”,
dashed in Figure 17b), but then the initial predictions are
poor (offset) because the flux in the three-dimensional
model results include the initial sediment redistribution to
adapt the bed to the bend flow. This demonstrates that the
true upstream region of influence where transverse flow and
sediment fluxes affect the divisions at the bifurcation is
longer than 1-3 ;. One could argue that this is entirely
due to the upstream redistribution of flow over the width
and not due to the transverse sediment flux. Indeed, the
results further improve when the (“local”) transverse flow
discharge across the 1 W; centerline of the three-dimensional
model is used (instead of the “true” transverse flow) for the
nodal point relations rather than the entire (“all’’) transverse
discharge derived from the flux through the bifurcates
(Figure 17c). However, even then the agreement is still
not perfect which reflects the deviations between the three-
dimensional model and the nodal point relations due to the
combination of three-dimensional flow and bar patterns in
the entire bend upstream of the bifurcation.

6.3. Comparison of One-Dimensional and
Three-Dimensional Models

[101] In practice, one-dimensional nodal point relations
will be embedded in one-dimensional models, so we will
now compare the three-dimensional model results to one-
dimensional model results with the new nodal point relation
(Figure 18).

[102] The one-dimensional nodal point relation has two
relevant parameters that can be calibrated: ¢ and . The
spiral flow intensity at the bifurcation node depends linearly
on the calibration parameter € (equation (12)). The trans-
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Figure 15. The transverse flow velocity (scale in positive m/s toward right bank) for several sections
along the entire model (position in fractions of W from right bank) after 50 years model time (short
upstream bend; series 1 in Table 1). (a—e) R/W; = 10. (f—j) R/W; = 4, bed level of fine alternative grid

given with offset of —1 m. The bifurcation is at exactly 6 km, and the flow is from left to right.
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verse component of the sediment transport depends on the
angle of the shear stress vector (equation (11)) and on the
ratio v/u, which is inversely related to the second calibration
parameter cvw. Thus € and awy each determine the effect of
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the bend radius or slope, respectively, and together they
determine how the bend and slope effects are balanced. In
the three-dimensional model, € = 1 and in the work of Bolla
Pittaluga et al. [2003] aw = 1. However, in the one-
dimensional model this parameter setting leads to a much
larger final discharge of the smaller bifurcate than in the
three-dimensional model although the general model be-
havior is the same for both settings. The results with cyy =3
(extended length scale of transverse fluxes) and ¢ = 2
(stronger spiral flow) are more similar to the results of the
three-dimensional model for the river Rhine (Figure 18).
These larger, calibrated values are necessary to compensate
for the lack of overdeepening effects in the one-dimensional
model and for the deviation between the modeled and nodal
point sediment divisions.

[103] For further comparison the previously published
nodal point relations were also applied in the one-
dimensional model. Obviously, the Wang et al. [1995] and
Bolla Pittaluga et al. [2003] nodal point relations do not
account for upstream bends but only give a changing
discharge division when one of the bifurcates has a larger
slope (Figure 18d). For small k, the Wang et al. [1995]
relation does not lead to stabilization of the discharge but
leads to full closure (just before which the simple one-
dimensional model crashes), whereas the Bolla Pittaluga
et al. [2003] relation stabilizes the bifurcation (at a highly
asymmetrical discharge division) due to the feedback by the
transverse slope effect.

[104] Summarizing, the new nodal point relation behaves
qualitatively similar to the three-dimensional model which
is of use for one-dimensional models applied to geological
timescales. However, there are large quantitative differences
in the initial stages, the adaptation path to equilibrium and
the equilibrium attained due to the complexities present in
the three-dimensional model but absent in the one-dimen-
sional model. The initial differences are due to the forma-
tion of local bars and scour at the bifurcation in the three-
dimensional model. The differences in adaptation and final
equilibrium discharge division are caused by the three-
dimensionality of the flow and the bed (local bars and
scour at the bifurcation, and nonlinear transverse bed
slopes) in the three-dimensional model, and the adaptation
of the spiral flow to the local bed rather than assuming
equilibrium spiral flow for infinite ideal bends as in the one-
dimensional model. These phenomena clearly need more
study to improve the new nodal point relation but for the
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Figure 17. Comparison of the transverse flow (a) and
sediment discharge (b—d) of the one-dimensional nodal
point relations compared with the three-dimensional model
(series | in Table 1). ay = 1 in the nodal point relations.
The thin line indicates perfect agreement. The lines indicate
an evolution in time from the lower left to the upper right
corners. “Local” indicates the transverse flux over the
midchannel line between O and 1/) upstream of the
bifurcation; “all” indicates the same over the full length of
the upstream channel. Q. indicates the true transverse
discharge as determined from the integrated fluxes through
the bifurcates whereas 0, ocal is the discharge across the
midchannel line between 0 and 1/ upstream of the
bifurcation.
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Figure 18. Comparison of three-dimensional (a and c; series 1 and 2 in Table 1) and one-dimensional
model (b, d) results. The effect of a bend on the discharge division evolution is shown (a, b), as well as
the added effect of a larger slope of the bifurcate connected to the inner bend. The nodal point relation
(sediment division) (c, d) is shown in contrast to that by Wang et al. [1995] and Bolla Pittaluga et al.
[2003], neither of which include effects of an upstream bend.

present analysis of general behavior it is sufficient that the
results of the one-dimensional and three-dimensional mod-
els are qualitatively similar.

7. Discussion

[10s] First we discuss the effects of bar dynamics just
upstream of the bifurcation and implications for predict-
ability of bifurcation evolution. Next some assumptions
are evaluated that underlic nodal point relations for one-
dimensional models, and future directions for further
research on nodal point relations and bifurcations are
suggested.

[106] Then we discuss the wider implications of our
results for bifurcation stability and avulsion duration in
the real world. The potential effects of sediment mixtures
in the channel bed and of interactions between channels and
floodplain are assessed. The reasons for the existence of
residual channels and anastomosing rivers are reinterpreted

based on the model results. Finally future directions for
research on bifurcations are suggested.

7.1. Bar Dynamics and Limited Predictability of
Bifurcation Evolution by One-Dimensional Models

[107] We have shown that bifurcations may be very
sensitive to the local bar dynamics. In particular, under-
damped bars in the upstream channel considerably affect the
division of flow and sediment. It is possible to predict and
even specify such bars based on known perturbations for
use with a nodal point relation such as that by Bolla
Pittaluga et al. [2003]. For use of this relation to long-term
calculations for bifurcations and avulsions in meandering
systems, it was extended with the effect of spiral flow and
the effect of the longitudinal bed slope. The transverse
sediment flux predicted by the nodal point relation over-
estimates the flux calculated by the three-dimensional
model even though ayw = 1. As this was improved when
the transverse flow discharge of the three-dimensional
model was used, an improvement of the upstream asym-
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Figure 19. Upstream of the bifurcation on the morphol-
ogy. Longitudinal bed level profiles of the left and right side
of the upstream channels after 50 years are plotted. The bed
levels are normalized by subtracting the bed levels in
bended channels without bifurcations (series 7 in Table 1).
The distance upstream of the bifurcation is normalized by
dividing with the upstream channel width. The plotted runs
are bifurcated grids (series 5 and 6) and thin dam grids
(series 8) with both short and long upstream bends with
widths of 504 m (a) and 288 m (b). The arrow indicates
where the grid widening in the bifurcated grids starts (see
section 3.5). All upstream bends have R/W; = 10 and equal
downstream gradients.

metrical distribution over the cross-section of flow and bed
topography seems a logical step. For instance, an upstream
flow redistribution due to the alternating bar pattern could
perhaps be introduced by predicting the bar wavelength and
the distance from the perturbation. However, determining
the location of the perturbation may be difficult in real rivers
with groynes or natural banks and bars.

[108] Regarding the influence upstream, Tubino and
Bertoldi [2005] identified an influence upstream of the
bifurcation for the unstable bar regime, in addition to the
obvious influence of the downstream boundary conditions.
The question is whether the gradual transition of the bed
level just upstream to downstream of the bifurcation is this
influence upstream. Normalized longitudinal bed level
profiles upstream of the bifurcation are plotted in
Figure 19 for wide (unstable bar regime) and narrow
(stable bar regime) channels and both types of grid
representations. These results demonstrate that for both
narrow and wide channels the influence upstream extends
over a distance of 2 W,. However, the narrow channel is
not in the unstable bar regime with A\/\,, = 0.5. This leads
to the conclusion that there is a backwater influence
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upstream of the bifurcation but it is unrelated to the bar
regime. The causes for the upstream influence of our
model results are as follows. First, there is a numerical
effect: the grid size affects the upstream length of influence
(Figure 5). Second, the presence of a bluff and the
widening of the bifurcated grid upstream of the bifurcation
explains the larger influence upstream compared with the
thin dam grids. Third, there is a deviation between the
bends and bifurcations for the wider channels (Figure 19a)
along the entire length of the upstream channel, but this is
explained by the decreasing effective radius of the flow in
the upstream bend while the inner-bend bifurcate closes
off.

[109] Due to bar dynamics, the predictability of the
direction of bifurcation evolution is inherently limited. This
is particularly the case for bifurcations that are balanced by
opposing factors, such as an upstream bend effect opposed
by an increased slope in the bifurcate connected to the inner
bend, and for bifurcations with wider and narrower up-
stream channels. For such cases the direction of evolution
(which bifurcate closes off) is very sensitive to minor
changes of topography at the bifurcation, downstream
slopes, upstream bend radius, sediment transport predictor
and so on. This is also due to the fact that effectively £ = 1
for most of the time. Unstable bifurcations with a clearly
favored branch, by a much larger slope or very sharp bend
for instance, are relatively insensitive so that their direction
of evolution can be predicted more easily. In practice,
engineering structures at bifurcations may have effects on
the direction of the evolution as well but these have not yet
been studied well.

7.2. Applicability of Nodal Point Relations

[110] A number of hypotheses underlying nodal point
concepts for one-dimensional models (section 2.5) were
tested by the results of the three-dimensional model.

[111] For convenience in a theoretical analysis, Wang et
al. [1995] assume a constant & independent of the stage of
development of the closing and opening bifurcate, or both
stable branches, and independent of flow conditions such as
floods. The three-dimensional model shows that £ changes
during the evolution of the bifurcation from small values
indicating unstable bifurcations to large values in the final
stage indicating stable bifurcations with highly asymmetri-
cal flow divisions. During floods & is highly variable. These
results demonstrate that a model with a constant £ cannot
reflect the rich dynamics of three-dimensional-modeled and
natural bifurcations. This has implications for many simu-
lation models for braided rivers and for landscape and delta
evolution. In many of these models the flow and sediment
discharges are equally distributed over the three adjacent
downstream cells entirely based on the local slope. If the
flow and sediment discharge were divided with £ > 1 and
increasing k for increasing ratios of bifurcate discharges,
then the models would perhaps give very different rivers,
landscapes, deltas and alluvial architecture.

[112] Additionally, both the one-dimensional concepts
and three-dimensional models do not account entirely
satisfactorily for the suspended bed sediment load and not
at all for wash load. First of all, in reality the suspended
sediment vector is probably not deflected on a transverse
slope. Second, it is deflected by spiral flow over the entire
depth of the flow and modified according to the declining
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sediment concentration away from the bed. However, since
the spiral flow magnitude is very small compared with the
main flow, the suspended sediment is divided at the bifur-
cation in about the same proportion as discharge (that is,
k = 1). Ultimately, for bifurcates that are nearly closed off,
only sediment far up in the water column flows and diffuses
into the closing bifurcate. This is not so different from the
modeled bed load behavior, but small gradients in the
transport are enough to unbalance a bifurcation as there
literally is no way back for the sediment once it enters a
bifurcate. The balance of these effects is not known and
transverse slope development including suspended sediment
effects clearly needs more research. For now it must be
assumed that these processes do not much affect the general
behavior of the system.

[113] Nodal point relations developed so far remain more
simplified representations than three-dimensional models
because the character of the upstream channel is neglected
in all nodal point concepts. Bolla Pittaluga et al. [2003]
experimentally determined that the transverse slope just
upstream of the bifurcation extends into the upstream
branch over a length of <3 W, which remains constant over
time. Based on this, they postulate that the transverse fluxes
0,, O, extend over the same distance. The new nodal point
concept presented in section 2.4 is an extension of the Bolla
Pittaluga et al. [2003] concept with a different transverse
slope effect and a parameterization of spiral flow. The new
relation assumes that sediment deflection by the spiral flow
occurs over the same upstream length as the transverse
slope. According to the three-dimensional model, the bed
levels of the bifurcates do extend into the upstream branch
for about 2 W, (Figure 6, lowest panel). However, on close
inspection discrepancies were found between transverse
flow and sediment fluxes in the three-dimensional model
and according to the nodal point relations. The flow and
sediment are redistributed over the width much further
upstream due to the three-dimensional bar pattern that
evolves in the upstream channel, in particular when the
bars are underdamped. Perhaps nodal point relations could
be incorporated in meander simulation models which ac-
count for the bar dynamics in bends.

[114] The three-dimensional modeling commonly resulted
in highly asymmetrical bifurcations. These results contradict
the general conclusions by Bolla Pittaluga et al. [2003] who
found (more) symmetrical bifurcations for many conditions.
Their slope effect counteracted sediment transport into the
closing bifurcate so much that it kept both bifurcates
open. One bifurcate was only closed in their model when
the Shields number 6 fell below the critical number and the
initial conditions strongly favored one bifurcate. In the
three-dimensional models the bifurcations are invariably
unbalanced by even the most gentle upstream bend. The
backwater effect in the three-dimensional model caused
flow deceleration in the closing bifurcate once it had a
shallower entrance (e.g., Figure 15), leading to the further
closure (e.g., Figure 12). However, the development toward
an asymmetrical discharge division also occurred for bifur-
cations with bifurcates much longer than the backwater
adaptation length. Moreover, the slope effects in Delft three-
dimensional and in the work of Bolla Pittaluga et al. [2003]
are similar: both are a function of the transverse slope and of
v where 6 ~ 0.12 in typical runs of W = 504 m. The
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Engelund and Hansen [1967] predictor used herein has no
critical Shields number, but three-dimensional runs with
transport predictors that had critical Shields numbers gave
similar results so this did not affect the results. One major
difference (apart from the one-dimensional versus three-
dimensional model) is the much larger and more realistic
width-depth ratios of the present models: 100 for the
upstream branch with ' = 504 m compared with 10—50
for the upstream branch in the work of Bolla Pittaluga et al.
[2003, e.g., their Figure 8].

7.3. Implications for Bifurcation Stability and
Avulsion Duration

[115] The three-dimensional model runs indicate that very
few bifurcations close off entirely, but most bifurcations
develop to a highly asymmetrical equilibrium configuration
where most of the discharge is transferred to one of the
bifurcates. The minor bifurcate then only discharges less
than 5% of the flow and none of the upstream sediment
transport. For finer grids, the asymmetry is even more
pronounced but still the bifurcation stabilizes. When the
bifurcates become longer than the backwater adaptation
length (that is, when the distance between the downstream
fixed water level condition and the bifurcation becomes
longer), the bifurcation attains a more symmetrical dis-
charge division, although an equilibrium was not reached
in 200 years model time.

[116] The bar dynamics strongly affect bifurcation stabil-
ity and avulsion duration, and may switch the main flow
from one to the other bifurcate (Figure 11) in agreement
with Hirose et al. [2003] and Miori et al. [2006a]. This has
particularly implications for bifurcations and avulsions for
which limited data are available (for instance, because they
took place in the distant past). When the detailed initial bar
topography and the location of a perturbation that initiates
alternate bars are unknown or poorly constrained, it is
impossible in practice to predict which bifurcate will
become dominant for wider channels in the underdamped
bar regime.

[117] The modeled duration of the avulsion time, here
defined as increasing asymmetry phase (say, 1 < 0/0; < 10,
where i, j =2 or 3 such that Q; > Q;) varies from 20 to much
more than 200 years, which is an order of magnitude. This
is partly determined by the width—depth ratio, the upstream
bend radius, a gradient advantage for one bifurcate and the
length of the bifurcates. Certain combinations of these
parameters would further increase the avulsion time, such
as a slightly larger slope of the inner-bend bifurcate with
very long bifurcates and a sharp upstream bend. For
otherwise constant parameters, an increase of bifurcate
length leads to an equal increase of the avulsion time in
agreement with Bolla Pittaluga et al. [2003], which can be
understood as the time needed to fill up a bifurcate of
varying length given a constant sediment feed. As such, the
model explains how these variables may cause the large
observed variation of avulsion duration in historical and
geological data [van de Ven, 1976; Smith et al., 1998;
Stouthamer and Berendsen, 2001; Makaske et al., 2002,
Figure 1] in addition to other factors mentioned by these
authors such as base level rise, wash load and tectonics.

[118] The effects of an upstream bend and of a down-
stream slope advantage of the bifurcate connected to the
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inner bend counteract so that critical combinations exist
where the bifurcates are balanced and quasistable for a long
time. A slope advantage of about 20% is sufficient to cancel
out an upstream bend with a radius of R/W; = 10. This
finding is highly relevant because both the slope advantage
and the bend radius are easily attained in nature. Near the
critical combination of bend radius and slope, the model
outcomes are very sensitive to small changes in the bound-
ary conditions, sediment transport predictor, grid resolution
and the way in which the bifurcation is represented. The
precise critical combination therefore depends on various
choices in the modeling, including numerical aspects that
we did not test extensively. We do not claim to have
calculated the precise critical combination; we have used
a model with reasonable settings and choices to demonstrate
that it exists for likely combinations of parameters. At the
same time, this model uncertainty parallels the situation of
natural bifurcations with a critical combination of bend
radius and slope difference: such bifurcations will also be
very sensitive to slight disturbances of morphology at the
bifurcation or within a backwater adaptation length down-
stream thereof.

7.4. Assessing Effects of Bed Sediment Sorting and
Channel-Floodplain Interactions

[119] Three major processes were neglected in the three-
dimensional modeling that will affect the avulsion duration
and bifurcation stability: bank erosion, levee and floodplain
formation and bed sediment sorting.

[120] Rivers with poorly sorted sediment will develop
vertical sorting in the bed, potentially armoring, and bend
sorting. The sorting will affect sediment transport fluxes
into the bifurcates as well as morphodynamic response
[Mosselman et al., 1999; Kleinhans et al., 2007b]. The
observed quasistability of the first and major bifurcation of
the river Rhine may be explainable by a combination of
armoring and bank protection. Over the past millennia, the
Rhine gradually avulsed from a northern to a southern
course. After many unsuccessful attempts to increase the
flow discharge through the closing bifurcate, Dutch engi-
neers dug a canal finished in 1707 to bypass the entrance
of the nearly closed bifurcate. This canal had a larger
slope than the other bifurcate and was favored with
relatively more water and less sediment by its position
in an outer bend. It enlarged so rapidly that the banks
were protected hastily [van de Ven, 1976]. Accidently, the
bed sediment consisted of sandy gravel deposited in
earlier Holocene Rhine courses, which armored strongly
[Frings and Kleinhans, 2008; Kleinhans et al., 2007b]. As a
result, the canal depth and width were constrained by heavy
armoring and bank protection, which stabilized the flow and
sediment division over the bifurcates. In conclusion, the
bifurcation could not be stabilized by increasing the flow
through the closing bifurcate, but could be stabilized
(accidentally) by limiting the widening and deepening of
the opening bifurcate.

[121] Bank erosion affects the flow capacity change of a
bifurcate. During an avulsion, a new channel is created and
widened through bank erosion. The eroded sediment must
be removed, the rate of which depends on its caliber. Fines
can easily be removed as wash load without greatly affect-
ing the bed sediment transport capacity of the channel, but if
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the new channel is eroded in similar or coarser bed sediment
this will take much more time. Meanders evolve by eroding
banks as well, so that the bend radius at the bifurcation
changes. In the river Rhine this happens at the same
timescale as the bifurcation evolves: bends near the
Dutch—German border migrate about one wavelength per
500 years. In cases of very sharp bends, e.g., against very
cohesive banks, the flow may even separate from the bank
[Ferguson et al., 2003]. In such a case a vortex may develop
over a significant part of the bifurcate width which pro-
motes sedimentation in the bifurcate, as observed in several
bifurcations during a field site visit by the first author in the
Cumberland Marshes.

[122] Levee and floodplain formation also changes the
capacity of the bifurcates to convey flow discharge, which
further affects avulsion duration in nature. The closure of
the old bifurcate commonly happens through shallowing by
sedimentation near the channel entrance, as modeled in this
paper, but also by narrowing. Yet levee and floodplain
formation usually lag behind bank erosion. Hence the old
channel downstream of the temporary bifurcation may
narrow somewhat during the diversion of discharge, but is
still nearly as wide as the channel upstream of the bifurca-
tion in agreement with field data of meandering, braided
and anastomosing rivers [e.g., van de Ven, 1976; Mosselman
et al., 1995; Smith et al., 1998; Makaske et al., 2002]. The
models with a larger downstream width in the work of
Kleinhans et al. [2006] show that the closure process is
slower, which is due to the smaller sediment mobility in a
shallower channel (although vegetation may enhance the
process). Eventually residual channels may close off by
filling with fines transported in as wash load (silt and clay)
or vegetation and peat. To summarize, the width adaptation
of the closing channel will increase avulsion duration. All
issues discussed above need more research of combined
fieldwork, experiments and modeling as argued in the work
of Kleinhans et al. [2005].

7.5. TImplications for Residual Channels and
Anastomosing Rivers

[123] In agreement with the model results, there are many
(geological) indications that bifurcates do not close off
entirely for a long time but remain active as residual
channels [Smith et al., 1998; Stouthamer and Berendsen,
2001] that convey large discharges during floods [van de
Ven, 1976; Makaske et al., 2002] and may even be reac-
tivated as major channels [Stouthamer, 2005; Makaske et
al., 2002]. The model results demonstrate that dispropor-
tionately large floods occur in the nearly closed bifurcates in
agreement with historical records of the Nederrijn branch of
the Rhine river [van de Ven, 1976] and of several historical
tributaries of the Indus and Ganges [Wilhelmy, 1969]. A
particular example is the former Sarasvati river (Hakra
branch) which was fed by flood waters of the Sutlej river
between 2600 and 700 years ago, and had completely dried
out 400 years ago. The fact that bifurcates do not close off
entirely for a long time implies a “leaky” river whereby the
main active channel looses more and more discharge in the
downstream direction through residual channels in addition
to the usual crevasse and overbank flow. This interpretation
is representative for avulsive settings such as the Cumber-
land Marshes, Saskatchewan River in Canada [Smith et al.,
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1998] or deltaic settings such as the Holocene Rhine—
Meuse delta in the Netherlands [Stouthamer and Berendsen,
2001].

[124] The results also apply to anastomosing and anab-
ranching rivers [Nanson and Knighton, 1996] such as the
Columbia River, Canada [Makaske et al., 2002]. Although
the appearance of anastomosing rivers is that of several
active channels in terms of overbank deposition and flood
conveyance, often only one channel at a time conveys most
of the bed sediment [Makaske et al., 2002; Huang and
Nanson, 2007]. Thus only one channel bed is subject to
significant morphological change as in the asymmetrical
bifurcates modeled in this paper, although wash load and
vegetation simultaneously modify the floodplains of all
branches. Hence it may be more appropriate to define such
rivers as single channel despite the presence of water in
multiple channels that give such planforms their appearance.

7.6. Future Directions

[125] Since the work of Wang et al. [1995] the common
wisdom is that bifurcation stability can be explained from a
stability threshold for parameters of the nodal point relation.
The present study suggests, however, that bifurcations
always evolve to a very asymmetrical state, while persis-
tently symmetrical bifurcations are related to quasiequilibria
that result from a proper combination of upstream bend
radius, channel width and downstream gradient, or to
special conditions such as bank and bed protection in the
bifurcate that would increase in size otherwise.

[126] Of course, reality is more complex than the model
which is important for interpretation of field cases and for
geological reconstruction, as well as for future work on
bifurcations. Some, perhaps crucial, points are [also see
Kleinhans et al., 2005]:

[127] (1) The bar pattern of wider channels, and hence
which bifurcate becomes dominant, is affected by perturba-
tions of the channel planform. Such perturbations can be
resistant patches of bank in an otherwise erosive stretch,
large wood or human artifacts such as dams or groynes. E.g.
15th to 18th century engineers attempted to affect the
discharge distribution at the Schenkenschans bifurcation
of the river Rhine by several groynes upstream of the
bifurcation [van de Ven, 1976].

[128] (2) The bed sediment may be sorted in the bend,
leading to preferred feeding of coarse sediment to one
bifurcate and fine sediment to the other [Mosselman et al.,
1999; Kleinhans et al., 2007b; Frings and Kleinhans,
2008]. Moreover, bed surface armoring may stabilize bars.

[129] (3) The widening of new branches in nature depends
on the bank erosion process, where the banks are erodible
depending on the bank sediment composition, vegetation,
etc. The widening also depends on the closure of the other
bifurcate, which is affected by channel narrowing by levee
deposition or bench formation from washload settling in the
stagnant water at lower discharge, in addition to changing
hydraulic roughness and downstream water levels, as well
as by large wood deposited after floods, vegetation succes-
sions and, further downstream, peat development in the
residual channel.

[130] (4) Meander migration changes the boundary con-
ditions at the bifurcation. For wider channels, this also alters
the bar pattern and associated flow pattern. Additionally, the
bifurcation may migrate downstream with the eroding
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bends. This may lead to an increase of the angle between
the dominant and the subordinate bifurcate, increasing the
rate of changing asymmetry. Eventually the entrance angle
of a bifurcate may become so large that the flow separates
from the channel boundary.

[131] (5) Bifurcations near the sea or ocean are affected
by tides propagating up the channels. Due to the energy
gradient fluctuations combined with the nonlinear sediment
transport, the tides enhance the sediment transport. More-
over, phase and amplitude differences between downstream
water levels of the bifurcates enhance or counteract other
differences between the bifurcates.

[132] (6) Downstream coast, estuary or delta development
depends on the evolution (mostly cumulative sediment flux)
of the bifurcates, and may in turn lengthen the bifurcate
[Swenson, 2005].

8. Conclusions

[133] For a wide range of conditions and settings repre-
sentative for meandering rivers, we conclude that bifurca-
tions almost always attain a highly asymmetrical division of
discharge and sediment. The division of sediment at the
bifurcations is similar to the division of flow discharge
during the phase of increasing asymmetry in all models, but
eventually no sediment enters the subordinate bifurcate
anymore so that it does not close off entirely. The choice
which bifurcate becomes dominant, and the rate of change
of bifurcation symmetry are determined by the following
factors:

[134] (1) a gradient advantage of one bifurcate over the
other increases the discharge through this channel;

[135] (2) a bend upstream of the bifurcation favors one
bifurcate with relatively more flow discharge and the other
bifurcate with relatively more sediment;

[136] (3) a gentle upstream bend can counteract down-
stream gradient advantages of 0-20% of the bifurcate
connected to the inner bend, so that the flow and sediment
division are equal and the bifurcation remains (quasi-)
balanced;

[137] (4) the width—depth ratio of the upstream channel
strongly determines the bar pattern and dynamics at the
bifurcation and may lead to unstable bars and overdeepen-
ing, which may cause the flow to switch to the other
bifurcate compared with cases with other widths;

[138] (5) sediment sorting, local bank irregularities, bank
erosion and formation trends, possible scour holes or vortex
bars just downstream of the bifurcation; and

[139] (6) boundary conditions and changes thereof at the
same timescale as the bifurcation evolution.

[140] We identified realistic parameter settings for bends
and slope advantages in which these competing factors
are mutually balanced. For these cases the avulsion
duration became an order of magnitude larger than for
unbalanced cases. The model bifurcations, that were
loosely based on the River Rhine in the Netherlands,
became stably asymmetrical in periods of the order of a
decade for unbalanced bifurcations to a few centuries for
nearly balanced bifurcations.

[141] This offers an explanation why some bifurcations in
the Holocene Rhine were destabilized within a few decades
after their creation (fast avulsion) whereas other bifurcations
were stable for many centuries (slow avulsion). It also
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explains how bifurcates do not close off entirely but remain
active as residual channels for a long time in agreement with
geological data. Finally, it explains that anastomosing rivers
have multiple channels that convey flow but have only one
channel that conveys the bed sediment.

[142] Existing nodal point relations for one-dimensional
models were evaluated against the three-dimensional model
results, and one physics-based relation was improved by
incorporating the effect of a meander bend just upstream of
the bifurcation. However, the use of such relations is less
successful particularly in wider and shallower channels with
underdamped bars as these may switch the dominant
channel of the bifurcation, so one-dimensional modeling
with nodal point relations is most useful for relatively
narrow and deep rivers.

Notation

N

spiral flow coefficient (—)

C Chézy roughness coefficient (1/m/s)

D grain size (m)

g gravitational acceleration (9.8 m/s”)

h  water depth (m)
IP interaction parameter (—)

ks Nikuradse roughness length (m)
damping length of bars (m)
L, wavelength of bars (m)

n effective power on u to calculate sediment
transport (—)

flow discharge (m*/s)

width-integrated sediment transport (m>/s)
specific flow discharge (m?/s)

specific sediment transport rate (m?/s)
meander bend radius (m)

factor in transverse slope effect (—)
channel slope (—)

flow velocity (s direction) (m/s)

flow velocity (n direction) (m/s)
channel width (m)
x coordinate (m)
v coordinate (m)
z coordinate (m)

relative length factor in nodal point relation (—)
direction relative to n-direction (rad)
calibration coefficient for spiral flow
intensity (O(1)-)

nondimensional bed shear stress
(Shields number —)
x Kérmén’s constant (0.4 —)
backwater adaptation length (m)
XAs adaptation length of a bed disturbance (m)
adaptation length of the flow (m)

m = 3.1415926535. ..

p density of water (1000 kg/m?)
ps  density of sediment (2650 kg/m?)

7 bed shear stress (Pa)
branch numbers: 1 = upstream branch;
2, 3 = bifurcates
I branch number index
50, 90 percentiles (for grain size)
K power on discharge ratio in nodal point

relation (—)

2 o P

m®RE NS R <R s X

>
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N transverse flow direction
S main flow direction (for 7)
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