
Automatic detection e�ciency
measurements of Superconducting
Nanowire Single Photon Detectors

by

Ian Bernabé Maradiaga Rosales
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 8, 2021 at 2:30 PM.

Student number: 4876601
Project duration: May 1, 2021 - July 8, 2021
Thesis committee: Dr. ir. S. F. Pereira, TU Delft

Dr. I. Esmaeil Zadeh, TU Delft
Dr. A. Adam TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/

ii

Contents
Abstract . iii

1. Introduction . 1

2. Theory . 3
2.1 Detection mechanism . 3
2.2 Performance indicators . 6

2.2.1 E�ciency . 6
2.2.2 Recovery time . 7
2.2.3 Dark counts . 7
2.2.4 Timing jitter . 7

3. Experimental method . 8
3.1 Laser Power Fluctuations . 8
3.2 Calibration measurements . 10
3.3 SNSPD e�ciency measurements . 12

4. Results and discussion . 16
4.1 Laser Power Fluctuations . 16
4.2 Calibration measurements . 16
4.3 Detector e�ciency measurements . 19

4.3.1 SDE measurements using SM �bers . 20
4.3.2 SDE measurements using PM �bers . 21

5. Conclusion and recommendations . 23
5.1 Conclusion . 23
5.2 Recommendations . 23

References . 25

Appendix . 27

iii

Abstract

Superconducting nanowire single-photon detectors (SNSPDs) are characterized by their quan-
tum limited ability to accurately detect single photons, with low jitter, high detection e�-
ciency and low dark count rate. To achieve this, the detector is cooled to 2-3K, bringing
the device in a superconductive state, and is then biased with a direct current (DC) close
to its critical current. When a photon impinges the detector, the depairing of Cooper-pairs
by the photon leads to local destruction of the superconductivity. The growth of this non-
superconducting area, �rst across and then along the nanowire, leads to the development of
a measurable resistance and hence the production of detection pulses. Increasing system de-
tection e�ciency (SDE) of detectors has been a long-term goal in the community. Recently
ultrahigh e�ciency detectors (SDE>98%) have been demonstrated. It has also been shown
that the wavelengths dependence of SDE, typically de�ned by a quarter wavelength cavity,
is modulated by �ber-detector airgap (Fabry–Pérot). Measuring such modulations and �nd-
ing the optimal operation wavelength manually is a time consuming and tedious process. In
this thesis a setup for automatic measurement of SDE versus wavelength was developed and
benchmarked. For the tested detector, e�ciencies were found ranging between 22% and 95%
in the wavelengths range between 1260nm and 1650nm. For the optical circuit using Single
Mode (SM) �bers only, the automated SDE measurements were unreliable due to shifts in po-
larisation during measurements. Using PM �bers led to e�ciencies very similar to the values
measured manually.

1

1. Introduction

The superconducting nanowire single-photon detector (SNSPD) is on its way of becoming an
essential instrument in many applications, including quantum communication [1][2], biomed-
ical imaging [3] and long distance communication [4]. Its capacity to detect single photons
with high e�ciency [5] [6] [7] [8] [9] short dead time and jitter [10] over a large frequency
range are more promising compared to similar technologies, such as avalanche photon diodes
(APDs). The latter have reached a plateau of e�ciency of around 40% [11]. For the SNSPDs,
on the other hand, its community is working towards achieving unity system detection e�-
ciency (SDE) in the infra-red, already achieving 99% SDE recently [12].

Achieving near unit e�ciencies consistently will have large impact on various applica-
tions, such as quantum communication, biomedical optics and long distance communication.

In quantum cryptography, SNSPDs are mainly applied in quantum key distribution. The
detectors are used to encode data into the phase or polarisation of the photons, solidifying
communication based on quantum entanglement. Theoretically, it is impossible to break such
encryption. [13][14].

In biomedical optics, the study of the lifetimes of biological �uorophores can be of special
interest. These are widely used to study cellular and molecular structures, amongst others
DNA, proteins and mitochondria. The �uorescent substance has electrons which are able to
absorb photons, increasing their energy. Hence, they shortly enter into an excited state before
either dispersing their energy or emitting it as a photon, with a lower energy. A lifetime is
de�ned as the time an excited electron takes to emit a photon [15]. The more photons such
a substrate will emit, the brighter it will be. Fluorescence analysis yields information about
important parameters of the substance, such as the di�usion of a protein, its movements, and
its interaction with other molecules. An SNSPD could be used, for instance, to detect small
di�erences in lifetimes and detect a weak number of photons [3].

Using very accurate measurements of photon arrival times, the SNSPD �nds an application
in long distance communication [4]. Generally, photon counting systems are used to detect
weak sources of radiation, i.e. low �ux of photons in the visible and near infra-red spectrum.
This presented tons of challenges in terms of optimizing the detection rates in high frequency
solutions. A high e�ciency is required to extract more information encoded in the waves,
hence, SNSPD systems can be used.

Many parameters and their interactions in�uence the e�ciency of the SNSPD. They can,
however, be roughly divided into two categories: internal e�ciency and external e�ciency.
External e�ciency can be split into coupling e�ciency and absorption e�ciency. Coupling
e�ciency relates to a possible air gap in the connection between optical �bers and sensors,
negatively impacting the e�ciency of a detector [12]. Absorption e�ciency depends on the
absorption coe�cient of the material of the detector, and accounts for the fact that not all
photons in the cryostat will be absorbed by the nanowire. Internal e�ciency relates to how
well photons, once inside the system, trigger the detection mechanism correctly. Besides the
aforementioned e�ciencies, the e�ciency of a detector is wavelength dependent, having a

2
clear peak at a certain wavelength and a clear valley at another wavelength. When design-
ing new SNSPD systems, characterizing its e�ciency could be a labour intensive trajectory.
Hence, automatisation of this process is critical to accelerate research on SNSPDs.

The goal of this thesis is to automise e�ciency measurements on detectors. For this goal, a
setup commonly used in characterizing the e�ciency of SNSPDs has been employed. The laser
source (JGR5 tunable laser), attenuator (JGR Optical Attenuator OA1), power meters (Thorlabs
PM100 and Newport 843-R) and drivers were controlled using Python/Matlab for automated
measurements to �rst calibrate the setup and then retrieve e�ciency for the connected SNSPD.
Python has also been used to automate the analysis, i.e. making graphs, of the retrieved data
to characterize the speci�c detector.

3

2. Theory

2.1. Detection mechanism
A superconducting nanowire single photon detector (SNSPD) contains a nanowire on a thin
�lm (mostly made of silicon). The detector characterized in this paper is a distributed Bragg
detector (DBR). The nanowire (made of NbTiN) is placed on two types of alternating mate-
rials (SiO2 and Nb2O5, in this case, 6.5 layers deep), on top of a thin �lm of silicon. At each
intersection of material, the light re�ects back up to the detector. These types of detectors
have a narrow bandwidth of optimal SDE, surrounded by smaller peaks. Another type of fre-
quently used detector is the detector on 1/4 wavelength SiO2/ Au. This detector is placed
on a thin �lm (commonly made out of the aforementioned materials) placed on top of a layer
with silicon, re�ecting the incoming light back up into the detector. These types of detectors
have a more broadband range for optimal SDE. A sketch of a DBR detector, a 1/4 wavelength
SiO2/ Au detector and their performances are given in �gure 1.

Figure 1: Left: Sketch and simulation of the SDE performance of an 1/4 wavelength SiO2/
Al detector. The shape is broadband, TE is the maximum absorpion and TM is the minimum
absorption of photons by the system. Middle: Sketch and simulation of the SDE performance
of a DBR detector. The SDE curve has a narrow bandwidth, and evidently the detector is
optimimzed for 1550nm. Right: more detailed sketch of a DBR detector. It shows how photons
enter the system, the placement of the nanowire (NbN in this case), the structure of the DBR
layer (the two colors represent two di�erent materials, in this experiment these were SiO2

andNb2O5), on top of a �lm of silicon. Left and middle are adapted from [16]. Right is adapted
from [17].

For the detector to function, it should be cooled, often done with liquid helium, to temper-
atures below its critical temperature, Tc. According to BSC theory, Cooper pairs are formed in
this extremely cold state via electron-phonon interactions [18]. These pairs prevent electron-
lattice interactions, hence yielding the material superconductive properties. One can only
break out of this superconducting state if an external magnetic �eld is applied (greater than
the critical magnetic �eld) or by heating up the system above the critical temperature Tc. The
functionality of the SNSPD is based on the latter property of superconductivity.

A bias current is applied through the nanowire. This current should be slightly lower than
the critical current, Ic, which is, the current at which the superconductivity of the system will
break. However, since the detector is at a very low temperature and thus has no resistance,

4
there is no voltage output yet, and the system is still in a superconductive state.

Figure 2: Left: Scanning Electron Microscope image of an SNSPD. Right: the detection e�-
ciency for di�erent bias currents at λ = 1550 nm in [19], shown to illustrate the in�uence of
bias current on e�ciency. Too low and too high of a bias current (not shown) leads to zero
detection e�ciency. Adapted from [19].

Through an optical �ber, photons can be inputted to the system. If a photon hits the
nanowire, it breaks the superconductivity in a small region by depairing a Cooper-pair, re-
leasing heat. The heat builds up, which locally breaks superconductivity in the wire. Then,
the heat can be described according to r ∗I2, known as Joule heating. This means a resistance
is developed and the bias current will output a voltage. Afterwards, the current will be di-
vided between the device and the readout circuit, thus reducing the excess heating and letting
the system return to its superconductive state. See �gure 3. If a bias current is chosen much
less than the critical current, an arriving photon can only break the superconductivity in the
nanowire locally. However, the area does not grow and therefore the resistive region in the
wire will not be there or will not be large enough to give a measurable pulse.

5

Figure 3: Schematic overview of the detection of photons in SNSPDs. In i), the nanowire is
biased with a bias current Ic, slightly below the critical current. At ii), a photon enters the sys-
tem, yielding a local hotspot region where the superconductivity is broken and releases heat.
This heat builds up at iii) and at iv), causing the current to �ow around this hotspot. This in
its turn creates belts of currents at the edges. Finally, at iv), the heat causes the superconduc-
tivity in the nanowire to locally break accross the width of the wire and thus developing a
resistance. The current is divided between the device and the readout circuit. This reduces
the joule heating and lets heat dissipate to the substrate. The nanowire returns back to its
superconductive state as the temperature drops below the critical temperature. From [20].

In �gure 4, a simpli�ed version of the readout circuit is shown. The SNSPD is represented
in the dashed box with the inductor (superconductors have kinetic inductance) and a parallel
connection with a resistor and a switch. If the switch is open, as in the �gure below, the
schema represents the SNSPD in its resistive state. If the switch is closed, all current �ows
through the path without the resistor. This represents a superconductive state. Besides the
SNSPD, the bias current is shown, as well as the input impedanceZo and a condensator. TheZo

models the impedance of the transmission line and the condensator is needed for the ampli�er
(not shown). Rs could be used to in�uence the dead time of the detector. It was not included
in the setup for this experiment.

6

Figure 4: Schematic drawing of the electrical circuit of the SNSPD. The SNSPD is represented
as an inductance and a parallel connection with a resistor and a switch. If the switch is open,
the detector is in the resistive state. Adapted from [21].

2.2. Performance indicators
Below, a selection of the parameters to indicate performance of an SNSPD are discussed.

2.2.1. E�ciency

In this experiment, e�ciency is the parameter of focus. E�ciency is de�ned as the number
of detected photons divided by the total number of photons going into the system. More
speci�cally:

ηSDE = ηcouplingηabsorptionηinternal (1)

ηcoupling is de�ned as the e�ciency of light transmission through coupling di�erent parts
of the optical circuit. Every optical part is connected by an optical �ber. At every such inter-
section, coupling losses will occur. However, the coupling losses at the laser, attenuator and
the beam splitter do not a�ect the e�ciency. Only the coupling losses involving the connec-
tion between the �ber and the SNSPD matter, since all other losses are corrected for in the
calibration measurements. ηabsorption accounts for the fact that not all photons entering the
cryostat are absorbed by the nanowire. This term depends on the absorption coe�cient of
the material, its thickness, polarisation, and the detector optical cavity (thus also the wave-
length). These terms can be di�erent when using di�erent materials and thickness and/or
di�erent cavity. ηinternal is the ratio between the number of registered detection pulses to the
number of photons absorbed by the detector. This term is in�uenced by choosing the right
bias current (DC) and the temperature of the detector and nanofabrication imperfections or
constrictions.

7
2.2.2. Recovery time

After detecting a photon (and thus, after outputting a pulse), an SNSPD cannot detect another
photon immediately. The time it takes for the amplitude of the voltage to return to 1/e of its
peak value is de�ned as the electrical recovery time. It depends, besides on material properties,
on the ratio of the length versus width of the nanowire (a small ratio leads to small recovery
times). The exact number di�ers per detector and can be measured using an oscilloscope,
however, typical values are in the tens of nanoseconds. A detection pulse measured with the
detector used in this experiment is shown in �gure 5.

Figure 5: A detection pulse measured with the detector used in this experiment. On the x-axis,
the time is displayed in nanoseconds. On the y-axis, the output voltage of the detector has
been normalized (thus now in arbitrary units).

2.2.3. Dark counts

Dark counts are the number of registered pulses per second when no light source is directly
connected to the detector. This is caused by light not coming from the experimental setup,
such as room light or day light, or black body radiation, as well as the intrinsic dark count of
the detectors. For this detector, the dark count rate has been measured to be around 250 Hz
when the room is dark.

2.2.4. Timing jitter

Timing jitter is the uncertainty in photon arrival times, limiting an accurate determination of
the arrival times. It has been shown that under correct conditions, it can reach as low as 3ps
[22].

8

3. Experimental method

To properly measure detection e�ciency of an SNSPD detector, multiple setups are required.
First, a setup is used to measure power �uctuations of the laser during a period of time. This is
done to check for possible drift in laser power, or other types of (structural) �uctuations (see
section 3.1). Then, calibration measurements using two power meters are executed, using a
setup described in section 3.2. This is done to check what the ratios of the power outputs
between the two optical arms are; they should be around 50dB. Under the assumption that
these ratios hold true during the SDE measurements, the total number of photons inputted
into the system can be calculated if the power is monitored at one of the optical arms. Finally,
one of the power meters is replaced by an SNSPD (section 3.3) and the e�ciency of the SNSPD
system is determined. The measurements in section 3.2 and 3.3 have been executed manu-
ally for a set of wavelengths and automised, using only single mode (SM) �bers and using
polarisation maintaining (PM) �bers. The benchmark measurements have been executed to
get a good indication of the actual performance of the detector, to which the measurements
using SM �bers and PM �bers can be compared to (both their manual measurements and their
automated ones).

The main goal of this project is to automate detection e�ciency measurements on SNSPDs.
Hence, a lot of time has been spent on coding and debugging several components of the
circuit. In this section, all the aforementioned setups are discussed in a separate part. Besides
a description of the actual hardware setup, a global description of the Python scripts used
there respectively is also given. All the code referenced to in these sections is given in the
appendix, and a directory of all the �les and the code is also given on GitHub (see appendix
for the full URL). The code was written to be as user friendly as possible.

3.1. Laser Power Fluctuations
To measure the e�ciency of an SNSPD detector, the photon input into the system should
be known. Moreover, the input should be relatively low (typically around 750.000 photons
per second), due to constraints the recovery time (see section 2.2.2) places on the amount of
photons the SNSPD can measure. To characterize the SDE of an SNSPD, it is customary to
measure its performance for a broad range of wavelengths. For this purpose, the JGR TLS5
Tunable Laser was used. It has a working range between 1260 nanometers and 1650 nanome-
ters, and can be adjusted in increments of 0.1 nanometer for highly accurate measurements,
see �gure 7.

First, the power of the laser that is incident on the detector is measured for the entire
working range of the laser during 20 seconds each, incrementing 10 nm every measurement.
This is done to check if there is any drift or other signi�cant deviation in laser power. The
laser is directly connected using an optical �ber to the power meter, Thorlabs PM100D, which
is in turn connected via an Ethernet cable to the computer. Also, a polarizer is connected in
between the laser and the power meter, to compensate for the curling of the SNF28 �ber (SM
�ber). These measurements were automated using Python, the code is in the appendix. In
�gure 6, a schematic drawing of the setup is shown. Figure 7 shows photos of the sketched
hardware.

9

Figure 6: Schematic drawing to measure the laser power using a power meter. The power me-
ter and laser are connected to a computer, to control them remotely (not shown). A polarizer
is inserted to compensate for the polarisation shift as a result of the curling of the wire.

Figure 7: These are the devices used mentioned in �gure 6. Left: picture of the laser used
(TLS5 tunable laser). Currently, it is set to 1500nm, it has a working range of 1260nm to
1650nm, with a resolution of 0.1nm. Right: Thorlabs PM100 power meter, with an detection
error margin of 5% and an accuracy of 1nW.

To retrieve data from the power meter, as in the setup of �gure 6, Python libraries could
be downloaded online. With the help of these libraries, it is possible to read the power, and set
the corresponding wavelength. However, there were some implementation problems, such as
not connecting to the power meter or suddenly losing connection. The last issue has not been
completely resolved yet. Connecting to and setting the wavelengths of the laser was not an
issue. To execute the measurements described in this section, the function laser_stability()
has been written. The user inputs a list of wavelengths he wishes to measure, as well as the
number of power measurements per wavelength and a time interval between each measure-
ment. These power measurements are outputted in an Excel �le.

The Python function laser_stability_plot() has been written to plot the power stability of
the laser. It inputs the Excel �le described above, and outputs a plot with the power of the laser
for all wavelengths. This is done by averaging the powers per wavelength and plotting these
values versus its corresponding wavelength. The plot contains error bars, which correspond
with the standard deviation in power.

10
3.2. Calibration measurements
As mentioned above, the power input into the SNSPD system should be around 750.000 pho-
tons. If the photon level exceeds this number too much, the recovery time of the system will
prevent the SNSPD from measuring a reasonable proportion of the photons, which translates
into low (and unreliable) e�ciencies. The laser output is, however, many orders of magnitude
above this boundary. Therefore, an attenuator is used to achieve this signi�cant reduction.
Generally speaking, the power input into the SNSPD system should be 10nW + 50dB atten-
uation. This extremely low power (in the order of magnitude of femtoWats, 10−15W) cannot
be monitored using the Thorlabs PM100 (1nW accuracy) or the Newport 843-R (tens of pi-
coWatts, 10−12). Hence, a beam splitter splits the light into two optical arms with a 50dB
attenuation between themselves. During the experiment, the high power arm will then out-
put around 10nW (which can be measured). This experiment used a beam splitter with a ratio
of 90%-10%, meaning 90% of the power will enter one arm (arm A) and 10% of the power
enters the other arm (arm B) In the low power arm, extra attenuation �lters are to be used
accounting for the aforementioned extra 50dB attenuation.

To check if the attenuation between these two arms equals 50dB, a set of calibration mea-
surements are executed. This entails connecting the laser to a beam splitter, which has two
arms with an attenuation of around 50dB. This value is wavelength dependent, so the real
attenuation di�ers from this value. It has been set to be 50dB at 1550nm for the manual
benchmark measurements. After passing the beam splitter, a bench with a polarisation con-
troller is used, which can be set to compensate for the polarization caused by the curling of
the optical �bers before entering the beam splitter, as shown in �gure 8. This is necessary
because not all measurements used polarisation maintaining �bers.

Also, the attenuator has been connected in this setup. This is done to account for the loss
in power due to coupling ine�ciencies. This is also why the ηcoupling term, discussed in for-
mula 1, only includes the coupling losses involved in connecting the low power arm to the
detector. In this experiment, the JGR Optics attenuator is chosen, connected directly to the
laser using a SM �ber. It is assumed that the ratio between the power measurements in this
calibration measurement is the same ratio once one power meter is replaced by the SNSPD
system.

A schematic drawing of the setup for the calibration measurements is shown in �gure 8.
In �gure 9 and in �gure 10, pictures are shown of the sketched optical components. First, the
optical �bers were all single mode (SM). For another series of SDE measurements, the optical
�bers between the Ubenches shown in �gure 8 and the �ber to P2, were replaced by polari-
sation maintaining (PM) �ber.

11

Figure 8: Schematic drawing of the calibration measurements. The laser is connected to the
attenuator, then via a Ubench (a �ber to �ber coupler bench) with a polarisation controller, a
90-10 beam splitter with one arm going to a power meter. The other arm �rst enters a Ubench
with attenuation �lters to attenuate the ratio between the power outputs of the optical arms to
be 50dB at 1550nm. Then, a polarisation controller is connected to compensate for the curling
of the wire (no polarisation maintaining �bers were used in one series of measurements)
and at last connected to another power meter. For the series of measurements which used
polarisation maintaining �ber, the polarisation controller was not needed; instead, a polarizer
was rotated along the fast/slow axis to align the polarisation of the light with the polarisation
of the detector.

Figure 9: Left: Picture of the attenuator used (JGR optical attenuator OA1). Currently, it is
setto attenuate at 1500nm with 0dB, but it can attenuate as much as90dB, with increments
of0.01dB. Middle: set of polarisation controllers used to manage the polarisation. For each
controller, it is turned in such a way to maximize the number of detected photons. Right:
Newport 843-R power meter. It has a 2% accuracy, as compared to a 5% accuracy for the
Thorlabs PM100.

12

Figure 10: Left: Picture of the �ber-�ber coupler (ubench) #1, only containing polarizers.
Middle: Picture of the �ber-�ber coupler #2, containing both polarizer and ND �lters (used
to attenuate a 50dB ratio between the two optical arms). Right: Beam splitter used. It is a
90-10 beam splitter, o�cially only for the range of wavelengths 1550 + /− 100nm.

Evidently, these measurements were automised as well. To communicate with the atten-
uator, a Python library (Attenuator.py) could be installed to set and read the attenuation, as
well as the wavelength it is measuring the attenuation at. Just as for the laser, this device also
communicates via a GPIB device, and hence the PrologixGPIBEthernet.py package was
used.

Then, a function (calibration()) was written to perform the calibration measurements.
The calibration measurement requires a sweep of the laser through its entire working range.
For each wavelength, the attenuator and the power meters are set to operate at this value
(although no measurement was performed with the attenuator in this step). 10 measurements
are retrieved per wavelength per power meter. The function inputs a list of wavelengths for
the setup to be measuring on (waves), a number of power measurements per wavelength
(number_of_calimeasurements), and a time interval to wait between measurements. The
function outputs Pandas DataFrames containing the power measurements per wavelength for
P1 and P2, as well as two Excel �les containing the same information for storage.

Once this data is retrieved, it is processed with the Python function get_ratios(). This
function calculates the ratios between the measured powers of the calibration measurement
per wavelength. It inputs the two Excel �les with the calibration data described above, which
is sorted per wavelength. First, it calculates the average powers per wavelength, and then it
divides these two averages for the ratio. It also converts this ratio to a dB ratio, this number
should be around 50dB (as it represents the ratio the beam splitter has been set to). Possibly,
this number deviates per wavelength, because the ratio the beam splitter outputs could be
wavelength dependent. An Excel �le is outputted, containing the average power per wave-
length (for both power meters), the ratios and the dB ratios. With these Excel �les, the same
function laser_stability_plot() as used in section 3.1 is used. Now, it is used to plot the
�uctuations of the laser power outputted by P1 and P2, respectively.

3.3. SNSPD e�ciency measurements
In this section, an overview will be given of the setup to measure the e�ciency of the SNSPD.
First, a series of manual measurements has been executed to create a benchmark for the auto-
mated measurements. Then, the automated measurements are carried out, and more manual
measurements are done. The setup, however is the same, also here the optical �bers were

13
changed from SM to PM �bers after a series of SDE measurements.

A sketch of the measurement setup to detect the e�ciency of an SNSDP detector is shown
in �gure 11. The JGR TLS5 Tunable Laser is connected through an optical �ber to an attenu-
ator (JGR OA1) to reduce the amount of photons released into the system. First, another JGR
optical attenuator has been used, as well as the Thorlabs PM100 power meter. However, it was
discovered that the measurements done with the other attenuator were unreliable, since this
attenuator reduced the power to such low intensities (probably due to internal power losses)
that they could not be measured accurately (the Thorlabs PM100 power meter cannot mea-
sure powers below 1nW correctly). Hence, at the last moment, the switch was made to other
power meters and were controlled using other Software (Matlab). Due to time constraints, no
Python code has been written to control these devices.

Figure 11: Schematic drawing of the experimental setup to measure e�ciency of an SNSDP.
The laser is directly connected to the attenuator, and then to a polarisation controller. Then, a
beam splitter splits the light in P1 and P2. The lower power arm has a bench to attenuate to a
50dB di�erence between the arms and a polarisation controller to compensate for the curling
of the wire. All elements are connected by optical �bers. The electronic part of the circuit is
not included.

After the attenuator, the �ber goes through a beam splitter. The arm with most of the
power is connected with a power meter (Newport 843-R, with only 2% error margin) to mea-
sure the intensity of the light (and thus, the amount of photons) in the system. Finally, the
light goes through a polarization controller before entering the closed cryogenic system (a
Gi�ord-McMahon cryocooler), which has been cooled down to 2.5K using liquid helium and
a vacuum. Inside this system, the SNSDP is located, biased with a DC current of around 17µA.
Once a photon hits the SNSDP, the superconductivity is broken and an electronic signal is
transferred from the detector to the driver, which can then be connected to an oscilloscope or

14
a computer (as done in this experiment).

The measurement setup is very similar to the setup for the calibration measurements, the
most obvious change being the replacement of one power meter by the SNSPD system (see
�gure 12). When calculating the e�ciency, the ratios of the calibration measurements are
assumed to be valid during the SNSPD measurements. The power measured in P1 is therefore
corrected with this ratio to get the (theoretical) power input (and thus, photon �ux) into the
SNSPD system. The attenuation of the attenuator has been set in such a way to get a power
output on P1 of around 10nW. This corresponds, with the attenuation of the beam splitter of
50dB, with a photon input �ux into the SNSPD system of around roughly 780.000 photons at
1550nm.

Figure 12: Picture of the cryostat used in this experiment. The SNSPD is mounted inside. The
slots (eight) are also visible. The rest of the setup is the same as in �gure 8.

A Python function (measurements()) is used to set the laser, attenuator and power meter
to a speci�c wavelength of a list of wavelenghts, and measure the power (10 times per wave-
length) and the counts (using the detected_counts() function described above). This data is
stored in Excel �les as well. Although this speci�c code has not been used for this setup, it
works with the ThorlabsPM100 power meter and another JGR optics attenuator and has the
same working principle as the Matlab used.

For the data processing, Python was still used. The function photon_eff(), is written to
calculate the e�ciencies. The power sheet measured during the SNSPD counts is inputted,
as well as the list with ratios, the list with corresponding wavelengths and the Excel sheet
containing the SNSPD counts. This function starts o� by calculating the averages of the mea-
sured power and uses the corresponding ratio to calculate the power input into the SNSPD
system. Then, it calculates the energy of a photon, per wavelength and calculates, using the
corresponding power input, how many photons are inputted into the system. This number is
used in the denominator of the e�ciency, the numerator is taken by the number of detected
photons. The e�ciencies, system powers, total photon count into the system are outputted in
an Excel �le for further analysis.

15

Finally, the function ploteffwav() is made to plot the e�ciencies per wavelength. It takes
in the e�ciency values calculated in the photon_eff() function and the wavelength.

16

4. Results and discussion

This section discusses the results in three parts, corresponding with the three parts listed in
the experimental method. First, the results of the �uctuations of the laser power are given.
Then, the results of the calibration measurements are shown. Finally, the e�ciency graphs of
the SNSPD measurements are displayed: the manual measurements as a benchmark, the SDE
measurements using SM �ber and the SDE measurements using PM �ber.

4.1. Laser Power Fluctuations
To be able to get reliable results of the optical setup, the stability of the laser source is to be
checked �rst. One should make sure there is no drift, or peculiar �uctuations in the laser light
itself. The results of these measurements are given in �gure 13. Power (in mV) is plotted
against the wavelengths (nm), with errorbars. The error bars are the consequence of the
uncertainty of the PM100 Thorlabs power meter (5%).

Figure 13: The �uctuations in laser power for the working range of the laser, the error bars
are plotted as well. The error comes from the uncertainty of the Thorlabs PM100 power meter
(5%).

4.2. Calibration measurements
Here, the results of the calibration measurements are given for all SDE measurements: the
benchmark, the measurements with SM �ber and the measurements with PM �ber.

17
The calibration for the benchmark is done by hand, for a number of wavelengths between

1260nm and 1650nm. Since they were done by hand, the ratio was adjusted in such a way
to create an approximate 50dB di�erence, see �gure 14. The laser is connected to the atten-
uator, and then a beam splitter splits the optical �ber into two arms. Before the light enters
the beam splitter and before it enters P2, polarisation controllers are inserted in the optical
circuit. P1 is the power meter (Newport) without the attenuation, P2 is the power meter with
the attenuation of around 50dB (for 1550nm).

Figure 14: The results from the calibration measurements for the benchmark SDE measure-
ments. Since these measurements were done manually for each wavelength, they are all close
to 50dB (dashed line).

In �gure 15, plots of the ratios (in dB) between the two power arms are given for the SDE
measurements using only SM �ber. These ratios have been measured before starting the SDE
measurements, and afterwards. Before measuring the SDE, the calibration has been done in
steps of 10nm between 1260nm and 1650nm. Afterwards, the calibration was done in steps
of 20nm for the same range of wavelengths as mentioned before. As can be seen, the ratios
di�er per wavelength, but for 1550nm, it has been set to 50dB (before measuring SDE). How-
ever, the calibration ratios measured before determining the SDE di�er signi�cantly from the
calibration ratios measured after the experiment. This means the measurements done with
the SM �bers were unreliable. The deviations in these measurements could be explained by
a di�erent polarisation during each of these measurements. This could be cause by touching
the �ber between the two ubenches described in �gure 8. The input �ber probably has no
role in this, since it �rst goes through a polariser. Besides, there is error as a result of cou-
pling and decoupling of the �ber, although this cannot explain these huge di�erences. After
calibrating the �rst time, the �ber to P2 is disconnected and connected to the SNSPD. After
the experiment, the �ber is reconnected to power meter 2 (P2). Because the air gap between

18
the (power) sensor and the �ber varies when reconnecting, the connection is never the same.
This results in deviations in power.

Figure 15: Plot with the ratios (in dB) between P1 and P2 for wavelengths between 1260nm
and 1650nm. The calibration has been done twice, before the SDE measurements (in steps
of 10nm) and after the SDE measurements (in steps of 20nm). The dashed line is the ideal
ratio between the two power meters, which is achieved at 1550nm - as can be seen in the
calibration taken before the SDE measurements. As can be seen, the ratios have shifted during
the experiment. This could be explained by a shift in polarisation, because a (SM) wire has
been touched.

Below, the measurements with the PM �ber are given. Due to time constraints, the ratio
has not been set to be exactly 50dB at 1550nm. These calibration measurements have been
done after the SDE measurements, in the range of 1300nm to 1650nm, with increments of
50nm (plus a calibration measurement at 1260nm, the starting point of previous measure-
ments). Since the �bers used were polarisation maintaining, a shift of polarisation during
SDE measurements will not be of greatest concern in this case. In this case, the error as a
result of coupling and decoupling could be a problem. As can be seen in the �gure, the point
at 1550nm is a signi�cant outlier to the trend. Unfortunately, no data is available of the ratio
before the measurement to check if this ratio has shifted, but as the �bers used were polari-
sation maintaining the chances are lower this has happened and it has been assumed that the
ratios stayed constant. The point being outlier has no in�uence on the e�ciency in itself.

19

Figure 16: Plot with the ratios (in dB) between P1 and P2 for wavelengths between 1260nm and
1650nm, in steps of 10nm. The dashed line is the ideal ratio between the two power meters,
which is achieved at 1550nm. These measurements were taken after the SDE measurements
were �nished, with PM �ber in the optical circuit.

4.3. Detector e�ciency measurements
In this section, the results of SDE measurements are given. First, the results of the manual
SDE measurements are given. In the two other sections, the SDE measurements using SM
�bers and using PM �bers are displayed, respectively.

The manual SDE measurements can be used as a benchmark for the other aforementioned
SDE measurements. As can be seen in �gure 17, the e�ciency of the detector has been mea-
sured for several wavelengths between 1260nm and 1650nm, ranging between 22% and 95%.
If compared to the typical behavior of a DBR detector, as shown in �gure 1 (middle �gure),
it looks as expected for the lower wavelengths. For the upper wavelengths (around 1600nm),
the SDE is expected to be lower and follow a more downward trend. Although the ratio be-
tween the two optical arms was reasonable during calibration measurements, see �gure 14, it
could be that the ratio has shifted during measurements as a result of a shift in polarisation
(after all, SM �bers were used). Another error (for all datapoints) is the change in ratio due to
the decoupling of the �ber from P2 to the SNSPD, as every coupling is unique and results in
a slightly di�erent power loss.

20

Figure 17: E�ciency plot for the mounted detector in the cryostat. These measurements were
taken manually. It has data points between 1260nm and 1650nm, with e�ciencies ranging
between 22% and 95%.

4.3.1. SDE measurements using SM �bers

In this section the results of the SDE measurements using SM �bers are given, see �gure 18.
As mentioned above, the calibration using SM �bers was not reliable. A calibration was done
before the measurement ("ratios A") and another calibration was done after the measurement
("ratios B"). These huge deviations and unrealistic e�ciency values can be explained by the
unreliable calibration measurements, as a result of a shift in the polarisation. From this �gure,
one could say that ratios B are closer to reality than ratios A. This could also be determined
from �gure 15: the ratios taken after the measurement are closer to the desired value of 50dB.
Still, even these values are not reliable, since they may not represent the ratios which were
true during the measurements.

21

Figure 18: E�ciency plot for the mounted detector in the cryostat. These measurements were
taken automatically using software. It has data points between 1260nm and 1650nm, with
e�ciencies ranging between 8% and 150%. The values shown here are unreliable, as the
calibration measurements used for both sets do not represent the correct ratio of power in the
optical arms during the SDE measurements. The measurements were taken between 1260nm
and 1650nm, with a 10nm stepsize for ratios A and a 20nm stepsize for ratios B.

4.3.2. SDE measurements using PM �bers

In this section, the results of the SDE measurements using PM �bers are given, see �gure ??.
A series of manual measurements and automated measurements were taken. As can be seen
in the �gure, the measurements match the expected shape of a DBR detector, and agree with
the benchmark set in �gure 17. However, there is a slight mismatch between the series of
manual SDE measurements and automated SDE measurements. The manual measurements
agree better with the set benchmark than the automated measurements. This could be ex-
plained by the coupling and decoupling of the optical �ber mentioned above.

22

Figure 19: E�ciency plot for the mounted detector in the cryostat. These measurements were
taken manually. It has data points between 1260nm and 1650nm, with e�ciencies ranging
between 22% and 95%.

23

5. Conclusion and recommendations

The goal of this thesis was to design a precise measurement setup to automatically perform
e�ciency measurements on SNSPDs. First, a measurement setup was designed to accurately
monitor the low photon input into the SNSPD. This has been done by connecting a laser �rst
to an attenuator and then to a beam splitter. From here two optical arms are leading to i) a
power meter (unattenuated by the beam splitter) and ii) to another power meter during cal-
ibrations or to the cryostat (attenuated by the beam splitter). Polarisation controllers were
inserted before the beam splitter and before the SNSPD to compensate for unwanted polar-
isation, and attenuation �lters were used in the low power arm to achieve a 50dB ratio at
1550nm between the powers of both optical arms. Calibration measurements were executed
to determine the ratio between the arms accurately for the speci�ed range of wavelengths
(1260nm - 1650nm). Then, the laser power was attenuated to output around 10nW on arm
i), to achieve a reasonable photon in�ux to the SNSPD. All measurements were automated
and processed using Python. Measurements have been done using SM �bers throughout the
optical circuit, and then polarisation maintaining �bers were used.

5.1. Conclusion
When determining the e�ciency of the detector, it was found that it depends for a large
part on the wavelength in this setup. The measurements with the SM �ber turned out to be
unreliable, as the polarisation has shifted during the experiment. The SDE measurements with
polarisation maintaining �ber matched the benchmark set much better. The mismatches with
the manual benchmark data could partly be explained by the coupling and decoupling of the
�ber in switching from calibration measurements to SDE measurements. The Python code,
which was written for this project, worked properly during the experiment: communicating
with all the hardware in the optical circuit and then processing the data properly into Excel
�les and graphs.

5.2. Recommendations
For further research, it is recommended to use polarisation maintaining �bers. Moreover, the
ratio between the optical arms can be set closer to an attenuation of 50dB, or even replaced
by a beam splitter speci�cally designed for the range of wavelengths of the measurements.
Also, the Thorlabs power meter can be replaced by a more sensitive power meter (such as the
Newport 843-R) in further research for more accurate restults.

24

Acknowledgements

I would like to thank Silvania Pereira and my supervisor Iman Esmaeil Zadeh for the oppor-
tunity to do my Bachelor Final Project at the Optics and Quantum Optics department, here at
the TU Delft. Especially, I would like to thank Iman Esmaeil Zadeh, Jin Chang and Niels Los
from Single Quantum for their availability to answer all my questions and help me out in the
lab. Finally, I would like to thank Single Quantum for the equipment which has been lent for
this experiment.

25

References

[1] Juan Yin, Yuan Cao, Shu-Bin Liu, Ge-Sheng Pan, Jin-Hong Wang, Tao Yang, Zhong-Ping
Zhang, Fu-Min Yang, Yu-Ao Chen, Cheng-Zhi Peng, and Jian-Wei Pan. Experimental
quasi-single-photon transmission from satellite to earth. Opt. Express, page 21, 2013.

[2] Giuseppe Vallone, Daniele Dequal, Marco Tomasin, Francesco Vedovato, Matteo Schi-
avon, Vincenza Luceri, Giuseppe Bianco, and Paolo Villoresi. Interference at the single
photon level along satellite-ground channels. Phys. Rev. Lett, page 116, 2016.

[3] O. Marinov M. J. Deen D. Palubiak, M. M. El-Desouki and Q. Fang. High-speed, single-
photon avalanche-photodiode imager for biomedical applications. IEEE Sensors Journal,
2011.

[4] Yury Lobanov, Michael Shcherbatenko, Alexander Semenov, Oliver Kahl Vadim Kova-
lyuk, Simone Ferrari, Alexander Korneev, Roman Ozhegov, Natalia Kaurova, Boris M.
Voronov, Wolfram H. P. Pernice, and Gregory N. Gol’tsman. Superconducting nanowire
single photon detector for coherent detection of weak signals. 2017.

[5] Iman Esmaeil Zadeha, Johannes W. N. Los, Ronan B. M. Gourgues, Violette Steinmetz,
Gabriele Bulgarini, Sergiy M. Dobrovolskiy, Val Zwiller, and Sander N. Dorenbos. Single-
photon detectors combining high e�ciency, high detection rates, and ultra-high timing
resolution. APL Photonics, 2017.

[6] WeiJun Zhang, LiXing You, Hao Li, Jia Huang, ChaoLin Lv, Lu Zhang, XiaoYu Liu, Jun-
Jie Wu, Zhen Wang, and XiaoMing Xie. Nbn superconducting nanowire single photon
detector with e�ciency over 90 % at 1550 nm wavelength operational at compact cry-
ocooler temperature. Science China Physics, Mechanics Astronomy volume, 2017.

[7] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker,
B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam. Detecting single infrared photons with
93% system e�ciency. Nature photonics, 2013.

[8] Dileep V. Reddy, Adriana E., SaeWoo Lita, Richard Nam, P. Mirin, and Varun B. Verma.
Achieving 98% system e�ciency at 1550 nm in superconducting nanowire single photon
detectors. Rochester Conference on Coherence and Quantum Optics, 2019.

[9] Iman Esmaeil Zadeh, Johannes W. N. Los, Ronan B. M. Gourgues, Jin Chang, Ali W.
Elshaari, Julien Romain Zichi, Yuri J. van Staaden, Jeroen P. E. Swens, Nima Kalhor,
Antonio Guardiani, Yun Meng, Kai Zou, Sergiy Dobrovolskiy, Andreas W. Fognini, Den-
nis R. Schaart, Dan Dalacu, Philip J. Poole, Michael E. Reimer, Xiaolong Hu, Silvania F.
Pereira, Val Zwiller, and Sander N. Dorenbos. E�cient single-photon detection with 7.7
ps time resolution for photon-correlation measurements. ACS Photonics, 2020.

[10] J. P. Allmaras and B. A. Korzh, M. D. Shaw, A. G. Kozorezov, and K. K. Berggren. Intrinsic
timing jitter and latency in superconducting single photon nanowire detectors. 2018.

[11] Ni Yao, Quan Yao, Xiu-Ping Xie, Yang Liu, Peizhen Xu, Wei Fang, Ming-Yang Zheng,
Jingyun Fan, Qiang Zhang, Limin Tong, and Jian-Wei Pan. Optimizing up-conversion
single-photon detectors for quantum key distribution. Optical express, 2020.

26
[12] J. Chang, J. W. N. Los, J. O. Tenorio-Pear, N. Noordzij, R. Gourgues, A. Guardiani, J. R.

Zichi, S. F. Pereira, H. P. Urbach, V. Zwiller, S. N. Dorenbos, and I. Esmaeil Zadeh. De-
tecting telecom single photons with 99% system detection e�ciency and high time res-
olution. APL Photonics, 2021.

[13] Y. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. reviews of
modern physics. pages 145–190, 2002.

[14] C. Zhou, G. Wu, X. Chen, H. Li, and H. Zeng. Quantum key distribution in 50-km optic
�bers. Science China: Physics,Mechanics Astronomy 47:182–188, 2004.

[15] Mikhail Y. Berezin* and Samuel Achilefu. Fluorescence Lifetime Measurements and Bio-
logical Imaging. 2010.

[16] Jin Chang, Iman Esmaeil Zadeh, Johannes W. N. Los, Julien Zichi, Andreas Fognini,
Monique Gevers, Sander Dorenbos, Silvania F. Pereira, Paul Urbach, and Val Zwiller.
Multimode-�ber-coupled superconducting nanowire single-photon detectors with high
detection e�ciency and time resolution. 2019.

[17] WeiJun Zhang, LiXing You, Hao Li, Jia Huang, ChaoLin Lv, Lu Zhang, XiaoYu Liu, JunJie
Wu, Zhen Wang, and XiaoMing Xie. Nbn superconducting nanowire single photon de-
tector with e�ciency over 90% at 1550 nm wavelength operational at compact cryocooler
temperature. 2017.

[18] J. Bardeen, L. N. Cooper, and J. R. Schrie�er. Theory of superconductivity. pages 1175–
1204, 1957.

[19] Francesco Marsili, Faraz Naja�, Eric Dauler, Francesco Bellei, Xiaolong Hu, Maria Csete,
Richard J. Molnar, and Karl K. Berggrent. Single-photon detectors based on ultranarrow
superconducting nanowires. Nano Letters, 2011.

[20] Chandra M Natarajan, Michael G Tanner, and Robert H Had�eld. Superconducting
nanowire single-photon detectors: physics and applications. Superconductor Science and
Technology, Volume 25, Number 6, 2012.

[21] Joel K.W. Yang, Andrew J. Kerman, V. Anant, and E.A. Dauler. Modeling the electrical and
thermal response of superconducting nanowire single-photon detectors;modeling the
electrical and thermal response of superconducting nanowire single-photon detectors.
2007.

[22] Junjie Wu, Lixing You, Sijing Chen, Hao Li, Yuhao He, Chaolin Lv, Zhen Wang, and
Xiaoming Xie. Improving the timing jitter of a superconducting nanowire single-photon
detection system. 2017.

27

Appendix

In this part of the document, the Python code is displayed.

Python

Here, the Python code developed for this project is shown. It is divided into three sections,
the �rst two are libraries used to communicate with the hardware and for the data processing
respectively. The last section is the code used to call the aforementioned libraries. The code
can also be easily accessed on GitHub, using the following URL:
https://github.com/ianmrosales/SNSPD_e�ciencies.

Functions.py
This library is written to communicate with the hardware: the laser, attenuator, power meters
and SNSPD driver. Lots of commentaries have already been written inside the functions to
clarify the input parameters and algorithms inside the functions.

1 from WebSQControl import WebSQControl
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6 def current_setter(number_of_detectors, Irange):
7 """
8 This function sets the current for all detectors in the SNSPD

system in one time↪→

9 INPUT:
10 number_of_detectors: (INT)
11 Irange: INT or LIST, specify the value(s) to be used as

current (microA)↪→

12 """
13

14 if isinstance(Irange, list):
15 y = [[val]*number_of_detectors for val in Irange]
16 elif isinstance(Irange, np.ndarray):
17 y = [[val]*number_of_detectors for val in Irange]
18 else:
19 y = [Irange]*number_of_detectors
20 return y
21

22 def start_snspd(N, tcp_ip_address, control_port, counts_port):
23 """
24

25 Starting the SNSPD driver and doing a system check.
26 Returns present parameters of the system
27

28 INPUT:
29 tcp_ip_address (STR)
30 control_port (INT)
31 counts_port (INT)

28
32

33 OUTPUT:
34 ms_time = integration time of the system (INT)
35 bias_current (LIST,INT)
36 trigger (INT)
37 number_of_detectors (INT)
38

39 """
40 websq = WebSQControl(TCP_IP_ADR = tcp_ip_address, CONTROL_PORT =

control_port, COUNTS_PORT = counts_port)↪→

41 websq.connect()
42

43 #Acquire number of detectors in the system
44 number_of_detectors = websq.get_number_of_detectors()
45 print("Your system has " + str(number_of_detectors) + '

detectors\n')↪→

46

47 print("Set integration time to 100 ms\n")
48 websq.set_measurement_periode(100) #time in ms
49

50 print("Enable detectors\n")
51 websq.enable_detectors(True)
52

53

54 # Print out the parameters of the experiment
55 ms_time = websq.get_measurement_periode()
56 bias_current = websq.get_bias_current()
57 trigger = websq.get_trigger_level()
58

59 #Close connection
60 websq.close()
61

62 print("Read back set values")
63 print("====================\n")
64 print("Measurement Periode (ms): \t" + str(ms_time))
65 print("Bias Currents in uA: \t\t" + str(bias_current))
66 print("Trigger Levels in mV: \t\t" + str(trigger))
67

68 # N measurements
69 print("Aquire " + str(N) + " counts measurements")
70 print("============================\n")
71 return ms_time, bias_current, trigger, number_of_detectors
72

73 def detected_counts(tcp_ip_address, control_port, counts_port, N,
number_of_detectors, Ib,wav):↪→

74 """
75

76 Parameters
77 ----------
78 tcp_ip_address (STR)
79 control_port (INT)
80 counts_port (INT)
81 N = number of measurements to be taken (INT)
82 number_of_detectors
83 Ib = bias current (LIST), for every detector a value

29
84 wav = INT, used for naming the xlsx file
85

86 Returns
87 -------
88 A DataFrame containing all counts, An DataFrame containing the

averages per detector.↪→

89

90 """
91 websq = WebSQControl(TCP_IP_ADR = tcp_ip_address, CONTROL_PORT =

control_port, COUNTS_PORT = counts_port)↪→

92 websq.connect()
93

94 # start by setting bias current
95 websq.set_bias_current(current_in_uA = Ib)
96

97 ms_time = websq.get_measurement_periode()
98

99 #Aquire N counts measurements
100 #Returns an array filled with N numpy arrays each
101 #containing as first element a time stamp and then the detector

counts in ascending order.↪→

102 counts = websq.aquire_cnts(N)
103 for i in range(1,len(counts)):
104 counts[i]=counts[i]*1/(ms_time*10**(-3))
105

106 # create dataframe out of the measurements
107 df = pd.DataFrame()
108 for i in range(len(counts)):
109 df = df.append(pd.DataFrame(counts[i]).T)
110

111 # some styling to the indices to make it easier to extract data
112 headers = ["Channel "+str(1+i) for i in

range(number_of_detectors)]↪→

113 meas = [i for i in range(1,N+1)]
114 headers.insert(0, "Timestamp")
115

116 df.set_axis(headers, axis=1, inplace=True)
117 df.set_axis(meas, axis = 0, inplace=True)
118

119 # remove noise in the used detector
120 # add more of such lines if more ports are used
121 df = df[df["Channel 7"] > 20000]
122

123 # used if this function is used in a loop for different
wavelengths↪→

124 df.to_excel("counts"+str(wav)+".xlsx")
125

126 # calculate average counts for each column (detector) in the
dataframe↪→

127 avgs_detect = df.mean(axis=0)
128 websq.close()
129

130 return avgs_detect, df
131

132 def count_rate(tcp_ip_address, control_port, counts_port, list_Ib, N,
number_of_detectors):↪→

30
133 """
134 This function measures the photon count rate for a range of

current values values↪→

135 per detector in the system at a set wavelength (set manually)
136

137 Parameters
138 -------
139 list_Ib: a nested list containing different bias currents
140 List inside the list contains currents specified for each detector
141 xIb: the range of values for Ib used for the plot
142

143 Returns
144 -------
145 avgscounts: a list of avg photon counts.
146

147 """
148

149 # create an empty list to store the photon counts
150 avgscounts=[]
151 for i in list_Ib:
152 avgs = detected_counts(tcp_ip_address, control_port,

counts_port, N, number_of_detectors, i,0)[0].tolist()↪→

153

154 # since the output of the detected_counts() is a list (containing
timestamp),↪→

155 # the timestamp is removed and all other values are appended to a
list↪→

156 for j in avgs[1:]:
157 avgscounts.append(j)
158 return avgscounts
159

160 def get_power():
161 import time
162 """
163 This function retrieves the power from the THOR PM100 power meter.
164 Works only if one power meter is connected to the system
165

166 OUTPUT:
167 p = power (INT)
168 """
169

170 from ctypes import
c_uint32,byref,create_string_buffer,c_bool,c_char_p,c_int,c_double↪→

171 from TLPM import TLPM
172

173 # establish connection
174 tlPM = TLPM()
175 deviceCount = c_uint32()
176 tlPM.findRsrc(byref(deviceCount))
177

178 print("devices found: " + str(deviceCount.value))
179

180 resourceName = create_string_buffer(1024)
181

182 for i in range(0, deviceCount.value):

31
183 tlPM.getRsrcName(c_int(i), resourceName)
184 print(c_char_p(resourceName.raw).value)
185 break
186

187 tlPM.close()
188

189 # open the power meter and get power value
190 tlPM = TLPM()
191

192 #set wavelength power meter
193 tlPM.open(resourceName, c_bool(True), c_bool(True))
194

195 time.sleep(1)
196 power_fluct = np.zeros(10)
197

198 j=0
199 while j<10:
200

201 power = c_double()
202 tlPM.measPower(byref(power))
203

204 print(power.value)
205

206 p = power.value
207

208 power_fluct[j]=p
209 time.sleep(0.3)
210

211 print(p)
212 j = j+1
213 tlPM.close()
214 pwr = np.average(power_fluct[2:])
215 print("Power =", pwr)
216 return pwr
217

218

219 def calibration(waves, number_of_calimeasurements, time_interval):
220 """
221 Perform measurements on two powermeters for a range of

wavelengths. Store the output in xlsx files↪→

222 INPUT:
223 waves = range of wavelengths (LIST)
224 number_of_calimeasurements = the number of power measurements

to be taken at each wavelength↪→

225 time_interval = specify the amount of time to wait between
each measurement↪→

226

227 OUTPUT:
228 dflaserP1 = DataFrame containing all powers of powermeter 1,

sorted per wavelength↪→

229 dflaserP2 = DataFrame containing all powers of powermeter 2,
sorted per wavelength↪→

230 laserlistP1 = List containing all powers of powermeter 1,
sorted per wavelength↪→

231 laserlistP2 = List containing all powers of powermeter 2,
sorted per wavelength↪→

32
232

233 """
234 global resourceNameP1, resourceNameP2
235 import laser
236 import time
237 import Attenuator
238 from TLPM import TLPM
239 from ctypes import cdll,c_long, c_ulong,

c_uint32,byref,create_string_buffer,c_bool,c_char_p,c_int,c_int16,c_double,
sizeof, c_voidp

↪→

↪→

240

241 # connect with the equipment
242 l = laser.Laser()
243 l.open_port('192.168.1.149','5') # connects
244 d = Attenuator.Attenuator()
245 d.open_port('192.168.1.148','18')
246 d.setAtt(0)
247 tlPM = TLPM()
248 deviceCount = c_uint32()
249 tlPM.findRsrc(byref(deviceCount))
250

251 print("devices found: " + str(deviceCount.value))
252

253 resourceNameP1 = create_string_buffer(1024)
254 resourceNameP2 = create_string_buffer(1024)
255

256 tlPM.getRsrcName(c_int(0), resourceNameP1)
257 tlPM.getRsrcName(c_int(1), resourceNameP2)
258

259 tlPM.close()
260

261 # fill up the df
262 laserlistP1 = []
263 laserlistP2 = []
264

265 for wave in waves:
266 print(wave)
267 l.setWVL(wave)
268

269 d.setWVL(wave)
270 print("================================")
271 print("The wavelength is now set to:",l.getWVL())
272

273 power_fluctP1 = []
274 power_fluctP2 = []
275

276 j = 0
277

278 tlPM = TLPM()
279

280 tlPM.open(resourceNameP1, c_bool(True), c_bool(True))
281

282 waveset = c_double(wave)
283 tlPM.setWavelength(waveset)
284 print("P1 values:")

33
285

286 while j < number_of_calimeasurements:
287

288 power = c_double()
289 tlPM.measPower(byref(power))
290

291 print(power.value)
292

293 p = power.value
294

295 power_fluctP1.append(p)
296

297 j = j+1
298 time.sleep(time_interval)
299

300 tlPM.close()
301 laserlistP1.append(power_fluctP1)
302

303 i = 0
304 tlPM = TLPM()
305 tlPM.open(resourceNameP2, c_bool(True), c_bool(True))
306

307 waveset = c_double(wave)
308 tlPM.setWavelength(waveset)
309 print("P2 values:")
310

311 while i < number_of_calimeasurements:
312

313 power = c_double()
314 tlPM.measPower(byref(power))
315

316 print(power.value)
317

318 p = power.value
319

320 power_fluctP2.append(p)
321

322 i = i+1
323 time.sleep(time_interval)
324

325

326 tlPM.close()
327

328 laserlistP2.append(power_fluctP2)
329

330 dflaserP1 = pd.DataFrame(laserlistP1).T
331 headers = [i for i in waves]
332 meas = [i for i in range(1,number_of_calimeasurements+1)]
333

334 dflaserP1.set_axis(headers, axis=1, inplace=True)
335 dflaserP1.set_axis(meas, axis = 0, inplace=True)
336 dflaserP1.to_excel('powerfluctP1.xlsx')
337

338

339 dflaserP2 = pd.DataFrame(laserlistP2).T

34
340 dflaserP2.set_axis(headers, axis=1, inplace=True)
341 dflaserP2.set_axis(meas, axis = 0, inplace=True)
342 dflaserP2.to_excel('powerfluctP2.xlsx')
343

344 return dflaserP1, dflaserP2, laserlistP1, laserlistP2
345

346 def laser_stability(waves, number_of_calimeasurements, time_interval):
347 """
348 This function measures the stability of the laser across a range

of wavelengths↪→

349 taking power measurements every specified time interval
350

351 Parameters
352 ----------
353 waves : LIST
354 LIST CONTAINING LIST OF WAVELENGTH VALUES.
355 times : LIST
356 DESCRIPTION.
357

358 Returns
359 -------
360 df : DATAFRAME
361 DF CONTAINING THE POWER FLUCTUATIONS OF THE LASER, EACH COLUMN

BEING ANOTHER WAVELENGTH↪→

362

363 """
364 global resourceName
365 import laser
366 import time
367 from TLPM import TLPM
368 from ctypes import cdll,c_long, c_ulong,

c_uint32,byref,create_string_buffer,c_bool,c_char_p,c_int,c_int16,c_double,
sizeof, c_voidp

↪→

↪→

369 # connect with the equipment
370 l = laser.Laser()
371 l.open_port('192.168.1.149','5') # connects
372 tlPM = TLPM()
373

374 resourceName = create_string_buffer(1024)
375 deviceCount = c_uint32()
376 tlPM.findRsrc(byref(deviceCount))
377

378 for i in range(0, deviceCount.value):
379 tlPM.getRsrcName(c_int(i), resourceName)
380

381 tlPM.close()
382

383 # fill up the df
384 laserlist = []# pd.DataFrame(columns = waves)
385 for wave in waves:
386 print(wave)
387 l.setWVL(wave)
388 print("================================")
389 print("The wavelength is now set to:",l.getWVL())
390

35
391 power_fluct = []
392

393 j = 0
394 tlPM = TLPM()
395 tlPM.open(resourceName, c_bool(True), c_bool(True))
396

397 waveset = c_double(wave)
398 tlPM.setWavelength(waveset)
399

400 while j < number_of_calimeasurements:
401

402 power = c_double()
403 tlPM.measPower(byref(power))
404

405 print(power.value)
406

407 p = power.value
408

409 power_fluct.append(p)
410

411 j = j+1
412 time.sleep(time_interval)
413

414 tlPM.close()
415 laserlist.append(power_fluct)
416

417 dflaser = pd.DataFrame(laserlist).T
418 headers = [i for i in waves]
419 meas = [i for i in range(1,number_of_calimeasurements+1)]
420 dflaser.set_axis(headers, axis=1, inplace=True)
421 dflaser.set_axis(meas, axis = 0, inplace=True)
422 dflaser.to_excel('powerfluct.xlsx')
423

424 return dflaser, laserlist
425

426 def measurements(tcp_ip_address, control_port, counts_port, N,
number_of_detectors, Ib, waves, db, laserip,laserchannel):↪→

427

428 """
429 Measure the counts for a range of wavelengths, output an xlsx file

for each wavelength↪→

430 Measure the power in the reference arm during the measurements,
output a final xlsx file with the fluctuations↪→

431

432 INPUT:
433 tcp_ip_address (STR)
434 control_port (INT)
435 counts_port (INT)
436 N = number of counts per measurement
437 number_of_detectors (INT)
438 Ib = list of bias currents
439 waves = list of wavelengths to measure on (LIST)
440 db = a set attenuation level (INT)
441 laserip (STR)
442 laserchannel (INT)

36
443 """
444

445 from ctypes import
c_uint32,byref,create_string_buffer,c_bool,c_char_p,c_int,c_double,c_int16↪→

446 from TLPM import TLPM
447 import laser
448 import Attenuator
449 import time
450

451 l = laser.Laser()
452 l.open_port(laserip,laserchannel) # connects
453

454 d = Attenuator.Attenuator()
455 d.open_port('192.168.1.148','18')
456

457 tlPM = TLPM()
458 resourceName1 = create_string_buffer(10240)
459

460 deviceCount = c_uint32()
461 tlPM.findRsrc(byref(deviceCount))
462 for i in range(0, deviceCount.value):
463 tlPM.getRsrcName(c_int(i), resourceName1)
464

465 # create a df each column containing the efficiency of all
detectors per wavelength↪→

466 df2 = pd.DataFrame(columns = waves)
467

468 pf = pd.DataFrame(columns = waves)
469

470 for wave in waves:
471

472 l.setWVL(wave)
473 d.setAtt(db)
474 d.setWVL(wave)
475

476 print("================================")
477 print("The wavelength is now set to:",l.getWVL())
478

479 j=0
480 time.sleep(10) # let it calibrate
481 #set wavelength power meter
482 tlPM.open(resourceName1, c_bool(True), c_bool(True))
483 # set wavelength
484 waveset = c_double(wave)
485 tlPM.setWavelength(waveset)
486

487 print(tlPM.setWavelength(waveset))
488 print(waveset.value)
489

490 time.sleep(1)
491 power_fluct = np.zeros(10)
492

493 while j<10:
494

495 power = c_double()

37
496 tlPM.measPower(byref(power))
497

498 print(power.value)
499

500 p = power.value
501

502 power_fluct[j]=p
503 time.sleep(0.5)
504 print(p)
505

506 j = j+1
507 tlPM.close()
508

509 power_fluct2=power_fluct[3:]
510 p = np.average(power_fluct2)
511 print(p)
512

513 # get detected counts of the SNSPD system, only average counts
of N measurements for all detectors↪→

514 SNSPD_counts = detected_counts(tcp_ip_address, control_port,
counts_port,N, number_of_detectors, Ib, wave)[0].tolist()↪→

515 print(SNSPD_counts)
516

517 df2[wave]=SNSPD_counts
518 pf[wave] = power_fluct
519

520 # drop first row containing timestamps
521 df2 = df2.iloc[1:,:]
522 df2.to_excel("measurements.xlsx")
523

524 pf = pf.iloc[1:,:]
525 pf.to_excel("powerfluctuationsf.xlsx")
526 print(df2)
527 print(pf)
528

529 return df2, pf

Graphs.py
This library is written to process the data acquired by calling the functions in the functions.py
�le. Lots of commentaries have already been written inside the functions to clarify the input
parameters and algorithms inside the functions.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 import pandas as pd
4

5 def count_rate_plotter(avgscounts, xIb, number_of_detectors):
6 """
7 Plot the count rate for different currents
8

9 INPUT:
10 avgscounts = nested LIST of counts
11 xIb = LIST of currents for x-scale
12 number_of_detectors (INT)

38
13 """
14 for k in range(0, number_of_detectors):
15 newlist = []
16 for i in range(k, len(avgscounts), 8):
17 newlist.append(avgscounts[i])
18

19 plt.title("Count rate vs I_bias")
20 plt.plot(xIb, newlist,label = "Detector "+str(k+1))
21 plt.legend()
22 plt.show()
23 plt.savefig("countrate.png")
24 plt.close()
25

26 def plot_efficiency(xIb, efficiency, number_of_detectors):
27 """
28 Plot the efficiency for each detector as a function of a range of

currents↪→

29

30 INPUT:
31 xIb = range of currents for x-scale, LIST
32 efficiency = LIST
33 number_of_detectors = INT
34 """
35 for k in range(0, number_of_detectors):
36 newlist = []
37 for i in range(k, len(efficiency), 8):
38 newlist.append(efficiency[i])
39

40 plt.title("Efficiency vs I_bias")
41 plt.plot(xIb, newlist,label = "Detector "+str(k+1))
42 plt.legend()
43 plt.show()
44 plt.savefig("eff.png")
45 plt.close()
46

47

48 def wavelength_plot(waves_list, waves,number_of_detectors):
49 """
50 This function plots the measured efficiency for different

wavelengths↪→

51

52 INPUT:
53 waves_list = LIST containing a range of wavelengths
54 waves = LIST containing a range of wavelengths
55 number_of_detectors = INT
56 """
57

58 for k in range(0, number_of_detectors):
59 newlist = []
60 for i in range(k, len(waves_list), 8):
61 newlist.append(waves_list[i])
62

63 print(newlist)
64 print(len(newlist))
65 plt.title("Efficiency vs wavelength")

39
66 plt.plot(waves, newlist,label = "Detector "+str(k+1))
67 plt.legend()
68

69 plt.show()
70 plt.savefig("wavelength_eff.png")
71 plt.close()
72

73 # functions to plot the power of the laser
74 def power_plotter(df, times):
75

76 """
77 Plot the measured power per wavelength, in separate graph
78

79 INPUT:
80 df = DataFrame containing all power measurements, sorted per

wavelength↪→

81 times = LIST of times for x-scale of the plot
82 """
83 # calculate std deviation of each column and determine its

fluctuations↪→

84 for header in df:
85 array = df[header].to_numpy()
86 array = [i*10**3 for i in array]
87 # make nice plot power fluctuations
88 plt.plot(times, array, linestyle = "solid", marker = "*",label

= str(header)+" nm")↪→

89 plt.xlabel("Time (s)")
90 plt.ylabel("Power (mV)")
91 plt.title("Stability test Power fluctuation")
92 plt.legend()
93 plt.savefig("powerfluct"+str(header)+".png")
94 plt.show()
95 plt.close()
96

97 def totpower_plotter(df, times):
98

99 """
100 Plot the measured power per wavelength, in one figure
101

102 INPUT:
103 df = DataFrame containing all power measurements, sorted per

wavelength↪→

104 times = LIST of times for x-scale of the plot
105 """
106

107 # calculate std deviation of each column and determine its
fluctuations↪→

108 for header in df:
109 array = df[header].to_numpy()
110 array = [i*10**3 for i in array]
111 # make nice plot power fluctuations
112 plt.plot(times, array, linestyle = "solid", marker = "*",label

= str(header)+" nm")↪→

113 plt.xlabel("Time (s)")
114 plt.ylabel("Power (mV)")

40
115 plt.title("Stability test Power fluctuation")
116 plt.legend()
117 plt.savefig("powerflucttot.png")
118 plt.show()
119 plt.close()
120

121 def laser_stability_plot(df, waves):
122 """
123 THIS FUNCTION OUTPUTS A GRAPH SHOWING THE LASER STABILITY FOR ALL

WAVELENGTHS↪→

124

125 Parameters
126 ----------
127 df : dataframe, excel file
128 DATAFRAME CONTAINING ALL THE LASER STABILITY DATA.
129 waves : array
130 ARRAY CONTAINING ALL CORREPONDING WAVELENGTGHS.
131

132 Returns
133 -------
134 None.
135

136 """
137 data = pd.DataFrame()
138 averages = []
139 deviations = []
140 for header in df:
141 array = df[int(header)].to_numpy()
142 array = [i*10**3 for i in array]
143

144 averages.append(np.average(array))
145 deviations.append(np.std(array))
146

147 # make nice plot power fluctuations
148 #plt.plot(waves, averages, linestyle = "solid", marker = "*")
149

150 plt.errorbar(waves, averages, yerr = deviations)
151 plt.xlabel("wavelengths (nm)")
152 plt.ylabel("Power (mW)")
153 plt.title("Laser power")
154 plt.savefig("powerfluct"+str(header)+".png")
155 plt.grid()
156 plt.show()
157 plt.close()
158

159 perc = [deviations[i]/averages[i] for i in range(len(averages))]
160

161 data["averages"]= averages
162 data["std deviations"] = deviations
163 data["%"] = perc
164 data.index = ([i for i in df])
165 data.to_excel("plot_data.xlsx")
166

167 return averages, deviations, perc, data
168

41
169 def stability_plotter(df, waves):
170 """
171 Plot stability of the power for every wavelength
172

173 INPUT:
174 df = DataFrame containing all power measurements, sorted per

wavelength↪→

175 waves = LIST of wavelengths for x-scale of the plot
176 """
177 stability = []
178 for header in df:
179 array = df[header].to_numpy()
180

181 std_dev = np.std(array)
182 average = np.average(array)
183 stability.append(std_dev/average)
184

185 # nice plot for stability, how it changes per wavelength
186 plt.plot(waves, stability)
187 plt.title("Stability per wavelength")
188 plt.xlabel("Wavelength (nm)")
189 plt.ylabel("Stability")
190 plt.savefig("stability.png")
191 plt.show()
192 plt.close()
193

194 return stability
195

196 def measurements_plotter(counts_meas, laspower, times,
number_of_detectors):↪→

197 """
198 Plot the laser power???
199 """
200

201 # plot laser power during time of measurement
202 plt.plot(times, laspower)
203 plt.xlabel("time (s)")
204 plt.ylabel("power")
205 plt.title("Power course during measurements")
206 plt.savefig("powerduringmeasurement.png")
207 plt.show()
208 plt.close()
209

210 #probably have to remove column/row for timestamps counts_meas
211 for i in range(number_of_detectors):
212 array = counts_meas.iloc[: , i+1].to_numpy()#correct for

timestamp↪→

213 plt.plot(times,array,label= "Detector "+str(i+1))
214 plt.xlabel("time (s)")
215 plt.ylabel("counts")
216 plt.legend()
217 plt.title("counts per detector over time")
218 plt.savefig("countstime.png")
219 plt.show()
220 plt.close()

42
221

222 def getratios2(df1, df2):
223 """
224 Calculate the ratios between the measured powers from the two

powermeters for each wavelength↪→

225

226 INPUT:
227 df1 = DataFrame 1 for power meter 1, reference arm
228 df2 = DataFrame 2 for power meter 2, measurement arm
229

230 OUTPUT:
231 ratios = LIST containing the ratios between the measured power

meters↪→

232 dbratios = LIST containing the dbratios between the measured
power meters↪→

233 """
234

235 ratios = []
236 dbratios = []
237

238 ratiosdf = pd.DataFrame()
239 av1 = []
240 av2 = []
241 for header1 in df1:
242

243 avg1 = np.average(df1[header1].to_numpy()[2:]) #first few
measurements are bad↪→

244 avg2 = np.average(df2[header1].to_numpy()[2:])
245

246 ratio = np.abs(avg1/avg2)
247

248 dbratio = 10*np.log10(ratio)
249 av1.append(avg1)
250 av2.append(avg2)
251 dbratios.append(dbratio) # error check code
252 ratios.append(ratio)
253 ratiosdf["Average P1"]=av1
254 ratiosdf["Average P2"]=av2
255 ratiosdf["Ratios"]=ratios
256 ratiosdf["dB ratios"] = dbratios
257 ratiosdf.index = ([i for i in df1])
258 ratiosdf.to_excel("ratios.xlsx")
259 return ratios, dbratios
260

261 def ploteffwav(waves, efficiency, i):
262 plt.plot(waves, efficiency*100, marker = ".", linestyle="solid",

label = "Measurement "+str(i+1))↪→

263 plt.title("Efficiency vs wavelength")
264 plt.xlabel("Wavelengths (nm)")
265 plt.ylabel("Efficiency (%)")
266 plt.legend()
267 plt.grid()
268 plt.savefig("Efficiency.png")
269

270

43
271 def photon_eff(wav, ratios, pwrs, number_of_detectors,

detected_counts, j):↪→

272 """
273 This function calculates the efficiency of the system for a range

of wavelenghts↪→

274

275 - The total number of photons is calculated using the given input
power pwrs (LIST) of the reference↪→

276 arm, attenuated to get the power input for the SNSPD.
277

278 - Ratios is a list containing the ratios for the measurement arm
and the reference arm, respectively, for all wavelengths↪→

279

280 - The detected_counts is the list of (avg) counts corresponding
with the list of powers, respectively↪→

281

282 INPUT:
283 wav = wavelength in nanometer (LIST)
284 ratios = ratio between arm and measurement arm for the range

of wavelengths ~ 50dB (LIST)↪→

285 pwrs = measured power in reference arm (LIST)
286 number_of_detectors = INT
287 detected_counts = LIST
288 j = number for naming
289

290 """
291 analysis = pd.DataFrame()
292 p=[]
293 for i in pwrs[1:]:
294 array = pwrs[i].to_numpy()
295 pi = np.average(array)
296 p.append(pi)
297 p = p[1:]
298

299 totalp = []
300 index = int((wav[0]-1260)/10) # correct for the right domain in

the ratios array↪→

301 for i in range(len(p)):
302 totalp.append(p[i]/ratios[i+index])
303

304 # calculate energy per photon
305 h = 6.62607015*10**(-34)
306 c = 299792458
307 Ewav = [h*c/(i*10**-9) for i in wav]
308

309 # Calculate the total amount of photons
310 # assumes power meter is before attenuator, hence it reduces

signal↪→

311 total_photons = [totalp[i]/Ewav[i] for i in range(len(totalp))]
312

313 # get the efficiency for every measurement for every detector
314 efficiency = np.zeros(len(detected_counts))
315

316 for i in range(len(detected_counts)):
317 efficiency[i] = detected_counts[i]/total_photons[i]

44
318

319 analysis["System Power"] = totalp
320 analysis["Total Photon count"] = total_photons
321 analysis["Measured Photon count"] = detected_counts
322 analysis["Efficiency"] = efficiency
323 analysis.index = ([i for i in wav])
324 analysis.to_excel("analysis"+str(wav[0])+"V"+str(j+1)+".xlsx")
325

326 return total_photons, efficiency

