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CHAPTER 1

INTRODUCTION

1.1 Statement of problem

In a cylindrical shell or tube, weakened by a hole, the stress distribution,
caused by some load applied to the shell, will differ considerably from that in
an unweakened shell. For example, if a long tube is loaded in axial tension, we
may expect that the maximum stress will be much larger if there is a circular
hole in the shell than in the case that there is no cut-out. This conjecture is
suggested immediately by the similar problem in the limiting case of a flat plate.
The latter classical problem has been solved by KirscH [ref. 4] 1) and the result
is that the maximum stress is 3 times the maximum stress in the solid plate.
This factor 3 is known as the stress concentration factor.

There is no reason to expect that this factor is 3 in our case of a tube. In
fact it should be expected that it depends on the geometry of the tube. This
geometry may be described by two parameters. One is the ratio between the
wall thickness and the radius of the middle-surface of the cylinder. The other
one is the ratio between the diameter of the hole and the radius of the middle-
surface. The most essential feature, however, is that bending stresses will also
occur in the shell, although in the unweakened shell only membrane stresses
are present.

At first sight it seems that we must distinguish several types of loading condi-
tions, such as free hole boundary and loaded hole boundary, the load having
some resultant force or moment. It can be shown that all types can be reduced
to the one type of a self-equilibrating loading at the edge of the hole, the shell
being unloaded outside the hole.

A first type of problems is met if the shell is loaded but the hole boundary
is free. An example is the case, mentioned above, of the tube in axial tension.
The method of solving problems of this type may be described as follows. First
the stress distribution in the unweakened shell is determined. The stress system
acting on the edge of the hole is then known, say Sy. We next solve the problem
of the weakened shell loaded only by edge stresses —So, which constitute a
self-equilibrating loading system. We finally add the stress distribution so
obtained to the first one.

A second type is that where the hole boundary is loaded by a stress system,

1) See bibliography on pages 95.



say S1. If this load has a resultant force or moment, we first determine the
stress distribution in the unweakened shell loaded by some load statically equiv-
alent to $; and applied in the region within the edge of the hole. The stress
system on the edge belonging to this loading may be denoted by Ss. Of course,
also S2 is statically equivalent to Si1. We next solve the problem of the shell
loaded on the edge of the hole by S;—S..

Both —S8y and $;—S5 have no resultant force or moment. So we only need
to solve problems where the loading of the edge of the hole is self-equilib-
rating.

A quite different type of problems is met if we impose geometric boundary
conditions, or boundary conditions of mixed type. The latter case occurs if a
reinforcing ring or a transverse pipe is attached to the hole boundary. In gen-
eral such problems can be solved in a straight-forward manner if appropriate
influence coefficients for the displacements and the slope along the hole edge are
available for suitably selected self-equilibrating unit load systems along this
edge. Once these influence coefficients have been tabulated, it is merely a
matter of solving a set of linear equations.

1.2 Survey of literature

The classical work on the subject is that by Lur’e [refs. 5 and 6]. He (like
all investigators that will be mentioned here) based his analysis on the so-called
theory of shallow shells, and he replaced the actual cylindrical shell by a
hypothetical “spiral’ shell where the azimuthal angle varies from —oo to +oco.
An error is introduced by the actual connection of the generators for which
this angle is —z and -+ respectively (the generators diametrically opposite
to the hole centre).

In the theory of shallow shells all stresses and displacements can be written
in terms of two functions, viz. the displacements normal to the shell surface
and a stress function for the membrane stresses. LUR’E obtained the solution
of the basic differential equations in terms of Bessel functions and exponentials
(written as Krylov functions). In order to satisfy the boundary conditions and
to determine the stresses in the shell, he expanded his solution in a formal
power series in the only parameter involved, viz. ¢?/Ro (a being the radius of
the hole, which is a circle in the developed shell surface, R the radius of the
middle-surface of the cylinder, and ¢ the wall thickness). The principal term
in the series yields the solution for the flat plate. LUR’E retained the first addi-
tional term.

He dealt among others with the case of a long tube in axial tension. Apart
from a formal error by which pe overestimated the effect of his parameter by
a factor 2, his results are correct. They are only valid, however, for small values
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of a2/ Ré. Unfortunately this condition is not fulfilled in many cases encountered
in practice.

SHEVLIAKOV and ZIGEL’ dealt with the problem of the tube under torsion
[ref. 14] and the case of prescribed normal displacements at the edge of the
hole [ref. 15]. Pirocov investigated the influence of a reinforcement of the
hole boundary [ref. 11] and treated the problem of concentrated loads [ref. 12].
Both authors based their investigations on LUR’E’s analysis and their results
are therefore again valid only for small values of the parameter a2/ R9.

WitHUM [ref. 18] treated the problem of the tube under torsion in a different
way. His method is not restricted to small values of the curvature parameter.
Assuming a Fourier series expansion of the stresses and displacements he
obtained a set of simultaneous ordinary differential equations, the independent
variable being the polar coordinate r in the developed shell surface. The un-
known functions in these equations are the coefficients of sin 2¢, sin 4¢ etc.
of the complex stress functions (¢ being the other polar coordinate in the
developed shell surface). There appeared to be a coupling between adjacent
coefficients. The strength of this coupling depends on the magnitude of the
curvature parameter a2/Rd. In the case of a flat plate there is no coupling left.
The author dealt with these equations by a perturbation method which, in a
numerical example, appeared to converge rapidly.

During the completion of this thesis the author was informed that Mr. PETER
vaN DykE (Harvard University, Cambridge, Mass.) attacked the same problem
in a different way. He apparently enforced dynamic boundary conditions along
the hole circumference by a collocation method by means of which he obtained
numerical results that are in agreement with ours. Furthermore he investigated
the asymptotic behaviour if the magnitude of the curvature parameter a%/Ro
tends to infinity. It is hoped that the complete work, as yet unpublished,
becomes soon available.

Essentially more complicated are the shell intersection problems, such as the
determination of the stresses in the vicinity of a transverse pipe welded to a
cylindrical shell. Such problems have been treated by RemeLBacH [ref. 13].
He solved similar differential equations as WitauM but he neglected the coup-
ling terms. In general this neglection must be considered as inadmissible. In
most problems encountered in practice it will introduce large errors. It appeared
to be very cumbersome to satisfy the boundary conditions. He gave a numerical
example, concerning a shell geometry, however, that does not permit the neglec-
tions of shallow shell theory.

Also MyinT, Rapok and WoLrson [ref. 8] have treated a shell intersection
problem. They use a Ritz method. The three displacement components are
written as linear combinations of suitably chosen functions, that satisfy the
boundary conditions, and certain aspects of symmetry. The total potential
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energy is then minimized. It seems that in a general case of boundary condi-
tions one has to choose rather complicated functions, which make the expres-
sion for the potential energy unwieldy. Therefore the authors make use of
Lagrange multipliers for the purpose of enforcing the boundary conditions.
This leads to a set of non-linear equations, which is solved by an iterative
method. An example that is given bears on the case that the intersecting
cylinder is undeformable. The boundary conditions are in consequence such
that the edges of the hole in the main cylinder are fixed and clamped. Already
in this relatively simple example the numerical work is cumbersome.

The world-wide interest in the type of problems under consideration might
finally be underlined by drawing attention to the experimental work bearing
on the subject. We mention only the experiments carried out by HoucHTON
and RoruweLL [ref. 3] on tubes with circular and elliptic cut-outs both in
tension and in torsion. The agreement between theory and experimental results
reported in the literature is poor, and the validity of the analytical results has
sometimes been questioned.

1.3 Summary of the present thesis

The scope of the present thesis is to evaluate an analysis of stresses and
displacements in circular cylindrical shells, weakened by a circular hole. This
analysis will be based on shallow shell theory and will not be restricted to small
values of the curvature parameter a2/ Ro. A restriction that originates from the
shallow shell equations, however, is that ¢/ R must be comparatively small, e.g.
smaller than 1/,.

In none of the previous papers, mentioned in the foregoing section, an inves-
tigation has been undertaken of the theoretical aspects. Some aspects of the
theory as a whole that will be investigated in the sequel are:

a. The completeness of the solution.

b. The possibility to deal with edge loads that have a resulting force or moment.
Somewhat surprisingly it will appear that only one non-vanishing compo-
nent of the moment vector can exist. In view of our previous observation
that we may restrict our analysis to self-equilibrating loads along the hole
boundary, the present limitation of our analysis is not too serious.

c. The uniqueness of the tangential displacements. This requirement leads to
a simple condition that must be satisfied by the integration constants ap-
pearing in the solution.

d. The errors introduced by the approximative character of the solution. These
errors arise from the replacement of the actual cylindrical shell by a spiral
shell model and from the approximative character of the shallow shell
equations.

12




Some numerical examples will be given, viz. the stress concentration around a
circular hole both in a tube in tension and in torsion.

In order to be able to deal with boundary conditions that are geometric or
of mixed type, a method will be developed to determine the tangential displace-
ments. Then it is possible to calculate for distinct values of the parameter
a2/ Ro the influence matrices of the hole boundary. With the aid of these in-
fluence matrices many types of boundary conditions can be dealt with. An
example to be discussed is the case of a transverse pipe attached to the shell.
The stresses due to internal pressure will be determined numerically.

The final chapter contains the results of careful experiments bearing on the
cases of tension and torsion, which have been carried out in the laboratory
of engineering mechanics of the Technological University, Delft. These results
are compared with numerical results obtained from the present analysis. Agree-
ment within test accuracy is found in general. We do not hesitate to conclude
that the analytical results are now fully confirmed by experiments, at least in
the range of our experimental investigation.
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CHAPTER 2

THE BASIC EQUATIONS

2.1 The coordinate systems and the basic equations

We introduce geodetic coordinates in the shell surface, both Cartesian coor-
dinates %, j '), and polar coordinates 7, ¢. The origin coincides with the centre
of the circular hole of radius a. The #-axis is parallel to the axis of the cylinder.
The polar coordinates are such that the axis ¢ = 0 coincides with the positive
y-axis and ¢ = #/2 with the positive #-axis (Fig. 2.1.1).

\

Fig. 2.1.1 The coordinates of the shell surface

Our analysis will be based on the assumption that the shell region is un-
bounded in the radial direction of our polar coordinates. This implies that our
analysis is rigorous only for a hypothetical spiral cylindrical shell (Fig. 2.1.2).
Its application to an actual cylindrical shell is permissible, if the effect of the
connection between the generators ¥ = —z and 9 = +x (9 is the circum-
ferential angle) in the spiral shell is negligible in the vicinity of the hole. We
shall return to the latter question in Chapter 6.

Our analysis will furthermore be of an approximate character through the
underlying theory of shallow shells 2). Accordingly all quantities concerning

) Several quantities are barred or underlined in order to distinguish them from dimensionless
quantities which will be introduced subsequently.

?) A general treatment of shallow shell theory is given among others by NovozuiLov
[ref. 10, Chapter 1].

14




Fig. 2.1.2 Cross-section of the spiral shell — co < & < co

stresses and displacements may be expressed by the normal displacement w

and a stress function @.
The stress resultants per unit length are indicated in Fig. 2.1.3 together

with the displacement components & in i-direction, 7 in j-direction and w in
normal direction, positive inward. Fig. 2.1.4 shows the stress couples per unit

length.

Fig. 2.1.3 Shell element with stress resultants Fig. 2.1.4 Shell element and stress

per unit length and displacement components couples (right-handed screw rule)

We express the membrane forces by a stress function @ as follows

020D
Ny — '5))_?
02
TN e— . . . . . . . . . . . . . . . . 2.1-1
Ny o ( )
N 02D
oy = Mz = oy
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It is evident that this procedure implies the equilibrium of a shell element,
so far as the forces and moments acting in the shell surface are concerned, only
approximately. In the complete equilibrium equation of the forces in j-direc-
tion reading

Ongzy ony 1
eellpe= 0 o 5 b o w e o e e e w s I
ox 9y TR She

the last term containing the shear force dy has been neglected. Also in the
equation that expresses the equilibrium of moments about the normal to the
shell surface,

1
Ryx—Nzy + ’R Myx =— O v s o0 ¢« # &% @ 68 & ¢ % 5@ & 5 <2.1.3)

again the last term of the left-hand side has been neglected.

If we assume that stresses arising from the membrane forces are at least
comparable in magnitude with the stresses arising from the moments these
neglections correspond to the neglection of 0/R with respect to 1.

According to Hooke’s law the derivatives of the displacements & and # can
be expressed as follows (£ is Young’s modulus, » is Poisson’s ratio)

o 1 {82(15 8241}

_— )

or  Eo lop o2
- 2 2
N aa (2.14)
%5 R Eolow 252
8 o 21+) o
j | ox Ed %05

We eliminate & and 7 from these equations. This yields the compatibility equation
44(P) = —Ed—— . . . ¢ v o v v w v e oo (21.5)

Here 4 denotes the Laplace operator (92/05% 4 92/0j2).

A second differential equation for the unknown functions @ and w results
from the equilibrium of a shell element in normal direction, and the equilib-
rium of the moments (Fig. 2.1.3). The latter requirements lead to

omy 0Mmyz
dx = = S
ox 0y

(2.1.6)

amx_y amy
dy — = —
ox 0y
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The equilibrium equation of the forces in normal direction is

L ade  ody
R " & &

2.1.7)

The expressions for the moments in terms of the displacements are [cf. FLUGGE,

ref. 2, p: 214,

B {62711 0w v 07 1 65_}
e = Ta—w)leee T "o T R 9 T R
Ed® w1 o 1 o
= sl e e =
12(1—12) 0%9) 2R 0 2R &
o . (2.1.8)
£ (1 ){a'zw n 1 31/=
m e T = e £,
w12 - laryy T R ox
. Ee® {a‘lw 02w n w}
™= Tno g T T R

Now the underlined terms will be neglected. If they would originate from
in-plane strains the error introduced would be of the order 6/R with respect
to 1 in the case that the membrane stresses and the bending stresses are com-
parable in magnitude. However, they contain unfortunately also terms that
can be large when the membrane stresses are small, such as (v/R)97j/9j (the
actual strain &, is equal to 97/9j—w/R) and the rotation in the plane of the
shell surface. So it is not so easy to decide whether the approximation is good
or not. A closer inspection reveals that it will be accurate when the functions
involved are rapidly changing functions*). When the radius of the hole is com-
paratively small with respect to R it can indeed be expected that the wave-
length of the deformation pattern caused by the edge load will be small with
respect to R.
After this neglection (2.1.6) becomes
“Ef i_ (dw) l
12(1—2) 0%
E»® 0

Y= Ta—) o ) J

& =
. (2.1.9)

Inserting these expressions into the equilibrium equation (2.1.7) yields the
second basic differential equation
C12(1-2) 1 20

4d@) =g Row

... (2.1.10)

1) Cf. NovozuiLov loc. cit.
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We established the equations of the so-called theory of shallow shells in the
special case of cylindrical shells. We shall have to find solutions of these equa-
tions that satisfy given boundary conditions and give rise to single-valued
displacements. The compatibility equation (2.1.5) does not imply the unique-
ness of these displacements since we are dealing with a multiply-connected
region. So this question must be investigated separately.

2.2 Dimensionless quantities

We shall now bring the basic formulae in a more convenient form by in-
troducing the dimensionless coordinates

We=Wa; =gy F=FHaE . 5 em w s om s s 8 s [(221)

the dimensionless complex function

R, VIO

where ¢ is the imaginary unity, and the parameter u, given by
V12(1—92) a

T e R

Let A denote the Laplace operator in the dimensionless coordinates, so 4 = a24.

The set of simultaneous equations (2.1.5) and (2.1.10) is equivalent to one
complex equation obtained by multiplying the former equation with

12(1—2)at/E3 and the latter with V12(1—2)ia4/8 and adding the two
equations. The result is

P W .. (229)

(2.2.3)

2

AAY’«ZLHZiif:O X B owonow v e mow &R k& » el
0x>
The membrane forces, the moments and the shear forces, given by (2.1.1),
(2.1.8) and (2.1.9) respectively, are in terms of the dimensionless quantities
as follows.
The membrane forces are

Ed3 ry
ngy =-————Re——
12(1—2)az o2
Eb3 »y
g = Re e e .. (2.25)
12(1—12)a2 " ox?
B 4
oy =T = T (e axdy

18




The moments are

Mg :——E64 Im{aiy—, —}—vﬁl
{12(1—92)}a2 0x2 0y?
Ex oy 2y
my:{uu—wﬁwfm{55+”iﬁ
Eot 02y
Mzy = Myz = {4———12(1_1}2)}3/2(12 Im {( —) Wy
The shear forces are
Eé 0
@:{wu_meImh}MTﬂ ]
E¢t 0
@:{mu#mwﬁh%gwwﬂ J
The normal displacement is
0
w=———1Im¥ . ............
V12(1—92)

We finally introduce dimensionless displacements & and # by
12(1—»2)a
- 200 )

= |

52
As a result the stress-strain relations (2.1.5) become
o0& {62'}’ v d
— =Rej{— —7v—
ox 0y2 Ox2

2 2P e
~ﬁ=R4—v—%+JmHM% ......
% ox? 22

oE 0 2y
f+ﬁ:—mhww }

dy  0x 0x0y

12(1—v2)a i J --------------

It is interesting to note at this stage that x is the only parameter appearing
explicitly in the problem, although the geometry of the shell with the cut-out
depends on two parameters. The distribution of bending stresses and membrane
stresses depends only on u, while only the transverse shear stresses that are of
the order of magnitude dz/d0 and dy/d contain an additional factor d/a.
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CHAPTER 3

THE SOLUTION OF THE BASIC EQUATIONS

3.1 Solution in series of Bessel functions

The basic differential equation (2.2.4) is rewritten as

0 0
) el s Do RS = = 6 W @ i W B S il
(A + 2u+/1 ax)< 2u/1 ax)'{’ (3.1.1)
Each solution of either of the equations
0
(A 4 at ﬁ> W0 (3.1.2)
: ox
.0
and <A — 2u+/1 5) el o o s o 50 5 8 # 5 8 5 ¥ 8§ 3 (3:1.3)

is a solution of (3.1.1). It will be shown in Section 3.2 that these solutions
together represent the complete solution of (3.1.1).
In order to solve (3.1.2) we substitute

Fes sl :vscinvrenrosss ... . (3.14)
and (3.1.2) becomes

2
Ay 4-2(A+pu+/i) a‘i + (B Ma g =0 . . . . . . .. (3.1.5)

Without loss in generality we can put
2= =Tl y » w ® s & 6 8 E B E EE G S E R QS E W (3:1.6)
which yields the wave equation

Ar—pftr="10 5 & a4 5 % 3 w 55 @ 5 « v ® 5w v s = 3 (3.1.7)

This equation can easily be solved, in polar coordinates, by Bernoulli’s separa-
tion method. We assume that the solution can be written in the form

2=RODBP) . o (3.1.8)
Then, by (3.1.7)
1 1
SR +P—R + 0" — R— 2i®R=0 . . . . . ... (3.1.9)
r

r2

20




Or, separating the variables,

T2R’/ + rR, Z 2. @I’
—_— — 2% = —

R R ! @

The ordinary differential equation for the function R(r) can be recognized as

Bessel’s equation of order n. For our purpose it is convenient to write the

solution in terms of Hankel functions, viz.
R = AH,®(urvV—i) + A*H,O (V' =) . . . . . .. (3.L11)

We choose the root vV —i = ¢ ™* A, and A,* are complex constants, and
their value will depend on the boundary conditions. Since the function y must
be multiplied with the exponential ¢* where 4 is given by (3.1.6), the term
containing H,M (ur \/:_z) must be omitted in view of its asymptotic behaviour.
In fact we must require that R decreases exponentially, when r tends to infinity,
as ¢ ""*. And indeed the asymptotic expansion of the Hankel function of the
second kind for |z| — oo has a leading term [cf. for ex. ref. 7, Chapter 4.30]

Hy® (2 V sk L (3.112)

if —1/sm < phase z < 1/27; This condition is fulfilled here. Hence it follows

=fsayl a® . . . L. o s o= o (50100

H,®(urvV/ —i) = V RGP L L L e s o » 0118
TTUT
The last factor ensures the boundedness of the solution. Furthermore (3.1.10)
gives
D = g [
A, g (3L
@ = const. 4 const. ¢ (n = 0)

The imaginary part of the function ¥, which is, apart from a constant factor,
the normal displacement w must be single-valued, so we can use only integral
values of n, and for n = 0 the solution @ = const. From (3.1.4), (3.1.6),
(3.1.8), (3.1.11) and (3.1.14) we can now derive the solution of (3.1.2)

W — S A H,® (V' —d) . . . . .. ... .. (3.1.15)

n=—co

In similar manner we find the solution of (3.1.3)

+ o R
W — S B H®(rV—3) . . e o o . . . . (3.116)

e
We can write our solution in another form if we make use of a well-known
expansion in a Fourier series [ref. 17, Chapter 2.1]

+ o
L o BPFIE » v ¢ o w2 5 ¢ B oA s s s ow = (BN

n=—

sla x " e iW/,z/ cL f 21




The sum of the solutions (3.1.15) and (3.1.16) may then be written as

+ o o RO
¥ =X F(—urvV —i) T Adpd™H.® (urvV —i) +

k=— o n=— o

+ s PO R
+ 2 e Fu(urvV —i) T BudH,@(urvV—3) . . . . . . (3.1.18)
k=—o n=—o

Since Jr(—z) = (—1)¥Jx(z) this can finally be transformed into

+ o

W= 3 @ Fu(rV —1) B (dut B Ho® (urv/—i) +

k=even n=—o

— e THHIGE = . e
+ 2 M Fe(urV —i) B (—An+Bu)eHy®@(urvV —i) . . (3.1.19)
k=odd n=—om

It has to be kept in mind that V' —i means ¢ /%,

3.2 Completeness of the solution

We denote the general solution of (3.1.2) by @ and the general solution of
(3.1.3) by 6. It is not an established fact as yet that @+ @ is the general
solution of (3.1.1). It will now be proved that this is the case.

It is clear that the general solution of (3.1.1) is given by @ plus the complete
solution of

(A—?,u\/ii)‘l’:(b "I I YT TSI < F.) W
ox

The statement is proved if we can show that a particular solution @; of (3.2.1)
exists that also satisfies (3.1.2). This system of two equations is equivalent to
the system, obtained by adding respectively subtracting the two equations.
Adding gives

T R % X .
Subtracting gives
b 1
o P - % )
ox 4 /i

The solution @; must satisfy these two equations.
First 0®,/0dy is obtained as follows. We differentiate (3.2.3) with respect to x
and subtract it from (3.2.2), which gives
020, 1 0@

— — FYo® L i i s i e s e e e e . (324
22 4/4\/z'ax+/2 ( )

and we differentiate (3.2.3) with respect to », which gives
02, 1 oo

= == s & w ox o woa v R 9 m EEE S B L
ox0y 4ur/t 0y
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From these equations 9®;/dy can be determined by integrating, since the
derivative of 92@;/dy? with respect to x is equal to the derivative of 02®;/dxdy
with respect to y, in view of (3.1.2). Integrating from some point 4 to a point B

gives
(0D, oD,
(294} (4) n
9 /g % /a

L o0(x,y)
4/t 0x

dx + [1/2®(x,y) + ] dy} (3.2:6)

4u/1 oy
Now also the derivative of 0@,/dx with respect to y is equal to the derivative
of 0®;/dy with respect to x, which can easily be verified. So we can indeed
find a function @; that satisfies both (3.2.2) and (3.2.3), and so it satisfies
also both (3.1.2) and (3.1.3). This proves the statement that ¥ = @406,

_:/”li‘_ 1 0D(x, )

W i S A O eV —0) +

+ @
PP EBITEBN —1 s oxoxrow s ox v 192T)
which can also be written in the form (3.1.19) is the complete solution of
(3.1.1.), when we restrict ourselves to single-valued functions V.

3.3 The resultant forces and moments of the edge load

In this section we shall determine the resulting force and the resulting moment
of the edge load, belonging to any single-valued solution of (3.1.1). It will be
shown that each of the three components of the resulting force (in x- and
y-direction and in the direction normal to the shell surface respectively) is
identically zero for each function ¥ by which stress resultants and stress couples
are determined according to (2.2.5), (2.2.6) and (2.2.7) if ¥ is a solution of
either (3.1.2) or (3.1.3) and is a single-valued function of the coordinates. This
is also the case for the resulting moment, except for one component. Only the
moment with respect to the y-axis can be different from zero.

In the introduction it has been shown that we only need to deal with loading
systems along the edge of the hole, that are self-equilibrating. From the state-
ment above it is evident that the present theory would in general have been
uncapable of treating a load that is not self-equilibrating. The reason of this
shortcoming of our analysis is not quite clear. It is not probable that it must
be blamed to the fact that we based the analysis on shallow shell theory. In
this connection we may, as a counter-example, mention the work of Yuan
[ref. 19] who applied shallow shell equations in dealing with the problem of
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concentrated loads acting on cylindrical shells. It is more likely that the reason
lies in the fact that we wrote the solution of the wave equation (3.1.7) in the
form (3.1.8). This assumption lead to the following consequence. We had to
require that the imaginary part of ¥ is single-valued since it is proportional to
the normal displacement component w, and this requirement implied also the
uniqueness of the real part of ¥ as a consequence of the assumption (3.1.8).

This uniqueness, however, is not required a priori. It is not excluded that
also solutions of the basic differential equation exist with a multi-valued real
part permitting the description of the stress distribution resulting from non
self-equilibrating edge loads. In this thesis, however, no further investigation
of this possibility has been undertaken.

In order to find the magnitude of the resulting forces and moments we
determine the resultants of the stresses along an arbitrary contour surrounding
the hole, in view of the fact that we satisfied the equilibrium equations (at
least approximately) of each shell element. In Fig. 3.3.1 a shell element bounded
by a part ds of such a contour and two line elements dx and —dy parallel to
the x- and the y-axis respectively is given. We have already expressions for
the stress resultants and the stress couples of the sides dx and —dy. They are
given by equations (2.2.5), (2.2.6) and (2.2.7). The stress resultants and the
stress couples on the contour element ds can be expressed, if we make use of
the equilibrium of the shell element of Fig. 3.3.1.

The equilibrium equations applied to this shell element yield

prds = nyzdx — ng dy
pyds = ny dx — ngydy
Dds= dydx —d; dy T
Myds = my dx —mgydy
My ds = —myzdx +m; dy

We are now in a position to determine the three resulting forces and the three
resulting moments of the stresses on a closed contour, of which ds is a part,
successively. It will appear that only the resulting moment about the y-axis
is not identically zero.

A.  The resulting force in x-direction

This force is given by the contour integral (note that ds is non-dimensional)

/" : E® /{ 2y azwd}
g ds = ——— — x — - =
[ et = g | 2
Eo3 Tl
W .. M. d(—):o....... 3.3.2
(1 —)a e./ 23 PR

¢
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Since ¥ is single-valued the exact differential d(9¥/dy) yields a value zero of
the contour integral.

R N RS U e

/

/ ny Myx
/

Fig. 3.3.1 Shell element bounded by a part ds of an integration contour

B. The resulting force in y-direction
This force is

Es s 4
a_/p”ds N 12(1—v2)aRe/{ax2 tan? } B

¢

Ed3 oY
:IQU——VZ)‘GRC./d&?;):O vooowm s 5 owa s (3.3.9)

Here the contribution of the component of the shear force D has been omitted
since in the establishment of the equilibrium equations the corresponding term
has been neglected (cf. (2.1.2)).

C. The resulting normal force

The total force in the direction normal to the shell surface is (neglecting
terms that contain higher powers of a/R)

. @ B B Eo3 /‘{321}1 2y }
a‘/ {py R D} dJ‘ = m RC axz dx + axay d)) )) +

Eot /{ Pl }
+ D oeye ) Uy - 5(4 Wl ... . (3.3.4)

The first integral can be transformed by integration by parts into:
/ ov
J ox
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The second integral is transformed using (3.1.2) or (3.1.3), ¥ being a solution
of either the former or the latter equation. So

oW
B TR v s cmmomsn L (3.3.5)
X

The upper sign has to be used if ¥ is a solution of (3.1.2), the lower sign if ¥
is a solution of (3.1.3). It now follows

(o 0
2w dy — 2 (AW dxt —
!/{ax< )~ o )
4 .02y
:f{:{: 2#\”@ dy £ 2#\”@‘“} e

[ 0¥ Y24
= / {4-/4% —dy 4 2u+/id (i—)} ........... (3.3.6)
; ox 9y,

The second term, being an exact differential, does not contribute to the value
of the contour integral. So (3.3.4) becomes

Ed3 / v Ed¢ / oY
T Re| Tyt — " Im[ 4w dy (3.3.7
RI—mE N o Y T maoeypre ™) 5 & 63D

And this is zero, taking into account the value of u, given by (2.2.3).

D. The moment about the normal to the shell

The moment of the stress resultants on the given contour with respect to
the normal to the shell surface in the origin is

a./ﬂ{pyax—pxay} i e 1—% /{x d (al‘:> 1 yd (%jf)} (3.3.8)

c

where the expressions of p, and p, have been treated as in (3.3.2) and (3.3.3)
respectively. The contour integral in the right-hand side can be integrated by
parts as follows,

f{xd(g) +yd< )} = ‘/{*dx +§l }— ~£/nd¥'=o (3.3.9)

E. The moment about the x-axis

The total moment with respect to the x-axis is

. zz
a”Mzds—ades—}—*pyds}
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{12 (1—2) a“a [{ axa_y Qyz

+ I_Q(TE(S—L;)R [Re;/ 192 d (g)] .............. (3.3.10)

The first integral is written as follows

2V o2y 0 0
e G e — AV — (A¥)dy; =
f 6xaydy dx—}—ASde ay( ) dx ~}—yax( )y}

[ o
:/ ——d( >:F2/¢\/2—dxj:2

:/ == Q,u\/z——dxiQ,tt\/zyd( W) == 2,u\/zyA¥’dy}

¢

3 oV
= /{:F Q;L\/idf{’—{—‘huziyady} =

c

= d; / B g™ o (3.3.11)
o

Here several times use has been made both of the circumstance that an exact

differential of the single-valued function ¥ or its derivatives does not contribute

to a contour integration, and of the equation (3.3.5). Integrating finally the

second integral of (3.3.10) by parts and taking into account the value of u

given by (2.2.3) it follows immediately that the moment about the x-axis is
identically zero.

F. The moment about the y-axis

The total moment with respect to the y-axis is

a2
[{Myds + axDds + px ds — —pr

€

Ed* 92 2y
- m[Im/{—de—l—ﬁdy—kx—(él?f)dx—x—(dyf)dy} 4

oY o2y oy

2y
4,2R /{_1 2 " dy—1)p92 " dx—xy——dx —xy——d }] 3.3.12
+ 4t ls [2y P {23? T R 4 ( )

Here we substituted already (2.2.3) in the coefficient of the second integral.
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Now the first integral can be written as

/" d<85P> 9/ 8SUd -9 , 0% d /i 82‘Pd }
—<l—— —-— x ———dx , — =
% + 2u+/1 = 1y 1wA/1 2 + g/ o2 ly

3 oV oV o
= / F 2uvi— dy F 2u+/ixd (ﬁ) — 4ulix — dy} =
ox 9y, ox

.o Lo . ov¥
= / F 2uvt — dy + 2u+/t — dx — 4p2ix — dy} « o o [38.13)
ox dy ox

The second integral can be written as

[lora()-2al5) -

[ oW 4 oV
— *d — e —_
,/{yay il dyl
3 oV
:/{—Tdy+x7dy} G a o wm e wm e woeom ow b oa p o4 (DOl
g %

where we carried out integration by parts several times. Substituting the results
(3.3.13) and (3.3.14) in the expression of the moment (3.3.12) the underlined
terms cancel. The total moment about the y-axis appears not to be identically
zero. We find

Ey

W Im [211 V1 [{i{: —dy 4+ ——dx — 2u+/t ‘{’dy” (3.3.15)
This seems to be an unw1eldy expression. We shall meet the expression in
brackets again in the next section in discussing the uniqueness of the tangential
displacements. We shall postpone a further treatment of this expression until
then.

3.4 Uniqueness of the displacements

The equations (2.2.10) that express the strains of the shell surface do not
necessarily give rise to single-valued tangential displacements, although the
compatibility conditions have been satisfied. The restriction to single-valued
functions ¥ (in order that the normal displacements are single-valued) is in-
sufficient. The reason is that we are dealing with a multiply connected region.

We shall now try to determine the displacement components & and % from
the three equations (2.2.10). It will appear that only # gives rise to difficulties
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and is single-valued only if the function ¥ satisfies a certain condition, that
will be established in the sequel. In order to determine &, we first eliminate
from the equations (2.2.10). We subtract the derivative with respect to x of
the second equation from the derivative with respect to » of the third equation.
The result is

028 B3y {63¥/ o3y

o¥
e ® o 1 ) Rig—e= me R N Y [ o 3.4.1
02 2(14) eaxay2 “lows 0x0 2} Az Im ox ( )

After some computation, using (3.3.5), we find

02& N " BY
5))—2 = RC :F 2/L\/1W —( +’V)

Here again the upper sign must be used if ¥ is a solution of (3.1.2), the lower
sign if ¥ is a solution of (3.1.3). From the first equation (2.2.10) follows

e (3.4.2)

o0& oV g
= Re ZFQIu\/z——(l—l—v) —} s ow wom o oa owow [9a38)
ox 0x2
and, differentiating with respect to y,
0% { 2 B3Y
== R — (1 1 s o+ o« o. s s (344
0x0y ‘ 0 (1+2) 0x20y ( )

We are now in a position to determine & by integrating. From (3.4.2) and (3.4.4)
we find

o Rei:F Q;L\/iﬁl — (14) ﬂ} 4 w8 w =3 [34D
% » oxy

And from (3.4.3) and (3.4.5)
E = Re{¥ 2uy/1¥V —(14) alp} +Cy+C . .... (346)

So we find that if ¥ is single-valued, also the displacement component in
x-direction is single-valued.
From the last equation (2.2.10) together with (3.4.5) we find

on { L0 82'P=
g#RC i?ﬂ\/l@_(l—l— Cl 3 8 m e w (3.4’.7)
and from the second equation (2.2.10)
o 02
1 o Ba :FQ,u\/z———(l—{—v)——‘}/tle e %8 5= (0958
Bl o*

The condition 02y/9x9y = 92n/dydx is fulfilled, but in order that the displace-
ment 7 1s single-valued it is necessary that
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ﬂader—d}—o................ (3.4.9)

where the integration is carried out along any closed contour around the hole.
This yields the condition

Re [2/;\/1' / {ZF ig—j dy j: S dx — 2uq/1 'J.’dy” =0. .. (3410
And it is clear that, although ¥ is single-valued, the condition (3.4.10) is not
always satisfied. We can use only those solutions ¥ that obey this condition.

The expression, whose real part must be zero in order that 7 is single-valued,
is the same as the expression occurring in (3.3.15), where we found that the
imaginary part is proportional to the moment of the edge load about the y-axis.

We shall now substitute the solution ¥ of the basic differential equation in
(3.4.10). This will lead us to a relation between the integration constants that
must be satisfied in order that the displacements are single-valued.

As we have seen, the general solution consists of the sum of (3.1.15) and
(3.1.16). We restrict ourselves first to (3.1.15) and corresponding to that to
the upper signs in (3.4.10). The derivative of ¥ with respect to x can be
determined, keeping in mind, that the derivative of a function f with respect
to x, when f is given as a function of r and ¢, must be written

o_ou oo o cosy
L o : . (3.4.1
B B Bed Bl T s L)
We then find
+

oY ] —
=) {<—H ol 5 ‘p) Ho® (urV/ =) +
3 r

+,.m/?isin¢Hn<z>(,,,n/fi)} ApeVig™ | . .. (3.4.12)

Here H,® (,ur\/ji) is the derivative of the Hankel function with respect to its
argument urV —i. Using (3.1.17) we can also write

o "
= Z K—M\/i = c;)s (p)Hn@’(W\/:—i) +

4+ o

Y/ isin g Ho® (V=) Ay Y A1) u(ury' ) (8.4.13)

k=— o

With

of @ of si
. . 1. ... (3.4.14)
ay ar op 1
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we find in a similar manner

+ o
oV R wn sin —
» =l L HO(ur V=) +

+ o
+ uV —icos ¢ H,,w)(,(,n/?i)} A Z DT (1) Fy(ur vV —i) (3.4.15)
k=— o

And finally ¥ is written, using (3.1.17), a

Y= Z H,® (urV' —i) 4y Z ke (e Fu(urv —i) . . (3.4.16)
k=— o
We carry out the integration in (3.4.10) along a circle of radius r, ¢ varying
from O to 27z. An increase d¢ corresponds to an increase dx respectively dy
as follows

dx = r cos ¢ do
i } ............ (3.4.17)
dy = —rsingdy
This gives
+ o 27
/{— —dy + ﬁdx — Q/LX/ZY’dy} =2 /{,u\/zrsmtpH (2)(,ur\/—z)
+ uV —irH,® (urv' —i) YA, b ke 1)k Fe(urvV—i)de . . . . . (3.4.18)

k=— o
Substituting ¢**"? = cos(k-+n)p -+ i sin(k-+n)g, paying attention to the well-
known orthogonality properties of trigonometrical functions, and substituting
i4/i = —V —iin agreement with the choice V' —i = ¢=™* (cf. p. 21) we now
carry out the integration and find

d
/{——d —{—»—dx—?,u\/z?’d_y

= n,n/—zrz [Fn(urV —d) H®, (urV—i) — Fua(ur vV —i) Ha® (urv/ —i) +

+ Fner(prV—i) Ha® (urV —i) — FalurV—0)H® (urvV—i)1d, . . (3.4.19)
Here we made also use of the relation
QH® (urV —i) = H®\ (urvV —i) —H2 (wrvV'—1) . . . . (3.4.20)

We finally can simplify this expression greatly if we use the following property
of Bessel functions

FaDHO(D) —TraHO(D) = — (3.4.21)
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This gives
g

2 i
/ =~ y+—dx—2/t\/lgfdy} T A 2w ¥ s (3.4.22)

n=— oo
¢

In a quite analogous way we find if ¥ is a solution of (3.1.3), given by
(3.1.16), in which case we must use the lower signs in (8.4.10),

i d o +
/ { —dy — — dx - 2/1\/15’/dy} = 4y Z (=1)»B, . . . (3.4.23)

From this follows that the displacement component 7 is single-valued if the
integration constants in the solution ¥ satisfy the condition

e, T D _
Re[uV—i B (—~dp+(=1128)]=0 . . . ... ... (3429
It will be shown that in many special cases of symmetric or skew-symmetric
loading this condition is automatically satisfied.
Returning to the end of the previous section we find that the resulting
moment about the y-axis of the edge load is equal to

8EH* = "
e Im [uV—i Z (=dn+(—=1)"B)] . . . .. (3.4.25)
12(1 ) ) n=-—o
3.5 The stress resultants in polar coordinates

Hitherto in all expressions of the stress resultants we referred to Cartesian
coordinates. Since the shell region is bounded by a circle of radius a, it is

Fig. 3.5.1 The stress resultants and the displacements in a polar coordinate system
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convenient, in view of the boundary conditions, to transform to polar coor-
dinates. The corresponding stress resultants are given in Fig. 3.5.1. Here d;
denotes the reduced shear force, which appears in the boundary conditions.
The expressions in polar coordinates that correspond to the expressions in
Cartesian coordinates given in equations (2.2.5), (2.2.6) and (2.2.7) are

E&3 1 o2¥ 1 0¥
"= R {— 2t ;Tr}
Eo3 02y
Eo3 d (1l o¥
T = T = T J9(1—92)a2 £ {é} (? %)}
Eo4 02V y 02W y 0¥
™= =T " lar e e
SRR . YL
¢ {12(1—?) )2 2 0¢2 1 Or or2
L B W e 10w
{12(1—2) }'2a3 a3 r o2 12 or
2—y BY 33—y 2¥
e W
Eo4 1 o2 1 0¥
g :mwr:mlm{r% e

(3.5.1)

In the next chapter we shall see how, after substituting the solution ¥, the
integration constants 4, and By, are determined by the boundary conditions.
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CHAPTER 4

DYNAMIC BOUNDARY CONDITIONS

4.1 Introductory remarks

In this chapter we shall demonstrate how in practical cases the complex
integration constants A, and B, are determined. Once these constants are
found all stresses in the shell may be computed after substitution in the for-
mulae (3.5.1). We shall for the present restrict ourselves to dynamic boundary
conditions at the edge of the hole. We prescribe the normal stress resultant z,,
the tangential shear stress resultant n,, the reduced shear force d, and the
bending moment m,. These stress resultants will be given as Fourier series in ¢.
The double series (3.1.19) over £ and n expressing the stress function ¥ will
be truncated. It will be shown that this procedure is permissible.

As has been said earlier we restricted ourselves already to solutions that
give rise to stresses decaying at infinity.

The numerical work to be evaluated is less cumbersome if the boundary
conditions have certain aspects of symmetry. In the following sections we shall
treat successively the case that the boundary conditions are symmetric with
respect to both the x- and the y-axis and the case that they are skew-symmetric
with respect to both axes. In order to restrict ourselves to such particular cases
of symmetry we impose certain conditions, to be enunciated in the sequel, on
the integration constants A, and B,. Both cases will be illustrated by an
example, viz. the tube in axial tension and the tube in torsion respectively.

4.2 Doubly symmetric loading

Let us suppose that the shell is loaded symmetrically with respect to both
the x- and the y-axis. In that case also all stresses and displacements will be
doubly symmetric. We can easily restrict ourselves to solutions ¥, given by
(3.1.19) that give rise to such stresses and displacements if we impose certain
restrictions to the constants A, and B,. In the first place we must require

Ap—B, =0 (for n = even)
Ap+B, =0 (for n = odd)

and (3.4.24) is then automatically satisfied. Doing so we delete all terms con-
taining a factor cos pp or sin pp in which is p is an odd number. For the
sake of brevity we introduce new constants Gy, equal to 4,— B, if n is odd

(4.2.1)

34




and to A, By if n is even. If furthermore we introduce / given by 2/ = k+-n,
(8.1.19) can be written

4+ oo 4+ o™ e S
V=3 I Cot®For—a(urV —0)H,®(urvV—i) . . . .. (4.2.2)

I=—on=—m

In the second place we delcete the terms containing a factor sin peg, if we require
Gie=ln & o w6 om m s T s B RE B A EE B o om b (4.2.3)

We shall denote the real and imaginary part of each integration constant Cy,
separately as follows,

Cn = 1/2(An+iBn)
Co == Ao+iBo
Here 4, and B, are real quantities, which must not be confused with the

complex constants 4, and B, that have been used earlier. Using the well-
known relation

FouluV—) = (=1%ot ¥V =1 . « s+ « « « + + s = (4.2.5)
and a similar relation for the Hankel functions, (4.2.2) can be written as
W =3 3 (A +iBa)f(,n, pur)cos 2p . . . oo o .. (4.2.6)

1=0n=0

with
flo,n, ur) = Fn(purV —i) Hy® (ur V' —i)
. — — - 4.2.7
£l 1y 1) = {For-nlper V=) + F-ataliorV =) i@ (urv—i) [ 2T
(1#0)
Substituting (4.2.6) in the expressions (3.5.1) gives the stress resultants. The

normal displacement w and its derivative ¢ = 0w/07 can also immediately
be found. We obtain

= O Re[S £ (4, +iBA( 2 4.2.8
Ty == m el:o,,:o n+1Ba) fi(l, n, urycos 2lp] . . (4.2.8)
where
1 4[2
A= ,Trf ~ F s a3 E RS ey W (4.2.8a)

and a prime " denotes differentiation with respect to ur,

n:ﬂ—Re[gg(/{ iBa) fo (L n 9 4.9.9
£ 12(1—m®)a® a0 " wife g m o] e 2] « o (435
where
Fhem P L o i v e w e e e ekt E TR oE (4.2.92)
Edpu? = = . :
= " Re[S I (Ay+iBy)fs (I, n, pr)sin 2g] . . (4.2.10)
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where

1 1
g =2 —f —— 2,
fi Q”f /ﬁﬂf> (4.2.10a)
b= EM LSS (AariB) fi 91 4.9.11
T 2= e ml[:o,,:o( n+1Bn) fa (I, n, pr)cos 2lp]  (4.2.11)
where
o L, 148E_ B, (B4R
Si=f +ﬂg‘ B S (4.2.11a)
_ B 8% (utiB,) £ 9 4.9.1
B T e T ome s R (RE12)
where
Y 42
o=l A o f e . (42.122)
ur 2
Eotu? . = oo .
= ot TS S (A iBa) fo (U my pr)cos2lg]  (42.13)
where
o1, 4
Bm "t —F —eaf e e e e s (63132)
/lr ‘lt T
(S @ @
w=——-—Im[X X (Aa+1iBx) f7 (, n, ur)cos 2lp] . (4.2.14)
V12(1—2)  1=0n=0
where
i e L (42.14)
(S @ @ y
¢ =—— P Im[S X (Aat+iBa) fo (I, n, ur)cos Ag]  (4.2.15)
\/12(l—v2)a 1=0n=0
where

o= e L (42.15a)

Let us suppose that the edge load that is prescribed is given as a truncated
Fourier series for each of the stress resultants ny, n,,, m, and d;. In the case of
a tube in axial tension for example there are only terms that are constant and
terms that contain a factor cos 2¢. In this case the constants 4, and B, for
large values of n must necessarily be small. This ensues from the following
reasoning. -

The value of the Bessel functions Jx(urVv —i) decreases if k increases. The

value of the functions H,® (urV —i) on the other hand increases if z increases.
This is the more so if x is small ). Observing (4.2.6) and (4.2.7) it will now

1) Cf. N. W. McLAcHLAN [ref. 7, p. 86].
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be clear that in the expressions for the stress resultants the coefficients of 4;
and B; are Fourier series of which the dominating terms are the term con-
taining a factor cos jp or cos(j41)g if j is odd and the immediately adjacent
terms. The boundary conditions yield an infinite set of linear equations by
equating each term of the Fourier series expansion of each of the above-men-
tioned stress resultants to a prescribed value. If all equations, in which 4;
and B; have large coefficients, have a right-hand side zero it is probable that
Aj and Bj are small. This indicates that the summation over » may be truncated
at a certain value, say 2N. Accordingly the summation over / will then be
truncated at M.

From calculations it has become clear that the truncation of the series is
completely justified. This numerical justification a posteriori will be discussed
in a following section. Physically it means that, especially if x is small, there
is only a small coupling between ‘“remote’ terms in the Fourier series. This is
also clear if we inspect the basic differential equation (2.2.4). If ¥ is given as
a Fourier series, the coupling is caused by the second term of the left-hand side.
Since this second term contains a second derivative, whereas the first term is
a 4th derivative, the second term is small with respect to the first term espe-
cially for large » and small p.

The number of constants to be determined is now 4N+2. Equating each
term of the truncated Fourier series (containing only even terms) for ny, n,,, my
and d; to a prescribed value seems at first sight to give 4N+4 equations. In
the first place, however, the constant term in the Fourier series expansion of
n,, does not yield an equation as it is automatically zero (cf. (4.2.10)). In the
second place we cannot prescribe arbitrary values of all other terms in view
of the requirement of equilibrium of the edge load (cf. Section 3.3). We shall
leave out of the boundary conditions the constant term of dy. This brings the
total number of equations down to exactly 4N+2, the number of unknown
constants. It may be remarked here already that in all numerical calculations,
to be reported later, a constant transverse shear force, which is in equilibrium
with the resulting force of the other edge stresses appears automatically.

The double series in the right-hand sides of the expressions (4.2.8) to (4.2.15)
are of the shape XX (4n+1By) fi (I, n, ur)cos 2lp. For those values of ur, one
is interested in, one can now tabulate the real and the imaginary parts of the
functions fi({, n, ur) for all combinations /,n ({=0...N, n=20...2N).
With the aid of these results one can immediately construct the equations from
which 4, and B, must be solved, corresponding to any boundary conditions
to be enforced. And once these constants are determined one can immediately
calculate the stress resultants and stress couples in the shell with the aid of
the tabulated values.

In order to obtain the values of the functions f;(l, n, ur), one must determine
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the functions f and their derivatives with respect to ur, viz. (the arguments of
the Bessel functions will be omitted in order to save space)

h Z ) ] pHn(Z)

S = T G Ha® 4 Folu®) V=i

X e s
u2r? /42r2

1 - o
— — (FoHn® + FoHu®) Vi — 2iF,H,®
ll

iz 1 * 3p2 3’22 <

(4.2.16)

ur
214 3n2 2
2
s (4. o M) ]pHn(z) Af g _|_ ],,H )

In (4.2.16) the dots denote differentiation of the Bessel functions with respect

to their argument urV —i (cf. Section 3.4). The summation * means summa-
tion over fwo values of p, viz. p = 2l—n and —2[—n, but if / = 0 only over
one value of n, viz. p = n (cf. (4.2.7)). The tabulated functions fi(/, n, ur) for
some value of ur, say 4, can be used not only to construct the boundary condi-
tions for 4 = 4 and to calculate the stress resultants and displacements for
w =4 at r = 1, but also to calculate the stress resultants and displacements
for u =2 at r =2, for u = 1 at r = 4, etc. (if the integration constants for
those cases are known).

The equations following from the boundary conditions are constructed as
follows. Suppose that the prescribed edge load is

N
n = X ne(l)cos 2p
=

n,,(0)sin 2l
. (4.2.17)

N
pY
x
dr = X dr(l)cos 2lp
A
2 my(l)cos 2lp
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For the sake of convenience we replace the constants 4, and B, by

e Eo3 12
1201 —2)e " ]
pg N C P K.Y
wi me P |
12(1—12)a?

respectively. Then the boundary conditions become

Z {4n* Re [fi(l, n, )] — Ba* Im [fi(l, 2, )]} = ne(])

f=° ((=0...N)

> {An* Re [f3(l, n, u)] — Ba* Im [ f3(, n, u)]} = 71,,,,(1)

oY (l=1...N)

2N aV'12(1—?)

E (d* T Lfll 0] + Ba¥ Re Ll m 1} = 0= gy | 4219
(=1...N)

2n VI12(1—2)

2:({)An* Im [fs(l, n, )] + Ba* Re [fs( n, )]} = ——5———me(l)
I=0...N)

The solutions of these equations may finally be substituted in the equations
(4.2.8—15), which give the stress resultants and the normal displacement.

4.3 The tube in axial tension

If an unweakened tube is loaded in axial tension by axial normal stress
resultants p per unit of length, the stress resultants in our polar coordinate
system are

ny = 1/s3p(1 — cos2p) =0 1
n, = 1/ap(1 + cos2¢) my = 0 s & x4 % & m  ieiel)
n,, = 1/ap sin 2¢ m, =0 l

In order to obtain the stress distribution if the tube, loaded by axial stress
resultants p, is weakened by a circular hole of radius @, we must add to the
stress distribution of the unweakened shell the stresses arising from a loading
at the edge of the hole,

ny = —1/ap(1 — cos 2¢) dr=0 }
n,, = —/2p sin 2¢ myp = 0

re

(4.3.2)

while the shell apart from that loading is free.




Applying the method described in the preceding section, we must solve
4N+2 linear algebraic equations in 4, and B, (n = 0...2N), arising from
the boundary conditions (4.3.2) at » = 1. For the sake of convenience we
shall use constants A4,* and B,* instead, obtained from A4, and B, after

L 12(1—»2)a® p
multiplying them by Tw— 5"
The boundary conditions then yield the following equations for the constants
Ay* and By*.

ny = —é(l—cos?qa)»
2N —1 (for/=0)
S {4,* Re LAl n, )] — Ba* Im [fi(l, n, 1)1} :{ I (for/— 1)
e 0 =2 ]

Ry = —gsin2¢->

N (4.3.3)
= {42 Re LAl 1 0] — Ba Im Ll m ) = { o (7

b =D 22N({)An* Im [ fa(l,n, )] + Ba*Re[fallyn, )]} =0 (I=1...N)

my = 0> QEN(gA,,* Im [ fs(l,n, )] + Ba*Re[fs(l,n, u)]} =0 (I=0...N)

When these equations are solved, we may calculate the stress resultants and
displacements at 7 = Aa as follows

]2) g ZEIIV{A,L* Re [ fillyn, Aw)] — Bn* Im [ fi({, n, Au)] }cos 2p

1=0n=0

and similar expressions for 7, and 7,
pa N 2N

———EZA*Im[flnll +Bn*Re ln}.l COSQ[

VI ) o { 5(lyn, A) ] [f5(1,n, Au) ] }cos 2l w

and similar expressions for m, and m

_ VI2(1—R)ap ¥ 2

DI {A *Tm [ f2(Ln, Aw)] + By* Re [ f2(l,n, Au)]}cos 2lp
2E6?u? =0 n—

()

and a similar expression for «.

Numerical calculations have been carried out, covering the range of values
of 1 between zero and 4. In these calculations Poisson’s ratio » has been assumed
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to be equal to 0.3. Table 4.3.1 shows the computed values of the constants
Ap* and By* for four different values of g. In two cases (u = 1 and pu = 4)
the calculations have been carried out twice, viz. for different values of N
in order to gain an insight in the errors of the truncation of the series expansion.

Table 4.3.1
4 =05 o= fi=1 o = 2 p==4 uw=4
Ne='3 N=13 N=4 N=8 N=+4 N=5

A* —0.029282 | —0.313850 | —0.313850 | — 3.59929 66.649 66.649
Bg* —0.399280 | —1.723207 | —1.723207 | —10.29920 | —131.064 | —131.063
A —0.009753 | —0.393135 | —0.393135 | — 9.09506 31.557 31.566
B> 0.848940 3.912743 3.912743 16.44115 | — 22.401 | — 22.399
A* —0.026258 | —0.455282 | —0.455282 | — 6.08537 8.584 8.618
B.* —0.001463 | —0.102263 | —0.102263 | — 5.24652 — 33.932 | — 33.959
A ¥ 0.000121 0.017755 0.017755 1.89577 | — 0.786 | — 0.731
B* —0.000315 | —0.018793 | —0.018793 | — 0.38374 84.999 84.875
AX* 0.0,0021 0.0,4251 0.0,4252 | — 0.02728 | — 64.631 | — 64.609
B> 0.0,0016 0.0,8757 0.0,8757 0.31871 6.762 6.486
Ag¥ —0.0,0095 | —0.0,0199 | —0.0,0198 | — 0.02827 — 3.819 | — 3.865
By 0.0, 0050 0.0,0045 0.0,0045 | — 0.00515 — 21.134 | — 21.502
Ag¥ 0.0,0138 | —0.0,0040 0.0, 0093 0.00005 4.482 4.408

B ¥ —0.0,0318 | —0.0,2627 | —0.0,2579 | — 0.00149 — 0458 | — 0.767
A* 0.0, 0022 0.114 0.068
B* 0.0, 8403 0.799 0.638
Ag* —0.0,0107 — 0.060 | — 0.0708
B¥ 0.0, 0135 0.048 | — 0.00046
A* 0.00011
B.* — 0.00686
Ao 0.00037
Biy* — 0.00017

Comparison shows that the truncation at N = 3 for 4 = 1 is absolutely correct.
This holds also for the truncation at N = 4 for u = 4, be it in a somewhat
lesser degree. This is undoubtedly connected with the fact that in the latter
case the ratio between the largest constant (Bo*) and the smallest one (Bg*)
is about 2,700, whereas this ratio amounts to 430,000,000 in the case u = 1,
N = 3. An impression of the errors introduced by the truncation will now be
given in the Tables 4.3.2 and 4.3.3. They show the coefficients of the Fourier
series of stress resultants, bending stresses opr = 6m,/02 and o,, = 6m, /6% and
normal displacement at the edge of the hole in the case u = 4, caused by the
edge load (4.3.2). Table 4.3.2 corresponds to N = 4, and a consequence is,
that ny, n,,, dr and m, as far as the terms containing a factor cos 10¢g or sin 10¢
are concerned, do not satisfy even approximately the boundary conditions.
Comparison with Table 4.3.3, corresponding to N = 5, however, shows that

41




Table 4.3.2

n=4 multiplied

N=4 L=0 i=1 =2 =73 =4 {==5 by

n, —0.5 0.5 0 0 0 0.4407 | p cos2lp

ng 0.8372 2.7955 2.2748 0.2234 0.0021 | —0.3620 | p cos2lp

e 0 —0.5 0 0 0 0.4166 | p sin 2lp
pa

d, 0 0 0 0 0 0.1127 R cos 2lp

; b4

Oyr 0 0 0 0 0 0.3675 5 cos 2lp

Ghy 0.3859 | —2.0068 | —0.2768 | —0.0564 0.0084 | —1.1021 % cos 2lp
pR

w 18.3044 0.4812 0.0781 | —0.0053 0.4368 i 2lp

Table 4.3.3

u=*4 multiplied

N=5 =0 == f=2 b=13 =1 b= 5 by

n, —0.5 0:5 0 0 0 0 p cos2p

ng 0.8372 27955 2.2748 0.2332 0.0037 0.0001 | p cos2lp

Nrg 0 —0.5 0 0 0 0 p sin 2lp
pa

d; 0 0 0 0 0 0 R o8 2lp
t

Oy 0 0 0 0 0 0 5 cos 2lp

Gby 0.3859 | —2.0067 | —0.2769 | —0.0557 0.0023 | —0.0002 g— cos 2lp
pR

w 18.3043 0.4814 0.0774 | —0.0018 0.0001 o 2lp

this does not affect the lower terms in the Fourier series expansion appreciably.
And this furnishes a numerical justification of the truncation procedure.

To the stress resultants must be added the stress resultants (4.3.1) in order
to obtain the actual stress distribution in the shell loaded in tension. We then

find at the edge of the hole
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n, = 7.145p (at ¢ = 0), and 0.0869p (at ¢ = 7/2),

@

m, = —0.325p6 (at ¢ = 0), and 0.362p0 (at ¢ = =/2),

¢

which causes bending stresses
0y, = —1.951p/6 (at ¢ = 0), and 2.174p/d (at ¢ = =/2).

A positive bending stress (corresponding to a positive bending moment) means
a tensile stress at the outside and a compressive stress at the inside of the cylinder.
The fact may be recalled that a positive w means a normal displacement inward.

The stress concentration which is equal to 3 in the case of a flat plate (u = 0)
is apparently increased to more than 7. If the bending stress is also taken into
account it is even as high as 9.

It is interesting to note that the constant term in 4y is zero. This was not
enforced as a boundary condition but appeared automatically as a result of
the fact that the edge load is necessarily self-equilibrating.

Calculations for many other values of # between 0 and 4 have been carried

14
)

Opo(9=90°)

=2

Fig. 4.3.1 Membrane and bending stresses at ¢ = 0 and ¢ = 7/2 at the edge of the hole in
a tube in axial tension as a function of u (positive bending stress means tensile
stress at outer surface)
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out. They will not be reported in detail. Some significant results are presented
in a few graphs.

Fig. 4.3.1 shows the magnitude of the membrane and bending stresses at the
edge of the hole for ¢ = 0 and ¢ = #/2 as a function of u (u = 0 represents
Kirscr’s solution for a flat plate). For comparison Lur’e’s results 1) for the
membrane stresses at ¢ = 0 have been given (dashed curve). Attention may
be drawn to the relatively large values of the bending stresses (absent if u = 0)
and to the fact that the membrane stress at ¢ = 7/2 which is —p/d in the
case u = 0 after a drop to —1.25p/0 increases and becomes positive at about
w=4.

Fig. 4.3.2 shows the membrane and bending stresses at the edge of the hole
as a function of ¢ for some values of x. From this graph it appears that the
compressive region at ¢ = /2 which is vanished at © = 4 (as followed from
Fig. 4.3.1) is shifted towards smaller values of ¢ (and also larger values as is
clear from symmetry).

[
P

——T—

membrane stresses

——.— bending stresses

[NE]

Fig. 4.3.2 Membrane and bending stresses at the edge of the hole in a tube in axial tension
as a function of ¢ (positive bending stress means tensile stress at outer surface)

Fig. 4.3.3 shows stresses as a function of r in the special case ¢ = 1.75. For
comparison the case u = 0 (flat plate) has been given in dashed curves. In
the latter case there is no bending. For three values of ¢, viz. ¢ = 0° (curves a),

1) In Lur’E’s original paper the influence of the curvature was overestimated by a factor 2
due to an error in the formal computation.
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@ = 45° (curves b) and ¢ = 90° (curves ¢) the values of the membrane and
bending stresses in ¢- and r-direction respectively have been given. One fact
indicated by these graphs may be mentioned. Looking at the curves a it appears
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Fig. 4.3.3 Stresses in a tube in axial tension as a function of 7 in the case u = 1.75, compared
with flat plate solution (positive bending stress means tensile stress at outer surface)

45




that the disturbance by the presence of the hole in the case u = 1.75 is more
located in the vicinity of the hole than in the case u = 0, whereas the disturb-
ance along the generator passing through the hole centre (curves ¢) dies out
less rapidly for 4 = 1.75 than in the case of a flat plate. In Section 6.3 dealing
with an investigation of the errors introduced by the spiral shell model we
shall return to this feature. More graphs of this type will be given in Chapter 7
where a comparison with experimental results will be discussed.

4.4 Doubly skew-symmetric loading

In order to obtain doubly skew-symmetric stresses and displacements we
must for similar reasons as in the doubly symmetric case, dealt with in Section
4.2, submit the complex constants 4, and B, to the requirement (4.2.1). Hence
the solution is again written in the form (4.2.2). But instead of (4.2.3) we
require next

Cn - —Cn, (Ca - O) . % . . 3 . . . . . . . . " . . (4’.4’.1)
Doing so we retain only the terms containing a factor sin pp whereas this time

the terms with a factor cos pg are deleted. We introduce real constants A4,
and B, by

iCpo= Yo(AntiBn) « o v o o . (449)
Substituting in (4.2.2) yields
W =3 5 (AytiBu)g(ln, pr)sin 2p - . .. . ... . (443)

I=1n=1
where

gy ny 1) = { Formn(pr V' —3) — Fosin(ur V' —1) Y H,® (ur vV —i) (4.4.4)

The stress resultants, stress couples, the normal displacement w and its
derivative « = 0w/07 may be expressed by functions g; ( = 1 ... 8) obtained
from the function g and its derivatives with respect to ur in the same way as
the functions f; are obtained from f and its derivatives (cf. equations (4.2.8a
... 15a)). The expressions are analogous to the corresponding expressions
(4.2.8 ... 15) in the doubly symmetric case. They differ in so far that cos 2lg
must be replaced by sin 2/¢ and sin 2/p by —cos 2/p. We obtain

ppse B e ¥ (bRl 0, el B . . (RS
12(1—®)& (s o '
Eo3u? o @ : :
"= a1y RIS (atiBagallym p)sin 2g] - . (4:46)
e il porll (An+iBy)gs(l, n, ur)cos2p] . (4.4.7)
v 12(1—2)a® " 21y o
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& = EMe 18 (AytiBy)eall in 2/ 448
r —m m!i :( n+l n)g4(,”,}”)5m2¢] v ( )

i =t e B To 1B B e Bl B ] (L)
(12(1—»2) } a? I=1n=1
m, = I—E—M"Z* Im[3 £ (An+iBa)gs(l, n, ur)sin2g] . (4.4.10)
{12(1—92) }q2 I—1n—1
B e Tl (Bl 5, g i . o (AT
VI12(1—»2)  I=1a=1
ou

o = :Im io (En A +iB7L Z, n, ur Sin 21 . 4..4,.12
V12(1—12)a ll::lnzl( ! )8s( wr) 7] E )

The treatment of dynamic boundary conditions to be enforced is now quite
analogous to the procedure described in Section 4.2. If the series are truncated
at [ = N, there are now only 4N constants that must be determined, in view
of the absence of 4p and By. There are also 4N boundary conditions, as there
are no constant terms of z, and m, to be prescribed.

In the next section we shall illustrate this skew-symmetric case with the
results bearing on the tube under torsion. It is obvious that we do not need
to investigate once more the influence of the truncation of the series. We shall,
however, pay attention to the influence of small variations in the value of
Poisson’s ratio ».

4.5 The tube under torsion

If the tube is loaded by a twisting couple M;, the stress resultants and stress
couples in the case that there is no cut-out are, putting p = M;/2zR?,

ny = —psin 2¢p dr =0
n, = psin2gp my = 0 e wow owmomd owmiwnows L)
Ny = —p cos2p m, =0

To this stress distribution we must add the stresses caused by the edge load
ny = psin 2¢ dr =0 l (4.5.2)
n,, = p cos2gp my =0 J

These stresses have been determined for various values of u. Table 4.5.1
shows the stress resultants and the bending stresses for 4 = 1, resulting from
the boundary conditions (4.5.2), while Poisson’s ratio » is assumed to be 0.3.
The series have been truncated at N = 3.
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Table 4.5.1

b= l=2 =3 multiplied by
n, 1.0000 0.0000 0.0000 | p sin 2p
ng 5.0957 0.5159 0.0038 | p sin 2lp
Nrg 1.0000 0.0000 0.0000 | p cos2ip
ta .
d, 0.0000 0.0000 0.0000 R Sin 2lp
Cim 0.0000 0.0000 0.0000 ‘g sin 2/p
Oby —2.9432 | —0.1344 | —0.0002 ‘g sin 2/p

In order to have an idea what the influence is of the value of », the same
calculation has been carried out for » = 0.28. The results bearing on this case
are given by Table 4.5.2. Apparently these results are rather insensitive for
small variations in the value of ».

Table 4.5.2
je= 1 [=2 !=3 | multiplied by

n, 1.0000 0.0000 0.0000 | p sin 2lp
1o 5.1003 | 05117 | 0.0039 | p sin 2
Nrp 1.0000 0.0000 0.0000 | p cos2ip
d, 0.0000 0.0000 0.0000 % sin 2lp
Opr 0.0000 0.0000 0.0000 2—7 sin 2lp
() —2.9093 | —0.1363 | —0.0002 § sin 2lp

In the case of a flat plate with a circular hole that is loaded in a corresponding
way, i.e. by shear stresses p/0 at infinity, the maximum value of the stress
resultant #, is reached at ¢ = n/4 (and 3z/4, 57/4 and 7z/4, the second and
the fourth value of ¢ giving n, with opposite sign) where n, = 4p. If u = 1,
it follows from the tables above that the value of n, at ¢ = #/4 is increased to
about 6.1p. In virtue of the term containing a factor sin 4¢, however, this is
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no longer the maximum value. Fig. 4.5.1 shows the maximum membrane stress
and the maximum bending stress (in terms of 7., the shear stress ““at infinity”)
at the edge of the hole as a function of u. As will be clear from Fig. 4.5.2 the
values of ¢ where these maxima are reached do not coincide.

al

25

'y = /
/ O'mq,(mux)
15 /

(max)

(/9
/

10 / /

SHEVLIAKOV /

and ZIGEL,”

| 1
0 1 2 3 4 &

Fig. 4.5.1 Maximum membrane and bending stress at the edge of the hole in a tube in
torsion as a function of u (positive bending stress means tensile stress at inner surface)

In WitnuM’s paper [ref. 18] which has been discussed briefly in Chapter 1
Fig. 8 gives the maximum normal stress (combination of bending and membrane
stress) for various values of a/R and d/a, while » = 0.3. For a given set of
values a/ R and d/a, u can easily be found. For » = 0.3 we have u2 = 0.82642/ Ré.
Comparing Witnum’s graph with the present results we find an excellent
agreement.

In Fig. 4.5.1 also the results obtained by SHEvVLIAKOV and ZiGeL’ [ref. 14]
are given as a dashed curve. This curve shows the membrane stresses at ¢ = 45°,
determined by a method that is analogous to Lur’E’s method, so these results
are valid only for small values of u.
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Fig. 4.5.2 gives the values of the membrane stress o,,, = n,/0 and the bending
stress 0, at the edge of the hole for various values of x as a function of g¢.
This figure shows clearly the above-mentioned shift of the place where the
maximum value of 7, is reached. Fig. 4.5.2 may also be compared with

O
tm
28— - l !
membrane stresses
24 o o
Ll:lo =+ —— bending stresses
20

-

S S

R f

Fig. 4.5.2 Membrane and bending stresses at the edge of the hole in a tube in torsion as a
function of ¢ (positive bending stress means tensile stress at inner surface)

WitaUM’s results. In his paper Fig. 7 shows a similar graph of the membrane
stresses at the edge of the hole, while » is assumed to be 0.3, for various values
of & viz. 0, 1, 2, 3, and 4. WitHUM’s quantity & corresponds to 4/2u in the
present treatise. His results appear to coincide completely with ours. From
the graphs 4.5.1 and 4.5.2 we may conclude that large bending stresses occur
if 1 increases. Taken as a whole the influence of the curvature is larger in the
case of torsion than in the case of axial tension. The stress concentration factor
which is 4 if © = 0 is increased to a value of about 25 if y = 4, and if the
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bending stresses are also taken into account even to about 39. In the Figures
4.5.1 and 4.5.2 the sign of the bending stresses has been reversed in order to
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Fig. 4.5.3 Stresses in a tube in torsion as a function of 7 in the case 4 = 1.5, compared with
flat plate solution (positive bending stress means tensile stress at outer surface)
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be in a position to compare the magnitude of membrane stresses and bending
stresses respectively and to get a more compact graph. So in these graphs (in
contrast with all other graphs in this chapter) a positive bending stress denotes
a tensile stress at the inner surface of the cylinder.

Finally Fig. 4.5.3 shows stresses in the case u = 1.5 as a function of r for
two values of ¢, viz. ¢ = 45° (curves a) and ¢ = 67°30" (curves b). For com-
parison also the stresses in a flat plate loaded by shear stresses at infinity have
been given. Chapter 7 will also contain some graphs of this type together with
experimentally obtained values.
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CHAPTER 5

GEOMETRIC BOUNDARY CONDITIONS

5.1 Determination of the tangential displacements

In the previous chapter we described the determination of the stress result-
ants and the normal displacement (and its derivatives). In order to deal with
general boundary conditions, which may be geometric or of mixed type, it is
necessary to know also the tangential displacements, # in r-direction and 7 in
p-direction.

In this section we shall only treat the doubly symmetric case. The dimen-
sionless displacements

12(1—)a _
U= —"-4
62

(5.1.1)
12(1—»?)a _
V= ——""7
52
must be calculated from a set of equations, given by application of Hooke’s law,
3 N
o = 2 fi(r)cos 2lp
ar 1o
1o %4
&l—j—z-lzzgl(r)cosQ[(p - W Ew e m s (Daled)
r a(p r 1=0
18u+av v_é"ﬁ n 9]
r a(p or 1’——1:1 l(T)Sll’l v

Here fi(r), &i(r) and /(r) are rather complicated functions (cf. equation (2.2.10)
where stress-strain relations in Cartesian coordinates are given). In the sequel
of this section we shall give specific expressions for these functions in terms of
the functions f; (i = 1. .. 8) defined in Section 4.2. The form of the equations
(5.1.2) indicates that z and » may be written as

N
u = X U(r)cos 2lp

=0

(5.1.3)

1 =
i

T M=

Vi(r)sin 2lp
1

As far as the coefficients for which / = £ is concerned, we must solve Uy and
Vi from the equations
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dUs
_dr_ :fk(r)
2k
— g Uk —atn b oL (5.1.4)
2k d7; 1
——UHJ——Vwﬁk()
dr r

Elimination of Uy and Vi from these equations yields the compatibility equa-
tion
dg d d/
ak2f + ri‘ = Pp ok ok "+ 2k + T P (5.1.5)
dr dr
If this equation is satisfied we can easﬂy solve (5.1.4). The first and the second
equation yield

av, dz
= =+ 1o —fo

The second and the third equation give

4f2—1 d7;
Ve + ——k = 2kgx+hi

Elimination of d V/dr from these equations gives finally

1 dg
Ve = [r {fk = r—g—" & 2k/'zk” ...... (5.1.6)
If we substitute this result in the second equation (5.1.4) we obtain
dg],; }
........... ol
=T lh - (5.1.7)
The result (5.1.7) is also valid for £ = 0. The equations (5.1.4) then reduce to
dU
& ) ] .................. (5.1.8)
Uy = rgo(7) l
The second equation (5.1.8) gives immediately Up. From (5.1.7) we find
d
Uozr{fo_rﬁ ................. (5.1.9)

These results coincide, as can be seen, using the compatibility equation

iz
g'o+r§——ﬁ)=0 ................ (5.1.10)

which is found if we eliminate Uj from the equations (5.1.8).
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Hooke’s law is written in polar coordinates (cf. (2.1.4)) as follows.

0il ) w 5

5= {n, w,} + Rcos )

1 07 i 1 w .

;Ep - : - Ea_{n'p—mr} I Esm% v w w s (5,1.11)
loa o5 ¢ 21+ 9 w

s R _—— = ——h  — == 8L C

Fdp  OF T Es 7

From (5.1.11) and (4.2.8 ... 14) the functions fi(r), §i(r) and A (r) introduced
n (5.1.2) are determined. The result is as follows.

Jolr) = p2[Re 3 (An-+iBa){fi(0, m, ) —fa 0, m, ur)} +

+ Im X (Aut-iBa)(2f2(0,m, ) 41, my )]
Ail) = p2[Re 2 S (dn+iB){filL, m, ) —fo(1, m, )} +

+ Imoi (AutiBa)(2f3(0, 1, ar) +-2fo(1, 1, o) +£2(2 1, )] (5.1.12)

filr) = IR B (Au-+iBa){ filly m ) —fally s )} +
- Xm £ (Au-4iBu){ S, ) 42y, ) 41,2, )]
(l>2)
&o(r) = p[Re = (dutiBa){ fo(0, m, 1) =00, ur)} +
+1m 3 (Au-iBa)(23(0, 1, pr) —fi(L, m, 0]
&) = wlRe 2 (AntiBa){fo(l, m o) i1, m, pur)} +

5 B0 8 [ SHI-BH0, 5, 2R L B il | O

n=0

Bir) = xlz[Re 2 (A Bl o, or) —afills o} +

+Im 2 (An4-iBu){fr (-1, n, ur) £ 2f2 (L, 1, ur) —Fr (141, 1, ur)}]
n=0 (l > 2)
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Fa(r) = 2[Re B (An+iBa)2(1 40 fs (L, n, ur) +

n=0
Im S (An+iBa){ —4f(0, n, ur) +-2£2(2, n, )}
n=0
hi(r) = u2[Re 2 (AntiBn)2 (149)fa (I, n, ur) + (5.1.14)

n=0

+Im 3 (AytiBu){ —2f (-1, n, ur) + 26141, n, un) )]
n=0

The function r(dg;/dr) can be obtained, if we introduce in addition to the for-
mulae (4.2.8a ... 14a)

, 1+42 82 G}
p=r=-Rp  Br o (—wrp) ]
ur (2 a(ur)
o ~ 5L 15)
1re - 2
Sio = wrf ( ur 8(/1r)> J
Differentiation of (5.1.13) and using (4.2.15) gives
dgo © :
ro = ifRe £ (Ant-iBa)l fol0, n, r) —f(0, m, )} +
n=0
+Im £ (A iBa){20atfa 0, 1, ) —perfs(1, m, i) }]
n=0
dg: ® .
r F u3[Re T (An+1Bn){ fio(1, n, pur) —vfo(l, n, ur)} +
n=0

+Im 3 (Ant-iBa){ —2urfa(0, n, 1) +2parfa(1, n, pur) —purfe(2, n, ur)}]
n=0

d ® 4
r 2 — e[Re £ (AutiBa{ fuoll 1, ur) —follyn, )} +
n=0

+ Im s (An-+iBp){ —prfe(l=1, n, ur) +2urfs(l, n, pur) —prfe({41, n, ur) }
n=0
(> 92)

The functions f; ¢ and % can now be calculated in a straightforward manner
and substituted into (5.1.6) and (5.1.7). Although the calculation is somewhat
lengthy, it is very useful in those cases where an integration procedure in order
to solve (5.1.2) presents difficulties. Such a method of solution has been
described by Biezeno and GrRaMMEL in their textbook “Technische Dynamik™
[ref. 1, Chapter VI, 5] but is not appropriate here in view of the complicated
character of the right-hand sides of (5.1.2).
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5.2 Determination of influence matrices

If at the edge of the hole geometric boundary conditions must be satisfied,
this may be done most easily if the influence coefficients for suitably chosen
unit load systems along the boundary of the hole are known. In this section
we shall calculate such influence coefficients for 14 different unit load systems,
viz.

= e 21 ({ = ), 11), 2, 3)

T = aa—ae e e
Ed3

e l — 11

My i 2)a sin 2lp (l )5 2, 3)
o AAL
d ~—£§4———00521 =125
T T ) e B
Eo4

my — m CcOS Ql(p (l = 0, 1, 2, 3)

For each of the 14 load systems (5.2.1) we solve a set of 14 equations as described
in Section 4.2. The solutions enable us to calculate the 14 displacements
corresponding to the 14 load systems. In view of the possibility to verify the
result with the aid of Betti’s theorem we multiply the tangential displacements
by {12(1—2)}a/é2, the normal displacement by V12(1—2)/6 and the slope
by aV'12(1—2)/8. So we determine the constants 4, and B, from boundary
conditions (4.2.19) with right-hand sides given by (5.2.1) and with the aid of
these results

Uy (
Vi (

6
Im ZO[(A,,—}—iBn)ﬁ (k,n; )] for k& = 1, 2, 3 {cf. (4.2.14)) (5.2.2)

1) fork=0,1,2,3
1) fork=1,2,3

6
Im 2 u[(An+iBy)fa (k, n, )] for k=0,1,2,3 (cf. (4.2.15))

n=0

We number the load systems consecutively from ¢ = 1 to i = 14 and the
displacement coefficients in (5.2.2) from j = 1 to j = 14. We then obtain a
14 % 14 matrix of influence coefficients (). This matrix must show certain
symmetry properties in view of Betti’s theorem. Let us consider for example
the load system 7 = 13, i.e.

B Ed*
T {12(1—2) ) g2

1) In this case the load system includes also a constant shear force in view of the equilibrium
of the external load (cf. Section 4.2).

my COSHP v s o ow o om o owow o e o ow  (D52HT)
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Suppose that among others an influence coefficient a5, is determined, cor-
responding to a displacement

52
U = m a,3,4COS 6(]) (5.2-4‘)
And suppose that in the case ¢ = 4, i.e. a load
£
Ny — m COS 6(]) (5.2.5)
an influence coefficient a, 5 is found, corresponding to a rotation
0
== s COS 4‘(}" (5.2.6)
VI2(1—#)a
Applying Betti’s theorem yields
4,13 = Qi34 (5:2:7)

Observing an influence matrix one has to keep in mind, however, that not
always ai; = aj;. In the first place they can differ in sign. This is clear, if we
take into account the positive directions of the separate stress resultants and
displacements as given in Fig. 3.5.1. In the second place they can differ by a
factor 2 if we combine a load system that is a constant, e.g. : = 11, and a
load system that varies as cos 2¢, cos 4¢ or cos 6¢, c¢.g. i =— 9. And finally if
one applies Betti’s theorem for ¢ = 1, 2 and 5 one must keep in mind that in

these cases also a constant shear force is acting on the edge of the hole.

A numerical example that will be treated in the sequel bears on the case
w = 1. Table 5.2.1 gives the influence coeflicients for this value of u. We may

Table 5.2.1 Influence coefficients a; for u =1 (v = 0,3)

j = 2 3 | 4 | 5 6 7

1 —1.383187 | —0.909804 0.033186 0.000006 0.957075 —0.033171 —0.000(
2 —0.165547 | —3.189718 0.003213 0.000348 2.766051 —0.002827 —0.0009
3 0.013527 | —0.023209 | —0.607667 | —0.002040 0.000438 0.345580 0.002(
4 0.000026 0.000355 | —0.002040 | —0.365063 | —0.000232 0.000357 0.179(¢
5 0.180794 2.726403 | —0.025985 | —0.000225 | —3.193713 0.025713 0.0002
6 —0.013491 0.023598 0.345580 0.000357 | —0.000712 —0.605185 —0.0009
7 —0.000026 | —0.000355 0.002045 0.179038 0.000233 —0.000360 —0.3647
8 0.210417 0.215206 | —0.005062 | —0.000016 | —0.220353 0.005039 0.000(
9 —0.000411 0.009257 0.011593 | —0.000039 0.002538 —0.011626 0.0000
10 0.000006 | —0.000004 0.001381 0.001966 | —0.000007 0.000588 —0.0019
11 —0.563565 | —0.164462 | —0.004497 0.000004 0.159324 0.004497 —0.000d
12 —0.045956 0.020049 | —0.002988 0.000025 | —0.023884 0.003012 —0.000(
13 —0.001821 0.013381 | —0.000586 | —0.000041 | —0.013486 0.000546 0.0000
14 0.000035 | —0.000026 0.001500 | —0.001783 | —0.000041 —0.003275 0.0017




ny = A1 + Ascos 29 + Ascos 4p + Aacos 6¢
n,, = Assin 2¢ + Aesin 4p + Azsin 6¢

summarize the results of this section by giving the formulae that express the
displacements of the hole boundary caused by a given load. Let the load be

(5.2.8)
dr = Agcos 2¢ + Agcos 4 + Ajocos b
my = a(Au + Aizcos 29 + Aigcos 4p + Aiacos 6¢)
Then the displacement components and the slope are given by
4
02 [12(1-42)a2 ” {12(1-92)}"2q3 14 1 .
@ == ———— Y Ay + ——————— X Aay| cos2(j—1
12(1-42)a = BB o Est Crke (—De
7
02 Z [12(1-92)a2 7 {12(1-92))2q3 14 1. .
7 Y Ajayy + —————— 3 Ajai| sin 2(j—4
120052a &L B 200 E g Y] U=4e
’:0 (.35
0 [12(1-%)a2 ? 12(1-22)} /g3 14 ] .
( : ) 2 Aiaij + {————( 4)} 2 Aiaq; COSQ(_]——7)(]J
\/12(1_,,2) e Eo ] E$ i—8 |
14 .
0 [12(1-92)a2 7 12(1-92)} 723 14 .
— - —!ZA'!(Z{]‘—‘—M.ZA‘[(Z“ cos2(j—11)¢
V12(1-?)afqm L E® im Eot i
5.3 Influence matrices for the end-section of a transverse pipe
We shall use the influence matrices established in the previous section in the
investigation of the stresses and displacements in the neighbourhood of the
8 ] 10 11 12 13 14
.215806 0.000328 —0.000006 0.727612 0.202004 —0.001522 0.000038
).325804 —0.009134 0.000001 0.962252 0.245031 0.012770 —0.000005
D.005062 —0.011593 —0.001381 —0.008994 —0.002988 —0.000586 0.001500
P.000016 0.000039 —0.001966 0.000008 0.000025 —0.000041 —0.001783
D.330951 —0.002660 0.000010 —0.972529 —0.248865 —0.012875 —0.000062
D.005039 0.011626 —0.000588 0.008994 0.003012 0.000546 —0.003275
.000016 —0.000038 0.001967 —0.000008 —0.000025 0.000041 0.001782
[).085211 —0.000348 0.000003 —0.039954 0.059295 0.001474 —0.000017
0.000348 0.011989 —0.000007 0.000404 —0.000056 0.023276 0.000041
0.000003 —0.000007 0.003673 —0.000003 —0.000000 —0.000002 0.011962
0.019977 —0.000202 0.000002 —0.805220 —0.045771 0.000860 —0.000009
0.059295 0.000056 0.000000 —0.091541 —0.357614 —0.000208 —0.000002
0.001474 —0.023276 0.000002 0.001720 —0.000208 —0.192575 —0.000009
0.000017 —0.000041 —0.011962 —0.000019 —0.000002 —0.000009 —0.132296
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connection of a transverse cylindrical pipe to a cylindrical shell. We shall
restrict ourselves to the case that the axis of this pipe passes through the axis
of the shell at a right angle. If the radius of the cross-section of the pipe is
small with respect to the radius of the shell, the intersection is approximately
a geodetic circle in the shell surface. In order to express the requirement that
the displacements and slopes of the end-section of the pipe and the edge of
the circular hole in the shell coincide it is convenient to determine first in-
fluence coefficients for the edge of the pipe for unit loads analogous to those
we applied in the previous section.

It is in this case not admissible to make use of shallow shell equations, since
the stresses and displacements will in general be such, that they cannot be
considered as rapidly changing. Especially an edge load varying as cos 2¢ is
not capable of analysis by shallow shell theory.

Since we restricted ourselves to cases that the diameter of the pipe is small
with respect to that of the shell, the end-section of the pipe is approximately
a normal cross-section. The question arises whether a good approximation is
obtained if we for sake of simplicity determine influence coefficients for a
normal cross-section of a half-infinite pipe. The error introduced will in prin-
ciple be of the order a/R. However, the investigation of vAN DER NEUT [ref. 9]
of oblique end-sections warrants the conjecture that the approximation will
be even better. It is possible to obtain a rigorous solution for the actual pipe
by a laborious calculation, but since this does not lie within the scope of the
present treatise, we shall confine ourselves here to the above-mentioned ap-
proximation. It will give at least an insight in the solution of the problem under
discussion.

The stress resultants M, T, D and § (Fig. 5.3.1) are considered to be expressed

Fig. 5.3.1 Displacements and stress resultants at the end-section of a transverse pipe
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as Fourier series in ¢. In the doubly symmetric case they contain only terms
of the shape cos 2n¢p (for T': sin 2ng). The positive direction has been chosen
such that § must be set equal to the edge load 7, of the shell (which is only
approximately correct in view of the local obliqueness of the end-section),
T to n,,, D to dy and M to m,. The displacements are chosen such that they
will have to coincide (approximately) with the corresponding displacements
of the hole boundary of the shell.

The influence coefficients have been determined following the well-known
method described among others in “Technische Dynamik™ by Biezeno and
GramMEL [ref. 1, Chapter VI, 21]. The wall-thickness of the pipe being #,
the calculation has been performed for a/k = 10 and 20. Poisson’s ratio » has
been assumed to be 0.3. We give here a result corresponding to that in Sec-
tion 5.2, viz. a 14 x 14 matrix (by). If a load is given by (cf. (5.2.8))

S = A; + Ascos 2 + Ascos 4 + Aacos b
T = Assin 2¢ + Agsin 4¢p + Azsin 6¢ 1
D = Agcos 2¢ + Agcos 4p + Aipcos b
M = a(A11 + Aiscos 2¢ + Aiscos 4¢ + Ayacos 6¢)
the displacement components (cf. Fig. 5.3.1) are

J- .. (5.3.1)

. & 14
up = — = I Aibiycos 2(j—1)p
B el =t
1 7
=% I X Aibigsin 2(j—4)g
j=5i=1 (5.3-2)
1 10 14
Wy = — > 2 AibijCOS 2(]—7)¢’
j=8i=1
1 14 14
ap = — = I Aibiycos 2(j—11)g
ab j—11i=1

The matrices (bs;) are symmetric apart from the sign of w,. They are given in
the Tables 5.3.1 and 5.3.21).

5.4 Stresses due to internal pressure

We are now in a position to calculate the stresses in a cylindrical shell to
which a transverse pipe is connected, if the loading is such that doubly sym-
metrical stresses occur. Other cases of symmetry may be dealt with in an anal-
ogous way and will not be considered here. An example that will be dealt
with in this section is loading by internal pressure.

1) p. 62-63
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Table 5.3.1 Influence coefficients by for a transverse pipe (a/h = 10)

j i=1 2 3 4 | 5 6 7
1 81.2963 = = = — - B
2 = 1085.23 - - —505.440 - B
] = - 152; 154 - - —33.1229 .
4 = ~ - 451249 - — — 6.6
5 = —505.440 = - 253.654 -

6 = = — 33.1229 - - 12.6391 -1
7 = = = — 6.61719 - - 4.
8 = — 97.7132 - - 48.7159 -

9 - - —  9.45559 - - 3.80134 ~
10 - = - — 1.99984 - - 1

11 —330.454 - - - - - -
12 = —871.134 - - 296.123 - B
13 = - —367.838 - - 60.1838 —
14 - — = —171.829 - - 19;

Table 5.3.2 Influence coefficients by for a transverse pipe (a/h = 20)

j - 2 3 4 5 6 7
1 229.941 - = - — - .
2 = 6095.669 - - —2917.83 - B
3 = - 1042.34 - - —228.921 —
4 - - - 345.290 - - —49.3
5 - —2917.83 - - 1450.12 - —
6 - = — 228.921 - - 63.3168 —
7 - - - — 49.3765 - - 14.2
8 - — 422.002 = - 208.126 - —
9 = - — 58.8417 - - 16.3967 —
10 — = = — 14.2615 - — 4.3
11 —1321.82 — = — = - -
12 = —3796.67 - - 1279.46 - —
13 - - —2342.58 - — 372.285 -
14 - = = —1290.09 - - 136.

We first determine the displacements and the slope at the hole boundary if
the shell is loaded by an internal pressure of p units of force per unit of area,
while the hole boundary is subjected to stress resultants that are the same as
would occur in an unweakened shell, viz.

ny = 0.75pR + 0.25pR cos 2¢

n,q
dr — O
my — O

= —0.25pR sin 2¢

The displacements and the slope in that case are

62

(5.4.1)




Eé

as:()

8 9 10 11 12 13 14
- = - —330.454 - - =5
P7.7132 = - o —871.134 - =
— 9.45559 — - — —367.838 =8
- = 1.99984 — - - —171.829
K8.7159 = - — 296.123 - -
- — 3.80134 - - — 60.1838 =
2 = — 1.45683 - - — 19.4421
2.7280 - - — 84.6313 = =
- = '5.76558 - — - 22.9485 =
- = — 3.44520 - - - 7.48902
- - — 2686.47 - - e
B4.6313 = = — 2932.55 - 2s
- —22.9485 - - - 2242 .90 =
- - — 7.48902 — — - 1568.28
8 9 10 11 12 13 14
—_ = = = 1821.82 — — —
D2.002 - - — —3796.67 — —
- 58.8417 - — - —2342.58 -
— = 14.2615 - — — —1290.09
D8.126 = - - 1279.46 - -
- — 16.3967 - - - 372.285 —
— = — 4.37075 - — - 136.752
b5.3498 - - - 286.974 - -
— — 14.4740 — - - 133.927 -
— = — 7.43399 - - - 53.2896
— = = 15196.97 - - -
B6.974 — - - 16218.32 - -
— —133.927 — - - 15330.5 —
- = —53.2896 - - - 11993.6
apR [3(1—v) 14+ -
Ug — —— S
*“E | 4 & ey
apR 1+4v 9
Vg = — —— sin 2¢
£ 4 (5.4.2)

Corresponding with the foregoing the transverse pipe (radius a, wall thick-
ness %) is subjected to internal pressure p and an edge load
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S = 0.75pR + 0.25pR cos 2¢
T = —0.25pR sin 2¢ l
D=0 J
M =

(5.4.3)

The displacements and the slope at the end-section of the pipe are (and the
nomenclature is analogous to that indicated in Fig. 5.3.1)

[ )\ pa2 R
s == (1 — ;)% —+ % {0.7551,1 - 0.25(b2‘2—b5'2>COS 2(p}
pR
E

R
o 0.25% B i s Bl

0 =10.25 (bo,5—b5,5)sin 2¢

(5.4.4)

R
. %E {0.7561,11 + 0.25(b2.12— bs 12)cos 2p}

Obviously (5.4.4) can only be used if the approximation indicated in Sec-
tion 5.3 is applied. If the influence coefficients of the actual end-section of the
pipe are determined more correctly they will in general all be different from
zero. Apart from the first term of the expression for u,, originating from the
internal pressure in the pipe, (5.4.4) must then be replaced by (5.3.2) after
identifying (5.3.1) with (5.4.3).

The displacement components (5.4.2) and (5.4.4) do not coincide. In order
to achieve compatibility an additional edge load is required. This edge load
exerted by the shell upon the pipe and inversely by the pipe upon the shell
is a self-equilibrating system. Let it be given by (5.3.1) and (5.2.8) respectively.
Then the equations that express the compatibility are

i —|“ Us = up “I“' Ue
B R % (5.4.5)
wHws = wp-+we
¢+ as = ap + e

Apparently the constant normal displacement w; does not play a role and
must be ignored.

Since each term of the Fourier series for the displacements and the slope,
obtained if we substitute (5.2.9), (5.3.3), (5.4.2) and (5.4.4) in (5.4.5) must
vanish, we obtain 14 equations for the 14 unknowns 4; . . . 414. If these equa-
tions are solved, the stresses and displacements in the cylindrical shell may be
determined following the method described in Section 4.2.

64




Table 5.4.1

alh = 10 alh = 20

ald = 6 aldo = 6

Rja = 4.957 Rla = 4.957
uE[pR 315 4+ 1.95 cos2¢p 3.15 + 1.95 cos2¢
u,E[pR 62.6870 + 397.6675 cos 2¢ 175.8854 + 2253.375 cos 2¢
v E[pR — 195 sin 2¢ — 195 sin 2¢
v,E[pR — 189.7735 sin 2¢ — 1091.9875 sin 2¢
wE[pR 0 0
w,E[pR — 36.6073 cos 2¢ — 157.532 cos 2¢
aaE[/pR 0 0
a,aE/pR —247.8405 —291.814 cos 2¢ —991.365 — 1269.031 cos 2¢

alk = 10 alh =20

ald = 12 ald = 12

Rja = 9.914 Rla = 9914
uE/pR 63 + 39 cos2p 63 + 39 cos2¢
u,E/pR 61.8296 + 397.6675 cos 2¢ 174.1706 + 2253.375 cos 2¢
v, E[pR — 39 sin2¢ — 39 sin2¢
v,ElpR — 189.7735 sin 2¢ — 1091.9875 sin 2¢
wE[pR 0 0
w,E[pR — 36.6073 cos 2¢ — 157.532 cos 2¢p
aaE[/pR 0 0
a,aE/pR —247.8405 —291.814 cos 2¢ —991.365 — 1269.031 cos 2¢

alh = 10 alh = 20

ald = 18 alo = 18

R/a = 14.870 R/a = 14.870
uE[pR 945 + 5.85 cos2¢p 945 +  5.85 cos2¢p
u,E/pR 61.5438 + 397.6675 cos 2¢ 173.5990 + 2253.375 cos 2¢
v E[pR — 5.85 sin 2¢ — 5.85 sin 2¢
v,E/pR — 189.7735 sin 2¢ — 1091.9875 sin 2¢
wE[pR 0 0
w,E[pR — 36.6073 cos 2¢ — 157.532 cos 2¢
aaE[pR 0 0
a,aE[pR —247.8405 — 291.814 cos 2¢ —991.365 — 1269.031 cos 2¢

We shall now illustrate this with some numerical results. They bear on the
case u = 1. The geometry of the shell, being described by two parameters, is
not yet determined by x alone. We chose three values of a/d consecutively,
viz. 6, 12 and 18, and in each case two values of the ratio of radius to wall
thickness a/h of the transverse pipe, viz. 10 and 20. Table 5.4.1 shows in each
of these 6 cases the values of the displacements (5.4.2) of the hole boundary
of the shell and (5.4.4) of the end-section of the pipe. Table 5.4.2 shows the
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solutions 4; . . . 414 of the equations (5.4.5) in each case. The Fourier series
are truncated at cos 6¢ and sin 6¢ and the numerical values obtained indicate
that the truncation procedure is again completely justified.

The Tables 5.4.3 . . . 8 show the stress resultants, stress couples and displace-
ments of the shell at the hole boundary. These are the final values, i.e. the
forces, couples and displacements as indicated by (5.4.1) and (5.4.2) combined
with those arising from the edge loads corresponding to the solutions that are
given in Table 5.4.21).

In order to estimate the stiffening influence of the transverse pipe we cal-
culated also the stresses in the case that there is no reinforcing by a pipe and
the shell is loaded by internal pressure. Of course in this case there is a trans-
verse shear force acting on the edge of the hole in order to ensure the equilib-
rium. Apart from this shear force the hole boundary is free. This problem has
also been dealt with by Lur’E [refs. 5 and 6]. The results obtained, viz. the
stress resultants, stress couples and displacements at the hole boundary in the
three cases a/0 = 6, 12 and 18 are given in the Tables 5.4.9...111).

Table 5.4.2

alh = 10 alh = 10 alh = 10 alh = 20 alh = 20 alh = 20

aldo =6 aléd =12 alo = 18 ald =6 alo = 12 ald =18

R/a = 4.957 | Rla = 9.914 | Rja = 14.87 | RjJa = 4.957 | R/a = 9.914 | R/a = 14.87
4,/pR | —0.563502 | —0.505614 | —0.455043 | —0.670704 | —0.602549 | —0.583279
A,/pR | —0.368925 | —0.401486 | —0.408346 | —0.299404 | —0.351146 | —0.368369
Ag/pR | —0.003428 | —0.005820 | —0.004980 | —0.001122 | —0.003185 | —0.433268
Ay pR | —0.000003 | —0.000009 | —0.000008 0.000009 | —0.000021 | —0.000013
As/pR 0.025266 | —0.065771 | —0.102848 | —0.166340 0.056452 0.015651
Ag/pR | —0.003170 | —0.007658 | —0.008173 | —0.001566 | —0.006785 | —0.009678
A:/pR 0.000109 0.000123 0.000129 0.000074 0.000123 0.000119
As/pR 0.124891 0.067304 0.062529 0.122700 0.073449 0.051505
Ay/pR 0.014595 0.011878 0.013295 0.008553 0.008146 0.006893
Ayo/pR 0.000065 0.000083 0.000077 0.000024 0.000043 0.000045
A, /pR 0.024932 0.015627 0.009354 0.009647 0.013947 0.011028
Ap,/pR | —0.012500 | —0.013126 | —0.008775 | —0.003323 | —0.009248 | —0.009570
Ay5/pR 0.000878 | —0.001639 | —0.001415 | —0.000149 | —0.000583 | —0.000859
Ay,/pR | —0.000000 | —0.000002 | —0.000001 0.000000 0.000001 0.000000

1) In these tables the quantities « and » devote the final dimensional displacements u+u, and
v+v, respectively.
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Table 5.4.3

al= 10 ald = 6
t=1 l=1] fe=1 =3 multiplied by
n, 0.186498 | — 0.118925 —0.003428 0.000003 PR cos 2lp
ng 1.822995 | — 1.293492 —0.042543 —0.000423 pR cos 2lp
g 0 — 0.224734 | —0.003170 0.000109 pR sin 2lp
dy —0.076722 0.124891 0.014595 0.000065 pR cos 2lp
m, 0.149591 | — 0.074999 | —0.005270 0.000002 pRO cos 2lp
my 0.059130 | — 0.016201 —0.001330 0.000006 pRO cos 2lp
w — 3.2240 ~0.0839 0.0000 (PRIE) cos 2lp
@ 5.3491 —10.1752 —1.2349 —0.0001 (pR/aE) cos 2lp
u 8.6376 7.6215 0.0445 —0.0005 (PRIE) cos 2p
v — 6.6810 —0.0349 0.0004 (pR/E) sin 2lp
Table 5.4.4
alh = 10 ald = 12
b='0 =1 ] =2 l=13 multiplied by
n, 0.244386 | — 0.151486 | —0.005820 —0.000009 pR cos 2lp
ny 1.577112 | — 0.926934 | —0.016720 —0.000012 pR cos 2lp
Nrgp 0 — 0.315771 —0.007658 0.000123 pR sin 2lp
i — 0.033967 0.067304 0.011878 0.000083 pR cos 2lp
m, 0.187520 | — 0.157513 | —0.019672 —0.000027 PRO cos 2lp
mep 0.033815 | — 0.043113 | —0.006473 —0.000006 pRO cos 2lp
w — 3.2215 —0.0802 —0.0001 (pRIE) cos 2p
a —38.7778 — 5.7311 —2.2696 —0.0001 (pR/aE) cos 2lp
u 15.5612 13.2176 0.0888 —0.0007 (bRIE) cos 2Up
v —10.6952 —0.0478 0.0004 (pRIE) sin 2lp
Table 5.4.5
alh = 10 ald = 18
=10 L= b =2 b=3 multiplied by
n, 0.294957 | — 0.158346 —0.004980 —0.000008 pR cos 2lp
Ny 1.493285 | — 0.811106 | —0.010745 0.000055 pR cos 2lp
i 0 — 0.352848 | —0.008173 0.000129 pR sin 2lp
d, — 0.030654 0.062529 0.013295 0.000077 pR cos 2y
m, 0.168370 | — 0.157947 | —0.025468 —0.000020 pRO cos 2lp
mg 0.031905 | — 0.042801 —0.007886 —0.000006 P RO cos 2lp
w — 3.4069 —0.0676 0.0000 (pRIE) cos 2lp
a —72.3410 4.1936 —2.0371 0.0017 (pR/aE) cos 2lp
u 21.4595 18.2182 0.1173 —0.0009 (pR/E) cos 2lp
v —14.0961 —0.0572 0.0005 (pRIE) sin 2lp

67




Table 5.4.6

alh = 20 alo = 6
=0 b= l=2 =3 multiplied by
n, 0.079296 | — 0.049404 | —0.001122 0.000009 | pR cos 2lp
ny 2.283982 | — 1.836676 | —0.063576 | —0.000426 | pR cos 2p
R 0 — 0.083660 | —0.001566 0.000074 | pR sin 2p
d, — 0.091145 0.122700 | 0.008553 0.000024 | pR cos 2y
m, 0.057882 | — 0.019937 | —0.000895 0.000002 | pRO cos 2p
my 0.114102 0.012955 0.000354 | —0.000001 | pROcos 2gp
w — 5.5351 —0.1034 0.0000 (pRIE) cos 2lp
p 41.7904 —13.9598 —1.3857 0.0006 (pR/aE) cos 2l
u 8.9114 7.3491 0.0415 —0.0006 (pRIE) cos 2lp
v — 6.9522 —0.0380 0.0005 (pRIE) sin 2l
Table 5.4.7
alh = 20 @0 =12
- P 1 ‘ P =3 multiplied by
n, 0.147451 | — 0.101146 | —0.003185 0.000021 | pR cos 2p
ng 1.866441 | — 1.328952 | —0.021349 0.000012 | pR cos 2lp
Mg 0 — 0.193548 | —0.006785 0.000123 | pR sin 2p
. — 0.040669 0.073449 0.008146 0.000043 | pR cos 2y
m, 0.167368 | — 0.110972 | —0.006993 0.000014 | pRO cos 2y
mep 0.060080 | — 0.041665 | —0.003934 0.000005 | pRO cos 2p
w — 5.0522 —0.1198 0.0000 (pRIE) cos 2l
a 17.0542 —34.6778 —5.0904 0.0013 (pRJaE) cos 2l
u 17.1839 14.2936 0.0809 —0.0010 (pRIE) cos 2l
v —12.6594 —0.0511 0.0007 (pRJE) sin 2l
Table 5.4.8
alh = 20 ald = 18
=10 =1 =2 | =3 multiplied by
n, 0.166721 | — 0.118369 | —0.004333 0.000013 | pR cos 2p
ng 1.739714 | — 1.143627 | —0.011109 0.000123 | pR cos 2p
Mg 0 — 0.234349 | —0.009678 0.000119 | pR sin 2l
d, — 0.026068 0.051505 0.006893 0.000045 | pR cos 2gp
m, 0.198504 | — 0.172258 | —0.015466 0.000007 | pRS cos 2y
My 0.045975 | — 0.051853 | —0.006093 0.000003 | pRS cos 2
w — 4.9344 —0.1186 0.0000 (pRIE) cos 2l
P —52.7824 —20.4222 —7.5484 0.0023 (pR/aE) cos 2Up
u 24.9021 20.3228 0.1177, —0.0014 (pRIE) cos 2l
v —17.4187 —0.0538 0.0009 (pRIE) sin 2lp
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Table 5.4.9

no pipe ald = 6
( =0 =1 =2 =38 multiplied by
ng 2.640900 | — 2.289606 | —0.252035 —0.000527 PR cos 2lp
d, — 0.100871 0 0 0 pR cos 2lp
mg 0.138686 0.300243 0.004568 0.000043 pRO cos 2lp
w —31.72782 —0.16312 —0.00061 (pRIE) cos 2lp
«a 59.91239 2:79373 0.63654 —0.00356 (pR/aE) cos 2lp
u 12.17466 11.62861 —0.02540 —0.00100 (pRIE) cos 2lp
v —11.64375 0.02424 0.00100 (pRIE) sin 2lp
Table 5.4.10
no pipe alo = 12
=10 =1 =2 U= 3 multiplied by
ng 2.640900 | — 2.289606 | —0.252035 —0.000527 pR cos 2lp
d, — 0.050436 0 0 0 pR cos 2lp
mg 0.138686 0.300243 0.004568 0.000043 PR cos 2lp
w —126.91128 —0.65249 —0.00244 (pRIE) cos 2lp
a 239.64955 11.17492 —2.54614 —0.01422 (pR/aE) cos 2lp
u 24.34932 23.25722 —0.05080 —0.00199 (pRIE) cos 2lp
v —23.28749 0.04849 0.00200 (pRIE) sin 2lp
Table 5.4.11
no pipe alo = 18
=0 b= f=s2 l=13 multiplied by
ng 2.640900 | — 2.289606 | —0.252035 —0.000527 pR cos 2lp
d, —0.033624 0 0 0 PR cos 2lp
mg 0.138686 0.300243 0.004568 0.000043 PpRO cos 2lp
w ~985.55038 | —1.46810 | —0.00548 (pRIE) cos 2y
a 539.21150 25.14358 ~—5.72882 —0.03201 (pR[aE) cos 2lp
u 36.52398 34.88584 —0.07620 —0.00299 (pRIE) cos 2lp
v —34.93124 0.07274 0.00300 (pRJE) sin 2lp

In Table 5.4.12 some interesting results are collected illustrating the in-
fluence of the transverse pipe. For each of the cases investigated this table
gives the maximum value of the membrane stresses omr (= n,/d) and o, (= 1n,/9),
the bending stresses oy (= 6m,[/6%) and o,, (= 6m,/0?), the normal displace-
ment component w (the non-essential constant term has been omitted) and
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the tangential displacement component «. These maximum values have been
determined using the data given in the Tables 5.4.3...11 and for more
detailed information these tables must be consulted. It may be remarked, for
example, that the place where a membrane stress reaches its maximum value
does not always coincide with the place where the corresponding bending stress
reaches its maximum value. But this may be investigated in each separate
case by means of the Tables 5.4.3 ... 11. From Table 5.4.12 we see that in
particular w is reduced considerably by the presence of the pipe, whereas u is
affected less. This is plausible since the pipe offers less resistance against dis-
placements perpendicular to its surface than against axial displacements. The
maximum value of ¢,,, in the case that there is no pipe is found to be 4.68pR/d.
We may compare this result with Lur’e’s whose analysis yields a maximum
value of 4.82pR /o, which is only 39, too high, or maybe it is more appropriate
to say that LUR’E overestimates the influence of the curvature by 6%,. At larger
values of x the inaccuracy of Lur’E’s analysis will obviously be larger.

Table 5.4.12
alé =6 a0 = 12 alo = 18

no no no

pipe /=20 |a/h=10| 20 |ah=20 aJh=10| 15 |a/h=20 a/h=10
max. of,,,| 0 013 | 030 | o 025 | 039 0 028 | 045 | pRJS
max. of oy | 4.68| 4.06 | 3.07 | 468 3.17 | 249 | 468 287 | 2.29 | pR/s
max. of 7, | 0 048 | 132 o 163 | 1.95| 0 2.13 | 1.81 | pRJS
max. ofos, | 2.66| 0.77 | 043 | 266 059 | 042 | 2.66| 0.55 | 0.40 | pR/S
max.ofw | 31.9| 56 33 [127.6 | 52 33 [287.0| 50 | 3.5 |pR/E
max. ofu?) | 23.8| 163 | 163 | 476 | 31.6 | 289 | 71.3 | 453 | 39.8 |pR/E

The presence of a transverse pipe evidently reduces the stress concentration
factor appreciably. In order to assess the effect of the curvature in this case,
we have to compare the results collected in Table 5.4.12 (evaluated for u = 1)
with the similar results for a flat plate of thickness 6, weakened by a circular
hole of radius @ to which a transverse pipe of thickness % is attached. The plate
is stretched at infinity in the direction ¢ = 0 by forces pR per unit length and
in the direction ¢ = 7/2 by forces 1/2pR per unit length. Table 5.4.13 shows
the membrane stresses, bending stresses, normal displacement component w
and radial displacement component # (normal to the surface of the transverse
pipe) at the edge of the hole.

If no pipe is present no bending stresses occur. It is clear that if the pipe is
rigid, i.e. if the plate is clamped at the hole boundary there will be no bending

1) Cf. note on p. 66.
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either. This fact explains the phenomenon that the magnitude of the bending
stresses, increasing if the wall thickness of the pipe increases from a/20 to a/10
in the case that the plate thickness is relatively large (a/0 = 6), decreases if the
plate thickness is smaller (a/0 = 12 and 18).

Table 5.4.13
ald =6 als = 12 als = 18
no ! no no
pipe |9/A=20 a/h=10] 10 la/h=20|a/k=10| 1O |a/h=20|a/h=10

max.ofa,, | 0 | 011 | 021 | o | 015 | 031 | o | 020 | 040 |pR/s
max. of oy 2.5 2.30 2.09 2.5 2.20 1.90 2.5 2:12 1.73 | pR/o
max. of oy, 0 0.27 0.48 0 0.44 0.33 0 0.39 0.20 | pR/S
max. of o 0 0.22 0.32 0 0.23 0.19 0 0.18 0.12 [ pR/O
max. of w 0 0.004 | 0.005 0 0.001 0.001 0 0.000 | 0.000 | pR/E
max.ofu?) | 14.1 | 13.4 |12.7 | 282 [262 |238 |423 /384 [335 |pRIE

1) Cf. note on p. 66.
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CHAPTER 6

INACCURACIES DUE TO THE APPROXIMATIVE
CHARACTER OF THE THEORY

6.1 Introductory remarks

The analysis developed in the preceding chapters is of an approximate
character. In this chapter we shall investigate whether any essential errors in
the results, i.e. errors that do not vanish if the ratios a/R and d/a tend to zero,
must be anticipated. These investigations will at the same time give an insight
in the accuracy obtained, if these ratios are finite. The following causes of
inaccuracies will be discussed.

A. The analysis is based on shallow shell theory, and it is a well-known fact
that the validity of the shallow shell equations depends both on the geometry
of the shell and on the type ofloading. In the next section we shall investigate
the resulting inaccuracy by determining qualitatively the influence of the
terms that have been neglected in FLUGGE’s general equations.

B. The replacement of the actual cylindrical shell by a spiral shell model
introduces errors. In order to study these errors, we may close the shell
along the generator opposite to the hole centre, i.e. the line for which the
circumferential angle ¢ (cf. Fig. 2.1.2) is equal to = or —x, and determine
the stresses originating therefrom. The inaccuracies due to the spiral shell
model will be admissible if along this generator stresses and displacements
are present that are small to a degree to be specified. This will be discussed
in Section 6.3.

Anticipating the results of the following sections we mention here already that

neither the use of shallow shell equations nor the application of the spiral shell

model introduces essential errors.

We may finally note here, that it cannot be expected that the analysis is
accurate if stresses or displacements appear to change very rapidly, that is if
the wave-length of the deformation pattern is of the order of magnitude of the
wall thickness. In fact such a state of stress can never be described by the
conventional shell theories. It may be shown, however, that each solution
found has a meaning within any desired accuracy if é/a is sufficiently small.
In this connection it should be remembered that the geometry of the shell is
described by two parameters, the ratios 6/a and a/R. So we have one of these
ratios at our free disposal, if u is given. And since a solution found, for some
value of u, yields stresses and displacements that depend on the non-dimensional
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coordinates, we can always choose d/a sufficiently small in order to obtain a
shell geometry for which the solution is correct within any desired accuracy.

6.2 Inaccuracy due to shallow shell theory

In the system of equilibrium equations for cylindrical shells given by Friicer
[ref. 2, p. 219, eq. (18a—c)] a number of terms must be neglected, in order to
obtain a system that corresponds with shallow shell theory. Our solution of
the shallow shell equations may now also be regarded as a solution of FLUGGE’s
more complete equations provided that additional surface loads are applied
equivalent to FLGGE’s additional terms in his equations, evaluated for our
solution. The accuracy of our solution based on shallow shell theory may now
be assessed by estimating the stresses due to a ““corrective’ load opposite to
the additional surface loads to be removed.

The equilibrium equations that are equivalent to the shallow shell equations
are the unnumbered equations following equation (14) [ref. 2, p. 219]. These
equations have been established using the approximate expressions (12a—f) on
page 217 for the stress resultants and stress couples, which are equivalent to
those that have been applied in the present analysis (cf. (2.1.1), (2.1.4) and
(2.1.8)). This may easily be seen, using Table 6.2.11) which gives the trans-
cription from the quantities used by FLUGGE to the quantities used here.

This table enables us also to establish the expressions for the components pz,

Py and p, in x-, y- and normal direction respectively of the corrective load.
5, — EH [l~v R2 28  R3Bw 1-v R3 a3w]
121 RA L2 a2 32 ' a3 a3 2 4B 0xd)?

5 E® [3(1—1}) R 3 1-v R ®w RS asw]
=== B

120—2)Ri L 2 @ ox2 ' 2 4 0x20y o 0P -
PR [l—v R P RPE P
"T12(1-2)RA L 2 @ axd)2 @ o3
3-» R 2% R? 2w ]
S e S Sl
2 a® 0x%0y a2 9y2

We shall first estimate the magnitude of these loads expressed in terms of the
order of magnitude of the membrane and bending stresses, previously cal-
culated. Let o denote the latter order of magnitude, given by £é%/a? multiplied
by a second derivative of ¥ (cf. (2.2.5) and (2.2.6)).

From (4.2.6), (4.2.7) and (4.2.16), the latter formulae giving derivatives
with respect to ur, it follows that by differentiation of ¥ with respect to x, y
or r the order of magnitude is multiplied by u. If, however, yu is small the order

i
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Table 6.2.1

FLUGGE’s notation Present notation
a R
t o
u 3
v 7
—w
, R0 RO
() 0% a Ox
d R O
() B
d a oy

of magnitude is unaltered. So we must in the following discussion distinguish
between two cases, viz. u is large and u is not large. We have

O{p¥}  (f pis large) }
O{¥}  (if p is not large)

The dominating terms in the expressions for f» and p, are those that originate
from third derivatives of w. Their order of magnitude is £6*/a3R multiplied
by a third derivative of ¥. So

oW |ax, 0W|dy — { (6.2.2)

0{0%uc/aR} if 10 is 1
{02uc/aR) (if p 1is large) } (6.2.3)

0{6%/aR} (if 1 is not large)

The leading three terms of f, are of the order of magnitude of £85/a*R mul-
tiplied by a fourth derivative of ¥. As compared with ¢ this is O{03u20/a2R} =
0{0%|R?}, if u is large, and O{d%s/a2R} if u is not large. The fourth term of
the expression for p, is of order of magnitude £64/a2R? multiplied by a second
derivative of ¥, and hence O{d%0/R2}. This is the same result as we obtained
for the leading three terms if « is large. If 1 is not large these three terms are
dominating over the fourth one. The fifth (last) term of the expression is of a
smaller order of magnitude, and we may conclude

0{ 0% | R?} (if w is large)
| 0{8%/a2R} (if u is not large)

The distribution of this corrective load depends on the non-dimensional coor-
dinates x and y. Let us assume that it has no resultant force or that at least
the resultant force is completely canceled by the boundary loads at the edge
7 = a, if we use FLUGGE’s expressions for the stress resultants at the edge. We
shall return to this assumption later. A consequence is that this load causes
membrane stresses and bending stresses that decay at infinity.

The order of magnitude of the stresses due to the corrective load may be

Fo by =|

(6.2.4)

n
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Fig. 6.2.1 Order of magnitude of loads and distances

estimated as follows. On a finite part of the shell surface we have a load that
has a normal component N and a tangential component 7" that are of the
order of magnitude of a2f, and a®p; or a2p, respectively. N and T cause bending
stresses that are of the order of magnitude of Na/d2a and Ta2/Rd%a respectively
and membrane stresses that are of the order of magnitude (NR/a)/da and T'/da
respectively.

We may now construct Table 6.2.2 which gives the order of magnitude of
these stresses in both cases w is large and p is not large.

Table 6.2.2
T u is large w 1s not large

i dby N ols } 0 {i }
bending stresses caused by T RO

; a? a* o
bending stresses caused by T 0 {—I@ ,Lw} 0] {ITZ 0} =0 R /u-o}

) 02

membrane stresses caused by N 0] { cr} 0 {*2 0'}

x|

=1

membrane stresses caused by 77 0{

W ol

The stresses that are of the order of magnitude of d¢/R do not introduce errors
that are larger than those introduced by FLUGGE’s equations. Hence if p is
not large (that is of the order of magnitude of 1 or smaller) the inaccuracies
do not exceed those of FLUGGE’s equations. If u is large, however, the neglec-
tions made correspond to the neglection of ua?/R? with respect to 1, and we
must as a consequence require that a/R is small.

There may still be some doubt that the corrective load at large distance
from the hole causes stresses in the vicinity of the origin that exceed those we
just investigated. We shall therefore estimate the magnitudes of the resultant
forces and moments of the corrective load acting of the part x > x¢ of the
shell, where x¢ is positive and large.
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The axial resultant force of the loads f; in the region x > x¢ is equal to the
resultant of the membrane forces n, along the arc x = x¢ if we write these
membrane forces according to FLUGGE’s expressions in the form

Eo3 02y Es3 2w

e B N . 3. .
R0—me 32 T 21—k

Nz (6.2.5)
Only the second term contributes to the resultant since the first term is the
expression used in the present analysis. This second term is of the order 6209/ R
and so the axial resultant of these forces causes membrane stresses in the vicin-
ity of the hole that are at most of order doo/ R, where oy is the order of mag-
nitude of the stresses at x = xo. In a similar way we may estimate the stresses
originating from the resulting moment about the axis of the cylinder. This
moment is due to the loads p, and the corrective stresses are again at most of
order dago/R.

The remaining resulting forces and moments decay even exponentially if
xo increases. The way in which this may be shown will be illustrated by the
determination of the resulting force in the direction of the normal to the shell
surface in the origin.

The solution ¥ of our basic equation tends to zero exponentially if 7 tends
to infinity, except in a region along the x-axis, where ¥ tends to zero as r /2,
If x is large and positive we may write (cf. (3.1.13))

¥ = ¢ Bud™ VQfmur ¢ W) —Chtaty L (6.2.6)

We may briefly note some properties of this function. If x (large) is held
constant, the function decreases with increasing | y|, and if the order of mag-
nitude of |y| exceeds O{+/x}, it decreases even exponentially. Differentiation
with respect to x means multiplication by p+/7 (1 — sin ¢), or somewhat more
precisely

oV

e uVi(l —sing) ¥4+ 0¥y . .. ... ... (627
by
Differentiation with respect to y gives

ayr _

> =puyi(cosg) W +O0¥r} .. ......... (628)

We shall now determine the resultant in the direction of the normal to the
shell surface in the origin of the corrective load on a strip of width dx. This
resultant is

1= 100;

azdx.’”ﬁncos(g)%—ﬁ_y sin(/,q;)} A% = &% i =58 %& %5 (0.2.9)

@
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The contribution of the regions, for which O{|y|} > O{ 4/x}, tends exponentially
to zero with increasing x. In the region Of{|y|} < O{+/x} we have |y| < x,
so the deviation of ¢ from x/2 tends to zero with increasing x, and we may
conclude that the dominating term in (6.2.9) originates from the last term in
the expression for p, (6.2.1), all other terms containing derivatives of ¥. We
shall show that its contribution tends to zero exponentially. Therefore we must

show that f ¥ cos(ay/R)dy tends to zero exponentially if x increases. We
0

substitute (6.2.6), keeping in mind that in the region O{|y|} < O{+/x} the
change in value of ¢ and +/r is negligible. So

ay
YI = ==
/ cos (R) dy
0
_ Z {Ene""’” i ei(3/3+n/2)n} [e—!/zltlg‘yz/x p_— (4_)’) dy = (6.2.10)
U s R

= 1 e

— Z {Bnemn} em/‘l-l; e—a x[2 R*pyi

Here we made use of an integral that is known in the theory of Fourier trans-
forms,

’/?Pe_b"'cos(ut)du =1/, '/E

be—"/‘“’ - P A k&

0
The factor sin(ay/R) instead of cos(ay/R) in the second term of the integrand
in (6.2.9) does not disturb this proof since we have the similar integral

@

6/ e sin(uf)du = — é I g ¢~ V14 Brf (éh/b) .. (6:212)
from which follows
/ ¥ sin (‘%) dy =
i ; (6.2.13)
s e s e i an/u
— inm /4 " a*x[2 R peyi
= Z {Bne™}e b e Erf(—2 2 R\/x)

Integration with respect to x from x¢ to co does not affect the exponential
character.
In this way it may be shown that the resulting forces directed perpendicular

1) Cf. e.g. TrrcumarsH [ref. 16, p. 177-178].
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to the x-axis as well as the resulting moments with vectors that are perpendic-
ular to the x-axis originating from the corrective load in the region x > x
tend to zero exponentially if xy increases. They will as a consequence cause
stresses in the neighbourhood of the hole that are negligibly small.

A similar result is obtained for the loads in the region x << xp where x is
negative. In this case the integration constants 4, appear in the expressions
instead of the constants B,. The loads in the regions for which | x| is small and
[y|is large need not be considered since in these regions ¥ decays exponentially.

We must finally verify the assumption made that the corrective load as a
whole has no resultant force. In the doubly skew-symmetric case (cf. Chapter 4)
there is indeed no such resultant force in virtue of the absence of constant terms
in the Fourier series. In the doubly symmetric case such a resultant is not
excluded a priori. But at closer inspection it appears that there are no resultant
forces in x- and y-direction in view of the symmetry. Only a resultant force
in the direction of the normal to the shell surface in the origin is still possible.
We may determine it by investigating the resultant force of the stresses along
a contour at infinity enclosing the hole. If this resultant force is zero we know
that the normal resultant of the corrective load, if it exists, is cancelled by the
boundary stresses at the edge 7 = a.

A part of a contour surrounding the hole has been given by Fig. 3.3.1. The
forces Da ds and pya ds contribute to the resultant force in normal direction.
They are given by (cf. (3.3.1)).

Dads = dyadx — dzady
} (6.2.14)
pya ds = nya dx — ngya dy
For the stress resultants in the right-hand sides we must now use the expressions
of FLGGE (loc. cit.). As for the transverse shear forces we may use the equa-
tions (2.1.6) and (2.1.8), in the latter formulae, however, retaining the under-
lined terms. This leads to

Dol = ] {aA?’d O AP
. T =) e oy S d
S [asvd 3= atpd]}
Bl T3 &Yt
s . . (6.2.15)
S
- Re{B=—. , d
2(12(1—2) PR e{ o O T 220 o5 F
By Py
3 S
TN o 2 x}

In order to express pya ds we do not use (2.2.5) but the more accurate expres-
sions (corresponding with FLUGGE’s expressions)
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Substituting in (6.2.14) we obtain
E® 2w el
" .. o, il
P& = i, e{axz T am Tt
& »w
Sl d 6.2.17
* o | 2uvi e+ (14) axay] b + (6.2.17)
Est 2Y a2 »Y
. Im{( —l—f— )dx—)———dy}
0x0y

~ {12(192) R dy?

Here again the upper sign must be used if ¥ is a solution of (3.1.2), the lower
sign if it is a solution of (3.1.3).
The resultant force F in the direction of the normal in the origin is equal to

F, _a {pymn(—'g) Dcos<R>}ds ......... (6.2.18)

where the 1ntegral is taken along a closed contour at infinity surrounding the

X

r.
4

L 2

Fig. 6.2.2 Square contour in the developed shell surface
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hole. We choose a contour that is a square with sides 2L in the developed
shell surface (Fig. 6.2.2). If L is large, it is immediately clear that the sides
BC and DA do not contribute since the function ¥ and its derivatives decay
exponentially if y tends to infinity. Although the behaviour of ¥ is not expo-
nential if x tends to infinity and y is kept constant it may be proved that the
stress resultants along the sides AB and CD have a resultant force in normal
direction that tends to zero exponentially. This may be shown in a way analog-
ous to the way in which we established that the resultant of the corrective
load on a strip of width dx decays exponentially. And this fact finally justifies
our assumption, that the corrective load has no resultant force.

6.3 Inaccuracy of spiral shell model

The value of the function ¥ along the generators ¢ = + x decays expo-
nentially, with increasing value of R/a, as long as O{|x|} < O{un?R2[a%}, as is
clear from the previous section. If |x| is larger, the order of magnitude of ¥
is given by

Y = O{W,|Vur} = OiPowlal] + ¢« 5 s + % o % 5 & s (051)
where ¥, denotes the order of magnitude of ¥ in the vicinity of the hole. In
this case we have furthermore

b SO | e e re s (BED

cos ¢ < OfaluR} ]
So from (6.2.7) and (6.2.8) we may conclude that differentiation in an ar-
bitrary direction means lowering of the order of magnitude by at least a factor
a/R (in the region for which Of x|} > O{un2R?/a?}).

The closing of the shell along the generators ¥ = 4 @, mentioned in Sec-
tion 6.1, consists in removing the transverse shear forces dy, and the membrane
shear forces ny, along that generator, together with the displacements 7 and
the rotations dw/dj. This requires additional bending moments m, and direct
stress resultants n, along the generators ¢ = 4 &. It is evident that the part
of the generator where ¥ tends to zero exponentially if R/a tends to infinity
does not cause essential errors. We can restrict our investigation to the closing
of that part of the generator for which |x| is large. The stresses in the shell
caused thereby will be compared with the order of magnitude o of the stresses
calculated previously. As follows from the preceding section we have

Ep?
0‘20{?,%9:’0} € @ ow w e @ @ e @ e W e @ W @ ® e (6.3.3)
From (2.2.7) and (6.3.1) follows
Ed* a*?,
dy <0 {* : v} (along the generators ¢ = 4 z) + = [904)
a® uR*
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These forces introduce bending stresses that are of order of magnitude
O{Ed2a¥y[uR3}, or, comparing them with the stresses calculated, of order
O{a?s|u3 R3}. They cause additional tangential displacements # that are of order
0{da¥,/R} and rotations dw/9j that are of order O{da¥,/R?}. These addi-
tional displacement quantities are of the same order of magnitude as those
already present. This will be clear from (6.3.1) and, as far as 7 is concerned,
from Section 5.1, and, as far as 0w/dj is concerned, from (4.2.15). Their sup-
pression requires stresses of the same order O{a’c/u®R3}.
We must finally remove the load ny;. From (6.3.1) and (2.2.5) follows

nyz < O{ERa¥,[uR3} (along the generators & = + #) . (6.3.5)

Such shear loads along a straight edge produce membrane and bending stresses
that decay exponentially at large distance from the edge ). So the removal of
the stress resultants (6.3.5) introduces stresses in the vicinity of the hole that
tend to zero exponentially if /R tends to zero, while y is held constant. If a/R
is held constant but u increases (so the shell is made thinner) the distance of
the hole to the edge ¥ = & (or ¥ = —=x) remains unaltered. The bending
moments resulting from the edge load (6.3.5) are zero at the edge, reach a
maximum, and then decay exponentially. The maximum, however, may be
reached in the vicinity of the hole. Its magnitude may be estimated from
equation (60), p. 256, of FLUGGE’s treatise 2). We find after some computation
that it is of order O{a%s/uR?}. If the load —mny, is applied to the edge there
will again be produced displacements 7 and rotations dw/dj. Their removal
requires stresses that are of the same order of magnitude, O{a20/uR2}.

Hence we have established the result that the order of magnitude of the
stresses in the neighbourhood of the hole caused by the closing of the shell
along the generators 9 = -+ =z is a20/uR2. The error introduced for a given
value of /R apparently becomes small if x is large. From the Figures 4.3.3
and 7.3.1...2 it follows indeed that for large values of u the disturbance in
the stress distribution by the presence of the hole is concentrated in a smaller
region than for small values of x. It may be conjectured after the results of
this section (and this prediction seems plausible) that in a shell with a fixed
value a/R and a thickness tending to zero the presence of the hole causes large
bending stresses in a narrow zone along the edge, and a strip along the x-axis
of width comparable with the diameter of the hole.

1) Cf. FLocce [ref. 2, Chapter 5.4.3].
2) In the right-hand side of this equation a factor A is missing.
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CHAPTER 7

EXPERIMENTAL RESULTS

7.1 Introduction

Since the numerical results obtained are of an approximative character for
reasons outlined in the previous chapter, it appeared desirable to test the
reliability of the analysis with experiments.

Experimental results available are those of Houcnron and RoTHWELL
[ref. 3]. They investigated among others the stress concentration around cir-
cular holes in cylindrical tubes made of araldite, applying photoelastic methods.
In the case of axial tension no influence of the curvature was found. In the
case of torsion the influence found was two third of that predicted by the present
theoretical results. It was verified that the position of the maximum stress
changes with increase in hole diameter. HoucuToN and RoTHWELL made also
experiments bearing on the case of axial tension, on aluminium curved panels,
making use of electric resistance strain gauges. These experiments yielded the
results, shown in Table 7.1.1 (taken from a graph, viz. fig. 12 of the paper
mentioned).

Table 7.1.1
Stress concentration factor
(& HoucuToN and RoTHWELL Present analysis
(experimental) ¥ = 0.3)
1 3.03 3.66
2 3.46 4.89

The large discrepancy between the theoretical values and these test results
seems to be due to the fact that the curved panels were provided with special
end plates, which were designed to minimize bending effects. Of course bending
of the panel as a whole had to be avoided, but the stiff end plates may also
have suppressed secondary bending effects originating from the presence of
the hole. These effects, however, are essential and are closely related to the
influence of the curvature upon the stress concentration factor.

In order to obtain some more reliable experimental data, careful tests bearing
on the cases axial tension and torsion of a circular cylindrical tube weakened
by a circular hole have been carried out in the laboratory of engineering
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mechanics of the Technological University of Delft. Several values of the para-
meter u have been dealt with successively by enlarging the hole each time
after the completion of an experiment both on axial tension and torsion. Since
the hole was machined by a boring machine the boundary was not exactly a
circle in the developed shell surface. For small values of the ratio a/R the devia-
tion has obviously been small.

The scope of the experimental investigation has been a verification of the
analysis. There is not the pretention of a complete experimental stress analysis.
At some points of the tube the direct membrane stresses and the bending
stresses have been determined, and compared with the corresponding computed
stresses. In view of the general agreement within test accuracy the analysis
may be assumed to be reliable.

7.2 Description of test-arrangement

The test-piece (Fig. 7.2.1) was a tube made of mild steel (E = 2,100,000
kgf/cm?, » = 0.28) with the following principal dimensions.
Radius of middle surface, R = 25 cm.
Wall thickness, 6 = 0.48 cm.
Length between front plates, / = 180 cm.

Ik

|

o | I

14

Fig. 7.2.1 The test-piece

The following hole radii have been dealt with consecutively 1):
a=1lcm (corresponding to u = 0.263)
a=2cm (corresponding to u = 0.526)
a = 2.85 cm (corresponding to u = 0.75)
a = 3.8 cm (corresponding to u = 1)
1) After the completion of this thesis the experiments are being continued for larger values

of the hole radius, but the results obtained so far are adequate for comparison between
theoretical and experimental results.
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Each time a number of electric resistance strain gauges have been attached
both to the rim of the hole in order to determine the membrane stresses o,,,
at r = 1 (¥ = @) and on the inner and outer wall of the tube outside the hole
in order to measure strains at larger values of r. As an example Fig. 7.2.2
shows the places (on the developed shell surface) where strain gauges have
been applied in the case x4 = 1. The strain gauges along the lines ¢ = 0°, 45°,
90° and 112°30" are directed radially, in order to measure the strains in radial
direction, &. Along the lines ¢ = 180°, 225°, 270° and 292°30" we measured
the strains in ¢-direction, &,.

©=90° (axial direction)

i

9=112°30"
\,
: $=45°
/é
v /
/I
o
7
©-180° 9=0°
e § & & B g | TR = R SRS S Jsi
/SK’
&
,'%
%/'
©=225° éa\
X
©=292°30°

Fig. 7.2.2 Strain gauges on developed shell surface in the case u = 1
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Along each of these lines strain gauges have been attached at several distances
7 from the hole centre. It may be assumed that in the doubly symmetric case
of loading in axial tension as well as in the doubly skew-symmetric case of
loading in torsion, points that are opposite with respect to the hole centre are
in the same state of stress. This is the case for example for the points 7 = 7.5 c¢m,
@ = 0°and 7 = 7.5 cm, ¢ = 180°. The two radial strains &, at the inside and
at the outside at 7 = 7.5 cm, ¢ = 0° together with the two tangential strains
g, at 7 = 7.5 cm, ¢ = 180° yield after a simple computation, taking into
account the lateral contraction, the membrane stress resultants », and #,, and
the bending moments m, and m,. In this way the direct membrane stresses
and bending stresses along the lines indicated in Fig. 7.2.2 have been determined.

In the case of torsion only the lines ¢ = 45° (and 225°) and 112°30" (and
292°30") have been investigated, as the lines ¢ = 0° and ¢ = 90° are lines of
zero strains & and ¢, in view of the symmetry. In the case of axial tension the
lines ¢ = 0° (and 180°), ¢ = 45° (and 225°) and ¢ = 90° (and 270°) have
been investigated.

In the case of torsion the twisting moment was applied with the aid of the
rectangular extremities (Fig. 7.2.1), part of the front plates of the tube. In the
case of axial tension the tube was suspended horizontally and stretched axially.
The load was applied through two slender bars made of high alloyed steel, in
order to avoid bending of the tube as a whole due to a possible misalignment

Fig. 7.2.3 Test-arrangement in the case of axial tension

85




of the wedge grips. Fig. 7.2.3 shows the arrangement in this case. On this
photograph also one of the rectangular extremities by means of which the
torsional moment is applied is clearly visible. The magnitude of the tensile
force was measured by strain gauges attached to one of the slender bars, which
has been calibrated.

After applying a prescribed load the change of the electric resistance of each
strain gauge was measured consecutively and printed by a typewriter and at
the same time punched by a 5-channel tape puncher. The punched tape could
then be fed into an electronic digital computer in order to calculate the mem-
brane and bending stresses following the method indicated above. Corrections
for the transverse sensitivity of the strain gauges have been taken into account.

7.3 Test results and discussion

We shall in this section give the results obtained in the cases u = 0.75 and
wu = 1. For smaller values of x there is only a small deviation from the flat plate
solution since the stresses due to the curvature are initially proportional to u2.
In order to compare the results with the results predicted by the theory devel-
oped we calculated the stress distribution in the shell, following the method
described in Section 4.3 for axial tension and in Section 4.5 for torsion. In
the Figures 7.3.1. ... 4, which may be compared with the Figures 4.3.3 and
4.5.3, the distribution of membrane and bending stresses, both in ¢- and r-
direction along the lines where the strain gauges have been attached (cf. Sec-
tion 7.2) is shown. In these graphs the experimental values are indicated by
dots. These values are in general mean values of the results of a number of
experiments carried out on consecutive days in order to be influenced as little
as possible by disturbing circumstances, such as sudden changes in temperature.

At each test a load (tension or torsion) was applied and enlarged stepwise
after measuring the strains. After reaching the maximum admissible load it
was reduced again stepwise. In the case of torsion both positive and negative
load cycli were performed. In the case of tension, for practical reasons, only
tensile forces were applied as compressive forces would have required a modified
test-equipment. At each step the strains were measured, and from these data
the membrane and bending stresses per unit load increase were computed.

The agreement between theoretical and experimental results is surprisingly
good. Apart from a few points where relatively large deviations occur, which
are obviously due to incidental disturbances and will be discussed below, all
deviations are within test accuracy. An error of 1-1.5%, of the measured strains
must be taken into account because the gauge factor of the strain gauges is
known only with that accuracy. An error of about 0.259%, is due to the fact
that the transverse sensitivity of the strain gauges is not known accurately.
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An error of about 0.59, of the maximum strain measured is due to the inaccuracy
of the test apparatus, mainly in view of round off errors. The magnitude of the
load was known very accurately. Finally, errors were introduced by the fact
that the wall thickness was not exactly constant. In a circular region of radius
18 cm, concentric with the hole, it varied from 0.476 cm to 0.484 cm.

We shall have a closer look at some results that show obvious errors.

In the case of axial tension, u = 0.75 (cf. Fig. 7.3.1), we measured at ¢ = 0°
(curve a) and r = 1.23 a bending stress ¢,, of magnitude —0.42p/0 whereas
the theoretical value is —0.31p/0. In order to obtain this experimental result
we had to subtract two strains at the inner and the outer wall that are large,
the membrane stress o,,, at that point being about 2.35p/6. A maximum error
in each of these strains may introduce an error of 0.1p/6 in the bending stress.
Because moreover on the same theoretical curve four other experimental points
have been found very accurately it is evident that the experimental value at
r = 1.23 cannot be trusted.

The experimentally determined membrane stresses omy at ¢ = 0° and r = 1.23
and r = 1.40 are both about 0.04p/6 larger than the theoretical values. The
theoretical curve reaches a maximum in the neighbourhood of these points
and it may be remarked that this maximum value has been calculated very
accurately. These errors must be blamed to the fact that the membrane stresses
0,, are about five times as large and must be taken into account in view of
lateral contraction and transverse sensitivity. Relatively small errors in the
measured values of the tangential strains ¢, introduce errors in ony that are
relatively large.

The bending stress op for ¢ = 45° and r = 1.82 (7 = 5.2 cm) is 0.05p/
too large whereas oy for ¢ = 45° and r = 2.11 (¥ = 6 cm) is 0.03p/6 too
small. It may again be conjectured that these errors are due to the large
membrane stresses occurring at the same points. It is interesting to see what
stresses are obtained from the same strain gauges in the case x4 = 1. Since the
transition from p = 0.75 to ¢ = 1 was obtained by enlarging the radius of
the hole from 2.85 cm to 3.8 cm, the non-dimensional coordinates r = 1.82
and r = 2.11 in the case u = 0.75 became r = 1.37 and r = 1.58 (corre-
sponding again to 7 = 5.2 cm and 7 = 6 cm respectively) in the case u = 1.
In Fig. 7.3.2 it may be scen that the bending stresses obtained show the
same deviations as in the case ¢ = 0.75. Obviously these deviations must be
attributed mainly to inaccurate gauge factors.

In the graphs bearing on the case of loading in torsion the largest deviation is
the radial membrane stress opr measured at ¢ = 45°, r = 1.12 in the case
u = 0.75 (Fig. 7.3.3). Obviously this error may again be blamed on the fact
that the stress ¢,,, in the same point is ten times as large.

In general we may conclude that the experiments support the analytical
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Fig. 7.3.1 Stresses in a tube in axial tension as a function of r and experimental results
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results. There is furthermore no indication whatsoever that in the case y = 1
the radius of the hole, which is then about one seventh of the radius of the
cylinder, has already reached a value such as to make the analysis less accurate
in view of the approximations studied in Chapter 6.

As explained in Section 7.2 we have also attempted to measure the mem-
brane stress ¢,,, at the hole boundary. The results obtained were not entirely
satisfactory, probably due to the difficulty of placing the strain gauges exactly
in the middle of the comparatively small wall thickness. This difficulty is more
pronounced for smaller hole diameters. We shall therefore restrict our discus-
sion to the case © = 1, a = 3.8 cm, for which the results are collected in
Table 7.3.1. The strain gauge at ¢ = 225° which in the case of torsion indicated
a membrane stress of 5.70 times the shear stress at infinity has been replaced
and the second strain gauge indicated a stress of 6.21 times the shear stress
at infinity, as compared with a theoretical value 6.09. Since there is a bending
stress of about —37, the stress varies over the wall thickness from about 37,
at the outside to about 97, at the inside. The difference in the results of these
two strain gauges may therefore be due to a different location in the thickness
direction of no more than 0.04 cm. Hence the deviations found are indeed
likely to be due to small errors in the location of the filament of the strain
gauges. In view of the fact that the width of the hole was only 7.6 cm and the
wall thickness only 0.48 cm it is quite understandable that such errors have
been made.

Table 7.3.1
Axial tension, o/o Torsion, o/t
¥ experimental theoretical experimental theoretical

value value value value

05 3.61 3.66 —0.04 0
22°30’ 2.62 2.78 4.90 4.83
45° 6.08 6.09

90° —1.27 —1.20 0.05 0
112°30” —3.73 —3.80
135° 0.87 @:91 —5.69 —6.09

180° 3.70 3.66 0.18 0
202°30" 5.02 4.83
225¢ 0.67 0.91 5.70./6.21 6.09
292230" —0.59 —0.65 —3.78 —3.80
337°30" —5.02 —4.83

The influence of the fact that the wall thickness was not exactly constant
may also be estimated from this table. The values measured at ¢ = 0°, 90°
and 180° must necessarily originate from this reason since at these points both
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the membrane and the bending stresses are zero in view of the symmetry. The
largest stress (at ¢ = 180°) is almost 39, of the maximum stress present.
Taken as a whole, however, the results in Table 7.3.1 agree reasonably well
with the analytical results. For example the theoretical prediction that the
maximum stress in the case of torsion does not occur at ¢ = 45°, 135°, 225°
and 315° is fully confirmed by the experiment, and the computed value of the
maximum stress is in fair agreement with the experimental values.
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SAMENVATTING

Het onderwerp van deze dissertatie is de bepaling van de spanningen en de
verplaatsingen in een dunwandige cirkelcilindrische buis, verzwakt door een
gat dat in het ontwikkelde schaaloppervlak cirkelvormig is. De buis is onder-
worpen aan belastende krachten en er wordt uitgegaan van de veronderstelling
dat de spanningen en verplaatsingen die ten gevolge van de belasting zouden
optreden in het geval van een onverzwakte buis bekend zijn. De oplossing van
het gestelde vraagstuk wordt verkregen door de gatrand spanningsvrij te maken
en de daarbij optredende inwendige spanningen en verplaatsingen op te tellen
bij de reeds bekende. Dit spanningsvrij maken van de gatrand geschiedt door
een evenwichtsbelasting, en het is dit laatste vraagstuk dat in de dissertatie
wordt behandeld.

De ontwikkelde theorie is in tweeérlei opzicht van een benaderend karakter.
In de eerste plaats worden de vergelijkingen der flauw gekromde schalen er
aan ten grondslag gelegd, en in de tweede plaats wordt de werkelijke cilinder-
schaal vervangen door een model in de vorm van een spiraalschaal, waarin
de omtrekshoek zich uitstrekt van —oo tot +oco. De laatste vereenvoudiging
lijkt aanvaardbaar omdat kan worden verwacht dat de spanningen op grote
afstand van het gat klein zullen zijn. Beide vereenvoudigingen beperken de
geldigheid van de theorie tot waarden van de gatstraal die betrekkelijk klein
zijn ten opzichte van de straal van de buis, bijvoorbeeld niet groter dan 1/4.

Het eerst is dit probleem aangevat door Lur’E [lit. 5 en 6], die een oplossing
geeft in de vorm van de eerste term van reeksen in een krommingsparameter
@%|Rd (a = gatstraal, R = straal van cilinderschaal, 6 = wanddikte). Een na-
deel van LUrR’E’s theorie is dat de resultaten alleen nauwkeurig zijn voor kleine
waarden van deze parameter.

De thans ontwikkelde theorie heeft deze beperking niet. In navolging van
Lur’E wordt het probleem herleid tot de bepaling van een complexe functie ¥,
waarvan het reéle deel een spanningsfunctie voor de membraanspanningen en
het imaginaire deel de normale verplaatsing voorstelt. Deze functie ¥ voldoet
aan een differentiaalvergelijking van de vierde orde waarvan de oplossingen
worden gezocht in de vorm van een fourierontwikkeling in de hoek ¢ van
een poolcoordinatensysteem (7, ¢) in het ontwikkelde schaaloppervlak. De oor-
sprong van dit codrdinatensysteem valt samen met het middelpunt van het
gat. De coéfficiénten van de fourierreeksen zijn functies van de radiale coordi-
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naat r. Het blijkt mogelijk te zijn op in principe eenvoudige wijze te voldoen
aan dynamische en geometrische randvoorwaarden.

Enkele theoretische aspecten die niet aan de orde zijn gekomen in tot dus-
verre verschenen publikaties worden mede behandeld, te weten:

De volledigheid van de oplossing (hoofdstuk 3.2).

De eventuele mogelijkheid, een gatrandbelasting te behandelen, die een
resulterende kracht of een resulterend koppel heeft. Het blijkt evenwel, dat
de theorie alleen toestaat een gatrandbelasting te behandelen, die een even-
wichtssysteem vormt. Hierbij dient echter een uitzondering vermeld te worden.
Het blijkt namelijk, dat één component van de momentvector (de component
die raakt aan de cilindermantel en loodrecht staat op de as van de cilinder)
niet identiek nul is (hoofdstuk 3.3).

De ondubbelzinnigheid van de verplaatsingen in het tweevoudig samen-
hangend gebied, gevormd door de spiraalschaal (hoofdstuk 3.4).

De onnauwkeurigheid veroorzaakt door het benaderend karakter van de
theorie (hoofdstuk 6).

Als voorbeelden ter illustratic worden enige belastingsgevallen behandeld,
en voor een aantal waarden van de geometrische parameters numeriek uit-
gewerkt. Zij betreffen de gevallen belasting door trekkrachten in axiale richting
en door wringende momenten uitgeoefend op de verzwakte buis, welke be-
handeld worden in hoofdstuk 4, en belasting door inwendige overdruk van
een buis waaraan een dwarspijp is bevestigd, behandeld in hoofdstuk 5. Het
laatste geval is een voorbeeld van een probleem met gemengde randvoorwaar-
den. Voor de behandeling van dergelijke problemen wordt gebruik gemaakt
van invloedsgetallen voor geschikt gekozen eenheidsbelastingen langs de gat-
rand. Voor een groot aantal waarden van de krommingsparameter zijn deze
invloedsgetallen bepaald, en voor de waarde, welke betrekking heeft op het
behandelde numeriecke voorbeeld, in dit proefschrift vermeld (tabel 5.2.1). In
alle behandelde voorbeelden wordt uitvoerig stilgestaan bij de invloed welke
de kromming blijkt te hebben op de numerieke waarde der spanningsconcen-
traties. In vele gevallen is deze invloed zeer groot.

Bij gebrek aan meer gegevens zijn LUR’E’s resultaten wel eens toegepast voor
grote waarden van de krommingsparameter. De daarbij gevonden spannings-
concentratie, bijvoorbeeld in het geval van axiale trek, blijken nu aanzienlijk
te groot te zijn.

Mede op grond van de door HouGHTON naar aanleiding van zijn proef-
resultaten uitgesproken twijfel aan een merkbare invloed van de kromming
zijn in het laboratorium voor technische mechanica spanningsmetingen ver-
richt aan buizen verzwakt door cirkelvormige gaten, en belast door axiale
trekkrachten en door wringende momenten. De resultaten worden in hoofd-
stuk 7 besproken en ondersteunen de theoretische voorspellingen ten volle.

98




LEVENSBERICHT

De schrijver van dit proefschrift werd op 16 november 1927 geboren te
Veldhuizen. Na in 1947 aan het Christelijk Gymnasium te Utrecht het diploma f
te hebben behaald, ving hij de studie voor werktuigkundig ingenieur aan de
Technische Hogeschool te Delft aan. Hij was van januari 1951 tot september
1952 als student-assistent verbonden aan het laboratorium voor technische
mechanica en van september 1952 tot september 1953 als leraar aan de
Academie Minerva te Groningen. In juli 1953 behaalde hij het diploma werk-
tuigkundig ingenieur. Sinds september 1953 is hij in verschillende functies,
eerst als grafostatica-assistent en vanaf september 1956 als instructeur, verbon-
den aan het laboratorium voor technische mechanica te Delft. Vanaf sep-
tember 1963 wordt door hem een leeropdracht vervuld voor het geven van
de colleges Toegepaste Mechanica ten behoeve van de afdelingen der elektro-
techniek en der mijnbouwkunde en de tussenafdeling der metaalkunde van de
Technische Hogeschool te Delft.

99




STELLINGEN

1

De door HoucuToN gedane uitspraak, dat voor waarden van de in deze
dissertatie door formule (2.2.3) gedefinieerde krommingsparameter u, kleiner
dan 1, de theorie voor vlakke platen toereikend zou zijn voor het bepalen van
de spanningstoestand in op axiale trek belaste, doorboorde cilinderschalen,
moet worden verworpen.

Houcuron, D. S., Journal of the Royal Aeronautical Society, 65 (1961),
201-204.

2

Sommige numericke voorbeelden in de literatuur betreffende spannings-
concentraties rond gaten in schalen zijn gebaseerd op de theorie der flauw
gekromde schalen, doch hebben betrekking op constructies waarvoor de
geldigheid van deze theorie twijfelachtig is.

RemeLBacH, W., Ingenieur — Archiv. XXX (1961) 293-316.
VaiNBerG, D. V. and A. L. Sintavski, Problems of Continuum Mecha-
nics, Philadelphia (1961), 570-581.

3

Een voor de hand liggende methode om langs iteratieve weg de oplossing van
de in dit proefschrift voorkomende vergelijkingen voor de flauw gekromde
schalen (2.1.5) en (2.1.10) te bepalen, bijvoorbeeld voor het behandelde geval
van trek in axiale richting, is de volgende. De spanningsfunctie @, die geldt
voor het geval van een vlakke plaat, wordt gesubstitueerd in het rechterlid
van (2.1.10). De oplossing van deze vergelijking, cen eerste benadering van w,
wordt op haar beurt gesubstitueerd in het rechterlid van (2.1.5), hetgeen een
tweede benadering van @ oplevert, waarna het proces naar believen herhaald
wordt. Deze methode is onbruikbaar, daar het proces niet convergeert.

4

De vergelijkingen, gebaseerd op het principe van virtuele verplaatsingen door
KoLLBRUNNER en MEISTER ten grondslag gelegd aan het probleem van het
uitknikken van in hun vlak belaste platen, zijn onjuist ten gevolge van een
verkeerde formulering van het variatieprobleem.

KorLLBRUNNER, C. F. und M. METER, Ausbeulen, Springer-Verlag
(1958).




5

Bij het bereiken van de kniklast van EULER van een in zijn uiteinden schar-
nierend ondersteunde op druk belaste balk is het evenwicht in het kritieke punt,
zoals bekend, nog stabiel. De kniklast wordt verhoogd door het aanbrengen
van een lineaire verende bedding in de zin van WINKLER, waarbij de bedding-
reactie per eenheid van booglengte evenredig is met de plaatselijke door-
buiging van de balk. Het evenwicht in het kriticke punt is dan echter meestal
instabiel.

LEKKERKERKER, J. G., Proc. Kon. Ned. Ak. v. Wet. Series B, 65 (1962),
190-197.

6

De door Capurso aanbevolen wijziging van de methode van Ritz ter bepaling
van de doorbuiging van een plaat, welke daarop neerkomt dat van de aange-
nomen functies lineaire combinaties worden gevormd die orthogonaal zijn,
levert geen vereenvoudiging op. De door de schrijver geuite bewering, dat een
betere benadering wordt verkregen, is onjuist.

Carurso, MicueLe, Citta di Siracusa, Celebr. Archimed. Sec. XX,
11-16 Aprile 1961, Vol. 3, Simpos. Mecc. Mat. appl. 107-111 (1962).

7

De door Jacoss voor een bepaald vleugelprofiel berekende afstand tussen het
dwarskrachtmiddelpunt van Trefftz en het dwarskrachtmiddelpunt dat ge-
definieerd is met het nul zijn van de gemiddelde specificke wringhoek, namelijk
8,39, van de lengte der koorde, is onjuist. Deze afstand bedraagt slechts 1,29,
van de lengte der koorde.

Jacoss, J. A., Journal of the Royal Aeronautical Society, 57 (1953),
235-237.

Zie ook: Korrer, W. T., Journal of the Royal Aeronautical Society, 58
(1964), 64-65.

8

De proeven van BRownN en HarL ter bepaling van insteckdiepten van balken
met cirkelvormige doorsnede zijn weinig betrouwbaar. Een belangrijk be-
zwaar is, dat niet met zekerheid kan worden gezegd, dat parasitaire verplaat-
singen, ten gevolge van de vervorming van de constructie waarin het proefstuk
is bevestigd, de meetresultaten niet hebben beinvloed.

Brown, J. M. and A. S. HaLL, Journal of Applied Mechanics, 29 (1962),
86-90.




9

Bij schepen met een niet achterin geplaatste hoofdmotor verdient het aanbe-
veling, het verhoogde niveau van de tanktop in de machinekamer over een
afstand van enkele spanten onder de schroefastunnel te handhaven, teneinde
een continue stijfheid van de ondersteunende constructie voor schroefas en
motor te waarborgen.

10

De invloed van de vervorming door dwarskrachten op de trillingen van schepen
wordt onvoldoende in rekening gebracht met de door PROHASKA aangegeven
correctiefactor.

Promnaska, C. W., Lodrette Skibssvingninger med to Knuder, Kobenhavn
(1941).

Prouaska, C. W., Bulletin de I’Association Technique Maritime et
Aéronautique, 46 (1947), 171-215.

11

Het verdient aanbeveling, de schriftelijke cindexamenopgaven voor de basis-
vakken aan de Hogere Technische Scholen landelijk centraal te redigeren.




