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C H A P T E R 1 

I N T R O D U C T I O N 

1.1 Statement of problem 

In a cylindrical shell or tube, weakened by a hole, the stress distribution, 
caused by some load applied to the shell, will differ considerably from that in 
an unweakened shell. For example, if a long tube is loaded in axial tension, we 
may expect that the maximum stress will be much larger if there is a circular 
hole in the shell than in the case that there is no cut-out. This conjecture is 
suggested immediately by the similar problem in the limiting case of a flat plate. 
The latter classical problem has been solved by KIRSCH [ref. 4] i) and the result 
is that the maximum stress is 3 times the maximum stress in the solid plate. 
This factor 3 is known as the stress concentration factor. 

There is no reason to expect that this factor is 3 in our case of a tube. In 
fact it should be expected that it depends on the geometry of the tube. This 
geometry may be described by two parameters. One is the ratio between the 
wall thickness and the radius of the middle-surface of the cylinder. The other 
one is the ratio between the diameter of the hole and the radius of the middle-
surface. The most essential feature, however, is that bending stresses will also 
occur in the shell, although in the unweakened shell only membrane stresses 
are present. 

At first sight it seems that we must distinguish several types of loading condi
tions, such as free hole boundary and loaded hole boundary, the load having 
some resultant force or moment. It can be shown that all types can be reduced 
to the one type of a self-equilibrating loading at the edge of the hole, the shell 
being unloaded outside the hole. 

A first type of problems is met if the shell is loaded but the hole boundary 
is free. An example is the case, mentioned above, of the tube in axial tension. 
The method of solving problems of this type may be described as follows. First 
the stress distribution in the unweakened shell is determined. The stress system 
acting on the edge of the hole is then known, say So. We next solve the problem 
of the weakened shell loaded only by edge stresses —.So, which constitute a 
self-equilibrating loading system. We finally add the stress distribution so 
obtained to the first one. 

A second type is that where the hole boundary is loaded by a stress system, 

') See bibliography on pages 95. 
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say ^1. If this load has a resultant force or moment, we first determine the 
stress distribution in the unweakened shell loaded by some load statically equiv
alent to Si and applied in the region within the edge of the hole. The stress 
system on the edge belonging to this loading may be denoted by '̂2. Of course, 
also iS'2 is statically equivalent to Si. We next solve the problem of the shell 
loaded on the edge of the hole by Si—So. 

Both —^0 and .S*! —>S'2 have no resultant force or moment. So we only need 
to solve problems where the loading of the edge of the hole is self-equilib
rating. 

A quite different type of problems is met if we impose geometric boundary 
conditions, or boundary conditions of mixed type. The latter case occurs if a 
reinforcing ring or a transverse pipe is attached to the hole boundary. In gen
eral such problems can be solved in a straight-forward manner if appropriate 
influence coefficients for the displacements and the slope along the hole edge are 
available for suitably selected self-equilibrating unit load systems along this 
edge. Once these influence coefficients have been tabulated, it is merely a 
matter of solving a set of linear equations. 

1.2 Survey of l iterature 

The classical work on the subject is that by LUR'E [refs. 5 and 6]. He (like 
all investigators that will be mentioned here) based his analysis on the so-called 
theory of shallow shells, and he replaced the actual cylindrical shell by a 
hypothetical "spiral" shell where the azimuthal angle varies from —00 to + 0 0 . 
An error is introduced by the actual connection of the generators for which 
this angle is —n and +77: respectively (the generators diametrically opposite 
to the hole centre). 

In the theory of shallow shells all stresses and displacements can be written 
in terms of two functions, viz. the displacements normal to the shell surface 
and a stress function for the membrane stresses. LUR'E obtained the solution 
of the basic differential equations in terms of Bessel functions and exponentials 
(written as Krylov functions). In order to satisfy the boundary conditions and 
to determine the stresses in the shell, he expanded his solution in a formal 
power series in the only parameter involved, viz. a^/Ró {a being the radius of 
the hole, which is a circle in the developed shell surface, R the radius of the 
middle-surface of the cylinder, and ö the wall thickness). The principal term 
in the series yields the solution for the flat plate. LUR'E retained the first addi
tional term. 

He dealt among others with the case of a long tube in axial tension. Apart 
from a formal error by which ^e overestimated the efl̂ ect of his parameter by 
a factor 2, his results are correct. They are only valid, however, for small values 
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oïa^jRè. Unfortunately this condition is not fulfilled in many cases encountered 
in practice. 

SHEVLIAKOV and ZIGEL' dealt with the problem of the tube under torsion 
[ref. 14] and the case of prescribed normal displacements at the edge of the 
hole [ref 15]. PIROGOV investigated the influence of a reinforcement of the 
hole boundary [ref. 11] and treated the problem of concentrated loads [ref. 12]. 
Both authors based their investigations on LUR'E'S analysis and their results 
are therefore again valid only for small values of the parameter d^jRö. 

WITHUM [ref. 18] treated the problem of the tube under torsion in a diflferent 
way. His method is not restricted to small values of the curvature parameter. 
Assuming a Fourier series expansion of the stresses and displacements he 
obtained a set of simultaneous ordinary differential equations, the independent 
variable being the polar coordinate r in the developed shell surface. The un
known functions in these equations are the coefficients of sin 2(p, sin icp etc. 
of the complex stress functions {f being the other polar coordinate in the 
developed shell surface). There appeared to be a coupling between adjacent 
coefficients. The strength of this coupling depends on the magnitude of the 
curvature parameter d^jRÓ. In the case of a flat plate there is no coupling left. 
The author dealt with these equations by a perturbation method which, in a 
numerical example, appeared to converge rapidly. 

During the completion of this thesis the author was informed that Mr. PETER 

VAN DYKE (Harvard University, Cambridge, Mass.) attacked the same problem 
in a different way. He apparently enforced dynamic boundary conditions along 
the hole circumference by a collocation method by means of which he obtained 
numerical results that are in agreement with ours. Furthermore he investigated 
the asymptotic behaviour if the magnitude of the curvature parameter a^jRd 
tends to infinity. It is hoped that the complete work, as yet unpublished, 
becomes soon available. 

Essentially more complicated are the shell intersection problems, such as the 
determination of the stresses in the vicinity of a transverse pipe welded to a 
cylindrical shell. Such problems have been treated by REIDELBACH [ref 13]. 
He solved similar differential equations as WITHUM but he neglected the coup
ling terms. In general this neglection must be considered as inadmissible. In 
most problems encountered in practice it will introduce large errors. It appeared 
to be very cumbersome to satisfy the boundary conditions. He gave a numerical 
example, concerning a shell geometry, however, that does not permit the neglec-
tions of shallow shell theory. 

Also MYINT, RADOK and WOLFSON [ref. 8] have treated a shell intersection 
problem. They use a Ritz method. The three displacement components are 
written as linear combinations of suitably chosen functions, that satisfy the 
boundary conditions, and certain aspects of symmetry. The total potential 
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energy is then minimized. It seems that in a general case of boundary' condi
tions one has to choose rather complicated functions, which make the expres
sion for the potential energy unwieldy. Therefore the authors make use of 
Lagrange multipliers for the purpose of enforcing the boundary conditions. 
This leads to a set of non-linear equations, which is solved by an iterative 
method. An example that is given bears on the case that the intersecting 
cylinder is undeformable. The boundary conditions are in consequence such 
that the edges of the hole in the main cylinder are fixed and clamped. Already 
in this relatively simple example the numerical work is cumbersome. 

The world-wide interest in the type of problems under consideration might 
finally be underlined by drawing attention to the experimental work bearing 
on the subject. We mention only the experiments carried out by HOUGHTON 

and ROTHWELL [ref 3] on tubes with circular and elliptic cut-outs both in 
tension and in torsion. The agreement between theory and experimental results 
reported in the literature is poor, and the validity of the analytical results has 
sometimes been questioned. 

1.3 S u m m a r y of the present thesis 

The scope of the present thesis is to evaluate an analysis of stresses and 
displacements in circular cylindrical shells, weakened by a circular hole. This 
analysis will be based on shallow shell theory and will not be restricted to small 
values of the curvature parameter a'^jRè. A restriction that originates from the 
shallow shell equations, however, is that ajR must be comparatively small, e.g. 
smaller than 1/4. 

In none of the previous papers, mentioned in the foregoing section, an inves
tigation has been undertaken of the theoretical aspects. Some aspects of the 
theory as a whole that will be investigated in the sequel are: 
a. The completeness of the solution. 
b. The possibility to deal with edge loads that have a resulting force or moment. 

Somewhat surprisingly it will appear that only one non-vanishing compo
nent of the moment vector can exist. In view of our previous observation 
that we may restrict our analysis to self-equilibrating loads along the hole 
boundary, the present limitation of our analysis is not too serious. 

c. The uniqueness of the tangential displacements. This requirement leads to 
a simple condition that must be satisfied by the integration constants ap
pearing in the solution. 

d. The errors introduced by the approximative character of the solution. These 
errors arise from the replacement of the actual cylindrical shell by a spiral 
shell model and from the approximative character of the shallow shell 
equations. 
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Some numerical examples will be given, viz. the stress concentration around a 
circular hole both in a tube in tension and in torsion. 

In order to be able to deal with boundary conditions that are geometric or 
of mixed type, a method will be developed to determine the tangential displace
ments. Then it is possible to calculate for distinct values of the parameter 
a^jRê the influence matrices of the hole boundary. With the aid of these in
fluence matrices many types of boundary conditions can be dealt with. An 
example to be discussed is the case of a transverse pipe attached to the shell. 
The stresses due to internal pressure will be determined numerically. 

The final chapter contains the results of careful experiments bearing on the 
cases of tension and torsion, which have been carried out in the laboratory 
of engineering mechanics of the Technological University, Delft. These results 
are compared with numerical results obtained from the present analysis. Agree
ment within test accuracy is found in general. We do not hesitate to conclude 
that the analytical results are now fully confirmed by experiments, at least in 
the range of our experimental investigation. 
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C H A P T E R 2 

T H E B A S I C E Q U A T I O N S 

2.1 The coordinate s y s t e m s and the basic equations 

We introduce geodetic coordinates in the shell surface, both Cartesian coor
dinates x,y^), and polar coordinates f, (p. The origin coincides with the centre 
of the circular hole of radius a. The i-axis is parallel to the axis of the cyhnder. 
The polar coordinates are such that the axis 99 = 0 coincides with the positive 
jj-axis and 99 = 7t/2 with the positive ^-axis (Fig. 2.1.1). 

Fig. 2.1.1 The coordinates of the shell surface 

Our analysis will be based on the assumption that the shell region is un
bounded in the radial direction of our polar coordinates. This implies that our 
analysis is rigorous only for a hypothetical spiral cylindrical shell (Fig. 2.1.2). 
Its application to an actual cylindrical shell is permissible, if the effect of the 
connection between the generators d = —n and ?? = 4-7r (^ is the circum
ferential angle) in the spiral shell is negligible in the vicinity of the hole. We 
shall return to the latter question in Chapter 6. 

Our analysis will furthermore be of an approximate character through the 
underlying theory of shallow shells 2). Accordingly all quantities concerning 

' ) Several quantities are barred or underlined in order to distinguish them from dimensionless 
quantities which will be introduced subsequently. 

') A general treatment of shallow shell theory is given among others by NOVOZHILOV 
[ref. 10, Chapter 1]. 
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Fig. 2.1.2 Cross-section of the spiral shell — o o < ^ < o o 

stresses and displacements may be expressed by the normal displacement w 
and a stress function <ï>. 

The stress resultants per unit length are indicated in Fig. 2.1.3 together 
with the displacement components | in .f-direction, fj in j-direction and w in 
normal direction, positive inward. Fig. 2.1.4 shows the stress couples per unit 
length. 

Fig. 2.1.3 Shell element with stress resultants 
per unit length and displacement components 

Fig. 2.1.4 Shell element and stress 
couples (right-handed screw rule) 

We express the membrane forces by a stress function 0 as follows 

nx = 

9j;2 

920 ny 

Uxv = n yx 

9 2 0 

dxdy 

(2.1.1) 
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It is evident that this procedure implies the equilibrium of a shell element, 
so far as the forces and moments acting in the shell surface are concerned, only 
approximately. In the complete equilibrium equation of the forces in j -d i rec-
tion reading 

dn xy 

dx -}- + ^-^dy 0 (2.1.2) 

the last term containing the shear force dy has been neglected. Also in the 
equation that expresses the equilibrium of moments about the normal to the 
shell surface, 

'ixy 
1 

my 0 (2.1.3) 

again the last term of the left-hand side has been neglected. 
If we assume that stresses arising from the membrane forces are at least 

comparable in magnitude with the stresses arising from the moments these 
neglections correspond to the neglection oï öjR with respect to 1. 

According to Hooke's law the derivatives of the displacements ^ and fj can 
be expressed as follows [E is Young's modulus, v is Poisson's ratio) 

9s' 

dx 

dfj 

dy 

9 | 
dy + 

1 1920 

Eöldf 

w 

R Ed 

drj 2(1 

dx 

9201 

1 1920 dm 
ïd [dp ~ " ̂ 1 9^2 

920 

Eb dxdy 

(2.1.4) 

We eliminate ^ and r; from these equations. This yields the compatibility equation 

1 d^w 
ÓA[0) Ed 

R dx^ 
(2.1.5) 

Here A denotes the Laplace operator {d^jdx^ -\- d^jdy^). 
A second differential equation for the unknown functions 0 and w results 

from the equilibrium of a shell element in normal direction, and the equilib
rium of the moments (Fig. 2.1.3). The latter requirements lead to 

dx = 
dmx 

dx 

dmxy , 
dy = - ^ ^ + 

dx 

dmyx 

dy 

dmy 

dy 

(2.1.6) 
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The equilibrium equation of the forces in normal direction is 

1 

R 

ddx ddy 

dx dy 
(2.1.7) 

The expressions for the moments in terms of the displacements are [cf FLÜGGE, 

ref 2, p . 214]. 

mx 

mvx = 

m xy 

Ed^ [d'^w d^w V dfj 

12(1-r2) [dp ' ' 9j2 ' R dy ' 

E6^ 192M; 1 dfi 
1 I'M + 

12(1 ~r2) ' ' [dxdy 2R dx 

Ed^ \d^w 1 dr-]\ 
1 I'M - + 

12(1-r2) ' '[dxdy Rdx] 

£03 id'^w d^w w\ 

12(l-» '2)l9j2 ' ' 9Jc2 ' Ri] 

1 9,̂ 1 j 

R dx] 

1 all 

2R dy] 
(2.1.8) 

Now the underlined terms will be neglected. If they would originate from 
in-plane strains the error introduced would be of the order djR with respect 
to 1 in the case that the membrane stresses and the bending stresses are com
parable in magnitude. However, they contain unfortunately also terms that 
can be large when the membrane stresses are small, such as {vlR)dfjldy (the 
actual strain e.y is equal to dfiJdy — wjR) and the rotation in the plane of the 
shell surface. So it is not so easy to decide whether the approximation is good 
or not. A closer inspection reveals that it will be accurate when the functions 
involved are rapidly changing functions ^). When the radius of the hole is com
paratively small with respect to R it can indeed be expected that the wave
length of the deformation pattern caused by the edge load will be small with 
respect to R. 

After this neglection (2.1.6) becomes 

4 = 
£0» 

1 2 ( l - « 

12(1-^2) 9^ 

9 

dx 

d 

[Aw) 

[Aw] 

(2.1.9) 

Inserting these expressions into the equilibrium equation (2.1.7) yields the 
second basic differential equation 

12(1-r2) 1 92$ 

m R^ AA{w) (2.1.10) 

' ) Cf. NOVOZHILOV loc. cit. 
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We established the equations of the so-called theory of shallow shells in the 
special case of cylindrical shells. We shall have to find solutions of these equa
tions that satisfy given boundary conditions and give rise to single-valued 
displacements. The compatibility equation (2.1.5) does not imply the unique
ness of these displacements since we arc dealing with a multiply-connected 
region. So this question must be investigated separately. 

2.2 Dimens ion less quantities 

We shall now bring the basic formulae in a more convenient form by in
troducing the dimensionless coordinates 

x = xfa; y =yla; r = fja (2-2.1) 

the dimensionless complex function 

12(1- .2) . V l 2 ( l - r 2 ) 
r = ;̂ 7:̂  0 + t : W 

Ed^ ' d 

where i is the imaginary unity, and the parameter //, given by 

^ Ï 2 ( I ^ ^ a 

(2.2.2) 

/« = VSR 
(2.2.3) 

Let A denote the Laplace operator in the dimensionless coordinates, so A = a^é-
The set of simultaneous equations (2.1.5) and (2.1.10) is equivalent to one 
complex equation obtained by multiplying the former equation with 
12(1—r2)a4/£'^3 and the latter with V\2{1-v2)ia'^ld and adding the two 
equations. The result is 

92^ 
AAW-^fiH 

9̂ 2 
0 (2.2.4) 

The membrane forces, the moments and the shear forces, given by (2.1.1), 
(2.1.8) and (2.1.9) respectively, are in terms of the dimensionless quantities 
as follows. 

The membrane forces are 

nx 12(l-i '2)a2 

Ed^ 

Re 
Ed3 _ 92 «F 

dy^ 

92 «F 

12(1-^2)02 ""-"9x2" 

EÖ3 

Re 

^xy — nyx — 
12(1- i'2"\/72 

Re 
dW 

dxdy 

(2.2.5) 
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T h e m o m e n t s a re 

mx 

m 

Ed'^ [92<^ 92 "F) 
j 7—Im 5 -\-V \ 

{12( l -» '2)} ' ' a2 l9;c2 ^ 9_j,2J 
£04 (92^ 92«f' 

V — IT— I m { 1- V 
^ {12( l - i ' 2 )} / ' a2 l9j2 ^ 9x2 

£(34 
THxy — myx 

T h e shear forces are 

dx 

{ 1 2 ( l - l ' 2 ) } % 2 
I m (1 

^ 92"^ I 
-v) \ 

dxdy} 

dy 

£04 a 
^r- I m - ^ (AW) 

{12 ( l - i ' 2 )} / ' a3 [sx"- ' 
£04 (9 

^ - I m - (A W) 
{12 ( l - i ' 2 )} / ' a3 9^^ I 

T h e n o r m a l d isp lacement is 

6 
w = 

V l 2 ( l - i ' 2 ) 

W e finally in t roduce dimensionless displacements f a n d T] by 

1 2 ( 1 - v 2 ) a 

Ó2 

1 2 ( l - f 2 ) a 
r? »? 

As a result the stress-strain relat ions (2.1.5) become 

d-^W\ 

~dp] 

dt] \d^W d^W\ 

dy 

dx [ dy^ 

92 «F 
V 

dy'^] 
+ I m (4/,2y/) 

(2.2.6) 

(2.2.7) 

I m f' (2.2.8) 

(2.2.9) 

(2.2.10) 

9f 9*7 ( 92'Fl 
— + — = - R e 2 ( l + r ) 
dy dx y dxdy] 

I t is interest ing to note at this stage tha t ,« is the only p a r a m e t e r a p p e a r i n g 

explicitly in the p rob lem, a l though the geomet ry of the shell wi th the cu t -out 

depends on two pa rame te r s . T h e dis t r ibut ion of bend ing stresses and m e m b r a n e 

stresses depends only on /t, while only the transverse shear stresses t ha t a re of 

the o rde r of m a g n i t u d e dxjd a n d dyjè con ta in a n add i t iona l factor ó/a. 

19 



C H A P T E R 3 

T H E S O L U T I O N O F T H E B A S I C E Q U A T I O N S 

3.1 Solution in series of Bessel functions 

The basic differential equation (2.2.4) is rewritten as 

A +2/iVi^]y^ -2fiViYj'P=0 (3.1.1) 

Each solution of either of the equations 

A +2ft.Viy]'f-0 (3.1.2) 

and Izl - 2 / t V z ^ ) ' ^ = 0 (3.1.3) 

is a solution of (3.1.1). It will be shown in Section 3.2 that these solutions 
together represent the complete solution of (3.1.1). 

In order to solve (3.1.2) we substitute 

W=e"'x{x,y) (3.1.4) 

and (3.1.2) becomes 

Ax+2{A+/cVi)~ + {^'' + 2hiVi)x = 0 (3.1.5) 

ox 

Without loss in generality we can put 

A = - / t V « (3.1.6) 
which yields the wave equation 

Ax-/i^ix = 0 (3.1.7) 

This equation can easily be solved, in polar coordinates, by Bernoulli's separa
tion method. We assume that the solution can be written in the form 

X = R{r)0icp) (3.1.8) 

Then, by (3.1.7) 

0R" + 0 ~ R' + 0" ~ R - HH0R = 0 (3.1.9) 
r r2 
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Or, separating the variables, 

r'^R" rR' 0" 
^ ^ + ^ - ' • V ^ ' = - ^ = (say) n2 (3.1.10) 

The ordinary differential equation for the function R{r) can be recognized as 
Bessel's equation of order n. For our purpose it is convenient to write the 
solution in terms of Hankel functions, viz. 

i? = l „ / / , / 2 ) ( ^ r V ^ ) + J„* / / „< i ) ( / , rV^) (3.1.11) 

We choose the root V —z = e~'"'*. An and An* are complex constants, and 
their value will depend on the boundary conditions. Since the function x must 
be multiplied with the exponential «^ where A is given by (3.1.6), the term 
containing //„(i>(/(rV' —z) must be omitted in view of its asymptotic behaviour. 
In fact we must require that R decreases exponentially, when r tends to infinity, 
as e^'"''^. And indeed the asymptotic expansion of the Hankel function of the 
second kind for |z| -> oo has a leading term [cf for ex. ref 7, Chapter 4.30] 

//«<2)(z) = | /Ag- -+v>c«+ '« (3.1.12) 
' TIZ 

if —1/27Ï < phase z < ^jin. This condition is fulfilled here. Hence it follows 

/ /„ (2) ( / / rV^) =y-^«'«"'2+'W''-"'/ '2i«-'-/ ' '2 (3.1.13) 

The last factor ensures the boundedness of the solution. Furthermore (3.1.10) 
gives 

0 ^ g±inf (if„ _£0) 
(3.1.14) 

0 = const. + const. 9? (n = 0) ) 

The imaginary part of the function W, which is, apart from a constant factor, 
the normal displacement w must be single-valued, so we can use only integral 
values of n, and for ra = 0 the solution 0 = const. From (3.1.4), (3.1.6), 
(3.1.8), (3.1.11) and (3.1.14) we can now derive the solution of (3.1.2) 

-r- CO 

¥' = e- '""Si '„e '" ' ' / /„(2)(/ /r \ /-f) (3.1.15) 

In similar manner we find the solution of (3.1.3) 

ï ' = «'">•• S°5„«'"' 'i/„(2)(/irV^) (3.1.16) 
n = — CD 

We can write our solution in another form if we make use of a well-known 
expansion in a Fourier series [ref 17, Chapter 2.1] 

+ CO 

^iz s in <fi S.'"^J„(z) (3.1.17) 
n= ~ CO 



The sum of the solutions (3.1.15) and (3.1.16) may then be written as 
+ CO -|- CO 

•? = S é"fJk{-firV-i) 2 i„«'"''//„(2)(;,?-V-z) + 
A : = — oo n = — CO 

+ ^é^'JicitirV^) ^Bj'-'^Hn^^Kl^rV^) (3.1.18) 
A = — CO « — — oo 

Since Jk{—z) = (—l)*^Jyfc(z) this can finally be transformed into 

F = S . « ^ J , ( / / r V ^ ) s " ( J„ + ^„) ."^/ /„(2)( ; , rV^) + 
k = e v e n n = — co 

+ S g'*''J*(;*rV^) 2 " ( - l „ + ^„). '" ' ' / /„(2)(; ,rV^) . . (3.1.19) 
A = 0 (1(1 n — — CO 

It has to be kept in mind that V—i means e^"'*. 

3.2 Completeness of the solution 

We denote the general solution of (3.1.2) by 0 and the general solution of 
(3.1.3) by 6. I t is not an established fact as yet that 0-\-6 is the general 
solution of (3.1.1). It will now be proved that this is the case. 

It is clear that the general solution of (3.1.1) is given by 0 plus the complete 
solution of 

/I - 2 / / V ï ~ ) ' ^ = ^ (3.2.1) 

The statement is proved if we can show that a particular solution 0i of (3.2.1) 
exists that also satisfies (3.1.2). This system of two equations is equivalent to 
the system, obtained by adding respectively subtracting the two equations. 
Adding gives 

A0i = 1/20 (3.2.2) 

Subtracting gives 

901 1 
— - = 0 (3.2.3) 
dx ^fi. \/i 

The solution 0 i must satisfy these two equations. 
First d0ijdy is obtained as foflows. We differentiate (3.2.3) with respect to x 

and subtract it from (3.2.2), which gives 
920, 1 90 
- ^ = — ^ — + 1/20 (3.2.4) 
9j2 4̂ ^ y/i dx 

and we differentiate (3.2.3) with respect t o j , which gives 

^ ^ = ^ - L ^ . ^ (3.2.5) 
dxdy 4/Li -y/i dy 
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From these equations d0ildy can be determined by integrating, since the 
derivative of d'^0ijdy^ with respect to x is equal to the derivative of d'^0ijdxdy 
with respect toy, in view of (3.1.2). Integrating from some point ^ to a point B 
gives 

/ '90i\ / 9 0 i \ 

^y IB \ 97 

+ /{ L_^^(^dx-f 
4 t̂ V« ^y 

1 90(x, y) 
^l20{x,y) ' ^ '^^ 

4r/i. \/i dx 
dy\ (3.2.6) 

Now also the derivative of 90i/9x with respect to j is equal to the derivative 
of d0ijdy with respect to x, which can easily be verified. So we can indeed 
find a function 0 i that satisfies both (3.2.2) and (3.2.3), and so it satisfies 
also both (3.1.2) and (3.1.3). This proves the statement that W = 0 + 0, 

W = «-'«"• S Ane''"'Hn^^^{/irV^) + 
n= — CO 

4-00 

+ e""' 2 B„e''"'Hn<^K^trV-i) (3.2.7) 
n — — CO 

which can also be written in the form (3.1.19) is the complete solution of 
(3.1.1.), when we restrict ourselves to single-valued functions W. 

3.3 The resultant forces and m o m e n t s of the edge load 

In this section we shall determine the resulting force and the resulting moment 
of the edge load, belonging to any single-valued solution of (3.1.1). It will be 
shown that each of the three components of the resulting force (in x- and 
j-direction and in the direction normal to the shell surface respectively) is 
identically zero for each function W by which stress resultants and stress couples 
are determined according to (2.2.5), (2.2.6) and (2.2.7) if "f̂  is a solution of 
either (3.1.2) or (3.1.3) and is a single-valued function of the coordinates. This 
is also the case for the resulting moment, except for one component. Only the 
moment with respect to thej-axis can be different from zero. 

In the introduction it has been shown that we only need to deal with loading 
systems along the edge of the hole, that are self-equilibrating. From the state
ment above it is evident that the present theory would in general have been 
uncapable of treating a load that is not self-equilibrating. The reason of this 
shortcoming of our analysis is not quite clear. It is not probable that it must 
be blamed to the fact that we based the analysis on shallow shell theory. In 
this connection we may, as a counter-example, mention the work of YUAN 

[ref. 19] who applied shallow shell equations in dealing with the problem of 

23 



concentrated loads acting on cylindrical shells. It is more likely that the reason 
lies in the fact that we wrote the solution of the wave equation (3.1.7) in the 
form (3.1.8). This assumption lead to the following consequence. We had to 
require that the imaginary part of W is single-valued since it is proportional to 
the normal displacement component w, and this requirement implied also the 
uniqueness of the real part of W as a consequence of the assumption (3.1.8). 

This uniqueness, however, is not required a priori. It is not excluded that 
also solutions of the basic differential equation exist with a multi-valued real 
part permitting the description of the stress distribution resulting from non 
self-equilibrating edge loads. In this thesis, however, no further investigation 
of this possibility has been undertaken. 

In order to find the magnitude of the resulting forces and moments we 
determine the resultants of the stresses along an arbitrary contour surrounding 
the hole, in view of the fact that we satisfied the equilibrium equations (at 
least approximately) of each shell element. In Fig. 3.3.1 a shell element bounded 
by a part ds of such a contour and two line elements dx and —dy parallel to 
the x- and thcjv-axis respectively is given. We have already expressions for 
the stress resultants and the stress couples of the sides dx and —dy. They are 
given by equations (2.2.5), (2.2.6) and (2.2.7). The stress resultants and the 
stress couples on the contour element ds can be expressed, if we make use of 
the equilibrium of the shell element of Fig. 3.3.1. 

The equilibrium equations applied to this shell element yield 

dy 

'txydy 

dy \ (3.3.1) 

•'xydy 

dy 

We are now in a position to determine the three resulting forces and the three 
resulting moments of the stresses on a closed contour, of which ds is a part, 
successively. It will appear that only the resulting moment about the j -axis 
is not identically zero. 

A. The resulting force in x-direction 

This force is given by the contour integral (note that ds is non-dimensional) 

/' £03 r\ dw d-^w ; 
a 6x ds = — — Re ƒ { dx dy, 

J ^ \2{l~v^)a .1 I dxdy dy"- -̂ J 

£(53 /• ldW\ 

pxds = 

pyds = 

Dds = 

Mx ds = 

MydS = 

Hyxdx — Ui 

ny dx — Ui 

dy dx — d, 

My d x — WZi 

— myxdx +m, 
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Since W is single-valued the exact differential d{dWldy) yields a value zero of 
the contour integral. 

Fig. 3.3.1 Shell element bounded by a part ds of an integration contour 

B. The resulting force in y-direction 

This force is 

£03 
a \ pyds = Re dx H dv = 

12 l - i ' 2 a • j l9x2 dxdy -^^ 

£ ^ 3 

12(1^,.)„N''(S)-" (3.3.3) 

Here the contribution of the component of the shear force D has been omitted 
since in the establishment of the equilibrium equations the corresponding term 
has been neglected (cf (2.1.2)). 

C. The resulting normal force 

The total force in the direction normal to the shell surface is (neglecting 
terms that contain higher powers oi ajR) 

ay _) . £^3 

R 

T. / (92¥^ 92 'F 
D\ ds = Re / dx H 

12 1-^2)/J / 9;,2 ^ dxdy 
dy\y + 

+ 
Ed^ ^ [\d ^ 9 1 

- , ^ I m j j - ( . ^ ) d ^ - - ^ ( ^ ^ ) d x j . . . . (3.3.4) { 1 2 ( l - . 2 ) } 

The first integral can be transformed by integration by parts into: 

./ 9x 
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The second integral is transformed using (3.1.2) or (3.1.3), f being a solution 
of either the former or the latter equation. So 

dW 
AW==T2iiiVi— (3.3.5) 

dx 
The upper sign has to be used if I?' is a solution of (3.1.2), the lower sign if W 
is a solution of (3.1.3). It now follows 

liAW)dy-liAW)dx] = 

d^W d^W 1 

dW ldT\\ 
4/.2Ï — d j ± 2 / / V ï d ( — J j (3.3.6) 

The second term, being an exact differential, does not contribute to the value 
of the contour integral. So (3.3.4) becomes 

£^3 fdW Ed* f dW 

c c 

And this is zero, taking into account the value of/«, given by (2.2.3). 

D. The moment about the normal to the shell 

The moment of the stress resultants on the given contour with respect to 
the normal to the shell surface in the origin is 

a I {pyax-pxay} ds = ^ ^ ^ ^ - ^ Re j [x d ^ +y d ( - ] ) (3.3.8) 

where the expressions oi^px and py have been treated as in (3.3.2) and (3.3.3) 
respectively. The contour integral in the right-hand side can be integrated by 
parts as follows, 

/dW\ [dW\] f\dW dW 1 f 

c c c 

E. The moment about the x-axis 

The total moment with respect to the x-axis is 

a / \MX ds - ayD ds + ^py ds\ = 
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Fd^ f /"( 92W 92f 9 9 1" 

+ ^̂ '- WJ^I,f,m (3.3.10) 
c 

The first integral is written as follows 

C\ d^W d^W 9 9 1 

J\--d^y^^-^^^ + '''^^'-^¥y^''^^^'+^Yx^''^^^-
dW\ dW d^W . d^W \ 
— I =f 2/< V» - ^ dx ± 2/j, Viy Y^ dx =F 2/t ̂ /ly — djj = 

dw , _ .. . /a'F -i\ 
c 

= / =F 2/i V« d'F + 4^2jj, dJ 

T 2// Vè - ^ dx ± 2fi Viy ^[~Yl^ 2-" ̂ ' ^ ^ "^ "̂-̂i 

raï^ 
= 4//2t —d(i /272) (3.3.11) 

,/ dx 
c 

Here several times use has been made both of the circumstance that an exact 
differential of the single-valued function !^or its derivatives does not contribute 
to a contour integration, and of the equation (3.3.5). Integrating finally the 
second integral of (3.3.10) by parts and taking into account the value of ^ 
given by (2.2.3) it follows immediately that the moment about the x-axis is 
identically zero. 

F. The moment about they-axis 

The total moment with respect to thejv-axis is 

f ( a2v2 a^xy 
a \Myds + axD ds + —— px ds ~ py ds 

Ed'^ 

{12(l-v2)}'^'fl 

ft 92y/ 921// 9 9 I 
Im j j - ^ - ^ dx + - ^ d j + X - ( z l ï^) dx - X- (zJ y^) djj + 

c 

/•( d^W d'^W 92«F 92f n 
+ 4^2Rej j -V2^^^d,-V2^^^dx-x^^dx-x, —d^jj (3.3.12) 

c 

Here we substituted already (2.2.3) in the coefficient of the second integral. 
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Now the first integral can be written as 

I'i ldW\ dW dW dW ] 

.1 r^'wr '̂ '̂ •̂-9 '̂-̂ ^ 2,v-—dx±2,v-^d^[ = 
c 

f[ dW IdWX . dW \ 
= / |=F 2,« V« - ^ d j =F 2fi Vixd l^-j^j - Afxhx ^ djj = 

c 

f\ dW dW dW 1 
= / T 2 / / V 2 — d r ± 2 / / V ' — dx - 4//2zx — d y \ . . . (3.3.13 

,/ I dx dy dx ] 
c 

The second integral can be written as 

/•|-v.-(f)-..(^)]. 
c 

/•( dW ^ dW ^ dW \ 

= _/(j-^d^+J^dx + x —djj = 
c 

dw 1 
-Wdy + x — dy\ (3.3.14) 

dx J 
where we carried out integration by parts several times. Substituting the results 
(3.3.13) and (3.3.14) in the expression of the moment (3.3.12) the underlined 
terms cancel. The total moment about thej-axis appears not to be identically 
zero. We find 

£<54 
Im {12(1-7^2)^ 

f\ dW dW ] 

2/< Vi / JT ̂  dj ± -— dx - 2/̂  Vi "̂  djj (3.3.15) 

This seems to be an unwieldy expression. We shall meet the expression in 
brackets again in the next section in discussing the uniqueness of the tangential 
displacements. We shall postpone a further treatment of this expression until 
then. 

3.4 Uniqueness of the d isplacements 

The equations (2.2.10) that express the strains of the shell surface do not 
necessarily give rise to single-valued tangential displacements, although the 
compatibility conditions have been satisfied. The restriction to single-valued 
functions W (in order that the normal displacements are single-valued) is in
sufficient. The reason is that we are dealing with a multiply connected region. 

We shall now try to determine the displacement components ^ and rj from 
the three equations (2.2.10). It will appear that only i] gives rise to difficulties 
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and is single-valued only if the function W satisfies a certain condition, that 
will be established in the sequel. In order to determine f, we first eliminate rj 
from the equations (2.2.10). We subtract the derivative with respect to x of 
the second equation from the derivative with respect \.oy of the third equation. 
The result is 

92| asy/ [93»// aai//» 99/ 
= - 2 ( l + > ' ) R e : '̂  ' 1 - . ^ 

\d^W d'^WX dW 
Re V -4/(2 Im (3.4.1) 

9x3 dxdyA ' dx ^ ' dy"^ dxdy'^ [ 9x3 dxdy"^ 

After some computation, using (3.3.5), we find 
92| ( 92)^ 93y/| 
8 7 . - ' ^ ' | ^ 2 „ v / i ^ - ( l + . ) ^ | (3.4.2) 

Here again the upper sign must be used if ï ' is a solution of (3.1.2), the lower 
sign if !f is a solution of (3.1.3). From the first equation (2.2.10) follows 

9<f f dW 92"fl 
- = R e | T 2 , - V . ^ ^ ( I + v ) ^ | (3.4.3) 

and, differentiating with respect tojv, 

92f _ I .92f' 93¥' | 

dxdy [ dxdy dx^dy] 

We are now in a position to determine I by integrating. From (3.4.2) and (3.4.4) 
we find 

91 ( dW 92"F] 

- = R e J T 2 , V . - - ( l + . ) ^ j + C , (3.4.5) 
And from (3.4.3) and (3.4.5) 

( dW] 
i = Re}^T2fiVi'P-{l+v)~^ + Ciy + C2 (3.4. 6) 

So we find that if W is single-valued, also the displacement component in 
x-direction is single-valued. 

From the last equation (2.2.10) together with (3.4.5) we find 

dr, \ dW 92¥^| 

and from the second equation (2.2.10) 

dri I dW dW 1 

- | = R e J T 2 , V ^ - ^ - ( l + . ) ^ - V f y . } (3.4.8) 
The condition d'^rjjdxdy = d^rjjdydx is fulfilled, but in order that the displace
ment 7] is single-valued it is necessary that 
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c 

where the integration is carried out along any closed contour around the hole. 
This yields the condition 

Re 
[\ dW dw , r 

2/* Vij [ T ^ dj ± — dx - 2// Vi ï" djj 
= 0 . . . (3.4.10) 

And it is clear that, although W is single-valued, the condition (3.4.10) is not 
always satisfied. We can use only those solutions W that obey this condition. 

The expression, whose real part must be zero in order that rj is single-valued, 
is the same as the expression occurring in (3.3.15), where we found that the 
imaginary part is proportional to the moment of the edge load about thej-axis. 

We shall now substitute the solution W of the basic differential equation in 
(3.4.10). This will lead us to a relation between the integration constants that 
must be satisfied in order that the displacements are single-valued. 

As we have seen, the general solution consists of the sum of (3.1.15) and 
(3.1.16). We restrict ourselves first to (3.1.15) and corresponding to that to 
the upper signs in (3.4.10). The derivative of If with respect to x can be 
determined, keeping in mind, that the derivative of a function ƒ with respect 
to X, when ƒ is given as a function of r and 99, must be written 

9 / 9 / dr df dcp df . df cos cp .Q ^ 11 ^ 
— = 1 — = — s i n 97-| (3.4.11) 
dx dr dx dcp dx dr dcp r 

We then find 
+ CO 

in cos (i>\ , , ,—: 
l^tVi + ^ l / / „ < 2 ) ( / . r V - z ) + 

+ / /V '^s in9) / / „ (2 ) ( /« rV '^ ) i'„f-'"'V"'' (3.4.12) 

Here /Jr„(2)(^t^\/—2) is the derivative of the Hankel function with respect to its 

argument /«rV—i. Using (3.1.17) we can also write 
+ 00 

dW \^ \i . in cos wX , , , ,—-^ = Z li-^^^ + ^r^)//«*^)(/.rV-0 + 
n = — CO 

-V CO 

+ / « V ^ s i n 95 7/„<2)(/t>'\/^) An ^ «'•'*+"'"(-l)*Jit(/^rV^) (3.4.13) 

With 
df df df sin w 
A = Acosq>-^ ^ (3.4.14 
oy dr a<p r 
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we find in a similar manner 
+ a. 

dW v" ( insincp , , , ,—r̂  
- - = ^ | - ^ / / „ < 2 , ( ^ , V - . ) + 

- ^ n = — CO 

+ CO 

+ / f V ^ c o s 9^//„<2)(//r\/^) In Y^ e"<*+""'(-l)*J*(//?-V^)(3.4.15) 
A = — CO 

And finally W is written, using (3.1.17), as 
+ 00 + CO 

y ' = ^ / / „ ( 2 ) ( / * r V ^ ) ^ ^ «••(*+")"(-l)A;J;,(//r\/^) . . (3.4.16) 
n = — CO A : = — CO 

We carry out the integration in (3.4.10) along a circle of radius r, cp varying 
from 0 to 271. An increase d93 corresponds to an increase dx respectively dy 
as follows 

dx = r cos w dw \ 
. . , (3.4.17) 

dy = —r sin 9? d9? J 
This gives 

r\ dW dW I +»2ii 
/ - - - dj + —- dx - 2nViWdy\ = S ƒ {^iVirsinq)Hn^^HurV-i) + 

J y dx dy ) n=~mo 
c 

+ fiV'^rH„(^){firV^)}An£e''-'+"^''{-\)>'j!c{/iirV^)dcp (3.4.18) 
k= — CO 

Substituting g'(*+")'' = cos(A+re)9? + i sin(A: + ra)93, paying attention to the well-
known orthogonality properties of trigonometrical functions, and substituting 
i\/i = — V —t in agreement with the choice V—i = e^'"'* (cf p . 21) we now 
carry out the integration and find 

f\ dW dW 1 

By 
c 

= j r / < V ^ r 2 [ J „ ( / / r V ^ ) / / j ! \ ( / / r \ / ^ ) - J„-i(/*rV^)//„(2)(/^rV'^) + 
n = — 00 

+ J » + i ( ^ r V ^ ) 7 / „ ( 2 ) ( / , r \ / ^ ) - J „ ( / i r \ / ^ ) i / ; 2 ) ^ ( ^ r V ^ ) ] l „ . . (3.4.19) 

Here we made also use of the relation 

2//„<2)(;*rV^) =//„<!', ( / . r \ / ^ ) - i / „ ' ^ \ ( ^ r V ^ ) . . . . (3.4.20) 

We finally can simplify this expression greatly if we use the following property 
of Bessel functions 

J„(z)//„<!\(z)-J„-i(z)i/„(2)(z) = — (3.4.21) 
mz 
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This gives 

./] 
dW dT 
^— dj + —- dx - 2/« V* "^dj 
dx dy 

+ 00 

-4? 2 An (3.4.22) 

In a quite analogous way we find if IF is a solution of (3.1.3), given by 
(3.1.16), in which case we must use the lower signs in (3.4.10), 

^\dW dW I +» _ 
dj - - - dx - 2/1 Vi "P dj = 4z 2 ( - 1)«J5„ . . . (3.4.23) dx dy n = — CO 

From this follows that the displacement component rj is single-valued if the 
integration constants in the solution W satisfy the condition 

R e [ / / V ^ 2 V l „ + ( - l ) « 5 „ ) ] = 0 (3.4.24) 
n ~ — CO 

It will be shown that in many special cases of symmetric or skew-symmetric 
loading this condition is automatically satisfied. 

Returning to the end of the previous section we find that the resulting 
moment about the j -axis of the edge load is equal to 

8£ó4 , +" 

(ï2(ï^)^;'-["^-:il-^"+'-""''''i ("•̂ '̂ 

3.5 The s tress resultants in polar coordinates 

Hitherto in all expressions of the stress resultants we referred to Cartesian 
coordinates. Since the shell region is bounded by a circle of radius a, it is 

Fig. 3.5.1 The stress resultants and the displacements in a polar coordinate system 
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convenient, in view of the boundary conditions, to transform to polar coor
dinates. The corresponding stress resultants are given in Fig. 3.5.1. Here dr 
denotes the reduced shear force, which appears in the boundary conditions. 
The expressions in polar coordinates that correspond to the expressions in 
Cartesian coordinates given in equations (2.2.5), (2.2.6) and (2.2.7) are 

£^3 
nr = 

n^ = 

12(l-»'2 

£03 
12(l-i '2)a2 

Re 
1 dW 1 dW 

r2 3092 r dr. 

Re 

£(53 

•2 d(p^ 

id^W] 

l"9r2^i 

Re 
12(l-a'2)fl2 

a /I dw\ 
dr\r dw J 

Ed* 
mr = Im 

m^ = 

dr = 

12(l-» '2)pa2 

£04 
12(1-'.'2)}"/^a2 

£^4 

{12(l-i '2)f»a3 

2—v dW 3 

92if^ ^ gzip y 9 y / 

Im 

Im 

9r2 r 

1 d^W 

d<p^ 

dcp^ 

1 dW 
+ ---- +v 

r dr 

+ drdip^ 

Ed* 

dW 1 92Ï' 
9J-3 Y dr^ 

-V d'^W 

' *̂ m2 

r dr 

92 y/ 

'ar2', 

1 dW 

m„ = m„, 
^ (1 a2¥^ 
Im {-

r2 dr 

1 dW 

+ 

(3.5.1) 

{12(l-r2)f»a2 ^-\rdrd(p r^ d(p . 

In the next chapter we shall see how, after substituting the solution W, the 
integration constants An and fi» are determined by the boundary conditions. 
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CHAPTER 4 

DYNAMIC BOUNDARY CONDITIONS 

4.1 Introductory r e m a r k s 

In this chapter we shall demonstrate how in practical cases the complex 
integration constants An and Bn arc determined. Once these constants are 
found all stresses in the shell may be computed after substitution in the for
mulae (3.5.1). We shall for the present restrict ourselves to dynamic boundary 
conditions at the edge of the hole. We prescribe the normal stress resultant nr, 
the tangential shear stress resultant ?ẑ ,̂ , the reduced shear force dr and the 
bending moment Mr. These stress resultants will be given as Fourier series in tp. 
The double series (3.1.19) over k and n expressing the stress function f will 
be truncated. It will be shown that this procedure is permissible. 

As has been said earlier we restricted ourselves already to solutions that 
give rise to stresses decaying at infinity. 

The numerical work to be evaluated is less cumbersome if the boundary 
conditions have certain aspects of symmetry. In the following sections we shall 
treat successively the case that the boundary conditions are symmetric with 
respect to both the x- and thej-axis and the case that they are skew-symmetric 
with respect to both axes. In order to restrict ourselves to such particular cases 
of symmetry we impose certain conditions, to be enunciated in the sequel, on 
the integration constants An and Bn. Both cases will be illustrated by an 
example, viz. the tube in axial tension and the tube in torsion respectively. 

4.2 Doubly symmetr ic loading 

Let us suppose that the shell is loaded symmetrically with respect to both 
the X- and the j-axis . In that case also all stresses and displacements will be 
doubly symmetric. We can easily restrict ourselves to solutions W, given by 
(3.1.19) that give rise to such stresses and displacements if we impose certain 
restrictions to the constants An and Bn- In the first place we must require 

An — Bn = 0 (for n = even) i 
_ . ^ (4.2.1) 

An + Bn = 0 (for « = odd) ) 

and (3.4.24) is then automatically satisfied. Doing so we delete all terms con
taining a factor cos pq) or sinj&99 in which is p is an odd number. For the 
sake of brevity we introduce new constants Cn, equal to An — Bn if n is odd 
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and to An + Bn if « is even. If furthermore we introduce / given by 2/ = k-\-n, 
(3.1.19) can be written 

+ 00 + oo 

'P = 2 2 C„.2*j^,-„( / / , rV-0/ /„(2)( ; , rV-i) (4.2.2) 
/ — — CO n = — CO 

In the second place we delete the terms containing a factor sin pq?, if we require 

Cn = C-n (4.2.3) 

We shall denote the real and imaginary part of each integration constant C„ 
separately as follows, 

Cn = ^l2{An + iBn) 
_ . (4.2.4) 

Here An and Bn are real quantities, which must not be confused with the 
complex constants An and E„ that have been used earlier. Using the well-
known relation 

J^kiftrV^) = ( - l ) ^ J , ( / , r V ^ ) (4.2.5) 

and a similar relation for the Hankel functions, (4.2.2) can be written as 
CO CO 

V̂  = 2 2 {An + iBn)f{l, n, /.ir)cos 2l<p (4.2.6) 
( = 0 J!=0 

with 

f{o, n, fir) = J^n{/-irV~i)Hn^^^{firV-i) | 

ƒ ( / , n, /a) = {J,,^n{firV^) +J-,i-ni/irV^)}Hr,(^){firV^) ^^-^-^^ 
(MO) f 

Substituting (4.2.6) in the expressions (3.5.1) gives the stress resultants. The 
normal displacement w and its derivative a = dwjdf can also immediately 
be found. We obtain 

Ed 11^ CO CO 

nr = T i , 7 ^ V - 2 ^ ^ t ^ ^ iAn + iB„)fi{l, n, /.r)cos 2/9 ]̂ • • (4.2.8) 
12(1—J'2)d;2 , = 0r. = 0 

where 
1 .. 4/2 f^--f'--^J (4-2.8 fir' fih^ a 

and a prime ' denotes differentiation with respect to fir, 

"^ = I ^ T T T V I R^ t^ ^ {Ar, + iBn)f, {I, n, fir) cos 2/9.] . . (4.2.9) 
12(1—»'2)a2 , = 0n = 0 

where 
/ 2 = / " (4.2.9a) 

Eo U,^ CO CO 

"'^ = l ^ J T T ^ ^ '^t^ ^ (^»+'"^«^^^ ^^'" ' / '^>^" 2/9'] . . (4.2.10) 
12(1—'l '2)a2 ; = 0n -0 
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where 

J'-"il-/'-M (4.2.10a) 

'̂ ^ = rioM auv.. 3 I"^t2 2 (^„ + 25„) ƒ4 (/, n, fir)cos 2lqj] (4.2.11) 
1 1 ^ ( 1 — V )l '(I l==On = 0 

where 
J_ _ l + 8 / 2 - 4 r / 2 (3-r)4/2 

//r /«2r2 /̂3̂ 3 

£(54„2 

; , . , , ,u-/^.2 I"^t2 2 (^„+f5„) /5 (/, 2̂, f,r)cos2lcp\ (4.2.12) 

where 
V 4)'/2 

/ 5 = / " + - / ' - ^ / (4.2.12a) 
fir fi^r^ 

/-ƒ'••+ - .r-^=^/' + ^ ^ ^ / • • • («-"a) 

ffZr 

£(54^< 2 CO CO 

""^ = n o n 2n-^.2 ^"^[^ ̂  (^„ + /5„)/6 (/, «, /<r)cos2V] (4.2.13) 

where 
1 4/2 

/e = . ƒ " + - ƒ ' _ ƒ (4.2.13a) 
fir fi^r^ 

w = ^ Im[2 2 [An + iBn)fi (/, n, fir)cos 2lq>} . (4.2.14) 
^12(1-1'2) ;=on=o 

where 
fi=f (4.2.14a) 

« = , ^'' Im[2 2 {An + iBn)fs (/, n, fir)cos 2lq>'\ (4.2.15) 
Vl2(l—i'2)a ;=o«=o 

where 

fs=f' (4.2.15a) 

Let us suppose that the edge load that is prescribed is given as a truncated 
Fourier series for each of the stress resultants Ur, n^^, mr and dr. In the case of 
a tube in axial tension for example there are only terms that are constant and 
terms that contain a factor cos 299. In this case the constants An and Bn for 
large values of n must necessarily be small. This ensues from the following 
reasoning. 

The value of the Bessel functions Jk{firV — i) decreases if A; increases. The 
value of the functions Hn^'^^{firV — i) on the other hand increases if n increases. 
This is the more so if/< is small i). Observing (4.2.6) and (4.2.7) it will now 

Cf. N. W. MCLACHLAN [ref. 7, p. 86]. 
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be clear that in the expressions for the stress resultants the coefficients of Aj 
and Bj are Fourier series of which the dominating terms are the term con
taining a factor cosjq) or cos{j+l)q> ifj is odd and the immediately adjacent 
terms. The boundary conditions yield an infinite set of linear equations by 
equating each term of the Fourier series expansion of each of the above-men
tioned stress resultants to a prescribed value. If all equations, in which Aj 
and Bj have large coefficients, have a right-hand side zero it is probable that 
Aj and Bj are small. This indicates that the summation over n may be truncated 
at a certain value, say 2N. Accordingly the summation over / will then be 
truncated at N. 

From calculations it has become clear that the truncation of the series is 
completely justified. This numerical justification a posteriori will be discussed 
in a following section. Physically it means that, especially if fi is small, there 
is only a small coupling between "remote" terms in the Fourier series. This is 
also clear if we inspect the basic differential equation (2.2.4). If W is given as 
a Fourier series, the coupling is caused by the second term of the left-hand side. 
Since this second term contains a second derivative, whereas the first term is 
a 4th derivative, the second term is small with respect to the first term espe
cially for large n and small ft. 

The number of constants to be determined is now 4A'^+2. Equating each 
term of the truncated Fourier series (containing only even terms) for Ur, n,^, mr 
and dr to a prescribed value seems at first sight to give 4iV+4 equations. In 
the first place, however, the constant term in the Fourier series expansion of 
n,^ does not yield an equation as it is automatically zero (cf (4.2.10)). In the 
second place we cannot prescribe arbitrary values of all other terms in view 
of the requirement of equilibrium of the edge load (cf Section 3.3). We shall 
leave out of the boundary conditions the constant term of dr. This brings the 
total number of equations down to exactly 47V-f 2, the number of unknown 
constants. It may be remarked here already that in all numerical calculations, 
to be reported later, a constant transverse shear force, which is in equilibrium 
with the resulting force of the other edge stresses appears automatically. 

The double series in the right-hand sides of the expressions (4.2.8) to (4.2.15) 
are of the shape 2 2 ( ^ n + z5„)yi (/, n, fir)cos 2lq>. For those values of fir, one 
is interested in, one can now tabulate the real and the imaginary parts of the 
functions/i(/, n, fir) for all combinations I, n {I = 0 . . . N, n = 0 . . . 2N). 
With the aid of these results one can immediately construct the equations from 
which An and Bn must be solved, corresponding to any boundary conditions 
to be enforced. And once these constants are determined one can immediately 
calculate the stress resultants and stress couples in the shell with the aid of 
the tabulated values. 

In order to obtain the values of the functions ƒ (/, n, fir), one must determine 
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the functions ƒ and their derivatives with respect to fir, viz. (the arguments of 
the Bessel functions will be omitted in order to save space) 

ƒ 

ƒ' 

ƒ" 

Y^*{J^HJ^^+J^H„^^^)V' 

1(2 . . 
/|2r2 fih^ 

3pH„(^^ + 

1 
{JpHn<^^+J-pfïn^^y) V-l - 2fJpi/„(2) 

fir 

^^ [ fir 
2i + 

3p^ 
fi'^r^ 

3 «2 

/.«2r2 
JpHn^'^ + 

+ 42 
p^ + 3n2 + 2 

fih^ 
JpHn<^)V-i + 

(4.2.16) 

3/)2+n2+2\ . ,— 6/ • . 
+ 14̂  + ^ \ J J^tL^^) V-i + - Jp//„<2) 

fi^r^ I fir 

In (4.2.16) the dots denote differentiation of the Bessel functions with respect 
to their argument fxrV^i (cf Section 3.4). The summation 2* means summa
tion over two values of j&, viz. p = 21—n and —2l^n, but if / = 0 only over 
one value of n, viz. p = n (cf. (4.2.7)). The tabulated functions ƒ (/, n, fir) for 
some value of//r, say 4, can be used not only to construct the boundary condi
tions for /̂  = 4 and to calculate the stress resultants and displacements for 
ƒ< = 4 at r = 1, but also to calculate the stress resultants and displacements 
for fi = 2 at r = 2, hr fi = 1 at r = 4, etc. (if the integration constants for 
those cases are known). 

The equations following from the boundary conditions are constructed as 
follows. Suppose that the prescribed edge load is 

N 

K;- = 2 Kr(/)C0S 2/9^ 
/=0 

A' 

«r̂  = ^ «r^(Osin 2/99 
1=1 

N 

dr = ^ dr{l)cOS 2/99 
1=1 

N 

rrir = ^ TOr(/)cos 2/99 
/ = 0 

(4.2.17) 
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For the sake of convenience we replace the constants An and Bn by 

£03/(2 

12(l-r2)fl2 
An 

and 
£(53/t2 

(4.2.18) 

12(l-i '2)a2 

respectively. Then the boundary conditions become 

2 [An* Re [fi{l, n, /,)] - Bn* Im [fi{l, n, /i)]} = n,(/) 
n = 0 

(/ = 0 . . . JV) 

2 {^„* Re [/3(/, n, fi)] - Bn* Im [fs{l, n, /.)]} = «.,(/) 
11 = 0 

2.V 

2 {An* Im [ƒ,(/, «, /()] + iJ«* Re [fi{l, n, /,,)]) , dr{l) 
fid 

(/ = 1 . . . Â ) 

(/ = 1 . , 

a \ / l2(l-%'2; (4.2.19) 

2 { .̂„* Im [/5(/, K, /O] + ^«* Re [f,{l, n, /.)]} = - ^^^] "''^ mr{l) 
n = 0 d 

[1 = 0... N) 

The solutions of these equations may finally be substituted in the equations 
(4.2.8—15), which give the stress resultants and the normal displacement. 

4.3 The tube in axial tension 

If an unweakened tube is loaded in axial tension by axial normal stress 
resultants p per unit of length, the stress resultants in our polar coordinate 
system are ,̂- ^ ^i /̂ ^ ,̂ , , / 

n, = ijzpil - cos 2?)) dr = 0 1 a</.Ci^(, \( •,'' ^ ^> Tk^ 

% = ^l2p{l + cos 299) mr = 0 

«r,> = ^hp sin 299 rn^=0 

In order to obtain the stress distribution if the tube, loaded by axial stress 
resultants p, is weakened by a circular hole of radius a, we must add to the 
stress distribution of the unweakened shell the stresses arising from a loading 
at the edge of the hole, 

,' nr = —i/2/'(l —cos 29-) dr = 0 

'< n^^ = —'^J2p sin 29P mr = 0 

while the shell apart from that loading is free. 
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Applying the method described in the preceding section, we must solve 
AN+2 linear algebraic equations in An and Bn {n = 0 . . . 2N), arising from 
the boundary conditions (4.3.2) at r = 1. For the sake of convenience we 
shall use constants An* and Bn* instead, obtained from An and Bn after 

12(1-.2)^2 p 
multiplying them by — ^ ^ ^ - ^ — - . 

The boundary conditions then yield the following equations for the constants 
An* and Bn*. 

nr = — - (1 — cos 299) -> 

( - 1 (for/ = 0) 
2 {^„* Re [ / i ( / , « , / 0 ] - 5 „ * I m [ƒ:(/, n , / , ) ] } = 1 ( f o r / = l ) 
"=° [ 0 {l=2...N) 

P . 
^r,,= — 7, sin 2qj 

2 {An* Re [fsil, n, fi)] - Bn* Im [fi{l, n, fi)]} 
n=0 

-1 ( f o r / = 1) 

0 ( / = 2 . . . A 0 

(4.3.3) 

(/, = 0 ^ 2 {An* Im [/4(/, n, fi)] + Bn* Re [/4(/, n, ft)]} =0 {I = I... N) 
n = 0 

2N 

mr = 0 -> 2 {An* Im [fil, n, fi)] + Bn* Re [fi{l, n, / / ) ]}= 0 (/ = 0 . . . N) 
n = 0 

When these equations are solved, we may calculate the stress resultants and 
displacements at f = la as follows 

n, = ^ 2 2 {An* Re [/i(/, n, hi)] - Bn* Im [fi{l, n, Xfi)]}cos 2lq) 
2l=On=0 

and similar expressions for n^ and n,^, 

mr 
pd 

2V'12(1—j'2)/=o„=o 

and similar expressions for m^ and m,^, 

2 2 {An* Im [fiil, n, V ) ] + Bn* Re [fsil,n, A//O]}cos2/f 

V\2(\—v^)a^ö ^ îv 

2Ed^ffi ;=On=o 

and a similar expression for a. 

(4.3 

Numerical calculations have been carried out, covering the range of values 
of/< between zero and 4. In these calculations Poisson's ratio v has been assumed 
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to be equal to 0.3. Table 4.3.1 shows the computed values of the constants 
An* and Bn* for four different values of /;. In two cases (/« = 1 and fi = 4) 
the calculations have been carried out twice, viz. for different values of N 
in order to gain an insight in the errors of the truncation of the series expansion. 

Table 4.3.1 

^ 0 * 

5„* 
A,* 
B,* 
A* 
B,* 
A,* 
B* 
A* 
B* 
A,* 
B* 
A,* 
fie* 

A* 
B* 
A,* 
B* 
A,* 
B,* 
A * 

fiio* 

fi = 0.5 

A^= 3 

-0.029282 
-0.399280 
-0.009753 
0.848940 

-0.026258 
-0.001463 
0.000121 

-0.000315 
O.O3OO2I 
O.O3OOI6 

-0.0e0095 
O.Oe 0050 
0.0,0138 

-0.0,0318 

/.= 1 

N = 3 

-0.313850 
-1.723207 
-0.393135 
3.912743 

-0.455282 
-0.102263 
0.017755 

-0.018793 
0.0,4251 
0.0a 8757 

-0.0a0199 
0.0,0045 

-0.0j0040 
-0.0» 2627 

-«= 1 
N = 4 

-0.313850 
-1.723207 
-0.393135 
3.912743 

-0.455282 
-0.102263 
0.017755 

-0.018793 
0.0,4252 
0.0,8757 

-0.0,0198 
0.0,0045 
0.0„0093 

-O.Oe 2579 
0.0.0022 
O.Os 8403 

-O.O9OIO7 
0.0,0135 

fi = 1 
N = 3 

- 3.59929 
-10.29920 
- 9.09506 

16.44115 
- 6.08537 
- 5.24652 

1.89577 
- 0.38374 
- 0.02728 

0.31871 
- 0.02827 
- 0.00515 

0.00005 
- 0.00149 

^ = 4 
7V= 4 

66.649 
-131.064 

31.557 
- 22.401 

8.584 
- 33.932 
- 0.786 

84.999 
- 64.631 

6.762 
- 3.819 
- 21.134 

4.482 
- 0.458 

0.114 
0.799 

- 0.060 
0.048 

^ = 4 

N = 5 

66.649 
-131.063 

31.566 
- 22.399 

8.618 
- 33.959 
- 0.731 

84.875 
- 64.609 

6.486 
- 3.865 
- 21.502 

4.408 
- 0.767 

0.068 
0.638 

- 0.0708 
- 0.00046 

0.00011 
- 0.00686 

0.00037 
- 0.00017 

Comparison shows that the truncation at A'̂  = 3 for /< = 1 is absolutely correct. 
This holds also for the truncation at A'̂  = 4 for fi = 4, be it in a somewhat 
lesser degree. This is undoubtedly connected with the fact that in the latter 
case the ratio between the largest constant {BQ*) and the smallest one (^g*) 
is about 2,700, whereas this ratio amounts to 430,000,000 in the case fx = \, 
N = 3. An impression of the errors introduced by the truncation will now be 
given in the Tables 4.3.2 and 4.3.3. They show the coefficients of the Fourier 
series of stress resultants, bending stresses ffsr = Bmrjd^ and CTJ^ = Qm,fd'^ and 
normal displacement at the edge of the hole in the case /i = 4, caused by the 
edge load (4.3.2). Table 4.3.2 corresponds to N = 4, and a consequence is, 
that nr, n,^, dr and mr as far as the terms containing a factor cos IO99 or sin IO99 
are concerned, do not satisfy even approximately the boundary conditions. 
Comparison with Table 4.3.3, corresponding to A'̂  = 5, however, shows that 
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Table 4.3.2 

fi = A 
i V = 4 

«r 

n(p 

n,q, 

dr 

Ohr 

Obtp 

W 

1= 0 

- 0 . 5 

0.8372 

0 

0 

0 

0.3859 

/ = 1 

0.5 

2.7955 

- 0 . 5 

0 

0 

- 2 . 0 0 6 8 

18.3044 

/ = 2 

0 

2.2748 

0 

0 

0 

- 0 . 2 7 6 8 

0,4812 

/ = 3 

0 

0.2234 

0 

0 

0 

- 0 . 0 5 6 4 

0.0781 

/ = 4 

0 

0.0021 

0 

0 

0 

0.0084 

- 0 . 0 0 5 3 

/ = 5 

0.4407 

- 0 . 3 6 2 0 

0.4166 

0.1127 

0.3675 

- 1 . 1 0 2 1 

0.4368 

multiplied 
by 

p cos 2lqi 

p cos 2l(p 

p sin 2l<p 

pa 
- ^ cos 2/97 

- cos 2l(p 

-r cos 2l(p 

pR 
^ c o s 2 / ^ 

Table 4.3.3 

/. = 4 
i V = 5 

n^ 

ttif 

rtrq, 

dr 

Oir 

Ob(p 

w 

/ = 0 

- 0 . 5 

0.8372 

0 

0 

0 

0.3859 

/ = 1 

0.5 

2.7955 

- 0 . 5 

0 

0 

- 2 . 0 0 6 7 

18.3043 

/ = 2 

0 

2.2748 

0 

0 

0 

- 0 . 2 7 6 9 

0.4814 

/ = 3 

0 

0.2332 

0 

0 

0 

- 0 . 0 5 5 7 

0.0774 

/ = 4 

0 

0.0037 

0 

0 

0 

0.0023 

- 0 . 0 0 1 8 

/ = 5 

0 

0.0001 

0 

0 

0 

- 0 . 0 0 0 2 

0.0001 

multiplied 
by 

p cos 2lq> 

p cos 2/95 

p sin 2lq> 

— cos 2/9) 

-: cos 2/95 

— cos 2/93 

pR 
— cos 2/9. 

this does not affect the lower terms in the Fourier series expansion appreciably. 
And this furnishes a numerical justification of the truncation procedure. 

To the stress resultants must be added the stress resultants (4.3.1) in order 
to obtain the actual stress distribution in the shell loaded in tension. We then 
find at the edge of the hole 
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n^ = 7.145/) (at 9 = 0), and 0.0869/. (at q> = 7t/2), 

m^ = -0.325/)ó (at (̂  = 0), and 0.362/)ö (at 9̂  = ji/2), 

which causes bending stresses 

a,^ = -1.951j!)/(5 (at ?> = 0), and 2.174/)/(3 (at q> = 7r/2). 

A positive bending stress (corresponding to a positive bending moment) means 
a tensile stress at the outside and a compressive stress at the inside of the cylinder. 
The fact may be recalled that a positive w means a normal displacement inward. 

The stress concentration which is equal to 3 in the case of a flat plate {fi = 0) 
is apparently increased to more than 7. If the bending stress is also taken into 
account it is even as high as 9. 

I t is interesting to note that the constant term in dr is zero. This was not 
enforced as a boundary condition but appeared automatically as a result of 
the fact that the edge load is necessarily self-equiUbrating. 

Calculations for many other values of /« between 0 and 4 have been carried 

6a. 
P 

R[ 1 

p -

—-p^--
-h-W-^—-

-~ 
— 

Fig. 4.3.1 Membrane and bending stresses at 9; = 0 and 9) = 7r/2 at the edge of the hole in 
a tube in axial tension as a function of ,1 (positive bending stress means tensile 
stress at outer surface) 
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out. They will not be reported in detail. Some significant results are presented 
in a few graphs. 

Fig. 4.3.1 shows the magnitude of the membrane and bending stresses at the 
edge of the hole for 99 = 0 and q> = Jij2 as a function of fi {fi = 0 represents 
KIRSGH'S solution for a flat plate). For comparison LUR'E'S results 1) for the 
membrane stresses at 99 = 0 have been given (dashed curve). Attention may 
be drawn to the relatively large values of the bending stresses (absent if/< = 0) 
and to the fact that the membrane stress at 99 = 7ij2 which is —pid in the 
case ^ = 0 after a drop to —l.25pld increases and becomes positive at about 
// = 4. 

Fig. 4.3.2 shows the membrane and bending stresses at the edge of the hole 
as a function of 99 for some values of pi. From this graph it appears that the 
compressive region at 99 = 7r/2 which is vanished at /̂  = 4 (as followed from 
Fig. 4.3.1) is shifted towards smaller values of 93 (and also larger values as is 
clear from symmetry). 

60 
P 
I 

8 

6 

i 

2 

0 

- 2 

Fig. 4.3.2 Membrane and bending stresses at the edge of the hole in a tube in axial tension 
as a function of (p (positive bending stress means tensile stress at outer surface) 

Fig. 4.3.3 shows stresses as a function of ?• in the special case // = 1.75. For 
comparison the case ft = 0 (flat plate) has been given in dashed curves. In 
the latter case there is no bending. For three values of 99, viz. 99 = 0° (curves a), 

' ) In L U R ' E ' S original paper the influence of the curvature was overestimated by a factor 2 
due to an error in the formal computation. 

H=4 

H=2 

-(1=1 - ^ 
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\ 
V 
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q) = 45° (curves b) and 99 = 90° (curves c) the values of the membrane and 
bending stresses in 99- and A-direction respectively have been given. One fact 
indicated by these graphs may be mentioned. Looking at the curves a it appears 

K s 

1.5 

1.0 

0.5 

0 

-0.5 

-1.0 

-1.5 

X 
\ 
h 

[1 

\y 

K 

^ 
i 

X 

^ 
1 ^ ^ r̂  1. ' 

Fig. 4.3.3 Stresses in a tube in axial tension as a function of r in the case fi = 1.75, compared 
with flat plate solution (positive bending stress means tensile stress at outer surface) 
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that the disturbance by the presence of the hole in the case fi = 1.75 is more 
located in the vicinity of the hole than in the case fi = d, whereas the disturb
ance along the generator passing through the hole centre (curves c) dies out 
less rapidly for /( = 1.75 than in the case of a flat plate. In Section 6.3 dealing 
with an investigation of the errors introduced by the spiral shell model we 
shall return to this feature. More graphs of this type will be given in Chapter 7 
where a comparison with experimental results will be discussed. 

4.4 Doubly skew-symmetr ic loading 

In order to obtain doubly skew-symmetric stresses and displacements we 
must for similar reasons as in the doubly symmetric case, dealt with in Section 
4.2, submit the complex constants An and Bn to the requirement (4.2.1). Hence 
the solution is again written in the form (4.2.2). But instead of (4.2.3) we 
require next 

Cn = -Cn, (Co = 0) (4.4.1) 

Doing so we retain only the terms containing a factor sin pq) whereas this time 
the terms with a factor cos pq) are deleted. We introduce real constants An 
and Bn by 

iC„ = ^l2{An + iBn) (4.4.2) 

Substituting in (4.2.2) yields 

W = i i {An + iBn)g{l, n, fir)sm 2lq> • (4.4.3) 
1=1n=l 

where 

g{l,n,fir) ={j2i-ni/irV^)-J-2i-n{firV^)}Hn^2){firV^) (4.4.4) 

The stress resultants, stress couples, the normal displacement w and its 
derivative a = dwjdf may be expressed by functions ^i (z = 1 . . . 8) obtained 
from the function g and its derivatives with respect to pir in the same way as 
the functions ƒ• are obtained from ƒ and its derivatives (cf equations (4.2.8a 
. . . 15a)). The expressions are analogous to the corresponding expressions 
(4.2.8 . . . 15) in the doubly symmetric case. They differ in so far that cos 2/99 
must be replaced by sin 2/99 and sin 2/99 by —cos 2/99. We obtain 

Ed^ifi " " 
"^ = i o n 2̂  2 ̂ ^ [^ ^ {An + iBn)gi{l, n, fir)sm 2lf] . . (4.4.5) 

12(1—•C2)a2 ; = ! „ = ! 

Ed^u^ <= » 
"^ = i o n 2̂  2 ̂ ^ t ^ ^ {An+iBn)g2{l, n, fir)sin 2lq>-\ . . (4.4.6) 

12(1—»'2)a2 ;=!„=! 
E&^U^ 00 CO 

"'^ = - i o n 2̂  2 ̂ ^ [^ ^ [An + iBn)gz{l, n, fir)cos2lq>-\ . (4.4.7) 
12(1—l'2)a2 /=!„=! 
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Eu il '^ ^ 
'^^ = n o n 2U'i. 3 ^"^ tS 2 {An+iBn)g,{l, n, fir)sm 2lq\ . (4.4.8) 

{12(1—l'2)}"a3 /=!„=! 
Ed*U^ co m 

'"^ = Mon 2^ -̂;. 2 ï"^ tS 2 (^„+ï5„)^5(/ , ", /.r)sin 2/99] . (4.4.9) 
{12(1—V2)}'"a2 /=I„=1 

Eo^u °̂  "̂  
'"^ = n o n 2U'/, 2 ̂ ™ t^ ^ (^„ + z5.)^6(/,«,//.r)sin 2/99] . (4.4.10) {12(1—i'2)}''a2 ,= i„=i 

w = , lm [2 2 {An\iBn)gi{l, n, fir)sin 2lf] . . (4.4.11) 
Vl2( l -»-2) /=i-.=i 

« = -^=^ lm [2 2 {An + iBn)gs{l, n, /ir)sm 2lq>] . (4.4.12) 
Vl2{l-v^)a /-i«=i 

The treatment of dynamic boundary conditions to be enforced is now quite 
analogous to the procedure described in Section 4.2. If the series are truncated 
at / = A'', there are now only 4A'̂  constants that must be determined, in view 
of the absence of AQ and Bo- There are also 4A'̂  boundary conditions, as there 
are no constant terms of nr and mr to be prescribed. 

In the next section we shall illustrate this skew-symmetric case with the 
results bearing on the tube under torsion. It is obvious that we do not need 
to investigate once more the influence of the truncation of the series. We shall, 
however, pay attention to the influence of small variations in the value of 
Poisson's ratio v. 

4.5 The tube under torsion 

If the tube is loaded by a twisting couple Mt, the stress resultants and stress 
couples in the case that there is no cut-out are, putting p = Mt\2nR^, 

nr -= —p sin 299 rfr = 0 • 

re^ = ps\n2q) mr = 0 | (4.5.1) 

n,^ = —/> cos 299 m,i, = 0 

To this stress distribution we must add the stresses caused by the edge load 

rir = p sin 2Q9 dr = 0 \ 
(4.5.2) 

ra,^ = p cos2q) mr = 0 I 
These stresses have been determined for various values of/<. Table 4.5.1 

shows the stress resultants and the bending stresses for // = 1, resulting from 
the boundary conditions (4.5.2), while Poisson's ratio v is assumed to be 0.3. 
The series have been truncated at A'̂  = 3. 
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Table 4.5.1 

n, 

Jïg^ 

Tlrcp 

dr 

Otr 

Obcp 

1= 1 

1.0000 

5.0957 

1.0000 

0.0000 

0.0000 

-2.9432 

/ = 2 

0.0000 

0.5159 

0.0000 

0.0000 

0.0000 

-0.1344 

1= 3 

0.0000 

0.0038 

0.0000 

0.0000 

0.0000 

-0.0002 

multiplied by 

P 

P 

P 

pa 

R 

P 
Ö 

P 
6 

sin 2/93 

sin 2/95 

cos 2/93 

sin 2l(p 

sin 2l(p 

sin 2/99 

In order to have an idea what the influence is of the value of v, the same 
calculation has been carried out for v = 0.28. The results bearing on this case 
are given by Table 4.5.2. Apparently these results are rather insensitive for 
small variations in the value of v. 

Table 4.5.2 

"r 

% 

ririp 

dr 

"br 

Ob<p 

1= 1 

1.0000 

5.1003 

1.0000 

0.0000 

0.0000 

-2.9093 

/ = 2 

0.0000 

0.5117 

0.0000 

0.0000 

0.0000 

-0.1363 

/ = 3 

0.0000 

0.0039 

0.0000 

0.0000 

0.0000 

-0.0002 

multiplied by 

p sin 2/95 

p sin 2l<p 

p cos 2/9) 

pa 
— sin 2lw 
K 
P • 0, - sin 2l(p 

P • „ - sin 2/99 

In the case of a flat plate with a circular hole that is loaded in a corresponding 
way, i.e. by shear stresses p/d at infinity, the maximum value of the stress 
resultant n^ is reached at q> — njA (and 37r/4, 57r/4 and 77r/4, the second and 
the fourth value of 99 giving n^ with opposite sign) where n^ = Ap. If <̂ = 1, 
it follows from the tables above that the value of n^ at 99 = 7r/4 is increased to 
about 6. \p. In virtue of the term containing a factor sin 499, however, this is 
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no longer the maximum value. Fig. 4.5.1 shows the maximum membrane stress 
and the maximum bending stress (in terms of T „ , the shear stress "at infinity") 
at the edge of the hole as a function of/*. As will be clear from Fig. 4.5.2 the 
values of 99 where these maxima are reached do not coincide. 

Fig. 4.5.1 Maximum membrane and bending stress at the edge of the hole in a tube in 
torsion as a function of /i (positive bending stress means tensile stress at inner surface) 

In WITHUM'S paper [ref 18] which has been discussed briefly in Chapter 1 
Fig. 8 gives the maximum normal stress (combination of bending and membrane 
stress) for various values of ajR and dja, while v = 0.3. For a given set of 
values ajR and dja, fi can easily be found. For v = 0.3 we have fi^ = 0.826a2/i?,5. 
Comparing WITHUM'S graph with the present results we find an excellent 
agreement. 

In Fig. 4.5.1 also the results obtained by SHEVLIAKOV and ZIGEL' [ref. 14] 
are given as a dashed curve. This curve shows the membrane stresses at 99 = 45°, 
determined by a method that is analogous to LUR'E'S method, so these results 
are valid only for small values of fi. 
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Fig. 4.5.2 gives the values of the membrane stress (r,„,, = n^jd and the bending 
stress (Tj,, at the edge of the hole for various values of // as a function of 99. 
This figure shows clearly the above-mentioned shift of the place where the 
maximum value of n^ is reached. Fig. 4.5.2 may also be compared with 

0 

28 

24 

20 

16 

12 

8 

4 

0 

- 4 

Fig. 4.5.2 Membrane and bending stresses at the edge of the hole in a tube in torsion as a 
function of 99 (positive bending stress means tensile stress at inner surface) 

WITHUM'S results. In his paper Fig. 7 shows a similar graph of the membrane 
stresses at the edge of the hole, while v is assumed to be 0.3, for various values 
of lo viz. 0, 1, 2, 3, and 4. WITHUM'S quantity So corresponds to V2fi in the 
present treatise. His results appear to coincide completely with ours. From 
the graphs 4.5.1 and 4.5.2 we may conclude that large bending stresses occur 
if fi increases. Taken as a whole the influence of the curvature is larger in the 
case of torsion than in the case of axial tension. The stress concentration factor 
which is 4 if // = 0 is increased to a value of about 25 if ŵ = 4, and if the 
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bending stresses are also taken into account even to about 39. In the Figures 
4.5.1 and 4.5.2 the sign of the bending stresses has been reversed in order to 

£b!£ 

-4 

-1 H 
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\ 
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^ ^ 
2 
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: ^ 
3 

1 
i • 

Fig. 4.5.3 Stresses in a tube in torsion as a function of r in the case ;u = 1.5, compared with 
flat plate solution (positive bending stress means tensile stress at outer surface) 
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be in a position to compare the magnitude of membrane stresses and bending 
stresses respectively and to get a more compact graph. So in these graphs (in 
contrast with all other graphs in this chapter) a positive bending stress denotes 
a tensile stress at the inner surface of the cylinder. 

Finally Fig. 4.5.3 shows stresses in the case fi = 1.5 as a function of r for 
two values of 99, viz. 99 = 45° (curves a) and 99 = 67°30' (curves b). For com
parison also the stresses in a flat plate loaded by shear stresses at infinity have 
been given. Chapter 7 will also contain some graphs of this type together with 
experimentally obtained values. 
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C H A P T E R 5 

G E O M E T R I C B O U N D A R Y C O N D I T I O N S 

5.1 Determinat ion of the tangential d isplacements 

In the previous chapter we described the determination of the stress result
ants and the normal displacement (and its derivatives). In order to deal with 
general boundary conditions, which may be geometric or of mixed type, it is 
necessary to know also the tangential displacements, ü in r-direction and ö in 
99-direction. 

In this section we shall only treat the doubly symmetric case. The dimen
sionless displacements 

12(1-^2)3 
u = Ó2 

12( 
V = 

Ó2 

(5.1.1) 

must be calculated from a set of equations, given by application of Hooke's law, 

— = 2/i(r)cos 2lq> 
dr /=o 

\ dv u !" ,^ 
- - - + - = 2 gi{r)cos 2/99 
r dq> r ;=o 

1 du dv 

r dq) dr 
2 hi[r)sin 2lq) 

(5.1.2) 

v 
r t=\ 

Here fi{r), gi{r) and hi{r) are rather complicated functions (cf equation (2.2.10) 
where stress-strain relations in Cartesian coordinates are given). In the sequel 
of this section we shall give specific expressions for these functions in terms of 
the functions/j (/ = 1 . . . 8) defined in Section 4.2. The form of the equations 
(5.1.2) indicates that u and v may be written as 

N 

u = li Ui (r) cos 2/99 

(5.1.3) 
N 

Ü = 2 F;(r)sin 2/99 
/ = i 

As far as the coefficients for which I = k is concerned, we must solve Uk and 
Vic from the equations 
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dlh 
dr 

•Mr) 

2k 1 
— Vk + ^Uk= gk{r) 
r r 

r or r 
h k[r 

(5.1.4) 

Elimination of Uk and Vk from these equations yields the compatibility equa
tion 

U^fk + r 2r —-
dr dr 

d^l* dhk 
^ , +2khk + 2kr-
dr2 dr 

0 . . (5.1.5) 

If this equation is satisfied we can easily solve (5.1.4). The first and the second 
equation yield 

dFfc dgk , 

2^-r=^* + ' ' ^ i — / * 
dr dr 

The second and the third equation give 
4^2_i d n „, 

Vk + - ^ = 2kgk+hk 
r dr 

Elimination of d Vkjdr from these equations gives finally 

Vk 
1 

2k 
rgk + ƒ* rf + 2khk 

dr 4^2 _ i 

If we substitute this result in the second equation (5.1.4) we obtain 

r f , d̂ A; 
Uk ƒ. r - - + 2kh,. 

dr 

(5.1.6) 

(5.1.7) 
1-4A:2 

The result (5.1.7) is also valid for A; = 0. The equations (5.1.4) then reduce to 

dUo 
= /n(rl 

5.1.8) 
dr •" ' 

Uo = rgo{r 

The second equation (5.1.8) gives immediately Uo- From (5.1.7) we find 

dio 
Uo = r\fo-r 

dr 
(5.1.9) 

These results coincide, as can be seen, using the compatibility equation 

d|o 
êo + r^-fo = 0 

which is found if we eliminate Uo from the equations (5.1.8). 
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Hooke's law is written in polar coordinates (cf. (2.1.4)) as follows. 

du 1 w 

5r = l^^"^~''"^^+^'°^^ 
I dv Ü 1 w . 
- ^ + -. = - ï ^ l ^ f - ^ M + -^ sin299 
r dq) r Ed R 

I du dv V 2(1+)') w 
-. T- + — - " = —^;r— «r̂  - 2 — sin q) cos ?) 
r 099 or r Ed R 

(5.1.11) 

From (5.1.11) and (4.2.8 . . . 14) the functions/((r), gi[r) and hi{r) introduced 
in (5.1.2) are determined. The result is as follows. 

/o(r) = /,2[Re 2 {An + iBn){fi{^, n, /<r)-1/2(0, n, fir)} + 

+ Im 2 {An + iBn){2f[Q, n, fir) +fi{l, n, fir)}] 

/ i (r) =/*2[Re 2 {An + iBn){fi{l,n, fir)-vf2{l,n, fir)} + 
n = 0 

+ Im 2 {An + iBn){2f{0, n, fir)+2fi{\, n, fir) +fi{2, n, fir)}] 

CO 

fi{r) = //2[Re 2 {An + iBn){fi{l, n, fir)-vf2{l, n, fir)} + 

+ Im 2 {An + iBn){fi{l-\,n,fir) +2fi{l, n, fir) +^{1+1,n,/ir)}] 
"=° (/ > 2) 

(5.1.12) 

^o(r) = /i2[Re 2 (^„ + /5„){/2(0, «, //r) - , / i ( 0 , n, //r)} + 
n = 0 

+ Im 2 {An + iBn){2f{0, n, fir) ~fi{\, n, fir)}] 
n=»0 

gi{r) = /.2[Re 2 (^„ + /5„){/2(l , n, /.r) -vfi[\, n, fir)} + 
n = 0 

+ Im 2 {An + iBn){-2f,{0,n,fir)+2f{\,n,pir)~fn[2,n,fir)}] 
n=0 

gi[r) = /,2[Re 2 [An + iBn){f2[l, n, fir) -vfi{l, n, fir)} + 

+ Im 2 {An + iBn){-f{l'\,n,fir)+2f{l,n,fxr)-f,[l-V\,n,ar)}] 
"=" (/ > 2) 

(5.1.13) 
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Ai(r) =/<2[Re 2 {An + iBn)2{l+v)f3{l,n,fir) + 
n = 0 

+ l m 2 {An + iBn){-if{0, n, fir)+2fi2, n, f<r)}\ 
n = 0 

hi{r) = / / 2 [ R e 2 {An + iBn)2{\+v)f^{l,n, fir) + 
ii = 0 

+ l m 2 {An + iBn){~2fi[l-\, n, fir)+2f[l+\, n, //r)}] 
"=° (/ > 2) 

(5.1.14) 

The function r(d^;/dr) can be obtained, if we introduce in addition to the for
mulae (4.2.8a . . . 14a) 

1+4/2 8/2 
fir ffif^" 

/ lo = ^^rf"' 

= fir 

= fir 

g/i 

d{fir) 

a(/,r) 

(5.1.15) 

Differentiation of (5.1.13) and using (4.2.15) gives 

r ^ = / ,2[Rei; [An + iBn){fio{S),n, ,ir)-vfi[Q,n, fir)} + 

CO 

+ Im 2 (^« + /5„){2//r/8(0,;?, fir) -firfi{\, n, fir)}\ 
n=0 

r ^ = ^ 2 [ R e i : {An + iBn){fio{l,n, fir)-rfg{l,n, fir)} + 

+ Im 2 iA„ + iBn){ -2firf8{0, n, fir)+2firfi{\, n, fir) -firfi{2, n, fir)}] 

r ^ = ;,2[Re £ {An + iBn){fio{l, n, fir)-vf,{l, n, fir)} + 
dr „=o 

CO 

+ Im 2 {An + iBn){ —firfs{l~l, n, fir) +2firfi{l, n, fir)-firfsil+l, n, fir)}] 
""° (/ > 2) 

The functions ƒ, g and k can now be calculated in a straightforward manner 
and substituted into (5.1.6) and (5.1.7). Although the calculation is somewhat 
lengthy, it is very useful in those cases where an integration procedure in order 
to solve (5.1.2) presents difficulties. Such a method of solution has been 
described by BIEZENO and GRAMMEL in their textbook "Technische Dynamik" 
[ref 1, Chapter VI, 5] but is not appropriate here in view of the complicated 
character of the right-hand sides of (5.1.2). 

(5.1 
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5.2 Determinat ion of influence matr ices 

If at the edge of the hole geometric boundary conditions must be satisfied, 
this may be done most easily if the influence coefficients for suitably chosen 
unit load systems along the boundary of the hole are known. In this section 
we shall calculate such influence coefficients for 14 different unit load systems, 
viz. 

£03 
nr 

dr 

mr = 

12(1 - j / 2 ) a 2 

Ed^ 
12(1 

(12(1 

- r 2 ) a 2 

Ed* 

-v')ï 
Ed* 

'a^ 

cos 2/95 il 

[I 

01), 11), 2, 3) 

11), 2, 3) 

cos2/9> ( / = 1,2,3) 

cos2lq} (/ = 0, 1,2, 3) 

(5.2.1) 

'12(l-v2)pa2 
For each of the 141oad systems (5.2.1) we solve a set of 14 equations as described 
in Section 4.2. The solutions enable us to calculate the 14 displacements 
corresponding to the 14 load systems. In view of the possibility to verify the 
result with the aid of Betti's theorem we multiply the tangential displacements 
by {12(1—•»'2)}a/(52, the normal displacement by ^ 1 2 ( 1 —»'2)/ó and the slope 
by a\/l2(l—»'2)/ó. So we determine the constants An and Bn from boundary 
conditions (4.2.19) with right-hand sides given by (5.2.1) and with the aid of 
these results 

Uk[\) ïork = 0, 1,2,3 

Vk{\) f o r A = 1,2,3 

W Im 2 [[An + iBn)fi [k, n, fi)] for A = 1, 2, 3 (cf (4.2.14)) 

^ Im 2 fi[{An + iBn)fi [k, n, //,)] for A = 0,1,2,3 (cf (4.2.15)) 

(5.2.2) 

We number the load systems consecutively from / = 1 to / = 14 and the 
displacement coefficients in (5.2.2) from j = 1 to j ' = 14. We then obtain a 
1 4 x 1 4 matrix of influence coefficients {an). This matrix must show certain 
symmetry properties in view of Betti's theorem. Let us consider for example 
the load system / = 13, i.e. 

Ed* 
mr {12(1- _^2)}V.̂ 2 COS 49) (5.2.3) 

)̂ In this case the load system includes also a constant shear force in view of the equilibrium 
of the external load (cf. Section 4.2). 
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M. 

Suppose that among others an influence coefficient 0,34 is determined, cor
responding to a displacement 

(52 
" = TTTTi ; ^ «i3,4Cos &q> (5.2.4) 

12(1 —v^)a 

And suppose that in the case / = 4, i.e. a load 

Ed^ 
"'• = T<771 27^ ^ ° ^ 9̂5 (5.2.5) 

12(1 —v^)a^ 
an influence coefficient «4 ,3 is found, corresponding to a rotation 

d 
a—— ~- a, iqcos 499 (5.2.6) 

Vl2( l -7 .2)« ' •" 

Applying Betti 

«4,13 = 

Observing an 
always aij = a^ 
take into accoi 
displacements 
factor 2 if we 
load system th 
one applies Bel 
these cases alsc 

A numerical 
pi=\. Tabled 

Table 5.2.1 I 

J 

1' 1 
: 2 

\ 4 
, 5 
\ 6 
; 7 

8 
', 9 

10 
11 
12 
13 
14 
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i = 1 

-1.383187 
-0.165547 

0.013527 
0.000026 
0.180794 

-0.013491 
-0.000026 

0.210417 
-0.000411 

0.000006 
-0.563565 
-0.045956 
-0.001821 

0.000035 

's theorem yields 

. . . r5.2.7^ 

influence matrix one has to keep in mind, however, that not 
i. In the first place they can differ in sign. This is clear, if we 
ant the positive directions of the separate stress resultants and 
as given in Fig. 3.5.1. In the second place they can diflfer by a 
combine a load system that is a constant, e.g. / = 11, and a 
at varies as cos 299, cos 4q> or cos 699, e.g. / = 9. And finally if 
ti's theorem for / = 1,2 and 5 one must keep in mind that in 
) a constant shear force is acting on the edge of the hole. 

example that will be treated in the sequel bears on the case 
.2.1 gives the influence coefficients for this value of//. We may 

nfluence coefficients ay for /̂  = 1 (J' = 0,3) 
1 

2 

-0.909804 
-3.189718 
-0.023209 

0.000355 
2.726403 
0.023598 

-0.000355 
0.215206 
0.009257 

-0.000004 
-0.164462 

0.020049 
0.013381 

-0.000026 

3 

0.033186 
0.003213 

-0.607667 
-0.002040 
-0.025985 

0.345580 
0.002045 

-0.005062 
0.011593 
0.001381 

-0.004497 
-0.002988 
-0.000586 

0.001500 

4 

0.000006 
0.000348 

-0.002040 
-0.365063 
-0.000225 

0.000357 
0.179038 

-0.000016 
-0.000039 

0.001966 
0.000004 
0.000025 

-0.000041 
-0.001783 

5 

0.957075 
2.766051 
0.000438 

-0.000232 
-3.193713 
-0.000712 

0.000233 
-0.220353 

0.002538 
-0.000007 

0.159324 
-0.023884 
-0.013486 
-0.000041 

6 

-0 .033171 
-0 .002827 

0.345580 
0.000357 
0.025713 

-0 .605185 
-0 .000360 

0.005039 
-0 .011626 

0.000588 
0.004497 
0.003012 
0.000546 

-0 .003275 

7 

- 0 . 0 0 0 ( 
- 0 . 0 0 0 ; 

0.002( 
0.179( 
O.OO0Ï 

- 0 . 0 0 0 ; 
- 0 . 3 6 4 / 

O.OOOC 
O.OOOC 

-O.OOH 
-O.OOOC 
-O.OOOC 

O.OOOC 
0.0017 

Mr if 



summarize the results of this section by giving the formulae that express the 
displacements of the hole boundary caused by a given load. Let the load be 

rir = Ai -\- J2COS 299 + ŝCOS 499 + ^4C0S 699 

ra,^ = ^ssin 2qi + Aesin Aq> + ^Tsin 699 

dr = ĝCOS 299 + 9̂COS 499 + l̂oCOS 699 

mr = a[An + .4i2Cos 299 + yliacos 499 + J14COS 699) 

Then the displacement components and the slope are given by 

. (5.2.8) 

Ó2 V ri2(l-»'2)fl2 ' { 1 2 ( l - j ' 2 ) y / > a 3 ^ ^ • 
u = T^TT^—;;— / ĵ r̂ ^ 2 Aiaij -\ :p^^ 2 Ataij 

12(1-^2)0 

(52 
7 

£(53 1=1 Ed* 

V = 
V[12( l -V2)^2^ {12(l-.2)}°/.a3U 
> I 2 Aiaij -\ :f^^ 2 Aiaij 12(l-v2)a Z-J L £03 1 = 1 

n2 7 

W • 
Ó v^ ri2(i-i'2)„ ^ ^ 

, > \J ^ Aiaij + 
\ / l2( 1-1̂ 2) pi L Ed^ .=1 

d V [12(l-»'2)a2 ̂  

V12 l-v2 a éri L £0' .=1 

£Ó4 

{12(l-i'2)}'/'a3i4 

Ed* 

{12(l-r2)}'Mi^ 
£0" 

2 Aiaij 
= 8 

14 

2 ylifly 

cos 2(7-1)9 ' 

sin 2(J—4)99 

cos 2 (j —7)99 

cos2 (7—11)99 

(5.2.9) 

5.3 Influence matr ices for the end-section of a transverse pipe 

We shall use the influence matrices established in the previous section in the 
investigation of the stresses and displacements in the neighbourhood of the 

\ ^ 

L215806 
b.325804 
b.005062 
p.000016 
b.330951 
p.005039 
b.000016 
p.085211 
b.000348 
b.000003 
0.019977 
0.059295 
0.001474 
0.000017 

9 

0.000328 
-0.009134 
-0.011593 
0.000039 

-0.002660 
0.011626 

-0.000038 
-0.000348 
0.011989 

-0.000007 
-0.000202 
0.000056 

-0.023276 
-0.000041 

10 

-0.000006 
0.000001 

-0.001381 
-0.001966 
0.000010 

-0.000588 
0.001967 
0.000003 

-0.000007 
0.003673 
0.000002 
0.000000 
0.000002 

-0.011962 

11 

0.727612 
0.962252 

-0.008994 
0.000008 

-0.972529 
0.008994 

-0.000008 
-0.039954 
0.000404 

-0.000003 
-0.805220 
-0.091541 
0.001720 

-0.000019 

12 

0.202004 
0.245031 

-0.002988 
0.000025 

-0.248865 
0.003012 

-0.000025 
0.059295 

-0.000056 
-0.000000 
-0.045771 
-0.357614 
-0.000208 
-0.000002 

13 

-0.001522 
0.012770 

-0.000586 
-0.000041 
-0.012875 
0.000546 
0.000041 
0.001474 
0.023276 

-0.000002 
0.000860 

-0.000208 
-0.192575 
-0.000009 

14 

0.000038 
-0.000005 
0.001500 

-0.001783 
-0.000062 
-0.003275 
0.001782 

-0.000017 
0.000041 
0.011962 

-0.000009 
-0.000002 
-0.000009 
-0.132296 
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connection of a transverse cylindrical pipe to a cylindrical shell. We shall 
restrict ourselves to the case that the axis of this pipe passes through the axis 
of the shell at a right angle. If the radius of the cross-section of the pipe is 
small with respect to the radius of the shell, the intersection is approximately 
a geodetic circle in the shell surface. In order to express the requirement that 
the displacements and slopes of the end-section of the pipe and the edge of 
the circular hole in the shell coincide it is convenient to determine first in
fluence coefficients for the edge of the pipe for unit loads analogous to those 
we applied in the previous section. 

It is in this case not admissible to make use of shallow shell equations, since 
the stresses and displacements will in general be such, that they cannot be 
considered as rapidly changing. Especially an edge load varying as cos 299 is 
not capable of analysis by shallow shell theory. 

Since we restricted ourselves to cases that the diameter of the pipe is small 
with respect to that of the shell, the end-section of the pipe is approximately 
a normal cross-section. The question arises whether a good approximation is 
obtained if we for sake of simplicity determine influence coefficients for a 
normal cross-section of a half-infinite pipe. The error introduced will in prin
ciple be of the order a/R. However, the investigation of VAN DER NEUT [ref 9] 
of oblique end-sections warrants the conjecture that the approximation will 
be even better. It is possible to obtain a rigorous solution for the actual pipe 
by a laborious calculation, but since this does not lie within the scope of the 
present treatise, we shall confine ourselves here to the above-mentioned ap
proximation. It will give at least an insight in the solution of the problem under 
discussion. 

The stress resultants M, T, D and S (Fig. 5.3.1) are considered to be expressed 

Fig. 5.3.1 Displacements and stress resultants at the end-section of a transverse pipe 
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as Fourier series in 99. In the doubly symmetric case they contain only terms 
of the shape cos 2̂ 99 (for T: sin 2^99). The positive direction has been chosen 
such that S must be set equal to the edge load nr of the shell (which is only 
approximately correct in view of the local obliqueness of the end-section), 
T to n,^, D to dr and M to mr. The displacements are chosen such that they 
will have to coincide (approximately) with the corresponding displacements 
of the hole boundary of the shell. 

The influence coefficients have been determined following the well-known 
method described among others in "Technische Dynamik" by BIEZENO and 
GRAMMEL [ref 1, Chapter VI , 21]. The wall-thickness of the pipe being h, 
the calculation has been performed for ajh = 1 0 and 20. Poisson's ratio v has 
been assumed to be 0.3. We give here a result corresponding to that in Sec
tion 5.2, viz. a 14x 14 matrix {bij). If a load is given by (cf. (5.2.8)) 

S = ^ 1 + J2COS 299 + ^3C0S 499 + ^4COS 699 

T = A^sin 2q> + ^esin 499 -|- A-isin 699 

D = A^cos 2q) + A^cos 499 + ^locos 69? 

M = a{Aii -\- ^lacos 299 + ^lacos Aq + ^i4Cos 699) 

the displacement components (cf. Fig. 5.3.1) are 

1 

(5.3.1) 

WT, 

Up 

4 14 

2 2 Aibijcos 2{j-
E j=\ i=i 

1 

Ë, 

1 

1 

7 14 

2 2 Aibtjsin 2{j-
= 51 = 1 

10 14 

2 2JjèyCOs2(j-
1=1 

• 1 ) ^ 

-4)99 

-7)9' 

14 14 

2 Y.AibijCos2{j-U)q^ 
aE j=ii , = 1 

(5.3.2) 

The matrices {b(j) are symmetric apart from the sign of Wp. They are given in 
the Tables 5.3.1 and 5.3.21). 

5.4 Stresses due to internal pressure 

We are now in a position to calculate the stresses in a cylindrical shell to 
which a transverse pipe is connected, if the loading is such that doubly sym
metrical stresses occur. Other cases of symmetry may be dealt with in an anal
ogous way and will not be considered here. An example that will be dealt 
with in this section is loading by internal pressure. 

») p. 62-63 
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Table 5.3.1 Influence coefficients bij for a transverse pipe {ajh 

j 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

i= 1 

81.2963 
-
-
-
-
-
-
-
-
-

-330.454 
-
-
-

2 

_ 
1085.23 

-
-

-505.440 
-
-

- 97.7132 
-
-
-

-871.134 
-
-

3 

— 
-

152.154 
-
-

- 33.1229 
-
-

- 9.45559 
-
-
-

-367.838 
-

4 

„ 

-
-

45.1249 
-
-

- 6.61719 
-
-

- 1.99984 
-
-
^ 

-171.829 

5 

_ 
-505.440 

-
-

253.654 
-
-

48.7159 
-
-
-

296.123 
-
-

Table 5.3.2 Influence coefficients bij for a transverse pipe {ajh 

j 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

i = 1 

229.941 
-
-
-
-
-
-
-
-
-

-1321.82 
-
-
-

2 

6095.669 
-
-

-2917.83 
-
-

- 422.002 
-
-
-

-3796.67 
-
-

3 

-
1042.34 

-
-

- 228.921 
-
-

- 58.8417 
-
-
-

-2342.58 
-

4 

_ 
-
~ 

345.290 
-
-

- 49.3765 
-
-

- 14.2615 
-
-
-

-1290.09 

5 

-2917.83 
-
-

1450.12 
-
-

208.126 
-
-
_ 

1279.46 
-
-

We first determine the displacements and the slope at the h 
the shell is loaded by an internal pressure oï p units of force p 
while the hole boundary is subjected to stress resultants that £ 
would occur in an unweakened shell, viz. 

nr = 0.75pR + 0.25pR cos 2q> . 

n^^ = —0.25pR sin 2q> 
• 

dr = 0 

mr = 0 ^ 

The displacements and the slope in that case are 

62 

= 10) 

6 

_ 
-

-33.1229 
-
-

12.6391 
-
_ 

3.80134 
_ 
_ 
-

60.1838 
-

= 20) 

6 

-
-228.921 

-
-

63.3168 
-
-

16.3967 
-
_ 
-

372.285 
-

ale boundary 
er unit of are 
ire the same 

. . . (5.4. 

7 

. 
-
-

- 6.( 
-
-

4.3 
-
-

1.4 
-
-
-

19.4 

7 

-
-

-49 .3 
-
-

14.2 
-
-

4.3 
-
_ 
-

136.7 

if 

a, 
as 

1) 



1 ^ 
_ 

p7.7132 
-
-

b8.7159 
1 -

-
22.7280 

-
-
-

B4.63I3 
-
-

9 

_ 
-

9.45559 
-
-

- 3.80134 
-
-

- 5.76558 
-
— 
_ 

-22.9485 
-

10 

_ 
-
-

1.99984 
-
-

- 1.45683 
-
-

- 3.44520 
-
-
-

- 7.48902 

11 

-330.454 
-
-
-
-
-
-
-
-
-

2686.47 
-
-
-

12 

_ 
-871.134 

-
-

296.123 
-
-

84.6313 
-
-
-

2932.55 
-
-

13 

_ 
-

-367.838 
-
-

60.1838 
-
-

22.9485 
-
-
-

2242.90 
-

14 

_ 
_ 
-

-171.829 
-
-

19.4421 
-
-
7.48902 
-
-
-

1568.28 

1 ^ 
_ 

22.002 
1 -

-
08.126 

-
-

B5.3498 
-
-
-

B6.974 
-
-

9 

-
58.8417 

-
-

- 16.3967 
-
-

- 14.4740 
-
_ 
_ 

-133.927 
-

10 

_ 
-
-

14.2615 
-
-

- 4.37075 
-
-

- 7.43399 
-
-
-

-53.2896 

11 

- 1321.82 
-
-
-
-
-
-
-
-
-

15196.97 
-
_ 
-

12 

„ 

-3796.67 
-
-

1279.46 
-
-

286.974 
-
-
-

16218.32 
-
-

13 

_ 
-

-2342.58 
-
-

372.285 
-
-

133.927 
-
-
-

15330.5 
-

14 

-
-

-1290.09 
-
-

136.752 
-
-
53.2896 
_ 
_ 
_ 

11993.6 

apR\3{\-v) X^v I 
«. = - ^ j - ^ — + ^ c o s 2 9 . j 

apR 1+v 

Ws 

Ed 4 

v\pR^ 
~2l'Ed 

-s in 299 
(5.4.2) 

«, = O 

Corresponding with the foregoing the transverse pipe (radius a, wall thick
ness h) is subjected to internal pressure p and an edge load 
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S = 0.75pR + 0.25/)i?cos 2q) 

T= ^0.25pRsin2q 

Z) = O 

M= O 

(5.4.3) 

The displacements and the slope at the end-section of the pipe are (and the 
nomenclature is analogous to that indicated in Fig. 5.3.1) 

Me = 1 
A pd^ pR 

- A^h + E ^^-^^^I'l + 0.25(*2.2-*5,2)cos 299} ] 

pR 
ve = 0.25'--{b2.5-b5.5)sin2q) 

E 

pR 
We = 0 . 2 5 — 7 (^2,8-è5,8)C0S 299 

E 

(5.4.4) 

«e = - ^ {0.75éi.n + 0.25(é2.i2-é5.i2)cos 299} 
aE 

Obviously (5.4.4) can only be used if the approximation indicated in Sec
tion 5.3 is applied. If the influence coefficients of the actual end-section of the 
pipe are determined more correctly they will in general all be diflferent from 
zero. Apart from the first term of the expression for Ue, originating from the 
internal pressure in the pipe, (5.4.4) must then be replaced by (5.3.2) after 
identifying (5.3.1) with (5.4.3). 

The displacement components (5.4.2) and (5.4.4) do not coincide. In order 
to achieve compatibility an additional edge load is required. This edge load 
exerted by the shell upon the pipe and inversely by the pipe upon the shell 
is a self-equilibrating system. Let it be given by (5.3.1) and (5.2.8) respectively. 
Then the equations that express the compatibility are 

Ü -\- Us = Up + Ue 

V + Vs = Vp + Ve 

W + Ws = Wp + We 

a + «s = ffp + «e 

(5.4.5) 

Apparently the constant normal displacement Ws does not play a role and 
must be ignored. 

Since each term of the Fourier series for the displacements and the slope, 
obtained if we substitute (5.2.9), (5.3.3), (5.4.2) and (5.4.4) in (5.4.5) must 
vanish, we obtain 14 equations for the 14 unknowns Ai . . . Au. If these equa
tions are solved, the stresses and displacements in the cylindrical shell may be 
determined following the method described in Section 4.2. 
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Table 5.4.1 

u,E/pR 

"eE/pR 
vfilpR 
v,E/pR 

w,ElpR 
w^E/pR 
a,aE/pR 
a^aE/pR 

a/h = 10 
aid = 6 
R/a = 4.957 

3.15 + 1.95 cos2(p 
62.6870+397.6675 cos 2(?) 

- 1.95 sin 2<p 
- 189.7735 sin 2<p 

0 
- 36.6073 cos 2¥> 

0 
- 2 4 7 . 8 4 0 5 - 2 9 1 . 8 1 4 cos 2?. 

alh = 20 
alö= 6 

Rja = 4.957 

3.15 + 1.95 
175.8854 + 2253.375 

- 1.95 
- 1091.9875 

0 
- 157.532 

0 
- 9 9 1 . 3 6 5 - 1 2 6 9 . 0 3 1 

cos 2<p 
cos 2(p 
sin 2<p 
sin 2̂ 9 

cos 2(p 

cos 2(p 

u^E/pR 
UeE/pR 
vfilpR 
v.EjpR 

wfilpR 
w^EjpR 
a,aElpR 
a^aEjpR 

ajh = 10 
aid = 12 
Rja = 9.914 

6.3 + 3.9 cos2(f> 
61 .8296+ 397.6675 cos 2ip 

— 3.9 sin 2ip 
- 189.7735 sin 2fp 

0 
- 36.6073 cos 2.p 

0 
- 2 4 7 . 8 4 0 5 - 2 9 1 . 8 1 4 cos 2(p 

ajh = 20 
aid = 12 

Rla= 9.914 

6.3 + 3.9 cos2(p 
174.1706 + 2253.375 co%2q> 

- 3.9 sin 2q> 
- 1091.9875 sin 2<p 

0 
- 157.532 cos2(p 

0 
- 9 9 1 . 3 6 5 - 1 2 6 9 . 0 3 1 cos2q} 

ufilpR 
u.ElpR 
v.ElpR 
v,E/pR 

wfijpR 
w^E/pR 
a,aElpR 
a^aEjpR 

ajh = 10 
ajó = 18 

Rja = 14.870 

9.45 + 5.85 cos2(p 
61 .5438+ 397.6675 cos 2i?) 

- 5.85 sin 2(p 
- 189.7735 sin 2q> 

0 
- 36.6073 cos 2(p 

0 
- 2 4 7 . 8 4 0 5 - 2 9 1 . 8 1 4 cos2<p 

ajh = 20 
ajó = 18 

R/a = 14.870 

9.45 + 5.85 
173.5990 + 2253.375 

- 5.85 
- 1 0 9 1 . 9 8 7 5 

0 
- 157.532 

0 
- 9 9 1 . 3 6 5 - 1269.031 

cos 2(p 
cos 2<p 
sin 2(p 
sin 295 

cos 2(p 

cos 2(f 

We shall now illustrate this with some numerical results. They bear on the 
case fi = I. The geometry of the shell, being described by two parameters, is 
not yet determined by // alone. We chose three values of ajd consecutively, 
viz. 6, 12 and 18, and in each case two values of the ratio of radius to wall 
thickness ajh of the transverse pipe, viz. 10 and 20. Table 5.4.1 shows in each 
of these 6 cases the values of the displacements (5.4.2) of the hole boundary 
of the shell and (5.4.4) of the end-section of the pipe. Table 5.4.2 shows the 
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solutions Al . . . Au of the equations (5.4.5) in each case. The Fourier series 
are truncated at cos 69) and sin 699 and the numerical values obtained indicate 
that the truncation procedure is again completely justified. 

The Tables 5.4.3 . . . 8 show the stress resultants, stress couples and displace
ments of the shell at the hole boundary. These are the final values, i.e. the 
forces, couples and displacements as indicated by (5.4.1) and (5.4.2) combined 
with those arising from the edge loads corresponding to the solutions that are 
given in Table 5.4.2 i). 

In order to estimate the stiffening influence of the transverse pipe we cal
culated also the stresses in the case that there is no reinforcing by a pipe and 
the shell is loaded by internal pressure. Of course in this case there is a trans
verse shear force acting on the edge of the hole in order to ensure the equilib
rium. Apart from this shear force the hole boundary is free. This problem has 
also been dealt with by LUR'E [refs. 5 and 6]. The results obtained, viz. the 
stress resultants, stress couples and displacements at the hole boundary in the 
three cases ajd = 6, 12 and 18 are given in the Tables 5.4.9 . . . 11 ^). 

Table 5.4.2 

AJpR 
A,lpR 
AJpR 
AJpR 
AJpR 
AJpR 
A-.IPR 
AJpR 
AJpR 
Ai„lpR 
AJpR 
AJpR 
AJpR 
A^JpR 

a/h = 10 
a/d = 6 
R/a = 4.957 

-0 .563502 
- 0 . 3 6 8 9 2 5 
-0 .003428 
- 0 . 0 0 0 0 0 3 

0.025266 
- 0 . 0 0 3 1 7 0 

0.000109 
0.124891 
0.014595 
0.000065 
0.024932 

- 0 . 0 1 2 5 0 0 
0.000878 

-0 .000000 

a/h = 10 
a/6= 12 
/?/« = 9.914 

- 0 . 5 0 5 6 1 4 
- 0 . 4 0 1 4 8 6 
- 0 . 0 0 5 8 2 0 
- 0 . 0 0 0 0 0 9 
-0 .065771 
- 0 . 0 0 7 6 5 8 

0.000123 
0.067304 
0.011878 
0.000083 
0.015627 

-0 .013126 
- 0 . 0 0 1 6 3 9 
-0 .000002 

a/h= 10 
a/6= 18 
R/a = 14.87 

- 0 . 4 5 5 0 4 3 
- 0 . 4 0 8 3 4 6 
-0 .004980 
- 0 . 0 0 0 0 0 8 
- 0 . 1 0 2 8 4 8 
- 0 . 0 0 8 1 7 3 

0.000129 
0.062529 
0.013295 
0.000077 
0.009354 

-0 .008775 
— 0.001415 
-0 .000001 

a/h = 20 
a/(5 = 6 
R/a = 4.957 

- 0 . 6 7 0 7 0 4 
- 0 . 2 9 9 4 0 4 
-0 .001122 

0.000009 
- 0 . 1 6 6 3 4 0 
- 0 . 0 0 1 5 6 6 

0.000074 
0.122700 
0.008553 
0.000024 
0.009647 

- 0 . 0 0 3 3 2 3 
-0 .000149 

0.000000 

a/h = 20 
a/è = 12 
R/a = 9.914 

-0 .602549 
-0 .351146 
- 0 . 0 0 3 1 8 5 
-0 .000021 

0.056452 
-0 .006785 

0.000123 
0.073449 
0.008146 
0.000043 
0.013947 

- 0 . 0 0 9 2 4 8 
- 0 . 0 0 0 5 8 3 

0.000001 
1 

a/h = 20 
a/d = 18 
R/a = 14.87 

- 0 . 5 8 3 2 7 9 
- 0 . 3 6 8 3 6 9 
- 0 . 4 3 3 2 6 8 
- 0 . 0 0 0 0 1 3 

0.015651 
- 0 . 0 0 9 6 7 8 

0.000119 
0.051505 
0.006893 
0.000045 
0.011028 

- 0 . 0 0 9 5 7 0 
- 0 . 0 0 0 8 5 9 

0.000000 

') In these tables the quantities u and v devote the final dimensional displacements M + M., and 
ü + ẑ j respecti\'ely. 
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Table 5.4.3 

a/h = 10 a/ö = 6 

n^ 
n^ 
n„p 
d, 
m,. 
m,, 
w 
a 
u 
V 

I = 0 

0.186498 
1.822995 
0 

- 0 . 0 7 6 7 2 2 
0.149591 
0.059130 

5.3491 
8.6376 

1= 1 

- 0.118925 
- 1.293492 
- 0.224734 

0.124891 
- 0.074999 
- 0.016201 
- 3.2240 
- 1 0 . 1 7 5 2 

7.6215 
- 6.6810 

/ = 2 

- 0 . 0 0 3 4 2 8 
- 0 . 0 4 2 5 4 3 
- 0 . 0 0 3 1 7 0 

0.014595 
- 0 . 0 0 5 2 7 0 
- 0 . 0 0 1 3 3 0 
- 0 . 0 8 3 9 
- 1 . 2 3 4 9 

0.0445 
- 0 . 0 3 4 9 

/ = 3 

0.000003 
- 0 . 0 0 0 4 2 3 

0.000109 
0.000065 
0.000002 
0.000006 
0.0000 

- 0 . 0 0 0 1 
- 0 . 0 0 0 5 

0.0004 

multiplied by 

pR cos 2l<p 
pR cos 2l(p 
pR sin 2/<p 
pR cos 2l<f> 
pRS cos 2l<p 
pRó cos 2l(p 
ipR/E) cos 2l<p 
[pR/aE] cos 2l<p 
ipR/E) cos 2l(p 
IpR/E) sin 2l<p 

Table 5.4.4 

a/h = 10 a/S = 12 

«r 
n(p 
nrip 

dr 
m, 
ruq, 
w 
a 
u 
V 

I = 0 

0.244386 
1.577112 
0 

- 0.033967 
0.187520 
0.033815 

- 3 8 . 7 7 7 8 
15.5612 

/ = 1 

- 0.151486 
- 0.926934 
- 0.315771 

0.067304 
- 0.157513 
- 0.043113 
- 3.2215 
- 5.7311 

13.2176 
- 1 0 . 6 9 5 2 

/ = 2 

- 0 . 0 0 5 8 2 0 
- 0 . 0 1 6 7 2 0 
- 0 . 0 0 7 6 5 8 

0.011878 
-0 .019672 
- 0 . 0 0 6 4 7 3 
- 0 . 0 8 0 2 
- 2 . 2 6 9 6 

0.0888 
- 0 . 0 4 7 8 

/ = 3 

- 0 . 0 0 0 0 0 9 
-0 .000012 

0.000123 
0.000083 

-0 .000027 
- 0 . 0 0 0 0 0 6 
- 0 . 0 0 0 1 
- 0 . 0 0 0 1 
- 0 . 0 0 0 7 

0.0004 

multiplied by 

pR cos 2l(p 
pR cos 2l(p 
pR sin 2l<p 
pR cos 2/ij9 
pRd cos 2tip 
pRd cos 2t(p 
(pR/E) cos 2l(p 
ipR/aE) cos 2l(p 
(pR/E) cos 2l(p 
ipR/E) sin 2l(p 

Table 5.4.5 

a/h = 10 a/0 = 18 

«r 
n,p 
rlrip 

dr 
m^ 
m,p 
w 
a 
u 
V 

1= 0 

0.294957 
1.493285 
0 

- 0.030654 
0.168370 
0.031905 

- 7 2 . 3 4 1 0 
21.4595 

Z = 1 

- 0.158346 
- 0.811106 
- 0.352848 

0.062529 
- 0.157947 
- 0.042801 
- 3.4069 

4.1936 
18.2182 

- 1 4 . 0 9 6 1 

1= 2 

- 0 . 0 0 4 9 8 0 
- 0 . 0 1 0 7 4 5 
- 0 . 0 0 8 1 7 3 

0.013295 
- 0 . 0 2 5 4 6 8 
- 0 . 0 0 7 8 8 6 
- 0 . 0 6 7 6 
- 2 . 0 3 7 1 

0.1173 
- 0 . 0 5 7 2 

Z = 3 

- 0 . 0 0 0 0 0 8 
0.000055 
0.000129 
0.000077 

- 0 . 0 0 0 0 2 0 
- 0 . 0 0 0 0 0 6 

0.0000 
0.0017 

- 0 . 0 0 0 9 
0.0005 

multiplied by 

pR cos 2l(p 
pR cos 2l(p 
pR sin 2l(f 
pR cos 2/95 
pRö cos 2lcp 
pRö cos 2l<p 
ipR/E) cos2l<p 
{pR/aE) cos 2lq> 
ipRjE) cos 2/<p 
(pR/E) sin 2l(p 
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Table 5.4.6 

a/h = 20 a/ö = 6 

«r 
nff) 

n-rtp 
d, 
m^ 
m^ 
w 
a 
u 
V 

I = 0 

0.079296 
2.283982 
0 

- 0.091145 
0.057882 
0.114102 

41.7904 
8.9114 

I = 1 

- 0.049404 
- 1.836676 
- 0.083660 

0.122700 
- 0.019937 

0.012955 
- 5.5351 
- 1 3 . 9 5 9 8 

7.3491 
- 6.9522 

/ = 2 

-0 .001122 
-0 .063576 
- 0 . 0 0 1 5 6 6 

0.008553 
- 0 . 0 0 0 8 9 5 

0.000354 
- 0 . 1 0 3 4 
- 1 . 3 8 5 7 

0.0415 
- 0 . 0 3 8 0 

/ = 3 

0.000009 
- 0 . 0 0 0 4 2 6 

0.000074 
0.000024 
0.000002 

-0 .000001 
0.0000 
0.0006 

- 0 . 0 0 0 6 
0.0005 

multiplied by 

pR cos 2l(p 
pR cos 2/99 
pR sin 2/99 
pR cos 2l(p 
pRd cos 2/9) 
pRö cos 2/99 
ipR/E) cos 2l(p 
(pR/aE) cos 2/9-
ipR/E) cos 2/9-
(pR/E) sin 2lip 

Table 5.4.7 

a/h = 20 a/ö = 12 

«r 
ritp 

n,(p 

dr 
m^ 
TUq) 
W 
a 
u 
V 

I - 0 

0.147451 
1.866441 
0 

- 0.040669 
0.167368 
0.060080 

17.0542 
17.1839 

/ -- 1 

- 0.101146 
- 1.328952 
- 0.193548 

0.073449 
- 0.110972 
- 0.041665 
- 5.0522 
- 3 4 . 6 7 7 8 

14.2936 
- 1 2 . 6 5 9 4 

1 = 2 

- 0 .003185 
- 0 . 0 2 1 3 4 9 
- 0 . 0 0 6 7 8 5 

0.008146 
- 0 . 0 0 6 9 9 3 
- 0 . 0 0 3 9 3 4 
- 0 . 1 1 9 8 
- 5 . 0 9 0 4 

0.0809 
- 0 . 0 5 1 1 

/ = 3 

0.000021 
0.000012 
0.000123 
0.000043 
0.000014 
0.000005 
0.0000 
0.0013 

- 0 . 0 0 1 0 
0.0007 

multiplied by 

pR cos 2/9; 
pR cos 2l(p 
pR sin 2l(p 
pR cos 2l(p 
pRö cos 2l(p 
pRö cos 2l(p 
ipR/E) cos 2/9; 
ipR/aE) cos 2lq> 
{pR/E) cos 2/9) 
{pR/E) sin 2/9> 

Table 5.4.8 

a/h = 20 a/ö = 18 

«,. 
n^ 
n^f 

dr 
m^ 
m,f 
w 
a 
u 
V 

1= 0 

0.166721 
1.739714 
0 

- 0.026068 
0.198504 
0.045975 

- 5 2 . 7 8 2 4 
24.9021 

/ = 1 

- 0.118369 
- 1.143627 
- 0.234349 

0.051505 
- 0.172258 
- 0.051853 
- 4.9344 
- 2 0 . 4 2 2 2 

20.3228 
- 1 7 . 4 1 8 7 

Z = 2 

- 0 . 0 0 4 3 3 3 
-0 .011109 
- 0 . 0 0 9 6 7 8 

0.006893 
-0 .015466 
- 0 . 0 0 6 0 9 3 
- 0 . 1 1 8 6 
- 7 . 5 4 8 4 

0.1177 
- 0 . 0 5 3 8 

/ = 3 

0.000013 
0.000123 
0.000119 
0.000045 
0.000007 
0.000003 
0.0000 
0.0023 

- 0 . 0 0 1 4 
0.0009 

multiplied by 

pR cos 2/99 
pR cos 2t<p 
pR sin 2l<p 
pR cos 2/99 
pRd cos 2/99 
pRd cos 2/9; 
(pR/E) cos2l<p 
[pR/aE] cos 2/9> 
ipR/E) cos 2/9) 
{pR/E) sin 2l<p 

68 



Table 5.4.9 

no pipe a/ö = 6 

n,p 

dr 
nup 
w 
a 
u 
V 

1 = 0 

2.640900 
- 0.100871 

0.138686 

59.91239 
12.17466 

Z= 1 

- 2.289606 
0 
0.300243 

-31.72782 
2.79373 

11.62861 
-11.64375 

/ = 2 

-0.252035 
0 
0.004568 

-0.16312 
0.63654 

-0.02540 
0.02424 

1= 3 

-0.000527 
0 
0.000043 

-0.00061 
-0.00356 
-0.00100 

0.00100 

multiplied by 

pR cos 2l<f 
pR cos 2l<f 
pR6 cos 2/95 
{pR/E) cos 2l(p 
ipR/aE) cos 2l<p 
{pR/E) cos2l<f 
(pR/E) sin 2l(p 

Table 5.4.10 

no pipe a/d = 12 

rig, 

d, 
niip 

w 
a 
u 
V 

1= 0 

2.640900 
- 0.050436 

0.138686 

239.64955 
24.34932 

/ = 1 

- 2.289606 
0 
0.300243 

-126.91128 
11.17492 
23.25722 

-23.28749 

1= 2 

-0.252035 
0 
0.004568 

-0.65249 
-2.54614 
-0.05080 

0.04849 

/ = 3 

-0.000527 
0 
0.000043 

-0.00244 
-0.01422 
-0.00199 

0.00200 

multiplied by 

pR cos 2lq> 
pR cos 2lq> 
pRd cos 2t(p 
ipR/E) cos2l<p 
[pR/aE] cos 2/9-
ipR/E) cos2l(p 
{pR/E) sin 2l(p 

Table 5.4.11 

no pipe a/ö = 18 

rif 

dr 
JHtp 

W 

a 
u 
V 

1 = 0 

2.640900 
-0.033624 

0.138686 

539.21150 
36.52398 

1= 1 

- 2.289606 
0 
0.300243 

-285.55038 
25.14358 
34.88584 

-34.93124 

/ = 2 

-0.252035 
0 
0.004568 

-1.46810 
-5.72882 
-0.07620 

0.07274 

1= 3 

-0.000527 
0 
0.000043 

-0.00548 
-0.03201 
-0.00299 

0.00300 

multiplied by 

pR cos 2/9; 
pR cos 2/9) 
pRd cos 2l(p 
ipR/E) cos 2/9) 
(pR/aE) cos 2ltp 
ipR/E) cos2l<p 
ipR/E) sin 2lq> 

In Table 5.4.12 some interesting results are collected illustrating the in

fluence of the transverse pipe. For each of the cases investigated this table 

gives the maximum value of the membrane stresses Omr ( = nrjd) and a^^ ( = n^jd), 

the bending stresses atr ( = Qmrjd^) and a,,^ ( = Gm^jd^), the normal displace

ment component w (the non-essential constant term has been omitted) and 
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the tangential displacement component u. These maximum values have been 
determined using the data given in the Tables 5.4.3 . . . 11 and for more 
detailed information these tables must be consulted. It may be remarked, for 
example, that the place where a membrane stress reaches its maximum value 
does not always coincide with the place where the corresponding bending stress 
reaches its maximum value. But this may be investigated in each separate 
case by means of the Tables 5.4.3 . . . 11. From Table 5.4.12 we see that in 
particular w is reduced considerably by the presence of the pipe, whereas u is 
affected less. This is plausible since the pipe offers less resistance against dis
placements perpendicular to its surface than against axial displacements. The 
maximum value of cr„„̂  in the case that there is no pipe is found to be é.SSpR/d. 
We may compare this result with LUR'E'S whose analysis yields a maximum 
value of'i.82pRld, which is only 3 % too high, or maybe it is more appropriate 
to say that LUR'E overestimates the influence of the curvature by 6%. At larger 
values of fi the inaccuracy of LUR'E'S analysis will obviously be larger. 

Table 5.4.12 

max. of (7,„,. 
max. of ffmy 
max. ofcTjr 
max. ofobf 
max. otw 
max. ofw') 

a/ö = 6 

no 
pipe 

0 
4.68 
0 
2.66 
31.9 
23.8 

a/A = 20 

0.13 
4.06 
0.48 
0.77 
5.6 

16.3 

a/h=W 

0.30 
3.07 
1.32 
0.43 
3.3 

16.3 

a/ö = 12 

no 
pipe 

0 
4.68 
0 
2.66 

127.6 
47.6 

a/A = 20 

0.25 
3.17 
1.63 
0.59 
5.2 

31.6 

a/h= 10 

0.39 
2.49 
1.95 
0.42 
3.3 

28.9 

a/ö = 18 

no 
pipe 

0 
4.68 
0 
2.66 

287.0 
71.3 

a/h = 20 

0.28 
2.87 
2.13 
0.55 
5.0 

45.3 

a/h=lO 

0.45 
2.29 
1.81 
0.40 
3.5 

39.8 

pR/ö 
PR/Ö 
PR/Ö 
PR/Ö 
PR/E 
PR/E 

The presence of a transverse pipe evidently reduces the stress concentration 
factor appreciably. In order to assess the effect of the curvature in this case, 
we have to compare the results collected in Table 5.4.12 (evaluated for fx = I) 
with the similar results for a flat plate of thickness d, weakened by a circular 
hole of radius a to which a transverse pipe of thickness h is attached. The plate 
is stretched at infinity in the direction q) = Ohy forces pR per unit length and 
in the direction 99 = TIJ2 by forces ^J2pR per unit length. Table 5.4.13 shows 
the membrane stresses, bending stresses, normal displacement component w 
and radial displacement component u (normal to the surface of the transverse 
pipe) at the edge of the hole. 

If no pipe is present no bending stresses occur. It is clear that if the pipe is 
rigid, i.e. if the plate is clamped at the hole boundary there will be no bending 

') Cf. note on p. 66. 
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either. This fact explains the phenomenon that the magnitude of the bending 
stresses, increasing if the wall thickness of the pipe increases from fl/20 to a/10 
in the case that the plate thickness is relatively large {ajd = 6), decreases if the 
plate thickness is smaller {ajd = 1 2 and 18). 

Table 5.4.13 

max. of(T,„r 
max. ofomif 
max. ofCTjjr 
max. of (74̂  
max. of w 
max. of «') 

a/6 = 6 

no 
pipe 

0 
2.5 
0 
0 
0 

14.1 

a/A = 20 

0.11 
2.30 
0.27 
0.22 
0.004 

13.4 

a/A= 10 

0.21 
2.09 
0.48 
0.32 
0.005 

12.7 

a/ö = 12 

no 
pipe 

0 
2.5 
0 
0 
0 

28.2 

a/A = 20 

0.15 
2.20 
0.44 
0.23 
0.001 

26.2 

a/A= 10 

0.31 
1.90 
0.33 
0.19 
0.001 

23.8 

a/ö = 18 

no 
pipe 

0 
2.5 
0 
0 
0 

42.3 

a/A = 20 

0.20 
2.12 
0.39 
0.18 
0.000 

38.4 

a/A=10 

0.40 
1.73 
0.20 
0.12 
0.000 

33.5 

pR/ö 
pR/ö 
pR/ö 
pR/ö 
pR/E 
pR/E 

') Cf. note on p. 66. 
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C H A P T E R 6 

I N A C C U R A C I E S D U E T O T H E A P P R O X I M A T I V E 
C H A R A C T E R O F T H E T H E O R Y 

6.1 Introductory remarks 

The analysis developed in the preceding chapters is of an approximate 
character. In this chapter we shall investigate whether any essential errors in 
the results, i.e. errors that do not vanish if the ratios ajR and dja tend to zero, 
must be anticipated. These investigations will at the same time give an insight 
in the accuracy obtained, if these ratios are finite. The following causes of 
inaccuracies will be discussed. 
A. The analysis is based on shallow shell theory, and it is a well-known fact 

that the validity of the shallow shell equations depends both on the geometry 
of the shell and on the type of loading. In the next section we shall investigate 
the resulting inaccuracy by determining qualitatively the influence of the 
terms that have been neglected in FLÜGGE'S general equations. 

B. The replacement of the actual cylindrical shell by a spiral shell model 
introduces errors. In order to study these errors, we may close the shell 
along the generator opposite to the hole centre, i.e. the line for which the 
circumferential angle •& (cf. Fig. 2.1.2) is equal to TT or — TT, and determine 
the stresses originating therefrom. The inaccuracies due to the spiral shell 
model will be admissible if along this generator stresses and displacements 
are present that are small to a degree to be specified. This will be discussed 
in Section 6.3. 

Anticipating the results of the following sections we mention here already that 
neither the use of shallow shell equations nor the application of the spiral shell 
model introduces essential errors. 

We may finally note here, that it cannot be expected that the analysis is 
accurate if stresses or displacements appear to change very rapidly, that is if 
the wave-length of the deformation pattern is of the order of magnitude of the 
wall thickness. In fact such a state of stress can never be described by the 
conventional shell theories. It may be shown, however, that each solution 
found has a meaning within any desired accuracy if dja is sufficiently small. 
In this connection it should be remembered that the geometry of the shell is 
described by two parameters, the ratios dja and ajR. So we have one of these 
ratios at our free disposal, if // is given. And since a solution found, for some 
value of ^, yields stresses and displacements that depend on the non-dimensional 
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coordinates, we can always choose dja sufficiently small in order to obtain a 
shell geometry for which the solution is correct within any desired accuracy. 

6.2 Inaccuracy due to shal low shell theory 

In the system of equilibrium equations for cylindrical shells given by FLÜGGE 

[ref 2, p. 219, eq. (13a-c)] a number of terms must be neglected, in order to 
obtain a system that corresponds with shallow shell theory. Our solution of 
the shallow shell equations may now also be regarded as a solution of FLÜGGE'S 

more complete equations provided that additional surface loads are applied 
equivalent to FLÜGGE'S additional terms in his equations, evaluated for our 
solution. The accuracy of our solution based on shallow shell theory may now 
be assessed by estimating the stresses due to a "corrective" load opposite to 
the additional surface loads to be removed. 

The equilibrium equations that are equivalent to the shallow shell equations 
are the unnumbered equations following equation (14) [ref 2, p. 219]. These 
equations have been established using the approximate expressions (12a-f) on 
page 217 for the stress resultants and stress couples, which are equivalent to 
those that have been applied in the present analysis (cf. (2.1.1), (2.1.4) and 
(2.1.8)). This may easily be seen, using Table 6.2.1 ^) which gives the trans
cription from the quantities used by FLÜGGE to the quantities used here. 

This table enables us also to establish the expressions for the components px, 
py and pn in x-, y- and normal direction respectively of the corrective load. 

Ed^ 

pn 

\2{\-v^)R* 

Ed^ 

\2{\'^v'^)R* 

Ed^ 

\2{\~v'^)R* 

\-v R^ dH 

~2~~c^^^ 

3(l-r) i?2 
i2 2 

-V /?3 

i?3 d^w 

a^ dx^ 

d^fj l-v R^ 

dx^ 

a3| 

2 a^ dxdy'^ 

2 

i?3 a3 | 

a3 dx^ 

\-v i?3 93^^ -1 

T^ 03" a^J 
93^ /?3 d^w] 

3 ~^\ dx^dy 

+ 
3—v R^ d^fj 

2 «3 dx^dy 

R^ d^w 

cP- dy'^ — w 

(6.2.1) 

We shall first estimate the magnitude of these loads expressed in terms of the 
order of magnitude of the membrane and bending stresses, previously cal
culated. Let a denote the latter order of magnitude, given by Ed^ja^ multiplied 
by a second derivative of W (cf (2.2.5) and (2.2.6)). 

From (4.2.6), (4.2.7) and (4.2.16), the latter formulae giving derivatives 
with respect to fir, it follows that by differentiation of W with respect to x, y 
or r the order of magnitude is multiplied by //. If, however, /< is small the order 

1) p. 74. 
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Table 6.2.1 

FLÜGGE'S notation 

a 
t 
u 
V 

w 

( ) ' 

{ )• 

Present notation 

R 
s 
1 
V 

— w 

RI = ^1 
dx a dx 

dy a dy 

of magnitude is unaltered. So we must in the following discussion distinguish 
between two cases, viz. //, is large and // is not large. We have 

(6.2.2) 

The dominating terms in the expressions for px and py are those that originate 
from third derivatives of w. Their order of magnitude is Ed*ja^R multiplied 
by a third derivative of W. So 

( 0{d'^fiajaR} (if/t is large) 

I 0{d^ajaR} {if fi is not large) 

The leading three terms of/,( are of the order of magnitude oï Ed^ja*R mul
tiplied by a fourth derivative of W. As compared with a this is 0{d^fi^aja'^R} = 
0{d^ajR^}, if/i is large, and 0{d^aja^R} if/r is not large. The fourth term of 
the expression for pn is of order of magnitude Ed*jd^R^ multiplied by a second 
derivative of W, and hence 0{d'^ajR'^}. This is the same result as we obtained 
for the leading three terms if /« is large. If /< is not large these three terms are 
dominating over the fourth one. The fifth (last) term of the expression is of a 
smaller order of magnitude, and we may conclude 

iO{d^ajR^} (if̂ < is large) 

( 0{d^aja^R} (if/< is not large) 

The distribution of this corrective load depends on the non-dimensional coor
dinates x andjv. Let us assume that it has no resultant force or that at least 
the resultant force is completely canceled by the boundary loads at the edge 
f = a, if we use FLÜGGE'S expressions for the stress resultants at the edge. We 
shall return to this assumption later. A consequence is that this load causes 
membrane stresses and bending stresses that decay at infinity. 

The order of magnitude of the stresses due to the corrective load may be 

74 

dWjdx, dWjdy I U[fi'f] [It fi is large) 

I Oi^\ fif// is not lareel 

(6.2.3) 

(6.2.4) 
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Fig. 6.2.1 Order of magnitude of loads and distances 

estimated as follows. On a finite part of the shell surface we have a load that 
has a normal component N and a tangential component T that are of the 
order of magnitude oïd^pn and d^px or a^py respectively. A'^and 7" cause bending 
stresses that are of the order of magnitude of Najd^a and Ta^jRd^a respectively 
and membrane stresses that are of the order of magnitude {NRja)jda and Tjda 
respectively. 

We may now construct Table 6.2.2 which gives the order of magnitude of 
these stresses in both cases // is large and fi is not large. 

Table 6.2.2 

bending stresses caused by N 

bending stresses caused by T 

membrane stresses caused by N 

membrane stresses caused by T 

/I is large 

»{w.'\ 

"IJ""! 
" ( M 
o{U 

H is not large 

f<5 1 

«IJ"h«l^-«l 
«ë"l 
«Î M 

The stresses that are of the order of magnitude of dajR do not introduce errors 
that are larger than those introduced by FLÜGGE'S equations. Hence if pi is 
not large (that is of the order of magnitude of 1 or smaller) the inaccuracies 
do not exceed those of FLÜGGE'S equations. If//, is large, however, the neglec
tions made correspond to the neglection of pia^jR^ with respect to 1, and we 
must as a consequence require that ajR is small. 

There may still be some doubt that the corrective load at large distance 
from the hole causes stresses in the vicinity of the origin that exceed those we 
just investigated. We shall therefore estimate the magnitudes of the resultant 
forces and moments of the corrective load acting of the part x > XQ of the 
shell, where XQ is positive and large. 
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The axial resultant force of the loads px in the region .JC > xo is equal to the 
resultant of the membrane forces % along the arc x ^ Xo if we write these 
membrane forces according to FLÜGGE'S expressions in the form 

£03 d'^W Ed^ d^w 
nx = Re \ (6.2.5) 

12(l-)'2)a2 dy^ l2{\-v^)d^R dx^ ^ ' 

Only the second term contributes to the resultant since the first term is the 
expression used in the present analysis. This second term is of the order d^aojR 
and so the axial resultant of these forces causes membrane stresses in the vicin
ity of the hole that are at most of order daojR, where CTQ is the order of mag
nitude of the stresses at x = XQ. In a similar way we may estimate the stresses 
originating from the resulting moment about the axis of the cylinder. This 
moment is due to the loads py and the corrective stresses are again at most of 
order daojR. 

The remaining resulting forces and moments decay even exponentially if 
xo increases. The way in which this may be shown will be illustrated by the 
determination of the resulting force in the direction of the normal to the shell 
surface in the origin. 

The solution '/-' of our basic equation tends to zero exponentially if r tends 
to infinity, except in a region along the x-axis, where ^ tends to zero as r~'''. 
If X is large and positive we may write (cf (3.1.13)) 

W = e'""' I. Bnc'"'' V2J7Tfire-'i'""-'^^^'''+"''^^''} (6.2.6) 

We may briefly note some properties of this function. If x (large) is held 
constant, the function decreases with increasing \y\, and if the order of mag
nitude of | j | exceeds 0{Vx}, it decreases even exponentially. Differentiation 
with respect to x means multiplication by fiVi (1 — sin 97), or somewhat more 
precisely 

dV 
= fi^i {I -^ sin q))W+ 0{^jr} (6.2.7) 

dx 

Differentiation with respect toy gives 

dW 
— = fiVi {cos q?) W + 0{'Pjr} (6.2.8) 
dy 

We shall now determine the resultant in the direction of the normal to the 
shell surface in the origin of the corrective load on a strip of width dx. This 
resultant is 

« 2 d x / j ^ c o s ( | ] + / ^ s i n ( | j [ d j (6.2.9) 

76 



The contribution of the regions, for which 0(1^1} > 0{ \/^}j tends exponentially 
to zero with increasing x. In the region 0{|jv|} < 0{Vx} we have \y\ <C x, 
so the deviation of q) from nj2 tends to zero with increasing x, and we may 
conclude that the dominating term in (6.2.9) originates from the last term in 
the expression for pn (6.2.1), all other terms containing derivatives of "F. We 
shall show that its contribution tends to zero exponentially. Therefore we must 

CO 

show that f W cos {ay jR)dy tends to zero exponentially if x increases. We 
0 

substitute (6.2.6), keeping in mind that in the region 0{ | j |} < 0{Vx} the 
change in value of q^ and V is negligible. So 

Wcos\^\dy = 

= Y, Une""" ] / — «•''/• + "/2'4 j ,-'/."i.>'/>c ^o, h \ dy 

= Y,{Bne'"''}e ,inn\ .ml^ -a'xftR'lu'i 

fl 

(6.2.10) 

Here we made use of an integral that is known in the theory of Fourier trans
forms, 

j e-'-'cos{ut)du = ^J2]'re-''''' ') (6-2.11) 
.' ' b 

0 

The factor sin{ayjR) instead of cos{ayjR) in the second term of the integrand 
in (6.2.9) does not disturb this proof since we have the similar integral 

e-"''sin{ut)du = - ^ | / ^ e-''l'' Erf (^ tVb (6.2.12) 

from which follows 

W sin 1 ^ ) d j = 

1 : * /4 

-2^{Bne }e ^^e ^'^[2^2 RVx 

(6.2.13) 

Integration with respect to x from xo to iso does not affect the exponential 
character. 

In this way it may be shown that the resulting forces directed perpendicular 

' ) Cf. e.g. TiTCHMARSH [ref. 16, p . 177-178]. 
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to the X-axis as well as the resulting moments with vectors that are perpendic
ular to the X-axis originating from the corrective load in the region x > XQ 
tend to zero exponentially if xo increases. They will as a consequence cause 
stresses in the neighbourhood of the hole that are negligibly small. 

A similar result is obtained for the loads in the region x < xo where Xo is 
negative. In this case the integration constants An appear in the expressions 
instead of the constants Bn- The loads in the regions for which |x | is small and 
\y\ is large need not be considered since in these regions f decays exponentially. 

We must finally verify the assumption made that the corrective load as a 
whole has no resultant force. In the doubly skew-symmetric case (cf. Chapter 4) 
there is indeed no such resultant force in virtue of the absence of constant terms 
in the Fourier series. In the doubly symmetric case such a resultant is not 
excluded a priori. But at closer inspection it appears that there are no resultant 
forces in x- and jv-direction in view of the symmetry. Only a resultant force 
in the direction of the normal to the shell surface in the origin is still possible. 
We may determine it by investigating the resultant force of the stresses along 
a contour at infinity enclosing the hole. If this resultant force is zero we know 
that the normal resultant of the corrective load, if it exists, is cancelled by the 
boundary stresses at the edge f = a. 

A part of a contour surrounding the hole has been given by Fig. 3.3.1. The 
forces Da ds and pya ds contribute to the resultant force in normal direction. 
They are given by (cf (3.3.1)). 

Da ds = dya dx — dxa dy "1 
•̂  (6.2.14) 

pya ds = nya dx — nxya dy J 

For the stress resultants in the right-hand sides we must now use the expressions 
of FLÜGGE (loc. cit.). As for the transverse shear forces we may use the equa
tions (2.1.6) and (2.1.8), in the latter formulae, however, retaining the under
lined terms. This leads to 

Ed* id d 
Dads = ~ - ; — I m - Z f F d x A^dy + 

{12 l-J-a } V [gj dx -^ 

+ 
dW 

dy 

Ed^{l^v) 

R'i 
dx 

3-v dW 

dx 
dy 

d^w 
dx + 

f d^W 
2{\2{l-v^)fa^RH^^^' + '^^'^ + '^dx^dy 

+ 3{2+v)--^-dy + 2~jdx 

In order to express pya ds we do not use (2.2.5) but the more accurate expres
sions (corresponding with FLÜGGE'S expressions) 

(6.2.15) 
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Ed^ 
n„ = 

nxv — 

Re 
dW Ed^ 

12(l-r2)a2 9x2 12(l-j'2)i?3 [ ^ a2 dy 
w -\-

R2 d^w 

Ed^ 
Re 

d^w Ed^ \\-vlR dfj R2 d2w\ 

12(1-^2)02 ^"^ 'dxdy ^ 12(l-i'2)i?3 1 ^ 1,7 9 x 0 2 ^ dxdy' 

(6.2.16) 

Substituting in (6.2.14) we obtain 

£<53 
pya ds 

\dW d^W 
Re dx H dv + 

12(l-i'2)a l9x2 dxdy ^ 

+ 
(52 

2\{\ + v)R^ 

Ed* 

dW 92f 
T 2 / / V Ï — + ( l + r ) - — 

dy dxdy. 
dj} + 

{m^ )̂-f̂ aR "̂̂  i l ^ "'R-^j^'^dxdy^' 

(6.2.17) 

Here again the upper sign must be used if ¥^ is a solution of (3.1.2), the lower 
sign if it is a solution of (3.1.3). 

The resultant force Fr in the direction of the normal in the origin is equal to 

ay ay « / { M n h ^ j - i ) cos (^^jj d. (6.2.18) 

where the integral is taken along a closed contour at infinity surrounding the 

L 

L 

A 

D 

^ 

^ 

L 

> < 

^ 

L 

B 

C 

Fig. 6.2.2 Square contour in the developed shell surface 
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hole. We choose a contour that is a square with sides 2L in the developed 
shell surface (Fig. 6.2.2). If L is large, it is immediately clear that the sides 
BC and DA do not contribute since the function !f and its derivatives decay 
exponentially ify tends to infinity. Although the behaviour of W is not expo
nential if X tends to infinity a n d j is kept constant it may be proved that the 
stress resultants along the sides AB and CD have a resultant force in normal 
direction that tends to zero exponentially. This may be shown in a way analog
ous to the way in which we established that the resultant of the corrective 
load on a strip of width dx decays exponentially. And this fact finally justifies 
our assumption, that the corrective load has no resultant force. 

6.3 Inaccuracy of spiral shell model 

The value of the function W along the generators d- = ^n decays expo
nentially, with increasing value of Rja, as long as 0{|x|} < 0{pm^R?jcf}, as is 
clear from the previous section. If |x | is larger, the order of magnitude of W 
is given by 

^^ =0{W^jV'fir} = 0{W,ajfiR} (6.3.1) 

where ^v denotes the order of magnitude of ¥^ in the vicinity of the hole. In 
this case we have furthermore 

1 - sin 9, < 0{a^jfi^R^} \ ^^ 3^) 
cos q> < 0{ajfiR} I 

So from (6.2.7) and (6.2.8) we may conclude that diff"erentiation in an ar
bitrary direction means lowering of the order of magnitude by at least a factor 
ajR (in the region for which 0{|xj} > 0{fm^R^jd^}). 

The closing of the shell along the generators § = ^ ji, mentioned in Sec
tion 6.1, consists in removing the transverse shear forces dy and the membrane 
shear forces nyx along that generator, together with the displacements rj and 
the rotations dwjdy. This requires additional bending moments my and direct 
stress resultants Uy along the generators ê = ± TI. It is evident that the part 
of the generator where W tends to zero exponentially if Rja tends to infinity 
does not cause essential errors. We can restrict our investigation to the closing 
of that part of the generator for which |x | is large. The stresses in the shell 
caused thereby will be compared with the order of magnitude a of the stresses 
calculated previously. As follows from the preceding section we have 

[.£«52 I 
a = 0 j — //2¥',j (6.3.3) 

From (2.2.7) and (6.3.1) follows 

\Ed* a*WA , 
dy < 0 j — —I (along the generators ?? = i jr) . . (6.3.4) 
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These forces introduce bending stresses that are of order of magnitude 
0{Ed^aWvjfiR^}, or, comparing them with the stresses calculated, of order 
0{a^ajfj,^R^}. They cause additional tangential displacements fj that are of order 
0{daWvjR} and rotations dwjdy that are of order 0{daWi,jR^}. These addi
tional displacement quantities are of the same order of magnitude as those 
already present. This will be clear from (6.3.1) and, as far as fj is concerned, 
from Section 5.1, and, as far as dwjdy is concerned, from (4.2.15). Their sup
pression requires stresses of the same order 0{a^ajfêR^}. 

We must finally remove the load Uyx. From (6.3.1) and (2.2.5) follows 

nyx < 0{Ed^aW„jfiR^} (along the generators i? = ± ^) • (6.3.5) 

Such shear loads along a straight edge produce membrane and bending stresses 
that decay exponentially at large distance from the edge i) . So the removal of 
the stress resultants (6.3.5) introduces stresses in the vicinity of the hole that 
tend to zero exponentially if ajR tends to zero, while pi is held constant. If ajR 
is held constant but fi increases (so the shell is made thinner) the distance of 
the hole to the edge ê = TC (or {)• = —n) remains unaltered. The bending 
moments resulting from the edge load (6.3.5) are zero at the edge, reach a 
maximum, and then decay exponentially. The maximum, however, may be 
reached in the vicinity of the hole. Its magnitude may be estimated from 
equation (60), p. 256, of FLÜGGE'S treatise 2). We find after some computation 
that it is of order 0{a^ajpiR'^}. If the load —nyx is applied to the edge there 
will again be produced displacements fj and rotations dwjdy. Their removal 
requires stresses that are of the same order of magnitude, 0{d^ajfiR^}. 

Hence we have established the result that the order of magnitude of the 
stresses in the neighbourhood of the hole caused by the closing of the shell 
along the generators •& = ^ 71 is d^ajfiR^. The error introduced for a given 
value of ajR apparently becomes small if fi is large. From the Figures 4.3.3 
and 7.3.1 . . . 2 it follows indeed that for large values of pi the disturbance in 
the stress distribution by the presence of the hole is concentrated in a smaller 
region than for small values of fi. I t may be conjectured after the results of 
this section (and this prediction seems plausible) that in a shell with a fixed 
value ajR and a thickness tending to zero the presence of the hole causes large 
bending stresses in a narrow zone along the edge, and a strip along the x-axis 
of width comparable with the diameter of the hole. 

1) Cf. FLÜGGE [ref. 2, Chapter 5.4.3]. 
)̂ In the right-hand side of this equation a factor X is missing. 
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C H A P T E R 7 

E X P E R I M E N T A L R E S U L T S 

7.1 Introduction 

Since the numerical results obtained are of an approximative character for 
reasons outlined in the previous chapter, it appeared desirable to test the 
reliability of the analysis with experiments. 

Experimental results available are those of HOUGHTON and ROTHW^ELL 

[ref 3]. They investigated among others the stress concentration around cir
cular holes in cylindrical tubes made of araldite, applying photoelastic methods. 
In the case of axial tension no influence of the curvature was found. In the 
case of torsion the influence found was two third of that predicted by the present 
theoretical results. It was verified that the position of the maximum stress 
changes with increase in hole diameter. HOUGHTON and ROTHWELL made also 
experiments bearing on the case of axial tension, on aluminium curved panels, 
making use of electric resistance strain gauges. These experiments yielded the 
results, shown in Table 7.1.1 (taken from a graph, viz. fig. 12 of the paper 
mentioned). 

Table 7.1.1 

A" 

1 

2 

Stress concentration factor 

HOUGHTON and R O T H W E L L 

(experimental) 

3.03 

3.46 

Present analysis 
(V = 0.3) 

3.66 

4.89 

The large discrepancy between the theoretical values and these test results 
seems to be due to the fact that the curved panels were provided with special 
end plates, which were designed to minimize bending effects. Of course bending 
of the panel as a whole had to be avoided, but the stiff" end plates may also 
have suppressed secondary bending effects originating from the presence of 
the hole. These eflfects, however, are essential and are closely related to the 
influence of the curvature upon the stress concentration factor. 

In order to obtain some more reliable experimental data, careful tests bearing 
on the cases axial tension and torsion of a circular cylindrical tube weakened 
by a circular hole have been carried out in the laboratory of engineering 
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mechanics of the Technological University of Delft. Several values of the para
meter pi have been dealt with successively by enlarging the hole each time 
after the completion of an experiment both on axial tension and torsion. Since 
the hole was machined by a boring machine the boundary was not exactly a 
circle in the developed shell surface. For small values of the ratio ajR the devia
tion has obviously been small. 

The scope of the experimental investigation has been a verification of the 
analysis. There is not the pretention of a complete experimental stress analysis. 
At some points of the tube the direct membrane stresses and the bending 
stresses have been determined, and compared with the corresponding computed 
stresses. In view of the general agreement within test accuracy the analysis 
may be assumed to be reliable. 

7.2 Description of test-arrangement 

The test-piece (Fig. 7.2.1) was a tube made of mild steel {E = 2,100,000 
kgf/cm2, V = 0.28) with the following principal dimensions. 

Radius of middle surface, i? = 25 cm. 
Wall thickness, d = 0.48 cm. 
Length between front plates, / = 180 cm. 

-A^ 

Fig. 7.2.1 The test-piece 

The following hole radii have been dealt with consecutively i ) : 
a = \ cm (corresponding to // = 0.263) 
a = 2 cm (corresponding to M̂ = 0.526) 
a = 2.85 cm (corresponding to pi = 0.75) 
a = 3.8 cm (corresponding to ^ = 1) 

After the completion of this thesis the experiments are being continued for larger values 
of the hole radius, but the results obtained so far are adequate for comparison between 
theoretical and experimental results. 
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Each time a number of electric resistance strain gauges have been attached 
both to the rim of the hole in order to determine the membrane stresses a„^ 
at r = 1 {f = a) and on the inner and outer wall of the tube outside the hole 
in order to measure strains at larger values of r. As an example Fig. 7.2.2 
shows the places (on the developed shell surface) where strain gauges have 
been applied in the case // = 1. The strain gauges along the lines f = 0°, 45°, 
90° and 112°30' are directed radially, in order to measure the strains in radial 
direction, ê . Along the fines q) = 180°, 225°, 270° and 292°30' we measured 
the strains in ^j-direction, e^. 

tp=90° (axial direction) 

tp=112°30 

tp = i5° 

«p.O» 

tp=270' 

Fig. 7.2.2 Strain gauges on developed shell surface in the case /U = 1 
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Along each of these lines strain gauges have been attached at several distances 
r from the hole centre. It may be assumed that in the doubly symmetric case 
of loading in axial tension as well as in the doubly skew-symmetric case of 
loading in torsion, points that are opposite with respect to the hole centre are 
in the same state of stress. This is the case for example for the points f = 7.5 cm, 
97 = 0° and f = 7.5 cm, 93 = 180°. The two radial strains tr at the inside and 
at the outside at r = 7.5 cm, 93 = 0° together with the two tangential strains 
£,̂  at r = 7.5 cm, cp = 180° yield after a simple computation, taking into 
account the lateral contraction, the membrane stress resultants Ur and «,, and 
the bending moments mr and m,. In this way the direct membrane stresses 
and bending stresses along the lines indicated in Fig. 7.2.2 have been determined. 

In the case of torsion only the lines ip = 45° (and 225°) and 112°30' (and 
292°30') have been investigated, as the lines 93 = 0° and cp = 90° are lines of 
zero strains Sr and ê  in view of the symmetry. In the case of axial tension the 
lines ^ = 0° (and 180°), q) = 45° (and 225°) and q) = 90° (and 270°) have 
been investigated. 

In the case of torsion the twisting moment was applied with the aid of the 
rectangular extremities (Fig. 7.2.1), part of the front plates of the tube. In the 
case of axial tension the tube was suspended horizontally and stretched axially. 
The load was applied through two slender bars made of high alloyed steel, in 
order to avoid bending of the tube as a whole due to a possible misalignment 

Fig. 7.2.3 Test-arrangement in the case of axial tension 
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of the wedge grips. Fig. 7.2.3 shows the arrangement in this case. On this 
photograph also one of the rectangular extremities by means of which the 
torsional moment is applied is clearly visible. The magnitude of the tensile 
force was measured by strain gauges attached to one of the slender bars, which 
has been calibrated. 

After applying a prescribed load the change of the electric resistance of each 
strain gauge was measured consecutively and printed by a typewriter and at 
the same time punched by a 5-channel tape puncher. The punched tape could 
then be fed into an electronic digital computer in order to calculate the mem
brane and bending stresses following the method indicated above. Corrections 
for the transverse sensitivity of the strain gauges have been taken into account. 

7.3 Test results and discuss ion 

We shall in this section give the results obtained in the cases pi = 0.75 and 
t̂ = 1. For smaller values of/< there is only a small deviation from the flat plate 

solution since the stresses due to the curvature are initially proportional to pi^. 
In order to compare the results with the results predicted by the theory devel
oped we calculated the stress distribution in the shell, following the method 
described in Section 4.3 for axial tension and in Section 4.5 for torsion. In 
the Figures 7.3.1. . . . 4, which may be compared with the Figures 4.3.3 and 
4.5.3, the distribution of membrane and bending stresses, both in qp- and r-
direction along the lines where the strain gauges have been attached (cf Sec
tion 7.2) is shown. In these graphs the experimental values are indicated by 
dots. These values are in general mean values of the results of a number of 
experiments carried out on consecutive days in order to be influenced as little 
as possible by disturbing circumstances, such as sudden changes in temperature. 

At each test a load (tension or torsion) was appfied and enlarged stepwise 
after measuring the strains. After reaching the maximum admissible load it 
was reduced again stepwise. In the case of torsion both positive and negative 
load cycli were performed. In the case of tension, for practical reasons, only 
tensile forces were applied as compressive forces would have required a modified 
test-equipment. At each step the strains were measured, and from these data 
the membrane and bending stresses per unit load increase were computed. 

The agreement between theoretical and experimental results is surprisingly 
good. Apart from a few points where relatively large deviations occur, which 
are obviously due to incidental disturbances and will be discussed below, all 
deviations are within test accuracy. An error of 1-1.5% of the measured strains 
must be taken into account because the gauge factor of the strain gauges is 
known only with that accuracy. An error of about 0.25% is due to the fact 
that the transverse sensitivity of the strain gauges is not known accurately. 
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An error of about 0.5% of the maximum strain measured is due to the inaccuracy 
of the test apparatus, mainly in view of round off" errors. The magnitude of the 
load was known very accurately. Finally, errors were introduced by the fact 
that the wall thickness was not exactly constant. In a circular region of radius 
18 cm, concentric with the hole, it varied from 0.476 cm to 0.484 cm. 

We shall have a closer look at some results that show obvious errors. 
In the case of axial tension, pi = 0.75 (cf Fig. 7.3.1), we measured at 9? = 0° 

(curve a) and r = 1.23 a bending stress a^^ of magnitude —0.4r2pjd whereas 
the theoretical value is —0.3lpjd. In order to obtain this experimental result 
we had to subtract two strains at the inner and the outer wall that are large, 
the membrane stress a„„i, at that point being about 2.35pjd. A maximum error 
in each of these strains may introduce an error of 0. Ipjd in the bending stress. 
Because moreover on the same theoretical curve four other experimental points 
have been found very accurately it is evident that the experimental value at 
r = 1.23 cannot be trusted. 

The experimentally determined membrane stresses Omr at 99 = 0° and r = 1.23 
and r = 1.40 are both about O.O'ipjd larger than the theoretical values. The 
theoretical curve reaches a maximum in the neighbourhood of these points 
and it may be remarked that this maximum value has been calculated very 
accurately. These errors must be blamed to the fact that the membrane stresses 
a„„^ are about five times as large and must be taken into account in view of 
lateral contraction and transverse sensitivity. Relatively small errors in the 
measured values of the tangential strains e^ introduce errors in Omr that are 
relatively large. 

The bending stress Obr for 93 = 45° and r = 1.82 (f = 5.2 cm) is 0.05pjd 
too large whereas Obr for 99 = 45° and r = 2.11 (r = 6 cm) is 0.03pjd too 
small. It may again be conjectured that these errors are due to the large 
membrane stresses occurring at the same points. It is interesting to see what 
stresses are obtained from the same strain gauges in the case /< = 1. Since the 
transition from pi = 0.75 to /< = 1 was obtained by enlarging the radius of 
the hole from 2.85 cm to 3.8 cm, the non-dimensional coordinates r = 1.82 
and r = 2.11 in the case /( = 0.75 became r = 1.37 and r = 1.58 (corre
sponding again to f = 5.2 cm and f = 6 cm respectively) in the case pi = \. 
In Fig. 7.3.2 it may be seen that the bending stresses obtained show the 
same deviations as in the case pi = 0.75. Obviously these deviations must be 
attributed mainly to inaccurate gauge factors. 

In the graphs bearing on the case of loading in torsion the largest deviation is 
the radial membrane stress Omr measured at 93 = 45°, r = 1.12 in the case 
pi = 0.75 (Fig. 7.3.3). Obviously this error may again be blamed on the fact 
that the stress CT^^ in the same point is ten times as large. 

In general we may conclude that the experiments support the analytical 
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results. There is furthermore no indication whatsoever that in the case /t = 1 
the radius of the hole, which is then about one seventh of the radius of the 
cylinder, has already reached a value such as to make the analysis less accurate 
in view of the approximations studied in Chapter 6. 

As explained in Section 7.2 we have also attempted to measure the mem
brane stress (T„,̂  at the hole boundary. The results obtained were not entirely 
satisfactory, probably due to the difficulty of placing the strain gauges exactly 
in the middle of the comparatively small wall thickness. This difficulty is more 
pronounced for smaller hole diameters. We shall therefore restrict our discus
sion to the case fi = 1, a = 3.8 cm, for which the results are collected in 
Table 7.3.1. The strain gauge at 93 = 225° which in the case of torsion indicated 
a membrane stress of 5.70 times the shear stress at infinity has been replaced 
and the second strain gauge indicated a stress of 6.21 times the shear stress 
at infinity, as compared with a theoretical value 6.09. Since there is a bending 
stress of about ^3r ^, the stress varies over the wall thickness from about 3 T „ 
at the outside to about 9 T „ at the inside. The difference in the results of these 
two strain gauges may therefore be due to a different location in the thickness 
direction of no more than 0.04 cm. Hence the deviations found are indeed 
likely to be due to small errors in the location of the filament of the strain 
gauges. In view of the fact that the width of the hole was only 7.6 cm and the 
wall thickness only 0.48 cm it is quite understandable that such errors have 
been made. 

Table 7.3.1 

<p 

0° 
22°30' 
45° 
90° 

1I2°30' 
135° 
180° 
202°30' 
225° 
292°30' 
337°30' 

Axial tension, n/n ̂ ^ 

experimental 
value 

3.61 
2.62 

- 1 . 2 7 

0.87 
3.70 

0.67 
- 0 . 5 9 

theoretical 
value 

3.66 
2.78 

- 1 . 2 0 

0.91 
3.66 

0.91 
- 0 . 6 5 

Torsion, O/T ^ 

experimental 
value 

- 0 . 0 4 
4.90 
6.08 
0.05 

- 3 . 7 3 
- 5 . 6 9 

0.18 
5.02 

5 .70 /6 .21 
- 3 . 7 8 
- 5 . 0 2 

theoretical 
value 

0 
4.83 
6.09 
0 

- 3 . 8 0 
- 6 . 0 9 

0 
4.83 
6.09 

- 3 . 8 0 
- 4 . 8 3 

The influence of the fact that the wall thickness was not exactly constant 
may also be estimated from this table. The values measured at 93 = 0°, 90° 
and 180° must necessarily originate from this reason since at these points both 
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the membrane and the bending stresses are zero in view of the symmetry. The 
largest stress (at 93 = 180°) is almost 3 % of the maximum stress present. 

Taken as a whole, however, the results in Table 7.3.1 agree reasonably well 
with the analytical results. For example the theoretical prediction that the 
maximum stress in the case of torsion does not occur at 99 = 45°, 135°, 225° 
and 315° is fully confirmed by the experiment, and the computed value of the 
maximum stress is in fair agreement with the experimental values. 
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S A M E N V A T T I N G 

Het onderwerp van deze dissertatie is de bepaling van de spanningen en de 
verplaatsingen in een dunwandige cirkelcilindrische buis, verzwakt door een 
gat dat in het ontwikkelde schaaloppervlak cirkelvormig is. De buis is onder
worpen aan belastende krachten en er wordt uitgegaan van de veronderstelling 
dat de spanningen en verplaatsingen die ten gevolge van de belasting zouden 
optreden in het geval van een onverzwakte buis bekend zijn. De oplossing van 
het gestelde vraagstuk wordt verkregen door de gatrand spanningsvrij te maken 
en de daarbij optredende inwendige spanningen en verplaatsingen op te tellen 
bij de reeds bekende. Dit spanningsvrij maken van de gatrand geschiedt door 
een evenwichtsbelasting, en het is dit laatste vraagstuk dat in de dissertatie 
wordt behandeld. 

De ontwikkelde theorie is in tweeërlei opzicht van een benaderend karakter. 
In de eerste plaats worden de vergelijkingen der flauw gekromde schalen er 
aan ten grondslag gelegd, en in de tweede plaats wordt de werkelijke cilinder-
schaal vervangen door een model in de vorm van een spiraalschaal, waarin 
de omtrekshoek zich uitstrekt van — oo tot -|-oo. De laatste vereenvoudiging 
lijkt aanvaardbaar omdat kan worden verwacht dat de spanningen op grote 
afstand van het gat klein zullen zijn. Beide vereenvoudigingen beperken de 
geldigheid van de theorie tot waarden van de gatstraal die betrekkelijk klein 
zijn ten opzichte van de straal van de buis, bijvoorbeeld niet groter dan 1/4. 

Het eerst is dit probleem aangevat door LUR'E [lit. 5 en 6], die een oplossing 
geeft in de vorm van de eerste term van reeksen in een krommingsparameter 
d^jRd {a = gatstraal, R = straal van cilinderschaal, d = wanddikte). Een na
deel van LUR'E'S theorie is dat de resultaten alleen nauwkeurig zijn voor kleine 
waarden van deze parameter. 

De thans ontwikkelde theorie heeft deze beperking niet. In navolging van 
LUR'E wordt het probleem herleid tot de bepaling van een complexe functie ^, 
waarvan het reële deel een spanningsfunctie voor de membraanspanningen en 
het imaginaire deel de normale verplaatsing voorstelt. Deze functie W voldoet 
aan een differentiaalvergelijking van de vierde orde waarvan de oplossingen 
worden gezocht in de vorm van een fourierontwikkeling in de hoek 93 van 
een poolcoördinatensysteem {r, 99) in het ontwikkelde schaaloppervlak. De oor
sprong van dit coördinatensysteem valt samen met het middelpunt van het 
gat. De coëfficiënten van de fourierreeksen zijn functies van de radiale coördi-
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naat r. Het blijkt mogelijk te zijn op in principe eenvoudige wijze te voldoen 
aan dynamische en geometrische randvoorwaarden. 

Enkele theoretische aspecten die niet aan de orde zijn gekomen in tot dus
verre verschenen publikaties worden mede behandeld, te weten: 

De volledigheid van de oplossing (hoofdstuk 3.2). 
De eventuele mogelijkheid, een gatrandbelasting te behandelen, die een 

resulterende kracht of een resulterend koppel heeft. Het blijkt evenwel, dat 
de theorie alleen toestaat een gatrandbelasting te behandelen, die een even-
wichtssysteem vormt. Hierbij dient echter een uitzondering vermeld te worden. 
Het blijkt namelijk, dat één component van de momentvector (de component 
die raakt aan de cilindermantel en loodrecht staat op de as van de cilinder) 
niet identiek nul is (hoofdstuk 3.3). 

De ondubbelzinnigheid van de verplaatsingen in het tweevoudig samen
hangend gebied, gevormd door de spiraalschaal (hoofdstuk 3.4). 

De onnauwkeurigheid veroorzaakt door het benaderend karakter van de 
theorie (hoofdstuk 6). 

Als voorbeelden ter illustratie worden enige belastingsgevallen behandeld, 
en voor een aantal waarden van de geometrische parameters numeriek uit
gewerkt. Zij betreflTen de gevallen belasting door trekkrachten in axiale richting 
en door wringende momenten uitgeoefend op de verzwakte buis, welke be
handeld worden in hoofdstuk 4, en belasting door inwendige overdruk van 
een buis waaraan een dwarspijp is bevestigd, behandeld in hoofdstuk 5. Het 
laatste geval is een voorbeeld van een probleem met gemengde randvoorwaar
den. Voor de behandeling van dergelijke problemen wordt gebruik gemaakt 
van invloedsgetallen voor geschikt gekozen eenheidsbelastingen langs de gat
rand. Voor een groot aantal waarden van de krommingsparameter zijn deze 
invloedsgetallen bepaald, en voor de waarde, welke betrekking heeft op het 
behandelde numerieke voorbeeld, in dit proefschrift vermeld (tabel 5.2.1). In 
alle behandelde voorbeelden wordt uitvoerig stilgestaan bij de invloed welke 
de kromming blijkt te hebben op de numerieke waarde der spanningsconcen
traties. In vele gevallen is deze invloed zeer groot. 

Bij gebrek aan meer gegevens zijn LUR'E'S resultaten wel eens toegepast voor 
grote waarden van de krommingsparameter. De daarbij gevonden spannings
concentratie, bijvoorbeeld in het geval van axiale trek, blijken nu aanzienlijk 
te groot te zijn. 

Mede op grond van de door HOUGHTON naar aanleiding van zijn proef-
resultaten uitgesproken twijfel aan een merkbare invloed van de kromming 
zijn in het laboratorium voor technische mechanica spanningsmetingen ver
richt aan buizen verzwakt door cirkelvormige gaten, en belast door axiale 
trekkrachten en door wringende momenten. De resultaten worden in hoofd
stuk 7 besproken en ondersteunen de theoretische voorspellingen ten volle. 
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STELLINGEN 

1 

De door HOUGHTON gedane uitspraak, dat voor waarden van de in deze 
dissertatie door formule (2.2.3) gedefinieerde krommingsparameter fi, kleiner 
dan 1, de theorie voor vlakke platen toereikend zou zijn voor het bepalen van 
de spanningstocstand in op axiale trek belaste, doorboorde cilinderschalen, 
moet worden verworpen. 

HOUGHTON, D . S., Journa l of the Royal Aeronautical Society, 65 (1961), 
201-204. 

2 

Sommige numerieke voorbeelden in de literatuur betreffende spannings
concentraties rond gaten in schalen zijn gebaseerd op de theorie der flauw 
gekromde schalen, doch hebben betrekking op constructies waarvoor de 
geldigheid van deze theorie twijfelachtig is. 

REIDELBACH, W . , Ingenieur - Archiv. X X X (1961) 293-316. 
VAINBERG, D . V. and A. L. SINIAVSKII, Problems of Cont inuum Mecha
nics, Philadelphia (1961), 570-581. 

3 

Een voor de hand liggende methode om langs iteratieve weg de oplossing van 
de in dit proefschrift voorkomende vergelijkingen voor de flauw gekromde 
schalen (2.1.5) en (2.1.10) te bepalen, bijvoorbeeld voor het behandelde geval 
van trek in axiale richting, is de volgende. De spanningsfunctie 0, die geldt 
voor het geval van een vlakke plaat, wordt gesubstitueerd in het rechterlid 
van (2.1.10). De oplossing van deze vergelijking, een eerste benadering van w, 
wordt op haar beurt gesubstitueerd in het rechterlid van (2.1.5), hetgeen een 
tweede benadering van 0 oplevert, waarna het proces naar believen herhaald 
wordt. Deze methode is onbruikbaar, daar het proces niet convergeert. 

4 

De vergelijkingen, gebaseerd op het principe van virtuele verplaatsingen door 
KOLLBRUNNER en MEISTER ten grondslag gelegd aan het probleem van het 
uitknikken van in hun vlak belaste platen, zijn onjuist ten gevolge van een 
verkeerde formulering van het variatieprobleem. 

KOLLBRUNNER, C . F. und M. MEISTER, Ausbeulen, Springer-Verlag 
(1958). 



5 

Bij het bereiken van de kniklast van EULER van een in zijn uiteinden schar
nierend ondersteunde op druk belaste balk is het evenwicht in het kritieke punt, 
zoals bekend, nog stabiel. De kniklast wordt verhoogd door het aanbrengen 
van een lineaire verende bedding in de zin van WINKLER, waarbij de bedding
reactie per eenheid van booglengte evenredig is met de plaatselijke door
buiging van de balk. Het evenwicht in het kritieke punt is dan echter meestal 
instabiel. 

LEKKERKERKER, J . G., Proc. Kon. Ned. Ak. v. Wet. Series B, 65 (1962), 
190-197. 

6 

De door CAPURSO aanbevolen wijziging van de methode van Ritz ter bepaling 
van de doorbuiging van een plaat, welke daarop neerkomt dat van de aange
nomen functies lineaire combinaties worden gevormd die orthogonaal zijn, 
levert geen vereenvoudiging op. De door de schrijver geuite bewering, dat een 
betere benadering wordt verkregen, is onjuist. 

CAPURSO, M I C H E L E , Citta di Siracusa, Celebr. Archimed. Sec. X X , 
11-16 Aprile 1961, Vol. 3, Simpos. Mecc. Mat. appl. 107-111 (1962). 

7 

De door JACOBS voor een bepaald vleugelprofiel berekende afstand tussen het 
dwarskrachtmiddelpunt van Trefftz en het dwarskrachtmiddelpunt dat ge
definieerd is met het nul zijn van de gemiddelde specifieke wringhoek, namelijk 
8,3% van de lengte der koorde, is onjuist. Deze afstand bedraagt slechts 1,2% 
van de lengte der koorde. 

JACOBS, J . A . , Journa l of the Royal Aeronautical Society, 57 (1953), 
235-237. 
Zie ook: K O I T E R , W . T . , Journa l of the Royal Aeronautical Society, 58 
(1964), 64-65. 

8 

De proeven van BROWN en H A L L ter bepaling van insteekdiepten van balken 
met cirkelvormige doorsnede zijn weinig betrouwbaar. Een belangrijk be
zwaar is, dat niet met zekerheid kan worden gezegd, dat parasitaire verplaat
singen, ten gevolge van de vervorming van de constructie waarin het proefstuk 
is bevestigd, de meetresultaten niet hebben beïnvloed. 

BROWN, J . M. and A. S. H A L L , Journa l of Applied Mechanics, 29 (1962), 
86-90. 



Bij schepen met een niet achterin geplaatste hoofdmotor verdient het aanbe
veling, het verhoogde niveau van de tanktop in de machinekamer over een 
afstand van enkele spanten onder de schroefastunnel te handhaven, teneinde 
een continue stijflieid van de ondersteunende constructie voor schroefas en 
motor te waarborgen. 

10 

De invloed van de vervorming door dwarskrachten op de trillingen van schepen 
wordt onvoldoende in rekening gebracht met de door PROHASKA aangegeven 
correctiefactor. 

PROHASKA, C . W . , Lodrette Skibssvingninger med to Knuder , Kobenhavn 
(1941). 
PROHASKA, C . W . , Bulletin de 1'Association Technique Mari t ime et 
Aéronautique, 46 (1947), 171-215. 

I l 

Het verdient aanbeveling, de schriftelijke eindexamenopgaven voor de basis
vakken aan de Hogere Technische Scholen landelijk centraal te redigeren. 


