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Abstract

A problem faced by Tactile Internet (TI) is the dis-
tance limitation. A possible solution is to create a
simulation of the remote environment, such that the
delay experienced by a human operator is reduced.
However, to obtain a model of the remote environ-
ment, before the user interacts with it, we need to
be able to estimate the physical properties of ob-
jects in the environment from visual information.
This research paper investigates estimating an ob-
ject’s mass from visual information in the form of
a point cloud. The object’s volume is estimated by
surfacing the mesh and dividing the resulting mesh
into tetrahedrons, the volume of each tetrahedron
can quickly be computed and summed to give an
estimate of the total volume. The overall perfor-
mance is better than the naive approach of using
an OBB, however, it is less accurate than a volume
slicing approach.

1 Introduction
Tactile Internet (TI) is an emerging technology that will rev-
olutionize various industries [1]. The IEEE P1918.1 (Tac-
tile Internet) standards working group defines TI as “a net-
work (or network of networks) for remotely accessing, per-
ceiving, manipulating, or controlling real or virtual objects or
processes in perceived real-time by humans or machines” [2,
p. 258]; and give several use cases including teleoperation,
automotive, and immersive virtual reality.

Teleoperation allows a human operator to remotely con-
trol or manipulate an environment in real-time as if they were
physically present [3]. Although not limited to teleoperation,
an important aspect of TI is its potential to facilitate teleoper-
ation applications, such as telesurgery, remote disaster man-
agement, and telerepair; which allows for the transportation
of skills, wherein a skilled worker, like a surgeon or engineer,
can operate in remote environments that would otherwise be
inaccessible due to safety concerns or logistics [1].

A typical TI system compromises a master domain, con-
trolled domain, and network domain, as depicted in Fig. 1.
For example, in telesurgery, where a surgeon (operator) per-
forms a medical procedure by controlling a remote robotic de-
vice (teleoperator); then the operator and teleoperator, com-
bined with their interfaces, are referred to as the master do-
main and controlled domain, respectively [3]. The network
domain, or communication network, is used for exchanging
the haptic signals (position, texture, force, etc.), video sig-
nals, and audio signals between the master and controlled do-
mains [4].

Such a communication network has stricter requirements
than one which only exchanges audiovisual signals. In par-
ticular, stability and ultra-low latency are needed to achieve
fine sensorimotor control. For example, consider the remote
balancing of a basketball, as shown in Fig. 2; this requires
fast and reliable information about the ball’s position, for the
operator to understand the situation, react, and for that reac-

Figure 1: A high-level representation of TI [3].

Figure 2: A stable and ultra-low latency network is needed for a
human to remotely balance a basketball on a robotic hand. [2]

tion to arrive at the other end before the ball passes a point of
no return and falls [2].

For such highly dynamic environments, where the ex-
change of haptic signals is extremely time-critical, a sub-
10ms end-to-end (E2E) round-trip latency is needed; but
simple propagation delay implies that the endpoints can be
a maximum of only 150 km apart (or only 100 km apart for
propagation through fiber) [2]. A reduction in delay, by in-
creasing the speed by which information can travel through
the communication medium, is limited by the speed of light.
However, there are other approaches to reducing the delay;
for example, Mondal et al. [5] attempts to loosen the E2E dis-
tance limitation by forecasting and pre-empting haptic feed-
back transmission.

A possible alternative solution involves simulation at each
endpoint, as outlined in Fig. 3; where communication largely
occurs between the master device (M) and a local simulation
of the remote environment (C’), and similarly, between the
remote controlled device (C) and a local simulation of the
master (M’). Meaning the E2E communication network only
needs to be used for an occasional synchronization, between
an endpoint and its simulation, to ensure the simulated view
matches reality. Thus, not only is the delay experienced by
a human operator reduced as all perceived interactions occur
within a local simulation but the amount of information sent
over the network is reduced to just what is needed for syn-
chronization.

However, for this to work, the remote environment needs to
be accurately simulated, which involves acquiring knowledge
of the physical properties (i.e., mass, center of mass, material)
of objects in the scene before the user interacts with them.
The proposed solution is to estimate the physical properties
of objects using visual information, much like how humans
process new environments.
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Figure 3: A high-level overview of a possible solution, to the dis-
tance limitation of TI, where an operator (M) interacts with a local
simulation (C’) of the remote environment (C).

Affordable depth sensors, such as the Kinect, give access
to high-quality 3D representations of the world, using color
and depth information in the form of point clouds [6]. A point
cloud is a set of 3D-coordinates, and optionally RGB-values,
of the surface of the scanned objects; from which it may be
possible to estimate the physical properties of the objects.

The mass of an object is an important physical property [7],
and is necessary for the accurate behavior of objects in the
simulation. Thus this paper investigates estimating an ob-
ject’s mass from its point cloud. With a focus on estimating
the object’s volume based on a mesh representation of the
point cloud.

The rest of this paper is organized as follows: Section 2
describes existing works. Section 3 gives a formal descrip-
tion of the problems and approaches used to solve them. An
implementation of the proposed solution is described in Sec-
tion 4. The results presented in Section 5, and discussed in
Section 6 whereas the ethics and reproducibility of the study
are discussed in Section 7. Finally, conclusions are given in
Section 8 , along with possible future research in Section 9.

2 Related Works
Recent advances have opened the door to explore the pos-
sibility of estimating an object’s mass using visual infor-
mation [8]. For example, there are approaches for specific
classes of objects, such as fish [9], beef [10], and pigs [11];
as well as class agnostic approaches, such as [7], which do
not rely on class information.

Furthermore, an object’s mass is equal to the product of
its volume and density, so the problem can be split into
the sub-problems of estimating volume and density from
visual information. There are many methods for calculat-
ing the volume of an object from its point cloud, including
those based on volume-intersection methods [12] and vari-
ations on slicing methods [13; 14; 15; 16]. Alternatively,
the point cloud could be converted into a mesh, using any
of the commonly used surfacing methods [17; 18; 19; 20;
21], from which it is possible to calculate its volume.

A promising approach to estimating the density of an ob-
ject is through the use of active thermography [8].

3 Mass estimation in TI
The goal of this research was to assist with the implementa-
tion of the proposed solution to the distance limitation faced

by TI, as depicted in Fig. 3. With a focus on moving toward
the creation of a simple demonstration, such as a collection
of common household objects on a table that a human oper-
ator may grab via a remote robotic arm, to test the feasibility
of the solution. For this demonstration, it is assumed that
there is an RGB-D camera with a clear view of the objects on
the table. From this sensory data, we want to create a model
of the environment that is as complete as possible. The hu-
man operator interacts with a local simulation based on this
model, meaning the delay experienced is somewhat decou-
pled from the network delay, allowing them to perform their
tasks smoothly.

To get an accurate model of the environment, we need to be
able to estimate the objects’ physical properties from the sen-
sory data. There are many challenges to be considered. One
challenge is how to separate the objects in the scene, as the
sensory data does not distinguish individual objects. Another
challenge is handling missing information, as an object may
be occluded for numerous reasons: the back face of an object
may be missing from a partial view, another object may be
blocking the view, the object may have self-occluding geom-
etry, or the object may be in shadow.

In this paper, we investigated the estimation of an object’s
mass from sensory data. For this, we assumed that some
of the aforementioned challenges can and have been solved.
Namely, we worked from point clouds of individual objects,
which assumes that an object’s point cloud can be segmented
from the sensory data of the scene. This is a fair assumption
as many existing segmentation methods could be used [22].
Another assumption made is that the point cloud does not
contain noise, which is a strong assumption depending on the
RGB-D camera used, for example in the case of a consumer-
grade camera like the Microsoft Kinect V1, but the noise may
be reduced by outlier removal based on statistical filtering [6].

We also assumed that the point cloud is not missing infor-
mation; which is a strong assumption to make, but could be
achievable in an environment with multiple RGB-D cameras,
ideal lighting, and properly spaced objects, such that the num-
ber of partial or obstructed views are reduced. Alternatively,
it may be possible to estimate the missing information, for
example by mirroring known points along an object’s axis of
symmetry [23].

Finally, we also assumed that it would be possible to es-
timate the material characteristics, including the density, of
an object from the sensory data. Again, this is a strong as-
sumption, especially when limiting the sensory data to RGB-
D values [24]. However, this assumption becomes more real-
istic when the RGB-D values are supported by supplemental
sensory data, such as IR measurements.

Given these assumptions, the initial approach considered
was to use object classification based on the features and
material properties extracted from the object’s point cloud.
Unfortunately, with the limited sensory data, the problem of
estimating an object’s mass does not reduce to a classifica-
tion task [7]. Causing us to consider a more generalized ma-
chine learning approach, similar to the one used by Standley
et al. [7], but this would require a large set of training data that
would be very time-consuming to create. Additionally, such
machine learning approaches may lead to black box models



as solutions, which we want to avoid because they are difficult
to validate and do not offer insights into the problems. Thus,
we have opted for a more logical approach to estimating the
mass of an object.

An object’s mass is equal to the product of its volume and
density, so the task of mass estimation can be divided into
estimating an object’s volume and density. Since, we have
assumed that an object’s density can be found as part of the
material properties estimated from its point cloud, we focused
on estimating an object’s volume from its point cloud. Of
which there are many existing methods.

A naive approach to volume estimation from a point cloud
is based on the volume of its oriented bounding box (OBB).
Such an approach is useful for quickly obtaining an upper-
bound of the volume estimate, but is generally an over-
estimate because it is not a tight fit of the object’s surface,
as shown in Fig. 4b.

Another approach is to divide the point cloud into slices,
compute the volume of each slide, and then sum the vol-
umes to obtain an estimate for the total volume. This slic-
ing approach has many variations, which differ in how the
point cloud is sliced and how the volumes of each slice are
computed. For example, Zhi et al. [13] cuts the point cloud
along Z-axis, then each slice is projected onto the XY plane,
from which the data points are filtered using a scanning al-
gorithm to get the area of each slice, and thus the volume of
the point cloud. Similarly, Chang et al. [15] cuts the point
cloud into slices of equal thickness along the z-axis, bisects
each slice along the y-axis, and divides each slice into sub-
intervals along the x-axis, then a curve-fitting method is used
to estimate the slice contour from which its area can be es-
timated. Contrasted to Ruchay et al. [16], who make use of
a voxel representation of the point cloud and slice method,
where an octree is used to generate a three-dimensional den-
sity matrix that is sliced into layers along the Z-axis, then the
boundary of each layer can be found, using a modified fill
algorithm, from which the number of voxels inside the point
cloud can be counted and multiplied by the volume of a voxel
to give the total volume.

Finally, an alternative approach is to create a mesh, by
using a surfacing method, and similarly to the slicing ap-
proach, divide the mesh into smaller and easier to compute
volumes. Although transforming a point cloud into a mesh
may be time-consuming [16], we have still chosen this as the
approach to use. This choice was primarily motivated by the
fact that the mesh could be used at other points in the pipeline,
such as for collision detection.

There are many existing surfacing methods, whose per-
formances depend upon the assumptions that could be made
about the input point cloud data such as its level of noise,
available information (RGB, normals, intensity), and the
number of gaps [18]. Based on our assumptions on our ex-
pected point cloud data, we choose to use a surface recon-
struction method, as described by Marton et al. [25], which
makes use of a greedy triangulation algorithm; that ”selects
a starting triangle’s vertices and connects new triangles un-
til either all points are considered, or no more valid triangles
can be connected” [25, 1]. This surfacing method is robust
to noise and maintains a list of the boundary points so the

(a)
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Figure 4: The top figure shows the point cloud generate by sam-
pling a cone object. The bottom figure shows the downsampled point
cloud, contained in the computed OBB depicted in light blue.

mesh can easily be extended when new points are added, for
example when a new view of an object is registered with the
existing views. This allows us to relax some of the assump-
tions made, when conducting future research.

Before applying the surfacing method, we downsample the
point cloud to reduce the number of points to a more workable
amount, while still trying to maintain the shape of the object;
for example, Fig. 4a shows the original point cloud of a cone
object and Fig. 4b shows the downsampled point cloud.

After downsampling, we initially estimated the normals of
the point cloud based on the coordinates of the points. How-
ever, for an accurate estimation of the normals, we required
the position of the viewpoint, but this was missing from our
test data, because the point clouds were synthesized from
multiple viewpoints simultaneously. This meant that when
applying the surfacing method, on the point cloud with erro-
neous normals, we would obtain a mesh where some of the
faces have incorrect normals. For example, Fig 5b is the re-
sult of the surfacing method applied to the point cloud of a
torus object with estimated normals; where faces erroneously
facing inside the object are indicated with red, and faces cor-
rectly facing outside the object are indicated with blue. The
erroneous faces are a result of inaccurate normals, that have
erroneously been oriented towards the viewpoint, which by
default is the origin. Thus, we instead make use of the com-
puted normals from the same program used to synthesize the
point clouds. For example, Fig 5a shows the output of the sur-
facing method applied to the point cloud with actual normals,
which gives the expected result of all faces correctly facing
outside the object.

Using the resulting mesh, which consists of a set of trian-
gular faces that make up the surface of the object, we use a
similar method to the one used by Zhang et al. [26] to com-



(a) Surfaced torus using given normals.

(b) Surfaced torus using estimated normals.

Figure 5: Highlights the difference between using the greedy trian-
gulation surfacing algorithm on a point cloud with normals and a
point cloud with estimated normals. The light blue lines point in the
direction of the face’s normal. The orientation of the faces are fur-
ther distinguished by color, where interior faces are colored red and
exterior faces are colored blue.

pute the volume of the mesh. Where the mesh is divided into
tetrahedrons, the signed volume for each tetrahedron is com-
puted, and all the signed volumes are summed to give the total
volume of the mesh.

Instead of being relative to the origin, we compute the
signed volumes of the tetrahedrons relative to the center of
the computed OBB, such that the triangular face forms the
base of the tetrahedron and the center of the OBB is the ver-
tex at the pinnacle of each tetrahedron. For example, in Fig. 6,
let v1, v2, and v3 be vertices that form a triangular face in the
reconstructed surface and let v0 be the center of the computed
OBB; then the volume of the tetrahedron can be computed as
follows:

1

6
|−(x2−x0)(y3−y0)(z1−z0)+(x3−x0)(y2−y0)(z1−z0)

+(x2−x0)(y1−y0)(z3−z0)− (x1−x0)(y2−y0)(z3−z0)

−(x3−x0)(y1−y0)(z2−z0)+(x1−x0)(y3−y0)(z2−z0)|

Then, to get the sign of the volume, we calculate the inner
product of the vector from the center, v0, to the vertex v1 and
the normal of the triangular face; which is why the normals
of the faces must be facing outside the object, where appro-
priate.

We evaluated the volume estimation approach based on
its performance on synthetic point clouds generated from
meshes, listed in Fig. 7, which includes simple objects such
as a box, cylinder, and cone, that have also been combined
to create more complex shapes such as a stack, chunk, and
bridge, for a more complete evaluation. To further extend

Figure 6: A tetrahedron can be created, where the vertices v1, v2,
and v3 form a triangular face in the reconstructed surface and v0 is
the center of the computed OBB.

the test set, we evaluated the approach on rotated versions of
these meshes.

4 Implementation Details
The Point Cloud Library (PCL), which is a library for point
cloud processing [6], offers many of the methods needed to
implement the volume estimation solution. Starting with the
VoxelGrid class1 which can be used for the downsampling
of the input point cloud data. The voxelized grid approach
downsamples the given point cloud by dividing it into voxels
of the specified dimensions and reducing the number of points
by approximating it with the centroid of the points contained
within the voxel [27].

From the downsampled cloud, the MomentOfInertiaEsti-
mation class2 can be used to estimate the oriented bounding
box (OBB) and center of mass of the object. Based on the
vertices of the OBB, it is possible to find its width, height,
and depth, from which it is possible to obtain an upper bound
on the estimate of the object’s volume.

Additionally, the downsampled cloud can be used in the
surface reconstruction method. The GreedyProjectionTrian-
gulation class3 can be used to apply the greedy triangulation
surface reconstruction algorithm on the point cloud. A set of
triangular faces is returned, in the form of a 3-tuple of indices
that can be used to identify points in the point cloud, which
make up the surfaced mesh.

Iterating through this set of triangular faces, such that for
each face, its vertices and the center of mass form a tetra-
hedron, for which the signed volume is calculated and then
added to the running total volume of the mesh. Once all tri-
angular faces have been processed, the total volume gives an
estimate of the object’s volume.

1http://pointclouds.org/documentation/classpcl 1 1 voxel grid.
html

2http://pointclouds.org/documentation/classpcl 1 1 moment of
inertia estimation.html

3http://pointclouds.org/documentation/classpcl 1 1 greedy
projection triangulation.html

http://pointclouds.org/documentation/classpcl_1_1_voxel_grid.html
http://pointclouds.org/documentation/classpcl_1_1_voxel_grid.html
http://pointclouds.org/documentation/classpcl_1_1_moment_of_inertia_estimation.html
http://pointclouds.org/documentation/classpcl_1_1_moment_of_inertia_estimation.html
http://pointclouds.org/documentation/classpcl_1_1_greedy_projection_triangulation.html
http://pointclouds.org/documentation/classpcl_1_1_greedy_projection_triangulation.html
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Figure 7: The objects used to generate synthetic point clouds for the evaluation of the estimation approach.

For the evaluation of the estimation method, a test set
was created by synthesizing point clouds from artificial ob-
jects with known ground truth values. These artificial objects
were created from mesh primitives in Blender4, as depicted
in Fig. 7. Copies of these meshes were made, which were
then rotated along the Z-axis, then the local X-axis, and fi-
nally the local Y-axis, by 7 and 45 degrees. The faces of all
these meshes were converted to triangular faces, and exported
as OBJ files, so they could be used as inputs to the volume es-
timation method to determine their expected values.

CloudCompare5, which is a 3D point cloud and mesh pro-
cessing software, was used to create 100 different random
samples, with each sample containing approximately a mil-
lion points consisting of XYZ-data and normals, based on the
surface of each mesh. The 100 samples are then used to get
the mean volume estimate, using the naive OBB approach
and the surfacing approach, which can then be compared to
the expected value for each mesh.

5 Results
Table. 1 contains the results of running the oriented bounding
box (OBB) approach to volume estimation on the 100 ran-
dom samples of each mesh, depicted in Fig. 7, rotated by 0,
7, and 45 degrees (along the z-axis, followed by the same
rotation along the local x-axis, and again along the local y-
axis). Where the ”Expected Value” represents the ground
truth, which has been calculated by dividing the artificial ob-
ject into tetrahedrons and summing their signed volumes, the
”Mean OBB Estimate” represents the average of the com-
puted volumes, using the OBB approach, over the 100 sam-
ples for that object at the specified rotation, and the error
is given by the average absolute difference between the ex-
pected and actual values by ”Mean OBB Error” as well as
by a percentage of the expected value by ”Mean OBB Er-
ror (%)”. The values in the table are rounded to two decimal
places to make it more readable. Similarly, Table. 2 shows the
same samples except their volumes are estimated using the

4https://www.blender.org/
5http://cloudcompare.org/

surfacing approach. The mass estimate scales proportional
to the volume estimate, as it is computed using the density
value from the material properties estimate multiplied by the
volume estimate.

6 Discussion
Based on the results in Tables 1 and 2, we can see that the
surfacing approach to volume estimation generally performs
better, than the naive oriented bounding box (OBB) approach
to volume estimation, as it generally has a lower mean per-
centage error. This is expected as the surface approach gen-
erally gives a better fit of the underlying object. However, it
does not perform as well as some other existing methods for
volume estimation from point clouds; for example, Chang et
al. [15] managed to achieve a consistent sub-1% error.

One possible explanation for the approach’s poor perfor-
mance is an incompatible test set. That is, the volume is es-
timated based on the constructed surface using an algorithm
that assumes ”the deviation between the normals of any two
incident triangles on a vertex is less than 90°” [25, 1]. This
is not the case for the test set which makes use of computed
normals, that are at sharper angles than if the normals were
estimated. Resulting in holes in the constructed surface, for
example, see Fig 8, which are not included in the volume es-
timation. It is possible to change the maximum surface angle
considered by the surfacing algorithm, however a value that
performs well on one mesh may not perform well on another;
for example, the inner geometry of the chunk mesh may be
erroneously joined when using a maximum surface angle.

Alternatively, we could synthesize the point clouds for the
test set by obtaining the complete view of the object by se-
quentially capturing partial views, estimating the normals
based on the current viewpoint, and then registering the re-
sults to give a complete point cloud with smoother normals.
Such an approach mirrors the one used to obtain a complete
point cloud in real-life. However, there are still other parame-
ters, such as the voxel leaf size, which affect the performance
of the surface-based volume estimation approach for certain
object shapes. Similarly, volume slicing approaches, like the
one used by Chang et al. [15], also rely on finding the optimal

https://www.blender.org/
http://cloudcompare.org/


Object Rotation
(Degrees)

Expected
Value (cm³)

Mean OBB
Estimate
(cm³)

Mean OBB
Error (cm³)

Mean OBB
Error (%)

Box
0 20,250.00 20,253.93 3.93 0.02
7 20,250.00 20,857.21 607.21 3.00
45 20,250.00 20,506.21 256.21 1.27

Cylinder
0 7,901.16 10,055.39 2,154.23 27.26
7 7,901.14 10,188.60 2,287.46 28.95
45 7,901.18 10,140.96 2,239.78 28.35

Cone
0 4,581.66 17,931.24 13,349.58 291.37
7 4,581.66 18,093.50 13,511.84 294.91
45 4,581.66 18,219.28 13,637.62 297.66

Torus
0 10,846.60 28,223.36 17,376.76 160.20
7 10,846.60 28,319.24 17,472.64 161.09
45 10,846.60 28,389.51 17,542.91 161.74

Chunk
0 66,000.00 72,585.58 6,585.58 9.98
7 66,000.00 84,598.15 18,598.15 28.18
45 65,999.90 84,133.99 18,134.09 27.48

Mug
0 46,941.40 95,572.11 48,630.71 103.60
7 46,941.50 95,669.36 48,727.86 103.81
45 46,941.60 96,368.45 49,426.85 105.29

Stack
0 129,803.00 368,331.36 238,528.36 183.76
7 129,803.00 331,336.29 201,533.29 155.26
45 129,803.00 188,853.91 59,050.91 45.49

Bridge
0 512,000.00 770,113.65 258,113.65 50.41
7 512,000.00 770,717.17 258,717.17 50.53
45 511,999.00 770,656.72 258,657.72 50.52

Table 1: Results based on the oriented bounding box (OBB) approach to volume estimation.

Figure 8: The result of the surfacing algorithm applied to the down-
sampled point cloud of a cone object, that has been rotated 45 de-
grees along various axes. The resulting surface contains erroneous
holes that may be the cause of the large error in the volume estimate.

parameters for certain objects. Thus, for a more generalizable
solution, it may be beneficial to consider a machine learning
approach.

Another explanation for the approach’s poor performance
is the sensitivity, of the implementation of the calculation of
the volume of each tetrahedron, to variations in the position
of the center point. This is most notable from the discrep-
ancies in the ”Expected Values”, in Tables 1 and 2, where
the expected value varies for the same object with a differ-

ent rotation, for example, the mug goes from 46941.40 cm³
to 46941.60 cm³ when rotated 45 degrees, but the volume
should be unaffected by rotations. However another cause
of these discrepancies in the ”Expected Values” may be a re-
sult of floating point errors, as the volumes are being com-
puted in terms of meters cubed, so to represent the artificial
objects which are only thousands of centimeters cubed, re-
quires many decimal places; especially when they are being
subdivided into small tetrahedrons.

7 Responsible Research
The research was entirely conceptual and did not involve any
human participants, so there are not many ethical aspects to
consider. However, wherever possible, we made a strong ef-
fort to conduct and present our research in a responsible man-
ner. This includes giving credit to the authors of any works
that were used, presenting all the data points collected unless
their absence could be properly motivated, and finally being
objective in our findings.

The reproducibility of the research relates to conducting
the research in a responsible manner. A large focus of this
study was on the reproducibility of the results, which was
one of the motivations for the choice of using a synthetic data
set for evaluation. Additionally, open source tools such as
Blender, CloudCompare, and the Point Cloud Library (PCL),
were chosen to make evaluation easily accessible to anyone.
Finally, a thorough description of the set up of the environ-
ment used to evaluate the performance of the solutions was



Object Rotation
(Degrees)

Expected
Value (cm³)

Mean Mesh
Estimate
(cm³)

Mean Mesh
Error (cm³)

Mean Mesh
Error (%)

Box
0 20,250.00 18,629.75 1,620.25 8.00
7 20,250.00 18,689.14 1,560.86 7.71
45 20,250.00 19,161.78 1,088.22 5.37

Cylinder
0 7,901.16 7,387.25 513.91 6.50
7 7,901.14 7,478.40 422.74 5.35
45 7,901.18 7,496.47 404.71 5.12

Cone
0 4,581.66 4,655.32 73.66 1.61
7 4,581.66 4,620.15 38.49 0.84
45 4,581.66 2,605.36 1,976.30 43.13

Torus
0 10,846.60 10,768.54 78.06 0.72
7 10,846.60 10,763.14 83.46 0.77
45 10,846.60 10,763.63 82.97 0.76

Chunk
0 66,000.00 61,425.68 4,574.32 6.93
7 66,000.00 62,475.71 3,524.30 5.34
45 65,999.90 63,269.08 2,730.82 4.14

Mug
0 46,941.40 45,555.86 1,385.55 2.95
7 46,941.50 45,377.22 1,564.28 3.33
45 46,941.60 45,565.43 1,376.17 2.93

Stack
0 129,803.00 123,148.25 6,654.75 5.13
7 129,803.00 124,166.36 5,636.64 4.34
45 129,803.00 125,659.88 4,143.12 3.19

Bridge
0 512,000.00 495,681.30 16,318.70 3.19
7 512,000.00 497,514.15 14,485.85 2.83
45 511,999.00 500,105.57 11,893.43 2.32

Table 2: Results based on the surfacing approach to volume estimation.

given.

8 Conclusions
Tactile Internet has many applications across multiple fields.
One use case for TI is teleoperation, which would allow for
efficient transportation of skills. However, in highly dynamic
teleoperation applications, an ultra-low latency network is
needed for communication, this limits how far endpoints can
be from each other. One possible solution to this distance lim-
itation involves simulating the remote environment such that
the delay experienced by the human operator is reduced. But
to simulate the remote environment, before the user interacts
with it, would require existing knowledge of the environment
or the capability to obtain a model from visual information.

Thus as part of the research into the feasibility of esti-
mating the physical proprieties of objects, in a remote en-
vironment, based on visual information; this research paper
focused on the estimation of an object’s mass from RGB-
D data. Certain assumptions were made about the sensory
data, including assuming that, firstly, the data does not con-
tain noise and is complete. Secondly, it is assumed that the
objects can be segmented from the sensory data of the scene.
Finally, it is assumed that an object’s density can be deter-
mined from its estimated material properties from the sensory
data.

Given these assumptions, an volume estimation approach
that uses a greedy triangulation surfacing algorithm was in-
vestigated, by evaluating its performance on an artificial test

set. From which it was determined that the approach performs
better than the naive oriented bound box (OBB) approach to
volume estimation, but in terms of percentage error, the ap-
proach does not perform as well as other volume estimation
approaches that make use of a slicing approach. However it
is difficult to compare the reported results; as the authors of
the papers, who have investigated such slicing approaches to
volume estimation, have not made the point cloud used for
their evaluations publicly available. Additionally, the method
we used to generate the point clouds used for evaluation may
have negatively affected the validity of the results. As we
make use of synthetically computed normals, as opposed to
estimate normals, which are not as compatible with the cho-
sen surfacing algorithm; this may explain why an artificial
object such as the cone rotated by 45 degrees may perform
poorly, leading to a 43.13 percent error.

9 Future Work
The point clouds used to evaluate the performance of the esti-
mation approach could be improved by incrementally obtain-
ing various partial views of an artificial object, from which
the normals can be estimated based on the current position
of the viewpoint, and registered with the current profile, un-
til a complete view of the object is obtained. Not only does
this approach resemble how point clouds are obtained in real-
ity, but also means the normals are distributed more smoothly
which may lead to better surfacing performance. This im-
proved test set can then be used to properly compare the var-



ious existing methods for volume estimation.
Research should be conducted to determine how realistic

are the assumptions that were made. For example, can an
object’s density be accurately determined from its estimated
material properties based on the sensory data? If these as-
sumptions are too strong, then perhaps a more generalizable
machine learning approach should be considered for obtain-
ing an object’s mass from the sensory data. Finally, research
needs to be conducted on what level of accuracy, for the esti-
mated mass, is required to create a realistic simulation.
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