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S U M M A R Y

High waiting times for trucks at the terminal gates of seaports are an issue that is increasingly re-
ceiving more attention. Long queues of idling trucks in front of the terminal waiting to pick up or
deliver a container create congestion, and induce emissions, costs and delays. Container terminals
in the port of Rotterdam, the largest European port, are no exception to these issues. The waiting
times for trucks at the terminal gates are rapidly increasing the past 6 years. The high waiting time
at the terminal is an indicator for misalignment between port and its hinterland. With this research
it is sought to develop a method to reduce truck waiting time in the port of Rotterdam area taking
the port and hinterland system into account, and, hence, to improve the port-hinterland alignment.
The main research question is formulated as follows:
How can port-hinterland alignment at the port of Rotterdam be improved such that the waiting
time at container terminals is reduced?
This main question is supported by the following sub-questions:
1. What are the main causes of misalignment between port and hinterland which result in waiting time at the
container terminals?
2. How can an intervention be designed to reduce the waiting time at the container terminals?
3. What is the potential gain of the intervention in terms of waiting time at the container terminals?

A seaport, as a node in a transport network, functions as a connector of two legs of transportation.
These two legs are seaside and landside transport. These two legs overlap at the terminal gates. This
indicates that the activities at the terminal gates cater the alignment of the port and its hinterland.
In Figure 0.1 a conceptual overview of the port system and the focus of this research is provided.

Scope: port processes

Hinterlandside

Hinterland warehouse

TerminalSeaside

Supply

Demand

Truck arrival

Truck departure

Terminal service

Vessel 
operations

Figure 0.1: Conceptual overview of the port system and the focus of this research

The alignment between a port and its hinterland is indicated by the ability to integrate the port
effectively into the transport, logistic and supply chains and fully exploit synergies with transport
nodes, logistic networks, and various stakeholders. The synergies relate to efficient utilisation of
capacity and operations. Establishing these synergies goes beyond port boundaries and across
various stakeholders, and is highly related to hinterland connections.

Consequently, misalignment is caused by the lack of connectivity between port and hinterland.
Improving port-hinterland alignment requires both long- and medium-term strategies (e.g. expand-
ing terminal capacity, intermodal freight corridors, dry ports or extended gates), and short-term
traffic management solutions (e.g. real-time traffic information sharing or time slot management).

In general, port-hinterland connectivity can be viewed from two perspectives. The first of which
is the physical connectivity. From this perspective the connection of the port to the hinterland can be
improved through the expansion of physical infrastructures. The physical connectivity perspective
predominantly captures long-term strategies. The second perspective is digital connectivity where
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multiple stakeholders can communicate and exchange information for better cooperation and coor-
dination. Additionally, digital connectivity comprehends the control of demand patterns. This form
of connectivity largely requires short-term strategies as well as medium-term strategies. Physical
connectivity is considered a precondition to achieve port-hinterland alignment at all. Digital con-
nectivity in addition to physical connectivity ensures efficient use of physical infrastructure.

The alignment port and hinterland can be approached as a matter of matching demand and supply
(Figure 0.1). The demand is represented by the trucks that arrive at the terminal to pick up or
deliver a container. The terminal operational capacity represents the supply. Ideally, the demand
and supply match perfectly, without a surplus or scarcity from any of the two sides. There are two
relevant types of bottlenecks that can cause the mismatch of demand and supply. These bottlenecks
can arise in port-hinterland physical or digital connectivity. The bottleneck can originate from either
the demand or supply side. The combinations of the bottleneck type and origin capture the causes
of misalignment between port and hinterland.

From the supply side, scarcity of capacity can cause misalignment. From demand side, misalign-
ment can be caused by demand patterns. Physical bottlenecks are caused by scarcity of physical
(infrastructural) capacity. For example, a lack of cranes, manpower or container storage. The digital
bottlenecks are caused by inefficient operations or poor demand prediction, predominantly due to a
lack of information exchange, communication, cooperation and coordination between stakeholders.

Opposed to physical connectivity, there is limited research towards digital connectivity because
the exchange of data and information have always been critical due to privacy issues and fear of
potential competitive advantages for other stakeholders. Moreover, the present research field lacks
short-term traffic management strategies to mitigate truck traffic at terminal gates. Previous research
is predominantly focused on reducing truck traffic congestion via physical infrastructure solutions.
Nevertheless, there is potential to reduce waiting times using digital solutions for connectivity by
controlling traffic demand patterns. Furthermore, the root of misalignment at the port of Rotterdam
lies within inadequate control of truck arrival. Consequently, a digital solution is proposed to
reduce waiting time at the terminals and accordingly improve port-hinterland alignment. This
solution is found within traffic management strategies to control demand inflow at the terminals. An
overarching strategy to control truck arrivals and reduce waiting time, is by shifting truck arrivals
to other time periods. By implementing a Truck Arrival Shift control strategy, trucks can be shifted
from peak periods to quieter time periods. Hence, peaks in demand can be reduced.

A design, modelling and simulation approach is taken for the design and evaluation of the Truck
Arrival Shift policy. In this approach various methods are applied. These include a literature review,
data analysis, discrete choice modelling, discrete-event simulation and the development of a heuris-
tic. A suitable and well-known measure to instigate the truck arrival shift is the implementation of
a truck appointment system. A truck appointment system is optimised through a time slot manage-
ment system. Therefore, insight in a methodology for the design of time slot management systems
is used to consequently design and evaluate the Truck Arrival Shift policy.

In the light of this research, there are two components in the development of a time slot management
system and thus for the Truck Arrival Shift policy. The first component is a simulation platform that
can accurately mimic the real world. The second component is an allocation framework to guarantee
the best match between demand and supply and hence an optimum design. These two components
must be integrated to obtain a complete design for the time slot management system.

In the field of time slot management system design, most researchers aim to optimise the time slot
management system from a terminal’s perspective. By doing this, many studies fail to recognise the
impact of such a system on other stakeholders among which truck operating companies. Therefore,
the truckers’ perspective in the design and evaluating of the Truck Arrival Shift policy is included
in this research by exploring the behaviour of truck operating companies. Behaviour modelling in
the form of discrete choice modelling allows to explore trucker behaviour and is a suitable way to
include preferences of truckers for container pick up time in the research.

Based on the components required for the design of a time slot management system and short-
comings of previous research, a modelling framework is defined to design and evaluate the Truck



Arrival Shift policy in this research. The modelling framework captures the methodology of this
research and is presented in Figure 0.2.
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model

Choice
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Waiting time
profiles

Waiting time gain
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Figure 0.2: Modelling framework

A terminal model is developed to simulate the processes at the terminal. With the terminal model,
a waiting time profile can be simulated from an arrival profile. The terminal model is set up using
historic traffic data. The terminal model is formulated as a queueing model and discrete-event
simulation is used to represent the port system. The terminal model includes three components,
namely the truck generator, the trucks and the server. Together these three components make up
three processes in the terminal model. The three processes in the model are the arrival process, the
server process, and the departure process.

A choice model is developed to gain insight in the behaviour of the truck operating companies
regarding time period choice for container pick up. Based on this insight, a truck shifting strategy
can be formulated to control truck arrivals at the terminals. The choice model is based on discrete
choice theory. The definition of the choice problem in this research is the choice of a trucker to pick
up a certain container at a certain time. The probability of choosing a certain time is computed
from the attractiveness of the alternatives. The attractiveness is measured from the utility function
for each alternative. The utility function captures the influence of an attribute from the data. The
choice model is set up using logistic data of container type and commodity type and the expected
arrival time of the trucker.

Based on the truck shifting strategies that result from the choice model, the truck shifting heuristic
is developed. The purpose of the truck shifting heuristic is to compute new arrival profiles based on
the truck shifting strategies that resulted from the choice models. There are various steps involved
to shift trucks and compute new arrival profiles. These steps are visualised in Figure 0.3.
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Figure 0.3: Overview of the truck shifting heuristic
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Lastly, the waiting time gain calculation provides the results for evaluating the effect of controlling
truck arrivals. With the terminal model, the waiting time profiles corresponding to the scenario
arrival profiles from the truck shifting heuristic, can be simulated. By comparing the simulated
waiting time profiles from the scenarios with the base case a waiting time gain can be calculated.
The scenarios are displayed in Table 0.1.

Table 0.1: Overview of scenarios and corresponding application rates. *Scenario 16 represents a reference
scenario indicating an equal spread of truck arrivals along the day

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Application rate 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80% 90% 100% Equal*

The simulated waiting time profiles provide insight in the effect of the Truck Arrival Shift policy on
the waiting time. Consequently, the waiting time profiles are analysed statistically to evaluate the
potential significant reduction of waiting time. The results show that the truck shifting strategies
are capable to reduce waiting time significantly compared to the current situation at the terminals,
at small application rates. The implementation of a Truck Arrival Shift policy is found to be an
effective measure to spread truck arrivals along the day. Additionally, the Truck Arrival Shift is a
control policy with low effort high reward due to the significant reduction at small application rates.

In addition to a statistical analysis to explore significant effects on waiting time, the waiting time
gain is analysed. By subtracting for each hour the total waiting time (for all truck and for the entire
day) for each scenario from the base case, the waiting time gain profile can be computed.

The development of waiting time gain under various application rates (scenarios) is displayed
in Figure 0.4. The solid lines represent the development of the waiting time gain under various
application rate scenarios. The dotted lines represent the waiting time gain in the 16th scenario.
The 16th scenario, represents the scenario in which an entirely equal spread of trucks along the
day is simulated. The scenario is used as reference scenario as an entirely equal spread of trucks is
considered the perfect situation at the terminal for truck arrival. The number of trucks arriving will
always stay below the terminal capacity and there will not be any waiting time. Consequently, the
waiting time gain in the 16th scenario is the largest possible. It can be concluded that this largest
possible waiting time gain at the terminal can almost be achieved with the shift strategies.

The development of the waiting time gain (Figure 0.4) shows that there is an optimal percentage
for shifting trucks to reduce waiting time. It can be observed that the gain under small application
rates (5% - 10%) is already quite close to this optimum.

Moreover, it is found that under high application rates of truckers to the control of truck arrivals,
there is no waiting time gain, but a loss. This means that under high application rates of truckers,
the Truck Arrival Shift policy is not beneficial.
The optimal waiting time gain would be achieved with a shift around 40% of truck arrivals. How-
ever, the ideal situation is not solely represented by achieving the highest possible waiting time
gain. In the ideal situation the effort must also be considered as a shift of trucks does not naturally
happen, it requires effort. The effort required is expected to increase with higher shift percentages.
Therefore, the optimal waiting time gain achieved under 35%-45% shift percentage, might not reflect
the ideal situation for shifting trucks. The ideal situation is represented by low effort high reward.
In other words, achieve high waiting time gain with small shift percentages.

In Table 0.2 the waiting time gain in hours is converted to a monetary gain in euro and a productivity
gain in hours for truck operating companies. The monetary gain indicates the cost saved by the truck
operating company as the truck does not have to wait at the terminal. The cost of waiting at the
terminal are estimated to 38 euro per hour. The cost of transporting a container are 62 euro per
hour. The second to right column in Table 0.2 (productivity gain) presents how many hours of
transporting a container via road can be gained from not waiting at the terminal, hence a gain in
road container transport productivity. This is calculated by dividing the total waiting time gain
(terminal wide) by the cost of transporting a container on the road (62€/h). The Truck Arrival Shift
policy allows for around 200 hours of productivity gain with the saved costs for waiting at the
terminals, on a daily basis. In other words, the waiting time gain for truck operating companies
equals the transportation of around 200 containers for one hour. If an average transportation time
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Figure 0.4: Development of the waiting time gain along the scenarios, in comparison with the reference sce-
nario

of one hour is assumed for the Netherlands, this productivity gain equals almost 10% of the entire
production in the system on a daily basis.

The most right column (gain/truck) provides insight in the ratio benefit of shifting versus number
of trucks that have to shift. As said, low effort high reward is desired. It can be observed that a
shift percentage of 10% will terminal wide provide the highest value in terms of effort and reward.
This gain per trucks does not only indicate a ratio of effort and reward. Additionally, the most right
column indicates a so called social gain. The social gain refers to contribution of a shift made by
one single truck to the entire system. Not only the portion of trucks that is shifted benefits from the
shift. Rather all trucks benefit of a shift made by another truck. The trucks that are shifted do not
only save waiting time in the peak periods, which would cost 38 euro per hour. Additionally, the
truck that is shifted contributes to a social benefit because the trucks that are not shifted, will also
experience a waiting time reduction even though they still arrive in the original peak period.

Table 0.2: Waiting time gain in monetary value [€] and road container transport [hour] for TOC on an average
working day

Gain at each terminal
Share

shifted
Trucks shifted

(terminal wide)
Terminal A Terminal B Terminal C Terminal D

Total gain
(terminal wide)

Productivity
gain [hours]

Gain/
truck

5% 114 € 1.061 € 1.582 € 3.176 € -638 € 5.181 83 € 45

10% 230 € 3.356 € 2.627 € 4.802 € 1.144 € 11.929 192 € 52

15% 344 € 3.014 € 2.253 € 5.447 € 1.203 € 11.916 192 € 35

20% 459 € 3.069 € 2.867 € 5.477 € 1.604 € 13.017 210 € 28

25% 537 € 3.073 € 2.879 € 5.742 € 1.811 € 13.505 218 € 25

30% 687 € 3.093 € 2.914 € 5.855 € 2.105 € 13.967 225 € 20

35% 803 € 3.152 € 2.948 € 5.876 € 2.410 € 14.386 232 € 18

40% 917 € 3.112 € 2.900 € 5.872 € 2.521 € 14.405 232 € 16

45% 1030 € 2.775 € 2.770 € 5.838 € 2.647 € 14.029 226 € 14

50% 1146 € 2.431 € 2.651 € 5.706 € 2.667 € 13.456 217 € 12
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The potential waiting time gain, productivity gain and social gain by controlling truck arrivals by
means of a Truck Arrival Shift policy are striking results from this research. Since a system is as
efficient as the weakest link, improving the performance of the weakest link, improves the entire
system. Hence, controlling truck arrivals does not only cause a gain at the terminal gates, it actually
solves costs in the entire system. The root of misalignment at the port of Rotterdam lies within inad-
equate control of truck arrival. Truck shifting is found to improve the performance of this weakest
link and thus of the entire container transport system. Consequently, every minute of gain at the
terminals is gain for the entire container transport system. Therefore, the shift of truck arrivals is
expected to be beneficial for most stakeholders in the port system. For some stakeholders more
than others, but for all a measurable reduction of costs along with the waiting time reduction for
the trucks at the terminal gates is expected.

There are three things crucial to implement the Truck Arrival Shift policy effectively in practice and
consequently improve port-hinterland alignment at the port of Rotterdam. First and foremost, data
sharing between stakeholders is important as this allows to shift the trucks and increases digital
connectivity. Fortunately, the proposed framework for the Truck Arrival Shift policy allows for
sharing information and data safely, without violation of privacy or creating competitive advantages.
Secondly, the shippers and forwarders should relax the constraints regarding container pick up time.
This can be accomplished by data sharing to control truck arrivals. Lastly, the opening hours in
the hinterland must be extended. The Truck Arrival Shift policy requires that the truck operating
companies can operate outside the traditional hinterland operating hours.

All in all, to implement an effective Truck Arrival Shift policy and realise a waiting time reduction
in practice to successfully improve port-hinterland alignment, the Port of Rotterdam can pull two
strings. First, the Port of Rotterdam should manage safe data sharing between stakeholders so
that the truck arrivals can be controlled. Moreover, the Port of Rotterdam should take the lead in
extending hinterland opening hours.

Even when the waiting time reduction in practice is less than the reduction found in this research,
the Truck Arrival Shift policy is still valuable for improving port-hinterland alignment as the imple-
mentation of the Truck Arrival Shift policy increases digital connectivity.

There were some limitations in the research regarding data availability, limitations in methodology
and neglecting changing environment in the port area. However, these limitations are not expected
to have had significant impact on the results because all choices are sustained with valid argumen-
tation or checked with statistical analysis.

Lastly, various implications for future research arise. The recommendations relate to the devel-
oped models and the implementation of the Truck Arrival Shift policy in practice.
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1 I N T R O D U C T I O N

High waiting times for trucks at the terminal gates of seaports are an issue that is increasingly
receiving more attention. Long queues of idling trucks in front of the terminal gate waiting to pick
up or deliver a container create congestion, and induce emissions, costs and delays [Sharif et al.,
2011; van Asperen et al., 2013; Merk and Notteboom, 2015; Li et al., 2018].

Container terminals in the port of Rotterdam, the largest European port [World Shipping Council,
2020], are no exception to these issues. The waiting times for trucks at the terminal gates have been
rapidly increasing the past 6 years [Drewes and Gorter, 2017]. In 2014 the maximum waiting time at
the terminals for container pick up or delivery in the Rotterdam port area was around 40 minutes.
In 2016 this increased to around one hour and 40 minutes. In 2020, reports show that there has
been an increase in waiting time, up to three hours, at the port of Rotterdam container terminals
[Rijnmond, 2020].

The Dutch Association for Transport and Logistics (TLN), representative of the truck operating
companies (TOC), has expressed great concern regarding the waiting time at the Rotterdam terminals
[TLN, 2020], as these directly affect the turnaround time for trucks. Turnaround time can be defined
as the total time spent by a truck in the port area, the duration from the arrival of a truck at the
terminal to the moment of exit [Chen et al., 2013a], thus service time plus the waiting time. Minimal
turnaround times ensure that TOC can engage in more transport activities, and accordingly increase
their economic value. Additionally, the Port of Rotterdam (PoR) (the port authority in Rotterdam)
does not desire the current situation with long queues and waiting time as this can eventually
affect their competitive position [Martinho, 2008] and sustainability goals [Port of Rotterdam, 2020a].
The terminals operating in the Rotterdam port area acknowledge the long queues during the day,
however they note that there is no congestion during the evening and night [Stroosman, 2020].

1.1 problem and background
High waiting time and therefore non-optimal turnaround times for trucks are a problem that the
terminals, TOC and PoR face regularly. This problem is a result of misalignment which is due to the
lack of connectivity between port and hinterland. Many factors, among which are port accessibility,
competitiveness and reliability, play a role in or are (in)directly affected by the problem of misalign-
ment [Notteboom, 2006; Ducruet et al., 2014]. Improving port-hinterland alignment requires both
long-term strategies (e.g. intermodal freight corridors, dry ports or extended gates) and short-term
traffic management solutions (e.g. real-time traffic information sharing or time slot management).

One of the most important reasons for truck traffic congestion at the terminals and therefore wait-
ing time at terminal gates, is a lack of port-hinterland alignment [Merk and Notteboom, 2015]. The
alignment is indicated by the ability to integrate the port effectively into the transport, logistic and
supply chains and fully exploit synergies with transport nodes, logistic networks, and various stake-
holders [Notteboom, 2009]. The synergies relate to efficient utilisation of capacity and operations.
Establishing these synergies goes beyond port boundaries and across various stakeholders, and is
highly related to hinterland connections. Many studies have been conducted towards the alignment
of port and hinterland in the context of port-hinterland connectivity [Martinho, 2008; Notteboom,
2009; Franc and Van der Horst, 2010; Wan et al., 2018]. In general, this connectivity can be viewed
from two perspectives.

The first of which is the physical connectivity. From this perspective the connection of the port to
the hinterland can be improved through the expansion of physical infrastructures. Examples are
expanding capacity by crane purchases, the development of intermodal freight corridors [Monios
and Lambert, 2013], extending port activities to inland terminals like dry ports [Roso et al., 2009]
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or extended gates [Veenstra et al., 2012], and night time storage facilities for containers near hin-
terland warehouses. Previous research [Roso and Leveque, 2002; Roso et al., 2009; Veenstra et al.,
2012; Monios and Lambert, 2013; Merk and Notteboom, 2015; ITF, 2016] has proved the effectiveness
of improved physical connectivity in the reduction of truck traffic at terminal gates. However, the
solutions from this perspective require a lot of time and costs to implement and can therefore be
categorised as more long-term strategic solutions.

The second connectivity perspective is digital connectivity where multiple stakeholders can com-
municate and exchange information for better cooperation and coordination. Additionally, digital
connectivity comprehends the control of demand patterns. As opposed to physical connectivity,
there is limited research towards digital connectivity because the exchange of data and information
have always been critical due to privacy issues and fear of potential competitive advantages for other
stakeholders. In contrast to physical connectivity solutions, advancements from the digital connec-
tivity perspective may have the potential to be implemented more rapidly as no large physical
infrastructure is required. Therefore, some solutions from this perspective can also be categorised
as more short-term solutions.

De Langen and van der Horst [2008] propose a framework with four types of solutions to solve
coordination problems in the transportation chain. From their research, they concluded that poor
coordination of stakeholders along the transportation chain can cause misalignment of port and
its hinterland. Additionally, in the context of digital connectivity, De Langen and van der Horst
[2008] and other scholars indicate the lack of information sharing between stakeholders as a cru-
cial problem in transportation chains. Examples of other studies towards stakeholder coordination
in transport chains and how this affects the efficiency of container transport are Franc and Van
der Horst [2010], van der Horst and van der Lugt [2011], Bergqvist and Egels-Zandén [2012] and
Bergqvist [2012]. Nevertheless, stakeholder coordination, as proposed in previous studies, suggests
a considerable time horizon.

Additionally, digital connectivity can help managers to apply more short-term traffic management
solutions for congestion at terminal gates. A strategy to reduce congestion at terminal gates is by
controlling demand inflow by application of a Truck Arrival Shift (TAS) policy. The application of
a TAS policy has the potential to allow for effectively allocating truck demand to terminal capacity
and vice versa. Examples of practical solutions to instigate a TAS policy are time-varying tolls [Chen
et al., 2011], sharing of real-time traffic information [Sharif et al., 2011], and the implementation of
a Time Slot Management System (TSMS) [Chen et al., 2011, 2013a; Wibowo and Fransoo, 2020].

Few attempts have been made to explore the application of a TAS policy. Sharif et al. [2011] conduct
a research in the context of information sharing between stakeholders using a traffic management
solution in the form of a live view of the terminal gates. The result of this study is promising as they
show that providing real-time gate congestion information and some simple logic for estimating the
expected truck waiting time can minimise congestion at terminals gates as TOC shift their arrival to
another time. This shows there is potential for a TAS policy to reduce congestion and waiting time
at terminals, and consequently improve port-hinterland alignment.

On the port side, applying a TAS policy allows terminal operators to improve their operational ef-
ficiency at terminal gates and consequently reduce truck waiting time [Chen and Yang, 2010; Zhang
et al., 2013; Chen et al., 2013b; Phan and Kim, 2015; Zhang et al., 2019]. On the hinterland side, TOC

can benefit from a TAS policy as it can improve their turnaround time. Nevertheless, the operations
of the TOC are largely affected by the application of a TAS policy as they might have to shift their ar-
rival time. Previous studies predominantly ignore the hinterland side i.e. neglecting the roadside or
user perspective. The studies from Chen et al. [2011, 2013a] and Wibowo and Fransoo [2020] come
closest as they limit the deviation from the preferred time slot of a TOC and include the objectives
of the TOC in the optimisation of a TSMS, respectively. However, in this approach the behavioural
perspective is not included. It is strongly believed that it is essential to consider both the port and
hinterland side, taking multiple stakeholders in the transportation chain into account, to improve
port-hinterland alignment and hence the interest.

In sum, poor developments in either physical or digital connectivity deteriorate alignment between
port and hinterland. The misalignment increases truck traffic congestion and waiting time at ter-
minal gates and consequently pose various problems, including congestion, emissions, costs and
delays to the transportation chain. Although improving physical connectivity enhances truck traffic



in the long-term, the improvement of digital connectivity proposes more short-term traffic man-
agement solutions on a daily basis. Nevertheless, the presence of minimal physical connectivity
must be considered as a constraint for providing alignment between port and hinterland at all. Yet,
physical alignment alone is not sufficient, digital connectivity can enhance the overall connectivity
complementing physical connectivity.

1.2 research approach
The research in the thesis follows from the problem and background discussed in the previous
section. In the approach for this research a gap is highlighted, objectives are defined, the scope is
determined, research questions are formulated and a method is decided upon.

1.2.1 Gap

Despite the efforts of many scholars, not all aspects of port-hinterland alignment are yet explored.
The present research field lacks short-term traffic management strategies to mitigate truck traffic
at the gates. Previous research is predominantly focused on reducing truck traffic congestion by
physical infrastructure solutions. Nevertheless, previous research indicates the potential of digital
connectivity by controlling traffic demand patterns to reduce congestion at the terminal gates.

The traffic management control strategy that is increasingly receiving attention is the application
of a TAS policy. Several studies have been conducted towards implementing a TAS policy to reduce
truck congestion at terminal gates. However, the vast majority of these studies are from the per-
spective of the terminal. These truck shifting strategies consider how many trucks can be served at
once at the terminal, consequently the shifting the other arrivals. This way of shifting truck arrival
is predetermined by the terminal potential, neglecting the roadside or user behavioural perspective.

Moreover, previous research towards TAS design lacks inclusion of all relevant intricacies associ-
ated with the system in the design. Inaccurate assumptions or unjustified simplifications have been
made for the design components of a TAS policy. Especially in the arrival and queueing process
there is a gap regarding the reality.

1.2.2 Objectives

This research seeks to develop a method to reduce truck waiting time in the Rotterdam port area
taking the port and hinterland systems into account, and, hence, to improve the port-hinterland
alignment. This is the main research objective.

In this research a TAS policy for TSMS is studied as a solution for the waiting time at the terminal
gates, since the result of this research and others (Section 1.1) indicate that a TAS policy is indeed
effective to reduce the waiting times. However, to thoroughly grasp the issue of port-hinterland
alignment and improve this, knowledge of TAS alone is not sufficient. Rather the bigger picture
regarding port-hinterland alignment must be explored.

Consequently, to achieve the main objective, insight in the misalignment issue is required. Various
possibilities to solve the misalignment should be reviewed. Subsequently, a method should be
designed and evaluated on the ability to solve the problem of waiting time at the gates. Lastly, the
designed method should be linked to practice.

1.2.3 Scope

At the heart of this research is the focus on landside transportation, as the alignment between port
and hinterland is studied. Cargo handling at the seaside and the transshipment of cargo are out of
scope. Therefore, the port processes referred to in this research comprehend the arrival of a truck at
the terminal, the handling of a truck in the terminal, and the departure of a truck from the terminal.

Even more so, the focus is on container transportation and more specifically on closed containers,
open top containers are out of scope. Hence, dry and liquid bulk, and break bulk are not included
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in the scope of this research. Therefore, the term ‘terminal’ used in this research always refers to a
container terminal.

Subsequently, pipelines as transport mode are left out of scope, as well as the rail and barge
transport modes. This research focuses solely on the truck transport mode via road. Road transport
contains the largest share of container transport in the port of Rotterdam, and this share has been
growing recently [Port of Rotterdam, 2020b]. Moreover, in the last few years initiatives, Nextlogic
[Nextlogic, nd] and OnTrack [Port of Rotterdam, nd], have successfully emerged to optimise the rail
and barge modalities, respectively. For the trucking mode such a successful project is still missing.

The consequences of misalignment, namely affected port attractiveness and competition [Mart-
inho, 2008], are mentioned occasionally but will not be elaborated extensively as this research is not
towards that matter. However these are evidently related to the port-hinterland alignment and can
therefore not be left entirely unmentioned.

Lastly, the focal point of this research is on exploring short-term solutions to solve day-to-day
traffic issues at the terminals by controlling truck arrivals rather than to solve the underlying causes
of the misalignment issue. The causes of misalignment are explored to allow for a realistic solution
design. Nevertheless, entirely eliminating the cause of misalignment is expected to require another
approach, more time and different measures than are available for this research [Stroosman, 2020].

1.2.4 Questions

To fill the identified knowledge gaps (Section 1.2.1) and achieve the research objectives (Section 1.2.2),
a main research question is formulated. Prior to answering the main research question, several other
questions should be answer. These questions are formulated as sub-questions in the research.

The main research question is formulated as follows:
How can port-hinterland alignment at the port of Rotterdam be improved such that the waiting
time at container terminals is reduced?

The following sub-questions are formulated to answer the main research question:
1. What are the main causes of misalignment between port and hinterland which result in waiting time at the
container terminals?
2. How can an intervention be designed to reduce the waiting time at the container terminals?
3. What is the potential gain of the intervention in terms of waiting time at the container terminals?

1.2.5 Method

In this research a design, modelling and simulation approach will be used to study the misalignment
issue regarding waiting time at the terminals in the Rotterdam port area.

Several methods are applied to answer the formulated research questions in Section 1.2.4. These
methods include a literature review, data analysis, discrete choice modelling (DCM), discrete-event
simulation (DES) and the development of a heuristic.

By means of a literature review, the causes and potential solutions for misalignment are explored.
Moreover, a literature review is used to gain insight in how to design an intervention to reduce
waiting time at the terminals. To include the TOC perspective in the designed intervention, DCM is
used. Logistic data of import containers in the year 2017 is input for this choice model.

To evaluate the performance of the intervention, a novel framework is introduced in this research.
This framework consists of two components. These are a simulation platform and allocation frame-
work. In the simulation platform, DES is applied to simulate the port processes and consequently to
allow for evaluating the effect of the designed intervention. The input for the DES model is traffic
data of 2017, obtained from loop detectors in the port area. The allocation framework heuristically
applies a set of rules to control the truck arrivals. Consequently, with the allocation framework
input for the DES model is generated to evaluate the intervention under various scenarios.



1.3 research impact
It is expected that this research has scientific impact as well as social impact. The contribution and
the beneficiaries are highlighted in this section.

1.3.1 Contribution

With this research several contributions will be made to the academic field.
First of all, this research will provide an insight in the issue of misalignment in the light of the

daily operations at the terminal and digital connectivity. This is complement to previous research
that is mainly focused on analysing the port-hinterland alignment from the physical connectivity
perspective.

Another contribution is that this research will provide an insight in several approaches, this will
provide other scholars with knowledge of possibilities to solve misalignment.

Furthermore, in this research, a TAS policy is designed which will respond to research gaps found
in TAS design. To evaluate the performance of this policy, a novel framework is introduced in this
research.

1.3.2 Beneficiaries

This research is conducted in cooperation with the port authority of Rotterdam (PoR). As they desire
to improve the port-hinterland alignment and reduce waiting time in Rotterdam they will benefit
from this research.

Additionally, TOC will benefit from this research as they are in particular confronted with the long
queues and suffer the consequences of high waiting time at the terminal in the Rotterdam port area.

Furthermore, the Rotterdam terminals will have advantages from this research, as peak loads of
truck arrivals can demote the terminal operation efficiency.

Other beneficiaries may be stakeholders in the port system (e.g. shippers, forwarders, shipping
lines and hinterland warehouses) as misalignment affects the efficiency in the entire chain.

Lastly, several actors in the public sector, such as governmental parties, municipalities and road
authorities, can benefit from this research as the long queues at the terminal gates induce costs
and emissions for society. Moreover, improved alignment can relief pressure from the main road
network.

1.4 thesis outline
The outline of this thesis follows a chronological order. With chronological order it is meant that
first the problem will be analysed, then a possible solution is explored, subsequently a solution is
designed, lastly the designed solution is evaluated. A visual representation of the thesis outline is
provided in Figure 1.1.

To draw the bigger picture and gain insight in the problem, causes and potential solutions regarding
port-hinterland alignment, this is discussed in the second chapter (Chapter 2). In Chapter 2, an
answer to the first sub-question is provided.

In the third chapter, Chapter 3, an extensive literature review is conducted to gain insight in the
potential methodologies to design an intervention to reduce waiting time at the terminals. Conse-
quently, in Chapter 4 the design, modelling and simulation approach for the intervention is elabo-
rated. In Chapter 3 and Chapter 4 an answer to the second sub-question is provided.

The results of the research are presented and discussed in Chapter 5. In this fifth chapter the
answer to the last sub-question is provided.

Lastly, in the sixth chapter, Chapter 6, a discussion and conclusion for the research are presented.
Consequently, an answer to the main research question is provided. Additionally, implications for
future research are recommended in this last chapter.
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2 P O R T- H I N T E R L A N D A L I G N M E N T

In this chapter, the alignment between port and hinterland is elaborated. This chapter aims draw
the bigger picture regarding port-hinterland alignment by to provide an understanding of where
misalignment originates from and the possibilities to improve the alignment. First, some definitions
are introduced in Section 2.1 which help to understand the terminology of port-hinterland align-
ment. Then, the role of a seaport in a network is discussed in Section 2.2. Thirdly, the misalignment
problem is illustrated in Section 2.3 by the concept of matching demand and supply. Subsequently,
the stakeholder playing field is described in Section 2.4. Thereafter, in Section 2.5 the causes of
misalignment are discussed. Lastly, an overview of options for matching demand and supply is
provided in Section 2.6.

Figure 2.1 provides an overview of the story line in this research. This represents the advancement
from the bigger picture regarding alignment towards the specific focus on TAS.

Port-hinterland alignment

Role of a seaport

Demand and supply match

Problem, causes, and solutions

TSMS

TAS policy

Figure 2.1: Pyramid overview of story line from port-hinterland alignment to TSMS and TAS

2.1 definitions
A seaport is part of the supply chain, logistics chain, and transport chain. These three terms are
often used interchangeably. However, it is essential to differentiate these terms and chains as they
are similar but not the same.

Firstly, a supply chain can be defined as ”a set of three or more entities (organisations or individuals)
directly involved in the upstream and downstream flows of products, services, finances, and/or information
from a source to a customer” [Mentzer et al., 2001].

Secondly, a logistics chain can be defined as ”the part of the supply chain process that plans, implements
and controls the efficient, effective flow and storage of goods, services and related information from the point-
of-origin to the point-of-consumption for the purpose of conforming to customers’ requirements” [de Jong
and Ben-Akiva, 2010].

Lastly, a transport chain can be defined as ”series of one or more transport legs between the sender and
receiver, each with its own mode or vehicle type” [de Jong and Ben-Akiva, 2010].

By these definitions, it can be deduced that there is a hierarchical structure as the transport chain
is included in the logistical chain and the logistical chain is part of the supply chain. The trans-
port chain comprises the physical flow of goods from one place to another. Logistics involves the
physical flow of goods (the transport chain); and adds service flow, information flow and inventory
to meet the customer requirements. The supply chain includes the logistics chain and links many
companies together by adding all the activities, processes and actors, that are required from the raw
product to the final product for the end-user.

7



Additionally, it is important to define precisely and make a distinction between “effectiveness” and
“efficiency” in the context of the supply chain, logistics, and transportation.

Drucker [1995] introduces the term ‘effectiveness’ as ”the extent to which the desired result is realised”
and the term ‘efficiency’ as ”output divided by input, or the extent to which the result produced was
produced at least cost”.

By rephrasing these definitions, effectiveness indicates doing the right thing, and efficiency in-
dicates doing the things right. Efficiency is often measured in time and costs and implies that
processes or activities should use as little time or costs as possible.

Lastly, throughout this research the term ‘congestion’ is used to describe the problem at the termi-
nal gates. Congestion can have alternate definitions. For this research the definition of Rothenberg
(1985) cited in Aftabuzzaman [2007], is used and slightly adapted to reflect the meaning of conges-
tion in this research. ”Congestion is a condition in which the number of vehicles attempting to use terminal
services at any time exceeds the ability of the terminal to carry the load at generally acceptable service levels.”

2.2 the role of a seaport
A seaport can simply be regarded as a node in a transport network connecting two legs of trans-
portation, namely seaside transport and landside transport. Jakomin [2003] identifies a seaport as
”the area where the traffic/transport routes on sea and land meet”.

A port acts as a logistics hub in the transport network and plays a crucial role in connecting these
legs: combining the processes of transport between the sea and the mainland [Montwiłł, 2014]. A
seaport provides connecting services for these transport legs [Branch, 1986]. As the processes be-
tween the sea and land legs are interpenetrating, interdependent and interrelated [Montwiłł, 2014],
the sea and land transport must be aligned to achieve the optimal potential of a seaport [Jakomin,
2003].

For this research, the seaside leg is out of scope (Section 1.2.3). Nevertheless, for a general un-
derstanding of the entire system it adds value to mention this leg. According to Ligteringen and
Velsink [2012]; Rijsenbrij [2018b] the seaside leg can be divided into several processes. These include
the mooring of a vessel; (un)loading of a vessel from/to internal transport means; transporting con-
tainers from/to the stacking yard; (un)loading containers from the stacking yard from/to external
transport means.

The landside leg of a port can be demarcated by the transport of goods between the port and a
hinterland location. Rijsenbrij [2018a] outlines the landside service activities for trucks. These activ-
ities are largely part of the gate process. The process at the gate involves identifying the container,
checking the container, entering the port, (un)loading the container at the stacking yard. Landside
transportation is often referred to as hinterland transport. There are several options for hinterland
transport, namely via road (truck), rail (train), inland waterways (barge), and pipelines. In this
thesis, the latter three transport modes are out of scope (Section 1.2.3).

As mentioned, the processes between the seaside and landside legs are connected at the seaport.
More precisely the legs overlap at the terminal gates. This indicates that the activities at the terminal
gate cater the alignment of the port and its hinterland. In Figure 2.2 an overview of the port system
and the focus of this research is provided.

2.3 matching demand and supply
The alignment sea and land transport at a seaport is a matter of matching demand and supply at
the terminal gates [Guan and Liu, 2009].

Generally in transportation research, the users of the transport mode, for example traveler or
goods, represents the demand. Whilst the transport mode, for example truck, train, barge, is con-
sidered to represent the supply.



Scope: port processes

Hinterlandside

Hinterland warehouse

TerminalSeaside

Supply

Demand

Truck arrival

Truck departure

Terminal service

Vessel 
operations

Figure 2.2: Overview of the port system and the focus of this research

However, in the scope of this research and similar to Guan and Liu [2009], the demand is consid-
ered to be the number of trucks for container pick up or delivery at time t, as these represent the
users in the system. Whereas the supply is regarded as the terminal operational capacity at time t.
Hence, terminals supply the demand of trucks at the hinterlandside to handle a container.

In events where the terminal is unable to serve the demand of trucks, the demand exceeds the sup-
ply. When the demand exceeds the supply, waiting times are the result. This affects the turnaround
times of trucks at the terminal. In these events there is a misalignment between port and hinterland.
For example, when there are peak loads in truck arrival, the surplus of trucks queue at the terminal
gates, consequently congestion develops.

Matching demand and supply can be understood as the allocation of resources to an agent in a
system. Resource allocation is widely discussed in the academic field across several disciplines,
often in the context of decision making. For example in the distribution of energy [Naz et al., 2017;
Iqbal et al., 2014; Li et al., 2016], health care [e Oliveira et al., 2020; Withanachchi et al., 2007; Stinnett
and Paltiel, 1996], air traffic management [Kim and Hansen, 2015; Murça, 2018], transportation
[Bhattarai et al., 2020; Zargayouna et al., 2016; Wang, 2016; Mathew et al., 2010], and logistics [Li
et al., 2020; Liu et al., 2014; Morariu et al., 2020].

From these examples, the agents in the systems are found to represent the demand. The re-
sources represent the supply. Too many resources for the agents at time t cause a surplus of supply.
Moreover, too many agents for the available resources at time t cause a surplus of demand. Both
situations are undesirable as a surplus indicates that the system is not exploited to the best of its
abilities. The system is as efficient as the weakest link, therefore a mismatch of demand and supply
affects the efficiency of the entire system.

Several bottlenecks can be indicated from which the mismatch between demand and supply origi-
nates [Merk and Notteboom, 2015]. These are regulatory/political, physical, and digital bottlenecks.
In light of this research two main perspectives are relevant, these are captured by the latter two.

First, there are physical bottlenecks. Physical bottlenecks can be the result of demand that exceeds
the available capacity of infrastructure. This indicates poor physical connectivity of the seaside and
landside leg. The capacity of a terminal to handle containers might not be sufficient, for example a
lack of cranes, stacking yard, or terminal gates.

Second, there are digital bottlenecks. These bottlenecks can be the result of inefficient operations
of terminals or TOC due to poor demand predictions. These bottlenecks originate from a lack of
communication, cooperation, and coordination between stakeholders. This indicates poor digital
connectivity between the seaside and landside. For example, there is no information exchange
between terminals and TOC. This can cause a poor prediction of demand and therefore insufficient
resource allocation.

Physical connectivity can be considered to be a precondition to achieve port-hinterland alignment
at all. In addition, digital connectivity ensures efficient use of physical connectivity and improves
port-hinterland alignment. In other words, physical connectivity is required but not sufficient for
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port-hinterland alignment. Even when sufficient infrastructure is present in the port-hinterland
alignment, poor digital connectivity could largely deteriorate the port-hinterland alignment [Merk
and Notteboom, 2015].

Despite the physical bottlenecks, which are more straightforward and imaginable, their digital coun-
terparts are rather more difficult to identify. To ensure a proper understanding of the digital con-
nectivity between port and hinterland, the stakeholder playing field is described in the next section
(Section 2.4).

2.4 stakeholder playing field
A variety of different firms, such as shipping lines, terminal operators, forwarders, hinterland trans-
port providers and inland terminal operators are involved in container transport [De Langen and
van der Horst, 2008]. Besides private companies, different public actors, such as the port authority,
customs and infrastructure managers, are involved as well. The relevant stakeholders are cate-
gorised into seven groups. These groups are the port authority, shippers, freight forwarders, termi-
nal operators, TOC, hinterland warehouses, and the port community system. For each category, their
role, objective, and potential influence are defined.

Port authority
The port authority can be regarded as the party that manages, operates and develops the port area.
Often the port authority is a (quasi-)governmental institution.

The most common port exploitation is a ‘landlord port’. In this type of exploitation, the port
authority acts as a landlord and is responsible for necessary port infrastructure. This port infras-
tructure includes quays, locks, docks and yards [Notteboom and Winkelmans, 2001].

The main objective of a port authority is to strengthen the competitive position of the port. The
performance measure of a port authority is volume-driven [Rijsenbrij, 2018b]. They desire high
throughput, optimal utilisation of the area, and minimal environmental impact. The port authority
acts as an objective player, aiming for overall efficiency in general instead of the performance of a
specific stakeholder or sector [Notteboom and Winkelmans, 2001].

Moreover, the port authority can act as a facilitator in the transport chain. However, a rising
trend is that port authorities work together with other stakeholders to improve digital connectivity
[Notteboom and Winkelmans, 2001]. De Langen and van der Horst [2008] argue that port authorities
can and should become more strongly involved with hinterland access infrastructure and operations
to improve port-hinterland alignment. The reason is that port authorities control decision margins
that affect the efficiency of hinterland access.

Specifically, port authorities can enhance physical connectivity by providing infrastructure inside
and outside of ports. For example, through the creation of inland terminals. Additionally, in the
context of digital connectivity, they can manage port accessibility to improve the port and hinter-
land capacity utilisation. Furthermore, they can improve data exchange among the various agents
involved in moving a container from ship to hinterland. De Langen and van der Horst [2008] argue
that port authorities should lead the improvements for digital connectivity by introducing coordina-
tion between stakeholders in the port and hinterland because other private and public parties have
weaker incentives to do so.

Shippers
A shipper is often the owner of goods that should be transported from origin to destination.

The shipper pays for the transport and therefore also decides on many aspects of the transport
from origin to destination. These decisions include choice for port of call and transport mode.
In practice, a shipper often employs a freight forwarder to arrange the transport and make these
choices. Nevertheless, the shipper provides one important constraint for the forwarder. That con-
straint is the moment the goods should arrive at the destination. Moreover, the shipper desires to
transport their goods with maximum efficiency related to costs and time. Additionally, the shipper
desires great service quality and reliability for goods transport [Martinho, 2008].



The time constraint for the arrival of goods on their destination posed by the shipper, can influ-
ence the port-hinterland alignment. Specifically, digital connectivity can be largely improved when
this information is shared with other stakeholders. It might be used to match demand and supply
more precisely, preventing any kind of surplus. However, the shipper, as a private stakeholder, is
merely focused on increasing its own worth.

Freight forwarders
Freight forwarders, also referred to as forwarders, organise the transport from origin to destination
on behave of the shipper. This includes arranging the land and sea transportation via TOC and
shipping line, respectively. Often shipping lines sail to a specific port where a terminal is located
that is owned by the shipping line or where they have agreements. The choice of shipping line,
therefore, often depends on the destination of the goods. However, in shared hinterlands, as is
the case in the Le Havre-Hamburg range located in west of Europe, this choice depends merely on
the performance and accessibility of the port and terminal. Therefore, port-hinterland alignment is
crucial for freight forwarders.

A forwarder is often employed by multiple shippers and can therefore increase the cost effi-
ciency of transporting goods. By bundling the goods of several shippers, the forwarder can achieve
economies of scales.

Due to the time constraint from the shipper, the forwarder desires to ensure that the transported
goods are in time on their destination. To be sure of this, the forwarder forces the TOC to pick up
the container as soon as it is unloaded from the vessel. This affects the connectivity of port and
hinterland since this might cause a surplus of demand at the terminal. The forwarders do not in-
fluence physical connectivity. However, they can coordinate container pick ups by communicating
with other stakeholders in the port and hinterland. This prevents misalignment by increasing digital
connectivity which helps the process to take place more smoothly.

Terminal operators
At a terminal the transshipment of goods between the seaside and landside is facilitated. Therefore,
terminals are central in port-hinterland alignment. Terminals can be owned by carriers or by a
private company specialised in terminal operations. The terminal operator rents land in the port
area from the port authority. In the port area of Rotterdam, terminals operate 24 hours a day, 7 days
a week.

The objective of a terminal operator is to operate as effective and efficient as possible. This implies
that the terminal operator aims to have short dwell times and turnaround times, against low cost.
To achieve this, the terminal operator desires to utilise the yard, crane and gate capacity to the best
of their abilities. Consequently, terminal operations are demoted by peak loads of truck arrivals as
this affects the degree of resource utilisation due to demand surplus at certain times t. Matching
terminal supply to truck demand is important for a terminal operator to ensure a continued level of
resource utilisation.

Terminal operators use financial incentives, demurrage and detention charges, for container pick
up to ensure that the capacity of the storage yard is utilised well. However, this could cause peaks
in demand as this encourages container pick up shortly after the container is unloaded. Due to the
increasing call sizes many containers may be picked up at once, disturbing the smooth terminal
processes [Merk, 2018].

Physical connectivity can be influenced by terminal operators, as terminal operators are responsi-
ble for crane and gate operations [Ligteringen and Velsink, 2012]. Port-hinterland alignment can be
improved by terminal operators by creating more capacity to handle containers. Hence, terminal op-
erators can increase the supply to match demand. However, when peak loads cause the mismatch
of supply and demand, it is very costly and hardly beneficial for terminal operators to invest in
physical connectivity.

Moreover, terminal operators can affect the port-hinterland alignment by imposing operational
applications [Rodrigue and Notteboom, 2009]. This is in the context of digital connectivity as op-
erational applications can comprehend the sharing of information from other stakeholders or the
control of demand inflow. For example, terminal operators could pose an obligatory announcement
of estimated time of arrival (ETA) of a truck to allocate resources accordingly or restrict the number
of arrivals.
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Truck operating companies (TOC)
TOC are responsible for the transportation of containers in the landside leg of the seaport. TOC are
employed by freight forwarders to transport goods between port and hinterland locations. The TOC

are ordered by the forwarder to pick up or deliver a container at a certain moment. There are many
self-employed truckers, and a few larger TOC. As many of the TOC are self-employed, it is complex
to achieve alignment between port and hinterland via road.

Usually, TOC operate from the early morning until the evening, and not during the night. Previous
research shows clear preferences for truck arrivals at seaports [De Langen and van der Horst, 2008;
Phan and Kim, 2015; Zomer et al., 2019]. These preference for arrival times lead to peak demand
for terminal services. This causes a demand surplus that results in waiting time, hence an affected
port-hinterland alignment.

Nevertheless, the desire of the TOC is to have minimal turnaround times at the terminal for con-
tainer pick up or delivery [Rijsenbrij, 2018b], in other words no waiting time. Minimal turnaround
times allow the TOC to plan more trips on one day and accordingly increase their economic value.
Therefore, a smooth match of truck demand with supply at the terminal benefits the TOC. Costs for
delay of containers are generally charged to the TOC. Moreover, due to the competitive character of
the truck transport market, the TOC do not have much leverage. As a consequence, TOC are often the
ones that pay for time inefficiencies in the container transportation chain.

TOC do not have the means to invest in physical infrastructure nor the power to improve it. Hence,
TOC have no ability to improve port-hinterland alignment from a physical perspective. However, TOC

benefit from physical connectivity. Sufficient supply for their demand ensures that TOC do not have
to change their processes and have little to no costs to improve port-hinterland alignment. Opposed
to their lack of influence on physical connectivity, TOC play an essential role in digital connectivity.
TOC have the information the terminals need to make a valuable demand prediction over time and
subsequently enable efficient utilisation of terminal capacity.

Hinterland warehouses
Hinterland warehouses are the origin or destination in the landside leg for export or import con-
tainers, respectively. In this research the hinterland warehouses are considered to be the boundary
of the landside leg of a seaport. Certainly, the transport of goods in the container does usually not
end here as the goods are further distributed from the warehouses to other parties, including super-
markets or retail companies. However, the further distribution of goods to secondary locations is
left out of scope in this research.

Hinterland warehouses often operate from morning until late afternoon. They desire to have the
containers delivered within these operating hours. This poses a constraint for the TOC.

In the context of physical connectivity, hinterland warehouses have the potential to improve the
port-hinterland alignment. Hinterland warehouses could invest in locations to deliver containers
outside of operating hours. Additionally, they could relax the operation hour constraint for con-
tainer delivery by investing in more workforce.

In the context of digital connectivity, the hinterland warehouses also have the potential to improve
port-hinterland alignment. The working hours of the warehouses pose a time constraint to TOC tour
planning. Since most TOC intend to plan as many trips within a day as possible, they plan their first
and last arrivals to warehouses close to their opening and closing hours, respectively. This causes
two peaks in demand at terminals, one in the morning and the other in the afternoon. By commu-
nication and information exchange of hinterland warehouses with other stakeholders, the container
pick up and delivery at the terminals could be planned to utilise the capacity to its full potential.

Port community system
A port community system is a neutral and open digital platform for information exchange between
public and private stakeholders [United Nations, nd]. This is a relatively new stakeholder in the port
system, however most major ports have such a system. Additionally, the port community system is
an important platform for customs as declarations of goods are processed via this platform.

As a neutral player in the port system, the port community system does not have many objectives.
The main objective is to ensure information exchange in order to improve the competitive position
of the entire seaport community [United Nations, nd].

The port community system has no influence on improving port-hinterland alignment through
physical connectivity. Nevertheless, the influence of this stakeholder on digital connectivity is



tremendous as it has the function to facilitate information exchange between stakeholders. There-
fore, there is an incentive for port community systems to improve port-hinterland alignment through
digital connectivity.

2.5 causes for misalignment
Misalignment can come from two sides in matching demand and supply. Moreover, two types of
bottlenecks are relevant in the light of this research (Section 2.3). With the overview of the port
system and the boundaries (Figure 2.2) in mind, four quadrants of causes can be identified. A
visual overview of the causes is provided in Figure 2.3.

On the one side, scarcity of (infrastructural) capacity, e.g. too little excess roads, cranes, terminal
gates, or manpower to supply the demand, can cause misalignment. This kind of misalignment
originates from the supply side and is often caused by poor physical connectivity. However, digital
connectivity can also influence this kind of misalignment due to the insufficient ability to allocate
the existing capacity to supply the demand.

On the other side, misalignment can be caused by demand patterns, e.g. peak loads in truck
arrival at the terminals. Inadequate control of truck arrivals can cause a demand surplus, which can
cause misalignment. This kind of misalignment stems from the demand side and is often caused
by poor digital connectivity. Nevertheless, physical connectivity also impacts the peak loads at the
terminal as there are limited options to deliver containers outside operating hours of hinterland
warehouses.

Demand side Supply side
Mismatch origin

Physical

Digital

Bottleneck
type

Scarcity of infrastructure to
spread demand along the day

Inadequate control of 
truck arrivals

Insufficient ability to allocate
existing capacity to demand

Scarcity of (infrastructural)
capacity

Overview of causes for misalignment

Figure 2.3: Overview of causes for misalignment

The analysis of the several stakeholders in the port system, their role, objectives and potential influ-
ence on port-hinterland alignment (Section 2.4), shines a light on the complexity of port-hinterland
alignment. The alignment of port and hinterland is especially complex from the perspective of
digital connectivity.

The stakeholders are able to influence the alignment with their actions. Though, the actions of
one stakeholder can also affect others. Due to unevenly distributed benefits and costs among the
port and hinterland stakeholders, a power imbalance exists in the port system. For example, the
shippers, forwarders and hinterland warehouses pose time constraints for the TOC regarding con-
tainer pick up and delivery. The first mentioned three stakeholders benefit from these constraints as
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they can improve their processes and economic value. Nevertheless, the TOC mainly encounter the
costs from these constraints [Merk and Notteboom, 2015].

The unevenly distributed costs and benefits discourage large investments to improve infrastructural
capacity [De Langen and van der Horst, 2008]. For example, the terminals must pay for capacity
expansion at the terminal. However, the terminals do not necessarily encounter the effects of non-
optimal turnaround times to the same extent as the TOC do. Therefore there might be limited
incentive for terminals to solve the issue for the TOC.

Moreover, this imbalance of power impedes adequate coordination of stakeholders. Many schol-
ars that studied port-hinterland alignment in the context of connectivity, find that poor coordination
of stakeholders in the port system is one of the main issue to deteriorate the alignment [Bergqvist,
2012; De Langen and van der Horst, 2008; van der Horst and van der Lugt, 2011; Franc and Van der
Horst, 2010; Merk and Notteboom, 2015].

In sum, misalignment can emerge from scarcity of capacity or the insufficient ability to allocate the
existing capacity, and from inadequate control of the demand patterns. However, the improving the
alignment between port and hinterland is rather complex. The unevenly distributed benefits and
cost cause a power imbalance between stakeholders which affects the port-hinterland alignment.
The question that remains is who, on both supply and demand sides, should adapt to improve
the port-hinterland alignment. The answer to this question depends on the root of the mismatch,
whether there is scarcity of capacity, or an issue in demand patterns.

2.6 options for port-hinterland alignment
To improve port-hinterland alignment demand and supply should be matched. Based on the roots of
the mismatch, three categories of potential practical solutions to improve the alignment of port and
hinterland can be identified. These categories are improving port-hinterland alignment with pure
physical connectivity solutions, pure digital solutions, or combined solutions. A visual overview of
the solutions is provided in Figure 2.4. In the following subsection, the solutions are elaborated in
more detail.

Physical

Expand terminal capacity

Overview of solutions for misalignment
Combined Digital

Realise capacity to 
operate 24/7

Stakeholder coordination

Realise intermodal capacity

Realise inland capacity
Traffic control

Time horizon
Long-term

effects
Short-term

effects

Figure 2.4: Overview of solutions for misalignment

2.6.1 Solutions for physical connectivity

From the physical connectivity perspective, the alignment of port and hinterland could be achieved
by expanding capacity, hence increasing the supply. However, for terminals that experience peak
loads of truck demand along the day, it is questionable whether expanding capacity at the terminal
could solve the misalignment problem.

From the previous section (Section 2.5), it is understood that the peak loads are mostly a con-
sequence of a time constraint that stems from different operating hours of terminals, TOC, and
hinterland warehouses [Merk and Notteboom, 2015]. Therefore, it is expected that the preferences
for container pick up or delivery time would not change when the terminal capacity is expanded.



Expanding capacity at the terminal does not eliminate the different operating hours of stakeholders
along the chain. Therefore, the peak demand would not disappear. It might even cause higher
demand peaks at certain times. The reason for this is that some TOC, that are currently planning
their arrival outside the peaks, might shift their preference to peak hours due to higher capacity at
the terminal.

Improving the port-hinterland alignment through physical connectivity would only be beneficial in
cases where huge truck arrivals are expected on a long-term base, or when it flattens the demand
peaks. When the misalignment occurs due to scarcity of capacity and there are no peak loads,
the misalignment can naturally be solved by expanding capacity at the terminal. For example, by
purchasing new handling equipment or increasing the storage yard.

When peak loads are an issue in the system, solutions that flatten the demand peaks are needed.
However, peak demands are caused by the constraints posed by several stakeholders for container
pick up or delivery. An option to flatten the demand peaks could be to realise a physical infras-
tructure near hinterland warehouses to deliver or pick up containers outside of operating hours.
However, such a solution additionally requires digital connectivity as stakeholder coordination is
crucial in such an approach to improve misalignment.

There are no methods to flatten demand peaks and subsequently improve port-hinterland align-
ment by solely implementing a physical infrastructural solution. To flatten the demand peaks there
are solutions that require physical infrastructure, yet these solutions additionally require digital
connectivity.

2.6.2 Digital solutions

From the digital connectivity perspective, the alignment could be improved by coordination and
information exchange among stakeholders. This provides insight into demand patterns and allows
to organise supply accordingly, or to adapt the demand patterns according to the existing capacity.
Port community systems play a major role in achieving such solutions. Digital solutions have much
potential to be effective when terminals are experiencing peak loads. Opposed to many capacity
increasing measures in the physical context, the digital solutions can flatten the demand peaks by
coordinating stakeholders or introducing control strategies for demand inflow.

Many of the explored digital solutions are focused on solving the stakeholder imbalance. De Lan-
gen and van der Horst [2008] introduce a framework including four types of solutions to solve
coordination problems, and consequently achieve more balance in stakeholder power. The solution
categories that De Langen and van der Horst [2008] define, are introduction of incentives, creation
of an interfirm alliance, changing scope, and creating collective action. Such solutions require a lot
of stakeholder discussion, collaboration and concession making. This going back and forth is very
time consuming.

Other digital solutions are traffic management strategies to control the inflow of demand, for ex-
ample via Intelligent Transportation System (ITS). These are solutions that can flatten the demand
peaks of truck arrival and could be applied more short-term. An overarching strategy to flatten the
demand peaks by controlling demand inflow is by application of a TAS policy. In a TAS policy it is
aimed to shift truck arrivals from one time period to another, to ensure a more evenly spread of
trucks along the day. Examples of practical solutions to instigate a TAS policy are the introduction
of time-varying tolls, sharing real-time traffic information, and implementation of a TSMS.

Time-varying tolls
Time-varying tolls are comparable to road pricing, a traffic management strategy to relieve the
road network from peak hour congestion by giving price incentives to travel outside of peak hours
[Mattsson, 2008]. With time varying tolls it is aimed to distribute the truck arrivals more evenly
along the day, flattening the demand peaks.

This solution fits in the framework of De Langen and van der Horst [2008] in the category of
introducing incentives. The height of the toll prices should be distributed along the day in such
a manner that it is discouraged to arrive at peak moments. Chen et al. [2011] conducted a study

15



towards finding a pattern of time-varying tolls to accordingly lead to optimal arrival patterns. Even
when an optimum is found it is difficult to implement time-varying tolls in real systems because
this plays into the hands of unevenly distributed costs and benefits among the stakeholders in the
port and hinterland.

Sharing real-time traffic information
This traffic management strategy aims to control truck arrivals by communicating the traffic states
at the terminal. The data of trucks on the road and amount of traffic at the container terminal is
tracked. Algorithms use this data to predict information on waiting time and congestion for the
next hours [TNO, 2016]. The idea is that providing real-time traffic information of the situation
near or at the terminal can manage truck arrivals as TOC might change their arrival time due to the
available information.

An early research towards the effectiveness of this solution is by Sharif et al. [2011]. They find that
providing real-time gate congestion information and some simple logic for estimating the expected
truck waiting time, can minimise congestion at terminals gates.

Sharing real-time information, however, is difficult to arrange due to privacy issues. Furthermore,
with sharing real-time traffic information the flattening of demand peaks becomes self-regulating.

Time Slot Management Systems
A truck appointment system is a well-known measure by many scholars, port authorities and termi-
nal operators to spread truck arrivals along the day, and consequently improve the port hinterland
alignment. A truck appointment system requires to be optimised through a TSMS. There are several
methods to optimise a TSMS. For example, Zhang et al. [2019] develop a method to decrease exter-
nal trucks’ waiting time, at the gate and yard, and internal trucks’ waiting time at the yard. The
opening hours of a terminal are broken down into several time slots. Consequently, a truck capacity
is predetermined for the time slots. Several aspects are considered by Zhang et al. [2019] for pre-
determining the maximum number of trucks per time slot, also called the appointment quota plan.
These aspects include the container yard capacity, resource utilisation, and equipment availability.

The central idea of a truck appointment system is that the time slot to arrive at the terminal can
be reserved by the TOC. When the determined appointment quota is reached, hence the capacity
of the time slot is fully utilised, other TOC cannot claim that specific time slot. This prevents peak
loads at the terminal gates, and allows a well spread of truck arrivals along the day. Consequently,
the queues and waiting time at the terminal are reduced, the number of idling trucks is decreased,
and the environmental impact is less [Li et al., 2018; van Asperen et al., 2013]. Additionally, the
terminals are aware of the arrival patterns of trucks, this allows the terminals to plan their oper-
ations efficiently. Nonetheless, a truck appointment system is difficult to implement successfully.
The problem with implementing a truck appointment system, optimised through a TSMS, is that
there is a hard restriction on the number of truck arrivals in a certain time slot. As the TOC have
time constraints for container pick up and delivery, a truck appointment can only be implemented
successfully when these constraints are taken into account.

2.6.3 Combined solutions

To flatten the demand peaks at a terminal, there are some solutions that require physical infras-
tructure as well as digital connectivity. Combined solutions can be applied to support a TAS policy.
Examples are intermodal freight corridors, dry ports, extended gates, and night time storage facili-
ties for container near a hinterland warehouse. The importance of stakeholder coordination, hence
digital connectivity, cannot be neglected in these solutions as these can only be successfully imple-
mented if the stakeholders are aligned. Brief explanations about these solutions are presented in the
following paragraphs.

Intermodal freight corridors
Intermodal freight corridors are freight corridors in which several modes are used for the trans-
portation of goods. In the context of container transport, truck, train and barge are suitable modes
for transport. To successfully create such corridors, it is crucial that the terminal and hinterland
locations are well connected through all transport modes. When the connection via all modes is



reliable, and time and cost efficient, it is expected that there will no longer be a preference for a
certain mode over the other. This could flatten the peaks for truck demand as forwarders may shift
the transport of the container to another mode.

The development of intermodal freight corridors, however, is very costly and time-consuming due
to the large number of involved stakeholders. Monios and Lambert [2013] study the development
of intermodal freight corridors in the United States. Through many interviews and site visits, they
find that aligning stakeholder objectives with funding sources and planning schedules complicate
the development of successfully creating intermodal freight corridors.

Dry ports
Roso and Leveque [2002] define a dry port as ”an inland intermodal terminal directly connected to
seaport(s) with high capacity transport mean(s), where customers can leave/pick up their standardised units
as if directly to a seaport”. The concept of dry ports reflects the belief that it is not necessary that
all activities, industrial or economic, happen near the seaport. The presence of good infrastructure
and inland nodes can relieve the seaport of some activities and congestion by providing services
for trade and accordingly accommodate growth. Roso et al. [2009] state that dry port concepts
can help to identify methods to shift freight volumes from trucks to other modes. This potential to
achieve modal shift, can flatten the demand peaks in truck traffic at terminal gates and consequently
improve port-hinterland alignment.

For exact implementation of dry ports one is referred to Bergqvist and Cullinane [2013]. Bergqvist
and Cullinane [2013] study the development of dry ports in various countries of the world with dif-
ferent economic, social, institutional and environmental characteristics. They report various case
studies and state-of-the-art examples that show the complexity and different approaches to the de-
velopment of dry ports.

Extended gates
This concept is an extension to the dry port concept. According to Veenstra et al. [2012] the definition
of Roso and Leveque [2002] for dry ports can be extended with ”... if directly with a seaport, and
where the seaport terminal can choose to control the flow of containers to and from the inland terminal”.
Subsequently, the idea of extended gates is to influence the flow of containers to and from the
hinterland. The pick up and delivery of containers is moved from the seaport to an inland terminal,
literally extending the gates of the seaport.

Although this is very similar to dry ports, there are features that distinguish the extended gate
concept from the dry port concept. These features are mainly in the coordination and control of
container flows, the legal responsibility, and the role of information.

Night time container storage facilities near hinterland warehouses
This solution addresses the time constraint posed by the hinterland warehouses’ operational hours.
The idea is similar to dry ports and extended gates, yet it is different as this solution does not move
activities from the seaport to the hinterland.

This solution can flatten the demand peaks for truck container transport by enabling the TOC to
transport containers to hinterland warehouses outside of operational hours. A parking area to store
containers overnight near the warehouse is sufficient. The TOC can deliver or pick up the container
at night near the warehouse. Another (automated) vehicle (truck or cart), can transport the stored
containers to the warehouse during operational hours.

Opposed to dry ports and extended gates, the container flow in this solution is not handled or
controlled by the seaport. Additionally, it has nothing to do with modal shift or intermodality. It
is merely an arrangement between TOC and specific hinterland warehouses, supported by other
stakeholders, to allow truck arrivals at the terminals outside of peak hours. Moreover, this solution
stimulates night time driving.

2.7 conclusion
The alignment between port and hinterland was studied in this chapter. Misalignment between port
and hinterland induces waiting time for trucks at the terminal gates. The root cause for misalign-
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ment between port and hinterland can emerge from (a combination of) two sources, namely the
supply side and the demand side. Misalignment from the supply side can come from scarce capac-
ity to handle the demand, or insufficient ability to allocate the existing capacity. Misalignment from
the demand side can come from inadequate control of the demand patterns which cause peaks in
demand. Based on these origins of misalignment there are several options for improving alignment.
For both sources of misalignment solutions from a physical, digital and combination perspective are
presented in this chapter.

Physical solutions are all predominantly time-consuming and costly as these are large infrastructural
projects. An example is the expansion of terminal capacity. However, terminal capacity does not
always constraint container handling. Moreover, solely applying physical solutions is only beneficial
when huge truck arrivals are expected on a long-term base. Therefore, temporary problems, such as
long waiting time at the terminals in the Rotterdam port area, cannot be addressed effectively and
efficiently by physical solutions, since waiting time in Rotterdam is the result of short-term demand
peaks that changes over a day [Zomer et al., 2019].

The remaining options to improve port-hinterland alignment at the port of Rotterdam are pure
digital solutions, or combined physical and digital solutions.

Pure digital solutions are attractive to port authorities due to their ease of implementation, re-
liability, short-term impacts, and cost-time efficiency. In this approach, stakeholder coordination
is important as information must be shared to achieve digital solutions. Other digital solutions
consider traffic management strategies to control inflow of demand.

Combined physical and digital solutions have the potential to flatten the peak loads. Combined
solutions require a lot of stakeholder coordination, which takes time. Furthermore, combined so-
lutions require purchase and development of land across port boundaries and connections to the
hinterland. This is costly and has an extended time horizon.

This research is conducted on behalf of the PoR and a solution for misalignment is sought to dis-
tribute the peak loads along the day. With this approach it is aimed to solve the congestion problems
and reduce waiting time in the Rotterdam port area.

Among digital and combined solutions that fit the desires of PoR, traffic management strategies
to control demand inflow are most appealing to improve port-hinterland alignment in Rotterdam.
Due to the constraints in the container transportation system, it is of interest to explore a solution
in which the preferences of TOC are met. Lastly, the solution must be able to reduce the peaks in
demand.

An overarching strategy to control truck arrivals and reduce waiting time, is by shifting truck ar-
rivals to other time periods. By implementing a TAS control strategy trucks can be shifted from peak
periods to quieter time periods. Consequently, peaks in demand can be reduced. A well-known
measure to instigate the TAS is the implementation of a truck appointment system.

To conclude, in the remainder of this research, the control of truck arrivals via the implementation
of a TAS policy, based on TOC preferences, is explored to match demand and supply at the terminals,
and consequently improve port-hinterland alignment. The control by means of a TAS policy, aims
to flatten the demand peaks and evaluates the effect on truck waiting time at the terminals. The
interest of this research lies within gaining insight in the potential to improve alignment by shifting
truck arrivals. Therefore, the effect of truck shifting based on trucker preferences is explored.



3 L I T E R AT U R E : T I M E S LOT M A N A G E M E N T
S Y S T E M S

A truck appointment system is believed to be one of the important traffic management tools that are
designed to support the shift in truck arrivals (TAS) that is required to match demand and supply at
terminal gates (Chapter 2). The aim of TAS is to decrease the waiting time at terminals’ gates, and
consequently improve port-hinterland alignment. A truck appointment system is very suitable to
instigate a TAS policy. A truck appointment system, however, needs to be optimised through a TSMS.

The first implementation of truck appointments at ports dates back to 1999 in Vancouver [Morais
and Lord, 2006]. Ever since this first implementation, various scholars have studied the potential
benefits and implications of TSMS. Many of these studies have shown that TSMS is capable of reducing
truck congestion at terminal gates.

For example, Huynh and Walton [2008] study the effect of limiting truck arrivals on truck turnaround
time by introducing TSMS. They found that the implementation of TSMS can reduce truck turnaround
time if the appointment quotas are set correctly based on terminal capacity. Moreover, the results of
Guan and Liu [2009] show that the use of TSMS seems to be the most viable way, among several con-
gestion mitigation alternatives, to reduce gate congestion and increase system efficiency. Likewise,
the research of Zhao and Goodchild [2010] towards the impact of TSMS shows the ability of TSMS to
reduce congestion and thus waiting time at terminals.

To the author’s knowledge, only one study obtains contradictory results of TSMS implementation.
This is a study conducted by Giuliano and O‘Brien [2007] in the ports of Los Angeles and Long
Beach. Their results shows that a TSMS has little effect on terminal congestion, and consequently
on truck emissions. However, these results can partly be explained as the design policies for imple-
menting the TSMS were not complete.

Above are a few examples from research in the academic field towards the benefits of a TSMS. One
can refer to the more extensive literature review of Lange et al. [2017] on trends and classifications
of reducing truck congestion at terminals for more examples of TSMS research.

All in all, it can be concluded that implementation of a TSMS at a terminal is an effective, suitable
and successful solution to reduce truck congestion at terminals, provided that the TSMS is imple-
mented properly. To guarantee a proper implementation of TSMS, the methodology for TSMS devel-
opment is elaborated in this chapter. This comprehends reviewing methodologies for designing and
evaluating a TSMS.

This chapter, first, aims to conceptualise the real world problem in Section 3.1. Thereafter, the
development methodologies and optimisation are explored in Section 3.2 and Section 3.3. Lastly,
the shortcomings from previous research are identified, and the method to fill gaps is introduced in
Section 3.4.

3.1 conceptualisation
As the objective of this research is to improve port-hinterland alignment by reducing waiting time at
the terminal, the first thing to do is to conceptualise the real world situation. Consequently, various
options in the approach for designing and evaluating a TSMS can be explored.

An overview of the real world situation in the port system was provided in Figure 2.2. The focus
of this research is on the arrival of trucks (the demand) and serving the trucks at the terminal (the
supply), consequently the trucks depart from the terminal. Conceptually this process looks like
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Figure 3.1: High level conceptualisation of the port processes

where a(t) is the arrival of trucks at time t, N(t) denotes the queue length at time t, S(t) represents
the service capacity at time t, and d(t) is the departure of trucks at time t. The queue length
containers the number of truck arriving minus the trucks being served and the trucks departing.
This is simply calculated by

∂N(t)
∂t

= a(t)− S(t)− d(t) (3.1)

The queue of trucks is not limited in terms of space in the port area of Rotterdam, therefore the
exact length of the queue is irrelevant to the research. Moreover, the focus of this research is on
waiting time, not the number of trucks in the queue. The waiting time can be computed from the
queue length using queueing theory.

There are two approaches for this, either the trucks are treated as particles, so discrete units, or
as fluid, which treats traffic as a viscous fluid. Both methods are based on the idea that the waiting
time is directly dependent on the number of trucks that arrive in the system compared to the num-
ber of trucks the system can serve. However, the exact calculation for approximating the waiting
time differs between the two methods. Both methods can be applied for stationary as well as for
non-stationary queueing processes (Section 3.2.2).

Particle-based
The foundation of queueing theory is Little’s Law [Hillier and Lieberman, 2015]. Little’s Law allows
to relate the number of customers in the system, the average time spent in the system, and the
arrival rate. Accordingly, the queue length and average waiting time can be estimated based on the
service rate. For example, the queueing process could be formulated as a M/M/s model [Hillier
and Lieberman, 2015]. Here it is assumed that both the inter arrival time and the service time are
independently and identically distributed (i.i.d) with an exponential distribution. Additionally, the
number of servers is an integer value. Consequently, by means of Little’s Law the queue length and
waiting time can be estimated. In this method trucks are treated as particles, so discrete units in
time. An example of the particle-based approximation method is provided for a stationary queueing
model in Equation 3.2a through Equation 3.2d. Nevertheless, the same equations can be applied to
a non-stationary queueing model by including time (e.g. mean arrival rate per hour).

L = λW (3.2a)

Lq = λWq (3.2b)

W = Wq +
1
µ

(3.2c)

Wq =
Lq

λ
, (3.2d)

where the expected number of trucks in the queueing system, hence in the queue and in the servers,
is denoted by L. The mean arrival rate is denoted by λ. The waiting time including service time,
hence turnaround time, is represented by W (min). The mean service time is presented by µ (min).
Moreover, with Lq the expected queue length, thus excluding the trucks in the servers, is indicated.
Lastly, the waiting time in the queue is denoted with Wq (min).



Fluid-based
Throughout the years, the mathematical foundation of queueing theory (Equation 3.2a through
Equation 3.2d) is extended from particle to fluid-based. For the fluid-based queueing models several
approximation methods are developed and used to estimate queue lengths [Chen et al., 2013c]. Most
approximation methods used in the queueing process in TSMS design, are fluid-based. Compared to
particle-based methods, fluid-based approximation methods increase the estimation accuracy, whilst
maintaining computational efficiency [Chen et al., 2013b].

The Point-wise Stationary Fluid Flow Approximation (PSFFA) method for estimating queue lengths
and waiting time developed by Chen et al. [2011], is often used in TSMS design. For example, Phan
and Kim [2015] use this PSFFA method in their research. Likewise, Zhang et al. [2013] use a PSFFA

to calculate the truck waiting time, they found that the approximation method was capable of
estimating the queue length and waiting time accurately. More recently, Zhang et al. [2019] used
the PSFFA method to estimate queue lengths.

Chen et al. [2013a] develop the PSFFA method further by integrating it with the bisection method
and a correction factor, resulting in Bisection Point-wise Stationary Fluid Flow Approximation
(B-PSFFA). They note that their B-PSFFA method is simple to apply and capable of accurate estimations
of the non-stationary queueing process in their TSMS design. Wibowo and Fransoo [2020] expand
the B-PSFFA method of Chen et al. [2013a] and propose a new method Wibowo Bisection Point-wise
Stationary Fluid Flow Approximation (WB-PSFFA). This method does not require the correction factor
from the B-PSFFA method to accurately estimate queue lengths and waiting time. The performance
approximation method proposed by Wibowo and Fransoo [2020], WB-PSFFA is provided below. In
this method period T is divided into n number of small intervals t. The method is based on fluid
flow theory, according to the fluid flow conversation principle, change in mass = in f low− out f low.
Therefore, the rate of change in the number of trucks in the system Lt should be equal to the differ-
ence between the average arrival rates λt and the average departure rates vt. The following formu-
las (Equation 3.3a to Equation 3.3c) provide the fluid approximation for a non-stationary queueing
model

∂L
∂t

= λt − vt (3.3a)

vt = mtµtρt (3.3b)

Lt+1 = Lt + λt − vt (3.3c)

where Lt indicates the average number of trucks in the system at time t ({t = 1, ..., n}), λt denotes
the average truck arrival rate, vt is the average truck departure rate, mt represents the number of
identical servers available, µt denotes the average service rate of identical servers, and ρt is the
average capacity utilisation. Equation 3.3a indicates the fluid flow balance function of the queueing
model. Equation 3.3b indicates the exit flow function for departure rate vt. Equation 3.3c indicates
the transition rule to update the number of trucks in the system for the time interval of interest.

To determine the number of trucks in the system, Equation 3.4 can be used

Lt =

[
(1 + c2

e )(c2
a + ρ2

t c2
e )

2(1 + ρ2
t c2

e )

]  ρ

√
2(mt+1)

t
mt(1− ρt)

 (3.4)

where ce represents the coefficient of the variation of the service time distribution, and ca is the
coefficient of the variation of the inter-arrival distribution.

Lastly, to obtain the average time spent in the system W and average waiting time Wq, the concept
of Little’s law can be used. This is shown in Equation 3.5a and Equation 3.5b

W =
1
n

n

∑
t=0

Lt

mtµtρt
(3.5a)
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Wq =
1
n

n

∑
t=0

(
Lt

mtµtρt
− 1

µt

)
(3.5b)

where W is the average truck time spent in the system, and Wq denotes the average truck time spent
in the queue (waiting time).

The cause of waiting time at the port of Rotterdam terminals is found within the demand side, where
too many trucks arrive at the terminal demanding service compared to the number of trucks the
terminal can serve. Therefore, this research tries to control the truck arrivals in such a way that the
waiting time at the terminals is reduced. This can be translated to an optimisation problem. In this
optimisation problem it is aimed to find the optimal arrival profile of trucks (a(t)) so that the queue
(N(t)) is minimal. TSMS is a platform with which control policies can be applied to optimise truck
arrival through a truck appointment system. On an high level the formulation of the optimisation
problem in this research is

a∗(t) = arg min
a(t)

f (Wq(t), a(t))

s.t. a(t) ≥ 0,

Wq(t) ≥ 0

(3.6)

where f represents the simulation for waiting time for the entire system and all entries of a(t) must
be integer values.

There are various ways to formulate this optimisation problem more specifically. Moreover, there
are various approaches to design a TSMS. For example, Guan and Liu [2009] and Chen et al. [2013b]
introduce a bi-level approach to tackle the TSMS control problem. In this research, a similar line of
thinking is employed to propose a control framework for truck arrival time in TSMS. This framework
includes two components which are required to design and test policies before implementation. The
first component is a simulation platform that can accurately mimic the real word. The advantage
of having a simulation platform is that designers can test their design at almost no cost before the
actual implementation. The second component is an allocation framework (the controller) which is
required to guarantee the best match between demand and supply and hence an optimal arrival of
trucks at the terminal. A schematic overview of the procedure for TSMS design and evaluation is
provided in Figure 3.2 on the next page.

Within the two components there are various steps required to ensure effective control of truck
arrivals at the terminals. These steps are discussed in the following sections.

3.2 simulation platform
Simulation is used to mimic real-life situations and evaluate the effect of different scenarios on the
optimisation problem or explore ‘what-if’ questions [de Sousa Junior et al., 2019]. Simulation can
support experiments that are too costly or impossible to carry out in a real-life situation. Hence, sim-
ulation can help decision making in resource allocation, like allocating trucks to terminal resources.

In TSMS research, the simulation method aims to reflect the real-life situation at the terminal.
Additionally, it allows for strategy testing in the system and assessing the impacts of shifting truck
arrivals due to the TSMS.

In practice, there are two types of simulation approaches, namely continuous simulation and DES.
A continuous simulation is a pertinent approach for systems with states that vary continuously over
time. One example is the temperature of a liquid inside a tank. In contrast, a DES applies best to
model real-word systems that can be decomposed to a series of processes that progress chronologi-
cally and autonomously [Banks, 1998].

The DES approach has been extensively used to evaluate assignments, scheduling jobs, and resource
allocations. Two examples of studies that use DES to optimise resource allocation are conducted by
Li et al. [2020] and e Oliveira et al. [2020].
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Figure 3.2: Schematic overview of the procedure for Time Slot Management System design and evaluation

Li et al. [2020] study how to develop and assess a simulation model for resource allocation in
manufacturing. e Oliveira et al. [2020] use a simulation-optimisation approach to solve an hospital
bed allocation problem.

Regarding TSMS research, Huynh and Walton [2008] use a DES model to analyse the truck turnaround
time. The model simulates the truck arrival, truck movements, gate service processes and operations
of yard cranes. Subsequently, Huynh and Walton [2008] assess the effect of limiting truck arrivals on
truck turnaround time and crane utilisation. Furthermore, they proposed a simulation-optimisation
method to find the maximum number of trucks in a specific area of the yard for each time window,
within the optimisation boundaries, whilst meeting the specified desired truck turnaround time.

From a methodology perspective, queueing theory is a paradigm that supports DES to make the
simulation sufficiently close to the real-world system. Additionally, queueing theory makes sure
that the physics of the simulated system is interpretable.

In general, a queueing model is based on a stochastic process that models random events (e.g.
arrivals and departures) in the system. Below, more details about the stochastic process and different
types of queueing models are discussed.

3.2.1 Stochastic arrival process

The arrival process in a queueing model is a stochastic process that can be regarded as the demand
side of the system. It indicates the number of trucks that come to pick up or deliver containers at
the terminal, ergo the mean arrival rate denoted by λ in Equation 3.2a through Equation 3.2d. The
arrival process is crucial for the development of a TSMS, since the introduction of TSMS predominantly
aims to reduce congestion by spreading the arrival of trucks evenly along the day. With a TSMS this
can be achieved by controlling the truck arrivals at the terminal.

The arrival process is also used for resource allocation in other research fields. An example of
this is to replicate patient arrivals in health care research [e Oliveira et al., 2020; Stinnett and Paltiel,
1996] or flight arrivals in air traffic management [Murça, 2018].

An accurate arrival process is essential as the distributions for inter arrival rate influence the
queueing model with λ (Equation 3.2a to 3.2d) [Chen et al., 2013a; Hillier and Lieberman, 2015].
Traditionally, a static or historical average was used to estimate the inter arrival time (IAT). However,
many researchers such as Morariu et al. [2020] argue the importance of the prediction of inter
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arrivals for the optimisation of a random process. They state that prediction based solutions provide
better results than traditional planning based on static, historical data.

Therefore, predictive methods like regression, advanced machine learning, and artificial intel-
ligence techniques are increasingly used to model inter arrival processes in various applications,
including resource allocation [Morariu et al., 2020] and TSMS [Hill and Böse, 2017].

In many TSMS development studies, however, the arrival process is assumed to follow a probability
distribution. This approach has been used extensively in the literature [Guan and Liu, 2009; Chen
et al., 2013a; Hillier and Lieberman, 2015]. The following subsections outline the two approaches.

Distribution fitting
In this approach, historical data or measurements are analysed and aimed to fit a probability distri-
bution to observed data. Examples of probability distributions are exponential, Erlang, and Poisson.
Guan and Liu [2009] debate that truck inter arrival times typically follow an exponential distribu-
tion. However, for the truck arrival at the terminal in their TSMS design, Chen et al. [2013a] assume
a non-homogeneous Poisson process in which the average arrival rate for each time period can be
controlled.

Hillier and Lieberman [2015] sustain that the most commonly used approach for simulating the
arrival process in a queueing model, is to assume that the inter arrival times are i.i.d with an expo-
nential distribution. This assumption is valid for truck arrivals at a terminal if the trucks stem from
the same generative process when arriving at the terminal, and if the arrival of one truck at the
terminal is independent of the arrival of another truck (there is no memory of trucks arriving in the
past).

Equation 3.7 provides an example of fitting historical data of mean arrival rate to an exponential
distribution to obtain inter arrival time between trucks in minutes.

IAT = exp
(

60
λ

)
(3.7)

Consequently, in Equation 3.8, f (IAT) indicates the probability of a truck arriving with a certain
inter arrival time (IAT) at the terminal and ranges between 0 and 1. Logically, the inter arrival time
between trucks is expected to decrease when more trucks arrive in an hour.

f (IAT, λ) = λe−λIAT (3.8)

Predictive methods
Regression analysis assumes the desired variable to be dependent on the relation with other, inde-
pendent, variables. This allows estimating the value of the desired variable based on the relation
with the other variables [Huynh, 2005]. It is a statistical method that can be used to evaluate the
extent of the relationship between variables, and, more importantly, to make predictions for future
events based on the relation between variables.

Examples of regression analysis are linear regression, multivariate regression, and nonlinear re-
gression. Regression analysis uses historical data, in the case of TSMS the historical arrival pattern
of trucks, and defines the parameters that have a statistical correlation with the arrival pattern. For
example, container size, transported goods, or day-of-week. Chen et al. [2013b] use regression anal-
ysis as a method for the arrival process in their TSMS design.

Another predictive method is machine learning. Mohri et al. [2018] define machine learning as
”computational methods using experience to improve performance or make accurate predictions”. In machine
learning, a sample of historical data is used to train a computer algorithm to make predictions. After
the computer algorithm is trained, it is fed a new sample of the historic data to test the predictive
power. Consequently, the machine learning algorithm is able to make accurate predictions based on
data.

Examples of machine learning are random forest, artificial neural networks, and Bayesian net-
works. Hill and Böse [2017] apply artificial neural networks to incorporate relevant features in their
development of a TSMS and forecast the truck waiting time.



3.2.2 Queueing process

The queueing process is extensively discussed in TSMS research, for example by Guan and Liu [2009];
Chen et al. [2013a,c], as the design of the queueing model directly influences the research outcome.
If an inaccurate queueing process is used, it provides poor estimations of queue lengths and waiting
time which might result in a faulty study.

Discussions on queueing models are not limited to TSMS research. Also in the broader context of
resource allocation, the importance of an accurate queueing process is emphasised. For example, in
air traffic management [Murça, 2018] or energy distribution [Li et al., 2016].

Besides the arrival process, the inclusion of certain terminal operations, service policies and activity
sequences are discussed in the design of the queueing process. These determine where the queues
arise, and influence the queue lengths and waiting time.

The inclusion of certain terminal operations comprehends the design decision for including berth
side or yard operations in addition to gate operations. Cranes may be utilised by both internal
trucks for vessel operations and external trucks for hinterland operations. For example, Zhang et al.
[2019] use a vacation model for the queueing process in their TSMS design. In this model, temporary
breaks in service, hence vacation, can be described. This is helpful when a crane temporarily cannot
serve external truck due to the need of serving internal trucks.

Service policies indicate the method of handling arrival, options include First In First Out (FIFO),
Last In First Out (LIFO), and priority. The activity sequence is a design choice that indicates the
timely order of processes.

Various queueing models are used and proposed in TSMS research. A distinction can be made in
the use of stationary queueing, or non-stationary queueing models. These are different in terms of
assuming a constant (stationary) or varying (non-stationary) arrival and service rate.

Stationary queueing models
In stationary queueing models, a stationary arrival process and terminal service is assumed. This
means that the arrival and service rates do not vary over time [Green and Kolesar, 1991]. Due to
the assumption of a stationary process, one can question the applicability of stationary queueing
models for TSMS. As mentioned in the previous Chapter 2, peak loads of truck arrival are an issue
that induce waiting time in container terminals. This indicates that it might be incorrect to assume
a steady state queue in a terminal. Guan and Liu [2009] estimate the queue length and waiting time
in their TSMS design with a stationary M/Ek/c multi-server queueing model. Therefore, Chen et al.
[2013c] note that the study of Guan and Liu [2009] resulted in an inaccurate estimation of queue
lengths.

The limitation of a stationary queueing model to neglect transient behaviour and only analyse
the steady state of a queue [Chen et al., 2013a], can influence the design of a TSMS. Adopting a sta-
tionary queueing model, however, highly simplifies the design of TSMS and eases the optimisation.
Moreover, when the amplitude of the arrival process is small, e.g. 10%, a stationary queueing model
may be used and provide accurate results [Green and Kolesar, 1991].

Non-stationary queueing models
Non-stationary queueing models overcome the limitations of a stationary queueing model by as-
suming a time-varying arrival and service process. Most researchers adopt non-stationary queueing
models to estimate queue lengths and waiting time in TSMS design.

For example, Chen et al. [2013a] design their TSMS as a multi-server non-stationary M(t)/Ek/c(t)
queueing model with a FIFO service policy. Likewise, Chen et al. [2013c] adopt a non-stationary
M(t)/Ek/c(t) queueing model for the queueing process in TSMS design. Other studies in which
the queueing process is described by a non-stationary queueing model are Chen et al. [2011], Chen
et al. [2013b], Zhang et al. [2019], and Wibowo and Fransoo [2020]. Overall, non-stationary queueing
models for the queueing process seem to be preferred by scholars in the design of TSMS.
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3.3 allocation framework
The allocation framework is the second component required to develop a TSMS. The allocation
framework is used to ensure the match between demand and supply. There are two approaches to
ensure this match. Firstly, the match can come from the supply side, by using a decision variable to
determine the optimal appointment quota [Chen et al., 2013a; Zhang et al., 2013; Chen et al., 2013c;
Zehendner and Feillet, 2014; Zhang et al., 2019] or time slot duration [Chen et al., 2013b; Wibowo
and Fransoo, 2020] at the terminal.

Secondly, the match can also come from the demand side. The allocation framework can be used
to shift truck arrivals based on a control strategy. In this approach trucks are shifted from one time
slot to another. Using scenarios, the effect of different arrival profiles can be evaluated with the
simulation platform. In this method, the exact number of trucks per time slot (appointment quota)
is not computed directly. However, the number of trucks per time slot can be determined based on
the arrival profiles scenario results.

3.3.1 Control procedure

The vast amount of studies use mathematical optimisation to address the match between demand
and supply. In mathematical optimisation, a problem is formulated with an objective function, deci-
sion variable(s) and constraints. Based on the formulated optimisation problem an optimal solution
is sought within the given boundaries, called the feasible set. An optimisation is maximising or
minimising the value of the objective function, often in an iterative process.

From literature, three categories of optimisation problems in resource allocation can be distin-
guished. These are single objective, bi-objective and multi-objective. Several models and algorithms
are used throughout the literature to solve optimisation problems.

In the TSMS research field, studies predominantly use the formulation of a single objective problem,
or bi-objective formulation. Perhaps, that is because most of the objectives needed for optimising
truck appointment systems have no conflict and can be unified into one single objective. Whereas,
in other fields of resource allocation, for example energy distribution, multi-objective problems are
more common Naz et al. [2017]. Nevertheless, multi-objective formulations are rather complex and
hard to solve due to conflicting objectives [Iqbal et al., 2014].

For bi-objective optimisation problems, more than one single optimum solution can be found.
The set of optimum solutions found by solving a bi-objective problem is called Pareto optimum. An
example of a bi-objective problem formulation in TSMS research is by Chen et al. [2013a]. They aim
to minimise both truck waiting time and shifted truck arrival times. An example of a multi-objective
problem formulation in the transportation field is from Liu et al. [2014] where they aim to solve a
very complex resource allocation and activity scheduling problem for fourth party logistics. The
work of Wibowo and Fransoo [2020] is another example of a multi-objective problem formulation
as they aim to minimise truck waiting time, site overtime cost, space rental cost, and emissions in a
joint-optimisation with multiple stakeholders.

Various solution approaches for optimisation problems can be identified from previous literature.
Some approaches seek to find a solution using collaboration between involved parties. In this con-
text Zargayouna et al. [2016] use multi-agent system to solve the parking allocation problem. Phan
and Kim [2016] study collaborative truck scheduling for TOC and terminals. They proposed an it-
erative collaboration process based on a decomposed mathematical formulation with sub-problems.
Schulte et al. [2017] propose an optimisation model based on the multiple traveling salesman prob-
lem with time windows with the aim to reduce empty truck emissions. Other researchers seek to
find a solution without collaboration.

Iqbal et al. [2014] distinguish two types of mathematical formulations of optimisation models,
namely linear and non-linear models. Within these models a distinction can be made by a con-
tinuous, integer, or mix-integer model. In TSMS design a similar formulation is often used. For
example, Zehendner and Feillet [2014] develop a mixed-integer linear programming model to find
the optimal amount of appointment quota in their TSMS design. Another formulation for the opti-
misation is a non-linear model. This formulation is used by Phan and Kim [2015] for reallocation of
truck arrivals in TSMS design, and by Li et al. [2016] in the allocation of renewable energy. Chen et al.



[2011] develop a convex non-linear programming model for their TSMS design to minimise truck
turnaround times and shifted arrival times.

3.3.2 Solution algorithm

e Oliveira et al. [2020] note that mixed-integer programming is the basis of almost all developed
models regarding resource allocation. Nevertheless, most of the resource allocation optimisation
problems are NP-hard. According to e Oliveira et al. [2020] factors that make it difficult to solve
the optimisation problem with one exact solution are non-linear constraints or objectives, or large
number of integer decision variables. Therefore, heuristic approaches are often used in resource
allocation problems.

Heuristics are iterative search mechanisms that try to search solution space to find an optimum
or at least a near-optimum solution. It can be a very complex algorithm that uses computational
intelligence, or it can be simply a set of expert-defined rules to generate and evaluate feasible
solutions for a practical problem and find the best policy. These methods might not guarantee an
optimal solution but can assure efficient solutions within reasonable computational time.

Examples for well-known heuristics are Particle Swarm Optimisation, Genetic Algorithms and
Simulated Annealing. Iqbal et al. [2014] find that many researchers use Genetic Algorithm (GA) for
resource allocation problems.

The use of GA has several advantages [Chen et al., 2013a]. The GA is very flexible and can therefore
be used for every kind of mathematical formulation of the optimisation problem, whether that is
linear or non-linear, continuous or mixed-integer, or single or multi-objective. Moreover, GA can
easily be combined with other heuristics.

Nevertheless, there is also a weakness in using GA [Chen et al., 2013a]. The main pitfall when
using heuristics is that it is not guaranteed that optimality will be found, neither is there a formal
selection of search direction for optimality.

Despite the weaknesses, many researchers apply GA in resource allocation problems. For example,
Mathew et al. [2010] apply GA in resource allocation for transit agencies fleet management. Chen
et al. [2013b] and Zhang et al. [2013] use GA to solve the formulated optimisation problem in their
TSMS design to minimise total costs and truck turnaround time, respectively. Chen et al. [2013c]
used a GA based on a chromosome in which the code length of the chromosome equals the number
of time slots. This way they aimed to optimise the appointment quota for the time slots. In some
studies, the weaknesses of GA are tackled by aiming to find a Pareto front solution using GA, for
example by Chen et al. [2013a] in their TSMS design.

Heuristics can also be used as strategies for decision making and finding a solution to complex prob-
lems. Additionally, heuristics are used in the energy research field to distribute resources [Martı́n
and Gil, 2008]. Moreover, Mingers and O’Brien [1995] develop a heuristic to allocate students to
groups based on their characteristics.

In TSMS design, a heuristic similar to Mingers and O’Brien [1995] could be used in an approach
to distribute truck arrivals along the day based on a control strategy and scenarios. The control
strategy might comprehend the base on which the trucks are allocated. The scenarios might be
used to evaluate effects of changes in the control strategy or number of trucks shifted. Additionally,
the researcher obtains insight in the effects of non optimal solutions.

A heuristic approach is very suitable to evaluate a TSMS based control strategy for reallocating, or
rather shifting, trucks.

3.4 shortcomings previous research
Even though there are valuable studies towards the development of TSMS, there are also some short-
comings. These shortcomings can be divided into two categories. The first category is neglecting
stakeholder’s perspectives, the second is the lack of including relevant intricacies in TSMS design.
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3.4.1 Neglecting stakeholder’s perspectives

The first shortcoming identified in the field of TSMS design is that most researchers aim to optimise
the TSMS from a terminal’s perspective. By doing this, many studies fail to recognise the impact of
TSMS on TOC, for example on their scheduling operations [Huynh et al., 2016].

Some researchers recommend the optimisation of TSMS including several stakeholders. For exam-
ple, Chen et al. [2013b] and Chen et al. [2013a] recommend doing a multi-objective optimisation to
accommodate the interests of related parties and to reflect realistic trade-offs, respectively. Wibowo
and Fransoo [2020] attempted to include other stakeholder interests by proposing a joint optimi-
sation model for TSMS at a chemical plant. In the field of air traffic management, Murça [2018]
incorporates other stakeholders’ interests by including disutility of rerouting for the flight opera-
tors. However, in this approach the behavioural perspective is not included.

Another approach for including the TOC’ perspective in the development of a TSMS is by exploring the
behaviour of TOC. Behaviour modelling in the form of DCM allows for exploring trucker behaviour.

In DCM, data is analysed and relations between independent variables and dependent variables
are used to explain or predict an event [Bierlaire, 1998]. An event can be considered as a choice in
the context of DCM. Moreover, DCM can provide insight in the preferences for arrival time at the
terminal.

Generally, DCM in transportation research assumes that demand comes from decisions made by
individuals in the population [Bierlaire, 1998]. The decisions comprehend a choice made based on a
finite set of alternatives. The attractiveness of an alternative can be captured by the utility function.

There are various models for DCM. These are binomial and multinomial, these can be specified as
logit or probit models. Multinomial models can additionally be classified in uncorrelated or nested
model and mixed models.

There are two types of choice data, namely stated preference and revealed preference. Stated
preference data is obtained from questionnaires in which hypothetical scenarios are presented to
the choice maker. Revealed preference data is historical data from past choices. In both types of
choice data, the data includes attributes that might be included in the utility function.

Several behavioural assumptions are made in the specification of the choice model [Bierlaire, 1998].
With the inclusion of an attribute in the utility function, it is assumed that the attribute actually
impacts the choice for a certain alternative. Choice modelling is build on the concept of the alterna-
tives being attractive relative to each other. Consequently, preferences for certain alternatives can be
explored.

Another behavioural assumption made in choice modelling is that the decision maker is rational
and a perfect optimiser. Therefore, in theory the alternative with the highest utility is always chosen.
Nonetheless, humans tend to behave random and may choose an alternative that does not seem to
provide the highest utility. This is due to the fact that it is impossible to capture all factors in the
choice model that influence the choice. The utility function, therefore, consists of two parts. The first
part is the deterministic part, which includes the attributes that are found to influence the choice of
a certain alternative. The second part of the utility function contains an error term. This error term
represents the unobserved behaviour that influence the choice. The error term is assumed to be i.i.d

and follow an Extreme Value distribution (EV(0, µ)) in which µ is the scale parameter. In general,
the scale parameter is normalised to 1. Another method that can be used to capture the unobserved
behaviour, is by the formulation of an alternative specific constant (ASC). By the formulation of an
ASC the mean of the error term is moved to the deterministic part of the utility function. The ASC is
a parameter in deterministic part that can be estimated from data.

DCM is a method that is, to the author’s knowledge, never used in TSMS research. However, it is
believed that DCM adds a behavioural understanding to the TSMS development. A TSMS development
that includes the perspective of TOC, is of interest in this research. DCM using revealed preference
data, might be a suitable method to obtain insight in TOC preferences for arrival.



3.4.2 Lack of including relevant intricacies in TSMS design

Another shortcoming that is found from previous research is that not all complexities in the system
are taken into account. Even though, this is required to make the study realistic and the proposed
TSMS designs usable in practice. For example, the study of Guan and Liu [2009] obtains significantly
inaccurate results because they highly simplified the queueing process by applying a stationary
queueing model.

Moreover, some researchers claim that not taking into account yard queues will provide faulty re-
sults. This is what happened in the research of Giuliano and O‘Brien [2007]. Therefore Zhang et al.
[2013], Chen et al. [2013a], Phan and Kim [2016], and Zhang et al. [2019] include these operations
and queues specifically. However, it depends on the container handling and gate operation policy
in the terminal whether the approach of including separate yard queues is necessary. Nevertheless,
a lack of including the relevant intricacies associated with the system can deteriorate the value of
the study.

Huynh et al. [2016] provide an overview of elements that should be considered for actual or stud-
ied TSMS. Among these elements are mandatory appointments for all transaction types; standby
provision to fill empty, missed, or cancelled appointments; guaranteed appointments for commit-
ted container moves; sufficient and separate gate capacity; rational and flexible quotas; flexibility;
reset provision; transaction screening and verification; port-wide, real-time system visibility; fees
and penalties. During the design of TSMS in this research, these elements identified by Huynh et al.
[2016] should be kept in mind to ensure a valuable study.

Table 3.1 provides an overview of the most related literature towards TSMS and the placement of this
research.

Table 3.1: Overview of literature towards Time Slot Management Systems
Simulation platform Allocation framework Behavioural

Author Arrival process Queueing process Control procedure Solution algorithm perspective

Chen et al. [2013a]
Distribution fitting:
Poisson distribution

Non-stationary Bi-objective Genetic Algorithm -

Chen et al. [2013b]
Predictive method:
Regression analysis

Non-stationary Single-objective
GA, MSGA and
Hybrid GA–SA

-

Chen et al. [2013c]
Distribution fitting:
Poisson distribution

Non-stationary Bi-objective Genetic Algorithm -

Zhang et al. [2013]
Distribution fitting:
Exponential distribution

Non-stationary Single objective Genetic Algorithm -

Zhang et al. [2019]
Distribution fitting:
Exponential distribution

Non-stationary Single-objective
Strategy-based
allocation algorithm

-

Wibowo and Fransoo [2020]
Distribution fitting:
General distribution

Non-stationary Multi-objective
Branch-and-bound
algorithm

-

This thesis research
Distribution fitting:
Exponential distribution

Non-stationary Single objective
Strategy-based
allocation algorithm

X

3.5 conclusion
It can be concluded that TSMS has the potential to be a very effective, suitable and successful solution
to reduce truck congestion at a terminal, provided that the TSMS is implemented properly. Therefore,
the methodologies for TSMS design were explored in this chapter.

There are two main components required in TSMS development, namely a simulation platform
and an allocation framework. These two components must be integrated to obtain a complete TSMS

design.

The simulation platform includes the stochastic arrival process and queue process. For the arrival
process there are two methodologies discussed. In most studies fitting to a probability distribution
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is the method used for the arrival process. However, predictive methods like regression analysis
and machine learning, have the potential to make predictions of the arrival rate.

The queueing process comprehends some very important design decision for TSMS. The choices
made for the arrival process, the inclusion of certain terminal operations, service policies and activity
sequence to comprehend the situation at the terminal directly affect whether the designed TSMS is
realistic and usable in practice.

There are two types of queueing models distinguished. Stationary queueing models assume
constant rates for arrival and service at the terminal. This is rather unrealistic and might cause
inaccurate results and faulty TSMS design. However, it does allow for a more simple estimation of
waiting time. Non-stationary queueing models provide more accurate results and allow a more real-
istic TSMS design. Nevertheless, these models are more difficult and require complex approximation
methods to estimate queue lengths and waiting time.

Depending on the assumptions made for the modelling approach, a suitable queueing model,
that implements the assumptions, can be chosen.

For the allocation framework component, several mathematical formulations can be used for the
optimisation problem. The most common formulation in resource allocation is (non-)linear mixed-
integer. These optimisation problems are complex and difficult to solve with the optimal solution
within reasonable computational time.

Therefore, heuristics are often used to solve the optimisation problem. The GA is predominantly
used in TSMS design. Furthermore, a heuristic approach for reallocating, or rather shifting, trucks is
very suitable to evaluate a TSMS based control strategy for truck arrival at terminals.

There are two categories of shortcomings identified from the present research of TSMS. These come
down to neglecting stakeholders’ perspectives in the design, especially the perspective of TOC. By
developing a choice model, using DCM, the behaviour and preferences of TOC can be included in the
development of TSMS. Consequently, this shortcoming can be tackled.

Another shortcoming is the lack of including relevant intricacies associated with the system. This
lack of including relevant intricacies can happen in the several components of TSMS design. For
example, an inaccurate assumption about the arrival or queueing process, or unjustified simplifi-
cations in the optimisation model. To tackle this shortcoming, a clear understanding of how the
terminal operates is important.



4 M E T H O D O LO GY

In this chapter, the modelling approach for the implementation of a TAS policy is laid out. The
approach is based on the insight in methodologies for TSMS development, discussed in Chapter 3.
Two models and one heuristic are developed based on two sets of data. First, the interaction between
the models and heuristic is outlined in Section 4.1. Thereafter, both models and the heuristic are
elaborated individually in Section 4.2, 4.3, and 4.4. Lastly, the approach for calculating the waiting
time gain is discussed in Section 4.5.

4.1 modelling framework
From the literature review of the methodologies for TSMS development in Chapter 3, it is found that
the development of the TAS policy requires two steps. These steps are the development of a sim-
ulation platform and an allocation framework. Additionally, it is concluded that choice modelling
is a suitable way to include TOC preferences in the design of the TAS. Consequently, a modelling
framework is defined to design the TAS in this research. The modelling framework is depicted in
Figure 4.1. For this research, four terminals, labeled A through D, in the port of Rotterdam area
are examined for TAS policy development. The models are developed based on data of these four
terminals. Consequently, the results indicate the effect of truck shifting at these terminals in the
Rotterdam port area.

Traffic data Logistic dataTerminal 
model

Choice
model

Waiting time
profiles

Waiting time gain

Shifted arrival
profiles

Truck shifting
strategies

TOC preferences

Truck shifting
heuristic

Waiting time 
gain calculation

Figure 4.1: Modelling framework

The terminal model represents the simulation platform. Traffic data about truck arrivals at the
terminals are the input for the terminal model. The output is waiting time at the terminals.

The choice model indicates the choice modelling step. The data used for the choice model is
logistic data of import containers at the terminals. The waiting time profiles from the terminal model
are additionally included in the choice model. The output of the choice model is the preferences of
TOC for container pick up at certain time periods.

Subsequently, from the TOC preferences truck shifting strategies can be formulated. These indicate
the strategy for controlling the truck arrivals at the terminals. The truck shifting strategy is input
for the truck shifting heuristic. The truck shifting heuristic represents the allocation framework. In
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this heuristic, new truck arrival profiles are computed from the historic traffic data, based on the
truck shifting strategy and what-if scenarios.

The output of the truck shifting heuristic, the shifted arrival profiles, is the new input for the
terminal model. In the terminal model the shifted arrival profiles can be simulated to obtain waiting
time profiles for the shifted arrivals.

Lastly, the waiting time profiles simulated from the shifted arrival profiles are compared with the
waiting time profiles in the base case year 2017. Consequently, a waiting time gain for the truck
shifting strategy and scenarios can be calculated. This results in insight in the effect of controlling
the truck arrivals at the terminals. Hence, the potential of the TAS policy to reduce waiting time in
the port of Rotterdam.

4.2 terminal model
A terminal model is developed to simulate the processes at the terminal. With the terminal model,
a waiting time profile can be simulated from an arrival profile. The terminal model is set up using
historic traffic data. One is referred to Appendix A for details of the traffic data.

In this section, the terminal model will be elaborated regarding the model components, the cali-
bration, the verification and the validation. For exact details of the complete terminal model devel-
opment one is referred to Appendix B.

4.2.1 Model description

The terminal model is formulated as a queueing model and DES is used to represent the port system.
The terminal model is formulated as a M/M/s queueing model as it is assumed that both the inter
arrival time and the service time are i.i.d with an exponential distribution and the number of servers
is an integer value.

With the terminal model, one day is simulated. The terminal model includes three components,
namely the truck generator, the trucks and the server. Together these three components make up
three processes in the terminal model. The three processes in the model are the arrival process, the
server process, and the departure process. In Figure 4.2 a graphical representation of the terminal
model, the components and processes is provided. Details of the model components and processes
are extensively elaborated in Section B.1.1.

Arrival process Server process

Truck
generator

Trucks

Server

Departure process

Inter
arrival 

time

Queue

Waiting time

Service time

Arrival
timestamp

Departure
timestamp

Turnaround time

Simulteneous terminal capacity

Figure 4.2: Graphical representation of the terminal model, the components and the simulated processes

Truck arrival
The arrival process simulates the truck arrivals at the terminal. Historic traffic data from the year
2017 is obtained from loop detectors in the port of Rotterdam area. This traffic data contains aggre-
gated data for number of trucks arriving or departing from the terminal for each hour of the day.
The arrival profile is non-stationary as the number of trucks arriving per hour varies along the day.

The truck generator component in the terminal model generates trucks with an inter arrival time
(IATh in min). The inter arrival time is determined from the average historic arrival profile represent-



ing trucks per hour (λh), and fitted to a random probability distribution to account for stochasticity
in arrivals. For the stochastic arrival process simulated in this research, it is assumed that the inter
arrival times are i.i.d with an exponential distribution. This assumption is valid since the trucks
stem from the same generative process and the arrival of one truck is independent of another truck
(Section 3.2.1). Equation 4.1 presents the inter arrival time calculation used in the terminal model.

IATh = exp
(

60
λh

)
(4.1)

A statistical analysis is carried out for the arrival profile obtained from the historic traffic data (Sec-
tion A.1). By means of an ANOVA test, a monthly trend in truck arrivals is explored (Section A.1.2).
It is concluded that there are no significant differences between months of the year (p > 0.05).

Moreover, based on a two sided t-test, weekend days are excluded from further research as these
are found to be significantly different from working days (p < 0.05), and do not represent the
situation that cause waiting time due to little truck arrivals on Saturday and Sunday.

To assess a potential daily trend in truck arrivals (Section A.1.3), an ANOVA test is used to
compare the arrival profiles of the five working days. It is concluded that the working days do
not differ significantly (p > 0.05). Hence, the working day average is sufficient to calibrate the
simulation model regarding the arrival pattern.

However, the average working day arrival profiles are found to be significantly different (p < 0.05)
among the terminals at Maasvlakte II (MVII) (Section A.1.1). For the four terminals a simulation
model must be defined individually.

Terminal operations
The server component represents the terminal operations. From literature, modelling the terminal
operations was found to be a complex task (Section 3.4). Nevertheless, a proper formulation of
the server is crucial to make the study realistic and the developed TAS policy usable in practice. A
lack of including the relevant intricacies associated with the system can deteriorate the value of the
study.

As the four terminals, that are examined in this research, have dedicated cranes for serving exter-
nal trucks, it is fair to neglect the vessel operations in the model. However, other relevant intricacies
should be accounted for in the terminal model. Terminal operations typically include trucks enter-
ing the terminal yards, positioning of trucks in a container stack, loading/unloading the container,
and driving back to the exit gate. Limited information is available to allow for simulating these
terminal operations in detail. Therefore, the terminal operations are all captured by a single server
component with the capacity to serve multiple trucks simultaneously in the terminal.

This might seem like a simplification of the model, because the details of the operations are not
modelled. However, this is not quite true. The trucks spend a certain time in the terminal to be
served. The information of this time spend in the server component, allows to represent all activi-
ties in the terminal. Additionally, multiple trucks can enter the server component. This information
allows to represent the terminal capacity. Despite that the details of the terminal operations are not
modelled, the relevant intricacies are included in the terminal model.

All relevant intricacies for simulating the terminal operations with the server component are thus
captured by two parameters with an unknown value. These are the capacity to serve trucks simul-
taneous and the service time per truck. An optimisation algorithm, Bayesian optimisation [Bergstra
et al., 2013], is used to estimate the parameter values based on the historic departure profile. The
service time is estimated as a mean with integer value. The service of trucks is modelled as a sta-
tionary process, this means that the mean service time does not vary along the day. This is a valid
assumption since the terminal in Rotterdam operate at a constant utilisation rate and the container
(un)loading is a standardised and highly automated process. Consequently, the mean service time
is distributed exponentially to account for stochasticity [Hillier and Lieberman, 2015]. This is similar
to the distribution of the arrival process (Equation 4.1, however λh is replaced by µ for the constant
mean service time. The capacity to serve trucks simultaneously is a constant integer value since no
half trucks can be served.

In the optimisation approach to estimate the parameters for the server component, an objective
function is formulated. The objective function is to minimise the difference between simulated
departure profile and the observed departure profile. For the formulation of the objective function,
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the mean square error (MSE) method is used Equation 4.2. This method squares the difference
between the simulated (Ŷi) and observed (Yi) departure profile for each data point (n), in this case
the hourly time periods, and computes the mean of over all data points. A larger difference results
in a larger impact of the difference on the objective function. Therefore, the parameter values are
tuned such that the deviation from the historic departure profile is minimised.

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (4.2)

Simulation
The simulation model is set up with the DES package salabim [van der Ham, 2018]. Since the inter
arrival time and service time are assumed to be i.i.d from an exponential distribution, the terminal
model is formulated as a M/M/s queueing model [Hillier and Lieberman, 2015].

In the simulation trucks enter the model with a certain inter arrival time. Subsequently, multiple
trucks are served in the server component with a certain service time and capacity. When too many
trucks arrive for the server component to process, a queue emerges. The trucks spend a certain time
waiting in the queue until terminal capacity becomes available. After being served, the trucks leave
the system (Figure 4.2).

In the simulation, the trucks obtain an arrival timestamp and departure timestamp upon arrival
and departure, respectively. Hence, the total time spent by each truck individually, also referred to
as the turnaround time, can be calculated. Moreover, each truck individually encounters a specific
service time. By subtracting the service time from the turnaround time for individual truck, the
time spent in the queue, also referred to as waiting time, is obtained for each truck.

From literature it was found that estimating the queue lengths and waiting time in a queueing
model require a certain approximation method. In this research the approximation method applied
is particle-based and for a non-stationary queueing process. Mathematically this is denoted with
the following equations

L = λhW (4.3a)

Lq = λhWq (4.3b)

W = Wq +
1
µ

(4.3c)

Wq =
Lq

λh
(4.3d)

where the expected number of trucks in the queueing system, hence in the queue and in the servers,
is denoted by L. The mean arrival rate for each hour is denoted by λh. The waiting time including
service time, hence turnaround time, is represented by W (min). The mean service time is presented
by µ (min), µ is i.i.d with an exponential distribution (exp(µ)). Moreover, with Lq the expected
queue length, thus excluding the trucks in the servers, is indicated. Lastly, the waiting time in the
queue is denoted with Wq (min).

The DES salabim package used for the simulation set up provides queues and ‘states’ [van der Ham,
2018]. These ensure the trucks enter the queue and wait until the server component is ready to
serve the trucks. Consequently, the waiting time for each individual truck is tracked throughout the
simulation and logged in the results.

The resulting data from the simulation is transformed to provide the number of trucks arriving
and departing for each time slot. Equivalent to the historical data profiles from the loop detectors,
the simulated data is aggregated to hourly time periods. This provides the arrival and departure
profiles along the day as simulated with the terminal model. By comparing these simulated arrival



and departure profiles with the observed arrival and departure profiles from the loop detectors, the
terminal model is calibrated, verified and validated.

Other results that are obtained from the terminal model, are profiles of hourly averages along the
day for the turnaround time, the service time, the waiting time, and the queue length. These results
can be used to analyse the simulated system.

4.2.2 Model calibration

To ensure that the terminal model is close to reality and can simulate the arrival, service and depar-
ture of trucks accurately, the terminal model requires calibration. For the specific terminal models,
the design of the terminal model remains the same. Yet, the arrival and departure profiles in each
terminal model correspond to the specific terminals A through D. Hence, the models for individual
terminals are set up and calibrated separately. In each specific model, the parameters in the arrival
and service process are tuned to a specific terminal. The parameters are tuned based on the traffic
data (Appendix A) arrival profile and departure profile obtained from the loop detectors located at
the specific terminal.

Arrival process
The parameters in the arrival process are the exponentially distributed inter arrival times from the
average arrivals of trucks per hour, see Equation 4.1. The calibrated model simulates an arrival
profile based on the tuned parameters. To ensure that the simulated arrival profile is similar to the
observed profile a statistical analysis is carried out.

In the statistical analysis a two sided t-test is applied to compare the observed and simulated
arrival profile. The results of the statistical analysis indicate that the simulated arrival profile is
significantly similar to the observed arrival profile (p > 0.05). Additionally, polynomial regression
is done to analyse the correlation between the observed and simulated arrival profile. The statistical
measure in this analysis is the R-square. The R-square ranges between 0 and 1, this number indicates
the extent to which the simulated data matches the observed data. The results of this statistical
analysis are depicted in Table 4.1.

Table 4.1: Results for comparing the observed and simulated arrival profiles to check for correlation and sig-
nificant differences in observed and simulated arrival profiles for several terminals

Terminal t-value p-value R-square
Terminal A 0.025 0.98 0.995

Terminal B 0.014 0.989 0.989

Terminal C 0.025 0.981 0.996

Terminal D 0.031 0.975 0.994

Based on the results of the statistical analysis, the arrival process is calibrated and provides accu-
rate results. In Section B.2.1 the extensive calibration and statistical analysis of the arrival process is
elaborated.

Service process
The parameters in the service process are the simultaneous terminal capacity and the mean service
time. The service process is, similar to the arrival process, calibrated based on historic traffic data.
The historic data used to calibrate the service process is the departure profile.

Similarly to the arrival profiles, the departure profiles from the traffic data are statistically anal-
ysed with an identical approach and results (Section A.1). The results show that the departure
profiles are significantly different among the four terminals (p < 0.05). There are no monthly trends
in truck departures (p > 0.05). After excluding the significantly different (p < 0.05) weekend days
from the week, the working days are found to be similar in departure profile (p > 0.05). Conse-
quently, the average working day profile for each terminal can be used to calibrate the parameters
for the individual models.

The parameters for the service process are tuned by means of the Bayesian optimisation algorithm
(Section B.1.2). By the formulation of an optimisation problem, the missing information (the simul-
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taneous terminal capacity and mean service time) can be captured by the model. Therefore, the
simulation model can accurately simulate the service process. To tune the parameters to the opti-
mal value, the algorithm iterates until it finds the parameter values that minimise the loss. This
minimised loss is considered to be the best loss found by the optimisation algorithm. As aforemen-
tioned, the loss is calculated with the MSE method (Equation 4.2) and indicates the deviation from
the observed departure profile. This results in the estimated parameter values depicted in Table 4.2.

Table 4.2: Overview of estimated parameter values for the service process and the corresponding loss

Terminal
Simultaneous
terminal capacity

Mean
service time

Best loss (MSE) MAPE score

Terminal A 17 17 64.396 23%
Terminal B 16 17 37.15 13.8%
Terminal C 20 12 93.804 13%
Terminal D 20 14 70.05 10.9%

The parameter estimation results are considered to be realistic. Based on the number of stacks
and cranes observed in the terminals using Google Maps satellite view [Google, 2017], and earlier
research by the PoR [Drewes and Gorter, 2017], the magnitude of the parameters in combination is
as expected.

Interpreting the absolute value of the best loss is rather difficult, as the MSE result is always
dependent on the data. As a rule of thumb the best loss can be interpreted as the closer to zero,
the better. Nonetheless, the absolute value of the MSE is relative to the magnitude of the values in
each data point. As the MSE takes the square of the deviation in a data point, a factor 10 larger
magnitude of values in a data point can result in a factor 100 larger MSE loss value. Therefore,
the mean absolute percentage error (MAPE) score is additionally calculated using Equation 4.4. The
calculation of the MAPE score is similar to the MSE (Equation 4.2), though a percentage value is
obtained. This percentage value indicates the difference between observed and simulated profile.
For interpreting the MAPE the rule of thumb is that a smaller value indicates that the simulated
profile is closer to the observed profile.

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (4.4)

All in all, the loss is found to be reasonable, based on the MSE results and the additional MAPE

score results (Table B.4). Nevertheless, some difference between the observed and simulated depar-
ture profile is found. Therefore, two additional statistical analysis are applied to assess the power
of the calibrated model to simulate the observed profiles.

Similar as to the statistical analysis for the arrival process calibration, the two sided t-test and R-
square are used as statistical measures. The results of these analysis are depicted in Table 4.3.

Table 4.3: Results for comparing the observed and simulated arrival profiles to check for correlation and sig-
nificant differences in observed and simulated departure profiles for several terminals

Terminal t-value p-value R-square
Terminal A -0.077 0.939 0.934

Terminal B -0.044 0.965 0.979

Terminal C -0.195 0.846 0.969

Terminal D -0.018 0.985 0.977

The results of the statistical analysis indicate that the simulated departure profile is significantly
similar to the observed departure profile. From the t-test, p-values larger than 0.05 are obtained.
The R-square results are very close to 1, with a maximum deviation of 0.154. In Section B.2.2, the
complete and detailed calibration of the service process is elaborated, and a reflection on the esti-
mated parameter results is provided. Additionally, the statistical analysis is discussed extensively
in Section B.2.2.



4.2.3 Model verification and validation

In the verification, it is checked whether the terminal simulation model operates as it is supposed
to do. In validation, the simulation model is assessed on the capability to provide results that are
close to reality.

Verification
The extensive model verification is discussed in Section B.3. In the verification, various checks and
tests are executed. Each model for the specific terminals A through D, is verified in a stepwise
approach. From the model verification checks, the model is found to operate as it is supposed to do.
The components are implemented correctly, the flow conserve is zero, and the chronological order
of processes is correct.

Validation
The extensive model validation is discussed in Section B.4. The approach for validating the model
is to compare the simulation results with historic traffic data (Appendix A) using a train and a test
set of the data. By splitting the historic data set of 2017 traffic data into two parts, the train and test
set are created. The train set comprehends traffic data of 11 months of the year 2017. The test set
includes the data of the remaining month, which is October.

The model is calibrated and the parameters are tuned using the train data set. Consequently,
the calibrated model is validated by means of a test data set. This test set allows for an unbiased
evaluation of the model, hence it allows to validate the model. The test set is independent of the
train set. Yet, the test set and train set come from the same probability distribution.

The validation exist of three steps. First is visual validation by comparing the observed and sim-
ulated profiles visually. Second is polynomial regression with the R-squared as statistical measure.
Last is the two sided t-test. The results of these validation steps indicate that the terminal model
is validated. The observed and simulated arrival profiles are very similar looking at it with the
eye. The results of the statistical analysis are shown in Table 4.4. The t-test results indicate a very
high p-value, hence no significant differences between observed and simulated profiles (p > 0.05).
Moreover, the R-squared results are very close to 1.

Table 4.4: Results for comparing the observed and simulated departure profiles of test set data to check for
correlation and significant differences for several terminals

Terminal t-value p-value R-square
Terminal A -0.055 0.956 0.914

Terminal B -0.059 0.954 0.956

Terminal C -0.273 0.786 0.909

Terminal D -0.033 0.974 0.964

The simulation model for each terminal is proven to be accurately calibrated, verified and validated.
Using the simulation model, various results can be obtained. These results reflect the situation at the
terminals in 2017. The results comprehend the simulated arrival and departure profiles, the average
turnaround time profile, the average waiting time profile and the average queue length profile along
a working day. In Section B.5 the results for the base year 2017, are presented for each terminal.

4.3 time period choice model
A choice model is developed to gain insight in the behaviour of the TOC regarding time period
choice for container pick up. Based on this insight, a truck shifting strategy can be formulated to
control truck arrivals at the terminals. The choice model is set up using logistic data collected from
Portbase, the port community system at the port of Rotterdam. The logistic data captures details on
import containers in 2017 for the same four terminals considered in the terminal model (Section 4.2).
The logistic data required pre-processing and analysis before it could be used as input for the choice
model. For details on the pre-processing, analysis and results of the logistic data one is referred to
Appendix C.
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In this section, the choice model will be elaborated regarding the steps required to set up a choice
model [Bierlaire, 1998]. These steps are the problem definition, data, model specification, parameter
estimation and model application. For the exact details of the complete time period choice model
development and results, one is referred to Appendix D.

4.3.1 Problem definition

The goal of the choice model is to gain insight in the preferences of the TOC to pick up a container at
a certain time. The choice model is based on discrete choice theory [Bierlaire, 1998]. The definition
of the choice problem in this research is the choice of a TOC to pick up a certain container at a
certain time. The probability of choosing a certain time is computed from the attractiveness of the
alternatives. The attractiveness is measured from the utility function for each alternative. The utility
function captures the influence of an attribute from the data.

4.3.2 Data

As mentioned, the choice model is based on logistic data of import containers. This is revealed
preference data of TOC for container pick up. The data set contains information of transaction data
on arrival of container vessels, containers discharges and the estimated pick up time (ETA) of these
containers by hinterland transport trucks. Moreover, the data set includes container characteristics
(type, dimensions, weight, and temperature) and information about the transported commodity.
Additionally, the waiting time at the terminals obtained from the terminal models (Section 4.2) is
included in the data set.

Data analysis
The logistic data is analysed with the aim to identify the attributes in the data that influence the
choice of a TOC to pick up a container. Based on this information the choice model can be formulated.
To obtain insight in which attributes impact the choice of the TOC a machine learning technique
named random forest is used [Koehrsen, 2017]. This method aims to predict the preferred time slot
for container pick up, based on the attributes in the data set.

As a result, the importance of the attributes for the prediction is indicated. Container type and
commodity type are found to be important attributes to predict the preferred pick up time. The
other attributes are excluded from further research, as these will not explain trucking behaviour.
These excluded attributes might be correlated with the other attributes. It is desired to prevent this
as collinearity might deteriorate the value of the data.

Additionally, a result of the random forest analysis is that the model is not very accurate in
predicting the correct preferred pick up time in hours. The accuracy increases when the pick up
time is categorised in four periods instead of hourly slots (Section C.2). Consequently, to obtain
better results from the choice model, the hourly pick up time preference is aggregated to four time
periods. The time periods are formulated as night (from 21:00 until 3:00), morning (from 4:00 until
9:00), midday (from 10:00 until 14:00), and afternoon (from 15:00 until 20:00). These periods are
based on observed arrival patterns and categories used in practice at the terminals.

Moreover, it can be concluded from the data analysis that a separate choice model must be spec-
ified for each terminal as the terminals differ from each other considering container types and
commodity types handled. This could result in different preferences of the TOC for pick up time
(the ETA) based on the terminal the container must be picked up.

Attributes
Container type is an attribute with four levels. Therefore, the container type variable in the choice
model is a discrete and categorical variable. The levels are general purpose container, reefer con-
tainer, chemical container, and tank container. Commodity type is also a discrete and categorical
variable. Commodity type is an attribute with eleven levels (Section C.3). However, in the choice
model not all levels are included in the commodity type attribute. Solely the levels that are expected
to be most influential are included, this is determined by how often the type occurs (Section C.3).
Additionally, commodity types that are incompatible for formulation of a truck shifting are excluded.
Two examples of this are ‘miscellaneous’ and ‘unknown’.



Opposed to the container type and commodity type, the waiting time is a continuous variable.
The waiting time is simulated with the terminal model. For each container in the logistic data set, an
averaged waiting time for one hour in each time period is randomly assigned. Hence, the waiting
time that could potentially be encountered by the TOC in each of the time periods, is included in
the choice model. Therefore, the levels for waiting time are waiting time for morning, midday or
afternoon. This allows to capture the effect of waiting time along the entire day, on the pick up
period preference of the TOC.

4.3.3 Model specification

A mathematical model is specified for the choice model and contains several attributes. The details
of the specification of the choice model for each terminal is elaborated in Section D.3.

In discrete choice modelling there are two types of attributes, dependent and independent at-
tributes. A dependent, or endogenous, attribute is the choice variable, in this research that is time
period. An independent, or exogenous, attribute is the explanatory variable. Based on the logis-
tic data, the container type, commodity type and waiting time at the terminal are identified as
independent attributes.

In the specified choice model, four alternatives make up the discrete choice set for the choice of
pick up period. These alternatives are night, morning, midday, and afternoon. For each decision
maker (the TOC), the choice set is the same. The attractiveness of the alternatives is determined by
the underlying distribution of utility for the alternatives, as discrete choice modelling is built on the
concepts of the alternatives being attractive relative to each other. Consequently, the probability that
a TOC chooses time period t (P(t|T)), can be computed from the underlying distributions of utility.
The utility (U) is calculated with the independent variables.

In theory, the alternative with the highest utility is always chosen (Equation 4.5), due to the
behavioural assumption that the decision maker is rational and a perfect optimiser.

P(t|T) = Pr(Ut ≥ Uj, ∀j ∈ T) (4.5)

Nonetheless, humans tend to behave random and may choose an alternative that does not seem to
provide the highest utility. This is due to unobserved behaviour of the decision maker. The utility
function (Ut), therefore, consists of two parts (Equation 4.6). The first part is the deterministic part
(Vt), which includes the attributes that are found to influence the choice of a certain alternative. The
second part of the utility function contains an error term (εt).

Ut = Vt + εt (4.6)

Utility function formulation
As introduced in Section 3.4, there are several behavioural assumptions made in choice modelling.
Firstly, with the inclusion of an attribute in the utility function it is assumed that the attribute
actually impacts the choice for a certain alternative. Hence, the utility functions are formulated
based on insight from the logistic data (Section C.2, C.3 and C.4).

The deterministic part of the utility function (Vt), where V1 represents the night, V2 the morning,
V3 the midday, and V4 the afternoon alternative, captures the attribute levels of container type (xtype),
commodity types (ytype) and waiting time (walt). The prior two attributes are formulated as dummy
variables (0 or 1) as these are discrete and categorical. The latter is a continuous variable, and
formulated as the waiting time in minutes.

The utility functions are unique for each alternative and for each terminal. It depends on the
terminal which levels of the attribute are included in the choice model. Levels are included or ex-
cluded based on the share of containers the level captures. Moreover, the spread of the levels along
the day is considered, as this could indicate that for certain attribute levels, TOC prefer a specific
time period. This information is obtained from the data analysis (Section C.3 and C.4).

To capture these unobserved behaviour of the TOC, an error term is included in the utility functions
by the formulation of an ASC. The ASC is included in the utility functions for the night and morning
alternative (ASCalt). These are found to be least attractive (Section C.3). With the ASC in the utility
for night and morning, it is aimed to capture the unobserved factors that decrease the preference
for these alternatives.
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To capture the influence of the independent variables on the choice, several parameters (β) are
formulated. The value of these parameters can be estimated from data by the choice model. The
parameters represent the preference for a certain alternative based on the container type, commodity
type and waiting time as the parameters interact with the independent variables.

The mathematical formulation of the utility functions in the choice model for each terminal is pre-
sented in Equation 4.7a through Equation 4.10d. For more details, one is referred to Section D.3.2.

Utility functions for terminal A:

V1 = ASCNight + βRE · xRE + βSolMinFu · ySolMinFu (4.7a)

V2 = ASCMorning + βRE · xRE + βAgr · yAgr + βChem · yChem (4.7b)

V3 = βWT,Morning · wMorning + βTC · xTC + βCC · xCC (4.7c)

V4 = βWT,A f ternoon · wA f ternoon + βWT,Midday · wMidday + βGP · xGP (4.7d)

Utility functions for terminal B:

V1 = ASCNight + βGP · xGP + βChem · yChem + βRawMin · yRawMin (4.8a)

V2 =ASCMorning + βWT,Morning · wMorning + βCC · xCC + βAgr · yAgr

+ βSolMinFu · ySolMinFu
(4.8b)

V3 = βWT,Midday · wMidday + βWT,A f ternoon · wA f ternoon (4.8c)

V4 = βRE · xRE + βPetro · yPetro (4.8d)

Utility functions for terminal C:

V1 = ASCNight + βGP · xGP + βCC · xCC + βTC · xTC (4.9a)

V2 = ASCMorning + βRE · xRE + βAgr · yAgr + βSolMinFu · ySolMinFu (4.9b)

V3 =βWT,Morning · wMorning + βWT,Midday · wMidday + βTC · xTC

+ βFert · yFert + βRawMin · yRawMin
(4.9c)

V4 = βWT,A f ternoon · wA f ternoon + +βChem · yChem + βOres · yOres + βPetro · yPetro (4.9d)

Utility functions for terminal D:

V1 = ASCNight + βCC · xCC + βChem · yChem (4.10a)

V2 = ASCMorning + βGP · xGP + βRawMin · yRawMin + βAgr · yAgr (4.10b)

V3 = βSolMinFu · ySolMinFu + βPetro · yPetro (4.10c)

V4 = βWT,Midday · wMidday + βCC · xCC + βSolMinFu · ySolMinFu + βOres · yOres (4.10d)



4.3.4 Parameter estimation

Based on the logistic data, the value of the parameters can be estimated by means of an optimisation
algorithm. With the estimated parameters, the choice model serves to interpret the preferences of
the TOC.

Optimisation algorithm
The optimisation algorithm to estimate the parameter values for ASC and β, is maximum log-
likelihood estimation. Maximum likelihood is the probability that the model correctly fits the
observations from data. In the maximum log-likelihood estimation, the model aims to estimate
the parameters in such a way that the model has the highest probability of fitting the observed data.
Hence, the parameter values are estimated as such that these maximise the log-likelihood calculated
by

maxL(β̂1, ..., β̂K) =
N

∑
n=1

(
∑

t∈Tn

ytn ln Pn(t|Tn)

)
(4.11)

where L indicates the log-likelihood. If an individual chooses alternative t, ytn = 1, otherwise
ytn = 0. Pn(t|Tn) represent the logit model (Equation 4.12). The specified model is estimated using
Biogeme software [Bierlaire, nd]. For further details of the optimisation algorithm for parameter
estimation, one is referred to Section D.4.1.

In the model set-up, the model specifications (Section 4.3.3) are defined. Consequently, the model
is estimated using the Multinomial Logit (MNL) model. The MNL model is used because the choice
set is not binary but multinomial, there are multiple alternatives to choose from. Since the decision
makers are assumed to be homogeneous the MNL model is very suited for the parameter estimation.
Moreover, thanks to the closed form of the MNL model, there is less complexity involved. In the MNL

model the probability of choosing an alternative compared to the other alternatives in the choice set
is calculated by

Pn(t|Tn) =
eVtn

∑j∈Tn eVjn
(4.12)

where, the deterministic part of the utility function (Vtn), indicates the utility of individual n for
alternative t. Consequently, Pn(t|Tn) represents the probability that individual n chooses alternative
t from choice set Tn.

Model output
Several results are obtained from estimating the specified model with the optimisation algorithm,
these are provided in Table 4.5. The estimated parameter values represent the preferences of the TOC.
Additionally, output for statistical analysis of the model and the estimated parameters is obtained.
Note that for some container and commodity types no parameter value is shown as it was found
that only these, represented in Table 4.5, significantly (p < 0.05) impact the preference of a trucker
for pick up time.

For assessing the model accuracy, the goodness of fit of the estimated model to the data can be
observed from the likelihood ratio statistic (asymptotically distributed as χ2). This is calculated with

−2(L(0)−L(β̂)) (4.13)

The likelihood ratio statistic compares the a model where all parameters are set to zero (L(0), equal
probabilities) with a model where all parameters obtain the estimated values (L(β̂). If the model
with equal probabilities provides a statistically significant loss of fit compared to the estimated
model, the estimated model fits the observed data well. Hence, the estimated model is accurate. The
likelihood ratio reported by the estimated models (LR in Table 4.5), indicate a statistically significant
loss of fit of the models with equal probabilities (χ2 > 79.08). Therefore, it can be concluded that
the estimated model provides accurate results.
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Table 4.5: Results of the time period choice models for each terminal
Terminal A, LR = 13326.87 Terminal B, LR = 26640.73 Terminal C, LR = 46274.5 Terminal D, LR = 118682.2

Estimated
parameter
value

t-value p-value
Estimated
parameter
value

t-value p-value
Estimated
parameter
value

t-value p-value
Estimated
parameter
value

t-value p-value

ASCNight -1.52 -78.9 0 -2.13 -75 0 -2.01 -50.4 0 -1.68 -244 0

ASCMorning -0.601 -36.2 0 -0.407 -33.9 0 -0.338 -40.4 0 -0.333 -46.2 0

βGP -0.265 -15.1 0 0.325 10.2 0 0.245 5.89 0 -0.107 -13.2 0

βRE 0.288 15.6 0 -0.906 -37.4 0 0.418 14.7 0

βCC 0.187 6.01 0 -0.096 -4.67 0 0.196 3.31 0.000932 -0.0374 -4.28 0

βTC 0.0855 2.83 0.00462 0.0801 3.24 0.0012

βAgr 0.177 5.57 0 0.548 14.6 0 0.344 11.7 0 0.322 21.3 0

βChem 0.27 5.64 0 0.287 5.61 0 0.124 9.31 0 0.265 17.9 0

βSolMinFu 1.18 26.1 0 0.0967 2.29 0.0223 0.297 16.8 0 -0.088 -7.66 0

βRawMin 0.333 4.48 0 -0.217 -9.77 0 -0.0569 -3.91 0

βPetro 0.175 4.2 0 0.134 7.26 0 0.0532 4.37 0

βOres 0.108 4.87 0 -0.0378 -2.78 0.00548

βFert -0.0656 -2.94 0.00331

βWT,Morning 0.079 2.36 0.0185 0.0688 2.25 0.0248 -0.173 -2.93 0.00338

βWT,Midday -0.00386 -3.01 0.00264 -0.0222 -13.7 0 -0.0173 -8.94 0 -0.0139 -8.17 0

βWT,A f ternoon -0.00193 -2.24 0.0253 -0.0177 -15.5 0 0.00806 14.8 0

For assessing the estimated parameters value accuracy, t-values and p-values are obtained for
each estimated parameter. The t-value is calculated by

tk =
β̂k
σk

, (4.14)

where β̂ is the estimate of parameter β and σk is the standard error of the parameter. From the
t-value the p-value can be computed. This is done with Equation 4.15, where Φ(·) indicates the
cumulative density function of the univariate standard normal distribution.

pk = 2(1−Φ(tk)) (4.15)

The obtained t- and p-values in Table 4.5 indicate that each parameter is estimated correctly at a
95% confidence level (p < 0.05). Furthermore, each parameter is proven to influence the alternative
attractiveness based on the formulated utility functions. Hence, the estimated parameter provides
insight in the behaviour of the TOC. Lastly, no significant correlation between estimated parameters
in the specified models are observed in the model results (p < 0.05). Consequently, it can be con-
cluded that the specified choice model for each terminal is statistically proven to provide accurate
results. Thereupon, the estimated parameter values for each terminal can be interpreted.

Results interpretation
The parameters for container type and commodity type are unitless since these are formulated
as dummy variables. Therefore, it is not possible to interpret the parameter values, depicted in
Table 4.5 based on trade-offs or value-of-time. However, the parameter can be interpret based on
two indicators. The first indicator is the parameter sign. The parameter sign provides insight
in the taste of the decision maker for an alternative. A negative sign (−) generally indicates a
decrease in utility for an alternative, a positive sign (+) generally indicates an increase in utility.
This information helps to interpret the choice model. The second indicator is the magnitude of the
parameter value. The magnitude of the parameter value indicates the impact of the parameter on
the utility, thus on the attractiveness of an alternative.

The interpretation of the waiting time parameters is a bit different. Opposed to the container and
commodity type variable, the waiting time is a continuous variable. Hence, the parameter value
for waiting time is not unitless and can be interpreted considering trade-offs or value-of-time as the
effect of one minute waiting time extra is represented by the parameter value.

Even though the impact of waiting time on the TOC is not further explored regarding the control
strategies, the findings are interesting to share. The TOC seem to perceive morning waiting time as
more impactful compared to midday and afternoon. Additionally, the TOC value one minute of the
waiting time more heavily at one terminal compared to another. Especially for terminals B and C



the waiting time impacts in the midday and afternoon are noticeable. One minute of waiting time in
the midday and afternoon is rated more valuable for these two terminals compared to the terminals
A and D.

These findings can be explained by the expectation of the TOC. In the morning the TOC do not
expect long waiting time, therefore encountering waiting time in the morning can feel more costly
compared to the midday or afternoon. Moreover, terminal B and C operate with a time slot man-
agement policy, terminal A and D with an open door policy. Hence, TOC do not expect waiting time
at terminal B and C, but do expect waiting time at A and D. Consequently, the waiting time at the
terminals with time slot management might feel more costly compared to terminals with open door
policy.

In the interpretation of the parameters values, depicted in Table 4.5, several explanations for the pa-
rameters are provided. The thorough interpretation and explanation for each estimated parameter,
is provided in Section D.4.2. The preferences or dislikes found from the estimated parameters can
be explained by various factors among which are the traffic states on access roads, the type of goods
in the containers, the clients of the goods, the industry where the goods are used, and assumptions
for combining trips.

Two other factors that might explain the parameter value, hence the preference of the TOC, are
not included in the interpretation of the parameter. These factors are the details of the vessel that
transported the container, and the exact origin and destination of the containers. As there is no data
explored in this research that could provide insight in these factors, therefore these are not further
explored in the result interpretation.

As the results of the choice model are used for the formulation of truck shifting strategies, the
specific individual results are not further discussed here. For the complete and detailed discussion
of the results from the choice model, one is referred to Section D.4.2. An overview of the found
preferences is depicted in Table 4.6 on the next page. In this table, the x indicate the found preference
for the container type or commodity type.

Another important note is that these preferences are estimated based on import container data.
It might be that exploring export data would lead to different arrival time preferences. For some
types this might provided inaccurate preferences since the import type might not be dominant for
the preference of a TOC. For example, for chemical containers the time period of delivery of an
export container is more important, consequently the import chemical container is picked up to
avoid an empty trip. On the other hand, for agricultural products or reefer containers the choice
for import container pick up is more relevant. However, this impact of export data is not further
explored in this research.

For the remainder of this chapter, solely the preferences that allow truck shifting are relevant,
these are made bolt in the table. The resulting strategies are mentioned in the next subsection
(Section 4.3.5).

4.3.5 Model application

From the choice model results various opportunities can be identified to spread the arrival of trucks
more evenly along the day. These opportunities stem from the observed preferences and dislikes
of TOC (Table 4.6) and the choice probability distribution for container and commodity types (Ta-
ble D.11 through Table D.14). The tendency of a TOC to pick up a container in another time period
than currently chosen, allows to shift truck arrivals from one time period to another.

Truck shifting strategies
The insight in TOC’ behaviour from the choice model is used to formulate strategies for controlling
truck arrivals at the terminals. The general strategy for the TAS policy is an approach in which the
truck arrivals during peak periods are shifted towards quieter moments. This approach is referred to
as peak shaving. The results of the choice model are applied to define a more specific shift strategy
for each of the terminals. The shift strategy for each terminal indicates precisely which trucks can
be shifted from the peak periods to the quieter time periods. The elaboration of the shift strategies
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Table 4.6: Overview of preferences of TOC to pick up certain container or commodity type in a time period.
The preference is indicated by x

Time period preference (indicated by x)

Type
Night

(21:00-3:00)
Morning

(4:00-9:00)
Midday

(10:00-14:00)
Afternoon

(15:00-20:00)
Terminal A General purpose container x x x

Reefer container x x
Chemical container x
Tank container x
Agricultural products x
Chemical products x
Solid mineral fuels x

Terminal B General purpose container x
Reefer container x x x
Chemical container x x x
Agricultural products x
Chemical products x
Solid mineral fuels x
Raw minerals x
Petroleum x

Terminal C General purpose containers x
Reefer containers x
Chemical containers x
Tank containers x x
Agricultural products x
Chemical products x
Solid mineral fuels x
Raw minerals x x x
Petroleum x
Ores x
Fertilizers x x x

Terminal D General purpose container x x x
Chemical container x x
Agricultural products x
Chemical products x
Solid mineral fuels x x
Raw minerals x x x
Petroleum x
Ores x x x

can be found in Section D.5. Below, a recapitulation of the truck shifting strategy per terminal is
provided.

• Terminal A: agricultural products to the morning, chemical products to the morning, solid
mineral fuels to the night, general purpose containers away from the afternoon, reefer contain-
ers to the night and the morning.

• Terminal B: agricultural products to the morning, chemical products to the night, raw minerals
to the night, solid mineral fuels to the night, chemical containers not to the morning, general
purpose containers to the night, reefer containers away from the afternoon.

• Terminal C: agricultural products to the morning, raw minerals away from the midday, solid
mineral fuels to the morning, chemical containers to the night, reefer containers to the morn-
ing, general purpose containers to the night.

• Terminal D: chemical products to the night, agricultural products to the morning, ores away
from the afternoon, raw minerals away from the morning, solid mineral fuels to the morning
and the night, chemical containers to the morning, general purpose containers away from the
morning.



Experimental plan
By shifting the truck arrivals, new arrival profiles are obtained. How this is done this is explained
in Section 4.4. The shifted arrival profiles are input for the terminal model (Section 4.2) to generate
new simulated arrival and departure profiles and the corresponding waiting time profiles based on
shifted trucks. Together the new arrival and waiting time profiles ensure insight in the potential
gain from the truck shifting strategies (Section 4.5).

Various what-if scenarios are formulated to evaluate the effect of application rates of TOC on the
spread of truck arrival along the day. The terminal model allows for evaluating the effect of truck
shifting under certain TOC application rates by using various arrival profiles. Additionally, the
formulation of what-if scenarios allows to gain insight in the percentage of TOC that should apply
to the truck shifting strategy to achieve a waiting time gain.

Furthermore, the scenarios provide insight in the drawback of shifting truck arrival. When too
many trucks are shifted away from the peak, a new peak might occur during other time periods.
This will cause waiting time in other time periods. This is basically moving the current waiting
time issue in the midday and afternoon to another time. Hence, simply shifting as many trucks
as possible is not the right approach to the problem. The what-if scenarios provide insight in the
turning point of truck shifting, from which application rate a waiting time loss instead of gain is
encountered.

4.4 truck shifting heuristic
Based on the truck shifting strategies and experimental plan (Section 4.3.5) that result from the
choice model, the truck shifting heuristic is developed. The purpose of the truck shifting heuristic
is to compute new arrival profiles based on the truck shifting strategies that resulted from the
choice models. There are various steps involved to shift trucks and compute new arrival profiles.
These steps are visualised in Figure 4.3. First of all, the logistic data (Appendix C) and traffic data
(Appendix A) are combined to convert containers to trucks. Secondly, the total potential shifts is
calculated. Thereafter, a shift matrix for each scenario is computed. Lastly, the shift matrices are
transformed to an arrival profile that matches each scenario. Each step is briefly discussed in this
section. The details of the truck shifting heuristic are provided in Appendix E.

OutputHeuristic stepsInput

Exclude containers ignored in
truck shifting strategy
proportionally from arrival
profile

Convert occurence
probabilities of
containers/commodities to
absolute number of trucks 

Exclude overlap between
container and commodity
types

Equalise truck distribution for
computed arrivals to the
observed arrival distribution

Calculate potential shifts for
each scenario

Map how to shift each
container/commodity type 

Sum all mapped shifts to
obtain shift matrices

Truck shifting strategy

Traffic data

Logistic data

             Shifted arrival   
             profiles

Disaggregate trucks per time
period to trucks per hour

Shift trucks based on shift
matrices

Include the trucks excluded
in the first step

Compute shifted arrival
profile per scenario

    Convert containers 
to trucks

Calculate total 
potential shifts

Compute
shift matrices

Shift trucks in
arrival profiles

Figure 4.3: Overview of the truck shifting heuristic

4.4.1 Convert containers to trucks

This step comprehends the coupling of traffic and logistic data. The logistic data is summarised in
occurrence probability percentages (Section C.3). Hence, these can be converted to absolute num-
bers of trucks transporting the specific container type or commodity type.
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Before converting the logistic data to absolute number of truck arrivals, some trucks are excluded as
these will not be shifted based on the strategy. These trucks transport container or commodity types
that are not included in the choice model specification, or the TOC has a preferences for pick up of
these containers in the peak periods, midday and afternoon. As these trucks are not captured in
the truck shifting strategy, these cannot be shifted and remain stationary in the new arrival profiles.
Consequently, a parameter r is formulated that represents the rate of trucks that can be shifted in
the strategy.

To convert the container data to trucks, the occurrence probability (Table E.1 through Table E.4) is
multiplied by the absolute number of trucks arriving at the terminal on an average working day.
Hence, there is insight in the number of trucks that arrive in each time period to pick up a certain
container type or commodity type. The spread of truck arrival for an average working day based
on specific container and commodity types are provided in Table E.5 through Table E.8.

Note that in this approach the container dimensions are ignored. As the translation from container
to truck is done based on percentages, the fact that a truck might arrive to pick two containers at
once, is captured. Nevertheless, the assumption is made that a truck will only transport one type of
container or commodity.

4.4.2 Total potential shifts

With the container data converted to trucks, there is information obtained about the distribution of
container types and commodity types along the day. However, this does not yet represent the total
potential shifts. The total potential shifts indicate the number of trucks on an average working day
that can be shifted per time period, and per container and commodity type.

Occasionally, the containers that are shifted based on container type, contain a commodity type
that is also shifted in the truck shifting strategy. A typical example is a reefer container transporting
agricultural products. However, it is not necessarily true that the reefer containers always transports
agricultural products, nor that agricultural products are always transported in reefer containers. The
overlap is accounted for to obtain the potential shifts. The overlap percentage, the probability that a
specific container type contains a specific commodity, is summarised in Section C.3. For consistency,
the overlap is always excluded from the containers that are shifted based on container type.

Moreover, the distribution of trucks along the day computed from the logistic data is not always
similar to the distribution of trucks per time slot from the observed traffic data of truck arrivals.
This can be explained due to the fact that the logistic data captures the ETA, the expected arrival
time, of the TOC and not the actual arrival time. However, the observed arrival profile should match
with the TOC behaviour.

The total potential shifts are in the form of a matrix NTxC with the choice alternatives (night,
morning, midday and afternoon) T = {1, 2, 3, 4} and the container and commodity types C =
{1, 2, 3, ..., c}.

NTxC =

N11 . . . N1c
...

. . .
...

Nt1 . . . Ntc


TxC

∀t ∈ T, c ∈ C (4.16)

The matrix with potential shifts (NTxC) is filled with Npq calculated by

Npq = P(t|c) · r ·
T

∑
t

a(t), ∀p ∈ T, q ∈ C, (4.17)

where P(t, c) denotes the joint probability of a certain container or commodity type (c) occurring in
a certain time period (t), r represents the rate of trucks that can be shifted, and a(t) indicates the
base case arrival profile. Finally, the potential shifts for trucks at each terminal is represented in
Table E.11 through Table E.14. For the details for obtaining the potential shifts, one is referred to
Section E.1.2.



4.4.3 Shift matrices

From the total potential shifts, shift matrices for each what-if scenario can be computed. With the
what-if scenarios various application rates of TOC to the truck shifting strategy are evaluated. These
shift matrices indicate how many trucks are shifted from a certain time period to another certain
time period for each what-if scenario. One is referred to Section E.1.3 for the detailed description of
scenario formulation and computation steps of the shift matrices.

Scenario formulation
In total, 16 what-if scenarios are formulated. The first scenarios vary from application rates between
5% and 50%, each scenario is increased with steps of 5%. Scenario 1 indicates a 5% shift of truck
arrivals, scenario 2 a 10% shift, and so forth until scenario 10 in which an application rate of 50%
is evaluated. Scenario 11 until 15 correspond to an application rate of 60% until 100%, respectively.
For these scenarios, the application rates are subsequently increased in steps of 10%. Lastly, a 16th
scenario is formulated in which the truck arrivals are spread perfectly equal along the day.

This approach allows to assess the effect of small changes (in steps of 5%) in arrivals more closely.
Hence, to approximate the minimal application rate of TOC, that is required to shift for a waiting
time gain, more precisely. Additionally, the higher application rates are increased with steps of 10%.
Even though the high application rates are less realistic, it is important to understand what would
happen with the waiting time profile if these high application rates where to be experienced. The
higher application rate scenarios allow to study the potential turning point of truck shifting and
the consequences. Moreover, the 16th scenario is used as a reference scenario as the perfect arrival
profile would be an equal spread of trucks along the day. The waiting time gain for each scenario is
compared with this reference scenario, to review the effectiveness of shifting of trucks under various
application rates.

Consequently, the PoR and terminals gain insight in the effect of controlling truck arrivals. The
advantages encountered with small application rates, as well as the risks of too high application
rates are evaluated with the scenarios.

Shift matrix computation steps
Based on the application rates from the what-if scenarios and the truck shifting strategies, shift
matrices (XTxT) can be computed.

XTxT =

X11 . . . X1t
...

. . .
...

Xt1 . . . Xtt


TxT

∀t ∈ T (4.18)

These shift matrices indicate how many trucks are shifted from a certain time period (origin) to
another certain time period (destination) for each what-if scenario. XTxT is filled with

xij = NTxC · γ, i, j ∈ T, (4.19)

where γ denotes the application rate in the what-if scenario and

J = arg max
t

(P(t|c)) (4.20)

is used as a rule to shift the potential of specific container from a specific time period to another
time period based on the preferences of the TOC. P(t|c) denotes the probability that a TOC arrives in
a certain time period (t) to pick up a certain container or commodity type (c). This is based on the
MNL model (Equation D.20). The computed shift matrices for each scenarios and each terminal are
provided in Table E.15 through Table E.21.

4.4.4 Shifted arrival profiles

The last step in the truck shifting heuristic is to convert the shift matrices to new arrival profiles. The
arrival profile obtained from historic traffic data (Section A.2) serves as the base case. Consequently,
for each scenario, the trucks in this base case are shifted as indicated by the shift matrices. This
results in new arrival profiles for each scenario. However, the data in the shift matrices is aggregated
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to trucks per time period (t ∈ T = {1, 2, 3, 4}). Therefore, the data requires to be disaggregated to
hours, resulting in t′ ∈ T′ = {1, 2, 3, ..., 24}. Computing the new arrival profile starts from the base
case arrival profile. The trucks taken out of the origin hours are subtracted from the base case arrival
profile and the trucks added to the destination hours are summed to the base case arrival profile.
Mathematically, for each scenario a corresponding arrival profile is computed with

a′(t′) = a(t′) +
T

∑
t

s(t′) · xtj − s(t′) · xpj ∀j ∈ T, t′ ∈ T′, p ∈ T, (4.21)

where a′(t′) indicates the new arrival profile, a(t′) denotes the base case profile. s(t′) represents the
proportion of trucks in an hour in the base case. Lastly, xtj and xpj indicate the trucks in the shift
matrix that require to be shifted to and from a certain time, respectively. Note that this is a recursive
function. Some details and extra explanation of this step is provided in Section E.1.4.

An exception in the approach for computing the shift matrices is the 16th scenario. In this scenario
trucks are not shifted based on application rates. The total number of trucks arriving in a day is
divided by 24, this results in an equal spread of trucks in the arrival profile.

4.4.5 Truck shifting heuristic results

The shifted arrival profiles are displayed in Figure E.3 through Figure E.6). In these figures, the
arrival profiles from the truck shifting heuristic for various scenarios are presented per terminal.
The shifted arrival profiles will be used as input for the terminal model. In Section E.2, observations
from the arrival profiles are discussed in detail.

The most important observation is the occurrence of large dips and peaks in the arrival profiles.
These occur around the transition of the different time periods when the application rate increases.
That these peaks and dips arise instead of a rather equal spread around the transition of the different
time periods is a limitation of the truck shifting heuristic caused by aggregating and subsequently
disaggregating the traffic data.

Nevertheless, the large dips and peaks that arise at more extreme application rates, are not inaccu-
rate. The dips and peaks logically increase when the application rates are higher, since more trucks
are shifted. In reality, it is expected that the number of truck arrivals at the transition time slots is
more comparable to the surrounding hours. Therefore, computed arrival profiles in the scenarios
with smaller application rates are more realistic. Yet, the extreme application rates are evaluated to
provide insight in the risks of truck shifting.

4.5 waiting time gain calculation
The waiting time gain calculation provides the results for evaluating the effect of controlling truck
arrivals. With the terminal model, the waiting time profiles corresponding to the scenario arrival
profiles, can be simulated. By comparing the simulated waiting time profiles from the scenarios
with the base case a waiting time gain can be calculated. This process is elaborated in detail in
Appendix F. The results are discussed in the next chapter (Chapter 5).

The waiting time profile simulated by the terminal model indicates the waiting time on average per
hour that is encountered by one truck. The waiting time is at maximum 10 to 25 minutes in the base
case. This might not seem much, however, it should be noted that this waiting time is encountered
by every truck that arrives in the specific hour. Therefore, it is valuable to analyse the waiting time
in relation with the arrival profile. By multiplying the waiting time profile with the arrival profile,
the total waiting time profile along the day can be calculated.

Ultimately, the aim is to reduce the waiting time for the entire system and for the entire day. By
subtracting the total waiting time for each scenario from the base case for each hour, and conse-
quently summing the difference per hour, the waiting time gain can be calculated. This provides
insight in whether the waiting time in the scenarios have reduced compared to the base case.



The total waiting time gain for the entire day indicates the impact of truck shifting under a certain
application rate of TOC. If a positive value is obtained, the truck shifting strategy leads to a waiting
time gain under the application rate scenario. If negative value is obtained, this implies that the
truck shifting strategy is not successful to reduce waiting time under a certain application rate.

Furthermore, hourly waiting time gains are difficult to interpret for the entire system as it is not
immediately clear what one hour of waiting time gain means and for who this gain is beneficial. For
the interpretation of the results, the waiting time gains in hours are converted to monetary values.
By doing so, the gain can be interpreted more easily.

4.6 conclusion
In this chapter, the approach for controlling truck arrivals and evaluating the effects on waiting time
is laid out. It can be concluded that the developed models and the heuristic are able to evaluate the
effect of controlling truck arrivals on waiting time.

The modelling framework indicates the interaction between the data, models, and heuristic, and
how these are used to evaluate the effect on waiting time. The foundation for the approach is the
literature review in Chapter 3.

The data used for the research are traffic data and logistic data. These are combined to control
truck arrivals. From the traffic data, observed arrival and departure profiles at the terminals are
obtained. These are used to develop, calibrate and validate the terminal model. Moreover, the
traffic data is used as input for the truck shifting heuristic.

From the logistic data, information of import containers and estimated pick up time (ETA) of the
containers is obtained. Based on this data insight is gained considering the attributes that impact the
preference of TOC for container pick up time. Consequently, the logistic data is applied to estimate
the specified choice model. This allows to capture trucker behaviour.

The insight in preferences of TOC for container pick up are used to formulate truck shifting strate-
gies. Based on these strategies, the truck shifting heuristic computes shifted arrival profiles for
various scenarios of TOC application rates.

The shifted arrival profiles are simulated with the terminal model. Thereupon corresponding
waiting time profiles are obtained. These are compared with the waiting time profile from the
observed arrivals. This allows to calculate the waiting time gain and evaluate the effect of controlling
the truck arrivals on waiting time at the terminals.

In the next chapter (Chapter 5), the results of the research are provided and discussed.
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5 R E S U LT S

In the previous chapter (Chapter 4), the methodology for the TAS policy design, modelling and
simulation approach in this research is laid out. The experimental plan and scenario formulation
is discussed. As mentioned, from the truck shifting heuristic, shifted arrival profiles are computed
under various what-if scenarios. These what-if scenarios represent application rates of TOC to the
formulated truck shifting strategy. One is referred to Section 4.4.3 or Section E.1.3, for details of the
scenario formulation. With the formulated scenarios it is possible to evaluate the effect the truck
shifting strategies under various TOC application rates.

As a result of the truck shifting heuristic (Section 4.4), shifted arrival profiles for each scenario and
for each of the four terminals are obtained. The shifted arrival profiles are based on the truck shifting
strategies and application rates. These are input for the terminal model (Section 4.2). The terminal
model simulates arrival and departure profiles based on these shifted arrival profiles. These simu-
lated arrival and departure profiles are depicted in Figure F.2 through Figure F.5 in Section F.1.1. In
addition to the simulated arrival and departure profile, an average waiting time profile is simulated
for each scenario.

The simulated waiting time profiles provide insight in the effect of the TAS policy on the waiting
time. Consequently, the waiting time profiles are thoroughly analysed to evaluate the potential
reduction of waiting time. The results of the research are presented and discussed in this chapter.
First, the results of the analysis for waiting time reduction are discussed in Section 5.1. Thereafter,
the total waiting time gain is explored in Section 5.2. Lastly, the results are interpreted in Section 5.3
for the various stakeholders in the port system.

5.1 analysis of waiting time reduction
The simulated arrival, departure and waiting time profiles are analysed to gain insight in the poten-
tial waiting time reduction. This is done visually and statistically.

5.1.1 Visual analysis

From the simulated arrival and departure profiles under various scenarios (depicted in Figure F.2
through Figure F.5), some initial conclusions can be drawn for the waiting time profiles that result
from the different application rate scenarios. These conclusions are based on the difference between
the departure profile and the arrival profile. If the arrival and departure profile overlap more closely,
thus a smaller offset for the departure profile, less waiting time is expected (Section B.5).

Consequently, it can be observed that with only small application rates, already a large reduction
of waiting time is obtained. As the application rates increase, larger differences between arrival and
departure profiles are observed. Therefore, it is expected that with higher application rates, waiting
time increases again.

From an initial grasp of the simulated profiles, it is expected that, in general, the waiting time
decrease starting from a 5% application rate until an application rate of about 40% or 50%. From an
application rate of about 50% or 60% the waiting time is expected to increase again. However, the
exact shift percentage causing a decrease or increase of waiting time, differs per terminal.

These initial conclusions the waiting time profiles are explored more closely. The simulated waiting
time profiles represent the average waiting time for one truck for each hour of the day. In other
words, the waiting time that is encountered by one truck if it arrives in a certain time slot. The wait-
ing time profiles of each scenario are plotted against the base case waiting time profile in Figure F.6
through Figure F.9.
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From these graphs it can be concluded that the initial conclusions based on the simulated arrival
and departure profile are correct. It can be observed that from only small application rates (5%-10%)
the waiting time is decreased considerably. Whereas with higher application rates the waiting time
increases.

5.1.2 Statistical analysis

In addition to the visual analysis of the waiting time profile, a statistical analysis provides much
insight in the effect of shifting trucks on waiting time. With the statistical analysis it is checked
whether the observed waiting time reduction is significant (|t| > 1.96, p ≤ 0.05 ). The statistical
measure used for the analysis is the two sided t-test to compare the waiting time profiles from each
scenario with the base case waiting profile. In Table F.1 the exact t-values and p-values are depicted.
Table 5.1 provides an overview of which shift percentages achieve a significant reduction of waiting
time.

In Table 5.1 all the scenarios are presented. Empty cells indicate that the waiting time is not
significantly reduced compared to the base case. Cells with x indicate that the waiting time in the
corresponding scenario is reduced significantly. An empty cell can indicate that the application rate
is not high enough (5%-10%) to reduce waiting time significantly. However, this does not mean that
the waiting time does not decrease at all. The empty cell can also imply that waiting time may have
appeared somewhere else during the day, this happens when the shift percentages become very
large (60%-70%).

The results are different for each terminal due to the different preferences of the TOC for con-
tainer pick up, the specific shift strategy at each terminal, and the shares of specific container and
commodity types handled at each terminal. For example, at some terminals, more often preference
for pick up during quiet periods was observed from the choice model. Another reason might be
that some container or commodity types with high shares, are preferred for pick up in a night or
morning period. Hence, a higher number of absolute trucks is shifted.

Table 5.1: Overview of which shift percentages provide a significant reduction of waiting time. The x indicate
that waiting time is significantly reduced under the shift percentage compared to the base case
(|t| > 1.96, p ≤ 0.05 )

Terminal A Terminal B Terminal C Terminal D
5% shift
10% shift x x x
15% shift x x x
20% shift x x x
25% shift x x x
30% shift x x x
35% shift x x x x
40% shift x x x x
45% shift x x x
50% shift x x x
60% shift x x x
70% shift x
80% shift
90% shift
100% shift
Equal x x x x

A shift of trucks does not naturally happen. Effort, for example in the form of lobby among the
TOC, is required to achieve a certain shift percentage. It is expected that for higher application rates,
more effort is required. From Table 5.1, it can be concluded that for three of the four terminals, the
waiting time is reduced significantly with a TOC application rate of only 10%. This shows that the
TAS is a policy with the potential to have much impact with minimal effort.

However, for terminal D, higher shift percentages are required to achieve a significant reduction
of waiting time. This does not mean that at smaller application rates, the waiting time does not



decrease. Nonetheless, the reduction is not significant. Moreover, to achieve a significant reduction
of waiting time more effort is required to shift the truck arrivals at terminal D.

In Figure 5.1, the waiting time profile of a 20% shift scenario is provided for each terminal. The
gray dotted line is the waiting time profile for the base case, the red line is the waiting time profile
for the second scenario representing a 20% shift. These graphs indicate the average waiting time for
each hour of the day encountered by one truck.
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Figure 5.1: Simulated average waiting time profiles for the base case and scenario 2 (10% shift), obtained from
the terminal model (Appendix B)

From Table 5.1, the insight is obtained that terminal A, B and C all have significantly reduced
waiting time at an application rate of 20%. Terminal D does not have a significant waiting time
reduction at 20% shift. However, from Figure 5.1 it can be observed that there is a small reduction
at terminal D as well.

Another interesting observation from Figure 5.1 is that at terminal A, a small waiting time devel-
ops in another time period in the shift scenario compared to the base case. This happens due to
the trucks shifted towards the morning. At a shift rate of 10% the waiting time arising in the morn-
ing period can be ignored. The impact is not critical since the overall waiting time is significantly
reduced. Nevertheless, this is an interesting pattern that might become a problem when the shift
rates become higher.

To illustrate what happens when the application rates become higher, Figure 5.2 displays the aver-
age waiting time profiles for the 11th scenario, which is a 60% application rate to the TAS policy,
compared with the base case for each terminal. Again the gray dotted line represents the base case
waiting profile, the red line represents the scenario.

The small increase of waiting time in the morning period at terminal A observed in Figure 5.1,
has become much higher under an application rate of 60% (Figure 5.2). It can be observed that the
waiting time is more or less moved from the midday and afternoon to the morning. This means that
the peak of truck arrival is moved from the midday and afternoon to the morning. Consequently,
under high application rate the problem is simply reallocated.
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Figure 5.2: Simulated average waiting time profiles for the base case and scenario 11 (60% shift), obtained from
the terminal model (Appendix B)

For terminal B, C and D, it can be observed that a 60% application rate does decrease the waiting
time. Even though, some waiting time arises in another time period for terminal B and C, the truck
shifting strategies manage to reduce the waiting time in general.

From analysis of the average waiting time profiles, it can be concluded that the TAS can significantly
reduce waiting time at the terminals by controlling truck arrivals based on what the trucks transport.
However, it has not been established yet what the value of this is. Therefore, another measure is
valuable to explore regarding the reduction of waiting time. This measure is the waiting time gain.

5.2 total waiting time gain
The waiting time gain considers the total waiting time profile. The total waiting time profile com-
prehends the total waiting time for the entire system, so for all trucks for an entire day, instead
of for only one truck. The total waiting time profile can be computed by multiplying the average
waiting time profile with the simulated arrival profile. The total waiting time profiles are presented
in Figure F.12 through Figure F.15 in Section F.2.

From the total waiting time, more insight is obtained regarding the impact of the waiting time.
Furthermore, the total waiting time for each scenario can be compared with total waiting time in the
base case. By subtracting for each hour the total waiting time for each scenario from the base case,
the waiting time gain profile can be computed. The waiting time gain profiles for each scenario and
for each terminal are presented in Section F.2 (Figure F.16 through Figure F.19).

These graphs indicate for which hours a waiting time reduction is achieved with the scenario
compared to the base case. This provides insight in where waiting time is reduced and where new
waiting time arises due to shifting the trucks. A negative gain or waiting time loss indicates that the
total waiting time in the scenario is higher in the corresponding hour than the total waiting time in
the base case. This does not necessarily mean that the application rate in the scenario does not lead



to a reduced waiting time. As mentioned, it might happen that waiting time appears in other time
periods due to shifting trucks. Since it was found from the choice model that TOC rate one minute
of waiting time more costly in the morning compared to the midday and afternoon (Section 4.3.4),
it is valuable to obtain insight in where new waiting time arise due to truck shifting.

Eventually the aim is to reduce the waiting time for the entire system and for the entire day.
Therefore, it is more interesting is to know whether the waiting time is reduced as a whole.

The waiting time reduction for the entire system for the entire day is obtained from the waiting
time gain. By summing the difference per hour found from the waiting time gain profiles, the total
waiting time gain can be calculated. The total waiting time gain provides insight in the value of
shifting trucks.

In Table F.2 (Section F.2), the total waiting time gain (or loss) in minutes and hours, is depicted for
each scenario and for each terminal. To provide a visual overview, the waiting time gain is plotted
against the scenarios for each terminal in Figure 5.3.

Note that the y-axis ranges between negative and positive values. A positive value indicates that
in the shift scenario the total waiting time has been reduced compared to the base case, this is
referred to as a waiting time gain. A negative value indicates an increase of waiting time, this is
considered to be a waiting time loss. On the x-axis the scenarios are shown. Scenario 1 to 10 are
the shift scenarios from 5% to 50%, with an increasing step of 5%. Scenario 11 to 15 are the shift
scenarios from 60% to 100%, with an increasing step of 10%.

The solid lines in Figure 5.3 represent the development of the waiting time gain under various
application rate scenarios. The dotted lines represent the waiting time gain in the 16th scenario.
The 16th scenario, represents the scenario in which an entirely equal spread of trucks along the
day is simulated. The scenario is used as reference scenario as an entirely equal spread of trucks is
considered the perfect situation at the terminal for truck arrival. The number of trucks arriving will
always stay below the terminal capacity and there will not be any waiting time. Consequently, the
waiting time gain in the 16th scenario is the largest possible compared to the base case.
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Figure 5.3: Development of the waiting time gain along the scenarios, in comparison with the reference sce-
nario
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From the shape of the graph can be concluded that there is not a linear relation between application
rates and waiting time gain. An increase of 5% for shifting trucks does not cause a 5% increase in
waiting time gain.

A general observation from Figure 5.3 is that for most terminals an increase of the waiting time
gain can be observed from the first scenario (5% shift) until the seventh scenario (35% shift). There-
after, for each terminal, the waiting time gain decreases and eventually becomes negative for some
terminals. This insight indicates that there is an optimum for shifting trucks to reduce waiting time.
Additionally, it can be observed that the gain with small application rates (5% - 10%) is already very
close to this optimum.

There are two exceptions. First of all, at terminal A the highest waiting time gain is achieved at a
10% application rate. Additionally, terminal D is an exception, here the increase of the waiting time
gain occurs from scenario 2 (10%) until scenario 9 (45%).

As mentioned in Section 4.3.5, there is a turning point or risk of shifting truck arrivals. Figure 5.3
provides insight in this turning point. It can be observed that, under high application rates of
truckers to the control of truck arrivals, there is no waiting time gain, but a loss. This means that
under high application rates of truckers, the TAS policy is not beneficial.

This is expected since shifting high shares of trucks from peak periods to quiet periods means
that the peak periods will almost be empty, and the quiet periods are filled with almost all trucks
from the peak periods. Hence, the problem is simply reallocated from one period to the other, as
was observed from the 60% shift scenario for terminal A (Figure 5.2).

Even though, the waiting time loss under high application rates is expected, the insight is valu-
able. It is important to keep in mind that there is at some point, a turning point. For some terminals
this turning point is encountered earlier with lower application rates compared to other terminals.
Nevertheless, the high application rates will no further be discussed since these high application
rates are not realistic.

In Figure 5.3, the waiting time gain for each scenario is compared with the ideal situation, scenario
16. This provides insight in how large the waiting time gain in each scenario is. For example, a
waiting time gain of 28 hours might seem very good, however, if the best possible waiting time is
110, this the 28 hour gain is placed in perspective.

From the waiting time gain overview in Figure 5.3, it can be concluded that ideal situation at the
terminals can almost be achieved with the shift strategies. For some terminals, the optimum gain
obtained from truck shifting under an application ratio of 35%, 35% and 45%, for terminal B, C
and D, respectively, is very close to the gain in the reference scenario. At terminal B, C and D the
optimum gain deviates only 1, 2 and 4 hours respectively. For terminal A, the difference between
the optimum for shift strategy and the ideal scenario, is larger, namely 22 hours.

The ideal situation is not solely represented by achieving the highest possible waiting time gain.
In the ideal situation the effort must also be considered. Based on the results in Figure 5.3, the
optimum waiting time gain would be achieved with a shift between 35% and 45% of truck arrivals.
However, as discussed in the previous section (Section 5.1), achieving a shift of trucks requires effort.
The effort required is expected to increase with higher the shift percentages. Therefore, the optimum
waiting time gain achieved under 35%-45% shift percentage, might not reflect the ideal situation for
shifting trucks. The ideal situation is represented by low effort high reward. In other words, achieve
high waiting time gain with small shift percentages.

The results are promising as it can be concluded that the truck shifting strategies are capable
to reduce waiting time, at small application rates. However, this requires more discussion. In
Section 5.3, it is elaborated how the results can be interpreted and what this means for practice.

5.3 result interpretation
The truck shifting strategies for peak shaving based on what container or commodity type the trucks
transport, are found to be capable of reducing waiting time at the terminals. However, the effect of
reduced waiting time in the entire system must be explored to draw conclusions for practice.



Hourly waiting time gains are difficult to interpret for the entire system as it is not immediately
clear what one hour of waiting time gain means and for who this gain is beneficial. For the inter-
pretation of the results, the waiting time gains in hours are converted to monetary values (euro) for
TOC. By doing so, the gain can be interpreted more easily.

5.3.1 Monetary and productivity gain TOC

Converting the hourly waiting time gain to monetary values is possible using cost figures. The
Netherlands Institute for Transport Policy Analysis (KiM) publishes these for freight transport [KiM,
2020]. The cost figures are based on research towards the economic costs of freight transporters. In
the year 2017, the cost for transporting a container are approximated to 62 euro per hour. The costs
for waiting in container transport are approximated to 38 euro per hour. These waiting costs from
KiM [2020] for the TOC do not include the cost for fuel consumption of an idling truck. For a rough
estimate of the idling costs for a TOC, one is referred to Table F.5.

Even though fuel consumption due to idling is costly for the TOC, these cost are not further ex-
plored since these fuel cost do not have much impact on the entire system. Idling trucks, however,
do impact the entire system due to the emissions that are induced by idling. This will be discussed
in Section 5.3.2.

In Table 5.2 on the next page, the waiting time gain in hours is converted to cost savings for TOC,
based on the cost figures obtained from KiM [2020]. The total waiting time gain in euro for the TOC

on an average day is presented. Moreover, Table 5.2 provides insight in the gain in road container
transport productivity resulted from not waiting at the terminals.

The gain terminal wide is interesting since this provides insight for the PoR to formulate a target
shifting percentage. In Section 2.4, the port authority was discussed as a stakeholder in the port
system. It was found that the port authority acts as an objective player, aiming for overall efficiency
in general instead of the performance of a specific stakeholder or sector. Therefore, it is valuable to
see the impact of a certain shift percentage regarding the overall gain.

In the most left column the percentage of shift is depicted. In the second column the percentage
is converted to total of trucks shifted terminal wide. In the four middle columns the waiting time
gain in euro for each terminal is presented. This is calculated by multiplying the waiting time gain
in hours by the waiting costs (38€/h). Consequently, the total gain in euro among all terminals is
represented.

The second to right column depicts how many hours of transporting a container via road can
be gained from not waiting at the terminal, hence a gain in road container transport productivity.
This is calculated by dividing the total waiting time gain (terminal wide) by the cost of transporting
a container on the road (62€/h). This column can be regarded as the increase in road container
transport productivity (in hours) that the shift induces. The TAS policy allows for a productivity
gain of almost 200 hours at a 10% shift, on a daily basis. In other words, the waiting time gain for
TOC equals the transportation of almost 200 containers for one hour. To illustrate the impact of this,
on a daily basis around 2300 trucks arrive to transport a container. If you were to assume that on
average the transportation time of a container is about an hour in the Netherlands, the waiting time
gain equals almost 10% of the entire production in the system.

In the most right column the gain terminal wide is divided by the number of trucks shifted
terminal wide in the corresponding scenario. This provides insight in the ratio benefit of shifting
versus number of trucks that have to shift. As said, low effort high reward is desired. It can be
observed that a shift percentage of 10% will terminal wide provide the highest value in terms of
effort and reward.

This gain per trucks does not only indicate a ratio of effort and reward. Additionally, the most
right column indicates a so called social gain. The social gain refers to contribution of a shift made
by one single truck to the entire system. Not only the portion of trucks that is shifted benefits from
the shift. Rather all trucks benefit of a shift made by another truck. The trucks that are shifted do
not only save waiting time in the peak periods, which would cost 38 euro per hour. Additionally,
the truck that is shifted contributes to a social benefit because the trucks that are not shifted, will
also experience a waiting time reduction even though they still arrive in the original peak period.
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Table 5.2: Waiting time gain in monetary value [€] and road container transport [hour] for TOC on an average
working day

Gain at each terminal
Share

shifted
Trucks shifted

(terminal wide)
Terminal A Terminal B Terminal C Terminal D

Total gain
(terminal wide)

Productivity
gain [hours]

Gain/
truck

5% 114 € 1.061 € 1.582 € 3.176 € -638 € 5.181 83 € 45

10% 230 € 3.356 € 2.627 € 4.802 € 1.144 € 11.929 192 € 52

15% 344 € 3.014 € 2.253 € 5.447 € 1.203 € 11.916 192 € 35

20% 459 € 3.069 € 2.867 € 5.477 € 1.604 € 13.017 210 € 28

25% 537 € 3.073 € 2.879 € 5.742 € 1.811 € 13.505 218 € 25

30% 687 € 3.093 € 2.914 € 5.855 € 2.105 € 13.967 225 € 20

35% 803 € 3.152 € 2.948 € 5.876 € 2.410 € 14.386 232 € 18

40% 917 € 3.112 € 2.900 € 5.872 € 2.521 € 14.405 232 € 16

45% 1030 € 2.775 € 2.770 € 5.838 € 2.647 € 14.029 226 € 14

50% 1146 € 2.431 € 2.651 € 5.706 € 2.667 € 13.456 217 € 12

This analysis solely presents the gain from the TAS policy. It should be noted that there are also cost
required to achieve the shift in reality. Nevertheless, since the proposed TAS policy shows large gain
at only small shift percentages, it is expected that for TOC these benefits outweigh the costs. The
question remains whether the waiting time gain is only beneficial for truck companies or that other
stakeholders in the port system would also benefit from a truck arrival shift.

5.3.2 Implications for other stakeholders

Besides the benefit of shifting truck arrivals for the TOC, insight in the potential impact of a waiting
time reduction for other stakeholders is relevant. Since a system is as efficient as the weakest link,
improving the performance of the weakest link, improves the entire system. Hence, controlling
truck arrivals does not only cause a gain at the terminal gates, it actually solves costs in the entire
system. Even though obtaining and interpreting the results is mainly from the TOC perspective,
every minute of gain at the terminals is gain for the entire container transport system. Therefore,
the shift of truck arrivals is expected to be beneficial for most stakeholders in the port system. Nev-
ertheless, the port-hinterland alignment is a multi-stakeholder problem and other stakeholders are
affected by the TAS policy as they might need to change behaviour or invest to obtain the results
from the shift. Therefore, the other stakeholders in the system might encounter benefits as well as
costs from the TAS policy.

Port authority and terminals
For the terminals and the port authority, the decrease of waiting time due to truck shifting is directly
beneficial as the misalignment of port and hinterland directly impacts the port area. For example,
through the accessibly, reliability and competitiveness of the port. Additionally, trucks waiting at
the terminal gates occupy terminal space. Space in the port area is costly, consequently waiting
trucks that occupy space are expected to induces costs for the terminals. Moreover, the TOC leave
their trucks idling. Idling trucks induce CO2 emissions in the port area. A rough estimate of CO2
emissions in kg spared by shifting trucks under various application rates is provided in Table F.9.
CO2 emissions push cost to the port authority and terminals. Therefore, a reduction of waiting time
is also desirable. However, the exact costs are not explored in detail and need more study.

It is expected that along with the TOC, a measurable reduction in cost for the terminals and the
PoR results from the application of a TAS policy. However, to achieve the shift they should invest as
well. Both the terminals and PoR can undertake actions to realise the shift.

The terminals can largely influence the shift of truck arrivals by designing their system in such a
way that a portion of the TOC must apply to a shift. For example, the terminal could operate with
a compulsory reservation of a time slot. In this TSMS the hourly arrival quota can be tuned to the
computed arrival profile corresponding to the desired shift percentage. Nevertheless, this requires
costs from the terminals’ side.

For the PoR it is more complex to directly influence the shift with their means since they can
not pose similar restrictions as an objective player. However, as discussed in Section 2.4, De Lan-
gen and van der Horst [2008] argue that port authorities should lead the improvements for digital



connectivity by introducing coordination between stakeholders in the port and hinterland because
other private and public parties have weaker incentives to do so. Introducing this coordination
and improving data exchange among the stakeholders is rather complex due to the many privacy
issues and fear for competitive advantages that arise. The PoR must somehow affect the actions of
other stakeholders in the system to ensure the reduction of waiting time by implementing the TAS

policy. Nevertheless, the framework for the TAS policy proposed in this research can assist the PoR

in improving data exchange, and consequently improving port-hinterland alignment, without the
privacy issues and fear for competitive advantages. In this framework the data can be processed via
the port community system. The stakeholders do not have to share data directly with each other.
The port community system processes the data anonymously. Consequently, the preferences for
pick up period can be inferred for container or commodity type after which the truck arrivals can
be shifted fairly. Therefore, the stakeholders do not have to fear violation of privacy or competitive
advantages, whilst the benefits of the TAS policy can still be encountered.

Shippers and forwarders
It is more difficult to assess the direct benefit of shifting truck arrivals for shippers and forwarders.
It might be expected that the TOC charge the shipper or forwarder for the waiting time they experi-
ence at the terminal gates. Therefore, are waiting time reduction could have direct economic value
for shippers and forwarders. Nevertheless, often the shippers and forwarders have cost arrange-
ments with the TOC which make it difficult to charge extra waiting time to the shipper or forwarder.
Moreover, due to the competitive character of the truck transport market, the TOC do not have much
leverage to charge extra costs to the shippers or forwarders.

However, the waiting time reduction is considered to be beneficial for the shippers and forwards.
The reasoning for this is that the waiting time reduction improves port-hinterland alignment. For
shippers and forwarders the accessibility of the port and terminal is important (Section 2.4). Con-
sequently, the waiting time reduction is beneficial for these stakeholders. Yet, the exact benefit and
potential costs for shippers and forwarders requires more research.

The shippers and forwarders play an important role in achieving shifted truck arrivals as the ship-
pers and forwarders pose time constraints on the TOC for container pick up (Section 2.4). They pose
these constraints due to the potential risk of a container being delivered too late at the hinterland
location. Therefore, they want the containers be picked up as soon as possible when the container
arrives in at the terminal. However, with the large call sizes this causes that many trucks arrive at
once at the terminal which causes waiting times. If the truck arrivals are controlled, the terminal
processes are more smooth and the waiting times are reduced (as this research shows). Hence, if
the constraints were to be relaxed, the TOC might have the opportunity to shift their arrival with-
out increasing risks for the shippers and forwarders regarding delivery in the hinterland. However,
shippers and forwarders should adapt behaviour, which can consequently induce costs on their side.
Therefore, shippers and forwarders must recognise the benefit of shifting truck arrivals to accept
the required change in their behaviour.

Hinterland warehouses
Lastly, there is one stakeholder that is not expected to directly benefit from the TAS policy. This
stakeholder is the warehouse in the hinterland. In Section 2.4, it was discussed that hinterland ware-
houses often operate with very traditionally working hours (9 to 5). Most hinterland warehouses do
not necessarily see the value of extending these operating hours as this induces their costs. There-
fore, the benefit for the hinterland warehouses should be explored. This benefit might come from
more reliable transport of containers in the night period. However, the exact benefit for hinterland
warehouses requires more research.

The hinterland warehouse’ operating hours pose timely constraints to the TOC. Therefore, it is
important to explore the possibilities to extend opening hours in the hinterland to ensure a TAS

policy will work in practice. For example, by creating night time storage facilities. Yet, this will
induce costs for the hinterland warehouses. Ultimately, the benefit of shifting the trucks should
outweigh the costs for the hinterland warehouses to ensure the shift in practice.

59



5.4 conclusion
The potential waiting time gain, productivity gain and social gain by controlling truck arrivals
by means of a TAS policy are striking results from this research. The truck arrival shift leads to
significant reduction of waiting time compared to the current situation at the terminals. The im-
plementation of a TAS policy is found to be an effective measure to spread truck arrivals along the
day.

Moreover, the waiting time gain is found to be quite high under only small shift percentages.
Therefore, the application of TAS is a control policy with low effort high reward.

Furthermore, the shift of truck arrivals is expected to be beneficial for most stakeholders in the
port system. For some stakeholders more than others, but for all a measurable reduction of costs
along with the waiting time reduction for the TOC at the terminal gates is expected. However, the
exact benefits for all stakeholders and costs to achieve the shift require more study.

To shift truck arrivals along the day and achieve the waiting time reduction requires actions and
costs of multiple stakeholders since additional measures are required. Therefore, it is important
that the port authority, terminals and other stakeholders in the system work together. There are
three things crucial to implement the TAS policy and achieve the shift of truck arrivals to quieter
time periods.

First and foremost, data sharing between stakeholders is most important. If the data of containers
and truck arrivals are not shared, hence no insight in TOC behaviour, it is impossible to fairly shift
truck arrivals along the day. If trucks are not shifted based on the insight of TOC behaviour, it will be
difficult to get application rates that ensure the potential gains. Fortunately, the proposed framework
for the TAS policy allows for sharing information and data safely, without violation of privacy or
creating competitive advantages. A complementary measure to allow for data sharing, is by obliging
TOC to announce their container and a compulsory reservation of a time slot. Consequently, in
such a TSMS the hourly arrival quota can be tuned by the terminal to the computed arrival profile
corresponding to the desired shift percentage. This poses a hard constraint for the TOC to comply
with the TAS policy and ensures that a portion of the TOC must apply to shifting.

Secondly, the shippers and forwarders should relax the constraints regarding container pick up
time. This can be accomplished by data sharing to control truck arrivals. The shippers and for-
warders pose strict constraints because they do not want to risk the container to be delivered too
late at the hinterland location. By controlling truck arrivals, the processes at the terminal are more
smooth which minimises the risk of the container being delayed.

Lastly, the opening hours in the hinterland must be extended. The developed TAS policy in this
research is based on peak shaving. To allow for peak shaving in practice, the trucks must be able
to shift towards morning and night time periods. However, this requires that the TOC can operate
during those periods. The opening hours at hinterland warehouse location currently limit the pos-
sibilities for container delivery. A potential solution to extend opening hours is by creating night
time facilities. As the hinterland warehouses do not necessarily see the value of extending opening
hours, the PoR should consider bearing part of the costs for this.

All in all, to implement the TAS policy and realise a waiting time reduction to successfully improve
port-hinterland alignment the PoR can pull two strings. First, the PoR should manage safe data
sharing between stakeholders so that the truck arrivals can be controlled. Moreover, the PoR should
take the lead in extending hinterland opening hours, for example by investing in infrastructure in
the hinterland to allow for night time distribution of containers.



6 D I S C U S S I O N , C O N C L U S I O N A N D
R E C O M M E N DAT I O N S

In this last chapter, the discussion and conclusion of the research is elaborated. Additionally, pos-
sibilities for future research are recommended. A reflection of the methodology and results is
provided in Section 6.1. The research questions are answered in Section 6.2, together with an overall
conclusion of the research. Lastly, various recommendations for future research are proposed in
Section 6.3.

6.1 discussion
The results presented in Chapter 5 are promising. It was found that the implementation of a TAS

policy can successfully flatten peaks in demand. A significant reduction of waiting time under var-
ious shift percentage has been found, together with an overall gain for the stakeholders in the port
system. Consequently, port-hinterland alignment can be improved by implementing a TAS policy in
the port of Rotterdam. Even though the results of this research are reliable due to thorough analysis,
the results should be interpreted with caution. There are some points of discussion regarding the
results and limitations.

The conducted research is mainly from a TOC and PoR perspective. From this perspective, a benefit is
found for all stakeholders in the system. Nevertheless, the collective perspective of all stakeholders
in the port system, might provide somewhat different results, and different benefits and costs for
the stakeholders. This collective perspective could be captured by a multi-stakeholder analysis.

Furthermore, this research focuses predominantly on the potential gains from the TAS policy.
With the proposed framework for the TAS policy it seems to be possible to achieve the shift of trucks
and the corresponding gains. Even though, the framework for the TAS policy is in place and it is
expected that there are incentives for stakeholders support the TAS policy, it does not necessarily
ensure that the TAS implementation is a success. The reason for this is that there are also costs
involved to achieve the truck arrival shift. This shines a light on all sorts of real life problems that
are encountered to achieve the shift of truck arrivals in practice. Examples of these real life problems
are information sharing, compliance, and distribution of cost among stakeholders. In Section 5.4, it
was concluded that the PoR has two strings to pull to successfully improve port-hinterland alignment
by implementing a TAS policy.

Lastly, it should be noted that even when the implementation of TAS in practice does not lead to
the same gains as found from this research, the implementation of the TAS policy is still of added
value. This is because the TAS policy ensures data and information sharing between stakeholders.
This is an important aspect to improve digital connectivity. An increase of digital connectivity
positively influences the port-hinterland alignment directly.

6.1.1 Limitations

There are some points of discussion for the limitations in this research. These are organised in three
categories and discussed in the following subsections. The categories are limitations from data, lim-
itations in the methodology, and limitations regarding the changing environment in the port area.

Limitations from data
Two sets of data have been explored and applied to develop the methodology in this research. These
sets of data are traffic data and logistic data. The traffic data is obtained from loop detectors at the
terminals. The logistic data comprehends information of import containers. Despite that the data
is from the same year (2017), the loop detectors represent trucks arriving at the terminals for both
import and export containers, whilst the logistic data solely captures data of import containers.
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From the traffic data it is not possible to derive for which kind of container the truck arrives at
the terminals. Nevertheless, since TOC aim to always combine container trips, it is not expected
that this has had serious impact on the research. Moreover, the ratio import and export containers
in 2017 across all container terminals was 52% and 48%, respectively [Port of Rotterdam, 2020b].
Nevertheless, the fact that only import container data has been explored in the research does pose
another limitation.

Solely handling import container data impacts the outcome of the choice model, and consequently
impacts the formulated truck shifting strategies. As the truck arrivals are shifted from one period
to another based on the truck shifting strategy, this might have had impact on the exact results.

Since only import container data was available for this research, an assumption is made that the
truck arrival time preference is dominated by the pick up of an import container. However, the
import container data might capture different preferences compared to export data. This is true for
some types of containers or goods, yet not for every type. It is generally known, that for chemical
containers the export container is dominant for arrival time preference, whilst for agricultural prod-
ucts the import container is dominant. However, more detailed information was not available and
therefore, this is not explored in much.

As a results, some preferences of TOC observed from the choice model are difficult to explain.
Additionally, the truck shift might not be entirely realistic because the preference for arrival time
is not always based on the pick up container. For some container or commodity types, the export
container might dominate the arrival time preference. Therefore, the choice model outcome might
not capture the true preference of a TOC for all containers or commodity types.

Nevertheless, solely using import data has led to an accurate research. If export data would
have been used, preferences for night or morning pick up time of certain container or commodity
types would have been found by all probability. Consequently, it would have been possible to shift
trucks from peak periods to quiet period. Even though, the exact trucks transporting a certain type
of container of commodity might have been different, the trucks could still be shifted based on a
formulated strategy.

Merely the effect from only including import data on the results might be that the exact reduction
of waiting time under a certain TOC application rate are different. This difference could be explained
by the exact same reasons why the results among terminals are different. If export data would have
been included in the research, the preference for night or morning pick up might have been a bit
less, or the preference for quiet periods is for container or commodity types that have small shares
at the terminal. Therefore, if export data would have been included, the exact shift percentages that
result in a certain waiting time reduction might have been somewhat different. The difference could
have been both positive or negative. This implies that for smaller application rates, higher waiting
time reduction could have been achieved, or the other way around.

Therefore, the limitations from data have not largely impacted the results of the research. Neverthe-
less, it is important to keep in mind that there were some data limitations. The TAS policy is found
to be effective to flatten peaks of demand. However, the exact formulation of the shift strategies
might have been influenced by the fact only import data is explored. It is relevant to consider TOC

preferences for both import and export when the TAS policy would be implemented in practice.

Limitations in methodology
There are some limitations regarding the method proposed in this research. Some fair assumptions
are made to tackle these limitations. First of all, there was little information available to simulate
the exact terminal operations with the server process in the terminal model. This is a common
issue found in literature in which terminal processes are simulated (Section 3.4). The problem is
overcome in this research by using Bayesian optimisation to estimate the missing information. The
parameters in the server process are tuned to the value under which the deviation from the observed
departure profile is minimised. This resulted in a calibrated model that was validated by statisti-
cal analysis. Hence, the terminal model was found to be capable to simulate the situation at the
terminal accurately. However, still some deviation from the observed departure profiles was found.
For some terminals the deviation was larger than for others. Therefore, the simulated waiting time
profile might be slightly impacted due to sensitivity of the terminal model. Nevertheless, since the



terminal model was validated the impact on the results is expected to be minimal.

Also in the choice model some simplifications are made. As it was found that the model was not
able to predict preferred pick up time of a container to the exact hour, the hourly pick up time was
aggregated to time periods. This ensured more accurate choice model results. Nevertheless, in the
truck shifting heuristic the time periods required to be disaggregated to hourly slots again. Since
the trucks are shifted proportionally in the heuristic, aggregating the time slots to time periods in
the choice model caused that the trucks are not spread smoothly surrounding the transition hours
of the time periods. Yet, this is found to only affect the results slightly under very high application
rates. Application rates to the TAS policy higher than 50% are unrealistic. Therefore, the use of time
periods instead of hours in not of significant impact on the research. However, it should be kept in
mind when interpreting the research results.

Moreover, the choice model in the research is formulated as a MNL model. This is a very suitable
model for this research. Nevertheless, the formulation of a Nested Logit model might provide
additionally insight in the behaviour of TOC. In such a model the time periods could be formulated
as nests in the model and the hourly slots as the alternatives.
Lastly, in the first step of the truck shifting heuristic containers are converted to trucks. In this con-
versation, it was not account for whether the container is 20ft or 40ft. The container and commodity
type occurrence probability is simply converted to a truck. However, a truck can transport two 20ft
container, or one 40ft container. Consequently, the size of the container could impact the number
of trucks that arrive for the specific container and thus number of trucks that is shifted. It was not
studied what the ratio 20ft and 40ft is among specific container or commodity types. Nevertheless,
it was explored in the analysis of the logistic data what the ratio 20ft and 40ft containers was per
terminal. This ratio was found to be very stationary along the day. Therefore, it is expected that the
effect of container size on the number of trucks shifted is largely cancelled out.

Despite the limitations in the methodology, it is not believed that these limitations have led to dif-
ferent results, bias or noise in the research. The simplifications are all considered to be legitimate
as they are sustained by valid argumentation or checked with statistical analysis. Hence, the limita-
tions in the method do not lead to systematic errors in the models.

Changing environment in the port area
The final point of discussion in this research regards the changing environment in the port area. The
data and, therefore, the methodology is entirely based on the year 2017. The MVII port area is only
operative since 2013, and most container terminals were not yet operating at full capacity in 2017.
Since 2017, several developments followed, which are not included in this research. Nevertheless, it
should be noted that the container transport through these terminals was also not exploited to the
full potential in 2017. Therefore, it is not expected that the waiting time profiles obtained for the
year 2017 are extreme. In fact, recent findings indicate that the waiting time at the terminals have
only increased the past years.

When it is attempted to apply the methodology from this research to more recent year data, it
must be kept in mind that there have been developments in the port area that might impact the
results. The developments at the terminal can be included in the methodology by calibrating the
terminal model to the recent data. If the parameter values based on the year 2017 are used, this
would potentially provide inaccurate results.

6.2 conclusion
This research sought to develop a method to reduce truck waiting time in the Rotterdam port area
taking the port and hinterland systems into account, and, hence, to improve the port-hinterland
alignment. This was the main research objective. To achieve this objective, the misalignment issue
was studied. Various possibilities to solve the misalignment were reviewed. A method was designed
and evaluated on the ability to solve the problem of waiting time at the gates. Consequently, the
designed method can be linked to practice to improve port-hinterland alignment at the port of
Rotterdam.
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6.2.1 Main causes of misalignment between port and hinterland

The sub-question answered in this section is:
1. What are the main causes of misalignment between port and hinterland which result in waiting time at the
container terminals?

In Chapter 2 an extensive analysis of port-hinterland alignment was discussed. A seaport, as a
node in a transport network, functions as a connector of two legs of transportation. These two
legs are seaside transport and landside transport. These two legs overlap at the terminal gates.
This indicates that the activities at the terminal gate cater the alignment of port and its hinterland.
Therefore, waiting time at terminal gates is a clear indicator of misalignment.

The alignment of port and hinterland can be approached as a matter of matching demand and
supply. The demand is represented by the trucks that arrive at the terminal to pick up or deliver a
container. The terminal operational capacity represents the supply. Ideally, the demand and supply
match perfectly, without a surplus or scarcity from any of the two sides.

There are two relevant types of bottlenecks that can cause the mismatch of demand and supply.
The first type is caused by scarcity of infrastructural capacity. The scarcity of physical capacity can
deteriorate the physical connectivity between port and hinterland, and consequently cause misalign-
ment. For example, due to a lack of cranes, manpower or container storage. Physical connectivity
is considered a precondition to achieve port-hinterland alignment at all.

The other type of bottlenecks are caused by inefficient operations or poor demand prediction.
These bottlenecks predominantly originate from a lack of digital connectivity. For example, due to
information exchange, communication, cooperation and coordination between stakeholders. Digital
connectivity in addition to physical connectivity ensures efficient use of capacity. Consequently,
digital connectivity is of great importance to improve port-hinterland alignment.

The bottlenecks in port-hinterland physical or digital connectivity can originate from both two sides
of matching demand and supply. From one side, scarcity of (infrastructural) capacity can cause mis-
alignment. This originates from the supply side and is often caused by poor physical connectivity.
However, digital connectivity can also influence this kind of misalignment due to the insufficient
ability to allocate the existing capacity to supply the demand.

From the other side, misalignment can be caused by demand patterns. Inadequate control of truck
arrivals can cause a demand surplus, which can cause misalignment. This kind of misalignment
stems from the demand side and is often caused by poor digital connectivity. Nevertheless, physical
connectivity also impacts the peak loads at the terminal as there are limited options to deliver
containers outside operating hours of hinterland warehouses.

The root of the misalignment at the port of Rotterdam emerges from the demand side due to
short-term peak loads of demand inflow at the terminals. Due to inadequate control of truck ar-
rivals, a digital bottleneck stems from the demand side. This induces waiting time at the terminal
gates and indicates room from the improvement of port-hinterland alignment.

The stakeholders are able to influence the alignment with their actions. Though, the actions of
one stakeholder can also affect others. From previous research it is known that poor coordination
of stakeholders in the port system is one of the main issue to deteriorate the alignment. Due
to unevenly distributed benefits and costs among the port and hinterland stakeholders, a power
imbalance exists in the port system. This impedes to solve misalignment easily.

6.2.2 Design of intervention

The sub-question answered in this section is:
2. How can an intervention be designed to reduce the waiting time at the container terminals?

Despite that port-hinterland alignment is a complex issue, there are various options to solve mis-
alignment. The options can be categorised as pure physical solutions, pure digital solutions, and
combined physical and digital solutions. As the root of misalignment at the port of Rotterdam lies
within inadequate control of truck arrival, a digital solution is proposed to reduce waiting time at



the terminals and accordingly improve port-hinterland alignment. This solution is found within
traffic management strategies to control demand inflow at the terminals.

An overarching strategy to control truck arrivals and reduce waiting time, is by shifting truck
arrivals to other time periods. By implementing a TAS control strategy trucks can be shifted from
peak periods to quieter time periods. Consequently, peaks in demand can be reduced. A suitable
and well-known measure to instigate the TAS is the implementation of a truck appointment system.
A truck appointment system is optimised through a TSMS.

Succeeding the analysis of port-hinterland alignment, literature was reviewed in Chapter 3 to gain
insight in methodologies to design a TSMS to reduce waiting time at the container terminals. A TSMS

is a platform with which control policies can be applied to optimise truck appointment systems.
The implementation of a TSMS is found very effective, suitable and successful to reduce congestion
at terminals.

There are two components in the development of a TSMS. First is a simulation platform that can
accurately synthesis the real word. The second component is an allocation framework which is
required to guarantee the best match between demand and supply and hence an optimum design.
These two components must be integrated to obtain a complete design for TSMS.

There are various options in the design of the two components. The simulation platform includes
the stochastic arrival process and queue process. For the arrival process, two methodologies were
discussed. In most studies fitting to a probability distribution is the method used for the arrival
process. However, predictive methods like regression analysis and machine learning, have the po-
tential to make predictions of the arrival rate. There are two types of queueing models distinguished.
Stationary queueing models assume constant rates for arrival and service at the terminal. A station-
ary queueing model allows for a more simple estimation of waiting time. Non-stationary queueing
models provide more accurate results but are also more difficult and require complex approximation
methods to estimate queue lengths and waiting time.

For the allocation framework component, several control procedure can be used for the optimi-
sation problem. Moreover, heuristics are often used to solve the optimisation problem. A heuristic
approach for shifting trucks is very suitable to evaluate a TSMS based control strategy for truck
arrival at terminals.

Based on shortcomings from previous research it is found that developing a choice model, using
DCM, the behaviour and preferences of TOC can be included in the TAS development.

With the insight from previous research to develop a TSMS, the methodology for the design of the
TAS policy for this research is proposed in Chapter 4. The approach for controlling truck arrivals
and evaluating the effects on waiting time is presented in a modelling framework.

A terminal model is developed to simulate the processes at the terminal. The terminal model
represents the simulation platform. With the terminal model, a waiting time profile can be simulated
from an arrival profile. The terminal model is set up using historic traffic data.

A choice model is developed to gain insight in the behaviour of the TOC regarding time period
choice for container pick up. Based on this insight, a truck shifting strategy can be formulated to
control truck arrivals at the terminals. The choice model indicates the DCM step.

Subsequently, the truck shifting strategy is input for the truck shifting heuristic. The truck shifting
heuristic represents the allocation framework. In this heuristic, new truck arrival profiles are com-
puted from the historic traffic data, based on the truck shifting strategy and what-if scenarios. The
output of the truck shifting heuristic, the shifted arrival profiles, is the new input for the terminal
model. In the terminal model the shifted arrival profiles can be simulated to obtain waiting time
profiles for the shifted arrivals.

Lastly, the waiting time profiles simulated from the shifted arrival profiles are compared with the
waiting time profiles in the base case year. Consequently, a waiting time gain for the truck shifting
strategy and scenarios can be calculated. This results in insight in the effect of controlling the truck
arrivals at the terminals. Hence, the potential of the TAS policy to reduce waiting time in the port of
Rotterdam and improve port-hinterland alignment.
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6.2.3 Potential gain in terms of waiting time

The sub-question answered in this section is:
3. What is the potential gain of the intervention in terms of waiting time at the container terminals?

The design for the TAS policy is evaluated in Chapter 5. There is no linear relation between applica-
tion rates and waiting time gain. An increase of 5% for shifting trucks does not cause a 5% increase
in waiting time gain. A general observation is that for most terminals an increase of the waiting time
gain can be observed from a 5% shift until a 35% shift. Thereafter, for each terminal, the waiting
time gain decreases and eventually becomes negative for some terminals. This insight indicates that
there is an optimum for shifting trucks to reduce waiting time. Additionally, it can be observed that
the gain with small application rates (5% - 10% truck shifts) is already very close to this optimum.

Moreover, there is a turning point or risk of shifting truck arrivals. It was found that under high
application rates (> 70%) of truckers to the control of truck arrivals, there is no waiting time gain,
but a loss. This means that under high application rates of truckers, the TAS policy is not beneficial.
This is due to the fact that the problem is simply reallocated from one period to the other when
high percentages of trucks are shifted from peak periods to quiet periods.

The waiting time gain for each scenario is compared with the perfect situation in which trucks are
equally spread along the day. It can be concluded that perfect situation at the terminal can almost
be achieved with the shift strategies. For some terminals, the optimum gain obtained from truck
shifting under an application ratio of about 40%, is very close to the gain in the reference scenario.
The optimum gain deviates just about 4 hours based on the waiting time for all trucks on an entire
day.

The ideal situation is not solely represented by achieving the highest possible waiting time gain.
In the ideal situation the effort must also be considered. Based on the results, the optimum waiting
time gain would be achieved with about a 40% shift of truck arrivals. However, achieving a shift of
trucks requires effort. The effort required is expected to increase with higher the shift percentages.
Therefore, the optimum waiting time gain achieved under about 40% shift percentage, might not
reflect the ideal situation for shifting trucks. The ideal situation is represented by low effort high
reward. In other words, achieve high waiting time gain with small shift percentages. It was found
that a shift percentage of 10% for the entire port ares, will provide the highest value in terms of
effort and reward.

The waiting time gain is considerable as it induces an increase in road container transport produc-
tivity. The TAS policy allows for a productivity gain of almost 200 hours at a 10% shift, on a daily
basis. Depending on average the transportation time of a container (e.g. one hour), the waiting time
gain equals almost 10% of the entire production in the system.

Beside a waiting time reduction, the corresponding waiting time gain and the productivity gain,
the TAS policy allows for a social gain. The social gain refers to contribution of a shift made by one
single truck to the entire system. Not only the portion of trucks that is shifted benefits from the
shift. Rather all trucks benefit of a shift made by another truck. The trucks that are shifted do not
only save waiting time in the peak periods. Additionally, the truck that is shifted contributes to a
social benefit because the trucks that are not shifted, will also experience a waiting time reduction
even though they still arrive in the original peak period.

The potential waiting time gain, productivity gain and social gain by controlling truck arrivals by
means of a TAS policy are striking results from this research. The results are promising as it can
be concluded that the truck shifting strategies are capable to reduce waiting time significantly, at
small application rates. The implementation of a TAS policy is found to be an effective measure to
spread truck arrivals along the day. Additionally, the application of TAS is a control policy with low
effort high reward. Moreover, every minute of gain at the terminals is gain for the entire container
transport system as a system is as efficient as the weakest link. The root of misalignment at the port
of Rotterdam lies within inadequate control of truck arrival. Truck shifting is found to improve the
performance of this weakest link and thus of the entire container transport system.



Consequently, the shift of truck arrivals is expected to be beneficial for most stakeholders in the
port system. For some stakeholders more than others, but for all a measurable reduction of costs
along with the waiting time reduction for the TOC at the terminal gates is expected.

6.2.4 Improving port-hinterland alignment at the port of Rotterdam

In this section the main research question is answered. The main research question was:
How can port-hinterland alignment at the port of Rotterdam be improved such that the waiting time at con-
tainer terminals is reduced?

From this research it can be concluded that the waiting times at the terminals can be reduced by
the implementation of a TAS policy. However, to shift truck arrivals along the day and achieve the
waiting time reduction requires actions and costs of multiple stakeholders as additional measures
are required. Therefore, it is important that the port authority, terminals and other stakeholders in
the system work together. There are three things crucial to implement the TAS policy effectively and
achieve the shift of truck arrivals to quieter time periods.

First and foremost, data sharing between stakeholders is most important. If the data of containers
and truck arrivals is not shared, hence no insight in TOC behaviour, it is impossible to fairly shift
truck arrivals along the day. If trucks are not shifted based on the insight of TOC behaviour, it
will be difficult to get application rates that ensure the potential gains. Fortunately, the proposed
framework for the TAS policy allows for sharing information and data safely, without violation of
privacy or creating competitive advantages.

Secondly, the shippers and forwarders should relax the constraints regarding container pick up
time. This can be accomplished by data sharing to control truck arrivals.

Lastly, the opening hours in the hinterland must be extended. The developed TAS policy in
this research is based on peak shaving. To allow for peak shaving in practice, the trucks must be
able to shift towards morning and night time periods. However, this requires that the TOC can
operate during those periods. The opening hours at hinterland warehouse location currently limit
the possibilities for container delivery.
All in all, to implement an effective TAS policy and realise a waiting time reduction to successfully
improve port-hinterland alignment the PoR can pull two strings. First, the PoR should manage safe
data sharing between stakeholders so that the truck arrivals can be controlled. Secondly, the PoR

should take the lead in extending hinterland opening hours.
Even when the waiting time reduction in practice is less than the reduction found in this research,

the TAS policy is still valuable for improving port-hinterland alignment as the implementation of the
TAS policy increases digital connectivity.

6.3 recommendations for future research
Based on the research elaborated in this thesis, various implication for future research arise. These
are captured by the following recommendations for future research. The recommendations relate to
the developed models and the implementation of the TAS policy in practice.

To begin with, it would be interesting to expand components in the terminal model with more
details. Currently there is only one class of trucks, in future research the arrival process could
be formulated with multiple truck classes. For example, the trucks can be categorised based on
the container or commodity type transported, or by the container size. This can be done with the
findings from the logistic data analysis.

Additionally, the arrival process could be formulated with more specific inter arrival times. For
example, inter arrival times per 15 minutes instead of per hour.

Moreover, for future research it could be valuable to explore the possibilities to formulate the
server process more detailed based on the exact terminal operations.

Lastly regarding the terminal model, it would be interesting to explore the potential of the model
to predict future waiting time profiles. By expanding the terminal model with more detail and link-
ing it to real time data, it is expected that can be applied to very accurately predict future waiting
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time profiles. Especially at terminals that operate with a time slot management policy, this could
definitely be possible. Since TOC must reserve a time slot of arrival at the terminal in advance, an
arrival profile can be computed from the reservations. Consequently, the terminal model can be
used to predict the exact waiting time profile for that day.

Furthermore, it would be valuable in future research to explore a more detailed and extensive
discrete choice model. For example, the choice model can be formulated as a Nested Logit model.

Moreover, it would be compelling to include more attributes that might effect the pick up time
preference. The travel time of a truck is not captured in this research, nor are the origin and
destination of a container. Nevertheless, the factors are expected to have impact on the arrival time
preference. Therefore, it is valuable to study this in future work.

Including the export data of containers together with the import data would be a interesting topic
for future research. It is expected that this would provide a more complete grasp of TOC preferences
for arrival time.

In addition, the shift in arrival of trucks to terminals may have negative impact on the congestion
in surrounding road network. This could be explored by coupling the developed simulation frame-
work in this study with a traffic simulation model.

Along with the recommendations for the models, more practical recommendations are identified.
For example, this research can serve as a starting point for future research to determine the truck
arrival quota per hour at a terminal with a TSMS.

Exploration of the implementation of night time distribution possibilities can additionally follow
from this research. This research provides insight in the waiting time gain by shifting trucks under
various application rates. Consequently, this insight can be used to design the implementation for
night time distributions.

The misalignment of port and hinterland is a multi-stakeholder problem. This research includes
perspectives of various stakeholders, however, the main analysis are from the perspective of TOC

and the port authority. Therefore, a multi-stakeholder analysis is recommended for future research
to obtain results based on a collective perspective.

Finally, the exact (economic) benefits and implications for all stakeholders in the port system
should be studied. This is important future research since the container transport market stakehold-
ers must be aligned to successfully implement the TAS policy.
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tions. Chalmers tekniska högsk. Masters thesis, Department of Logistics and Transportation,
Chalmers University of Technology.

Roso, V., Woxenius, J., and Lumsden, K. (2009). The dry port concept: connecting container sea-
ports with the hinterland. In Journal of Transport Geography, volume 17, pages 338–345. Elsevier.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0966692308001245.
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A T R A F F I C DATA

In this research, traffic data is used to simulate and analyse the arrival and departure profiles at
several terminals in the port of Rotterdam. Data of actual arrivals and departures, hence historical
profiles, is collected from loop detectors in the port area for the year 2017. Not every terminal in
the port area has a loop detector located directly at the gate. Therefore, a selection of terminals is
made to avoid noise in the loop detector data of trucks with another destination than the analysed
terminal. At these selected terminals, the loop detectors are located such that the trucks arriving
or departing correspond to the pick up or delivery of containers at that terminal, see Figure A.1.
Subsequently, it is assumed that there is no noise in the data obtained from these loop detectors.

The terminals with a loop detector at the gates are terminals A through D. Note that in Figure A.1
only ”terminal” is indicated and not whether the terminal is A, B, C or D. This is to ensure that
the terminals remain anonymous throughout the research. Moreover, not specifically labeling the
terminals on the map will not deteriorate the value of the research, nor will it lead to missing
information for the research.

The red ”X” in Figure A.1, indicate the locations of the loop detectors for each terminal. The
yellow lines and arrows indicate the route of an arriving truck from the A15 highway to the terminal,
logically the departure route is the opposite of the arrival route.

Figure A.1: Map to indicate the locations of the loop detectors (Image from Google [2017])

The traffic data, obtained from the loop detectors in the port area, is used for the terminal model
which simulates the port processes. Moreover, the traffic data is used in the truck shifting model
(Appendix E), which formulates the truck shifting scenarios to evaluate the TAS. Statistical testing is
done to check whether there are differences between the arrival and departure profiles for the four
terminals. Additionally, the arrival and departure profiles for each month are compared to explore
potential monthly trends. Lastly, the profiles for each day of the week are analysed statistically.

The result of this extensive statistical testing will give insight in whether the averages of truck
arrival and departure are sufficient to analyse the profiles, and calibrate and validate the simulation
model. Additionally, with no differences in arrival and departure profiles, a terminal model with
one arrival data input and one departure data input is sufficient to simulate the port processes.
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However, with differences between the profiles, the terminal model should account for different
traffic data input.

a.1 statistical analysis
The obtained traffic data for the arrival and departure profile is aggregated to weekly average
profiles for months and daily average profiles for a year. It is not possible to disaggregate this data,
therefore the statistical analysis makes use of the aggregated data.

Moreover, the traffic data is aggregated to hourly counts of trucks. Hence, the data samples have
a size of 24, corresponding to each hour of the day.

For the statistical analysis of the traffic data, two statistic tests are used. Which test is applied to
which analysis depends on whether two or more data samples are compared with each other. If two
data samples are compared, a two sided t-test is applied for the statistical analysis. If three or more
data samples are compared, the ANOVA analysis is used. The t-test is a parametric test to check if
the means of two data sets are significantly different from each other. It is assumed that the data sets
have an equal size. Moreover, it is assumed that the data samples come from a normal distribution.
The ANOVA analysis (analysis of variance) is a parametric test used in statistical analysis. In the
ANOVA test it is assumed that all data samples come from a normal distribution. However, it is
unknown whether the data samples have the an equal mean and variance. This is tested with the
ANOVA test.

Note that the arrival profiles and departure profiles are not compared with one another but the
arrival profiles among the terminals, months and days are compared, and the departure profiles
among the terminals, months and days are compared.

In statistical testing two hypothesis are formulated, a null hypothesis (H0) and an alternative hy-
pothesis (H1). The null hypothesis throughout the statistical analysis in this appendix, is that the
data samples come from the same distribution, hence the traffic data samples are the same and an
average can accurately represent the actual arrival and departure profiles. The alternative hypoth-
esis states that the data samples are not from the same distribution, hence the traffic data profiles
are different and an average is not sufficient to represent the arrival and departure profile. Con-
sequently, when the null hypothesis is accepted, it can be concluded that there are no significant
differences between the data samples in terms of mean and variance for the arrival and departure
profiles. When the null hypothesis must be rejected and the alternative hypothesis accepted, it can
be concluded that the data samples are significantly different from each other.

H0: The traffic data samples (arrival profile or departure profile) are the same
H1: The traffic data samples (arrival profile or departure profile) are different

The level of significance for the statistical analysis in this appendix is 0.05. This means that the null
hypothesis is accepted when the p-value is larger than 0.05. If the p-value is smaller than 0.05 the
null hypothesis must be rejected and the alternative hypothesis is accepted.

In the t-test, the p-value is computed from the t-value. With a significance level of 0.05, the t-value
must be in the part of the t-distribution that contains only 5% of the probability mass. For the two
sided t-test with a significance level of 0.05 the t-value must be between −1.96 and 1.96 for the null
hypothesis to be accepted. If the t-value is smaller than −1.96 or larger than 1.96, the null hypothesis
must be rejected and the alternative hypothesis is accepted.

In the ANOVA analysis, the p-value is computed from the f-statistics, which is the ratio of mean
squares. With a significance level of 0.05, the f-statistics must be in the part of the f-distribution that
contains only 5% of the probability mass. The f-statistics must be smaller than 1 to accept the null
hypothesis. If the f-statistic is larger than 1, the null hypothesis must be rejected and the alternative
hypothesis is accepted.

The critical values for the t-value and f-statistic corresponding to the level of significance (0.05),
depend on the degrees of freedom. To ensure that the statistical tests have a high certainty, a



infinitive number for the degrees of freedom is assumed, resulting in the exact values for the t-value
(−1.96 ∧ 1.96) and f-statistic (1).

Accept H0: t-value ≥ −1.96 ∧ t-value ≤ 1.96, ∨ f-statistic < 1, p-value > 0.05
Reject H0 and accept H1: t-value ≤ −1.96 ∨ t-value ≥ 1.96, ∨ f-statistic > 1, p-value < 0.05

a.1.1 Terminal comparison

The first step in the statistical analysis is to compare the profiles for arrival and to compare the
profiles for departure of trucks among the four different terminals. The ANOVA analysis is applied
to compare four data samples, corresponding to the four terminals. The result of the statistical test
is summarised in Table A.1.

Table A.1: ANOVA analysis results for comparing arrival and departure profiles
among the four terminals

Arrival Departure
F-statistic 4.110 3.864

p-value 0.009 0.012

Based on these results, the null hypothesis must be rejected and the alternative hypothesis is
accepted. This means that the the arrival and departure profiles are different among the terminals.
In other words, one data sample does not represent the arrival and departure profile at each of the
terminals. Therefore, different traffic data input must be used for the terminal model to simulate
the processes at different terminals. These traffic data correspond to the arrivals and departures of
a specific terminal, A through D.

a.1.2 Monthly comparison

In the monthly comparison it is checked whether the average arrival profile and departure profile
vary across the twelve months in a year. As mentioned, the obtained traffic data is aggregated to
weekly average profiles for months. Hence, to check whether there is a monthly trend to account
for, the weekly average profile of each month is compared with each other. The ANOVA analysis
is used since more than 2 data sets must be compared for this analysis. The ANOVA analysis is
obtains the f-statistic and the p-values to conclude whether there are monthly trends that should
be accounted for, or whether a yearly average can be used to represent the arrival and departure
profiles during the entire year. Since the arrival and departure profiles differ among the terminals,
this analysis is done for each of the terminals.

Table A.2: ANOVA analysis results for comparing months to check for monthly trends in arrival and departure
profiles for several terminals

Arrival Departure
Terminal F-statistic p-value F-statistic p-value
Terminal A 0.462 0.925 0.477 0.917

Terminal B 0.452 0.931 0.472 0.919

Terminal C 0.659 0.777 0.662 0.774

Terminal D 0.095 1.0 0.103 1.0

The middle columns in Table A.2 summarise the ANOVA analysis results for the comparison of
the arrival profile for all months at the several terminals. The two right columns summarise the
results for the departure profile.

The results in Table A.2, show that there are no significant differences between different months
in terms of mean and variance of arrival or departure profile for each of the four terminals. Conse-
quently, it can be concluded that there is no monthly trend that should be accounted for. Therefore,
a weekly average from the entire year can represent the arrival and departure profiles throughout
the year since, based on the results, the null-hypothesis must be accepted.
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a.1.3 Daily comparison

Since the statistical analysis of the monthly profiles resulted in no significant differences between
months, the weekly average of a year is used. However, it might be that there are significant dif-
ferences between days of the week and hence that the weekly average of a year cannot accurately
represent the arrival and departure profiles at the four terminals. In the daily comparison, it is
checked whether the average arrival profile and departure profile vary across the days of the week.
As mentioned, the obtained traffic data is aggregated to daily averages for a yearly profile. There-
fore, the different days of the week can be compared with one another.

The first part of this statistical analysis on daily profiles is comparing the weekday average (the
average of Monday throughout Sunday) with the weekend day average. This is necessary because
the traffic data indicates that, for each terminal, weekend days have much less truck arrivals and
departures on a day compared to the average of all weekdays. Therefore, including the weekend
day truck arrivals and departures in the input for the terminal model might cause inaccurate model
results. To be sure that the weekend days are indeed very different from the weekday average, the
two sided t-test is used as only two data samples are compared.

In Table A.3 the results obtained using the two sided t-test for statistical analysis are summarised.
For the arrival and departure profile of several terminals in the port area of Rotterdam, the t-test
analysed whether the arrival and departure profiles in the weekend are the same as the weekday
average. The results indicate that the null hypothesis must be rejected and the alternative hypothesis
accepted. Therefore, it can be concluded that the weekend day arrival and departure profiles are
significantly different from the weekday average. This means that the weekday average does not
represent the profiles in the weekend.

Table A.3: T-test results for comparing the weekday average and weekend day average to check for significant
differences in daily arrival and departure profiles for several terminals

Arrival Departure
Terminal t-value p-value t-value p-value
Terminal A 5.940 0.000 5.928 0.000

Terminal B 5.857 0.000 5.968 0.000

Terminal C 5.502 0.000 5.666 0.000

Terminal D 6.298 0.000 6.198 0.000

As a consequence of the prior statistical analysis, the terminal model is focused on working days
(Monday through Friday) and weekend arrivals and departures are excluded. In the weekend the
number of truck arrivals is never above the terminal capacity, hence there is no waiting time issue in
the weekend. Moreover, the weekend day arrival and departure profiles differ significantly from the
weekday average (Table A.3). Therefore, Saturday and Sunday are excluded. Weekend days differ
significantly from the working days, therefore these are unable to represent the real life situation
that causes issues at the terminals in terms of waiting time. Moreover, by excluding the weekend
days, the working day average instead of the total week average can be used to test more precisely
whether a daily trend in arrival and departure profiles for working days should be accounted for.

The second part of the statistical analysis on daily profiles to check for daily trends, is to compare
the five working days with each other to check whether working day (Monday through Friday)
profiles are significantly different from each other. For this, the ANOVA analysis is used as this
allows to compare multiple data sets at once.

In Table A.4, the middle columns summarise the results from the ANOVA analysis. The arrival
profile of each workday is compared with the other workdays. The two right columns summarise
the results for the departure profile.

The results in Table A.4 indicate that there are no significant differences between different working
days in terms of mean and variance of arrival or departure pattern. Consequently, there are no daily
trends that should be accounted for. The working day average for each of the four terminals can be
used as input for the terminal model.



Table A.4: ANOVA analysis results for comparing working days to check for daily trends in arrival and depar-
ture patterns for several terminals

Arrival Departure
Terminal F-statistic p-value F-statistic p-value
Terminal A 0.521 0.720 0.579 0.679

Terminal B 0.653 0.626 0.644 0.632

Terminal C 0.021 0.999 0.029 0.998

Terminal D 0.393 0.813 0.395 0.812

All in all, from the extensive statistical analysis it can be concluded that each terminal should be
modelled separately as the arrival and departure profiles differ significantly among the four termi-
nals. Moreover, there is no significant difference between months of the year, thus a yearly average
can be used to analyse the arrival and departure profiles at several terminals. The consequence of
the prior is that the terminal simulation model does not need to take monthly trends into account.
The weekend days, however, are excluded because these differ significantly from the other days in
the week and have much less arrivals and departures of trucks. Lastly, the working day averages
for the arrival and departure can represent the working days as the arrival and departure rate of the
working days is stationary for all terminals, hence it is not necessary to make a separate terminal
model for different days.

a.2 data summary
Four different arrival profiles and four different departure profiles are the result of the traffic data
after the statistical analysis. The data that is used as an input for the terminal model and truck
shifting model is summarised in this section.

The data is shown in Figure A.2. In each sub-figure Figure A.2a through Figure A.2d, the arrival
and departure profile is plotted per terminal in the blue and orange line respectively. Each profile
represents the working day average at the terminals.

From these figures it can be observed that for each terminal there is a small peak in the morning
hours, and a large and more wide spread peak in the midday and afternoon. This peak of trucks
arriving at the same time is what causes the issues at the terminal regarding the waiting time.

Moreover, it an be observed from Figure A.2 that the departure profile follows a pattern similar to
the arrival profile with a delayed offset. This is because the arrival profile represents the number of
trucks entering the terminal during a certain hour, and the departure profile represents the number
of trucks leaving the terminal during a certain hour. The difference between the two lines is due
to the time a truck spends at the terminal waiting or being served. At the peaks of truck arrival
it can be observed in Figure A.2, that the difference between the blue and orange line increases.
This shows that the turnaround times of trucks during the peaks is larger, hence this indicates wait-
ing time. The exact waiting time is unknown, and will be simulated by means of the terminal model.

Even though, the traffic data does not contain information, such as exact time of arrival and de-
parture per individual vehicle, the traffic data, aggregated to number of trucks per hour, allows to
simulate this information with the terminal model. The way in which the traffic data is used in the
terminal model is elaborated in Appendix B. Moreover, the hourly aggregated data is valuable for
the truck shifting model. For the traffic data as input for the truck shifting model, one is referred to
Appendix E.
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Figure A.2: Arrival and departure profiles of an average working day from historical traffic data (2017) obtained
from loop detectors for all terminals



B T E R M I N A L M O D E L

For this research a terminal model is developed to simulate the processes at the terminal. The termi-
nal model is formulated as a queueing model and a DES is used to represent the port system. With
the terminal model, a waiting time profile can be simulated from an arrival profile. Consequently,
the terminal model allows for evaluating the effect of truck shifting under certain TOC application
rates by using various arrival profiles. How these various arrival profiles are computed is elaborated
in Appendix E.

In this appendix the development of the terminal model is elaborated. The components in the ter-
minal model and the simulation are described. Moreover, the terminal model is verified, calibrated
and validated. Lastly, the results for the base case year 2017 are provided.

From the statistical analysis on traffic data in Appendix A, it was found that the four terminals,
located at the MVII in the Rotterdam port area, are significantly different in terms of arrival and
departure profile. Therefore, four separate models are created to simulate the processes at the
different terminals. The model set up is the same for each terminal, hence the model described in
general. The calibration, verification and validation, however, is done for each model individually
as different results are obtained.

b.1 model description
The terminal model consists of three components. Each of the components will be elaborated.
Additionally, the simulation itself will be elaborated to provide insight in the developed discrete
event simulation.

b.1.1 Model components

The proposed terminal model includes three components, namely the truck generator, the trucks
and the server. Together these three components make up three processes in the terminal model. The
three processes in the model are the arrival process, the server process, and the departure process.
In Figure B.1 a graphical representation of the terminal model, the components and processes is
provided. Below the figure, an extensive elaboration of the model components is given.

Arrival process Server process

Truck
generator

Trucks

Server

Departure process

Inter
arrival 

time

Queue

Waiting time

Service time

Arrival
timestamp

Departure
timestamp

Turnaround time

Simulteneous terminal capacity

Figure B.1: Graphical representation of the terminal model, the components and the simulated processes
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Truck generator

The truck generator generates trucks with a certain inter arrival time. The inter arrival time depends
on the time of day. The day is split up in 24 periods, corresponding to a time period of one hour. To
set up the model, historical data of arrivals per hour in 2017 at the terminals is used (see Appendix A
for the arrival profile per terminal).

Since these arrival profiles are averages and in reality there is stochasticity in arrival, the inter
arrival time is assumed to follow an exponential distribution [Hillier and Lieberman, 2015]. An
exponential distribution can be used to specify the amount of time until a specific event occurs, in
this model that specific event is the arrival of a truck at the terminal. Each hour of the day, the truck
generator generates the trucks based on the historic arrival profile and samples the inter arrival time
between the trucks from the exponential distribution associated with the hourly average.

The mathematical formulation of the exponential distribution is depicted in Equation B.1. Denoted
by X is the time (in minutes) between truck arrival, which is the inter arrival time. This X is a
continuous random variable.

λh = E(X) (B.1)

The inter arrival time is assumed to have an exponential distribution with rate parameter λh for
each hour. As denoted in Equation B.2, λh is the inverse of the average inter arrival time (IATh) for
each hour.

λh =
1

IATh
(B.2)

The average inter arrival time (IATh) is the hourly average inter arrival time between trucks. The
model time steps represent minutes, one hour contains 60 minutes. Hence, IATh is calculated by
dividing 60 by the average number of arriving trucks for each hour (λh), as denoted in Equation B.3.
The input of λh comes from the historical data of arrivals per hour in 2017 (Appendix A).

IATh =
60
λh

(B.3)

Lastly, in Equation B.4 f (x) indicates the probability of a truck arriving with a certain inter arrival
time (x) at the terminal and ranges between 0 and 1. Consequently, the inter arrival time between
trucks is expected to decrease when more trucks arrive in an hour.

f (x) = λhe−λhx (B.4)

After a truck is generated, the truck generator yields hold for the sampled inter arrival time before
generating a new truck.

Each truck that is generated by the truck generator is equipped with a ‘TruckID’. With this ID the
truck can be traced throughout the simulation for verification purposes and result representation.

Trucks

This component represents every instant of trucks in the system. Its main functionality is to control
and track trucks in the system. As previously mentioned, the generated trucks have a unique ID.
When a truck is generated and enters the system, the truck obtains a timestamp ‘arrival time’.

Subsequently, the truck enters the queue. The queue is where the trucks wait before being served.
The queue is infinite, there is no maximum number of trucks that can wait in the queue. While
waiting in the queue to be served in the terminal the truck is passive. The queueing discipline used
in the terminal model is FIFO hence the server picks the first truck in the queue and serves it. During
this process the truck remains passive.

After being served the truck becomes active again and leaves the system. When the truck leaves the
system it gets a timestamp ‘departure time’. Using the timestamps, the turnaround time, hence the
time spent in the system, is calculated for each truck.



Server

The server represents the terminal operations. Terminal operations include trucks entering the ter-
minal yards, positioning of trucks in a container stack, loading/unloading the container, and driving
back to the exit gate. Since limited information is available to allow for simulating these terminal
operations in detail, these are all captured by a single server with the capacity to serve multiple
trucks simultaneously in the terminal.

There are two parameters with an unknown value for simulating the terminal operations with the
server component. These are the capacity to serve trucks simultaneous and the service time per
truck.

The simultaneous terminal capacity represents the number of trucks that can be served in the
terminal at the same time. This capacity is, for example, determined by the number of gates to enter
the terminal, the number of container stacks, and number of cranes in the yard.

The service time per truck is the required time to serve a truck. In the context of this model,
serving a truck refers to unloading and/or loading the truck with one or more containers. The
time required for serving a truck is not equal for each truck. The service time is, in the real world
situation, determined by whether the truck is at the terminal for container delivery and/or pick up,
the number of containers that the truck desires, the number of stacks the truck has to go by, and
the driving distance. The stochasticity that is present in reality while serving trucks at a terminal,
should be embedded in the server component. Therefore, it is assumed that the service time follows
an exponential distribution with a mean service time [Hillier and Lieberman, 2015]. The mathemat-
ical formulation for the service time along an exponential distribution is similar to that of the inter
arrival time (see Equation B.1 through Equation B.4), in which IATh represents the mean service
time.

As the specific terminal information for these two parameters is limited, an optimisation approach
is proposed (see Section B.1.2) to overcome this problem and calibrate the server component. Con-
sequently, an optimisation algorithm is used to estimated this simultaneous serving capacity of the
terminal and the mean service time.

As mentioned, the server picks the trucks from the queue to serve them. The terminal can serve
multiple trucks at ones. If there are no trucks in the queue, the unused simultaneous terminal
capacity is standby until this service capacity is required. The server have a certain service time.

b.1.2 Simulation

Running the model

To run the model, a simulation is defined. The simulation model is set up with the discrete event
simulation package salabim [van der Ham, 2018]. The simulation is equipped with a certain run
time, a number of seeds, model parameters, and the model components.

The simulation time is in minutes. The model is set up to simulate one day, 24 hours, at a terminal.
Nevertheless, to include warm-up time in the beginning and to ensure that the system is empty at
the end of the simulation (flow conserve = 0), the simulation is run for 25 hours. The generated
trucks from the first 30 time steps (minutes) and last 30 time steps (minutes) are excluded from the
results.

Moreover, to avoid simulation bias, the simulation is run several times with random seeds. Subse-
quently, the results obtained with the different seeds are averaged. For this research the number of
seeds is set to 10, thus the seeds used are 0 through 9. The seeds are used to initialise the random-
ness in the model via the pseudorandom number generator. For example, the way the stochasticity
in the inter arrival time and service time is incorporated.

Since two parameters, the simultaneous terminal capacity and mean service time, are unknown, it
is necessary to estimate these parameters before running the definitive simulation for results. The
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estimation of these parameters is done with simulation based optimisation using a machine learning
technique. The optimisation algorithm finds the correct values for these parameters to simulate the
terminal model. Subsequently, the found values are used as input for the two parameters in the
final terminal model. Thereafter, the simulation can be run to obtain the results.

Optimisation algorithm

As mentioned, the server component of the model has some unknown parameters. These param-
eters are the simultaneous terminal capacity and the mean service time. By means of Bayesian
optimisation [Bergstra et al., 2013], these two parameters are estimated.

Bayesian optimisation considers the problem of finding a combination of optimal Bayesians for
fine tuning the machine learning algorithm or calibration of simulation based experiments. The
simultaneous terminal capacity and mean service time are regarded as hyper-parameters. A hyper-
parameter can be explained as a parameter of which the value controls the learning process. The
algorithm finds the value of these parameters from data by minimising the formulated objective
over the search space.

The objective function takes a tuple of the hyper-parameters and returns the corresponding loss
[Claesen and De Moor, 2015]. The problem is optimised when the hyper-parameter values, under
which the loss is minimised, are found by the algorithm.

A simulation based optimisation is used for minimisation of the objective function. The simulation
is the terminal model, in which trucks arrive, are served and depart from the system. From the
loop detectors at the terminal gates, a historic data for the departure profile in 2017 is obtained
(Appendix A). The objective function is to minimise the difference between simulated departure
profile and the observed departure profile.

For the formulation of the objective function, the MSE method is used, denoted in Equation B.5.
This method squares the difference between the simulated (Ŷi) and observed (Yi) departure profile
for each data point (n), in this case the hourly time periods, and computes the mean of over all data
points.

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (B.5)

A larger difference results in a larger impact of the difference on the objective function. Therefore,
the hyper-parameter values are tuned such that the deviation from the historic departure profile is
minimised.

Result representation

After the simulation is run, the results are captured in a table in which the rows indicate the unique
truck ID’s and the data for each truck in the corresponding columns. The columns provide the in-
formation for truck ID, arrival time, departure time, turn around time, queue length at the time the
truck enters the system, the service time each truck experienced, and the waiting time for each truck.

The arrival and departure time are reported by the truck by means of timestamps obtained by the
truck when entering and leaving the system. The difference between arrival and departure time
provides the turnaround time of each truck. By subtracting the individual service time from the
turnaround time, the waiting time is calculated.

The queueing process is formulated as a M/M/s model as it is assumed that both the inter arrival
time and the service time are independently and identically distributed with an exponential distri-
bution and the number of servers is an integer value. The mathematical formulation for calculating
the waiting time is provided by Equation B.6 through Equation B.9 [Hillier and Lieberman, 2015],

L = λhW (B.6)

Lq = λhWq (B.7)



W = Wq +
1
µ

(B.8)

Wq =
Lq

λh
(B.9)

where the expected number of trucks in the queueing system, hence in the queue and in the
servers, is denoted by L. The mean arrival rate per hour is denoted by λh. The waiting time includ-
ing service time, hence turnaround time, is represented by W. The mean service time is presented
by µ. Moreover, with Lq the expected queue length, thus excluding the trucks in the servers, is
indicated. Lastly, the waiting time in the queue is denoted with Wq.

The resulting data from the simulation is transformed to provide the number of trucks arriving and
departing for each time slot. Equivalent to the historical data profiles from the loop detectors, the
simulated data is aggregated to hourly time periods. The transformed data shows the arrival and
departure profiles along the day as simulated with the terminal model.

By comparing these simulated arrival and departure profiles with the observed arrival and depar-
ture profiles found from the loop detectors, the terminal model is calibrated, verified and validated.

Other results that are obtained from the terminal model, are profiles of hourly averages along the
day for the turnaround time, the service time, the waiting time, and the queue length. These results
can be used to analyse the simulated system.

b.2 model calibration
To ensure that the terminal model is close to reality and can simulate the arrival, service and depar-
ture of trucks accurately, the terminal model requires calibration.

For the specific terminal models, the design of the terminal model remains the same. Yet, the
arrival and departure profiles in each terminal model correspond to the specific terminals A through
D. To obtain accurate and realistic results for each terminal, a separate terminal model is set up and
calibrated.

In each specific model, the parameters in the arrival and service process are tuned to a specific
terminal. These parameters are tuned based on the traffic data (Appendix A) arrival profile and
departure profile obtained from the loop detectors located at the specific terminal.

b.2.1 Truck arrival process

The simulation model is calibrated, in regard to the arrival process, with the average observed
arrival profile. The observed arrival profile is traffic data obtained from loop detectors. The loop
detectors are located at the terminal gates of the terminals at MVII (Figure A.1 in Appendix A). To
make sure the average arrival profiles are stationary, a statistical analysis is done. The statistical
analysis is elaborated in more detail in Section A.1. In this subsection solely the conclusion from
the statistical analysis are provided.

For the model calibration the parameters for the arrival process are tuned. Thereafter, reflection
on the outcome of the calibrated process, based on the tuned parameters, is provided.

Traffic data

In Section A.1 a statistical analysis is carried out for the arrival profiles. The statistical analysis aims
to gain insight in three aspects to be able to calibrate the simulation model. Traffic data, providing
the arrival profile of several terminals in the port area, is checked for differences between terminals,
monthly trends and daily trends.

In the statistical analysis for terminal comparison (Section A.1.1) it is checked whether the arrival
profiles varies among the four different terminals. With the ANOVA analysis the four terminals are
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compared with each other. From the statistical analysis it can be concluded that the terminals have
significant differences in arrival profile (p < 0.05).
For the monthly trend analysis (Section A.1.2), it is checked whether the average arrival rate distri-
bution varies across the twelve months in a year. Using the ANOVA analysis the twelve months
are compared with each other. The statistical analysis for monthly trends shows that there are no
significant differences in truck arrival between the months in a year (p > 0.05).

For the daily trend analysis (Section A.1.3), it is checked whether the average arrival rate distribution
changes over the days of the week. This analysis is done in two steps.

First the weekly average is compared with the weekend average. Using the two sided t-test, it
was found that the weekend days differ significantly from the weekly average (p < 0.05). Moreover,
the number of arrivals in the weekend is always far below terminal capacity for each terminal. The
weekend days do not represent the weekly profiles and can have undesirable impacts on the research
outcome if included. Therefore, the weekend days are excluded from further research.

Therefore, in the second step, the weekend days are excluded and it is checked whether there
are significant differences between working days. Using the ANOVA test the five working days
are compared with each other. The statistical analysis for daily trends indicates that there are no
significant differences between working days (p > 0.05).

All in all, from the statistical analysis elaborated in Section A.1, the average working day arrival
profiles are found to be significantly different among the terminals at MVII. For these terminals a
simulation model must be defined. Moreover, it can be concluded that there are no monthly or daily
trends to account for in the simulation model. The arrival profiles are stationary for all terminals.
Hence, the working day average is sufficient to calibrate the simulation model regarding the arrival
pattern. Therefore, it is not necessary to make a separate simulation model for different days.

Parameter tuning

The parameters defined for the truck generator process are tuned based on the outcome of the
statistical analysis. The parameters used for the arrival process are the inter arrival times for each
hourly time period. The inter arrival times are based on historical traffic data obtained from loop
detectors at the terminal gates (Section A.2). This traffic data of arrivals is aggregated per hourly
time periods. The inter arrival time is in minutes.

The inter arrival time between trucks for each hour is approximated by an exponential distribution
of the mean inter arrival time (Section B.1.1). The mean inter arrival time for each hour is calculated
by dividing one hour (60 minutes) by the average arrivals in that hour. For example, the mean inter
arrival time between trucks is 1.36 minutes if on average 44 trucks arrive. In reality trucks do not
arrive with an equal inter arrival time, the exponential distribution captures this stochasticity.

Reflection

The calibrated model simulates an arrival profile based on the tuned parameters. To ensure that
the simulated arrival profile is similar to the observed profile a statistical analysis is carried out. In
the statistical analysis a two sided t-test is applied to compare the observed and simulated arrival
profile. The t-test is a parametric test to check if the means of two data sets are significantly different
from each other. It is assumed that the data sets have an equal size. Moreover, it is assumed that
the data samples come from a normal distribution.

In statistical testing two hypothesis are formulated, a null hypothesis (H0) and an alternative hy-
pothesis (H1). The null hypothesis, is that the data samples come from the same distribution, hence
the observed and simulated samples are similar and the simulated profile accurately represent the
actual arrival profile. The alternative hypothesis states that the data samples are not from the same
distribution, hence the observed and simulated profiles are different and the simulated profile is
not sufficient to represent the actual arrival profile. Consequently, when the null hypothesis is ac-
cepted, it can be concluded that there are no significant differences between the data samples in
terms of mean and variance for the observed and simulated profiles. When the null hypothesis



must be rejected and the alternative hypothesis accepted, it can be concluded that the data samples
are significantly different from each other.

H0: The observed and simulated arrival profile are similar
H1: The observed and simulated arrival profile are different

The level of significance for the statistical analysis is 0.05. This means that the null hypothesis is
accepted when the p-value is larger than 0.05. If the p-value is smaller than 0.05 the null hypothesis
must be rejected and the alternative hypothesis is accepted.

In the t-test, the p-value is computed from the t-value. With a significance level of 0.05, the t-value
must be in the part of the t-distribution that contains only 5% of the probability mass. For the two
sided t-test with a significance level of 0.05 the t-value must be between −1.96 and 1.96 for the null
hypothesis to be accepted. If the t-value is smaller than −1.96 or larger than 1.96, the null hypothesis
must be rejected and the alternative hypothesis is accepted.

Accept H0: t-value ≥ −1.96 ∧ t-value ≤ 1.96, p-value > 0.05
Reject H0 and accept H1: t-value ≤ −1.96 ∨ t-value ≥ 1.96, p-value < 0.05

The resulting values from the statistical analysis are depicted in Table B.1. From these results it
can be concluded that the null hypotheses should be accepted. Hence, the tuned parameters in the
calibrated model can simulate the arrival process accurately.

Table B.1: T-test results for comparing the observed and simulated arrival profiles to check for significant
differences in observed and simulated arrival profiles for several terminals

Terminal t-value p-value
Terminal A 0.025 0.98

Terminal B 0.014 0.989

Terminal C 0.025 0.981

Terminal D 0.031 0.975

In addition to the t-test in the statistical analysis, a polynomial regression is done to analyse the cor-
relation between the observed and simulated arrival profile. The statistical measure in this analysis
is the R-square. The R-square ranges between 0 and 1, this number indicates the extent to which
the simulated data matches the observed data.

The results from the polynomial regression are depicted in Table B.2. It can be observed that the R-
square values are very close to 1. This indicates that the observed and simulated arrival profiles are
highly correlated. Hence, the simulated values in the arrival profile are very close to the observed
values.

Table B.2: R-square results for comparing the observed and simulated arrival profiles using polynomial regres-
sion to analyse the correlation between the observed and simulated arrival profiles

Terminal R-square
Terminal A 0.995

Terminal B 0.989

Terminal C 0.996

Terminal D 0.994

Based on the statistical analysis and polynomial regression results, it can be concluded that all
terminal models are accurately calibrated regarding the arrival process.

b.2.2 Service process

The service process is, similar to the arrival process, calibrated based on historic traffic data. The
historic data used to calibrate the service process is the departure profile. To make sure the aver-
age departure profiles are stationary, a statistical analysis is done. The statistical analysis for the
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departure profile is identical to the statistical analysis for the arrival process. For more details on
the statistical analysis, one is referred to Section A.1.

For the model calibration the parameters for the service process are tuned using a optimisation
algorithm (Section B.1.2). Thereafter, reflection on the outcome of the calibrated process, based on
the tuned parameters, is provided.

Traffic data

In Section A.1 a statistical analysis is carried out for the departure profiles. Similar to the statistical
analysis for the arrival process, the statistical analysis aims to capture differences between terminals,
and potential monthly and daily trends. An identical approach is applied for the analysis of the
departure profile. The comparable p-values, similar hypotheses, and the same statistic tests (the
ANOVA and t-test) are used.

From the statistical analysis, it can be concluded that the departure profile is stationary for all
terminals. No monthly trends, nor daily trends are found in the data. Hence, the average working
day departure profile is sufficient to calibrate the terminal service process.

Nonetheless, similar to the outcome of the statistical analysis for the arrival profile, the average
working day departure profiles are significantly different among the terminals at MVII. Again, this
demonstrates the need for separate models for specific terminals.

Parameter tuning

The parameters for the service process are tuned by means of the Bayesian optimisation algorithm
(see Section B.1.2). By the formulation of an optimisation problem, the missing information (the
simultaneous terminal capacity and mean service time) can be captured by the model. Therefore,
the simulation model can accurately simulate the service process. To tune the parameters to the
optimal value, the algorithm iterates until it finds the parameter values that minimise the loss. This
minimised loss is considered to be the best loss found by the optimisation algorithm. As aforemen-
tioned in Section B.1.2, the loss is calculated with the MSE method (Equation B.5).

The estimated parameter values are depicted in Table B.3. These estimated parameters are used as
the final settings for the simulation model of each terminal.

Table B.3: Overview of estimated parameter values for the service process and the corresponding loss

Terminal
Simultaneous
terminal capacity

Mean
service time

Best loss

Terminal A 17 17 64.396

Terminal B 16 17 37.15

Terminal C 20 12 93.804

Terminal D 20 14 70.05

Reflection

This section provides some reflection on the parameter values and best loss. Regarding the esti-
mated parameters it is discussed whether the values are likely. Additionally, the best loss values are
discussed. Thereafter, statistical analysis and polynomial regression are done to sustain the power
of the calibrated model to reflect the observed data.

The simultaneous terminal capacity indicates how many trucks can be served in the terminal at
the same time. The mean service time indicates how long it takes to serve a truck on average. As
mentioned in Section B.1.1, in reality this depends on various factors in the terminal. Despite that
the exact values of the estimated parameters can not be verified, the order of magnitude of the
values for the estimated parameters can.

Based on the number of stacks and cranes observed in the terminals using Google Maps satellite
view [Google, 2017], the estimated parameters for simultaneous terminal capacity are quite realistic.



Based on a earlier research executed by the PoR [Drewes and Gorter, 2017], the estimated mean
service time seems to be a bit optimistic for all terminals. However, the estimated parameter values
are obtained by optimising the objective function based on the two parameters. As a consequence, it
might be that the mean service time is estimated a bit lower and the simultaneous terminal capacity
a bit higher.

Interpreting the absolute value of the best loss is difficult, as the MSE result is always dependent
on the data. As a rule of thumb the best loss can be interpreted as the closer to zero, the better.
Nonetheless, the absolute value of the MSE is relative to the magnitude of the values in each data
point. As the MSE takes the square of the deviation in a data point, a factor 10 larger magnitude of
values in a data point can result in a factor 100 larger MSE loss value.

This can be illustrated with an example in which the magnitude in a data point is increased with
a factor 10. If there are 100 trucks observed in one data point, and 120 simulated, the difference
is 20 trucks. The square error in this data point is 202 = 400. In the situation that 1000 trucks are
observed, and 1200 are simulated, the square error is 2002 = 40.000. This example indicates that a
20% deviation between observed and simulated trucks results in a much larger (factor 100) MSE loss
value.

The best loss values shown in Table B.3 indicate that there is some difference between the observed
and simulated departure profile. However, the magnitude of the deviation appears to be within
reason considering the magnitude of the values in the data point. In Table B.4 the minimal, maximal
and average values for the observed profile in the data points are depicted to indicate the magnitude
of the values in the data point. Additionally, the minimal, maximal and average deviation between
the observed and simulated values in the data point are provided.

Table B.4: Overview of magnitude of values in the data point of observed data, the deviation between the
observed and simulated profile, and the MAPE score

Terminal
Minimal value
in data points

Maximal value
in data points

Average value
in data points

Minimal
deviation

Maximal
deviation

Average
deviation

MAPE
score

Terminal A 2 70 32.6 0 12 4.4 23%
Terminal B 3 58 30 0 6 2.2 13.8%
Terminal C 10 103 53 1 14 4.9 13%
Terminal D 3 93 46.6 0 13 3.3 10.9%

In the most right column of Table B.4 the MAPE score is depicted. The calculation of the MAPE score,
given by Equation B.10, is similar to the MSE though a percentage value is obtained. The observed
profile is indicated by Yi, the simulated profile is indicated by Ŷi, and the data points are indicated
by n. This MAPE score helps to reflect on the accuracy of the simulated departure profile. It indicates
the difference between observed and simulated profile in a percentage value. For interpreting the
MAPE the rule of thumb is that a smaller value indicates that the simulated profile is closer to the
observed profile. The MAPE values for the terminals range between 10% and 23%. In general, such
MAPE scores indicate a good simulated profile [Lewis, 1982].

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (B.10)

The discussion of the estimated parameter values and the corresponding best loss (depicted in Ta-
ble B.3) shows that the model is nicely calibrated with regard to the service process. Nevertheless,
some difference between the observed and simulated departure profile is found. Therefore, two
additional analysis are applied to assess the power of the calibrated model to simulate the observed
profiles.

The t-test is used in statistical analysis to compare the observed and simulated departure profiles.
If the observed and simulated departure profiles are not significantly different, it can be concluded
that the estimated parameter values (Table B.3) can simulate the terminal processes accurately. The
statistical analysis using the t-test is similar to the statistical analysis for the arrival process (Sec-
tion B.2.1). The hypothesis are formulated for the departure profile.
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H0: The observed and simulated departure profile are similar
H1: The observed and simulated departure profile are different

The significance level is the same, namely 0.05, this results in the same approach for hypothesis
testing.

Accept H0: t-value ≥ −1.96 ∧ t-value ≤ 1.96, p-value > 0.05
Reject H0 and accept H1: t-value ≤ −1.96 ∨ t-value ≥ 1.96, p-value < 0.05

Table B.5: T-test results for comparing the observed and simulated departure profiles to check for significant
differences in observed and simulated departure profiles for several terminals

Terminal t-value p-value
Terminal A -0.077 0.939

Terminal B -0.044 0.965

Terminal C -0.195 0.846

Terminal D -0.018 0.985

In addition to the t-test in the statistical analysis, a polynomial regression is done to analyse the
correlation between the observed and simulated departure profile. The statistical measure in this
analysis is the R-square. The R-square ranges between 0 and 1, this number indicates the extent to
which the simulated data matches the observed data..

The results from the polynomial regression are depicted in Table B.6. It can be observed that
the R-square values are very close to 1. This indicates that the observed and simulated departure
profiles are highly correlated. Hence, the simulated values in the departure profile are very close to
the observed values.

Table B.6: R-square results for comparing the observed and simulated departure profiles using polynomial
regression to analyse the correlation between the observed and simulated departure profiles

Terminal R-square
Terminal A 0.934

Terminal B 0.979

Terminal C 0.969

Terminal D 0.977

Based on the statistical analysis and polynomial regression results, it can be concluded that all
terminal models are accurately calibrated regarding the service process.

b.3 model verification
To ensure that the terminal simulation model operates as it is supposed to do, verification checks and
tests are executed. The each model for the specific terminals A through D, is verified in a stepwise
approach. First, the verification is done for smaller parts of the model by a separate evaluation of
the model components. This approach allows for clear insight in potential model flaws, errors or
bugs. If no problems are encountered, the terminal model is verified as a whole by balance checks
and evaluation of expected model results.

b.3.1 Component verification

Truck generator

The truck generator simulates the arrival process of truck at the terminal. Each hour of the day a
different input is used to obtain the inter arrival time between trucks. For verification purposes, it
is checked whether the truck generator indeed simulates the arrival of trucks with a different inter



arrival time in each time interval. Figure B.2 displays the simulated arrival process along the day.
As the number of trucks simulated varies over time, it can be observed that the truck generator
indeed simulates the arrival process with a different inter arrival time.
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Figure B.2: Simulated arrival profile for all terminals

Each generated truck receives a unique truck ID from the truck generator. This is crucial as this ID
is used to track the truck throughout the system. If two trucks obtain the same ID or a trucks fails
to receive an ID, this could cause faulty results. Therefore, for verification of the truck generator it
is checked whether each generated truck has received a unique truck ID. It can be concluded that
each generated truck successfully receives a unique ID from the truck generator.

Hence, the truck generator component is verified based on the arrival profile check and truck ID
check.

Truck

The truck component represents the trucks (n). The truck component ensures that progress of the
truck throughout the terminal model can be traced. Each truck obtains a timestamp upon arrival
(ta) and departure (td). It is crucial that the time stamps are obtained at the correct moment. If this
process is implemented wrongly in the simulation, the results will be highly affected. The arrival
and departure timestamps are used to calculate turnaround time (tt).

To check whether the time stamps are correct, the results are analysed. First, it is checked whether
any truck obtained a departure timestamp before an arrival timestamp. This would indicate that the
chronological order of the simulation is incorrect. It was found that no truck obtained a departure
timestamp with an earlier time than the arrival time, each truck satisfies the rule formulated in
Equation B.11. The set of generated trucks is denoted by N.

ta(n) < td(n), ∀n ∈ N (B.11)

The turnaround time is subsequently used to compute the waiting time (tw), by subtracting the
service time (ts) from the turnaround time. Each truck encounters a certain service time. This service
time varies per truck and is a main determinant for the turnaround time of a truck. Therefore, it is
important that the service time encountered by an individual truck, is logged correctly. If the truck
fails to log the specific service time it encountered, the waiting time calculation is incorrect. This
causes faulty results of the model.

To check the truck component, a few simple calculations can be made (Equation B.12). If each
truck satisfies the formulated rules for arrival time, departure time, service time, turnaround time
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and waiting time, the truck component can be verified. Each generated truck was proven to satisfy
the formulated rules (Equation B.12).

tt(n) = td(n)− ta(n)

tt(n) = ts(n) + tw(n)

td(n) = ta(n) + ts(n) + tw(n)

td(n) = ta(n) + tt(n)

 ∀n ∈ N (B.12)

The formulated rules in Equation B.11 and Equation B.12 are satisfied by each generated truck.
Therefore, the truck component is verified.

Server

The server component represents the terminal operations. The details of the terminal operations are
not modelled. Instead, a Bayesian optimisation algorithm is used to estimate the parameters that
serve as input for the server component (Section B.1.2). A few verification test are executed to check
whether the server process is modelled as intended.

A crucial check is whether the server creates the terminal capacity to serve trucks simultaneously.
From the simulation trace it can be observed that this is done correctly.

Moreover, it is checked whether the server component executes its main process, picking trucks out
of the queue and serving them. In the simulation trace it can be observed that the server picks
trucks from the queue and holds the truck for the sampled service time.

By adding a measure in the model, the number of trucks served can be tracked. This measure
counts the number of trucks served and only increases after a truck is served. During the simulation
run it can be observed that the count increases along the simulation time. This indicates that the
server process is modelled as intended.

As mentioned, each truck encounters a specific service time. This service time is exponentially
distributed from the mean service time. From Figure B.3 it can be observed that the mean service
time varies per hour. Note this graph represents the service time on average per hour.

Even though the information in Figure B.3 is aggregated, the fluctuating average indicates that
there is indeed stochasticity in the service time. Moreover, in the obtained results of individual
trucks, it can be observed that the service time encountered by the individual trucks varies among
the trucks.
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Figure B.3: Simulated service time profile for all terminals

From the executed checks it can be concluded that the server is modelled as intended. Consequently,
the server component is verified.



b.3.2 Simulation verification

Flow conserve

Each generated truck should eventually leave the system. A balance check is preformed to check the
flow conserve of the model. This balance check is formulated in Equation B.13, where t indicates
the time steps (in minutes), T indicates the simulation run time (one day), Na indicates the number
of arriving trucks at time t, and Nd indicates the number of departing trucks at time t.

T

∑
t=0

Na(t) =
T

∑
t=0

Nd(t)

T

∑
t=0

Nd(t)−
T

∑
t=0

Na(t) = 0

(B.13)

After the day is simulated the truck generator yields hold to ensure that the trucks still in the
system, can leave the system. Consequently, a flow conserve of zero is obtained. If this balance
check (Equation B.13) is not satisfied, hence the flow conserve is not zero, this indicates that there
are still some trucks in the system. The trucks are, for example, still in the server component or in
the queue.

To ensure a flow conserve of zero, ergo satisfying Equation B.13, a cool down time is added to
the simulation time. During this cool down time trucks that are still in the system, can leave the
terminal. The terminal model simulates only one day, in reality, when a truck enters the terminal
just before midnight, the truck leaves the terminal the next day (just after midnight). To account for
this the cool down time is added in the simulation. With this cool down time, the model satisfies
this balance check in Equation B.13, the flow conserve is 0.

Chronological order processes

To verify the model as a whole, the simulation results are analysed for chronological order. Al-
though, the chronological order has been verified for the model components separately, the chrono-
logical order of the model as a whole should additionally be checked.

Tracing various trucks throughout the simulation trace allows for checking whether the processes
in the model are subsequent to each other and as intended with the model design.

The trucks should first be generated. Subsequently, the trucks should enter the queue. From the
queue the server should pick the trucks and hold it for a certain service time. Consequently, the
trucks should leave the system after being served.

From observations of the simulation results it becomes clear that no truck leaves the system be-
fore entering the queue and being held by the server. Moreover, it is observed that the truck always
enters the queue before being served. Moreover, before entering the queue, the truck is generated.

Therefore, from observations of the simulation run, it can be concluded that the chronological order
of the model as a whole is correct.

All in all, it can be concluded that the terminal model as a whole is implemented as intended. This is
the case for the specific models for each of the terminals, A through D. Consequently. each terminal
model is verified.

b.4 model validation
In the validation the simulation model is reviewed on its capability to provide results that are close
to reality. A validated model is necessary as it ensures that the model is able to simulate the real
world situation. If not, the model and the results are not very valuable. The approach for validating
the model is to compare the simulation results with historic traffic data using a train and a test set
of data. The available historic data is the traffic data for arrival and departure obtained from loop
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detectors in the year 2017 discussed in Appendix A.

As mentioned, the validation of the terminal models is done using a train and a test set. This
means that the model is calibrated and the parameters are tuned using a certain data set, the train
set. Consequently, the calibrated model is validated by means of a test data set. This test set
allows for an unbiased evaluation of the model, hence it allows to validate the model. The test
set is independent of the train set. Yet, the test set and train set come from the same probability
distribution.

By splitting the historic data set of 2017 traffic data into two parts, the train and test set are created.
The train set consists of the traffic data for 11 months of the year 2017. To calibrate the model on the
data, the average arrival and departure profile for the 11 months is used. The test set encompasses
the remaining month, in this case the month of October. To validate the model the average arrival
and departure profile for October is used.

The estimated parameter results for the model calibration on the average profiles for 11 months are
displayed in Table B.7. To calibrate the model for the 11 months, the same method is applied as for
the entire data set (explained in Section B.2).

Note that these values in Table B.7 are slightly different from the estimated parameter values when
the model is calibrated on the entire year (Table B.3). This is because less data is used for the train set,
resulting in a slightly different average arrival and departure profile. However, statistical analysis
(Section A.1) proves that the months in the year do not differ significantly. Therefore, this slightly
different average arrival and departure profile is not significantly different and the validation of the
terminal model can proceed.

Table B.7: Overview of estimated parameter values for the calibrated model for 11 months and the correspond-
ing loss

Terminal
Simultaneous
terminal capacity

Mean
service time

Best loss

Terminal A 20 19 60.938

Terminal B 18 19 34.467

Terminal C 18 11 91.858

Terminal D 14 10 66.10

b.4.1 Visual validation

With the terminal model calibrated on the train data set, the arrival profile from the test data set
is used as input for validation of the terminal model. The parameters in the model are set to the
estimated values in Table B.7 calibrated based on the train data set of 11 months.

The departure profile of the test set of October is used as a measure for validation. The simulated
departure profile is determined by the simulation model and parameter settings. In Figure B.4, the
observed departure profile in the test data is compared with the simulated departure profile for the
test set.

At a first glance, it can be observed that the simulated profiles in Figure B.4 follow a similar
trend as the observed profiles. This shows that the simulation model has the potential to simulate
close to reality as the simulation output is similar to the actual data. As this visual validation is
somewhat subjective judgement, it is valuable for validation purposes to explore this in more detail
using quantifiable measures.
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Figure B.4: Observed and simulated departure profiles from the test data set, month of October 97



b.4.2 Polynomial regression

A quantitative method for validation of the terminal model is to analyse the correlation between
the observed and simulated departure profiles. This is done with a polynomial regression. Using
the R-square as statistical measure, the comparison of the observed and simulated profiles can be
expressed. The R-square ranges between 0 and 1, this number indicates the extent to which the
simulated data matches the observed data, hence to which extent the simulation model is capable
to reflect the reality.

Figure B.5 represents the polynomial regression for the departure profiles at each terminal. There
are 24 dots in the graph, each representing the data point for one hourly time slot. The dots indicate
the intersect of the observed and simulated departures per hourly time period. Hence, if during a
certain time period 21 trucks were observed, and 26 trucks were simulated, the dot is located at the
intersect of where the x-axis (observed data) is 21 and the y-axis (simulated data) is 26.

The fitted line indicates the correlation between observed and simulated data. In theory, if the
R-square value would be 1, the simulated values would be equal to the observed values for each
hourly time period. With a R-square of 1 the dots would always overlap with the fitted regression
line.
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Figure B.5: Correlation between observed and simulated departure profiles from the test data set, for an aver-
age working day in the month of October

The R-square value for the departure profiles are depicted in Table B.8. The computed R-square
values for the simulated departure profile of the test data are very close to 1. Therefore, it can be
concluded that the simulation model has the capability to provide simulation results that are very
close to reality.

Table B.8: R-square results for comparing the observed and simulated departure profiles obtained from the test
data, using polynomial regression to analyse the correlation between the observed and simulated
profiles

Terminal R-square
Terminal A 0.914

Terminal B 0.956

Terminal C 0.909

Terminal D 0.964

b.4.3 Statistical analysis

The last check for validation of the terminal model is a statistical analysis. Using the two sided t-test,
the observed and simulated departure profile from the test data set are compared. In Table B.9 the
results of the statistical analysis are shown.
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Table B.9: T-test results for comparing the observed and simulated departure profiles of test set data to check
for significant differences for several terminals

Terminal t-value p-value
Terminal A -0.055 0.956

Terminal B -0.059 0.954

Terminal C -0.273 0.786

Terminal D -0.033 0.974

All in all, based on the visual validation, polynomial regression and statistical analysis it can be
concluded that the terminal model for each terminal is validated using a train and test set.

Consequently, the entire data set, providing an average arrival and departure profile based on
12 months, is used again to obtain results for the base year 2017. For each terminal the estimated
parameter values (shown in Table B.3) are set in the model.

b.5 model results
The simulation model for each terminal is proven to be accurately calibrated, verified and validated.
Using the simulation model, various results can be obtained. These results reflect the situation at the
terminals in 2017. The results comprehend the simulated arrival and departure profiles, the average
turnaround time profile, the average waiting time profile and the average queue length profile along
a working day.

Note that these results are based on a yearly working day average. The results presented here
do not reflect individual days, extreme outliers of busy days are evened out in the yearly average.
Nevertheless, since the model is validated, it is able to reflect an individual day if the estimated
parameters are kept constant and the arrival profile for a individual day is used as input.

The presentation of the results is structured on terminal level. Hence, first the results for terminal
A are presented, lastly the results for terminal D. The results provide interesting insight in the
situation at the terminal.

For each terminal the simulated arrival and departure profiles, the average turnaround time pro-
file, the average waiting time profile and the average queue length profile are depicted in Figure B.6
through Figure B.9. In the subsections below the specific results per terminal can be found. Here
some general findings are mentioned.

Note that the y-axis is the same for all graphs. This is to allow for easy comparison between the
graphs. The y-axis value is chosen based on the most extreme profile among the terminals. However,
it might give a distorted image for some graphs as some terminals have a much lower number of
truck arrivals on an average working day. Therefore, for terminal A and B, the spread seems more
equal along the day in the base case compared to terminals C and D. It can be observed from the
graphs for terminal A and B (Figure B.6a, Figure B.7a), that the peak is less extreme. Yet, the spread
in the base case is certainly not equal. The relative difference in percentage of truck arrivals between
the morning and midday hours is approximately 75% and 50% increase of trucks for terminal A and
B, respectively. For terminal C and D the difference between morning and midday is 100% and 80%
increase, respectively.

From Figure B.6a, Figure B.7a, Figure B.8a, and Figure B.9a it can be observed what the arrival and
departure profile per terminal is. The difference between the arrival and departure profile indicates
longer turnaround times. Longer turnaround time are mostly caused by waiting time. Consequently,
it can be observed that around the hours where the offset is larger, higher waiting time arise.

The turnaround time profile, depicted in Figure B.6b, Figure B.7b, Figure B.8b, and Figure B.9b,
represents the average service time profile plus the waiting time profile. The turnaround profile
represents the average turnaround time for one truck in each hour. This turnaround time profile
indicates that trucks have a rather short time spent in the terminal during low peak hours.



From Figure B.6c, Figure B.7c, Figure B.8c, and Figure B.9c it can be concluded that waiting time is
indeed experienced on a daily basis. The waiting time profile represents the average waiting time
for one truck in each hour. This sustains that there is a misalignment issue at the terminals in the
Rotterdam area and the hinterland. This waiting time profile is an average, for individual days the
waiting time may be much higher or lower. Striking is that the waiting time at all terminals develop
after the morning hours.

In Figure B.6d, Figure B.7d, Figure B.8d, and Figure B.9d the development of a queue at the terminal
gates during the days is shown. The development of the queue follows a similar pattern as the
waiting time profile. It can be observed that a queue arises in the late morning hours. Subsequently,
the queue grows until the late afternoon hours. Around 17:00 the queue decreases at rapid pace.
This is expected as this hour is close to the end of the daily operating hours of hinterland warehouses.
Even though it is expected, it is very valuable to see that this is reflected by the simulation model.
This sustains the analysis of the misalignment issue between the port and its hinterland (Chapter 2).
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Figure B.6: Results obtained from the simulation model for terminal A
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Figure B.8: Results obtained from the simulation model for terminal C
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C LO G I S T I C DATA

In this research logistic data is used to gain insight in the container pick up time preferences of TOC,
hence the preferred arrival time at the terminal. The logistic data that is explored in this appendix
is historical data collected from Portbase, the port community system at the port of Rotterdam. The
logistic data is from the same year, thus 2017, as the traffic data (Appendix A). This way a relation
between the data is ensured.

The logistic data is the data from all import containers (>1M transported via road) in the year
2017. The findings from this data analysis are used as an input for the choice model.

The data set contains information of transaction data on arrival of container vessels, containers dis-
charges and the estimated pick up time of these containers by hinterland transport trucks. Moreover,
the data set includes container characteristics (type, dimensions, weight, and temperature) and in-
formation about the transported commodity. Lastly, the containers in the data set are transported
through the same four container terminals as the terminals of which the traffic data is obtained.
Again, the terminals are labeled A through D, each terminal corresponds to the same label as in the
analysis of traffic data in Appendix A.

For each import container information about the ETA of the TOC to pick up the container, is provided.
This estimated time of container pick up is considered to be the preference of a TOC. Two of the four
analysed terminals at MVII, operate based on a time slot management policy. The ETA for container
pick up by the TOC at these two terminals is directly the reservation of that time slot. Therefore, the
ETA at the terminals with time slot management is quite reliable to be the definitive arrival time as
there are consequences for the TOC if the reserved time slot is missed.

For the other terminals operating based on an open door policy, ergo without time slot manage-
ment, the ETA for container pick up by the TOC is an approximation. There will be no consequences
if the ETA is not met by the TOC. As a result, the ETA for container pick up at the terminals with
an open door policy, may be less reliable to be the actual time of arrival. Nevertheless, the ETA can
provide insight into the preference of the TOC. Therefore, these terminals are kept in the analysis.

Furthermore, the majority of the data in the data set is generated manually as the TOC fill in a form
with the container characteristics, commodities and estimated time of container pick up. Hence,
to prepare the data for model specification and parameter estimation, the data set requires pre-
processing.

c.1 data pre-processing
Some of the pre-processing steps are filtering, regrouping, categorising, column splitting, or renam-
ing. These techniques are applied to the mode of transport, vessel arrival information, container dis-
charge information, terminal information, and the hinterland arrival information (the ETA) attributes
in the data set. Additionally, similar to the traffic data, containers with an ETA on a weekend day,
Saturday or Sunday, are excluded from the logistic data set.

Other pre-processing steps are more advanced and might have an impact on the eventual outcome
of the research. Therefore, the choices and assumptions made in these influential pre-processing
steps are described in more detail.

In the original data, a peak of estimated pick up time at 0:00 and 12:00 can be observed, see Fig-
ure C.1. Especially for terminal A and D, which are the open door policy terminals, indicated by the
green and yellow lines respectively. However, these peaks do not reflect the reality. If no value for
estimated pick up time is specified by the TOC, the system automatically logs 0:00 or 12:00 as default
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value. This is an issue that mostly occurs for containers that are picked up at a terminal with an
open door policy. As the estimated pick up time of a container is the reservation for a time slot at
the terminals with a time slot management policy, the default settings occurs less at these terminals.
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Figure C.1: Total of import containers in 2017 distribution profile along the day based on the ETA of the TOC
for the four terminals, before data pre-processing

Monte Carlo simulation is used to properly distribute the containers, that are logged at 0:00 and
12:00 by default, along the day. Yet, there are also containers that are correctly assigned to 0:00 and
12:00. It is expected that the container pick up frequencies at 0:00 and 12:00 are in reality similar
to the surrounding hours. Therefore, the share of correctly assigned containers to 0:00 and 12:00 is
calculated based on the surrounding hours. The surplus of containers, causing the peaks, at 0:00

and 12:00 is distributed along the other time slots using Monte Carlo simulation. This provides a
smoothed graph of import containers along the day based on the ETA of the TOC.
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Figure C.2: Total of import containers in 2017 distribution profile along the day based on the ETA of the TOC
for the four terminals, after Monte Carlo simulation

Since much of the logistic data is generated manually, several mistakes can be found in the data.
For example, non existing container types. In the original data, 21 types of containers are reported,
however, 97.1% of all containers in the data is captured by only four container types. These four
container types are general purpose containers, reefer containers, chemical containers, and tank
containers. The other 17 reported container types are unknown as these are not in the list of ISO
type containers, which is a globally used standard for identification of shipping containers [Parsons



Containers, nd]. As these non existing types capture 2.9% of the containers spread over 17 types,
these containers are excluded from the logistic data set.

A similar issue occurs with the reported container dimensions. Container dimensions are also
standardised with the ISO type [Parsons Containers, nd]. However, because this data is entered
manually by the TOC, mistakes are made. The dimension code of a container consists of two digits,
the first digit indicates the container length, the second the container height. The ISO code standards
have four options for length, and two options for height:

Length: 2 = 20ft, 4 = 40 ft, L = 45ft, M = 48 ft
Height: 2 = 8 ft/6 inches, 5 = 9 ft/6 inches high cube

However, in the original data 6 types of length and 14 types of height are reported. The non existing
container dimension codes capture only 0.8% of the containers in the data set. Therefore, these are
excluded.

Moreover, there is no container with a reported length of 48 f t in the data. The remaining contain-
ers are are categorised in two types of lengths, namely 20 f t and 40/45 f t. This is done because many
errors are found in the report of the container dimensions. This makes it impossible to distinguish
whether a 40 f t or 45 f t container is meant. Since there is no difference in number of trucks required
to transport a 40 f t and 45 f t containers, these are combined into one category. Between 20 f t and
40/45 f t containers there is some difference in terms of trucks required for transportation. One
truck can transport two or three 20 f t containers, whilst it can not transport more than one 40/45 f t
container.

The commodities transported in the containers are also captured in the data set. These commodities
are indicated by the NSTR code, a standard goods classification in transport of goods [Eurostat,
nd]. This is a two digit code, ranging from 00 to 99, thus 100 options. The first digit is the higher
level overlapping category, the second digit provides more detail. The commodity type codes are
aggregated to the higher level overlapping category, hence category 0 to 9.
0: Agricultural products and live animals, 1: Other food products and animal feed, 2: Solid mineral fuels, 3:

Petroleum oils and petroleum products, 4: Ores, metal waste, roasted iron picks, 5: Iron, steel and non-ferrous
metals (incl. Semi-finished products), 6: Raw minerals and products; construction materials, 7: Fertilizers, 8:
Chemical products, 9: Miscellaneous
For some containers no commodity type is reported. These are not excluded from the data as this
corresponds to 36.45% of all data. Therefore these are categorised in an 11th category.

10: Unknown commodity.

For a number of containers in the data, a container temperature setting is reported. These tem-
peratures are mainly in Celsius, however, some containers have a temperature setting reported in
Fahrenheit.

To divide the containers in temperature categories, the temperature settings in Fahrenheit are
transformed to Celsius. The categories for temperature are below 0 degrees, between 0 and 3 de-
grees, between 3 and 8 degrees, and above 8 degrees. Not every container has a temperature setting,
these containers are categorised in the category ‘no temperature settings’.

Each container has a certain weight. In general, the weight of a container is between 2000 kg (empty)
and 35.000 kg (full). In the logistic data set, some container weight values are much higher. By
plotting the containers in an histogram (Figure C.3), with the weights ranging from 0 kg to 100.000,
it can be observed that the vast majority of containers ranges between 0 kg and 35.000 kg. This is in
line with the expectation. Consequently, containers with a weight over 35.000 kg are excluded from
the data set. This corresponds to 0.25% of the containers in the data.

Thereafter, the containers are categorised in five categories. The categories are formulated based
on four quantiles, q = 20%, q = 40%, q = 60%, q = 80%. The resulting categories for container
weight are below 5528 kg, between 5528 kg and 10.521 kg, between 10.521 kg and 17.912 kg, between
17.912 kg and 22.2264 kg, and above 22.2264 kg.
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Figure C.3: Weight distribution for the total of import containers in 2017

Other interesting logistic data is the call size the specific containers are part of. The call size is not
in the data set. However, the call size can be calculated based on the deep sea reference number
and deep sea arrival time attributes in the data. The number of containers with the same deep sea
reference number and deep sea arrival time are counted, resulting in the call sizes. To categorise the
containers in call sizes, the containers are distributed based on their call size (Figure C.4).
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Figure C.4: Call size distribution for the total of import containers in 2017

The call size categories are formulated the same way as the weight categories, using four quan-
tiles (q = 20%, q = 40%, q = 60%, q = 80%). This results in 5 categories, namely smaller than 322,
between 322 and 567, between 567 and 900, between 900 and 1250 and larger than 1250. The unit of
call size is number of containers.

Furthermore, the time slots for pick up ETA are categorised in four time periods. This ensures more
accurate results (see next section Section C.2) and saves a lot of computational time for the choice
model. The use of time periods instead of time slots will not deteriorate the value of the choice



model. The time periods are formulated as night (from 21:00 until 3:00), morning (from 4:00 until
9:00), midday (from 10:00 until 14:00), and afternoon (from 15:00 until 20:00). These periods are
based on observed arrival patterns and categories used in practice at the terminals.

From the terminal model (Appendix B), waiting time profiles for each terminal for the year 2017 are
obtained. The traffic and logistic data is combined by incorporating the waiting time profiles for
each terminal in the logistic data. There are two ways to link the waiting time and containers.

The first approach is to match the container ETA with the average waiting time in the hour cor-
responding to the ETA of the container. Note that each terminal has a specific waiting time profile.
Hence, for matching waiting time and container, the corresponding terminal should be taken into
account. This provides insight in the waiting time that is encountered on average at the terminal
and ETA of pick up for the container.

The second approach is to link a random waiting time from each time period (night, morning,
midday, and afternoon) to the container. This can provide insight in the impact of waiting time in
other time periods on the preferred pick up time of a container by the TOC (the ETA). Note that in
this approach, the corresponding terminal should also be accounted for.

The first approach provides insight solely in the waiting time in the specific ETA and the effect on
TOC. The second approach provides insight in the effect of waiting time along the entire day on the
TOC preference for pick up time. Therefore, the second approach is applied to gain more insight in
the effect of waiting time along the day for pick up time preference.

All in all, after pre-processing the data, 8.3% of the containers in the original data set is excluded
from the logistic data due to faulty data. Other initially faulty data is processed in such a way the
data becomes useful. For example, distributing the default logged containers along the day with
Monte Carlo simulation. Some additional data, call sizes and waiting time, is computed or added
to the logistic data to gain more insight in the data. Lastly, most attributes in the logistic data are
transformed to categorical values, except for the waiting time.

c.2 data analysis
To gain insight in the situation at each of the terminals, the pre-processed logistic data is analysed.
Analysing the data increases the value of the data for the research. Additionally, analysing the data
before developing the choice model allows to estimate the choice model on very specific data. This
leads to more reliable results as the logistic data might be correlated.

Several graphs are created from the logistic data. This helps to get a feeling for what kind of
containers are preferred for pick up at a certain time slot at the four terminals. The graphs contain
information about the distribution of containers and pick up preferences along the day based on
the day of the week (Section C.4.1), container type category (Section C.4.2), length category (Sec-
tion C.4.3), commodity type category (Section C.4.4), temperature category (Section C.4.5), weight
category (Section C.4.6), call size category (Section C.4.7).

To keep a clear structure in this appendix, the graphs can be found in Section C.4. The sequence
the graphs are shown in Section C.4 is the day of the week, container type category, length category,
commodity type category, temperature category, weight category, call size category. For each data
attribute, the order of the terminals is from A through D. Each figure in Section C.4 consists of two
sub figures. The first sub figure is the distribution of the containers in absolute numbers. The second
sub figure provides insight in the proportional share of the specific data attribute in the figure per
time slot. Findings from analysis of the logistic data are discussed in this section. If necessary, a
references is made to the specific graph.

c.2.1 Analysis

A finding from the logistic data is that, similar to the traffic data, peaks can be observed in the
early morning and late afternoon at the terminals. Additionally, it can be observed that for the
terminals with a time slot management policy, the containers are spread over more time slots than
the containers at the terminals with an open door policy.
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This can be explained by the fact that at the time slot policy terminals, the pick up ETA is directly
the reservation for a time slot. Since each time slot has a certain quota for the number of reserva-
tions of a time slot, the TOC are limited in reporting the ETA at the time slot policy terminals. This
leads to a wider spread of preferred container pick ups compared to the terminals with an open
door policy. For the terminals with an open door policy, the preferred pick up times are more con-
centrated between 8:00 and 17:00. This preference for ETA between 8:00 and 17:00 can be explained
as these time slots are in line with the operating hours of the hinterland warehouses. This indicates
that during these hours, there is more demand (arriving trucks for container pick up) than supply
(terminal capacity) in these hours. This can result in waiting time at the terminals.

From the statistical analysis in Appendix A, it was concluded that the arrival profile of trucks is
not significantly different between days of the work week. The graphs in Section C.4.1, sustain this
finding. It can be observed that the proportional share of preferred container pick up of each time
slot is rather equal for each working day.

An important finding from the logistical data analysis is that the terminals differ much from each
other considering container types (Section C.4.2). For example, terminal A handles much higher
shares of reefer containers compared to the other terminals (Figure C.9). Moreover, the shares of
specific containers types differ along the day. This indicates that there might be a relation between
the pick up time preference and the type of container that requires pick up.

From the graphs in Section C.4.3, it can be concluded that each of the terminals handles more
40/45 f t containers compared to 20 f t containers. However, the exact ratio between 40/45 f t and
20 f t containers differs among the terminals. This ratio is valuable insight since the 40/45 f t contain-
ers result in more truck arrivals at the terminals compared to the 20 f t containers. Furthermore, it
is notable that the proportional shares of container length categories are rather equal for each time
slot and for each terminal. This could indicate that the container length does not influence the pick
up time preference.

As mentioned in the data pre-processing section (Section C.1), many of the containers are reported
without a commodity type. These are categorised into an unknown commodity category. The
share of unknown commodities differs among the terminals. Some terminals handle much more
unknown commodities than others. For these terminals the unknown commodity is excluded from
the proportional graph to provide insight in the other commodity types, since these are much lower
and become invisible if the unknown category is included (Figure C.17 and Figure C.18).

The commodity type categories spread along the day in Section C.4.4 shows that the ratios of
commodity type handled differ per time slot and per terminal. This shows that the terminals are a
bit different from each other considering the commodity types that are handled per terminal. Even
though the difference in ratio of commodity types along the day is not extreme, it could indicate
that TOC have a pick up time preference for certain commodity types.

It might be expected that the temperature setting of a container could influence the pick up time
preference. For example, perishable products are often transported in a container with tempera-
ture settings above 0 degrees to keep the products fresh. As most containers have no temperature
settings, this category is excluded from the proportional graph to provide insight in the other tem-
perature categories, since these are much lower and become invisible if the no temperature setting
category is included (Section C.4.5). It can be concluded that the share of containers with temper-
ature settings are much higher in some of the time slots compared to the other time slots. For
example, terminal B has a much higher share of containers with temperature settings around 4 : 00
and 5 : 00 (Figure C.22). These kind of peaks are also visible for the other terminals, nevertheless
it differs per terminal at which time slot the peak arises. This could indicate that the TOC are influ-
enced by the temperature of the container for pick up time preference.

Naturally, it is expected that the proportional shares of container weight categories and call size
categories are rather equal since these categories are formulated based on quantiles. Nevertheless,
these categories are made based on the handled containers in the entire port area. Therefore, there
are some striking results observed from the graphs in Section C.4.6 and Section C.4.7 when these



data attributes are analysed per terminal. For example, some of the terminals do not handle certain
weights or call sizes.

Moreover, in the analysis of the logistical data, the attributes in the data set are checked for corre-
lations to ensure that there is no multicollinearity in the data. The container type and temperature
settings category are found to be correlated with a factor 0.64. This is expected because general pur-
pose containers do not have temperature settings, and reefer, chemical and tank containers do have
temperature settings. For other attributes in the data set, the correlation check is not as insightful
as for the temperature settings category attribute.

Nearly all attributes are categorical and the relations between the attributes and the time slot are
non linear. Therefore, a correlation matrix and collinearity analysis are not best suited to analyse the
relation, dependence and influence of the attributes on the pick up time preference of a TOC. There-
fore, a machine learning technique named random forest is used [Koehrsen, 2017]. This method
aims to predict the preferred time slot for container pick up, based on the attributes in the data set.
As a result the importance of certain attributes for the prediction is indicated. The output of the
method is a list of important attributes to predict the dependent attribute, in this case the time slot
ETA. Based on this list some attributes that are not important for predicting the time slot can be
excluded because these will not explain trucking behaviour.

Two striking insights are obtained from the machine learning technique. First of all, it was found
that container type and commodity category are important features in the data set to predict the
preferred pick up time. The container weight and call size do not influence the pick up preference
much. An explanation for this could be the approach taken in formulating the categories. Addi-
tionally, it was found that the model is not very accurate in predicting the correct preferred pick up
time in hours. The accuracy of the model is only 11.4% if the pick up time is in hours. This accuracy
increases to 38.8% when the pick up time is categorised in four periods instead of hourly slots. Even
though, 38.8% accuracy is not very high, it is still better than 11.4% accuracy that corresponds with
the hourly time slots. Moreover, the aim of the logistic data and choice model is not to perfectly pre-
dict pick up times. The aim is to obtain an understanding of which factors influence the preference
for a container pick up time. Consequently, to obtain better results from the choice model, the pick
up time preference is divided in four time periods. These time periods are night, morning, midday,
and afternoon, as mentioned in Section C.1.

c.2.2 Conclusion

The mathematical model that is specified for the choice model based on the logistic data, contains
several attributes. In discrete choice modelling there are two types of attributes, namely dependent
and independent attributes. A dependent, or endogenous, attribute is the choice attribute, in this
research that is the preferred time period for container pick up. An independent, or exogenous,
attribute is the explanatory attribute.

Generally, a choice model contains multiple independent attributes. To allow for the choice model
specification and parameter estimation, the data was analysed to understand patterns and prevent
the inclusion of attributes that are not valuable. attributes that do not impact the preference for a
certain time slot are excluded from the model. Additionally, if attributes are mutually correlated,
one is excluded as this could manipulate the model results.

All in all, from the data analysis it was found that two data attributes from the logistic data set
have the highest impact on the preferred ETA of the TOC. These two are the container type and
commodity type category. The other attributes regarding container length, weight and call size, are
excluded from further research. Another data attribute that could potentially influence the pick up
preference of the TOC, is found to be correlated with one of the prior data attributes. Therefore, the
temperature settings attribute is also excluded from further analysis.

Moreover, it can be concluded from the data analysis that a separate choice model must be specified
for each terminal as the terminals differ from each other considering container types and commod-
ity types handled. This could result in different preferences of the TOC for pick up time (ETA) based
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on the terminal the container must be picked up.

Even though not all attributes are eventually included in the choice model, the analysis of the
logistic data is very useful to gain insight in the situation at the different terminals and the spread
of containers along the day. This benefits the design of the TAS.

c.3 data summary
In this section a summary of the remaining data attributes and their levels for the choice model
specification and shifting model is presented. The data presented in this section is used to sustain
judgements made in the choice model formulation. For example, which attribute levels to incorpo-
rate in the choice model. Too many or invaluable attributes in the choice model could deteriorate
the model accuracy. Moreover, the data provides insight in potential ways to formulate the utility
functions in the choice model for valuable results. Furthermore, the data presented here is used to
combine the traffic data and terminal model with the logistic data and choice model. In the shift
model the traffic and logistic data is combined by translating container types and commodity types
to trucks.

The data is structured per terminal, A through D. Per terminal an overview is provided for the data
arranged per container type and time period, commodity type and time period, and container type
and commodity type. The latter set of tables is very useful to find overlap between the attributes in
the logistic data.

As the choice model is probabilistic, each attribute and attribute level can be associated with a
certain probability. The data is summarised based on absolute value occurrence, the joint probabil-
ities, the marginal probabilities, and the conditional probabilities. Especially, the percentage values
are meaningful as these allow to combine the logistic data with the traffic data (Appendix E). The
mathematical notation for the probabilities are denoted in Equation C.1 through Equation C.3, in
which i is the dependent attribute (time period) and k is the independent attribute (container type
or commodity type).

The joint probability is the probability that i is equal to l, and k is equal to j:

Pr(i = l, k = j) (C.1)

The marginal probability is the probability for a single attribute (i or k) is equal to a given value (l or
j). By enumerating all possible values of the other attribute, the marginal probability can be derived
from the joint probability:

Pr(i = l) = ∑
j

Pr(i = l, k = j) (C.2)

The conditional probability is the probability that i is equal to l, conditional to the fact that k is
equal to j. When the value of one attribute is known, the probability for the other attribute is the
conditional probability:

Pr(i = l|k = j) (C.3)



c.3.1 Terminal A

Container type and time period data

Table C.1: Contingency table occurrence of container type in time period
for terminal A in absolute values (all 2017)

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank Totals

Afternoon 1393 8272 8034 1845 19544
Midday 1933 11732 8802 2164 24631
Morning 950 6208 6305 1382 14845
Night 507 2844 2542 373 6266
Totals 4783 29056 25683 5764 65286

Table C.2: Contingency table joint probabilities and marginal probabilities for container type
and time period for terminal A in percentage values

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank
Marginal
probability for i

Afternoon 2.13% 12.67% 12.31% 2.83% 29.94%
Midday 2.96% 17.97% 13.48% 3.31% 37.73%
Morning 1.46% 9.51% 9.66% 2.12% 22.74%
Night 0.78% 4.36% 3.89% 0.57% 9.60%
Marginal
probability for k

7.33% 44.51% 39.34% 8.83% 100.00%

Table C.3: Contingency table conditional probabilities in the form of P(i = l|k = j)
for container type and time period for terminal A in percentage values

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank

Afternoon 29.12% 28.47% 31.28% 32.01%
Midday 40.41% 40.38% 34.27% 37.54%
Morning 19.86% 21.37% 24.55% 23.98%
Night 10.60% 9.79% 9.90% 6.47%

Table C.4: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and time period for terminal A in percentage values

Time period (i)
Container type (k) Afternoon Midday Morning Night
Chemical 7.13% 7.85% 6.40% 8.09%
General purpose 42.33% 47.63% 41.82% 45.39%
Reefer 41.11% 35.74% 42.47% 40.57%
Tank 9.44% 8.79% 9.31% 5.95%
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Commodity type and time period data

Table C.5: Contingency table occurrence of commodity type in time period for terminal A in absolute values
(all 2017)

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown Totals

Afternoon 2259 728 312 100 354 280 467 396 274 716 13658 19544
Midday 2509 963 423 62 396 345 664 569 321 1096 17283 24631
Morning 1661 633 262 45 228 234 285 268 245 618 10366 14845
Night 527 212 116 17 94 90 103 121 169 715 4102 6266
Totals 6956 2536 1113 224 1072 949 1519 1354 1009 3145 45409 65286

Table C.6: Contingency table joint probabilities and marginal probabilities for commodity type and time period
for terminal A in percentage values

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown
Marginal
probability
for i

Afternoon 3.46% 1.12% 0.48% 0.15% 0.54% 0.43% 0.72% 0.61% 0.42% 1.10% 20.92% 29.94%
Midday 3.84% 1.48% 0.65% 0.09% 0.61% 0.53% 1.02% 0.87% 0.49% 1.68% 26.47% 37.73%
Morning 2.54% 0.97% 0.40% 0.07% 0.35% 0.36% 0.44% 0.41% 0.38% 0.95% 15.88% 22.74%
Night 0.81% 0.32% 0.18% 0.03% 0.14% 0.14% 0.16% 0.19% 0.26% 1.10% 6.28% 9.60%
Marginal
probability
for k

10.65% 3.88% 1.70% 0.34% 1.64% 1.45% 2.33% 2.07% 1.55% 4.82% 69.55% 100.00%

Table C.7: Contingency table conditional probabilities in the form of P(i = l|k = j) for commodity type and
time period for terminal A in percentage values

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown

Afternoon 32.48% 28.71% 28.03% 44.64% 33.02% 29.50% 30.74% 29.25% 27.16% 22.77% 30.08%
Midday 36.07% 37.97% 38.01% 27.68% 36.94% 36.35% 43.71% 42.02% 31.81% 34.85% 38.06%
Morning 23.88% 24.96% 23.54% 20.09% 21.27% 24.66% 18.76% 19.79% 24.28% 19.65% 22.83%
Night 7.58% 8.36% 10.42% 7.59% 8.77% 9.48% 6.78% 8.94% 16.75% 22.73% 9.03%



Table C.8: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and time period for terminal A in percentage values

Time period (i)
Container type (k) Afternoon Midday Morning Night
Agricultural 11.56% 10.19% 11.19% 8.41%
Chemical products 3.72% 3.91% 4.26% 3.38%
Fertilizers 1.60% 1.72% 1.76% 1.85%
Iron 0.51% 0.25% 0.30% 0.27%
Miscellaneous 1.81% 1.61% 1.54% 1.50%
Ores 1.43% 1.40% 1.58% 1.44%
Other food 2.39% 2.70% 1.92% 1.64%
Petroleum 2.03% 2.31% 1.81% 1.93%
Raw minerals 1.40% 1.30% 1.65% 2.70%
Solid mineral fuels 3.66% 4.45% 4.16% 11.41%
Unknown 69.88% 70.17% 69.83% 65.46%

Container type and commodity type data

Table C.9: Contingency table occurrence of commodity type in container type for terminal A in absolute values
(all 2017)

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown Totals

Chemical 135 1177 338 45 415 351 669 460 539 636 18 4783
General purpose 189 1289 759 170 637 595 608 741 463 1854 21751 29056
Reefer 1900 0 0 0 1 0 136 27 0 33 23586 25683
Tank 4732 70 16 9 19 3 106 126 7 622 54 5764
Totals 6956 2536 1113 224 1072 949 1519 1354 1009 3145 45409 65286

Table C.10: Contingency table joint probabilities and marginal probabilities for commodity type and container
type for terminal A in percentage values

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown
Marginal
probability
for i

Chemical 0.21% 1.80% 0.52% 0.07% 0.64% 0.54% 1.02% 0.70% 0.83% 0.97% 0.03% 7.33%
General purpose 0.29% 1.97% 1.16% 0.26% 0.98% 0.91% 0.93% 1.14% 0.71% 2.84% 33.32% 44.51%
Reefer 2.91% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 0.04% 0.00% 0.05% 36.13% 39.34%
Tank 7.25% 0.11% 0.02% 0.01% 0.03% 0.00% 0.16% 0.19% 0.01% 0.95% 0.08% 8.83%
Marginal
probability for k

10.65% 3.88% 1.70% 0.34% 1.64% 1.45% 2.33% 2.07% 1.55% 4.82% 69.55% 100.00%
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Table C.11: Contingency table conditional probabilities in the form of P(i = l|k = j) for commodity type and
container type for terminal A in percentage values

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown

Chemical 1.94% 46.41% 30.37% 20.09% 38.71% 36.99% 44.04% 33.97% 53.42% 20.22% 0.04%
General purpose 2.72% 50.83% 68.19% 75.89% 59.42% 62.70% 40.03% 54.73% 45.89% 58.95% 47.90%
Reefer 27.31% 0.00% 0.00% 0.00% 0.09% 0.00% 8.95% 1.99% 0.00% 1.05% 51.94%
Tank 68.03% 2.76% 1.44% 4.02% 1.77% 0.32% 6.98% 9.31% 0.69% 19.78% 0.12%

Table C.12: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and container type for terminal A in percentage values

Container type (i)

Container type (k) Chemical
General
purpose

Reefer Tank

Agricultural 2.82% 0.65% 7.40% 82.10%
Chemical products 24.61% 4.44% 0.00% 1.21%
Fertilizers 7.07% 2.61% 0.00% 0.28%
Iron 0.94% 0.59% 0.00% 0.16%
Miscellaneous 8.68% 2.19% 0.00% 0.33%
Ores 7.34% 2.05% 0.00% 0.05%
Other food 13.99% 2.09% 0.53% 1.84%
Petroleum 9.62% 2.55% 0.11% 2.19%
Raw minerals 11.27% 1.59% 0.00% 0.12%
Solid mineral fuels 13.30% 6.38% 0.13% 10.79%
Unknown 0.38% 74.86% 91.84% 0.94%

c.3.2 Terminal B

Container type and time period data

Table C.13: Contingency table occurrence of container type in time period
for terminal B in absolute values (all 2017)

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank Totals

Afternoon 6682 24165 2331 552 33730
Midday 5096 17842 3959 696 27593
Morning 4122 14445 5041 729 24337
Night 1063 3779 499 92 5433
Totals 16963 60231 11830 2069 91093



Table C.14: Contingency table joint probabilities and marginal probabilities for container type
and time period for terminal B in percentage values

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank
Marginal
probability for i

Afternoon 7.34% 26.53% 2.56% 0.61% 37.03%
Midday 5.59% 19.59% 4.35% 0.76% 30.29%
Morning 4.53% 15.86% 5.53% 0.80% 26.72%
Night 1.17% 4.15% 0.55% 0.10% 5.96%
Marginal
probability for k

18.62% 66.12% 12.99% 2.27% 100.00%

Table C.15: Contingency table conditional probabilities in the form of P(i = l|k = j)
for container type and time period for terminal B in percentage values

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank

Afternoon 39.39% 40.12% 19.70% 26.68%
Midday 30.04% 29.62% 33.47% 33.64%
Morning 24.30% 23.98% 42.61% 35.23%
Night 6.27% 6.27% 4.22% 4.45%

Table C.16: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and time period for terminal B in percentage values

Time period (i)
Container type (k) Afternoon Midday Morning Night
Chemical 19.81% 18.47% 16.94% 19.57%
General purpose 71.64% 64.66% 59.35% 69.56%
Reefer 6.91% 14.35% 20.71% 9.18%
Tank 1.64% 2.52% 3.00% 1.69%

Commodity type and time period data

Table C.17: Contingency table occurrence of commodity type in time period for terminal B in absolute values
(all 2017)

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown Totals

Afternoon 682 2912 787 181 1826 992 406 1038 1300 1048 22558 33730
Midday 1003 2201 515 112 1121 699 414 712 850 1131 18835 27593
Morning 1276 1543 485 63 841 537 374 537 643 841 17197 24337
Night 148 479 108 27 278 130 118 146 210 136 3653 5433
Totals 3109 7135 1895 383 4066 2358 1312 2433 3003 3156 62243 91093
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Table C.18: Contingency table joint probabilities and marginal probabilities for commodity type and time pe-
riod for terminal B in percentage values

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown
Marginal
probability
for i

Afternoon 0.75% 3.20% 0.86% 0.20% 2.00% 1.09% 0.45% 1.14% 1.43% 1.15% 24.76% 37.03%
Midday 1.10% 2.42% 0.57% 0.12% 1.23% 0.77% 0.45% 0.78% 0.93% 1.24% 20.68% 30.29%
Morning 1.40% 1.69% 0.53% 0.07% 0.92% 0.59% 0.41% 0.59% 0.71% 0.92% 18.88% 26.72%
Night 0.16% 0.53% 0.12% 0.03% 0.31% 0.14% 0.13% 0.16% 0.23% 0.15% 4.01% 5.96%
Marginal
probability
for k

3.41% 7.83% 2.08% 0.42% 4.46% 2.59% 1.44% 2.67% 3.30% 3.46% 68.33% 100.00%

Table C.19: Contingency table conditional probabilities in the form of P(i = l|k = j) for commodity type and
time period for terminal B in percentage values

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown

Afternoon 21.94% 40.81% 41.53% 47.26% 44.91% 42.07% 30.95% 42.66% 43.29% 33.21% 36.24%
Midday 32.26% 30.85% 27.18% 29.24% 27.57% 29.64% 31.55% 29.26% 28.31% 35.84% 30.26%
Morning 41.04% 21.63% 25.59% 16.45% 20.68% 22.77% 28.51% 22.07% 21.41% 26.65% 27.63%
Night 4.76% 6.71% 5.70% 7.05% 6.84% 5.51% 8.99% 6.00% 6.99% 4.31% 5.87%

Table C.20: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and time period for terminal B in percentage values

Time period (i)
Container type (k) Afternoon Midday Morning Night
Agricultural 2.02% 3.63% 5.24% 2.72%
Chemical products 8.63% 7.98% 6.34% 8.82%
Fertilizers 2.33% 1.87% 1.99% 1.99%
Iron 0.54% 0.41% 0.26% 0.50%
Miscellaneous 5.41% 4.06% 3.46% 5.12%
Ores 2.94% 2.53% 2.21% 2.39%
Other food 1.20% 1.50% 1.54% 2.17%
Petroleum 3.08% 2.58% 2.21% 2.69%
Raw minerals 3.85% 3.08% 2.64% 3.87%
Solid mineral fuels 3.11% 4.10% 3.46% 2.50%
Unknown 66.88% 68.26% 70.66% 67.24%



Container type and commodity type data

Table C.21: Contingency table occurrence of commodity type in container type for terminal B in absolute values
(all 2017)

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown Totals

Chemical 307 4815 1123 150 2790 1613 598 1349 2094 2110 14 16963
General purpose 83 2202 757 227 1233 711 591 943 900 800 51784 60231
Reefer 1219 2 0 0 0 0 73 22 0 70 10444 11830
Tank 1500 116 15 6 43 34 50 119 9 176 1 2069
Totals 3109 7135 1895 383 4066 2358 1312 2433 3003 3156 62243 91093

Table C.22: Contingency table joint probabilities and marginal probabilities for commodity type and container
type for terminal B in percentage values

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown
Marginal
probability
for i

Chemical 0.34% 5.29% 1.23% 0.16% 3.06% 1.77% 0.66% 1.48% 2.30% 2.32% 0.02% 18.62%
General purpose 0.09% 2.42% 0.83% 0.25% 1.35% 0.78% 0.65% 1.04% 0.99% 0.88% 56.85% 66.12%
Reefer 1.34% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.02% 0.00% 0.08% 11.47% 12.99%
Tank 1.65% 0.13% 0.02% 0.01% 0.05% 0.04% 0.05% 0.13% 0.01% 0.19% 0.00% 2.27%
Marginal
probability for k

3.41% 7.83% 2.08% 0.42% 4.46% 2.59% 1.44% 2.67% 3.30% 3.46% 68.33% 100.00%

Table C.23: Contingency table conditional probabilities in the form of P(i = l|k = j) for commodity type and
container type for terminal B in percentage values

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown

Chemical 9.87% 67.48% 59.26% 39.16% 68.62% 68.41% 45.58% 55.45% 69.73% 66.86% 0.02%
General purpose 2.67% 30.86% 39.95% 59.27% 30.32% 30.15% 45.05% 38.76% 29.97% 25.35% 83.20%
Reefer 39.21% 0.03% 0.00% 0.00% 0.00% 0.00% 5.56% 0.90% 0.00% 2.22% 16.78%
Tank 48.25% 1.63% 0.79% 1.57% 1.06% 1.44% 3.81% 4.89% 0.30% 5.58% 0.00%
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Table C.24: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and container type for terminal B in percentage values

Container type (i)

Container type (k) Chemical
General
purpose

Reefer Tank

Agricultural 1.81% 0.14% 10.30% 72.50%
Chemical products 28.39% 3.66% 0.02% 5.61%
Fertilizers 6.62% 1.26% 0.00% 0.72%
Iron 0.88% 0.38% 0.00% 0.29%
Miscellaneous 16.45% 2.05% 0.00% 2.08%
Ores 9.51% 1.18% 0.00% 1.64%
Other food 3.53% 0.98% 0.62% 2.42%
Petroleum 7.95% 1.57% 0.19% 5.75%
Raw minerals 12.34% 1.49% 0.00% 0.43%
Solid mineral fuels 12.44% 1.33% 0.59% 8.51%
Unknown 0.08% 85.98% 88.28% 0.05%

c.3.3 Terminal C

Container type and time period data

Table C.25: Contingency table occurrence of container type in time period
for terminal C in absolute values (all 2017)

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank Totals

Afternoon 3744 50812 2242 2544 59342
Midday 3103 37254 3097 2473 45927
Morning 2697 31023 3532 2295 39547
Night 549 7239 271 428 8487
Totals 10093 126328 9142 7740 153303

Table C.26: Contingency table joint probabilities and marginal probabilities for container type
and time period for terminal C in percentage values

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank
Marginal
probability for i

Afternoon 2.44% 33.14% 1.46% 1.66% 38.71%
Midday 2.02% 24.30% 2.02% 1.61% 29.96%
Morning 1.76% 20.24% 2.30% 1.50% 25.80%
Night 0.36% 4.72% 0.18% 0.28% 5.54%
Marginal
probability for k

6.58% 82.40% 5.96% 5.05% 100.00%



Table C.27: Contingency table conditional probabilities in the form of P(i = l|k = j)
for container type and time period for terminal C in percentage values

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank

Afternoon 37.10% 40.22% 24.52% 32.87%
Midday 30.74% 29.49% 33.88% 31.95%
Morning 26.72% 24.56% 38.63% 29.65%
Night 5.44% 5.73% 2.96% 5.53%

Table C.28: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and time period for terminal C in percentage values

Time period (i)
Container type (k) Afternoon Midday Morning Night
Chemical 6.31% 6.76% 6.82% 6.47%
General purpose 85.63% 81.12% 78.45% 85.30%
Reefer 3.78% 6.74% 8.93% 3.19%
Tank 4.29% 5.38% 5.80% 5.04%

Commodity type and time period data

Table C.29: Contingency table occurrence of commodity type in time period for terminal C in absolute values
(all 2017)

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown Totals

Afternoon 2255 11508 3924 1105 5695 3625 1321 5385 4722 5633 14169 59342
Midday 2920 8425 3097 680 3439 2634 1171 3970 2988 6043 10560 45927
Morning 3275 6889 2326 463 2515 2337 1277 3379 2253 5541 9292 39547
Night 311 1892 583 129 870 528 147 678 707 768 1874 8487
Totals 8761 28714 9930 2377 12519 9124 3916 13412 10670 17985 35895 153303

Table C.30: Contingency table joint probabilities and marginal probabilities for commodity type and time pe-
riod for terminal C in percentage values

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown
Marginal
probability
for i

Afternoon 1.47% 7.51% 2.56% 0.72% 3.71% 2.36% 0.86% 3.51% 3.08% 3.67% 9.24% 38.71%
Midday 1.90% 5.50% 2.02% 0.44% 2.24% 1.72% 0.76% 2.59% 1.95% 3.94% 6.89% 29.96%
Morning 2.14% 4.49% 1.52% 0.30% 1.64% 1.52% 0.83% 2.20% 1.47% 3.61% 6.06% 25.80%
Night 0.20% 1.23% 0.38% 0.08% 0.57% 0.34% 0.10% 0.44% 0.46% 0.50% 1.22% 5.54%
Marginal
probability
for k

5.71% 18.73% 6.48% 1.55% 8.17% 5.95% 2.55% 8.75% 6.96% 11.73% 23.41% 100.00%
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Table C.31: Contingency table conditional probabilities in the form of P(i = l|k = j) for commodity type and
time period for terminal C in percentage values

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown

Afternoon 25.74% 40.08% 39.52% 46.49% 45.49% 39.73% 33.73% 40.15% 44.25% 31.32% 39.47%
Midday 33.33% 29.34% 31.19% 28.61% 27.47% 28.87% 29.90% 29.60% 28.00% 33.60% 29.42%
Morning 37.38% 23.99% 23.42% 19.48% 20.09% 25.61% 32.61% 25.19% 21.12% 30.81% 25.89%
Night 3.55% 6.59% 5.87% 5.43% 6.95% 5.79% 3.75% 5.06% 6.63% 4.27% 5.22%

Table C.32: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and time period for terminal C in percentage values

Time period (i)
Container type (k) Afternoon Midday Morning Night
Agricultural 3.80% 6.36% 8.28% 3.66%
Chemical products 19.39% 18.34% 17.42% 22.29%
Fertilizers 6.61% 6.74% 5.88% 6.87%
Iron 1.86% 1.48% 1.17% 1.52%
Miscellaneous 9.60% 7.49% 6.36% 10.25%
Ores 6.11% 5.74% 5.91% 6.22%
Other food 2.23% 2.55% 3.23% 1.73%
Petroleum 9.07% 8.64% 8.54% 7.99%
Raw minerals 7.96% 6.51% 5.70% 8.33%
Solid mineral fuels 9.49% 13.16% 14.01% 9.05%
Unknown 23.88% 22.99% 23.50% 22.08%

Container type and commodity type data

Table C.33: Contingency table occurrence of commodity type in container type for terminal C in absolute
values (all 2017)

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown Totals

Chemical 338 2635 953 151 1023 860 779 913 1019 1355 67 10093
General purpose 1484 25191 8911 2107 11235 8108 2363 10986 9579 13194 33170 126328
Reefer 5437 349 22 10 74 48 381 635 11 1081 1094 9142
Tank 1502 539 44 109 187 108 393 878 61 2355 1564 7740
Totals 8761 28714 9930 2377 12519 9124 3916 13412 10670 17985 35895 153303



Table C.34: Contingency table joint probabilities and marginal probabilities for commodity type and container
type for terminal C in percentage values

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown
Marginal
probability
for i

Chemical 0.22% 1.72% 0.62% 0.10% 0.67% 0.56% 0.51% 0.60% 0.66% 0.88% 0.04% 6.58%
General purpose 0.97% 16.43% 5.81% 1.37% 7.33% 5.29% 1.54% 7.17% 6.25% 8.61% 21.64% 82.40%
Reefer 3.55% 0.23% 0.01% 0.01% 0.05% 0.03% 0.25% 0.41% 0.01% 0.71% 0.71% 5.96%
Tank 0.98% 0.35% 0.03% 0.07% 0.12% 0.07% 0.26% 0.57% 0.04% 1.54% 1.02% 5.05%
Marginal
probability for k

5.71% 18.73% 6.48% 1.55% 8.17% 5.95% 2.55% 8.75% 6.96% 11.73% 23.41% 100.00%

Table C.35: Contingency table conditional probabilities in the form of P(i = l|k = j) for commodity type and
container type for terminal C in percentage values

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown

Chemical 3.86% 9.18% 9.60% 6.35% 8.17% 9.43% 19.89% 6.81% 9.55% 7.53% 0.19%
General purpose 16.94% 87.73% 89.74% 88.64% 89.74% 88.86% 60.34% 81.91% 89.78% 73.36% 92.41%
Reefer 62.06% 1.22% 0.22% 0.42% 0.59% 0.53% 9.73% 4.73% 0.10% 6.01% 3.05%
Tank 17.14% 1.88% 0.44% 4.59% 1.49% 1.18% 10.04% 6.55% 0.57% 13.09% 4.36%

Table C.36: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and container type for terminal C in percentage values

Container type (i)

Container type (k) Chemical
General
purpose

Reefer Tank

Agricultural 3.35% 1.17% 59.47% 19.41%
Chemical products 26.11% 19.94% 3.82% 6.96%
Fertilizers 9.44% 7.05% 0.24% 0.57%
Iron 1.50% 1.67% 0.11% 1.41%
Miscellaneous 10.14% 8.89% 0.81% 2.42%
Ores 8.52% 6.42% 0.53% 1.40%
Other food 7.72% 1.87% 4.17% 5.08%
Petroleum 9.05% 8.70% 6.95% 11.34%
Raw minerals 10.10% 7.58% 0.12% 0.79%
Solid mineral fuels 13.43% 10.44% 11.82% 30.43%
Unknown 0.66% 26.26% 11.97% 20.21%
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c.3.4 Terminal D

Container type and time period data

Table C.37: Contingency table occurrence of container type in time period
for terminal D in absolute values (all 2017)

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank Totals

Afternoon 10907 29758 1935 2492 45092
Midday 16549 45147 2468 3368 67532
Morning 8056 22020 1536 1638 33250
Night 2919 8317 460 332 12028
Totals 38431 105242 6399 7830 157902

Table C.38: Contingency table joint probabilities and marginal probabilities for container type
and time period for terminal D in percentage values

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank
Marginal
probability for i

Afternoon 6.91% 18.85% 1.23% 1.58% 28.56%
Midday 10.48% 28.59% 1.56% 2.13% 42.77%
Morning 5.10% 13.95% 0.97% 1.04% 21.06%
Night 1.85% 5.27% 0.29% 0.21% 7.62%
Marginal
probability for k

24.34% 66.65% 4.05% 4.96% 100.00%

Table C.39: Contingency table conditional probabilities in the form of P(i = l|k = j)
for container type and time period for terminal D in percentage values

Container type (k)

Time period (i) Chemical
General
purpose

Reefer Tank

Afternoon 28.38% 28.28% 30.24% 31.83%
Midday 43.06% 42.90% 38.57% 43.01%
Morning 20.96% 20.92% 24.00% 20.92%
Night 7.60% 7.90% 7.19% 4.24%

Table C.40: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and time period for terminal D in percentage values

Time period (i)
Container type (k) Afternoon Midday Morning Night
Chemical 24.19% 24.51% 24.23% 24.27%
General purpose 65.99% 66.85% 66.23% 69.15%
Reefer 4.29% 3.65% 4.62% 3.82%
Tank 5.53% 4.99% 4.93% 2.76%



Commodity type and time period data

Table C.41: Contingency table occurrence of commodity type in time period for terminal D in absolute values
(all 2017)

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown Totals

Afternoon 1735 10034 2776 645 4597 3679 1888 4099 3843 4157 7639 45092
Midday 2410 14287 3935 1047 6897 5830 2527 6092 5946 6378 12183 67532
Morning 1584 7504 2188 452 3284 2868 1128 2723 3440 2874 5205 33250
Night 444 3630 714 88 1068 887 376 792 1191 986 1852 12028
Totals 6173 35455 9613 2232 15846 13264 5919 13706 14420 14395 26879 157902

Table C.42: Contingency table joint probabilities and marginal probabilities for commodity type and time pe-
riod for terminal D in percentage values

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown
Marginal
probability
for i

Afternoon 1.10% 6.35% 1.76% 0.41% 2.91% 2.33% 1.20% 2.60% 2.43% 2.63% 4.84% 28.56%
Midday 1.53% 9.05% 2.49% 0.66% 4.37% 3.69% 1.60% 3.86% 3.77% 4.04% 7.72% 42.77%
Morning 1.00% 4.75% 1.39% 0.29% 2.08% 1.82% 0.71% 1.72% 2.18% 1.82% 3.30% 21.06%
Night 0.28% 2.30% 0.45% 0.06% 0.68% 0.56% 0.24% 0.50% 0.75% 0.62% 1.17% 7.62%
Marginal
probability
for k

3.91% 22.45% 6.09% 1.41% 10.04% 8.40% 3.75% 8.68% 9.13% 9.12% 17.02% 100.00%

Table C.43: Contingency table conditional probabilities in the form of P(i = l|k = j) for commodity type and
time period for terminal D in percentage values

Commodity type (k)

Time
period (i)

Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown

Afternoon 28.11% 28.30% 28.88% 28.90% 29.01% 27.74% 31.90% 29.91% 26.65% 28.88% 28.42%
Midday 39.04% 40.30% 40.93% 46.91% 43.53% 43.95% 42.69% 44.45% 41.23% 44.31% 45.33%
Morning 25.66% 21.16% 22.76% 20.25% 20.72% 21.62% 19.06% 19.87% 23.86% 19.97% 19.36%
Night 7.19% 10.24% 7.43% 3.94% 6.74% 6.69% 6.35% 5.78% 8.26% 6.85% 6.89%
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Table C.44: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and time period for terminal D in percentage values

Time period (i)
Container type (k) Afternoon Midday Morning Night
Agricultural 3.85% 3.57% 4.76% 3.69%
Chemical products 22.25% 21.16% 22.57% 30.18%
Fertilizers 6.16% 5.83% 6.58% 5.94%
Iron 1.43% 1.55% 1.36% 0.73%
Miscellaneous 10.19% 10.21% 9.88% 8.88%
Ores 8.16% 8.63% 8.63% 7.37%
Other food 4.19% 3.74% 3.39% 3.13%
Petroleum 9.09% 9.02% 8.19% 6.58%
Raw minerals 8.52% 8.80% 10.35% 9.90%
Solid mineral fuels 9.22% 9.44% 8.64% 8.20%
Unknown 16.94% 18.04% 15.65% 15.40%

Container type and commodity type data

Table C.45: Contingency table occurrence of commodity type in container type for terminal D in absolute
values (all 2017)

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown Totals

Chemical 666 9359 3087 613 5420 4580 2265 3960 4455 3904 122 38431
General purpose 884 24983 6343 1584 10290 8580 2562 8239 9787 7716 24274 105242
Reefer 3245 515 120 30 95 54 633 354 114 319 920 6399
Tank 1378 598 63 5 41 50 459 1153 64 2456 1563 7830
Totals 6173 35455 9613 2232 15846 13264 5919 13706 14420 14395 26879 157902

Table C.46: Contingency table joint probabilities and marginal probabilities for commodity type and container
type for terminal D in percentage values

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown
Marginal
probability
for i

Chemical 0.42% 5.93% 1.96% 0.39% 3.43% 2.90% 1.43% 2.51% 2.82% 2.47% 0.08% 24.34%
General purpose 0.56% 15.82% 4.02% 1.00% 6.52% 5.43% 1.62% 5.22% 6.20% 4.89% 15.37% 66.65%
Reefer 2.06% 0.33% 0.08% 0.02% 0.06% 0.03% 0.40% 0.22% 0.07% 0.20% 0.58% 4.05%
Tank 0.87% 0.38% 0.04% 0.00% 0.03% 0.03% 0.29% 0.73% 0.04% 1.56% 0.99% 4.96%
Marginal
probability for k

3.91% 22.45% 6.09% 1.41% 10.04% 8.40% 3.75% 8.68% 9.13% 9.12% 17.02% 100.00%



Table C.47: Contingency table conditional probabilities in the form of P(i = l|k = j) for commodity type and
container type for terminal D in percentage values

Commodity type (k)

Container type (i)
Agri-
cultural

Chemical
products

Ferti-
lizers

Iron
Miscel-
laneous

Ores
Other
food

Petro-
leum

Raw
minerals

Solid
mineral
fuels

Unknown

Chemical 10.79% 26.40% 32.11% 27.46% 34.20% 34.53% 38.27% 28.89% 30.89% 27.12% 0.45%
General purpose 14.32% 70.46% 65.98% 70.97% 64.94% 64.69% 43.28% 60.11% 67.87% 53.60% 90.31%
Reefer 52.57% 1.45% 1.25% 1.34% 0.60% 0.41% 10.69% 2.58% 0.79% 2.22% 3.42%
Tank 22.32% 1.69% 0.66% 0.22% 0.26% 0.38% 7.75% 8.41% 0.44% 17.06% 5.81%

Table C.48: Contingency table conditional probabilities in the form of P(k = j|i = l)
for container type and container type for terminal D in percentage values

Container type (i)

Container type (k) Chemical
General
purpose

Reefer Tank

Agricultural 1.73% 0.84% 50.71% 17.60%
Chemical products 24.35% 23.74% 8.05% 7.64%
Fertilizers 8.03% 6.03% 1.88% 0.80%
Iron 1.60% 1.51% 0.47% 0.06%
Miscellaneous 14.10% 9.78% 1.48% 0.52%
Ores 11.92% 8.15% 0.84% 0.64%
Other food 5.89% 2.43% 9.89% 5.86%
Petroleum 10.30% 7.83% 5.53% 14.73%
Raw minerals 11.59% 9.30% 1.78% 0.82%
Solid mineral fuels 10.16% 7.33% 4.99% 31.37%
Unknown 0.32% 23.06% 14.38% 19.96%
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c.4 graphs of logistic data

c.4.1 Day of the week
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Figure C.5: Import container pick up preference distributed per hour based on day of the week (terminal A)
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Figure C.6: Import container pick up preference distributed per hour based on day of the week (terminal B)
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Figure C.7: Import container pick up preference distributed per hour based on day of the week (terminal C)
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Figure C.8: Import container pick up preference distributed per hour based on day of the week (terminal D)
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c.4.2 Container type category
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Figure C.9: Import container pick up preference distributed per hour based on container type category (termi-
nal A)
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Figure C.10: Import container pick up preference distributed per hour based on container type category (ter-
minal B)
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Figure C.11: Import container pick up preference distributed per hour based on container type category (ter-
minal C)
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Figure C.12: Import container pick up preference distributed per hour based on container type category (ter-
minal D)
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c.4.3 Length category
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Figure C.13: Import container pick up preference distributed per hour based on length category (terminal A)
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Figure C.14: Import container pick up preference distributed per hour based on length category (terminal B)
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Figure C.15: Import container pick up preference distributed per hour based on length category (terminal C)
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Figure C.16: Import container pick up preference distributed per hour based on length category (terminal D)
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c.4.4 Commodity type category
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Figure C.17: Import container pick up preference distributed per hour based on commodity category (terminal
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Figure C.18: Import container pick up preference distributed per hour based on commodity category (terminal
B)
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Figure C.19: Import container pick up preference distributed per hour based on commodity category (terminal
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Figure C.20: Import container pick up preference distributed per hour based on commodity category (terminal
D)
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c.4.5 Temperature category
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Figure C.21: Import container pick up preference distributed per hour based on temperature category (terminal
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Figure C.22: Import container pick up preference distributed per hour based on temperature category (terminal
B)
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Figure C.23: Import container pick up preference distributed per hour based on temperature category (terminal
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Figure C.24: Import container pick up preference distributed per hour based on temperature category (terminal
D)
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c.4.6 Weight category
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Figure C.25: Import container pick up preference distributed per hour based on weight category (terminal A)
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Figure C.26: Import container pick up preference distributed per hour based on weight category (terminal B)
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Figure C.27: Import container pick up preference distributed per hour based on weight category (terminal C)
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Figure C.28: Import container pick up preference distributed per hour based on weight category (terminal D)
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c.4.7 Call size category
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Figure C.29: Import container pick up preference distributed per hour based on call size category (terminal A)
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Figure C.30: Import container pick up preference distributed per hour based on call size category (terminal B)
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Figure C.31: Import container pick up preference distributed per hour based on call size category (terminal C)
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Figure C.32: Import container pick up preference distributed per hour based on call size category (terminal D)
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D T I M E P E R I O D C H O I C E M O D E L

For this research, a choice model is developed to gain insight in the behaviour of the TOC regarding
time period choice for container pick up. In this appendix the set up of the time period choice model
is elaborated. The choice model is based on the logistic data described in Appendix C. Moreover,
discrete choice theory is used to define the model.

The set up of the model consists of several steps. These steps are the definition of the problem,
the data, the model specification, the parameter estimation, and the model application.

From the data analysis in Appendix C it was found that each of the four terminals located at
the MVII in the port of Rotterdam area, are different. Therefore, a separate choice model must be
specified for each terminal. Despite that each terminal requires a separate choice model, there are
general aspects in the choice models. To avoid too much repetition, the appendix structure is to
describe the choice model setup mostly generally for all terminals. Where it is necessary, specifics
per terminal model are elaborated.

d.1 problem definition
The goal of the choice model is to gain insight into the preference of the TOC to pick up a container
at a certain time. The choice model is based on discrete choice theory. In a discrete choice model,
for each alternative a utility function is formulated. This utility function captures the influence of
an attribute on the probability of choosing an alternative.

The definition of the choice problem in this research, can be formulated as the choice of a TOC

to pick up a container in a certain time period. To allow for more accurate results (Section C.2),
the choice variable in the model is aggregated from 24 specific time slots to four time periods. The
time periods are formulated as night (from 21:00 until 3:00), morning (from 4:00 until 9:00), midday
(from 10:00 until 14:00), and afternoon (from 15:00 until 20:00). These periods are based on observed
arrival patterns and categories used in practice at the terminals.

d.2 data
The discrete choice model is based on revealed preference data of TOC for container pick up. This
data, elaborated in Appendix C, is collected from Portbase, the port community system at the port
of Rotterdam.

A mathematical model is specified for the choice model and contains several attributes. In discrete
choice modelling there are two types of attributes, namely dependent and independent attributes.
A dependent, or endogenous, attribute is the choice variable, in this research that is time period.
An independent, or exogenous, attribute is the explanatory variable. Generally, a choice model
contains multiple independent variables. Based on the logistic data, it is attempted to identify the
independent attributes.

To allow for the choice model specification and parameter estimation, the data is pre-processed
(Section C.1) and analysed (Section C.2) to understand patterns and prevent the inclusion of at-
tributes that are not valuable. Attributes that do not impact the preference for a certain time slot
are excluded from the model. Additionally, if attributes are mutually correlated, one is excluded as
this could manipulate the model results.

The data pre-processing and analysis elaborated in Appendix C, led to identified independent
attributes. These attributes are container type and commodity type. Additionally, waiting time is
included in the choice model in an effort to grasp the effect of waiting on TOC preferences for time
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period choice. For the extensive data pre-processing, analysis and result overview, one is referred
to Appendix C.

d.2.1 Container type

Container type is an attribute with four levels. Therefore, the container type variable in the choice
model is a discrete and categorical variable. The levels are general purpose container, reefer con-
tainer, chemical container, and tank container. It depends on the terminal which levels of the at-
tribute are included in the choice model. Levels are included or excluded based on the share of
containers the level captures. Moreover, the spread of the levels along the day is considered, as this
could indicate that for certain attribute levels, TOC prefer a specific time period.

d.2.2 Commodity type

Commodity type is also a discrete and categorical variable. Commodity type is an attribute with
eleven levels. However, in the choice model not all levels are included in the commodity type
attribute. The same criteria as for including or excluding container type attribute levels, apply for
commodity type attribute levels.

d.2.3 Waiting time

Opposed to the container type and commodity type, the waiting time is a continuous variable. The
waiting time is simulated with the terminal model (Appendix B). For each container in the logistic
data set, an averaged waiting time for one hour in each time period is randomly assigned. Hence,
the waiting time that could potentially be encountered by the TOC in each of the time periods, is
included in the choice model. This allows to capture the effect of waiting time along the entire
day, on the pick up period preference of the TOC. Perhaps the preference of the TOC for the morning
alternative increases if the TOC is aware that the encountered waiting time in the midday or afternoon
is potentially higher.

d.2.4 Data summary

As the choice model is probabilistic, each attribute and attribute level can be associated with a certain
probability. The data is summarised based on absolute value occurrence, the joint probabilities,
the marginal probabilities, and the conditional probabilities. An extensive overview of the data is
provided per terminal in Section C.3. This data is the foundation for the model specification and
parameter estimation.

d.3 model specification
The choice model is specified based on the findings in the data and the goal of the choice model.
The choice variable is the time period. There are four alternatives for this choice, namely night,
morning, midday and afternoon. These alternatives make up the discrete choice set. The choice set
is the same for each individual decision maker (the TOC). The attractiveness of an alternative can
be captured by the utility function. Consequently, the probability that a TOC chooses time period t
can be computed if the underlying distributions of utility are known. The utility can be calculated
using the independent variables.

The utility function for each alternative is unique in the specified choice model. The reason for this
is that the model is predominantly based on discrete and categorical attributes. If all attributes were
to be included in all utility functions, the model becomes unidentified. Choice modelling is build
on the concept of the alternatives being attractive relative to each other. Therefore, the effect of
one alternative being more attractive than another would be cancelled out if all attributes would be



included in all utility functions.

Several behavioural assumptions are made in the specification of the model. First of all, with the
inclusion of an attribute in the utility function, it is assumed that the attribute actually impacts the
choice for a certain alternative.

Another behavioural assumption made in choice modelling is that the decision maker, in this
choice model the TOC, is rational and a perfect optimiser. Therefore, in theory the alternative with
the highest utility is always chosen (Equation D.1).

P(t|T) = Pr(Ut ≥ Uj, ∀j ∈ T) (D.1)

Nonetheless, humans tend to behave random and may choose an alternative that does not seem
to provide the highest utility. This is due to the fact that it is impossible to capture all factors in
the choice model that influence the choice. The utility function (Ut), therefore, consists of two parts
(Equation D.2).

Ut = Vt + εt (D.2)

The first part is the deterministic part (Vt), which includes the attributes that are found to influence
the choice of a certain alternative. The second part of the utility function contains an error term (εt).
This error term represents the unobserved behaviour that influence the choice. The error term is
assumed to be i.i.d and follow an Extreme Value distribution (EV(0, µ)) in which µ is the scale
parameter. In general, the scale parameter is normalised to 1.

Another method to capture the unobserved behaviour in choice modelling, is by the formulation
of an ASC. By the formulation of an ASC, the mean of the error term is moved to the deterministic
part of the utility function. The ASC is a parameter in deterministic part that can be estimated from
data.

d.3.1 Model variables and parameters

To capture the unobserved utility for a certain alternative, an ASC is formulated for two of the al-
ternatives (ASCalt). From the revealed preference data it can be observed that the midday and
afternoon alternatives for pick up are most preferred (see marginal probabilities for i in Section C.3).
Based on this observation, the ASCs are formulated for the night and morning alternative to capture
the unobserved factors that decrease the preference for these two alternatives.

The observed behaviour in the utility for a certain alternative is captured by the independent vari-
ables in the deterministic part of the utility (Vt). The independent variables in the model are con-
tainer type (xtype), commodity type (ytype), and waiting time per alternative (walt).

Since the container type and commodity type attributes are categorical, these are formulated as
dummy variables in the model. If the container is a general purpose container, the model holds an
1 for the general purpose variable (xGP) and 0 for the rest of the container types. The same principle
applies to the commodity type. If the container contains agricultural commodities, the model holds
an 1 for the agricultural variable (yAgr) and 0 for the rest. If the container contains a commodity
that is not specified in the attribute levels of commodity type, all commodity type variables become
0. This is explained by the assumption that that commodity type does not influence the preference
of a TOC for pick up time period.

To capture the influence of the independent variables on the choice, several parameters are for-
mulated (β). The value of these parameters can be estimated from data by the choice model. The
parameters represent the preference for a certain alternative based on the container type, commodity
type and waiting time as the β interact with the independent variables.

The parameter sign provides insight in the taste of the decision maker for an alternative. A
negative sign (−) generally indicates a decrease in utility for an alternative, a positive sign (+)
generally indicates an increase in utility. This information helps to interpret the choice model.

Moreover, the magnitude of the parameter value indicates the impact of the parameter on the
utility, thus on the attractiveness of an alternative. It is crucial to keep in mind that the parameter
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interacts with the independent variable. Therefore, the magnitude of the independent variable
additionally impacts the attractiveness of an alternative. Nevertheless, in the specified model two
independent variables are formulated as dummy variable, hence obtain a value of 0 or 1. For these
two variables the magnitude of the parameter is dominant. The impact on the attractiveness of the
alternative is either 0 or the estimated value of the parameter. The independent variable for waiting
time is continuous. Hence, for this variable the interaction between parameter and variable is crucial
for the impact on the alternative attractiveness.

d.3.2 Utility functions

For each terminal a separate choice model must be defined. Therefore, for each terminal a separate
set of utility functions is formulated. V1 represents the utility function for the night alternative
(Equation D.3, D.7, D.11, and D.15). V2 represents the utility function for the morning alternative
(Equation D.4, D.8, D.12, and D.16). V3 represents the midday alternative (Equation D.5, D.9, D.13,
and D.17). Lastly, V4 represents the utility function for the afternoon alternative (Equation D.6, D.10,
D.14, and D.18). The utility function captures the attractiveness of an alternative. It is assumed that
all utility functions are linear.

Below, the set of utility functions for the choice model of each terminal is displayed. With the
inclusion of an attribute in the utility function, it is assumed that the attribute actually impacts the
choice for a certain alternative. The utility function for each alternative is unique in the specified
choice model. As the model is entirely based on discrete and categorical variables, including the
variables in all utility functions ensures that the model becomes unidentified.

As previously mentioned, the ASCs are formulated for the night and morning alternative. The reason
for including an ASC in these utility functions is that an increase of utility for these alternatives could
help to spread the truck arrivals more evenly throughout the day.

The utility functions are formulated such that the influence of a specific container or commodity
type on a specific alternative could provide insight in TOC behaviour. Container or commodity types
might have a higher or lower probability of being picked up in a certain time period (Section C.3).
Moreover, some container of commodity type might occur very often at a specific terminal. This
would increase the impact of the shifting strategy for that container. On the other hand, if a container
or commodity type does not occur often at the terminal, the impact of a strategy for shifting that
container is less. An understanding of choice behaviour of a TOC based on the preference for the pick
up of a container type or commodity in a certain time period, allows to develop potential strategies.
Such a strategy aims to spread truck arrivals more evenly along the day, consequently decreasing
the waiting time.

To gain insight in the effect of waiting time on the choice of a TOC, waiting time is included in
some of the utility functions. For some terminals the included waiting time correspond to the time
period the utility function represents, so midday waiting time in V3. However, for some terminals
the waiting time included in a utility function do not correspond to the time period the utility
function represents. For example, in V3 for terminal A, the morning waiting time is included in
the utility function for the midday. This allows to capture the effect of waiting time in other time
periods on the choice of a TOC. Note that there is no parameter for the night waiting time as TOC

never encounter waiting time during the night (Section B.5).
To summarise the model specifications, Table D.1 provides an overview.

Terminal A

V1 = ASCNight + βRE · xRE + βSolMinFu · ySolMinFu (D.3)

V2 = ASCMorning + βRE · xRE + βAgr · yAgr + βChem · yChem (D.4)

V3 = βWT,Morning · wMorning + βTC · xTC + βCC · xCC (D.5)

V4 = βWT,A f ternoon · wA f ternoon + βWT,Midday · wMidday + βGP · xGP (D.6)



Terminal B

V1 = ASCNight + βGP · xGP + βChem · yChem + βRawMin · yRawMin (D.7)

V2 =ASCMorning + βWT,Morning · wMorning + βCC · xCC + βAgr · yAgr

+ βSolMinFu · ySolMinFu
(D.8)

V3 = βWT,Midday · wMidday + βWT,A f ternoon · wA f ternoon (D.9)

V4 = βRE · xRE + βPetro · yPetro (D.10)

Terminal C

V1 = ASCNight + βGP · xGP + βCC · xCC + βTC · xTC (D.11)

V2 = ASCMorning + βRE · xRE + βAgr · yAgr + βSolMinFu · ySolMinFu (D.12)

V3 =βWT,Morning · wMorning + βWT,Midday · wMidday + βTC · xTC

+ βFert · yFert + βRawMin · yRawMin
(D.13)

V4 = βWT,A f ternoon · wA f ternoon + +βChem · yChem + βOres · yOres + βPetro · yPetro (D.14)

Terminal D

V1 = ASCNight + βCC · xCC + βChem · yChem (D.15)

V2 = ASCMorning + βGP · xGP + βRawMin · yRawMin + βAgr · yAgr (D.16)

V3 = βSolMinFu · ySolMinFu + βPetro · yPetro (D.17)

V4 = βWT,Midday · wMidday + βCC · xCC + βSolMinFu · ySolMinFu + βOres · yOres (D.18)
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Table D.1: Overview of the symbols and description for the choice models specification
Symbol Description
T Choice set (T = {Night, Morning, Midday, A f ternoon})
V1 Deterministic part of the utility function for the night alternative
V2 Deterministic part of the utility function for the morning alternative
V3 Deterministic part of the utility function for the midday alternative
V4 Deterministic part of the utility function for the afternoon alternative
ASCNight Alternative specific constant for the night alternative
ASCMorning Alternative specific constant for the morning alternative
xGP Container type: general purpose container
xRE Container type: reefer container
xCC Container type: chemical container
xTC Container type: tank container
βGP Parameter for general purpose container
βRE Parameter for reefer container
βCC Parameter for chemical container
βTC Parameter for tank container
yAgr Commodity type: agricultural
yChem Commodity type: chemical products
ySolMinFu Commodity type: solid mineral fuels
yRawMin Commodity type: raw minerals and products
yPetro Commodity type: petroleum
yOres Commodity type: ores
yFert Commodity type: fertilisers
βAgr Parameter for agricultural commodity
βChem Parameter for chemical products commodity
βSolMinFu Parameter for solid mineral fuels commodity
βRawMin Parameter for raw minerals and products commodity
βPetro Parameter for petroleum commodity
βOres Parameter for ores commodity
βFert Parameter for fertilisers commodity
wMorning Waiting time in the morning time period
wMidday Waiting time in the midday time period
wA f ternoon Waiting time in the afternoon time period
βWT,Morning Parameter for waiting time in the morning time period
βWT,Midday Parameter for waiting time in the midday time period
βWT,A f ternoon Parameter for waiting time in the afternoon time period

d.4 parameter estimation
Based on the logistic data, the value of the parameters can be estimated by means of an optimisation
algorithm. With the estimated parameters, the choice model serves to interpret TOC preferences. The
potential choices of TOC and the impact of variables on alternative attractiveness is captured.

d.4.1 Optimisation algorithm

The parameters (ASC and β) can be estimated using the maximum log-likelihood estimation. Max-
imum likelihood is the probability that the model correctly fits the observations from data. In the
maximum log-likelihood estimation, the model aims to estimate the parameters such that the model
has the highest probability of fitting the observed data. Hence, the parameter values are estimated
as such that these maximise the log-likelihood. Equation D.19 presents the maximum log-likelihood



function. In which L indicates the log-likelihood. If an individual chooses alternative t, ytn = 1,
otherwise ytn = 0. Pn(t|Tn) represent the logit model (Equation D.20).

maxL(β̂1, ..., β̂K) =
N

∑
n=1

(
∑

t∈Tn

ytn ln Pn(t|Tn)

)
(D.19)

The specified model is estimated using Biogeme software [Bierlaire, nd]. In the model set-up the
model specifications (Section D.3.2) are defined. Consequently, the model is estimated using the MNL

model depicted in Equation D.20. Vtn, the deterministic part of the utility function (Equation D.2),
indicates the utility of individual n for alternative t. Pn(t|Tn) indicates the probability that individual
n chooses alternative t from choice set Tn.

Pn(t|Tn) =
eVtn

∑j∈Tn eVjn
(D.20)

The MNL model is used because the choice set is not binary but multinomial, there are multiple
alternatives to choose from. Since the decision makers are assumed to be homogeneous the MNL

model is very suited for the parameter estimation. Moreover, thanks to the closed form of the MNL

model, there is less complexity involved.

The model estimation provides several useful outputs. The main outputs of the model are the
parameter estimates (β̂) and the value of the log-likelihood function of the model with the estimated
parameters (L(β̂1, ..., β̂K)).

Other output values are t-values and p-values. These outputs assist in statistical analysis of the
estimated parameters in the model. A null hypothesis (H0) and alternative hypothesis (H1) are
formulated. H0 states that the true value of β equals 0. The alternative hypothesis states that the
true value of β is not 0. The null hypothesis is rejected when the t-value is equal to or smaller than
−1.96, or equal or larger than 1.96. The t-value is calculated by

tk =
β̂k
σk

, (D.21)

where β̂ is the estimate of parameter β and σk is the standard error of the parameter. Consequently,
H0 is rejected and H1 accepted with an 95% confidence interval if |tk| ≥ 1.96.

From the t-value the p-value can be computed. This is done with Equation D.22. Φ(·) indicates
the cumulative density function of the univariate standard normal distribution.

pk = 2(1−Φ(tk)) (D.22)

Similar to the t-value, H0 and H1 are considered. H0 can be rejected with a confidence interval of
1− pk. Consequently, a p-value smaller than 0.05 indicates that the parameter value is estimated
correctly at a 95% confidence level.

Lastly, an interesting output of the model estimation is the goodness of fit. This goodness of fit
can be observed from the likelihood ratio statistic (Equation D.23).

−2(L(0)−L(β̂)) (D.23)

The likelihood ratio statistic compares a model where all parameters are set to zero (L(0)), which
leads to a model with equal probabilities, to the model with the estimated parameter (L(β̂). The
likelihood ratio statistic indicates whether the estimated model is significant, thus whether the
estimated model fits the data better than the model with equal probabilities. For the statistical
analysis of the model, a null hypothesis (H0) and an alternative hypothesis (H1) are formulated.
H0 states that the estimated model (L(β̂) is equivalent to the model with equal probabilities (L(0)).
H1 states that this is not true.

The likelihood ratio statistic is asymptotically distributed as χ2 with K degrees of freedom under
H0. The exact critical value for χ2 at a 95% confidence interval depends on the K degrees of
freedom. As rule of thumb a critical value of 79.08 is applied, this corresponds with 60 degrees
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of freedom. Using 60 degrees of freedom ensures that if the test statistic is well above the critical
value (χ2 > 79.08), H0 can safely be rejected. It can be concluded with a 95% confidence interval,
that imposing restrictions to the choice model does not lead to a better model. Hence, the estimated
model provides a better fit with the observed data than a model with equal choice probabilities.
Generally, the higher the likelihood ratio, the higher the confidence level that the estimated model
fits the observed data.

d.4.2 Model results

The likelihood ratio statistics for the choice model for each terminal is depicted in Table D.2. These
values indicate the goodness of fit of the estimated model on the data. If the model with equal
probabilities causes a statistically significant loss of fit, it can be concluded that the estimated model
fits the observed data better than a model with equal probabilities. A loss of fit can be measured
by a decrease in log likelihood. The likelihood ratio reported by the estimated models (Table D.2),
indicate a statistically significant loss of fit of the models with equal probabilities. The likelihood
statistic values are larger than the critical value, mentioned in the previous section. It can be con-
cluded that estimating the parameters in the specified model (Section D.3), results in a model that
fits the observed data better than a model with equal probabilities.

Table D.2: Overview of the likelihood ratio statistic value of the specified choice model for each terminal
Terminal A Terminal B Terminal C Terminal D

Likelihood
ratio statistic

13326.87 26640.73 46274.5 118682.2

Moreover, Table D.3, D.5, D.7, and D.9 on the following pages display the parameter estimation
results from the specified choice models for each terminal. It can be observed that each estimated
parameter has an absolute t-value larger than 1.96 and a p-value smaller than 0.05. These t-values
and p-values indicate that the parameters are estimated correctly at a 95% confidence level. Further-
more, each parameter is proven to influence the alternative attractiveness based on the formulated
utility functions. Hence, the estimated parameter provides insight in the behaviour of the TOC.
Furthermore, no significant correlation between estimated parameters in the specified models are
observed in the model results.

Subsequently, it can be concluded that the specified choice models are statistically proven to
provide accurate results. Thereupon, the estimated parameter values for each terminal should be
interpreted. First some general notes are provided. Next, the parameters for each separate model
will be discussed. The parameter interpretation is structured per terminal. Lastly, the preferences
of the TOC for specific terminals are compared to place the results of the choice models for each
terminal in perspective.

As the variables for container type and commodity type in the specified model are non monetary,
it is difficult to interpret the results by illustrating trade-offs. Nevertheless, the parameters have
meaning and the potential to explain behaviour of TOC. Therefore, the results of the estimated
model are elaborated in terms of the direction of the impact (+ or −) and the magnitude of the
estimated parameters.

To structure the interpretation of the parameters some extra columns are added in the results
tables (Table D.3, D.5, D.7, and D.9). For each estimated parameter, the effect on the utility is noted.
Moreover, the magnitude of the effect is provided.

Considering the effect of the utility, there are two options. These are that the parameter indicates
an increasing effect on the utility or a decreasing effect. An increasing effect can be interpreted as
such there is a preference for picking up a certain container of commodity in the corresponding
time period. A decreasing effect can be interpreted as a dislike for picking up a certain container
of commodity in the corresponding time period. However, it should be kept in mind that choice
modelling is build upon the concept of relative attractiveness of alternatives. Hence, a decreasing
effect of a certain container type for time period t, is indirectly a increase of attractiveness for the
other alternatives. Consequently, a dislike for a certain time period indicates a preference for another
time period. The attribute levels are divided over the utility functions in the choice models to avoid



an undefined model. Therefore, the estimated parameters might also be interpreted for the utility
functions they are not part of.

The magnitude of the effect is categorised in four categories. An absolute value of the parameter
between 0.0 and 0.2 is categorised as a small effect. An absolute parameter value of 0.2 through 0.6
is a medium effect on the utility. An absolute parameter value between 0.6 and 1 is categorised as a
large magnitude of effect. Lastly, absolute parameter values larger than 1 are indicated as huge ef-
fects on the utility. The categories are determined based on the distribution of the coefficient values
and relative effect compared to the other coefficients in the specified model.

In the interpretation of the parameters, in general and for terminals individually, several explana-
tions for the parameters are provided. These explanations relate for example to the traffic states
on access roads, the type of goods in the containers, the clients of the goods, the industry where
the goods are used, and assumptions for combining trips. However, two factors that might explain
the parameter value, hence the preference of the TOC, are not included in the interpretation of the
parameter. These factors are the arrival time of the vessel that transported the container, and the
exact origin and destination of the containers.

The prior might explain the pick up preference for certain containers or commodity types because
perhaps vessels with high shares of a certain container or commodity type always arrive in the
evening. Subsequently, the TOC might prefer to pick up the specific containers the next morning.
However, there is no data explored in this research that would provide insight in this factor and
how it could explain specific TOC preference.

Additionally, regarding the specific origin and destination of containers, there no information
about this factor. For some commodity types there are some insights that these have destinations
near the port. For example, it is known that the ‘Westland‘, near the port, is a popular destination
for agricultural products. It is expected that the destination of the goods will to some extend impact
the preference of a TOC. However, there is no data explored in this research that would provide
insight in the exact origin and destination for specific containers. Even though this factor might
explain the parameter value, it is excluded for the interpretation of the parameter.

Parameter interpretation in general

Even though, separate choice models are estimated for the four terminals as these are found to be
different from each other, some similar results are observed for all terminals. These general findings
are discussed in this subsection.

To begin with, it can be observed from the estimated coefficients for the ASC of the night alternative
(ASCNight) that at each of the terminals there is much unobserved behaviour that influences the
choice for the night alternative. Moreover, the sign of the estimated coefficient indicates that the un-
observed behaviour decreases the utility for the night alternative, making it less attractive compared
to the other alternatives.

This is in line with the expectations for the night alternative. The observed pick up pattern from
the data (Section C.4) reveals that the night alternative is used less for container pick up at each of
the terminals. Moreover, there are some factors that are known to influence the attractiveness of the
night alternative, however these factors are not captured in the estimated model. An obvious ex-
ample of this is that the night alternative requires working outside operational hours of hinterland
warehouses (Section 2.4). Therefore, it makes sense that there is much unobserved behaviour that
decreases the attractiveness of the night alternative.

The interpretation of the ASC for the morning alternative (ASCMorning) is similar to the analysis of
the ASC parameter for night. The sign (−) is expected as the observed data (Section C.3) already
showed that the morning alternative is less attractive for container pick up compared to the midday
and afternoon alternatives.

Like the night alternative, some factors that decrease the utility for morning pick up are not cap-
tured in the estimated model. This explains the direction (−) of the ASC for morning. A reason for
this could be that the morning alternative is less attractive because the port is less accessible in the
morning. This is because of the morning peak on the road. However, compared to the night alter-
native, there is less unobserved behaviour. The magnitude of the effect on the morning alternative
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is much smaller compared to the magnitude of ASCNight. This indicates that the attributes included
in the utility for the morning alternative, capture the decision makers’ preference to a larger extent
than in the night alternative.

The TOC show similar preference at each terminal regarding the pick up period of general purpose
containers. For the pick up of general purpose containers the sign (+) of the coefficient for the
estimated parameter (β̂GP) indicates an increase of utility for night pick up at two of the four
terminals. For the other two terminals, a negative sign (−) indicates a decrease of utility for morning
and afternoon pick up. This indirectly indicates that at the other two terminals, the TOC would rather
pick up a general purpose container in another time period, for example at night. The magnitude
of the parameter for general purpose containers (β̂GP), is categorised as medium for all terminals.
The direction and magnitude of the effect on the utility illustrate that there is a preference for night
pick up time period regarding general purpose containers.

A reason for this could be that general purpose containers are predominantly not very special or
urgent. Therefore, these might be preferred to be picked up at night since they can more easily be
parked near a hinterland warehouse location. Hence, the operating hours in the hinterland have less
impact on the transport of general purpose containers. Another explanation could be that products
transported by general purpose containers more often have a destination that is a few hours driving.
If the container is picked up at night, it arrives during the opening hours of the receiver.

The estimated parameter to reflect the preference for reefer container pick up (β̂RE) indicates a
medium preference for the night and morning alternative compared to the other two alternatives.
Additionally, a decreasing effect, hence a dislike, for afternoon pick up is observed from the results.
This indirectly indicates a preference for reefer pick up in another time period, for example the
morning. The magnitude of the estimated parameter for reefer containers is similar among the
choice model results, namely medium.

This preference for reefer containers in the night and morning alternative is not a surprise. Experts
at PoR speak of a reefer peak in the early morning at the terminals. The reason for this is that reefer
containers often contain products that have to be delivered to distribution centers early in the day so
the retail stores can restock products during the day. Note that these products in reefer containers
are not only agricultural commodities (Section C.3). Furthermore, transport with reefer containers
is more expensive compared to other container types. Therefore, it might be that there is a strong
desire from the forwarder to have the reefer container be picked up first thing in the morning.
The choice models indicate that the TOC do not have much preferences regarding tank containers.
The tank container variable is solely estimated for two of the four terminals. For the other terminals,
tank containers do not influence the attractiveness of the alternatives. At the terminals where tank
containers do influence the pick up time period attractiveness, the results are very similar. It is
observed from the results of both terminals, that the magnitude of the estimated tank container
parameter (β̂TC) is rather small. Moreover, the estimated parameter appears to have an increasing
effect on the midday alternative. Consequently, the results indicated that there is a slight preference
for the midday alternative.

Even though the impact on the alternative attractiveness is rather small, there might be some
explanation for the preference. For example, because the operating hours at the destinations are
very strict. Tank containers, opposed to general purpose containers, cannot be parked near the
warehouse location outside of operating hours as they might contain more dangerous goods. There-
fore, it might be desired to pick up the tank container in a time period that matches the hinterland
operating hours. Furthermore, since pick up in the midday alternative avoids the morning and after-
noon peak on the road network, this could explain a specific preference for the midday alternative.
However, the magnitude of the preference is not very large because the tank container could also be
picked up in the morning or afternoon alternative and still match hinterland operating hours. Lastly,
a reason could be that the TOC do not have much preference for a pick up time of tank containers
because the preference for delivery of these containers is more dominant. Tank containers require
transport with a special truck that can only transport tank containers, hence it is crucial to combine
export and import container trips. The preference for delivery time of export tank containers might
be determined by the closing time at the terminal for export containers. The TOC might choose a
time of arrival based on the preference for the export container and consequently pick up the import



tank container.

Complementary to preference for reefer container pick up, the estimated parameter for the agricul-
tural commodity (β̂Agr) indicates an increasing effect (+) of container pick up across all terminals.
The agricultural products impact the morning alternative with a small to medium magnitude.

The parameters for agricultural commodity pick up preferences are estimated as expected. Agri-
cultural products are often directed to retail stores. Therefore, there is a certain rush to pick up
the containers in the morning so the products can be distributed to the stores. Subsequently, the
retail stores can restock fresh products during the day. Moreover, agricultural products often have a
destination near the port of Rotterdam area. Near the port the agricultural products are processed
and distributed to other locations. As agricultural products are often perishable, the time to do this
is limited. This might explain the preference to pick up agricultural commodities in the morning
alternative.

The containers containing solid mineral fuels (β̂SolMinFu) positively influence (+ sign) the attractive-
ness of the night alternative with an huge magnitude for pick up at terminal A. For terminal B
and C a preference (+ sign) is found for the morning alternative. This the increasing effect of solid
mineral fuels on the utility is less than for the night alternative at terminal A. For terminal D a small
decreasing effect (− sign) is observed for pick up during the midday and afternoon. Therefore, it
can be concluded that the TOC prefer to pick up solid mineral fuels in the night or morning, rather
than in the midday or afternoon.

This could be explained by the fact that solid mineral fuels are products often utilised by factories.
Factories could want the materials before the morning shift starts to operate.

Similar to the preferences for picking up solid mineral fuels, the TOC are found to have a preference
(increasing effect) for the pick up of raw minerals (β̂RawMin) at night. The magnitude of the effect
on utility is smaller than for solid mineral fuels. Yet, it is not small, the magnitude of the effect falls
in the medium category. Additionally, for another terminal the TOC show a decreasing effect with
medium magnitude for morning and midday pick up of raw minerals. Consequently, this indicates
a preference for another time period for pick up such as the night.

These results for pick up preference and dislike for raw minerals could be explained with the
same reasoning as solid mineral fuels. The raw minerals are often used in industry. There might be
a desire to receive the material at night or very early morning to match the operational planning of
factories and construction sites.

TOC seem to have a terminal wide preference for the pick up of petroleum in the midday or afternoon.
The effect on utility of the midday or afternoon alternative is increasing (+ sign). The magnitude,
however, is rather small. Still, the estimated parameter (β̂Petro) indicates a small preference for
midday or afternoon pick up of petroleum.

The preference for midday or afternoon pick up of petroleum could be explained by the general
preference for midday or afternoon pick up for all containers. The logistic data (Section C.3) shows
that the midday and afternoon are more popular for container pick up. This is explained by the
operating hours in the hinterland. Perhaps, the processors of petroleum have very strict opening
hours. As petroleum is used in very traditional industries, the 9 to 5 culture might be very strong.
Consequently, there might be little flexibility for the TOC to pick up goods during other time periods.

The interpretation of the remaining estimated parameters, β̂CC, β̂Chem, β̂Ores, β̂Fert, and β̂WT,alt, is
discussed per terminal. For these variables different preferences or dislikes are found across the
terminals. Moreover, some variables only influence the attractiveness of an alternative of a specific
terminal.

Parameter interpretation terminal A

In addition to the general findings from the choice model results, some specific findings for terminal
A are discussed.
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From the estimated model it can be observed that chemical containers impact utility for the midday
container pick up alternative (β̂CC). The sign of the parameter (+), suggests that there is higher pref-
erence for the midday alternative when a chemical container is considered compared to the other
alternatives. However, the magnitude of the estimated parameter is categorised as small. Never-
theless, comparing the magnitude of the parameter for chemical containers to the other parameters
estimated for the midday alternative attractiveness, provides valuable insight. It can be concluded
that the attractiveness of the midday alternative is at its highest for the chemical container type.

A reason for the preference for pick up of chemical containers in the midday at terminal A, might
be to avoid rush hours on the traffic network on access and exit roads. Another reason could be
that the chemical containers are picked up in the midday to combine a round trip with an export
container. Often the pick up of chemical containers are combined with the delivery of an export
chemical container. This is done because a more heavy truck is required for transportation of chem-
ical products and it is very expensive to have an empty trip with such trucks. Moreover, the trucks
for chemical container transport can only transport chemical containers. The time period preference
for the delivery of the export container might be the dominant preference. For export containers a
closing time must be met. This closing time is often at the end of the day. Therefore, the preference
to deliver the export chemical container before closing time could lead to the preference for chemical
container pick up as observed from the choice model.

The preference for pick up period for chemical products is different from the preference for chemical
containers. It should be noted that this is not as striking as it may seem. The chemical products and
chemical containers might have a similar name, yet they do not necessarily comprehend the same
goods (see Section C.3). Based on the estimated choice model for terminal A, the attractiveness for
morning pick up is found to increase (+ sign) with a medium magnitude for containers transporting
chemical products (β̂Chem).

This preference for the morning period to pick up chemical products at terminal A could be ex-
plained by the need for chemical products during the day. Chemical products are used in industry.
Similarly to agricultural products for retail stores, there might be a desire to restock the chemicals
through out the day. Therefore, the TOC might show a increasing effect on the attractiveness of
morning pick up.

The interpretation of the waiting time parameters is a bit different from the other variable param-
eters. Opposed to the container and commodity type variable, the waiting time is a continuous
variable. Hence, the interaction of the estimated parameter with the waiting time determines the
precise impact on the attractiveness of the alternatives. In Table D.4 the average, minimum and
maximum impact of the waiting time multiplied with the estimated parameter values are presented.
These values are based on the average, minimum and maximum in the waiting time profile from
the terminal model (Section B.5).

For terminal A, the waiting time in the morning is included in the midday alternative. The waiting
time in the midday and afternoon are included in the afternoon alternative. Based on the absolute
value of impact, thus the estimated parameter multiplied with the waiting time in minutes, the
waiting time categorises as small impact. This absolute magnitude of impact is the same for midday
waiting time and afternoon.

The reason for this is that the waiting time is higher in the midday and afternoon. Nevertheless,
it is interesting that one minute of waiting time in the morning is perceived as more valuable than
waiting time in the midday or afternoon. Perhaps this is because TOC in general tend to pick up
containers in the midday or afternoon. Therefore, they might take waiting time in the midday and
afternoon for granted. Whilst, additional waiting time in the morning might feel more costly for the
TOC to pick up containers.



Table D.3: Estimated parameter results from the specified choice model for terminal A
*This is based on the value magnitude after parameter is multiplied with the waiting time variable walt

Estimated
parameter
value

In utility
function

Effect on
utility

Magnitude
of effect

Standard
error

t-value p-value

ASCNight -1.52 V1 Decrease Huge 0.0192 -78.9 0

ASCMorning -0.601 V2 Decrease Large 0.0166 -36.2 0

βGP -0.265 V4 Decrease Medium 0.0176 -15.1 0

βRE 0.288 V1, V2 Increase Medium 0.0185 15.6 0

βCC 0.187 V3 Increase Small 0.0311 6.01 0

βTC 0.0855 V3 Increase Small 0.0302 2.83 0.00462

βAgr 0.177 V2 Increase Small 0.0318 5.57 0

βChem 0.27 V2 Increase Medium 0.0479 5.64 0

βSolMinFu 1.18 V1 Increase Huge 0.0452 26.1 0

βWT,Morning 0.079 V3 Increase Small* 0.0335 2.36 0.0185

βWT,Midday -0.00386 V4 Decrease Small* 0.00128 -3.01 0.00264

βWT,A f ternoon -0.00193 V4 Decrease Small* 0.000864 -2.24 0.0253

Table D.4: Overview of absolute impact of waiting time on alternative attractiveness at terminal A
wMorning · β̂Morning wMidday · β̂Midday wA f ternoon · β̂A f ternoon

Average 0.0174 -0.039 -0.0239

Minimum 0 -0.00386 -0.00058

Maximum 0.043 -0.073 -0.041

Another striking result, the estimated parameter for morning waiting time indicates that the waiting
time in the morning increases the attractiveness for the midday pick up. On the other hand, waiting
time in the midday and afternoon seem to decrease the attractiveness of the afternoon pick up.
Consequently, it can be concluded that a TOC has more tendency to pick up the container in the
midday when there is waiting time in the morning. Whilst the waiting time in the midday and
afternoon ensure that there is less tendency for afternoon pick up.

This could be explained by the previous observation that morning waiting time is perceived as
more valuable for the TOC. They rather pick up the container in the midday. However, if there is
waiting time in the midday, the TOC dislike container pick up in the afternoon. This could be because
midday waiting time is very likely to progress to afternoon waiting time. Consequently, picking up
a container in the afternoon could be risky for the TOC as the waiting time could result in delay. This
might cause the TOC to arrive outside of the operating hours of the hinterland warehouses.

Parameter interpretation terminal B

A few specific findings for terminal B are discussed in this section.

From the estimated model for terminal B, it can be observed that chemical containers impact utility
for the morning pick up alternative (β̂CC). The sign of the parameter (−), suggests that there is
higher preference for the other time periods (not morning) when a chemical container is considered
for pick up. Even though, the magnitude of the estimated parameter indicates that the utility for
morning pick up is only impacted slightly. Nevertheless, the estimated parameter indicates that TOC

have less preference for the morning time period compared to the other time periods for the pick
up of chemical containers.

This slight dislike for morning pick up of chemical containers at terminal B could come from the
experience of TOC. As terminal B handles similar shares of chemical and reefer containers these
might compete for pick up period (Section C.4). For reefers it is found, terminal wide, that there is
preference to pick them up in the morning period. Therefore, it might be that the morning period
is busy with the pick up of reefer containers. This could lead to a dislike for picking up chemical
containers in the morning. Another reason could be that there are less export chemical containers
that must be delivered around the morning time period. The trucks for chemical container transport
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can only transport chemical containers. Therefore, the TOC does not desire to pick up chemical con-
tainers in the morning as they cannot combine the trips. Combining trips for chemical containers is
crucial for TOC as the transport is more expensive and requires a more heavy truck.

The preference for night pick up at terminal B, is found to increase (+ sign) for chemical products
(β̂Chem). The magnitude of the effect is medium.

A reason for this found preference could be that the chemical products are used in agricultural
and industrial activities. The receivers of the chemical products might desire a delivery of the
products before the working day starts. For example, agricultural activity starts very early in the
morning. Hence, this would match the night period pick up.

Table D.5: Estimated parameter results from the specified choice model for terminal B
*This is based on the value magnitude after parameter is multiplied with the waiting time variable walt

Estimated
parameter
value

In utility
function

Effect on
utility

Magnitude
of effect

Standard
error

t-value p-value

ASCNight -2.13 V1 Decrease Huge 0.0284 -75 0

ASCMorning -0.407 V2 Decrease Medium 0.012 -33.9 0

βGP 0.325 V1 Increase Medium 0.0318 10.2 0

βRE -0.906 V4 Decrease Large 0.0242 -37.4 0

βCC -0.096 V2 Decrease Small 0.0206 -4.67 0

βAgr 0.548 V2 Increase Medium 0.0376 14.6 0

βChem 0.287 V1 Increase Medium 0.0511 5.61 0

βSolMinFu 0.0967 V2 Increase Small 0.0423 2.29 0.0223

βRawMin 0.333 V1 Increase Medium 0.0742 4.48 0

βPetro 0.175 V4 Increase Small 0.0417 4.2 0

βWT,Morning 0.0688 V2 Increase Small* 0.0306 2.25 0.0248

βWT,Midday -0.0222 V3 Decrease Small* 0.00162 -13.7 0

βWT,A f ternoon -0.0177 V3 Decrease Medium* 0.00114 -15.5 0

In Table D.6 the average, minimum and maximum impact of the waiting time multiplied with the
estimated parameter values are presented for terminal B. These values are based on the average,
minimum and maximum in the waiting time profile (Section B.5).

Table D.6: Overview of absolute impact of waiting time on alternative attractiveness at terminal B
wMorning · β̂Morning wMidday · β̂Midday wA f ternoon · β̂A f ternoon

Average 0.0165 -0.1265 -0.177

Minimum 0 -0.0155 0

Maximum 0.055 -0.262 -0.366

For terminal B, the waiting time in the morning is included in the morning alternative. The waiting
time in the midday and afternoon are included in the midday alternative. Based on the absolute
values of the impact, depicted in Table D.6, the waiting time for morning and midday categorise as
small. Afternoon waiting time is categorised as medium as most waiting time in that time period
result in an absolute impact larger than 0.2. Since the magnitude of the estimated parameters for
the three time periods are quite close to one another, the differences between absolute impact of
waiting time between the three periods is considerable.

This is explained by the simulated waiting profile. The waiting time in the morning are much
smaller than in the midday and especially the afternoon. Therefore, similar magnitudes of waiting
time parameters result in larger differences in absolute values.

Moreover, morning waiting time is found to increase preference for the morning alternative, whilst
the midday and afternoon waiting time decrease preference for midday pick up. Striking is that
waiting time do not necessarily decrease the attractiveness of an alternative.



This could be because morning waiting time is less risky for TOC as they can still meet the op-
erating hour deadlines in the hinterland. The negative impact of afternoon waiting time on the
midday pick up alternative might be explained by the approach applied to include the waiting time
in the choice model. The approach ensures that the TOC is aware of the waiting time in the morning,
midday and afternoon. Therefore, a TOC might not prefer midday pick up due to afternoon waiting
time. As earlier mentioned, midday waiting time often propagate to afternoon waiting time. Hence,
if the TOC is aware of afternoon waiting time, they might not desire a midday pick up because they
know it will be very busy in the midday as well. Then they might divert to night or morning pick up.

Even though, the magnitudes of the estimated parameter values are quite close together, it can be
observed that the morning waiting time is perceived as more impactful compared to the waiting
time in the midday and afternoon. The same interpretation for terminal A, regarding perceiving
waiting time, applies here.

Parameter interpretation terminal C

In addition to the general findings from the choice model results, some specific findings for terminal
C are discussed.

From the estimated model it can be observed that at terminal C, chemical containers (β̂CC) impact
utility for the night pick up alternative. Even though, the impact is of a small magnitude, the sign
of the parameter (+), suggests that there is higher preference for the night alternative for chemical
container pick up.

A reason for the preference for pick up of chemical containers in the night at terminal B, might
be to avoid rush hours on the traffic network on access and exit roads. Another reason could be
that there are many export chemical containers that must be delivered at night. Therefore, the TOC

desires to pick up chemical containers as they can combine the trips. Combining trips for chemical
containers is crucial for TOC as the transport is more expensive and requires a more heavy truck.
Moreover, the trucks for chemical container transport can only transport chemical containers.

Based on the estimated model, the preference for afternoon pick up is found to increase (+ sign)
for containers picking up chemical products (β̂Chem) at terminal C. The magnitude of the effect is
categorised as small. However, as there is no unobserved behaviour in the afternoon alternative, the
small magnitude has a relatively high impact compared to the other alternatives.

The preference for afternoon pick up of chemical products at terminal C might be explained by
the desire of the receiver. The receiver of the chemical products transported via terminal C might
need the chemical products for industrial activities. This could cause a desire to receive the goods
before the evening starts so the goods are on time for the morning shift. An other reason could be
that the chemical products transported via terminal C have a destination that requires a few hours
driving time. Picking up the products in the afternoon ensures that the products are delivered at
the far hinterland location on time for the start of the operating hours.

A very similar, compared to chemical products, effect and magnitude of effect can be observed for
the pick up period of ores (β̂Ores). The same reasoning for this preference as for chemical products
applies to ores.

From the estimated choice model, fertilisers (β̂Fert) are found to be slightly impact the attractiveness
for midday pick up at terminal C. A decreasing effect with small magnitude can be observed. This
indicates that other time periods are slightly more attractive relatively to the midday period.

This could be explained by the utilisation of fertilisers. Fertilisers are mainly used in agricultural
activities. As previously mentioned, these activities start very early in the morning. Therefore, there
is little use to pick up the fertiliser products in the middle of the day. The other alternatives make
more sense to pick up the products.
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Table D.7: Estimated parameter results from the specified choice model for terminal C
*This is based on the value magnitude after parameter is multiplied with the waiting time variable walt

Estimated
parameter
value

In utility
function

Effect on
utility

Magnitude
of effect

Standard
error

t-value p-value

ASCNight -2.01 V1 Decrease Huge 0.04 -50.4 0

ASCMorning -0.338 V2 Decrease Medium 0.00837 -40.4 0

βGP 0.245 V1 Increase Medium 0.0416 5.89 0

βRE 0.418 V2 Increase Medium 0.0283 14.7 0

βCC 0.196 V1 Increase Small 0.0593 3.31 0.000932

βTC 0.0801 V1, V3 Increase Small 0.0247 3.24 0.0012

βAgr 0.344 V2 Increase Medium 0.0293 11.7 0

βChem 0.124 V4 Increase Small 0.0133 9.31 0

βSolMinFu 0.297 V2 Increase Medium 0.0177 16.8 0

βRawMin -0.217 V3 Decrease Medium 0.0222 -9.77 0

βPetro 0.134 V4 Increase Small 0.0185 7.26 0

βOres 0.108 V4 Increase Small 0.0221 4.87 0

βFert -0.0656 V3 Decrease Small 0.0223 -2.94 0.00331

βWT,Morning -0.173 V3 Decrease Small* 0.059 -2.93 0.00338

βWT,Midday -0.0173 V3 Decrease Small* 0.00194 -8.94 0

βWT,A f ternoon 0.00806 V4 Increase Small* 0.000543 14.8 0

In Table D.8 the average, minimum and maximum impact of the waiting time multiplied with the
estimated parameter values are presented. These values are based on the average, minimum and
maximum in the waiting time profile (Section B.5).

Table D.8: Overview of absolute impact of waiting time on alternative attractiveness at terminal C
wMorning · β̂Morning wMidday · β̂Midday wA f ternoon · β̂A f ternoon

Average -0.00692 -0.0571 0.1145

Minimum 0 -0.00294 0.00484

Maximum -0.0433 -0.1678 0.1959

For terminal C, the waiting time in the morning and midday is included in the midday alternative.
The waiting time in the afternoon is included in the afternoon alternative. Compelling is that waiting
time in both morning and midday decreases the attractiveness of the midday alternative. Moreover,
the afternoon waiting time increases the attractiveness for the afternoon pick up period.

Propagating waiting time from the morning to the midday alternative could be an explanation for
the decreasing effect of morning waiting time on midday pick up attractiveness. Regarding the in-
creased attractiveness for the afternoon by waiting time in the afternoon, this indicates an opposite
relation between the preference of TOC and the waiting time in the afternoon. The preference of the
TOC for the afternoon leads to higher waiting time in the afternoon period. Consequently, the TOC

have no choice but to accept the large waiting time. The dynamics of this preferences is assumed
to come from unobserved attitudes from TOC. The actual reason for this behaviour would require
more research.

From the magnitude of the estimated parameters it can be concluded that TOC perceive morning
waiting time a factor 10 more impactful. Nevertheless, as the waiting time in the morning are much
lower, the absolute impact on the alternative attractiveness is smaller for the morning. Yet, the fact
that TOC rate one minute of waiting time in the morning more heavily than for a minute waiting in
the midday or afternoon is a valuable observation. The explanation for this is the same as mentioned
previously for terminal A.



Parameter interpretation terminal D

In addition to the general findings from the choice model results, some specific findings for terminal
D are discussed.

From the estimated model, it can be observed that chemical containers (β̂CC) impact the attractive-
ness of the afternoon and night pick up alternative at terminal D. The sign of the parameter (−),
suggests that there is higher preference for the morning and midday alternative when a chemical
container is considered. Moreover, the magnitude of the estimated parameter indicates that the
utility for is only very slightly affected by the preference of the TOC.

A reason for this might be that the chemical containers cannot be delivered at hinterland loca-
tions during the night and late afternoon. The receivers might want the chemical containers in the
middle of the day as this is the period they operate. An other reason might be that the closing time
for export containers is around the afternoon. Hence, the TOC want to deliver the export container
before the afternoon. Since the transport of chemical containers requires a more heavy truck and is
more expensive, the TOC desire to combine the trip for export and import containers. Moreover, the
trucks for chemical container transport can only transport chemical containers. Consequently, the
TOC pick up a chemical container in the morning.

Based on the estimated model, the preference for night pick up at terminal D, is found to increase (+
sign) for containers transporting chemical products (β̂Chem). The magnitude of the effect is medium.

A reason for this found preference could be that the chemical products are used in agricultural
and industrial activities. The receivers of the chemical products might desire a delivery of the prod-
ucts before the working day starts. For example, agricultural activity starts around 3 in the night.
Hence, this would match the night period pick up.

The estimated model indicates a slight dislike for pick up of ores (β̂Ores) in the afternoon alternative.
The effect is decreasing with a very small magnitude. Hence, the estimated parameter indicates that
the TOC might prefer pick up of ores in the night, morning or midday.

Ores might be needed for industry activities during the day. Picking up ores in the afternoon
might cause a delay for the industry. Therefore, the TOC might have a dislike for afternoon pick up
of ores. Another reason to dislike afternoon pick up could be to avoid the afternoon peak hour in
the traffic network.

In Table D.10 the average, minimum and maximum impact of the waiting time multiplied with the
estimated parameter values are presented. These values are based on the average, minimum and
maximum in the waiting time profile (Section B.5).

For terminal D, the waiting time in the midday is included in the afternoon alternative. The es-
timated parameter for midday waiting time indicates that the midday waiting time decreases the
attractiveness of the afternoon pick up alternative. This could be explained by the propagation of
waiting time in the midday to the afternoon.

Solely the midday waiting time was found to impact the attractiveness of the alternatives. However,
this magnitude is rather small for both the estimated parameter value as for the absolute value.
Nevertheless, it is valuable to be aware that the morning and afternoon waiting time do not impact
the preference of TOC for pick up period at terminal D. A reasons could be that the TOC take the
waiting time at a terminal for granted.
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Table D.9: Estimated parameter results from the specified choice model for terminal D
*This is based on the value magnitude after parameter is multiplied with the waiting time variable walt

Estimated
parameter
value

In utility
function

Effect on
utility

Magnitude
of effect

Standard
error

t-value p-value

ASCNight -1.68 V1 Decrease Huge 0.00687 -244 0

ASCMorning -0.333 V2 Decrease Medium 0.00722 -46.2 0

βGP -0.107 V2 Decrease Small 0.00808 -13.2 0

βCC -0.0374 V1, V4 Decrease Small 0.00874 -4.28 0

βAgr 0.322 V2 Increase Medium 0.0151 21.3 0

βChem 0.265 V1 Increase Medium 0.0148 17.9 0

βSolMinFu -0.088 V3, V4 Decrease Small 0.0115 -7.66 0

βRawMin -0.0569 V2 Decrease Small 0.0146 -3.91 0

βPetro 0.0532 V3 Increase Small 0.0122 4.37 0

βOres -0.0378 V4 Decrease Small 0.0136 -2.78 0.00548

βWT,Midday -0.0139 V4 Decrease Small* 0.0017 -8.17 0

Table D.10: Overview of absolute impact of waiting time on alternative attractiveness at terminal D
wMidday · β̂Midday

Average -0.03197

Minimum -0.0042

Maximum -0.0723

Parameter interpretation terminal comparison

Above, each estimated parameter in the choice model is elaborated. There are some valuable find-
ings that require some extra discussion. In this section some results are compared.

As previously mentioned, there is overlap in preferences of TOC for container pick up across the
several terminals. However, differences between the terminals become very clear if the estimated
parameters for a number of specific container types or commodity types are compared.

For example, the impact of chemical containers and chemical products on the attractiveness of
the alternatives is entirely different. For terminal A, a preference for midday pick up of chemical
containers is observed. Contrarily, the TOC show a preference for night time pick up of chemical
containers at terminal C. Regarding chemical products, the TOC show a preference for the pick up of
chemical products in the morning at terminal A. At terminal C this preference is for the afternoon
time period. For terminal B and D this preference is found for the night time pick up of chemical
products. Note that the point is not to compare chemical containers and chemical products but
to illustrate that more than once the pick up preferences are very different across the terminals.
Despite having a similar name, the chemical containers and chemical products to not necessarily
comprehend the same goods.

Consequently, it can be concluded that there can be large difference in preference for the same
container or commodity type at terminals. For some terminals, the preferences of a specific container
or commodity type is pick up in the middle of the day, whilst for another terminal this preference
is for the night for the same container or commodity type. In the interpretation of the estimated
parameters, some potential explanation or reasoning is discussed for the preferences. However,
these might be contradictory if terminals are compared.

Subsequently, the reasoning for the preferences could be faulty. However, this is not necessarily
the case. Even though it is difficult to interpret the difference in pick up preference for the same
container, it is interesting to explore.

There are a few reasons that might explain the contradictory preferences for the same container
type. The question is why the TOC have a preference to pick up a chemical container in the midday
at terminal A, and in the night at terminal C.

To begin with, the difference in preference could originate from the way the terminals are organ-
ised. Perhaps at one of the terminals, the container is often located in a very busy stack in the



morning, hence there is a preference to pick up the container at night when the stack is less busy.
Whilst at the other terminal the stack where chemical containers are often located, is very busy in
the afternoon, hence the TOC prefer pick up in the midday.

Another reason could be the role of the hinterland destination. Often forwarders have agreements
with a certain terminal to transit the goods. Perhaps the forwarder that arranges transport via ter-
minal A, has customers that want to receive their container in the middle of the day. The forwarder
that transits the goods at terminal C might have clients that desire the containers during the night
or in the early morning. Moreover, the customers of the containers might be located more often far
away. This could also explain why there are different time period preferences for the same goods.
The hinterland locations might want to receive the goods around the same time. However, the TOC

might requires a longer drive for the containers transported via terminal A, hence the TOC has a
preference for another time period.

The magnitude of impact regarding agricultural products on the morning alternative attractiveness
is another eye-catching difference between terminals. For each terminal a similar preference is found
for pick up of agricultural products in the morning. However, the magnitude of the preference
deviates among the terminals. At terminal B the estimate parameter has the highest value, followed
by D and C. The terminal with the smallest value is A.

By analysing the data (Section C.3 and Section C.4) it can be observed that terminal B does not
necessarily handle large shares of agricultural products. However, in the morning a higher share
can be observed. Terminal A, on the other hand, handles higher shares of agricultural products. Yet,
for terminal A the shares are more spread along the day. For terminal C and D, the shares of agri-
cultural products are comparable to the shares at terminal B. Nevertheless, a slightly higher share
in the morning is observed in the morning for terminal C. Additionally, for terminal D the share of
agricultural products in the morning is not higher than in the midday or afternoon. However, an
outlier peak in shares can be observed (Figure C.20) in the morning. Consequently, the differences
in magnitudes are explainable from the logistic data.

Similarly to the magnitude of the estimate parameter for agricultural products, the solid mineral
fuels parameters have different magnitudes. In general the TOC show a preference for the night and
morning alternative directly, or indirectly via a dislike for midday and afternoon pick up. However,
the magnitude of the preference deviates between terminals.

This is an interesting observation that might be explained by the characteristics of the terminal.
Additionally, it could be explained be the approach in model set up. As for each terminal a different
choice model is specified, it is difficult to compare the estimated parameters one on one. Especially
when the estimated parameters are all in other utilities for different time period, as is the case with
the solid mineral fuels. The final choice probabilities (discussed in the next subsection) show that
the market shares for the solid mineral fuels are quite similar for the alternative in which the solid
mineral fuels parameter is formulated. Therefore, it can be concluded that the difference in magni-
tude of the parameters for solid mineral fuels is due to the formulation of the specific choice models
for the different terminals.

Lastly, the estimated parameters for waiting time are valuable to compare across the different termi-
nals. The impact of waiting time is found to be different depending on the terminal. It is already
discussed per terminal that TOC seem to perceive morning waiting time as more impactful compared
to midday and afternoon. Additionally, it is found that the TOC value one minute of the waiting time
more heavily of one terminal compared to another. Especially for terminals B and C the waiting
time impacts in the midday and afternoon are noticeable. One minute of waiting time in the midday
and afternoon is rated more valuable for these two terminals compared to the terminals A and D.

This is a striking result as the terminals B and C operate with a time slot management strategy,
whilst terminal A and D operate based on a open door policy. From these results, it can be concluded
that TOC rate waiting time at time slot terminals in the midday and afternoon with an higher value
compared to waiting time at an open door terminal. The reason for this is that the TOC are aware that
with an open door policy a queue at the terminal may arise. However, with a time slot management
system at the terminal, in theory, there should be no queue at the terminal. This is because the
terminal should not allow more trucks to arrive than the terminal capacity. Therefore, in the event a
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queue does occur at the time slot management terminals, the TOC perceive the waiting time as more
costly.

Choice probabilities

The specific value of estimated parameters provides important insight in TOC behaviour, potential
preferences or dislikes. However, the eventual probability that a TOC chooses a certain time period
for container pick up is determined by more than the value of the estimated parameter alone. Choice
modelling is based on attractiveness of alternatives relative to each other. Hence, the interaction of
the parameters and the ratio of utility functions for the alternatives determine the choice probability
for an alternative. By integrating the estimated parameter values in the formulated utility func-
tions (Section D.3.2), the probability of choosing an alternative can be computed as formulated in
Equation D.20.

In Table D.11 through Table D.14, the choice probabilities are provided for each terminal, each
alternative and based on each container type and commodity type. In other words these provide
insight in the choice probability distribution along the alternatives for each attribute. This indicates
the probability that a TOC picks up a certain container or commodity in a specific time period. In the
probability calculation the waiting time parameters are excluded as the waiting time effects are not
used for the scenario formulation. Furthermore, the probabilities excluding waiting time provide a
clear overview of the tendency to choose a time period based specifically on the container or com-
modity type. For each container and commodity type, the choice probabilities for the alternatives
sum up to 100%.

From the choice probability distributions for each attribute and at each terminal, it becomes clear
that the midday and afternoon alternatives will still predominantly be chosen by the TOC. This is
explained by the unobserved behaviour for the night and morning alternative captured in the model.
However, for some container or commodity types it can be observed that the night or morning al-
ternative also have considerable probabilities to be chosen.

All in all, this concludes the extensive analysis of the results from the choice models, the inter-
pretation of the estimated parameters, and the insights from the choice probability distributions.
Consequently, the findings from the choice models will be applied to formulate strategies for truck
shifting to reduce waiting time at the terminals. Thereafter, the strategies will be evaluated based
on an experimental plan.

Table D.11: Overview of the choice probabilities based on the attributes container type and commodity type
for terminal A

Night (V1) Morning (V2) Midday (V3) Afternoon (V4)
General purpose container 8.6% 21.6% 39.5% 30.3%
Reefer container 9.6% 24.2% 33.1% 33.1%
Chemical container 7.4% 18.4% 40.6% 33.6%
Tank container 7.7% 19.2% 38.1% 35.0%
Agricultural products 7.6% 22.8% 34.8% 34.8%
Chemical products 7.4% 24.5% 34.0% 34.0%
Solid mineral fuels 21.8% 16.8% 30.7% 30.7%



Table D.12: Overview of the choice probabilities based on the attributes container type and commodity type
for terminal B

Night (V1) Morning (V2) Midday (V3) Afternoon (V4)
General purpose container 5.8% 23.5% 35.3% 35.3%
Reefer container 5.4% 30.4% 45.7% 18.5%
Chemical container 4.4% 22.2% 36.7% 36.7%
Agricultural products 3.6% 35.2% 30.6% 30.6%
Chemical products 5.6% 23.6% 35.4% 35.4%
Solid mineral fuels 4.2% 25.7% 35.1% 35.1%
Raw minerals 5.9% 23.5% 35.3% 35.3%
Petroleum 4.0% 22.4% 33.6% 40.0%

Table D.13: Overview of the choice probabilities based on the attributes container type and commodity type
for terminal C

Night (V1) Morning (V2) Midday (V3) Afternoon (V4)
General purpose container 5.9% 24.7% 34.7% 34.7%
Reefer container 4.2% 33.7% 31.1% 31.1%
Chemical container 5.7% 24.8% 34.8% 34.8%
Tank container 4.9% 24.2% 36.8% 34.0%
Agricultural products 4.3% 32.0% 31.8% 31.8%
Chemical products 4.5% 23.9% 33.6% 38.0%
Solid mineral fuels 4.3% 31.0% 32.3% 32.3%
Raw minerals 5.1% 26.9% 30.4% 37.7%
Petroleum 4.5% 23.8% 33.4% 38.2%
Ores 4.5% 24.1% 33.8% 37.6%
Fertiliser 4.8% 25.6% 33.6% 35.9%

Table D.14: Overview of the choice probabilities based on the attributes container type and commodity type
for terminal D

Night (V1) Morning (V2) Midday (V3) Afternoon (V4)
General purpose container 6.6% 22.8% 35.3% 35.3%
Chemical container 6.2% 24.7% 34.5% 34.5%
Agricultural products 5.9% 31.1% 31.5% 31.5%
Chemical products 8.2% 24.2% 33.8% 33.8%
Solid mineral fuels 6.8% 26.2% 33.5% 33.5%
Raw minerals 6.5% 23.6% 34.9% 34.9%
Petroleum 6.3% 24.2% 35.7% 33.8%
Ores 6.5% 25.0% 34.9% 33.6%

d.5 model application
From the choice model results various opportunities can be identified to spread the arrival of trucks
more evenly along the day. These opportunities stem from the observed preferences and dislikes
of TOC and the choice probability distribution for container and commodity types. The tendency
of a TOC to pick up a container in another time period than currently chosen, allows to shift truck
arrivals from one time period to another.

d.5.1 Truck shifting strategies

For several container and commodity types, a preference or dislike for picking up the container in
a certain time period is observed from the choice model. Based on this information a truck shifting
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strategy can be formulated per terminal.

In general, the goal of the truck shifting strategy is to spread the container pick up, hence the truck
arrivals, more equally along the day. In other words, a flatten the curve or peak shaving strategy
is the foundation for the TAS. For each of the terminals, a peak in truck arrivals is observed in
the midday and afternoon time period (Section A.2). Consequently, with the peak shaving strategy,
it is aimed to shift truck arrival from the midday and afternoon towards the morning and night
alternative.

Shifting the trucks away from the peak is done based on the observed preferences and dislikes of
the TOC. Using this information, the trucks that pick up a certain container or commodity type can
be shifted from one time period to another. To illustrate this, if a preference for the night is observed
for a general purpose container, but the general purpose containers are currently often picked up in
the afternoon, a truck can be shifted from the afternoon to the night. This shift can be sustained by
the observed willingness of the TOC to pick up the general purpose container in the morning.

Terminal A

Based on the findings from the choice model for terminal A, a specific strategy is defined to reduce
the peak in truck arrival.

To begin with, in the truck shifting strategy for terminal A, two container types are ignored in
the shifting strategy. For the pick up of tank and chemical container the TOC show a preference for
midday pick up. Therefore, the TOC indirectly dislike pick up of tank and chemical containers in
the night or morning alternative. Consequently, it is not realistic to shift these trucks to the night or
morning alternative.

For the pick up of general purpose containers, the TOC are found to dislike the afternoon pick up.
Therefore, in the truck shifting strategy for terminal A, the general purpose containers are shifted
away from afternoon. Additionally, the trucks for reefer container pick up are shifted towards the
night and morning alternative.

Regarding commodity types, the TOC shows a preference for the pick up of agricultural and
chemical products in the morning time period. The trucks for pick up of these commodities are
therefore shifted from the midday and afternoon alternatives to the morning time period. Moreover,
for the pick up of solid mineral fuels a preference for the night is observed. Consequently, the trucks
for solid mineral fuels pick up are shifted towards the night period.

Terminal B

In the truck shifting strategy for terminal B, the trucks for general purpose container pick up are
shifted to the night time period. Trucks for reefer container pick up are shifted away from the
afternoon. Chemical container pick ups are shifted from the morning towards the night.

Regarding commodity types, the pick up of agricultural products can be shifted to the morning.
Moreover, chemical products, solid mineral fuels and raw mineral pick ups are shifted to the night.

Terminal C

The preferences of TOC at terminal C show that trucks for general purpose container and chemical
container pick up can be shifted to the night. Reefer container pick ups can be shifted to the
morning.

Additionally, trucks for agricultural product and solid mineral fuel pick ups can be shifted to the
morning time period. Raw minerals can be shifted away from the midday alternative.

In the truck shifting strategy for terminal C, various container and commodity types are ignored.
Some of these, chemical products and petroleum, are preferred for pick up in the midday or after-
noon. Consequently, it would not be realistic to shift these truck arrivals to the morning or night.
Moreover, fertilisers and ores are ignored in the shifting strategy since these commodity types have
much overlap with general purpose and chemical containers (Section C.3). This means that fertilis-
ers and ores are very often transported in general purpose and chemical containers. Consequently,
shifting trucks based on these container types will capture the commodity as well. Lastly, tank
containers are not shifted as the magnitude of the preference is very small, and the tank container
pick ups overlap with agricultural products and solid mineral fuels container pick up.



Terminal D

Dislike for the pick up of general purpose containers is found for the morning alternative at terminal
D. Therefore, trucks for general purpose container pick ups are shifted away from the morning. On
the other hand, chemical containers are shifted towards the morning alternative.

Regarding commodity types, the agricultural products can be shifted to the morning. Truck
arrivals for chemical products can be shifted to the night. Solid mineral fuel pick ups can be shifted
to night and morning. Trucks for ores pick up can be shifted away from the afternoon. Container
pick ups containing raw mineral can be shifted from the morning towards the night.

Lastly, trucks for petroleum pick ups are ignored in the shifting strategy for terminal D as a
preference for the midday alternative is observed.

d.5.2 Experimental plan

As found from the choice probability distributions, the preferences observed from the estimated
parameters cannot be translated one on one to be the ultimate choice of the TOC. The preferences
and dislikes identified based on the estimated parameter values are merely to indicate that the TOC

might have some tendency to pick up a specific container or commodity type in another time period.
This insight led to the formulation of truck shifting strategies.

By shifting the truck arrivals, new arrival profile is obtained. How this is done is elaborated in
Appendix E. Consequently, this is input for the terminal model (Appendix B) to generate a new
simulated arrival and departure profile. This provides a waiting time profile based on shifted trucks.
Together the new arrival and waiting time profile ensure insight in the potential gain from the truck
shifting strategies (Appendix F).

Obviously, it is not realistic to expect that all TOC will apply to the truck shifting strategy. Therefore,
various what-if scenarios are developed to evaluate the effect of application rates of TOC on the
spread of truck arrival along the day. Consequently, using the terminal model, the effect on the
waiting time at the terminals can be assessed. Additionally, the formulation of what-if scenarios
allows to gain insight in the percentage of TOC that should apply to the truck shifting strategy to
achieve a waiting time gain.

Furthermore, the scenarios provide insight in the drawback of shifting truck arrival. When too
many trucks are shifted away from the peak, a new peak might occur during other time periods.
This will cause waiting time in other time periods. This is basically moving the current waiting
time issue in the midday and afternoon to another time. Hence, simply shifting as many trucks
as possible is not the right approach to the problem. The what-if scenarios provide insight in the
turning point of truck shifting, from which application rate a waiting time loss instead of gain is
encountered.
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E T R U C K S H I F T I N G H E U R I S T I C

For this research, a heuristic approach is designed for the evaluation of truck shift policy. The
purpose of the truck shifting heuristic is to compute new arrival profiles based on the truck shifting
strategies that resulted from the choice models (Appendix D). New arrival profiles are computed
for various what-if scenarios. The what-if scenarios indicate the TOC application rates to the truck
shifting strategy.

e.1 heuristic design
To shift the trucks and compute new arrival profiles, various steps are required. A detailed visual
overview of the heuristic is represented in Figure E.1.

1. Convert containers to trucks: First of all, the logistic data (Appendix C) and traffic data
(Appendix A) are combined to convert containers to trucks.

2. Calculate total potential shifts: Secondly, the truck distribution for computed arrivals is made
similar to the observed arrival distribution.

3. Compute shift matrices: Thereafter, a shift matrix for each scenario is computed.

4. Shift trucks in arrival profiles: Lastly, the shift matrices are transformed to an arrival profile
that matches each scenario.

Similar to the terminal and choice model development, for each terminal the truck shifting heuris-
tic is applied separately since the input, truck shifting strategy and output is different for each
terminal. Nonetheless, the set up for each of the trucks’ shift is entirely the same.

OutputHeuristic stepsInput

Exclude containers ignored in
truck shifting strategy
proportionally from arrival
profile

Convert occurence
probabilities of
containers/commodities to
absolute number of trucks 

Exclude overlap between
container and commodity
types

Equalise truck distribution for
computed arrivals to the
observed arrival distribution

Calculate potential shifts for
each scenario

Map how to shift each
container/commodity type 

Sum all mapped shifts to
obtain shift matrices

Truck shifting strategy

Traffic data

Logistic data

             Shifted arrival   
             profiles

Disaggregate trucks per time
period to trucks per hour

Shift trucks based on shift
matrices

Include the trucks excluded
in the first step

Compute shifted arrival
profile per scenario

    Convert containers 
to trucks

Calculate total 
potential shifts

Compute
shift matrices

Shift trucks in
arrival profiles

Figure E.1: Overview of the truck shifting heuristic

e.1.1 Containers to trucks

This step comprehends the coupling of traffic and logistic data. The logistic data is summarised in
probability percentages (Section C.3). Hence, these can be converted to absolute numbers of trucks
transporting the specific container type or commodity type.

Logistic data

Table E.1 through Table E.4 contain the probability (in percentage) for a container or commodity
type for occurring in each alternative. Note that these can also be found in Section C.3. However,
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for readability and structure, the probabilities are additionally presented here. Moreover, only the
container types and commodity types used in the truck shifting strategy per terminal are displayed.

Traffic data

The total truck arrivals on an average working day are 797 at terminal A, 725 at terminal B, 1324

at terminal C, and 1130 at terminal D. Before computing the absolute number of trucks that might
be shifted in each time period, the containers, that are ignored in the truck shifting strategy (Sec-
tion D.5.1), are excluded. From the logistic data, the percentage of trucks that cannot be shifted are
known. These percentages are 4.863%, 0.294%, 2.493%, and 3.443% for terminal A, B, C, and D, re-
spectively. This is the percentage of trucks that is not captured in the truck shifting strategy. Hence,
these trucks cannot be shifted and remain stationary in the new arrival profiles. Consequently, this
percentage of trucks is excluded from the total of truck arrivals at each terminal. Excluding the
commodities that are not captured in the truck shifting strategy results in a total of 758 (terminal
A), 723 (terminal B), 1291 (terminal C), and 1091 (terminal D) arriving trucks on an average working
day. These are the truck arrivals that might be shifted, hence the potential shifts.

Table E.1: Occurrence [%] of container and commodity type per time period at terminal A, from logistic data
(Section C.3)

Agricultural
products

Chemical
products

Solid
mineral
fuels

General
purpose
container

Reefer
container

Night 0.81% 0.32% 1.10% 4.36% 3.89%
Morning 2.54% 0.97% 0.95% 9.51% 9.66%
Midday 3.84% 1.48% 1.68% 17.97% 13.48%
Afternoon 3.46% 1.12% 1.10% 12.67% 12.31%

Table E.2: Occurrence [%] of container and commodity type per time period at terminal B, from logistic data
(Section C.3)

Agricultural
products

Chemical
products

Solid
mineral
fuels

Raw
minerals

General
purpose
container

Reefer
container

Chemical
container

Night 0.16% 0.53% 0.15% 0.23% 4.15% 0.55% 1.17%
Morning 1.40% 1.69% 0.92% 0.71% 15.86% 5.53% 4.53%
Midday 1.10% 2.42% 1.24% 0.93% 19.59% 4.35% 5.59%
Afternoon 0.75% 3.20% 1.15% 1.43% 26.53% 2.56% 7.34%

Table E.3: Occurrence [%] of container and commodity type per time period at terminal C, from logistic data
(Section C.3)

Agricultural
products

Solid
mineral
fuels

Raw
minerals

General
purpose
container

Reefer
container

Chemical
container

Night 0.20% 0.50% 0.46% 4.72% 0.18% 0.36%
Morning 2.14% 3.61% 1.47% 20.24% 2.30% 1.76%
Midday 1.90% 3.94% 1.95% 24.30% 2.02% 2.02%
Afternoon 1.47% 3.67% 3.08% 33.14% 1.46% 2.44%



Table E.4: Occurrence [%] of container and commodity type per time period at terminal D, from logistic data
(Section C.3)

Agricultural
products

Chemical
products

Solid
mineral
fuels

Raw
minerals

Ores
General
purpose
container

Chemical
container

Night 0.28% 2.30% 0.62% 0.75% 0.56% 5.27% 1.85%
Morning 1.00% 4.75% 1.82% 2.18% 1.82% 13.95% 5.10%
Midday 1.53% 9.05% 4.04% 3.77% 3.69% 28.59% 10.48%
Afternoon 1.10% 6.35% 2.63% 2.43% 2.33% 18.85% 6.91%

Coupling

To convert the container data to trucks, the occurrence probability (Table E.1 through Table E.4) is
multiplied by the absolute number of trucks arriving at the terminal on an average working day.
Thence, there is insight in the number of trucks that arrive in each time period to pick up a certain
container type or commodity type. The spread of truck arrival for an average working day based on
specific container and commodity types are provided in Table E.5 through Table E.8. This spread of
trucks arrivals represents the total potential shifts for each container and commodity type in each
time period.

Note that in this approach the container dimensions are ignored. As the translation from container
to truck is done based on percentages, the fact that a truck might arrive to pick two containers
at once, is captured. Nevertheless, the assumption is made that a truck will only transport one
container type or one commodity type.

Table E.5: Overview of the spread of truck arrival [#] for an average working day based on specific container
and commodity types based on probability of occurrence at terminal A (Table E.1)

Agricultural
products

Chemical
products

Solid
mineral
fuels

General
purpose
container

Reefer
container

Total

Night 6 2 8 33 30 79

Morning 19 7 7 72 73 179

Midday 29 11 13 136 102 292

Afternoon 26 8 8 96 93 232

Total 81 29 37 337 298 783

Table E.6: Overview of the spread of truck arrival [#] for an average working day based on specific container
and commodity types based on probability of occurrence at terminal B (Table E.2)

Agricultural
products

Chemical
products

Solid
mineral
fuels

Raw
minerals

General
purpose
container

Reefer
container

Chemical
container

Total

Night 1 4 1 2 30 4 8 50

Morning 10 12 7 5 115 40 33 221

Midday 8 17 9 7 142 31 40 255

Afternoon 5 23 8 10 192 18 53 310

Total 25 57 25 24 478 94 135 837
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Table E.7: Overview of the spread of truck arrival [#] for an average working day based on specific container
and commodity types based on probability of occurrence at terminal C (Table E.3)

Agricultural
products

Solid
mineral
fuels

Raw
minerals

General
purpose
container

Reefer
container

Chemical
container

Total

Night 3 6 6 61 2 5 83

Morning 28 47 19 261 30 23 407

Midday 25 51 25 314 26 26 467

Afternoon 19 47 40 428 19 32 584

Total 74 151 90 1064 77 85 1541

Table E.8: Overview of the spread of truck arrival [#] for an average working day based on specific container
and commodity types based on probability of occurrence at terminal D (Table E.4)

Agricultural
products

Chemical
products

Solid
mineral
fuels

Raw
minerals

Ores
General
purpose
container

Chemical
container

Total

Night 3 25 7 8 6 57 20 127

Morning 11 52 20 24 20 152 56 334

Midday 17 99 44 41 40 312 114 667

Afternoon 12 69 29 27 25 206 75 443

Total 43 245 99 100 92 727 266 1571

e.1.2 Potential shifts

The computed spread of truck arrivals in the previous step should be compared with the historic
traffic data (Section A.2). This is to ensure that the computed spread of truck arrivals, based on
container and commodity type, and on time period, reflects the reality.

The first thing that should be noted in Table E.5 through Table E.8, is that the total of trucks sum
up to a value that is higher than the number of trucks arriving on an average working day. The
total arrivals on an average working day that have the potential to be shifted, are 758, 723, 1291, and
1091 for terminal A, B, C and D, respectively. Therefore, it can be concluded that there is overlap in
container type and commodity type, as some containers may transport a certain commodity.

A typical example is a reefer container transporting agricultural products. However, it is not nec-
essarily true that the reefer containers always transports agricultural products, nor that agricultural
products are always transported in reefer containers.

Summing up the probabilities in each table (Table E.1 through Table E.4) indicates a value higher
than 100%. Hence, an overrepresentation of containers. The overlap in container and commodity
type are 3.2% (terminal A), 15.74% (terminal B), 19.36% (terminal C), and 44% (terminal D). Con-
verting these percentages to trucks would lead to more trucks (in absolute value) than observed in
the historical traffic data (Section A.2). The latter is why the totals in Table E.5 through Table E.8
sum up to a value higher than expected.

Consequently, the overlap should be accounted for. In Section C.3 the container type and com-
modity type are examined in contrast. For each terminal, this probability matches the percentage of
overlap found by summing the cells in table Table E.1 through Table E.4. This indicates the probabil-
ity that a specific container type contains a specific commodity. Moreover, it can be observed from
which container and commodity type the overlap originates. This provides that the overlap can be
excluded correctly. To ensure consistency between terminals for the truck shifting, the overlap is
always excluded from container type. Furthermore, the overlap is excluded proportionally as it is
unknown in which time period the overlap of container type and commodity type exactly occurs.

The method for excluding proportionally is based on the share of container in a time period. To
illustrate this, imagine that a general purpose container has 5% overlap with all commodities cap-
tured by the shifting strategy. The trucks for general purpose containers are found to have a 10%
share in the morning period. This means that 10% of the trucks that arrive for a general purpose



container, arrive in the morning. Subsequently, the overlap accounted for in the morning period for
general purpose containers is 0.5%.

To ensure that the truck spread along the day in Table E.5 through Table E.8, matches the observed
spread all overlap is excluded. For each container type, the total percentages of trucks transporting
a certain container is subtracted from the probability of occurrence (Table E.1 through Table E.4).
Subsequently, the new probabilities of occurrence are multiplied with the total of truck arrivals.
This results in an updated spread of trucks along the day. The totals of truck arrivals match the
observed traffic data. Yet, it should be studied whether the number of trucks in each time period
deviates from the observed data. To do so, the updated spread of trucks is again compared with the
arrival profile from historic traffic data (Section A.2).

The arrival profile from historic data is aggregated to trucks per hour. However, the container data
is aggregated to trucks per time period. Therefore, the arrival profile from the traffic data is likewise
aggregated to time periods. Later in the last step of the truck shift procedure, the traffic data will
disaggregated back to trucks per hour.

From aggregating the arrival profile, the number of truck arrivals per time period are obtained.
The distribution of number of trucks per time period is depicted in Table E.9.

Table E.9: Distribution of truck arrivals along the day for each terminal [%] obtained from historic traffic data
(Section A.2)

Terminal A Terminal B Terminal C Terminal D
Night 4.02% 4.83% 6.72% 3.98%
Morning 29.23% 27.59% 25.60% 27.79%
Midday 38.02% 36.14% 35.42% 35.31%
Afternoon 28.73% 31.45% 32.25% 32.92%

With the distribution of truck arrivals along the day from historic data, the truck arrivals in
absolute number of trucks can be calculated. Logically, the trucks transporting commodities that
are not captured in the truck shifting strategy, are excluded. Table E.10 shows the observed number
of trucks in each time period for all terminals.

Table E.10: Distribution of truck arrivals in number of trucks [#] along the day for each terminal obtained from
historic traffic data (Section A.2)

Terminal A Terminal B Terminal C Terminal D
Night 30 35 87 43

Morning 222 199 331 303

Midday 288 261 457 385

Afternoon 218 227 416 359

The observed arrival in Table E.10 is compared with the computed arrival per terminal in Table E.5
through Table E.8 (most right column). From the comparison, it should be noticed that the spread
along the day is different. The reason for this is that the computed arrivals are calculated based
on the logistic data. The logistic data, however, comprehends the ETA of the TOC (Appendix C).
Consequently, the computed arrivals are the number of trucks per time period in which the TOC

expected to arrive. The observed arrivals are the number of trucks per time period in which the TOC

actually arrived.
Therefore, the computed arrivals are processed to match the observed arrivals per time period.

The computed arrivals show that for some time periods there is a surplus of trucks, compared to
the observed arrivals. In the consecutive time period less truck arrivals are computed compared
to the observed data. Therefore, it is assumed that a share of the TOC arrives earlier or later than
expected. However, they arrive at least around the arrival time they indicated in the logistic data
(the ETA). The aim for computing the spread of trucks is to match it with the observed arrivals
per time period. Consequently, the surplus of trucks are distributed in the time periods where a
shortage is observed.
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Finally, the potential shifts for trucks at each terminal is represented in Table E.11 through Ta-
ble E.14. These indicate the final and total potential shifts of trucks on an average working day per
time period, and per container and commodity type.

Table E.11: Total potential shifts in absolute number of trucks [#] per time period, and per container and
commodity type for an average working day at terminal A

Agricultural
products

Chemical
products

Solid
mineral
fuels

General
purpose
container

Reefer
container

Total

Night 3 1 4 10 10 28

Morning 23 9 12 91 90 224

Midday 29 11 13 136 102 292

Afternoon 26 8 8 85 86 214

Total 81 29 37 323 289 758

Table E.12: Total potential shifts in absolute number of trucks [#] per time period, and per container and
commodity type for an average working day at terminal B

Agricultural
products

Chemical
products

Solid
mineral
fuels

Raw
minerals

General
purpose
container

Reefer
container

Chemical
container

Total

Night 1 3 1 1 23 3 3 35

Morning 10 13 7 5 112 36 16 200

Midday 9 20 10 8 156 30 25 259

Afternoon 5 20 7 9 155 14 17 227

Total 25 57 25 24 446 84 61 721

Table E.13: Total potential shifts in absolute number of trucks [#] per time period, and per container and
commodity type for an average working day at terminal C

Agricultural
products

Solid
mineral
fuels

Raw
minerals

General
purpose
container

Reefer
container

Chemical
container

Total

Night 3 7 6 55 1 4 77

Morning 27 46 19 213 10 16 331

Midday 27 57 30 313 12 23 462

Afternoon 17 42 35 304 4 19 420

Total 74 151 90 885 27 62 1290

Table E.14: Total potential shifts in absolute number of trucks [#] per time period, and per container and
commodity type for an average working day at terminal D

Agricultural
products

Chemical
products

Solid
mineral
fuels

Raw
minerals

Ores
General
purpose
container

Chemical
container

Total

Night 2 16 4 5 4 11 1 43

Morning 13 63 25 28 24 119 36 309

Midday 15 87 39 36 36 136 35 385

Afternoon 13 78 31 30 28 134 39 353

Total 43 245 99 100 92 401 111 1091

As an extra check for the final potential shifts, the choice probabilities (Table D.11 through Ta-
ble D.14 in Section D.4.2), can be used. By multiplying the choice probabilities with the totals for
each container type and commodity type, a spread of truck arrivals (in absolute number of trucks)



can be calculated. This spread of trucks per time period, and per container and commodity type is
found to be similar to the final potential shifts. Hence, the truck shifting heuristic has the ability to
compute the potential shifts close to the potential shifts in reality.

e.1.3 Shift matrices

Table E.11 through Table E.14 represent the spread of trucks along the day per container and com-
modity type, and time period. It provides insight in how many trucks arrive during the time periods
to pick up a certain container type or commodity type. From this it can be derived how many truck
arrivals can potentially be shifted from one time period to another. Hence, the total potential shifts
that is found at each of the terminals. The approach for truck shifting is based on the experimental
plan discussed in Section D.5.2.

Since it is unrealistic and undesirable to shift the truck arrivals with the full potential, various what-
if scenarios are formulated. With the what-if scenarios several TOC application rates are evaluated.
The application rates vary from 5% to 100%. For the scenarios from 5% to 50%, the application
rate is increased with 5% each scenario. From 50% to 100%, the application rate is subsequently
increased with 10% for each scenario.

This method is chosen because the steps of 5% allow to assess the effect of small changes in ar-
rivals more closely. Hence, to approximate the minimal application rate of TOC, that is required to
shift for a waiting time gain, more precisely. Additionally, larger application rates are evaluated.
These larger application rates are increased with steps of 10% instead of 5%. It is expected that
an application rate of more than 50% is not realistic. However, it is important to understand what
would happen with the waiting time profile if these high application rates where to be experienced.
The higher application rate scenarios allow to study the potential turning point of truck shifting and
the consequences.

In total, 16 what-if scenarios are formulated. As mentioned the first scenarios vary from application
rates between 5% and 50%, each scenario is increased with steps of 5%. Scenario 1 indicates a 5%
shift of truck arrivals, scenario 2 a 10% shift, and so forth until scenario 10 in which an application
rate of 50% is evaluated.

Scenario 11 until 15 correspond to an application rate of 60% until 100%, respectively. For these
scenarios, the application rates are subsequently increased in steps of 10%.

Lastly, a 16th scenario is formulated in which the truck arrivals are spread perfectly equal along
the day. In this scenario trucks not shifted based on application rates. The total number of trucks
arriving in a day is divided by 24, this results in the number truck arrivals in each time slots for
one day. This 16th scenario is used as a reference scenario as the perfect arrival profile would be an
equal spread of trucks along the day. The waiting time gain for each scenario is compared with this
reference scenario, to review the effectiveness of shifting of trucks under various application rates.

Consequently, the PoR and terminals gain insight in the effect of truck shifting and the designed
TAS. The advantages encountered with small application rates, as well as the risks of too high appli-
cation rates are evaluated with the scenarios.

The general strategy for truck shifting is an approach in which the truck arrivals during peak periods
are shifted towards quieter moments. This approach is referred to as peak shaving. The results of
the choice model are applied to define a more specific shift strategy for each of the terminals. The
shift strategy for each terminal indicates precisely which trucks can be shifted from the peak periods
to the quieter time periods. The elaboration of the shift strategies can be found in Section D.5. Here,
a recapitulation of the truck shifting strategy per terminal is provided.

• Terminal A: agricultural products to the morning, chemical products to the morning, solid
mineral fuels to the night, general purpose containers away from the afternoon, reefer contain-
ers to the night and the morning.

• Terminal B: agricultural products to the morning, chemical products to the night, raw minerals
to the night, solid mineral fuels to the night, chemical containers not to the morning, general
purpose containers to the night, reefer containers away from the afternoon.

189



• Terminal C: agricultural products to the morning, raw minerals away from the midday, solid
mineral fuels to the morning, chemical containers to the night, reefer containers to the morn-
ing, general purpose containers to the night.

• Terminal D: chemical products to the night, agricultural products to the morning, ores away
from the afternoon, raw minerals away from the morning, solid mineral fuels to the morning
and the night, chemical containers to the morning, general purpose containers away from the
morning.

Based on the application rates from the what-if scenarios and the truck shifting strategies, shift
matrices can be computed. These shift matrices indicate how many trucks are shifted from a certain
time period to another certain time period for each what-if scenario.

There are three steps in the approach to obtain the shift matrices. First, the number of trucks
per container and commodity type, and time period are calculated for each scenario. This is done
by multiplying the total potential shifts (Table E.11 through Table E.14) with the application rate
of each scenario. This results in the potential shifts per scenario. To illustrate this, an example is
provided. If the total potential shifts of general purpose containers in the afternoon is 85 trucks, and
the scenario evaluates an application rate of 10%. The potential shifts of general purpose containers
in the afternoon under a 10% application rate is 8.5 trucks. As trucks require an integer value, the
potential shifts in this example is rounded to 9 trucks.

The next step is to combine the shift strategy with the potential shifts under the specified appli-
cation rate. To do this, for each container or commodity in the strategy it is mapped from and to
where the container or commodity should be shifted.

Lastly, all trucks that are shifted from one time period to another are summed. This results in
the shift matrix. The shift matrices are similar to origin destination matrices. In the rows, the time
period from where the truck should be shifted, hence the origin, is represented. In the columns,
the time period towards which the truck is shifted, is indicated, hence the destination. For each
application rate scenario, a separate shift matrix is computed. These are displayed in for each
terminal in Table E.15 through Table E.21.



Table E.15: Shift matrices for terminal A corresponding to the what-if scenarios

(a) Scenario 1: 5% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 1 0 0 0

Midday 1 7 0 0

Afternoon 7 4 0 0

(b) Scenario 2: 10% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 1 0 0 0

Midday 1 14 0 0

Afternoon 14 7 0 0

(c) Scenario 3: 15% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 2 0 0 0

Midday 2 21 0 0

Afternoon 22 10 0 0

(d) Scenario 4: 20% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 2 0 0 0

Midday 3 29 0 0

Afternoon 29 14 0 0

(e) Scenario 5: 25% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 3 0 0 0

Midday 3 36 0 0

Afternoon 36 18 0 0

(f ) Scenario 6: 30% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 4 0 0 0

Midday 4 43 0 0

Afternoon 43 21 0 0

(g) Scenario 7: 35% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 4 0 0 0

Midday 4 50 0 0

Afternoon 51 24 0 0
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(h) Scenario 8: 40% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 5 0 0 0

Midday 5 57 0 0

Afternoon 58 28 0 0

(i) Scenario 9: 45% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 5 0 0 0

Midday 6 64 0 0

Afternoon 66 31 0 0

(j) Scenario 10: 50% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 6 0 0 0

Midday 6 71 0 0

Afternoon 73 34 0 0

(k) Scenario 11: 60% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 7 0 0 0

Midday 8 86 0 0

Afternoon 88 41 0 0

(l) Scenario 12: 70% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 8 0 0 0

Midday 9 100 0 0

Afternoon 102 48 0 0

(m) Scenario 13: 80% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 10 0 0 0

Midday 10 114 0 0

Afternoon 117 55 0 0

(n) Scenario 14: 90% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 11 0 0 0

Midday 11 128 0 0

Afternoon 131 62 0 0

(o) Scenario 15: 100% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 12 0 0 0

Midday 13 143 0 0

Afternoon 146 69 0 0



Table E.17: Shift matrices for terminal B corresponding to the what-if scenarios

(a) Scenario 1: 5% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 1 0 0 0

Midday 11 0 0 0

Afternoon 10 0 0 0

(b) Scenario 2: 10% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 2 0 0 0

Midday 22 1 0 0

Afternoon 22 1 0 0

(c) Scenario 3: 15% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 2 0 0 0

Midday 33 1 0 0

Afternoon 32 3 0 0

(d) Scenario 4: 20% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 3 0 0 0

Midday 44 2 0 0

Afternoon 44 3 0 0

(e) Scenario 5: 25% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 4 0 0 0

Midday 55 2 0 0

Afternoon 54 5 0 0

(f ) Scenario 6: 30% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 5 0 0 0

Midday 66 3 0 0

Afternoon 65 5 0 0

(g) Scenario 7: 35% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 6 0 0 0

Midday 77 3 0 0

Afternoon 76 6 0 0

(h) Scenario 8: 40% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 6 0 0 0

Midday 88 3 0 0

Afternoon 86 8 0 0
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(i) Scenario 9: 45% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 7 0 0 0

Midday 99 4 0 0

Afternoon 97 8 0 0

(j) Scenario 10: 50% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 8 0 0 0

Midday 110 4 0 0

Afternoon 108 8 0 0

(k) Scenario 11: 60% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 10 0 0 0

Midday 132 5 0 0

Afternoon 130 11 0 0

(l) Scenario 12: 70% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 11 0 0 0

Midday 154 6 0 0

Afternoon 152 12 0 0

(m) Scenario 13: 80% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 13 0 0 0

Midday 176 7 0 0

Afternoon 174 14 0 0

(n) Scenario 14: 90% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 14 0 0 0

Midday 198 8 0 0

Afternoon 196 15 0 0

(o) Scenario 15: 100% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 16 0 0 0

Midday 220 9 0 0

Afternoon 216 18 0 0



Table E.19: Shift matrices for terminal C corresponding to the what-if scenarios

(a) Scenario 1: 5% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 1 0 0 0

Midday 18 6 0 0

Afternoon 16 3 0 0

(b) Scenario 2: 10% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 2 0 0 0

Midday 37 13 0 0

Afternoon 32 6 0 0

(c) Scenario 3: 15% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 2 0 0 0

Midday 55 19 0 0

Afternoon 48 9 0 0

(d) Scenario 4: 20% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 3 0 0 0

Midday 73 25 0 0

Afternoon 65 13 0 0

(e) Scenario 5: 25% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 4 0 0 0

Midday 92 31 0 0

Afternoon 81 16 0 0

(f ) Scenario 6: 30% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 5 0 0 0

Midday 110 38 0 0

Afternoon 97 19 0 0

(g) Scenario 7: 35% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 6 0 0 0

Midday 128 44 0 0

Afternoon 113 22 0 0

(h) Scenario 8: 40% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 6 0 0 0

Midday 147 50 0 0

Afternoon 129 25 0 0
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(i) Scenario 9: 45% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 7 0 0 0

Midday 165 56 0 0

Afternoon 145 28 0 0

(j) Scenario 10: 50% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 8 0 0 0

Midday 183 63 0 0

Afternoon 161 31 0 0

(k) Scenario 11: 60% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 10 0 0 0

Midday 220 75 0 0

Afternoon 194 38 0 0

(l) Scenario 12: 70% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 11 0 0 0

Midday 257 88 0 0

Afternoon 226 44 0 0

(m) Scenario 13: 80% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 13 0 0 0

Midday 293 100 0 0

Afternoon 258 50 0 0

(n) Scenario 14: 90% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 15 0 0 0

Midday 330 113 0 0

Afternoon 291 56 0 0

(o) Scenario 15: 100% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 16 0 0 0

Midday 366 125 0 0

Afternoon 323 63 0 0



Table E.21: Shift matrices for terminal D corresponding to the what-if scenarios

(a) Scenario 1: 5% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 9 0 0 0

Midday 6 2 0 0

Afternoon 6 3 0 0

(b) Scenario 2: 10% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 17 0 0 0

Midday 13 5 0 0

Afternoon 13 6 0 0

(c) Scenario 3: 15% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 26 0 0 0

Midday 19 7 0 0

Afternoon 18 10 0 0

(d) Scenario 4: 20% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 35 0 0 0

Midday 25 10 0 0

Afternoon 25 13 0 0

(e) Scenario 5: 25% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 43 0 0 0

Midday 32 12 0 0

Afternoon 31 16 0 0

(f ) Scenario 6: 30% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 52 0 0 0

Midday 38 15 0 0

Afternoon 37 20 0 0

(g) Scenario 7: 35% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 60 0 0 0

Midday 44 17 0 0

Afternoon 43 23 0 0

(h) Scenario 8: 40% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 69 0 0 0

Midday 51 20 0 0

Afternoon 50 26 0 0
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(i) Scenario 9: 45% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 78 0 0 0

Midday 57 22 0 0

Afternoon 55 29 0 0

(j) Scenario 10: 50% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 86 0 0 0

Midday 63 25 0 0

Afternoon 62 33 0 0

(k) Scenario 11: 60% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 104 0 0 0

Midday 76 30 0 0

Afternoon 74 38 0 0

(l) Scenario 12: 70% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 121 0 0 0

Midday 89 35 0 0

Afternoon 87 45 0 0

(m) Scenario 13: 80% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 138 0 0 0

Midday 101 40 0 0

Afternoon 99 53 0 0

(n) Scenario 14: 90% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 155 0 0 0

Midday 114 45 0 0

Afternoon 112 59 0 0

(o) Scenario 15: 100% application rate

O/D Night Morning Midday Afternoon
Night 0 0 0 0

Morning 173 0 0 0

Midday 127 50 0 0

Afternoon 124 66 0 0

e.1.4 Shift transformation

The last step in the truck shifting heuristic is to convert the shift matrices to new arrival profiles.
The arrival profile obtained from historic traffic data (Section A.2) serves as the base case. Conse-

quently, for each scenario the trucks in this base case are shifted as indicated by the shift matrices.
This results in new arrival profiles for each scenario.

As mentioned in Section E.1.1, there is a share of trucks that can simply not be shifted because the
trucks transport containers or commodities that are ignored in the truck shifting strategy. Therefore,
some trucks in the arrival profile are set to arrive in the same hour they originally did. However,



it is unknown in which hour that was. Hence, the trucks, that cannot be shifted, are distributed
along the day proportionally and excluded for the next steps. What remains is an arrival profile
with trucks that can be shifted. Eventually, the arrival profile will be complemented with the trucks
that cannot be shifted.

At this stage, there is a base case arrival profile with trucks that can be shifted. Additionally, there
is a shift matrix that indicates how many trucks and from to where these trucks should be shifted.
The arrival profiles indicate the number of trucks arriving per hour of the day. However, the data
in the shift matrices is aggregated to trucks per time period. Therefore, the data requires to be
disaggregated. Disaggregating the data is done by distributing the shifts, indicated by the shift
matrices, proportionally along the base case arrival profile. This is elaborated step by step in the
next paragraphs.

For each time period the share of trucks in a specific hour is calculated by dividing the trucks
in the specific hour by the total of trucks in that time period. For each hour the share of trucks is
obtained.

Subsequently, the number of trucks in the shift matrix is proportionally taken out of the time
period origin. This means that the number of truck taken out of a specific hour is the share of that
hour multiplied with the total of trucks that should be shifted from the time period the hour is part
of. This total of trucks is indicated by the shift matrix.

To illustrate this, imagine that 20 trucks should be shifted from the midday to the morning ac-
cording to the shift matrix. If 20% of the trucks in the midday arrive between 2 p.m. and 3 p.m.
(14:00 - 15:00), a total of 4 trucks is taken out the 14:00 - 15:00 time slot.

Consequently, the trucks that are taken out of the origin time period should be added in the des-
tination time period. This is also done proportionally. Hence, if 20 trucks should be shifted from
the midday to the night, and 10% of the trucks arrive between 0:00 and 1:00, 2 trucks are added to
this hour.

As the data is disaggregated, it is established how many trucks should be taken out of each hour and
how many trucks should be added to each hour, a new arrival profile can be computed. Computing
the new arrival profile starts from the base case arrival profile. The trucks taken out of the origin
hours are subtracted from the base case arrival profile and the trucks added to the destination hours
are summed to the base case arrival profile. Lastly, the trucks that cannot be shifted are included in
the arrival profile. Finally, for each scenario a corresponding arrival profile is computed.

Note that the arrival profile for the 16th scenario, the reference scenario, is computed differently.
As the 16th scenario represents an equal spread of trucks along the day, the arrival profile is com-
puted by dividing the total number of truck in one day by 24.

e.2 results
The results of the truck shifting heuristic are new arrival profiles. In the following graphs (Fig-
ure E.3 through Figure E.6) the arrival profiles from the truck shifting heuristic for various scenarios
are presented per terminal. These arrival profiles will be used as input for the terminal model (Ap-
pendix B). As a reference, the historic arrival profile for each terminal, depicted in Section A.2, is
additionally presented in Figure E.2.

What stands out from the computed arrival profiles in (Figure E.3 through Figure E.6), are the
dips around time slots 4, 10, 14, and 20, and the peaks between 2-3, 5-9, and 21-23 (depending on
the exact terminal), that arise as the application rate increases. This is due to the formulation of the
time periods and the approach for computing the new arrival profiles in the trucks shifting heuristic
(Section E.1.4).

The shifting strategy aims to shift trucks from the afternoon and midday to the night and morning,
and in some strategies from morning to night as well. For the cause of the dips at the begin and end
of the morning, midday and afternoon time periods, an example is provided. The afternoon period
is defined from 15:00 until 20:00. Therefore, there are no trucks shifted to 20:00 as this time slot is
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part of the afternoon time period. This explains the dip at 20. The same reasoning applies when a
dip occurs at 4, 10 and 14, depending on the specific terminal.

Moreover, the trucks are shifted proportionally from one time period to another. This explains the
peaks. For example, the share of trucks in the night time period is largest for the 21-23 time slots.
Subsequently, many trucks that are shifted towards the night time period, end up in the 21-23 time
slots. This causes the peak at the end of the day. The same reasoning applies to the peaks at 2-3 and
5-9, depending on the exact terminal.

That these peaks and dips arise at the end of the day instead of a rather equal spread around
the transition of the different time periods is a limitation of the truck shifting heuristic caused by
aggregating and subsequently disaggregating the traffic data.

Nevertheless, the large dips and peaks that arise at more extreme application rates, are not inaccu-
rate. The dips and peaks logically increase when the application rates are higher, since more trucks
are shifted. In reality, it is expected that the number of truck arrivals at the transition time slots is
more comparable to the surrounding hours. Therefore, computed arrival profiles in the scenarios
with smaller application rates are more realistic. Yet, the extreme application rates are evaluated to
provide insight in the risks of truck shifting.

Note that the y-axis is the same for all graphs. This is to allow for easy comparison between the
graphs. The y-axis value of 160 is chosen based on the most extreme arrival profile from the scenar-
ios. However, it might give a distorted image for some graphs as some terminals have a much lower
number of truck arrivals on an average working day. Therefore, for terminal A and B, the spread
seems more equal along the day in the base case compared to terminals C and D. It can be observed
from the graphs for terminal A and B (Figure E.2), that the peak is less extreme. Yet, the spread in
the base case is certainly not equal. The relative difference in percentage of truck arrivals between
the morning and midday hours is approximately 75% and 50% increase of trucks for terminal A
and B, respectively. For terminal C and D the difference between morning and midday is 100% and
80% increase, respectively.

With the terminal model, the waiting time profiles, corresponding to the scenario arrival profiles,
can be simulated. Comparing the simulated waiting time profiles from the scenarios with the base
case a waiting time gain can be calculated. This process is elaborated in Appendix F.
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(d) Terminal D

Figure E.2: Base case arrival profiles for each terminal, from historic traffic data (Appendix A)
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure E.3: Arrival profiles at terminal A for each scenario, computed with truck shifting heuristic
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure E.3: Arrival profiles at terminal A for each scenario, computed with truck shifting heuristic
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Terminal B
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure E.4: Arrival profiles at terminal B for each scenario, computed with truck shifting heuristic
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(i) Scenario 9, 45% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Truck arrival profile at terminal B (Scenario 10, 50% shift)
Arrival rate per hour

(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure E.4: Arrival profiles at terminal B for each scenario, computed with truck shifting heuristic
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Terminal C
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Truck arrival profile at terminal C (Scenario 4, 20% shift)
Arrival rate per hour

(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure E.5: Arrival profiles at terminal C for each scenario, computed with truck shifting heuristic



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Truck arrival profile at terminal C (Scenario 9, 45% shift)
Arrival rate per hour
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure E.5: Arrival profiles at terminal C for each scenario, computed with truck shifting heuristic
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Terminal D
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Truck arrival profile at terminal D (Scenario 4, 20% shift)
Arrival rate per hour

(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure E.6: Arrival profiles at terminal D for each scenario, computed with truck shifting heuristic
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(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure E.6: Arrival profiles at terminal D for each scenario, computed with truck shifting heuristic
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F W A I T I N G T I M E G A I N C A LC U L AT I O N

To achieve the research objective, it is necessary to obtain insight in the waiting time gain that could
be achieved by truck shifting. The waiting time gain results from the combining the developed
models (Appendix B, D, and E). In this appendix it is described how the waiting time gain is
obtained exactly. Additionally, the results are elaborated and reflected up on.

f.1 simulated profiles
From the developed choice model (Appendix D), a truck shifting strategy is formulated for each
terminal. In general, the strategy comprehends the shifting of trucks from the peak periods, midday
and afternoon, to the quieter time periods, night and morning. As each terminal is unique in ter-
minal characteristics, truck arrival profiles and preferences of TOC, the details of the trucks shifting
strategy are terminal specific. These details include which trucks can and should be shifted from
peak periods to more quiet periods.

Subsequently, the developed truck shifting heuristic (Appendix E), computes new arrival profiles
based on the formulated truck shifting strategy. The arrival profiles are computed for various
scenarios to evaluate several TOC application rates to the shift strategy.

These computed arrival profiles are the input for the developed terminal model (Appendix B).
The terminal model simulates the average arrival profiles and corresponding departure profiles.
Consequently, an average waiting time profile is simulated for each scenario.

f.1.1 Arrival and departure

In Figure F.2 through Figure F.5, the simulated arrival and departure profile is presented for each
scenario, structured per terminal. The simulated arrival profile is similar to the computed arrival
profiles in Section E.2. However, in the simulated arrival profiles, stochasticity in truck arrival is
accounted for.

The simulated base case arrival and departure profile for each terminal is discussed in Section B.5.
For convenience, the simulated profiles in the base case are additionally presented in Figure F.1.

The dips and peaks in the simulated profiles are a catch in the eye, as the application rate increases.
The cause of the dips and peaks that appear in large application rate scenario profiles, is elaborated
in Section E.2.

From the graphs, it can be observed that the terminal model is able to simulate corresponding depar-
ture profiles. By comparing the arrival profile with the departure profile, some initial conclusions
can be drawn for the waiting time profiles that result from the different application rate scenarios.
These conclusions are based on the difference between the departure profile and the arrival profile.
If the arrival and departure profile overlap more closely, thus a smaller offset for the departure
profile, less waiting time is expected (Section B.5).

Consequently, it can be observed that with only small application rates, already a large reduction
of waiting time is obtained. As the application rates increase, larger differences between arrival and
departure profiles are observed. Therefore, it is expected that with higher application rates, waiting
time increases again.

From an initial grasp of the simulated profiles, it is expected that, in general, the waiting time
decreases until an application rate of about 40%-50%. From an application rate of about 50%-60%
the waiting time is expected to increase. However, this differs per terminal. In Section F.1.2, the
waiting time profiles are presented. These provide insight in the exact waiting time per terminal
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and the development of these waiting time under the different application rates.

Note that the y-axis is the same for all graphs. This is to allow for easy comparison between
the graphs. The y-axis value of 160 is chosen based on the most extreme arrival profile from the
scenarios. However, it might give a distorted image for some graphs as some terminals have a much
lower number of truck arrivals on an average working day. Therefore, for terminal A and B, the
spread seems more equal along the day in the base case compared to terminals C and D. It can
be observed from the graphs for terminal A and B (Figure F.1), that the peak is less extreme. Yet,
the spread in the base case is certainly not equal. The relative difference in percentage of truck
arrivals between the morning and midday hours is approximately 75% and 50% increase of trucks
for terminal A and B, respectively. For terminal C and D the difference between morning and
midday is 100% and 80% increase, respectively.
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(a) Terminal A
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(b) Terminal B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Simulated profiles at terminal C (Base case)
Arrival rate per hour
Departure rate per hour

(c) Terminal C
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(d) Terminal D

Figure F.1: Base case arrival profiles for each terminal, from historic traffic data (Appendix A)



Terminal A: simulated arrival and departure profile
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(a) Scenario 1, 5% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Simulated profiles at terminal A (Scenario 2, 10% shift)
Arrival rate per hour
Departure rate per hour

(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure F.2: Simulated arrival and departure profiles at terminal A for each scenario, from terminal model
(Appendix B)
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(i) Scenario 9, 45% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Simulated profiles at terminal A (Scenario 10, 50% shift)
Arrival rate per hour
Departure rate per hour

(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure F.2: Simulated arrival and departure profiles at terminal A for each scenario, from terminal model
(Appendix B)



Terminal B: simulated arrival and departure profile
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure F.3: Simulated arrival and departure profiles at terminal B for each scenario, from terminal model
(Appendix B)
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(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure F.3: Simulated arrival and departure profiles at terminal B for each scenario, from terminal model
(Appendix B)



Terminal C: simulated arrival and departure profile
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Simulated profiles at terminal C (Scenario 7, 35% shift)
Arrival rate per hour
Departure rate per hour

(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure F.4: Simulated arrival and departure profiles at terminal C for each scenario, from terminal model
(Appendix B)

217



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160
Nu

m
be

r o
f t

ru
ck

s [
#]

Simulated profiles at terminal C (Scenario 9, 45% shift)
Arrival rate per hour
Departure rate per hour

(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure F.4: Simulated arrival and departure profiles at terminal C for each scenario, from terminal model
(Appendix B)



Terminal D: simulated arrival and departure profile
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure F.5: Simulated arrival and departure profiles at terminal D for each scenario, from terminal model
(Appendix B)

219



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160
Nu

m
be

r o
f t

ru
ck

s [
#]

Simulated profiles at terminal D (Scenario 9, 45% shift)
Arrival rate per hour
Departure rate per hour

(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f t
ru

ck
s [

#]

Simulated profiles at terminal D (Scenario 13, 80% shift)
Arrival rate per hour
Departure rate per hour

(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure F.5: Simulated arrival and departure profiles at terminal D for each scenario, from terminal model
(Appendix B)



f.1.2 Waiting time

In Figure F.6 through Figure F.9, the waiting time profile for each scenario is presented, structured
per terminal. The waiting profile represents the average waiting time for one truck in each hour.
Hence, this is the waiting time that is encountered by one truck if it arrives in a certain time slot.
The waiting time profiles are simulated with the terminal model (Appendix B).

In each graph, in Figure F.6 through Figure F.9, a red solid line and a gray dashed line is plotted. The
red solid line represents the waiting time profile corresponding to the scenario. The gray dashed
line indicates the waiting time profile in the base case. Consequently, the waiting time in the base
case and the scenario can be easily compared.

From the graphs, the initial conclusion in Section F.1.1 can be substantiated. It can be observed
that with only very small application rates the waiting time decreases considerably. Whereas with
higher application rates, the waiting time increases. Hence, it can be concluded that the truck
shifting strategy is able to reduce waiting time.

However, there is a turning point. In Appendix E it was mentioned that truck shifting also
carries a risk. This risk is the increase of waiting time in hours that are quiet in the base case. The
appearance of waiting time in initially quieter hours is not necessarily a bad thing. As long as
the waiting time remain smaller than in the base case. In Figure F.6 through Figure F.9, it can be
observed that the waiting time for most scenarios does not exceed the waiting time in the base case.
However, this should be analysed more closely.

To check whether the waiting time profiles from the scenarios are significantly different from the
base case waiting profile, a statistical analysis is done. Using the two sided t-test, the following
formulated hypotheses are tested:

H0: The waiting time is the same
H1: The waiting time is different

The null hypothesis (H0), indicates that the waiting time is not significantly reduced compared
to the base case. The alternative hypothesis (H1), means that the waiting time in the scenario are
reduced significantly. The prior, H0, implies that waiting time may have appeared some where else
during the day, or that the application rate is not high enough to reduce waiting time. A judgement
in the statistical analysis is passed based on the following rule:

Accept H0: t-value ≥ −1.96 ∧ t-value ≤ 1.96, p-value > 0.05
Reject H0 and accept H1: t-value ≤ −1.96 ∨ t-value ≥ 1.96, p-value < 0.05

The results of the statistical analysis are depicted in Table F.1. From the results it can be concluded
that the application rates between 10% and 40% reduce the waiting time at terminal A significantly.
For terminal B, the application rates between 10% and 60% result in a significantly reduced waiting
time. Terminal C and terminal D experience significant reduced waiting time with application rates
between 10% and 60%, and between 35% and 70%, respectively. Note that for some application rates
the p-value is a bit larger than 0.05, however the t-value is larger than 1.96, hence H0 is rejected and
H1 accepted anyway.

For the scenarios in which the waiting time is not reduced significantly, this does not necessarily
suggest that the waiting time is not reduced at all. Therefore, another measure is valuable to explore
regarding the reduction of waiting time. This measure is the waiting time gain and is discussed in
Section F.2.

Additionally, the waiting time profile indicates the waiting time on average per hour that is encoun-
tered by one truck. The waiting time is at maximum 10 to 25 minutes in the base case. This might
not seem much, however, it should be noted that this waiting time is encountered by every truck
that arrives in the specific hour. Therefore, it is valuable to analyse the waiting time in relation with
the arrival profile.
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Hence, insight in the waiting time gain can be obtained by analysing the waiting time compared to
the base case and in relation with the arrival profile. This is elaborated in Section F.2.

Lastly, to understand what waiting time means, what the consequences of waiting time are and who
carries these consequences further analysis is required. Moreover, waiting time in minutes is rather
difficult to grasp. Therefore, more understanding might be obtained by placing the waiting time in
perspective. This is elaborated in Section F.3.

Table F.1: Overview of results from statistical analysis for waiting time
Terminal A Terminal B Terminal C Terminal D

t-value p-value t-value p-value t-value p-value t-value p-value
Scenario 1 (5% shift) 0.513 0.611 1.341 0.189 1.287 0.207 -0.345 0.732

Scenario 2 (10% shift) 2.358 0.027 2.511 0.019 2.094 0.046 0.913 0.367

Scenario 3 (15% shift) 2.037 0.051 2.022 0.053 2.416 0.024 0.962 0.342

Scenario 4 (20% shift) 2.075 0.048 2.767 0.011 2.411 0.024 1.35 0.186

Scenario 5 (25% shift) 2.067 0.049 2.78 0.011 2.549 0.018 1.559 0.129

Scenario 6 (30% shift) 2.105 0.045 2.823 0.01 2.61 0.016 1.879 0.071

Scenario 7 (35% shift) 2.17 0.039 2.867 0.009 2.622 0.015 2.25 0.034

Scenario 8 (40% shift) 2.105 0.045 2.804 0.01 2.618 0.015 2.36 0.027

Scenario 9 (45% shift) 1.818 0.079 2.644 0.014 2.602 0.016 2.518 0.019

Scenario 10 (50% shift) 1.535 0.135 2.501 0.019 2.533 0.019 2.534 0.018

Scenario 11 (60% shift) 0.76 0.452 2.117 0.043 2.299 0.03 2.512 0.019

Scenario 12 (70% shift) -0.315 0.755 1.063 0.293 1.838 0.076 2.053 0.05

Scenario 13 (80% shift) -0.945 0.351 1.222 0.229 0.605 0.548 1.506 0.14

Scenario 14 (90% shift) -1.616 0.117 0.261 0.796 -0.041 0.967 0.417 0.679

Scenario 15 (100% shift) -1.503 0.144 -0.333 0.741 -0.184 0.855 -0.474 0.639

Scenario 16 (equal) 3.049 0.006 2.911 0.008 2.672 0.014 2.718 0.012



Terminal A: average waiting time profile
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure F.6: Simulated average waiting time profiles at terminal A for each scenario, from terminal model
(Appendix B)
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(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

10

20

30

40

50

60

70

W
ai

tin
g 

tim
e 

[m
in

]

Simulated waiting time profile at terminal A (Scenario 13, 80% shift)
Waiting profile base case
Waiting profile scenario

(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

10

20

30

40

50

60

70

W
ai

tin
g 

tim
e 

[m
in

]

Simulated waiting time profile at terminal A (Scenario 16, equal)
Waiting profile base case
Waiting profile scenario

(p) Scenario 16, equal spread

Figure F.6: Simulated average waiting time profiles at terminal A for each scenario, from terminal model
(Appendix B)



Terminal B: average waiting time profile
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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Figure F.7: Simulated average waiting time profiles at terminal B for each scenario, from terminal model (Ap-
pendix B)
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(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

10

20

30

40

50

60

70

W
ai

tin
g 

tim
e 

[m
in

]

Simulated waiting time profile at terminal B (Scenario 14, 90% shift)
Waiting profile base case
Waiting profile scenario

(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure F.7: Simulated average waiting time profiles at terminal B for each scenario, from terminal model (Ap-
pendix B)



Terminal C: average waiting time profile
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure F.8: Simulated average waiting time profiles at terminal C for each scenario, from terminal model (Ap-
pendix B)
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(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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(p) Scenario 16, equal spread

Figure F.8: Simulated average waiting time profiles at terminal C for each scenario, from terminal model (Ap-
pendix B)



Terminal D: average waiting time profile

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time period [hour]

0

10

20

30

40

50

60

70

W
ai

tin
g 

tim
e 

[m
in

]

Simulated waiting time profile at terminal D (Scenario 1, 5% shift)
Waiting profile base case
Waiting profile scenario

(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure F.9: Simulated average waiting time profiles at terminal D for each scenario, from terminal model
(Appendix B)
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(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure F.9: Simulated average waiting time profiles at terminal D for each scenario, from terminal model
(Appendix B)



f.2 waiting time gain
In Figure F.12 through Figure F.15, the development of the total waiting time along the day is dis-
played, structured per terminal. The patterns for each scenario are similar to the waiting profiles
shown in Section F.1.2. However, the patterns are not exactly the same because the graphs in this
section account for the number of truck arrivals per hour. Accordingly, the total waiting time for
each hour along the day is captured.

From the total waiting time, more insight is obtained regarding the impact of the waiting time.
Furthermore, the total waiting time for each scenario can be compared with total waiting time in
the base case. With the average waiting time profiles this is also possible, however, the total impact
of waiting time might not be entirely captured. The total waiting time comprehends the impact on
the entire system instead of for only one truck. Consequently, the total waiting time is the most
suitable measure to compare the waiting time in each scenario with the base case.

Moreover, from the statistical analysis in Section F.1.2, it was found that the truck shifting strate-
gies are capable to reduce waiting time significantly under certain application rates. However, for
some application rates the waiting time seem to have reduced from the graphs (Figure F.6 through
Figure F.9) but are found to not be significantly different. To provide insight in the eventual gain for
all scenarios, even though not significantly different, an analysis of the total waiting is valuable.

By subtracting the total waiting time for each scenario from the base case for each hour, and con-
sequently summing the difference per hour, the waiting time gain can be calculated.

Subtracting the waiting time in the scenario from the base case results in the graphs presented in
Figure F.16 through Figure F.19. It should be noted that, opposed to the other graphs for waiting
time, the y-axis ranges between negative and positive values. When the plotted line is on the positive
side of the y-axis, this implies a positive waiting time gain. When the plotted line obtains negative
values, this implies a negative gain, hence a waiting time loss.

A negative gain or waiting time loss indicates that the total waiting time in the scenario is higher
in the corresponding hour than the total waiting time in the base case. This does not necessarily
mean that the application rate in the scenario does not lead to a reduced waiting time. As mentioned,
it might happen that waiting time appear in other time periods due to shifting trucks. Ultimately,
the aim is to reduce the waiting time for the entire system and for the entire day.

Consequently, to get insight in whether the waiting time in the scenarios are no larger than in the
base case, the gain per hour is summed. This results in the total waiting time gain or loss for the
entire day. The total waiting time gain for the entire day indicates the impact of truck shifting under
a certain application rate of TOC. If a positive value is obtained, the truck shifting strategy leads to
a waiting time gain under the application rate scenario. If negative value is obtained, this implies
that the truck shifting strategy is not successful to reduce waiting time under a certain application
rate.

The total waiting time gain per scenario is depicted in Table F.2. This table provides an overview
of the total waiting time gain for each scenario compared to the base case on an average working
day. The waiting time gain is provided in minutes and in hours to easily grasp the value without
converting it. Some striking results are obtained from this table (Table F.2).

In general, for all terminals an increase of the waiting time gain can be observed from the first
scenario (5% shift) until the seventh scenario (35% shift). Thereafter, for each terminal, the waiting
time gain decreases and eventually becomes negative for some terminals. This insight indicates that
there is an optimum for shifting trucks to reduce waiting time. Additionally, it can be observed that
the gain with small application rates (5% - 10%) is already very close to the optimum.

There are two exceptions. First of all, at terminal A the highest waiting time gain is achieved at a
10% application rate. Additionally, terminal D is an exception, here the increase of the waiting time
gain occurs from scenario 2 (10%) until scenario 9 (45%).

Figure F.10 displays the trend in waiting time gain along scenarios, an optimum can be observed
from this graph for each terminal. Note that scenario 16 is not included in trend line plot in Fig-
ure F.10 as is used as reference scenario for the ideal situation at the terminals. Including scenario
16 in the graph would not provide insight in the trend line, thus would not be of added value in the
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graph.

Scenario 16 represents the scenario in which an entirely equal spread of trucks along the day is
simulated. The scenario is used as reference scenario as an entirely equal spread of trucks is the
perfect situation at the terminal for truck arrival. The number of trucks arriving will always stay
below the terminal capacity and there will not be any waiting time. Consequently, the waiting time
gain is the largest possible compared to the base case.

The waiting time gain for each scenario can be compared with the ideal situation, scenario 16.
This provides insight in how good the waiting time gain in each scenario is. For example, a waiting
time gain of 28 hours might seem very good, however, if the best possible waiting time is 110, this
the 28 hour gain is placed in perspective.

From the waiting time gains in Table F.2, it can be concluded that ideal situation at the terminal
can almost be achieve with the shift strategies for terminals. For some terminals, the optimum gain
obtained from truck shifting under an application ratio of 35%, 35% and 45%, for terminal B, C
and D, respectively, is very close to the gain in the reference scenario. At terminal B, C and D the
optimum gain deviates only 1, 2 and 4 hours respectively. For terminal A, the difference between
the optimum for shift strategy and the ideal scenario, is larger, 22 hours. In Figure F.11, the gain in
the reference scenario is plotted against the shift trend along scenarios. This shows how close the
truck shifting strategy waiting time gains are to the ideal scenarios.

The results are very promising as it can be concluded that the truck shifting strategies are capable
to reduce waiting time. In Section F.3, it is elaborated how the results should be interpreted and
what this means for practice.

Table F.2: Total waiting time gain on an average working day for each scenario
Terminal A Terminal B Terminal C Terminal D

Minutes Hours Minutes Hours Minutes Hours Minutes Hours
Scenario 1 (5% shift) 1676 28 2497 42 5015 84 -1007 -17

Scenario 2 (10% shift) 5299 88 4148 69 7582 126 1806 30

Scenario 3 (15% shift) 4758 79 3558 59 8600 143 1899 32

Scenario 4 (20% shift) 4846 81 4527 75 8647 144 2533 42

Scenario 5 (25% shift) 4853 81 4546 76 9066 151 2859 48

Scenario 6 (30% shift) 4883 81 4602 77 9244 154 3323 55

Scenario 7 (35% shift) 4977 83 4655 78 9277 155 3806 63

Scenario 8 (40% shift) 4913 82 4580 76 9272 155 3980 66

Scenario 9 (45% shift) 4381 73 4373 73 9218 154 4179 70

Scenario 10 (50% shift) 3839 64 4186 70 9010 150 4212 70

Scenario 11 (60% shift) 2280 38 3698 62 8294 138 4186 70

Scenario 12 (70% shift) -1107 -18 2154 36 6875 115 3601 60

Scenario 13 (80% shift) -4068 -68 2378 40 2383 40 2934 49

Scenario 14 (90% shift) -9988 -166 1465 24 -1311 -22 1198 20

Scenario 15 (100% shift) -10156 -169 216 4 -2884 -48 -1725 -29

Scenario 16 (equal) 6602 110 4713 79 9419 157 4449 74
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Figure F.10: Total waiting time gain for each terminal, trend along the scenarios

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Scenario

200

150

100

50

0

50

100

150

200

W
ai

tin
g 

tim
e 

ga
in

 [h
ou

r]

Total waiting time gain on an average working day for terminal A

Terminal A
Reference A

(a) Terminal A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Scenario

200

150

100

50

0

50

100

150

200

W
ai

tin
g 

tim
e 

ga
in

 [h
ou

r]

Total waiting time gain on an average working day for terminal B

Terminal B
Reference B

(b) Terminal B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Scenario

200

150

100

50

0

50

100

150

200

W
ai

tin
g 

tim
e 

ga
in

 [h
ou

r]

Total waiting time gain on an average working day for terminal C

Terminal C
Reference C
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Figure F.11: Trend of waiting time gains along the scenarios, in comparison with the reference scenario
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Terminal A: total waiting time
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(a) Scenario 1, 5% application rate
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(b) Scenario 2, 10% application rate
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(c) Scenario 3, 15% application rate
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(d) Scenario 4, 20% application rate
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(e) Scenario 5, 25% application rate
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(f ) Scenario 6, 30% application rate
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(g) Scenario 7, 35% application rate
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(h) Scenario 8, 40% application rate

Figure F.12: Total waiting time at terminal A for each scenario, calculated with waiting time profile (Figure F.6)
· arrival profile (Figure F.2)
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(i) Scenario 9, 45% application rate
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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(m) Scenario 13, 80% application rate
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(n) Scenario 14, 90% application rate
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(o) Scenario 15, 100% application rate
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Figure F.12: Total waiting time at terminal A for each scenario, calculated with waiting time profile (Figure F.6)
· arrival profile (Figure F.2)
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Terminal B: total waiting time
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(f ) Scenario 6, 30% application rate
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Figure F.13: Total waiting time at terminal B for each scenario, calculated with waiting time profile (Figure F.7)
· arrival profile (Figure F.3)
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(k) Scenario 11, 60% application rate
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Figure F.13: Total waiting time at terminal B for each scenario, calculated with waiting time profile (Figure F.7)
· arrival profile (Figure F.3)
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Terminal C: total waiting time
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Figure F.14: Total waiting time at terminal C for each scenario, calculated with waiting time profile (Figure F.8)
· arrival profile (Figure F.4)
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(k) Scenario 11, 60% application rate
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Figure F.14: Total waiting time at terminal C for each scenario, calculated with waiting time profile (Figure F.8)
· arrival profile (Figure F.4)
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Terminal D: total waiting time
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(h) Scenario 8, 40% application rate

Figure F.15: Total waiting time at terminal D for each scenario, calculated with waiting time profile (Figure F.9)
· arrival profile (Figure F.5)
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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Figure F.15: Total waiting time at terminal D for each scenario, calculated with waiting time profile (Figure F.9)
· arrival profile (Figure F.5)
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Terminal A: waiting time gain
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Figure F.16: Waiting time gain along the day at terminal A for each scenario, calculated by subtracting the total
waiting time for the scenario from the total waiting time in the base case
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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(l) Scenario 12, 70% application rate
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Figure F.16: Waiting time gain along the day at terminal A for each scenario, calculated by subtracting the total
waiting time for the scenario from the total waiting time in the base case
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Terminal B: waiting time gain
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Figure F.17: Waiting time gain along the day at terminal B for each scenario, calculated by subtracting the total
waiting time for the scenario from the total waiting time in the base case
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(j) Scenario 10, 50% application rate
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(k) Scenario 11, 60% application rate
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Figure F.17: Waiting time gain along the day at terminal B for each scenario, calculated by subtracting the total
waiting time for the scenario from the total waiting time in the base case
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Terminal C: waiting time gain
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Figure F.18: Waiting time gain along the day at terminal C for each scenario, calculated by subtracting the total
waiting time for the scenario from the total waiting time in the base case
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(k) Scenario 11, 60% application rate
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Figure F.18: Waiting time gain along the day at terminal C for each scenario, calculated by subtracting the total
waiting time for the scenario from the total waiting time in the base case
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Terminal D: waiting time gain
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Figure F.19: Waiting time gain along the day at terminal D for each scenario, calculated by subtracting the total
waiting time for the scenario from the total waiting time in the base case
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Figure F.19: Waiting time gain along the day at terminal D for each scenario, calculated by subtracting the total
waiting time for the scenario from the total waiting time in the base case

f.3 interpretation of waiting time results
The results elaborated in Section F.2 are very promising. The truck shifting strategies for peak
shaving based on what container type or commodity type the trucks transport, show to be capable
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of reducing waiting time at the terminals. However, the effect of reduced waiting time in the entire
system must be explored to draw final conclusions for practice.

Hourly waiting time gains are difficult to interpret for the entire system as it is not immediately
clear what one hour of waiting time gain means and for who this gain is beneficial. For the inter-
pretation of the results, the waiting time gains in hours are converted to monetary values. By doing
so, the gain can be interpreted more easily.

Converting the hourly waiting time gain to monetary values is possible using cost figures. The
KiM publishes these for freight transport. The cost figures are based on research towards the eco-
nomic costs of freight transporters. In the year 2017, the costs for waiting in container transport are
approximated on 38 euro per hour [KiM, 2020].

Consequently, the waiting time gain in euro can be calculated. The results are presented in
Table F.3. These values represent the waiting time gain in euro on an average working day. To
provide an understanding of what this means on a yearly base Table F.4 represents the waiting time
gain in euro for a year. Note that only working days are included in this calculation as on weekend
days the waiting time is negligible.

Additionally, the costs for idling of a truck while waiting are explored. These costs are not
included in the waiting time cost figures of the KiM [2020]. Nevertheless, the TOC leave their truck
idling while waiting at the terminal gates. This consumes fuel and induces more cost for the TOC. A
rough estimate for idling costs for the TOC is provided in Table F.5 on daily base and Table F.6 for a
year. For this estimate, the fuel consumption for idling is obtained from U.S. Department of Energy
[2015]. The cost of fuel are obtained from CBS [2017].

The total estimated costs of TOC are presented in Table F.7 and Table F.8. These total costs capture
the costs for waiting and the cost for idling during the waiting time.

So far cost figures represent the cost for TOC. How these costs are distributed in the system should
be explored. For example, what the waiting time gain implies for hinterland warehouses, terminals,
shipper, and forwarders.

A rough estimate is made for terminals and the PoR by exploring costs for CO2 emissions in
Table F.9. The emissions are caused by the idling trucks. The amount of CO2 in kg is calculated
based on fuel consumption and emissions due to idling [U.S. Department of Energy, 2015; ANWB,
nd]. Note that for this estimate the emissions are based on consumption of gas. However, trucks
used for container transport often drive on diesel. As diesel is more polluting than gas, the CO2
emissions are expected to be even higher than currently estimated in Table F.9.

Table F.3: Total waiting time gain in monetary value [€] on an average working day for each scenario, based
on TOC waiting costs (38€/h)

Terminal A Terminal B Terminal C Terminal D
Hours Euro Hours Euro Hours Euro Hours Euro

Scenario 1 (5% shift) 28 € 1.061,24 42 € 1.581,54 84 € 3.176,36 -17 € -638,06

Scenario 2 (10% shift) 88 € 3.356,13 69 € 2.626,81 126 € 4.801,88 30 € 1.144,02

Scenario 3 (15% shift) 79 € 3.013,51 59 € 2.253,13 143 € 5.446,75 32 € 1.202,91

Scenario 4 (20% shift) 81 € 3.069,39 75 € 2.866,85 144 € 5.476,50 42 € 1.604,27

Scenario 5 (25% shift) 81 € 3.073,45 76 € 2.878,95 151 € 5.741,86 48 € 1.810,66

Scenario 6 (30% shift) 81 € 3.092,87 77 € 2.914,40 154 € 5.854,83 55 € 2.104,76

Scenario 7 (35% shift) 83 € 3.151,97 78 € 2.948,01 155 € 5.875,69 63 € 2.410,23

Scenario 8 (40% shift) 82 € 3.111,57 76 € 2.900,39 155 € 5.872,44 66 € 2.520,77

Scenario 9 (45% shift) 73 € 2.774,59 73 € 2.769,83 154 € 5.838,09 70 € 2.646,60

Scenario 10 (50% shift) 64 € 2.431,45 70 € 2.650,88 150 € 5.706,17 70 € 2.667,36

Scenario 11 (60% shift) 38 € 1.443,88 62 € 2.342,18 138 € 5.252,81 70 € 2.651,18

Scenario 12 (70% shift) -18 € -700,82 36 € 1.364,48 115 € 4.354,22 60 € 2.280,48

Scenario 13 (80% shift) -68 € -2.576,47 40 € 1.505,94 40 € 1.509,16 49 € 1.858,21

Scenario 14 (90% shift) -166 € -6.325,79 24 € 927,74 -22 € -830,28 20 € 758,70

Scenario 15 (100% shift) -169 € -6.432,39 4 € 136,67 -48 € -1.826,26 -29 € -1.092,39

Scenario 16 (equal) 110 € 4.181,41 79 € 2.985,13 157 € 5.965,62 74 € 2.817,73



Table F.4: Total waiting time gain in monetary value [€] on a yearly base (260 working days) for each scenario,
based on TOC waiting costs (38€/h)

Terminal A Terminal B Terminal C Terminal D
Scenario 1 (5% shift) € 275.921,76 € 411.200,52 € 825.852,38 € -165.896,49

Scenario 2 (10% shift) € 872.593,14 € 682.971,78 € 1.248.489,59 € 297.444,42

Scenario 3 (15% shift) € 783.513,57 € 585.813,70 € 1.416.155,69 € 312.755,81

Scenario 4 (20% shift) € 798.040,58 € 745.382,29 € 1.423.890,58 € 417.111,07

Scenario 5 (25% shift) € 799.097,03 € 748.528,27 € 1.492.884,15 € 470.770,71

Scenario 6 (30% shift) € 804.147,37 € 757.744,34 € 1.522.254,85 € 547.238,65

Scenario 7 (35% shift) € 819.512,67 € 766.482,32 € 1.527.679,51 € 626.659,54

Scenario 8 (40% shift) € 809.008,71 € 754.100,43 € 1.526.834,18 € 655.399,95

Scenario 9 (45% shift) € 721.392,73 € 720.155,00 € 1.517.903,37 € 688.115,29

Scenario 10 (50% shift) € 632.175,99 € 689.228,74 € 1.483.604,95 € 693.513,52

Scenario 11 (60% shift) € 375.407,56 € 608.965,51 € 1.365.731,00 € 689.305,56

Scenario 12 (70% shift) € -182.213,04 € 354.765,33 € 1.132.098,19 € 592.924,92

Scenario 13 (80% shift) € -669.883,42 € 391.545,65 € 392.381,44 € 483.135,07

Scenario 14 (90% shift) € -1.644.705,16 € 241.211,42 € -215.873,94 € 197.262,78

Scenario 15 (100% shift) € -1.672.420,85 € 35.535,09 € -474.827,54 € -284.021,34

Scenario 16 (equal) € 1.087.167,51 € 776.133,21 € 1.551.061,24 € 732.610,24

Table F.5: Total waiting time gain in monetary value [€] on an average working day for each scenario, based
on TOC idling costs (5.312€/h)

Terminal A Terminal B Terminal C Terminal D
Hours Euro Hours Euro Hours Euro Hours Euro

Scenario 1 (5% shift) 28 € 148,35 42 € 221,08 84 € 444,02 -17 € -89,19

Scenario 2 (10% shift) 88 € 469,15 69 € 367,20 126 € 671,25 30 € 159,92

Scenario 3 (15% shift) 79 € 421,26 59 € 314,96 143 € 761,40 32 € 168,15

Scenario 4 (20% shift) 81 € 429,07 75 € 400,76 144 € 765,56 42 € 224,26

Scenario 5 (25% shift) 81 € 429,64 76 € 402,45 151 € 802,65 48 € 253,11

Scenario 6 (30% shift) 81 € 432,35 77 € 407,40 154 € 818,44 55 € 294,22

Scenario 7 (35% shift) 83 € 440,61 78 € 412,10 155 € 821,36 63 € 336,92

Scenario 8 (40% shift) 82 € 434,97 76 € 405,44 155 € 820,91 66 € 352,38

Scenario 9 (45% shift) 73 € 387,86 73 € 387,19 154 € 816,10 70 € 369,97

Scenario 10 (50% shift) 64 € 339,89 70 € 370,57 150 € 797,66 70 € 372,87

Scenario 11 (60% shift) 38 € 201,84 62 € 327,41 138 € 734,29 70 € 370,61

Scenario 12 (70% shift) -18 € -97,97 36 € 190,74 115 € 608,67 60 € 318,79

Scenario 13 (80% shift) -68 € -360,16 40 € 210,52 40 € 210,96 49 € 259,76

Scenario 14 (90% shift) -166 € -884,28 24 € 129,69 -22 € -116,07 20 € 106,06

Scenario 15 (100% shift) -169 € -899,18 4 € 19,11 -48 € -255,29 -29 € -152,70

Scenario 16 (equal) 110 € 584,52 79 € 417,29 157 € 833,93 74 € 393,89
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Table F.6: Total waiting time gain in monetary value [€] on a yearly base (260 working days) for each scenario,
based on TOC idling costs (5.312€/h)

Terminal A Terminal B Terminal C Terminal D
Scenario 1 (5% shift) € 38.570,96 € 57.481,50 € 115.445,47 € -23.190,58

Scenario 2 (10% shift) € 121.979,34 € 95.472,27 € 174.525,70 € 41.579,60

Scenario 3 (15% shift) € 109.526,95 € 81.890,59 € 197.963,66 € 43.719,97

Scenario 4 (20% shift) € 111.557,67 € 104.196,60 € 199.044,92 € 58.307,74

Scenario 5 (25% shift) € 111.705,35 € 104.636,37 € 208.689,49 € 65.808,79

Scenario 6 (30% shift) € 112.411,34 € 105.924,68 € 212.795,20 € 76.498,20

Scenario 7 (35% shift) € 114.559,25 € 107.146,16 € 213.553,51 € 87.600,41

Scenario 8 (40% shift) € 113.090,90 € 105.415,30 € 213.435,35 € 91.618,01

Scenario 9 (45% shift) € 100.843,11 € 100.670,09 € 212.186,91 € 96.191,27

Scenario 10 (50% shift) € 88.371,55 € 96.346,92 € 207.392,36 € 96.945,89

Scenario 11 (60% shift) € 52.478,03 € 85.126,97 € 190.914,82 € 96.357,66

Scenario 12 (70% shift) € -25.471,46 € 49.592,46 € 158.255,41 € 82.884,66

Scenario 13 (80% shift) € -93.642,65 € 54.733,96 € 54.850,80 € 67.537,20

Scenario 14 (90% shift) € -229.912,47 € 33.718,82 € -30.176,90 € 27.575,26

Scenario 15 (100% shift) € -233.786,83 € 4.967,43 € -66.375,89 € -39.703,19

Scenario 16 (equal) € 151.974,57 € 108.495,25 € 216.822,03 € 102.411,20

Table F.7: Total waiting time gain in monetary value [€] on an average working day for each scenario, based
on TOC waiting and idling costs (43.312€/h)

Terminal A Terminal B Terminal C Terminal D
Hours Euro Hours Euro Hours Euro Hours Euro

Scenario 1 (5% shift) 28 € 1.209,59 42 € 1.802,62 84 € 3.620,38 -17 € -727,26

Scenario 2 (10% shift) 88 € 3.825,28 69 € 2.994,02 126 € 5.473,14 30 € 1.303,94

Scenario 3 (15% shift) 79 € 3.434,77 59 € 2.568,09 143 € 6.208,15 32 € 1.371,06

Scenario 4 (20% shift) 81 € 3.498,45 75 € 3.267,61 144 € 6.242,06 42 € 1.828,53

Scenario 5 (25% shift) 81 € 3.503,09 76 € 3.281,40 151 € 6.544,51 48 € 2.063,77

Scenario 6 (30% shift) 81 € 3.525,23 77 € 3.321,80 154 € 6.673,27 55 € 2.398,99

Scenario 7 (35% shift) 83 € 3.592,58 78 € 3.360,11 155 € 6.697,05 63 € 2.747,15

Scenario 8 (40% shift) 82 € 3.546,54 76 € 3.305,83 155 € 6.693,34 66 € 2.873,15

Scenario 9 (45% shift) 73 € 3.162,45 73 € 3.157,02 154 € 6.654,19 70 € 3.016,56

Scenario 10 (50% shift) 64 € 2.771,34 70 € 3.021,44 150 € 6.503,84 70 € 3.040,23

Scenario 11 (60% shift) 38 € 1.645,71 62 € 2.669,59 138 € 5.987,10 70 € 3.021,78

Scenario 12 (70% shift) -18 € -798,79 36 € 1.555,22 115 € 4.962,90 60 € 2.599,27

Scenario 13 (80% shift) -68 € -2.936,64 40 € 1.716,46 40 € 1.720,12 49 € 2.117,97

Scenario 14 (90% shift) -166 € -7.210,07 24 € 1.057,42 -22 € -946,35 20 € 864,76

Scenario 15 (100% shift) -169 € -7.331,57 4 € 155,78 -48 € -2.081,55 -29 € -1.245,09

Scenario 16 (equal) 110 € 4.765,93 79 € 3.402,42 157 € 6.799,55 74 € 3.211,62



Table F.8: Total waiting time gain in monetary value [€] on a yearly base (260 working days) for each scenario,
based on TOC waiting and idling costs (43.312€/h)

Terminal A Terminal B Terminal C Terminal D
Scenario 1 (5% shift) € 314.492,71 € 468.682,02 € 941.297,86 € -189.087,08

Scenario 2 (10% shift) € 994.572,48 € 778.444,05 € 1.423.015,30 € 339.024,02

Scenario 3 (15% shift) € 893.040,52 € 667.704,29 € 1.614.119,34 € 356.475,78

Scenario 4 (20% shift) € 909.598,25 € 849.578,89 € 1.622.935,50 € 475.418,81

Scenario 5 (25% shift) € 910.802,38 € 853.164,64 € 1.701.573,64 € 536.579,50

Scenario 6 (30% shift) € 916.558,70 € 863.669,02 € 1.735.050,06 € 623.736,85

Scenario 7 (35% shift) € 934.071,92 € 873.628,48 € 1.741.233,02 € 714.259,94

Scenario 8 (40% shift) € 922.099,62 € 859.515,73 € 1.740.269,53 € 747.017,97

Scenario 9 (45% shift) € 822.235,84 € 820.825,09 € 1.730.090,28 € 784.306,56

Scenario 10 (50% shift) € 720.547,53 € 785.575,67 € 1.690.997,31 € 790.459,41

Scenario 11 (60% shift) € 427.885,59 € 694.092,48 € 1.556.645,81 € 785.663,22

Scenario 12 (70% shift) € -207.684,50 € 404.357,79 € 1.290.353,60 € 675.809,58

Scenario 13 (80% shift) € -763.526,07 € 446.279,61 € 447.232,24 € 550.672,26

Scenario 14 (90% shift) € -1.874.617,63 € 274.930,24 € -246.050,84 € 224.838,05

Scenario 15 (100% shift) € -1.906.207,68 € 40.502,52 € -541.203,43 € -323.724,53

Scenario 16 (equal) € 1.239.142,09 € 884.628,46 € 1.767.883,28 € 835.021,44

Table F.9: Total waiting time gain in CO2 emissions [kg] on an average working day and yearly base (260
working days) for each scenario, based on emissions per hour of idling (7.26 kg CO2/h)

Terminal A Terminal B Terminal C Terminal D
Daily Yearly Daily Yearly Daily Yearly Daily Yearly

Scenario 1 (5% shift) 203 52721 302 78570 607 157799 -122 -31698

Scenario 2 (10% shift) 641 166730 502 130498 918 238554 219 56834

Scenario 3 (15% shift) 576 149709 431 111934 1041 270590 230 59759

Scenario 4 (20% shift) 586 152485 548 142423 1046 272068 307 79699

Scenario 5 (25% shift) 587 152686 550 143024 1097 285251 346 89952

Scenario 6 (30% shift) 591 153651 557 144785 1119 290863 402 104563

Scenario 7 (35% shift) 602 156587 563 146455 1123 291899 461 119738

Scenario 8 (40% shift) 595 154580 554 144089 1122 291738 482 125230

Scenario 9 (45% shift) 530 137839 529 137603 1116 290031 506 131481

Scenario 10 (50% shift) 465 120792 507 131693 1090 283478 510 132512

Scenario 11 (60% shift) 276 71731 448 116357 1004 260955 507 131708

Scenario 12 (70% shift) -134 -34816 261 67786 832 216314 436 113292

Scenario 13 (80% shift) -492 -127997 288 74814 288 74974 355 92314

Scenario 14 (90% shift) -1209 -314260 177 46089 -159 -41248 145 37692

Scenario 15 (100% shift) -1229 -319556 26 6790 -349 -90727 -209 -54269

Scenario 16 (equal) 799 207729 570 148299 1140 296367 538 139983
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