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Abstract: We analyse the very general class of uncertain systems that have Linear Fractional
Representations (LFRs), and uncertainty blocks in a convex set with a finite number of vertices.
For these systems we design static output feedback controllers. In the general case, computing a
robust static output feedback controller with optimal performance gives rise to a bilinear matrix
inequality (BMI). In this article we show how this BMI problem can be efficiently rewritten to
fit in the framework of sequential convex relaxation, a method that searches simultaneously for
a feasible controller and one with good performance. As such, our approach does not rely on
being supplied with a feasible initial solution to the BMI. This sets it apart from methods that
depend on a good initial, feasible starting point to progress from there using an alternating
optimization scheme. In addition to using the proposed method, the controller matrices can be
of a predetermined fixed structure. Alternatively, an �1 constraint can be easily added to the
optimization problem as a convex variant of a cardinality constraint, in order to induce sparsity
on the controller matrices.
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1. INTRODUCTION

There are several advantages of feedback control with a
static gain between measurements and inputs. Examples
are the simplicity of the implementation or perhaps eco-
nomic advantages that come along with the absence of
controller dynamics that have to be computed. Especially
if the feedback matrix is sparse, the implementation fea-
tures only connections between certain inputs and outputs
of the system. Hence, there is active research interest in
structured (output) feedback control. For a recent compre-
hensive review, see (Sadabadi and Peaucelle, 2016).

For example, in (Lin et al., 2013; Lin, 2012) optimal sparse
state feedback controllers are computed, see (Jovanović
and Dhingra, 2016) for a recent overview. However, if
the system states are unavailable, these methods are not
applicable.

The problem of sparse static output feedback is analysed
in (Arastoo et al., 2014). Using a reformulation of the
problem into a rank constraint problem, they find an
optimal controller using the Alternating Direction Method
of Multipliers. Their method is flexible enough to handle
constraints on the input and output signal norms. (Arastoo
et al., 2015) uses a similar rank-constrained reformulation
as (Arastoo et al., 2014), but assumes that there is no mea-
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surement noise and a stabilizing (non-sparse) controller
has already been computed.

The previously mentioned methods do not consider the
case were there is uncertainty present in the system. In
(Dong and Yang, 2013) robust static output feedback
was considered for systems whose system matrices lie
in a convex polytope, an important class of uncertain
systems. However, measurement noise was not included in
the analysis. In another recent paper, (Chang et al., 2015),
this measurement noise was included in an analysis for the
same type of uncertain systems. Their resulting algorithm
was able to compute output feedback controllers, but not
able to impose a structure on the controller matrix.

We will analyse systems with a Linear Fractional Repre-
sentation (LFR), and an uncertainty block in some convex
polytope. This is a very general class of systems.

Analysis of the stability of this system and theH∞ norm of
the transfer function reveals that the optimization problem
is a Linear Matrix Inequality (LMI) when the controller
is known, but a BMI if a controller has to be found as
well. Computing a solution to such a BMI is NP-hard in
general (Toker and Özbay, 1995). In special cases com-
puting a solution to the output feedback control problem
becomes a combination of LMI’s and grid search over a few
parameters, (Dong and Yang, 2013; Chang et al., 2015), or
an LMI when some parameters are assumed to be known
(Xu and Chen, 2004). If a feasible solution to the BMI
is known, one could do alternating optimization to find
a controller with improved performance, (Iwasaki, 1999),
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and Dhingra, 2016) for a recent overview. However, if
the system states are unavailable, these methods are not
applicable.

The problem of sparse static output feedback is analysed
in (Arastoo et al., 2014). Using a reformulation of the
problem into a rank constraint problem, they find an
optimal controller using the Alternating Direction Method
of Multipliers. Their method is flexible enough to handle
constraints on the input and output signal norms. (Arastoo
et al., 2015) uses a similar rank-constrained reformulation
as (Arastoo et al., 2014), but assumes that there is no mea-

� The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement
No. 339681.

surement noise and a stabilizing (non-sparse) controller
has already been computed.

The previously mentioned methods do not consider the
case were there is uncertainty present in the system. In
(Dong and Yang, 2013) robust static output feedback
was considered for systems whose system matrices lie
in a convex polytope, an important class of uncertain
systems. However, measurement noise was not included in
the analysis. In another recent paper, (Chang et al., 2015),
this measurement noise was included in an analysis for the
same type of uncertain systems. Their resulting algorithm
was able to compute output feedback controllers, but not
able to impose a structure on the controller matrix.

We will analyse systems with a Linear Fractional Repre-
sentation (LFR), and an uncertainty block in some convex
polytope. This is a very general class of systems.

Analysis of the stability of this system and theH∞ norm of
the transfer function reveals that the optimization problem
is a Linear Matrix Inequality (LMI) when the controller
is known, but a BMI if a controller has to be found as
well. Computing a solution to such a BMI is NP-hard in
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and Dhingra, 2016) for a recent overview. However, if
the system states are unavailable, these methods are not
applicable.

The problem of sparse static output feedback is analysed
in (Arastoo et al., 2014). Using a reformulation of the
problem into a rank constraint problem, they find an
optimal controller using the Alternating Direction Method
of Multipliers. Their method is flexible enough to handle
constraints on the input and output signal norms. (Arastoo
et al., 2015) uses a similar rank-constrained reformulation
as (Arastoo et al., 2014), but assumes that there is no mea-

� The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement
No. 339681.

surement noise and a stabilizing (non-sparse) controller
has already been computed.

The previously mentioned methods do not consider the
case were there is uncertainty present in the system. In
(Dong and Yang, 2013) robust static output feedback
was considered for systems whose system matrices lie
in a convex polytope, an important class of uncertain
systems. However, measurement noise was not included in
the analysis. In another recent paper, (Chang et al., 2015),
this measurement noise was included in an analysis for the
same type of uncertain systems. Their resulting algorithm
was able to compute output feedback controllers, but not
able to impose a structure on the controller matrix.

We will analyse systems with a Linear Fractional Repre-
sentation (LFR), and an uncertainty block in some convex
polytope. This is a very general class of systems.

Analysis of the stability of this system and theH∞ norm of
the transfer function reveals that the optimization problem
is a Linear Matrix Inequality (LMI) when the controller
is known, but a BMI if a controller has to be found as
well. Computing a solution to such a BMI is NP-hard in
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sentation (LFR), and an uncertainty block in some convex
polytope. This is a very general class of systems.

Analysis of the stability of this system and theH∞ norm of
the transfer function reveals that the optimization problem
is a Linear Matrix Inequality (LMI) when the controller
is known, but a BMI if a controller has to be found as
well. Computing a solution to such a BMI is NP-hard in
general (Toker and Özbay, 1995). In special cases com-
puting a solution to the output feedback control problem
becomes a combination of LMI’s and grid search over a few
parameters, (Dong and Yang, 2013; Chang et al., 2015), or
an LMI when some parameters are assumed to be known
(Xu and Chen, 2004). If a feasible solution to the BMI
is known, one could do alternating optimization to find
a controller with improved performance, (Iwasaki, 1999),
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1. INTRODUCTION

There are several advantages of feedback control with a
static gain between measurements and inputs. Examples
are the simplicity of the implementation or perhaps eco-
nomic advantages that come along with the absence of
controller dynamics that have to be computed. Especially
if the feedback matrix is sparse, the implementation fea-
tures only connections between certain inputs and outputs
of the system. Hence, there is active research interest in
structured (output) feedback control. For a recent compre-
hensive review, see (Sadabadi and Peaucelle, 2016).

For example, in (Lin et al., 2013; Lin, 2012) optimal sparse
state feedback controllers are computed, see (Jovanović
and Dhingra, 2016) for a recent overview. However, if
the system states are unavailable, these methods are not
applicable.

The problem of sparse static output feedback is analysed
in (Arastoo et al., 2014). Using a reformulation of the
problem into a rank constraint problem, they find an
optimal controller using the Alternating Direction Method
of Multipliers. Their method is flexible enough to handle
constraints on the input and output signal norms. (Arastoo
et al., 2015) uses a similar rank-constrained reformulation
as (Arastoo et al., 2014), but assumes that there is no mea-
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surement noise and a stabilizing (non-sparse) controller
has already been computed.

The previously mentioned methods do not consider the
case were there is uncertainty present in the system. In
(Dong and Yang, 2013) robust static output feedback
was considered for systems whose system matrices lie
in a convex polytope, an important class of uncertain
systems. However, measurement noise was not included in
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this measurement noise was included in an analysis for the
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We will analyse systems with a Linear Fractional Repre-
sentation (LFR), and an uncertainty block in some convex
polytope. This is a very general class of systems.

Analysis of the stability of this system and theH∞ norm of
the transfer function reveals that the optimization problem
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systems. However, measurement noise was not included in
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this measurement noise was included in an analysis for the
same type of uncertain systems. Their resulting algorithm
was able to compute output feedback controllers, but not
able to impose a structure on the controller matrix.
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the transfer function reveals that the optimization problem
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tures only connections between certain inputs and outputs
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For example, in (Lin et al., 2013; Lin, 2012) optimal sparse
state feedback controllers are computed, see (Jovanović
and Dhingra, 2016) for a recent overview. However, if
the system states are unavailable, these methods are not
applicable.

The problem of sparse static output feedback is analysed
in (Arastoo et al., 2014). Using a reformulation of the
problem into a rank constraint problem, they find an
optimal controller using the Alternating Direction Method
of Multipliers. Their method is flexible enough to handle
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has already been computed.

The previously mentioned methods do not consider the
case were there is uncertainty present in the system. In
(Dong and Yang, 2013) robust static output feedback
was considered for systems whose system matrices lie
in a convex polytope, an important class of uncertain
systems. However, measurement noise was not included in
the analysis. In another recent paper, (Chang et al., 2015),
this measurement noise was included in an analysis for the
same type of uncertain systems. Their resulting algorithm
was able to compute output feedback controllers, but not
able to impose a structure on the controller matrix.

We will analyse systems with a Linear Fractional Repre-
sentation (LFR), and an uncertainty block in some convex
polytope. This is a very general class of systems.

Analysis of the stability of this system and theH∞ norm of
the transfer function reveals that the optimization problem
is a Linear Matrix Inequality (LMI) when the controller
is known, but a BMI if a controller has to be found as
well. Computing a solution to such a BMI is NP-hard in
general (Toker and Özbay, 1995). In special cases com-
puting a solution to the output feedback control problem
becomes a combination of LMI’s and grid search over a few
parameters, (Dong and Yang, 2013; Chang et al., 2015), or
an LMI when some parameters are assumed to be known
(Xu and Chen, 2004). If a feasible solution to the BMI
is known, one could do alternating optimization to find
a controller with improved performance, (Iwasaki, 1999),
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but the resulting solution may not be globally optimal.
If no feasible controller is known that robustly stabilizes
the system, one could start by searching for a controller
that stabilizes the nominal system, and during alternating
optimization slightly increase the uncertainty set until a
feasible solution is found (Massioni, 2014).

The main contribution of this paper is a convex relaxation
of the robust static output feedback structured control
problem. A proposed sequential algorithm uses this con-
vex relaxation to optimize closed-loop performance in an
iterative manner. Our approach does not assume a feasible
solution is known in advance, nor do we fix variables during
the optimizations in our proposed solution. This allows us
to constrain the controller matrix to be in an arbitrary
convex set. A fixed structure of the controller matrix is
one example of such a set, inducing sparsity with �1 norm
regularization is another. Our different approach to solving
the BMI problem might not only return a feasible solution
to the BMI, but also a better solution than could be found
using alternating minimization from a known solution as
described above. This is an advantage compared to stan-
dard BMI solvers for structured control, where the choice
of initial guess is crucial (Sadabadi and Peaucelle, 2016).

The organization of this article is as follows. In Section 2
we discuss the system types and controller types of inter-
est. Section 3 explains how a bilinear equality constraint
can be relaxed in a sequential manner. We then show in
Section 4 how the robust static output feedback controller
problem can be written as an optimization problem sub-
ject to such a constraint. In Section 5 an example from
(Chang et al., 2015) is analysed and we show that for
this example our approach outperforms the one in (Chang
et al., 2015) and allows for structured control analysis.

The specific notation is as follows. We use subscripts to
indicate dimensions of certain matrices, 0m×n and In are
respectively a zero matrix of size m × n and an identity
matrix of size n × n. Subscripts with parentheses denote
matrix elements: X(1,2) is the element on the first row,
second column of the matrix X.

2. ROBUST STATIC OUTPUT FEEDBACK
CONTROL

We are interested in static output feedback for the contin-
uous time system Σ depicted in Figure 1, with a system
description as follows

Σ :



ẋ(t)
q(t)
z(t)
y(t)


 =




A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

Cy Dyp Dyw 0






x(t)
p(t)
w(t)
u(t)


 ,

p(t) = ∆q(t),

(1)

where the uncertainty ∆ is an element in the convex hull of
the vertices in the set {∆1, . . . ,∆n} , ∆1 = 0. x(t) ∈ Rns is
the system state, w(t) ∈ Rmw is a disturbance, u(t) ∈ Rmu

is the input, z(t) ∈ Rrz is the output, y(t) ∈ Rry is the
available measurement, and p(t) ∈ Rmp , q(t) ∈ Rrq are the
signals used to describe how the uncertainty ∆ influences
the system dynamics. This is a general Linear Fractional
Representation (LFR) of a dynamical system.

This system is stable, and has an H∞ norm of the transfer
function of performance channel w → z lower than γ, if the

Σ

∆

u y

w z

K

p q

Σ

∆

u y
w z

p q

Fig. 1. A schematic depiction of the system under consid-
eration with indicated uncertainty block ∆ (left) and
including controller K (right).

LMI’s in the following lemma are feasible. The methods we
propose can be generalized to other quadratic performance
criteria. This lemma uses a full-block multiplier P ,

P =

(
Q S
ST R

)
,

to guarantee robust stability and performance, see for
example (Scherer and Weiland, 2000).

Lemma 1. The Full-block S-procedure (Scherer, 2001).
The system Σ in (1) is robustly stable and the transfer
function Tw→z(jω) has an H∞ norm less than γ if there
exist a Q = QT ∈ Rmp×mp , S ∈ Rmp×rq , R = RT ∈
Rrq×rq , Y = Y T ∈ Rns×ns and γ2 ∈ R such that the
following LMI’s are feasible:

Q ≺ 0, Y � 0, R � 0,
(

I
−∆T

i

)T (
Q S
ST R

)(
I

−∆T
i

)
≺ 0, i = 1, . . . , n,

(
G
I

)T (
L(Q) W (Y, S)

W (Y, S)T N(R, γ2)

)(
G
I

)
� 0,

where the following definitions and abbreviations are used:

GT := −

(
A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw

)
,

L(Q) :=

(
0ns×ns

0 0
0 Q 0
0 0 −Imw

)
,

W (Y, S) :=

(
Y 0 0
0 S 0
0 0 0mw×rz

)
,

N(R, γ2) :=



0ns×ns 0 0

0 R 0
0 0 γ2Irz


 .

For structured static output feedback we are interested in
feedback of the form

u(t) = Ky(t), (2)

see also Figure 1. For any algorithm for structured output
feedback control, it is desirable to allow for influence on
the structure of the feedback matrix K. We denote the
convex set of feedback gains that we are interested in as K.
The structure of K could be a prescribed structure or one
that is partly determined by optimization, see (Lin, 2012;
Jovanović and Dhingra, 2016). For example, if K is sparse,
this would have advantages in terms of implementation.
Only selected outputs need to be connected to selected
inputs, which could lead to economic advantages. Or if
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we have a set of index pairs Ī = {(i1, j1), . . . , (in, jn)} of
controller elements that should be equal to zero (a fixed
controller structure), our set K would be

Kfixed str. =
{
K : K(i,j) = 0, (i, j) ∈ Ī

}
.

If Ī = ∅, then Kfixed str. = Kno str. = Rmu×ry . Another
example is a controller with induced sparsity using an �1
norm, like in (Tibshirani, 1996):

Ksparse =



K :

∑
i,j

|K(i,j)| ≤ τ





for some τ > 0.

The final interesting structure we mention would be an
empty row or empty column of the matrix K, indicating
that either an actuator or sensor respectively is not a
design necessity for robust stabilization and performance,
see for example (Dhingra et al., 2014).

Applying control law (2) to system (1) gives the closed-
loop system description(

ẋ(t)
q(t)
z(t)

)
=

(A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw

)(
x(t)
p(t)
w(t)

)
,

(A
Cq
Cz

)
=

(
A+BuKCy

Cq +DquKCy

Cz +DzuKCy

)
,

( Bp

Dqp

Dzp

)
=

(
Bp +BuKDyp

Dqp +DquKDyp

Dzp +DzuKDyp

)
,

( Bw

Dqw

Dzw

)
=

(
Bw +BuKDyw

Dqw +DquKDyw

Dzw +DzuKDyw

)
,

p(t) = ∆q(t),

(3)

where ∆ is a convex combination of the vertices in the set
{∆1, . . . ,∆n}.
If K is a decision variable, then substituting the matrices
in (3) into the LMI’s of Lemma 1 results in a BMI. In the
next section we discuss how such a BMI problem can be
transformed and relaxed to a convex problem.

3. SEQUENTIAL CONVEX RELAXATION OF
BILINEAR EQUALITY CONSTRAINTS

In (Doelman and Verhaegen, 2016) the following optimiza-
tion problem was analyzed:

min
x,AAA,BBB,CCC

f(x,AAA,BBB,CCC)

s.t. g(x,AAA,BBB,CCC) � 0,

AAAPPPBBB = CCC,

(4)

where x is a decision variable appearing affinely in the
problem,AAA,BBB,CCC are decision variables in matrix form that
appear affinely in f and g, and the bilinearity is contained
in the equality constraint AAAPPPBBB = CCC. The matrix PPP is
not a decision variable, but can be any (non-zero) matrix
of appropriate dimensions. In general, such a bilinearity
causes the problem to be NP-hard (Toker and Özbay,
1995).

There are two problems with the last constraint. First,
there are the bilinearly appearing decision variables AAA and

Require: A randomly chosen X1,0 and X2,0, regulariza-
tion parameter λ, iterator i = 0.
while not converged do

Minimize (6) using the matrix

M(AAAi,PPP ,BBBi,CCCi, X1,i, X2,i)

Using the optimal values for AAA∗
i and BBB∗

i in the
previous step, set

X1,i+1 ← −AAA∗
i , X2,i+1 ← −BBB∗

i ,

i ← i+ 1.
end while

Algorithm 1. The sequential convex relaxation algorithm.

BBB. The second problem is the equality constraint, which
cannot just be relaxed: otherwise the solution to a relaxed
problem is not a solution to the original problem. The
constraint can be transformed in such a way that it turns
the bilinear constraint into an equivalent rank constraint.

Lemma 2. Rank equivalence (Doelman and Verhaegen,
2016) The constraint AAAPPPBBB = CCC is equivalent to the rank
constraint

rank (M(AAA,PPP ,BBB,CCC,X1, X2)) = rank (PPP ) , (5)

where M(·) is defined as

M(AAA,PPP ,BBB,CCC,X1, X2) :=(
CCC +X1PPPX2 +AAAPPPX2 +X1PPPBBB (AAA+X1)PPP

PPP (BBB +X2) PPP

)

for any matrices X1, X2 of appropriate size.

The variables AAA and BBB no longer appear bilinearly in the
matrix M . Instead of the equality constraint, we now have
a rank constraint.

The relaxation of (4) uses the nuclear norm to induce
solutions with a low rank matrix M(·):

min
x,AAA,BBB,CCC

f(x,AAA,BBB,CCC) + λ ‖M(AAA,PPP ,BBB,CCC,X1, X2)‖∗
s.t. g(x,AAA,BBB,CCC) � 0,

(6)
where λ is a regularization parameter. Let a superscript
∗ denote the optimal value of a parameter for the con-
vex problem. If after solving the convex problem (6),
we check the rank of M(AAA∗,PPP ,BBB∗,CCC∗, X1, X2) and have
rank (M(·)) = rank (PPP ), then this solution is a feasible so-
lution for the two constraints in (4). We expect the matrix
M(·) to not be of full rank, due to the rank minimizing
property of the nuclear norm.

As mentioned before, the matrices X1 and X2 can be any
matrices of appropriate size. The recommended way to
choose their values is in an iterative manner, using the
steps outlined in Algorithm 1, see also (Doelman and
Verhaegen, 2016). For a version of Algorithm 1 that incor-
porates additional constraints on the decision variables, it
can be shown that the value of

f(xi,AAAi,BBBi,CCCi) + λ ‖CCCi −AAAiPPPBBBi‖∗ (7)

converges. However, this modified version is often out-
performed by Algorithm 1. Convergence of (7) does not
guarantee a convergence of ‖CCCi −AAAiPPPBBBi‖∗ to 0, and that
(4) is solved. A feasible solution for (4) is found if and only
if for any iteration of Algorithm 1 (5) holds for the optimal
AAA∗

i ,BBB
∗
i and CCC∗

i .
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example is a controller with induced sparsity using an �1
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for some τ > 0.

The final interesting structure we mention would be an
empty row or empty column of the matrix K, indicating
that either an actuator or sensor respectively is not a
design necessity for robust stabilization and performance,
see for example (Dhingra et al., 2014).

Applying control law (2) to system (1) gives the closed-
loop system description(

ẋ(t)
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where ∆ is a convex combination of the vertices in the set
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If K is a decision variable, then substituting the matrices
in (3) into the LMI’s of Lemma 1 results in a BMI. In the
next section we discuss how such a BMI problem can be
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tion problem was analyzed:
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f(x,AAA,BBB,CCC)

s.t. g(x,AAA,BBB,CCC) � 0,

AAAPPPBBB = CCC,

(4)

where x is a decision variable appearing affinely in the
problem,AAA,BBB,CCC are decision variables in matrix form that
appear affinely in f and g, and the bilinearity is contained
in the equality constraint AAAPPPBBB = CCC. The matrix PPP is
not a decision variable, but can be any (non-zero) matrix
of appropriate dimensions. In general, such a bilinearity
causes the problem to be NP-hard (Toker and Özbay,
1995).

There are two problems with the last constraint. First,
there are the bilinearly appearing decision variables AAA and

Require: A randomly chosen X1,0 and X2,0, regulariza-
tion parameter λ, iterator i = 0.
while not converged do

Minimize (6) using the matrix

M(AAAi,PPP ,BBBi,CCCi, X1,i, X2,i)

Using the optimal values for AAA∗
i and BBB∗

i in the
previous step, set

X1,i+1 ← −AAA∗
i , X2,i+1 ← −BBB∗

i ,

i ← i+ 1.
end while

Algorithm 1. The sequential convex relaxation algorithm.

BBB. The second problem is the equality constraint, which
cannot just be relaxed: otherwise the solution to a relaxed
problem is not a solution to the original problem. The
constraint can be transformed in such a way that it turns
the bilinear constraint into an equivalent rank constraint.

Lemma 2. Rank equivalence (Doelman and Verhaegen,
2016) The constraint AAAPPPBBB = CCC is equivalent to the rank
constraint

rank (M(AAA,PPP ,BBB,CCC,X1, X2)) = rank (PPP ) , (5)

where M(·) is defined as

M(AAA,PPP ,BBB,CCC,X1, X2) :=(
CCC +X1PPPX2 +AAAPPPX2 +X1PPPBBB (AAA+X1)PPP

PPP (BBB +X2) PPP

)

for any matrices X1, X2 of appropriate size.

The variables AAA and BBB no longer appear bilinearly in the
matrix M . Instead of the equality constraint, we now have
a rank constraint.

The relaxation of (4) uses the nuclear norm to induce
solutions with a low rank matrix M(·):

min
x,AAA,BBB,CCC

f(x,AAA,BBB,CCC) + λ ‖M(AAA,PPP ,BBB,CCC,X1, X2)‖∗
s.t. g(x,AAA,BBB,CCC) � 0,

(6)
where λ is a regularization parameter. Let a superscript
∗ denote the optimal value of a parameter for the con-
vex problem. If after solving the convex problem (6),
we check the rank of M(AAA∗,PPP ,BBB∗,CCC∗, X1, X2) and have
rank (M(·)) = rank (PPP ), then this solution is a feasible so-
lution for the two constraints in (4). We expect the matrix
M(·) to not be of full rank, due to the rank minimizing
property of the nuclear norm.

As mentioned before, the matrices X1 and X2 can be any
matrices of appropriate size. The recommended way to
choose their values is in an iterative manner, using the
steps outlined in Algorithm 1, see also (Doelman and
Verhaegen, 2016). For a version of Algorithm 1 that incor-
porates additional constraints on the decision variables, it
can be shown that the value of

f(xi,AAAi,BBBi,CCCi) + λ ‖CCCi −AAAiPPPBBBi‖∗ (7)

converges. However, this modified version is often out-
performed by Algorithm 1. Convergence of (7) does not
guarantee a convergence of ‖CCCi −AAAiPPPBBBi‖∗ to 0, and that
(4) is solved. A feasible solution for (4) is found if and only
if for any iteration of Algorithm 1 (5) holds for the optimal
AAA∗

i ,BBB
∗
i and CCC∗

i .
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4. ROBUST STATIC OUTPUT FEEDBACK AS A
BILINEARLY CONSTRAINED PROBLEM

If we straightforwardly substitute the closed loop system
matrices of (3) into the LMI’s in Lemma 1, then for a
known feedback matrix K this results again in LMI’s,
but for a decision variable K there will be three terms
where decision variables appear bilinearly. Notice that
using a Schur complement argument, the following two
inequalities are equivalent.

(
G(K)
I

)T (
L(Q) W (Y, S)

WT (Y, S) N(R, γ2)

)(
G(K)
I

)
� 0

⇔(
−L̄ L̄Ḡ
ḠT L̄ N +WTG + GTW

)
� 0.

where GT , L̄ and ḠT are defined as follows

GT (K) := −

(A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw

)
,

L̄(Q) :=

(
Q 0
0 −Imw

)
,

ḠT (K) := −

( Bp Bw

Dqp Dqw

Dzp Dzw

)
.

Working out the product ḠT (K)L̄(Q) gives us

−

( Bp Bw

Dqp Dqw

Dzp Dzw

)(
Q 0
0 −Imw

)

=−

(
BpQ+BuKDypQ −Bw −BuKDyw

DqpQ+DquKDypQ −Dqw −DquKDyw

DzpQ+DzuKDypQ −Dzw −DzuKDyw

)
,

(8)

with the bilinear term E2 := KDypQ. For the term
G(K)TW (Y, S) we obtain

−

(A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw

)(
Y 0 0
0 S 0
0 0 0mw×rz

)

=−

(
AY +BuKCyY BpS +BuKDypS 0
CqY +DquKCyY DqpS +DquKDypS 0
CzY +DzuKCyY DzpS +DzuKDypS 0

) (9)

with the bilinear terms E1 := KCyY and E3 := KDypS.

We have three bilinear terms that can be collected into the
single bilinear constraint

(K K)︸ ︷︷ ︸
AAA

(
Cy 0
0 Dyp

)

︸ ︷︷ ︸
PPP

(
Y 0 0
0 Q S

)

︸ ︷︷ ︸
BBB

= (E1 E2 E3)︸ ︷︷ ︸
CCC

, (10)

with the understanding that E1, E2 and E3 are substituted
for the corresponding bilinear terms in equations (8) and
(9).

The inequalities of Lemma 1 with the closed loop system
matrices of (3) can thus be written in the form of (4)
through the use of additional variables E1, E2 and E3 and
by using the bilinear equality constraint in (10), i.e. the
expressions {

ḠT (K)L̄(Q),

G(K)TW (Y, S)

and 


ḠT L̄(E2, Q),

GTW (Y,E1, S, E3),

AAAPPPBBB = CCC

are equivalent.

The full BMI problem for robust static output feedback
structured control is now

min
Q,S,R,Y,K,E1,2,3

γ2

s.t. Q ≺ 0, Y � 0, R � 0,
(

I
−∆T

i

)T (
Q S
ST R

)(
I

−∆T
i

)
≺ 0,

i = 1, . . . , n,(
−L̄ L̄Ḡ
ḠT L̄ N +WTG + GTW

)
� 0,

K ∈ K,

AAAPPPBBB = CCC.

(11)

If Algorithm 1 is applied to find a controller K that
robustly stabilizes the system and performs (locally) opti-
mal, the extension of the unstructured static output feed-
back control problem, where K = Kno str., to structured
control is trivial. One simply changes the set of allowed
controllers K to the set of interest. The ease with which
different variants of the structured control problem can
be analysed, indicates that our approach of the problem,
using Algorithm 1, is very generic. For the sake of brevity
we will analyse in the next section two cases: we will
compute a K ∈ Kno str. and a K ∈ Kfixed str. that both
stabilize the same uncertain system.

We would like to note that for discrete-time systems the
derivation of the bilinear equality constraint problem is
mostly similar, but due to space constraints we will not
include this analysis here.

5. NUMERICAL EXAMPLE

To demonstrate the capability of Algorithm 1 to find a
structured controller with robust performance, we analyse
the example problem in (Chang et al., 2015) (Example
1, Section 4), where the same problem was used as in
(Benton and Smith, 1999). In the referred article systems
are considered with polytopic uncertainties. The system
matrices are convex combinations of matrices, determined
by the same parameter. The numerical example in (Chang
et al., 2015) gives system matrices in a convex set with
2 vertices, an example that can be shown to fit into the
system description of (1). To be concrete, the system
matrices of the example problem (subscript ep) are of the
following form:

Aep = (1− α)A1 + αA2,

Bw,ep = (1− α)Bw,1 + αBw,2,

Bu,ep = . . .

for an unknown α ∈ [0, 1]. For numerical values of
A1, A2, . . ., please see (Chang et al., 2015).

This is equivalent to a system of the form (1) by taking

q(t) =

(
x(t)
w(t)
u(t)

)
,
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∆ = αImp and thus ∆ ∈ conv
({

0, Imp

})
. The system

matrices in (1) are

A = A1,

Bw = Bw,1,

Bu = Bu,1,

Bp = (A2 −A1 Bw,2 −Bw,1 Bu,2 −Bu,1) ,

and the rest of the system matrices are defined similarly.

For this example we have ns = 4,mp = 6,mw = 1,mu =
1, rq = 6, rz = 1, ry = 2. The feedback matrix K is
therefore of dimension mu × ry = 1× 2.

The controller in (Chang et al., 2015),

K1 = (−2.7375 −0.8618)

gives according to the article a worst-case H∞ norm of
γ1 = 0.6581.

Applying Lemma 1 to the reformulated system description
in this section, and using controller K1, we obtain a lower
bound on the worst-case H∞ norm of γ̂1 = 0.65308. This
difference could be due to using a less conservative LMI
formulation to guarantee robust performance.

Applying Algorithm 1 to solve the problem with the
bilinear equality constraint (11) that we derived in the
previous section, we obtain the following.

The unstructured static output feedback controller

K2 = (−2.1609 −0.9597)

has an upper bound on the H∞ norm of γ2 = 0.64189.
This is a better guaranteed performance than γ1.

Remarkably, the second measurement channel (ry = 2 in
this example) is hardly necessary for robust performance.
The controller

K3 = (−0.9505 0) ,

designed by adding the constraint K(1,2) = 0 to the
optimization problem, has a guaranteed performance of
γ3 = 0.71123. On the other hand, we were not able to find
a controller in the form K =

(
0 K(1,2)

)
with comparable

performance using Algorithm 1.

The optimal γ and constraint violation ‖APBAPBAPB −CCC‖F
during the iterations of Algorithm 1 can be found in
Figure 2. As can be seen in this figure, the algorithm finds
a feasible solution to both problems in very few iterations.

To verify the resulting bounds on the H∞ norm for
the computed controllers K2 and K3, we computed the
resulting closed loop systems for 5000 different values of α,
and verified the H∞ norm of the system using MATLAB’s
build-in functions. The highest H∞ norms found in this
way were 0.6347 for the unstructured controller K2 and
0.6785 for the structured controller K3. The resulting
system norms are displayed in Figure 3.

The experiments were run on a standard desktop PC
using MATLAB, Yalmip (Lofberg, 2004), and the MOSEK
(MOSEK ApS, 2016) SDP solver.

6. CONCLUSION

We have shown how a very generic uncertain system,
described with its Linear Fractional Representation in (1),
gives rise to a BMI when we try to compute an optimal

Fig. 2. On the left: the H∞ norm γ for the iterations of Al-
gorithm 1. The unstructured controller gives slightly
better performance than the structured controller. On
the right, the bilinear equality constraint violation.
Due to numerical precision of the solver this violation
is small, but not equal to zero.

Fig. 3. A histogram of closed loop system H∞ norms
for 5000 different realizations of α. For the unstruc-
tured and structured controllers, all systems have H∞
norms below the computed upper bounds γ2 and γ3
respectively.

static output feedback controller. The bilinear terms are
substituted using additional variables, resulting in an op-
timization problem where the bilinear terms are contained
in a bilinear equality constraint. This equality constraint
is subsequently transformed into a rank constraint. In this
rank constraint the decision variables no longer appear in
a bilinear way. The rank constraint is relaxed using the nu-
clear norm. Algorithm 1 shows how in a sequential manner
we try to find a feasible controller with good performance.
Since in the relaxed problem the controller gain matrix
can be manipulated, unlike in many other approaches, we
can constrain this matrix to a certain convex set. This
results in structured static output feedback matrices, that
robustly stabilize a system and have a (locally) optimal
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∆ = αImp and thus ∆ ∈ conv
({

0, Imp

})
. The system

matrices in (1) are

A = A1,

Bw = Bw,1,

Bu = Bu,1,

Bp = (A2 −A1 Bw,2 −Bw,1 Bu,2 −Bu,1) ,

and the rest of the system matrices are defined similarly.

For this example we have ns = 4,mp = 6,mw = 1,mu =
1, rq = 6, rz = 1, ry = 2. The feedback matrix K is
therefore of dimension mu × ry = 1× 2.

The controller in (Chang et al., 2015),

K1 = (−2.7375 −0.8618)

gives according to the article a worst-case H∞ norm of
γ1 = 0.6581.

Applying Lemma 1 to the reformulated system description
in this section, and using controller K1, we obtain a lower
bound on the worst-case H∞ norm of γ̂1 = 0.65308. This
difference could be due to using a less conservative LMI
formulation to guarantee robust performance.

Applying Algorithm 1 to solve the problem with the
bilinear equality constraint (11) that we derived in the
previous section, we obtain the following.

The unstructured static output feedback controller

K2 = (−2.1609 −0.9597)

has an upper bound on the H∞ norm of γ2 = 0.64189.
This is a better guaranteed performance than γ1.

Remarkably, the second measurement channel (ry = 2 in
this example) is hardly necessary for robust performance.
The controller

K3 = (−0.9505 0) ,

designed by adding the constraint K(1,2) = 0 to the
optimization problem, has a guaranteed performance of
γ3 = 0.71123. On the other hand, we were not able to find
a controller in the form K =

(
0 K(1,2)

)
with comparable

performance using Algorithm 1.

The optimal γ and constraint violation ‖APBAPBAPB −CCC‖F
during the iterations of Algorithm 1 can be found in
Figure 2. As can be seen in this figure, the algorithm finds
a feasible solution to both problems in very few iterations.

To verify the resulting bounds on the H∞ norm for
the computed controllers K2 and K3, we computed the
resulting closed loop systems for 5000 different values of α,
and verified the H∞ norm of the system using MATLAB’s
build-in functions. The highest H∞ norms found in this
way were 0.6347 for the unstructured controller K2 and
0.6785 for the structured controller K3. The resulting
system norms are displayed in Figure 3.

The experiments were run on a standard desktop PC
using MATLAB, Yalmip (Lofberg, 2004), and the MOSEK
(MOSEK ApS, 2016) SDP solver.

6. CONCLUSION

We have shown how a very generic uncertain system,
described with its Linear Fractional Representation in (1),
gives rise to a BMI when we try to compute an optimal

Fig. 2. On the left: the H∞ norm γ for the iterations of Al-
gorithm 1. The unstructured controller gives slightly
better performance than the structured controller. On
the right, the bilinear equality constraint violation.
Due to numerical precision of the solver this violation
is small, but not equal to zero.

Fig. 3. A histogram of closed loop system H∞ norms
for 5000 different realizations of α. For the unstruc-
tured and structured controllers, all systems have H∞
norms below the computed upper bounds γ2 and γ3
respectively.

static output feedback controller. The bilinear terms are
substituted using additional variables, resulting in an op-
timization problem where the bilinear terms are contained
in a bilinear equality constraint. This equality constraint
is subsequently transformed into a rank constraint. In this
rank constraint the decision variables no longer appear in
a bilinear way. The rank constraint is relaxed using the nu-
clear norm. Algorithm 1 shows how in a sequential manner
we try to find a feasible controller with good performance.
Since in the relaxed problem the controller gain matrix
can be manipulated, unlike in many other approaches, we
can constrain this matrix to a certain convex set. This
results in structured static output feedback matrices, that
robustly stabilize a system and have a (locally) optimal
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performance guarantee. The numerical experiments verify
that our approach outperforms current state-of-the-art.
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