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The effect of normal restitution coefficient and friction coefficient on the hydrodynamics of a dense bubbling
solid-gas fluidized bed is investigated using a two fluid model (TFM) based on our kinetic theory of granular
flow (KTGF) for rotating frictional particles. A comparison between TFM simulations using the present KTGF
model, and a simpler KTGF model for rapid flows of slightly frictional, nearly elastic spheres derived by Jenkins
and Zhang [1], is carried out. The simulation results reveal that both the coefficient of normal restitution and fric-
tion coefficient play an important role in the homogeneity of the bubbling bed. The particle friction has a strong
effect on the solids flow patterns and distribution, while the normal restitution coefficient has a relatively small
effect on both. The present model also predicts a larger amount of energy dissipation caused by the inclusion of
particle friction. The present KTGFmodel leads to better agreement with detailed discrete particle model (DPM)
simulation results for the axial particle velocity profiles and solids volume fraction distribution.
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1. Introduction

Gas-solid fluidized beds find a widespread application in processes
involving combustion, separation, classification, and catalytic cracking
[2]. Understanding the dynamics of fluidized beds is a key issue in im-
proving efficiency, reliability and scale-up. Owning to enormous in-
crease in computer power and algorithm development, fundamental
modelling of multiphase reactors has become an effective tool.

In this work, an Euler-Euler approach (Kuipers et al. [3], Gidaspow
[4]) is used. In Eulerian two fluid models (TFM), both the gas phase
and the solid phase are treated as fully interpenetrating continua and
are described by separate governing balance equations ofmass andmo-
mentum. The challenge of this model is to establish an accurate hydro-
dynamic description of the solid phase. State-of-the-art closures have
been obtained from the kinetic theory of granular flow (KTGF), initiated
by Jenkins and Savage [5], Jenkins and Richman [6], Lun [7], and
Nieuwland [8].

The original KTGF models of Jenkins and Savage [5], Jenkins and
Richman [6] and Gidaspow [4] were derived for nearly elastic particles
with translational motion only. In reality, however, granular materials
are frictional. The roughness of the granular materials has been shown
to have a significant effect on stresses at least in the quasi-static regime
[9]. During collisions of rough particles, the particles can rotate due to
the surface friction. Consequently, translational and rotational kinetic
energies may exchange. Attempts to quantify the friction effect have
lft University of
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been somewhat limited. Based on Lun and Savage [10], Walton [11] in-
troduced coefficients of restitution associatedwith both the normal and
tangential components of the velocity at the contact point. These coeffi-
cients can be measured by performing experiments with real particles
[12–14]. Jenkins and Zhang [1] developed a simple kinetic theory for
collisional flows of identical, slightly frictional, nearly elastic spheres.
An effective restitution coefficientwas given in terms of the collision pa-
rameters, namely the normal coefficient of restitution e, friction coeffi-
cient μ, and tangential coefficient of restitution β. This model is widely
used in the study of the gas-solid fluidization [15–17]. Goldschmidt et
al. [18] found that the effects of particle friction could not be replaced
by using this effective (smaller) restitution coefficient. More recently,
there have appeared some other works regarding the effect of particle
friction. Van Wachem et al. [19] derived a simplified algebraic granular
temperature equation. They found that this simplification does not lead
to obvious differences in the simulation results, but reduces the compu-
tational time by about 20%. However, their model cannot be used for
semi-dilute and dilute systems. The frictional kinetic model from
Schneiderbauer et al. [20] is based the KTGF model from Agrawal et al.
[21], which was originally developed for systemswith mesoscale struc-
tures such as risers with particle clusters. This model includes closures
for the solids stress tensor, which considers collisional, kinetic and fric-
tional stress. However, as pointed out by themselves, this model lacks
an explicit dependence on material properties of the particles. Berzi
and Vescovi [22] found that the yield stress ratio of granular material
can be theoretically predicted by the extended theory from Jenkins
and Berzi [23], which reveals that the extended kinetic theory can ob-
tain excellent agreement with numerical simulations on simple shear-
ing of inelastic, frictional and frictionless particles. However, they also
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Closure equations of the new kinetic theory of granular flow with friction (model A).

Solid pressure tensor: Ps=εsρsΘt[1+2(1+e)εsg0]

Bulk viscosity: λs ¼ 4
3 εsρsσg0ð1þ eÞ

ffiffiffiffi
Θt
π

q

Solid stress tensor: τs ¼ −fðλs− 2
3 μts Þð∇ � vsÞIþ μts ½∇vs þ ð∇vsÞT � þ μrs ½∇vs−ð∇vsÞT �g

Translational energy dissipation: γt ¼ Θtg0ρsε2s
− 192

σ

ffiffiffiffi
Θt
π

q
½η1ð1þ η1Þ−ð2λþ 1ÞA1

þðλþ 1ÞA2 � þ 12∇ � vs½η1ð1þ η1Þ
þ 5½ðλþ 1ÞA4−ð2λþ 1ÞA3 �

8><
>:

9>=
>; (T1)

Rotational energy dissipation rate: γr ¼ Θtg0ρsε2s f� 96
σ

ffiffiffiffi
Θt
π

q
ð2:5A2 � λA1Þ

þ 120∇ � vsð2:5A4 � λA3Þg
(T2)

Translational shear viscosity: μ ts ¼ μð1þ μ ts;c Þ þ 3
5λs; μ ts;c ¼ − 4

5 εsg0 ½−6ð2λþ 1ÞA1 þ 2η1�

Rotational shear viscosity: μrs ¼ −8ð2λþ 1Þσg0ρsε2sA1

ffiffiffiffi
Θt
π

q
Translational thermal conductivity: κ t ¼ κ tð1þ κ ts;c Þ þ 3

2λs ; κ ts;c ¼ −εsg0ð2η1−16ð2λþ 1ÞA1Þ
Rotational thermal conductivity: κ r1 ¼ κ r;1 ¼ ρΘtðL3=2L1Þ; κ r2 ¼ κ r;2 ¼ ρΘtðL2=2L1Þ,
L1 ¼ −32εsg0

25σ

ffiffiffiffi
Θt
π

q
½50A2=λ−10A1−10A11=3−50ðλþ 1Þðλþ 2ÞA12=ð3λÞ þ 10ð3λþ 4ÞA9=3�

L2 ¼ g0εsΘt ½56η1λðλþ2Þ
5ðλþ1Þ −60ð1þ 4η1Þð2A3λ−5A4Þ�

L3 ¼ ð1þ 12
5 g0εsÞλΘt ½− 8η1ð2þλÞ

3ð1þλÞ þ 50ð1þ η1ÞA3�

Here,λ is the granular temperature ratio. The expressions for A1, A2, A3, A4, A9, A11, and A12

can be found inAppendixA. For spheres, λ=2.5Θr/Θt, η1=−(1+e)/2,η2=−(1+β0)/7.

Table 2
Properties of particle and settings.

Parameters DPM TFM

Particle Glass (ρ = 2526 kg/m3),
σ = 2 mm

Same

Initial bed height 0.15 m Same
Domain size 0.15 × 0.012 × 0.48 m Same
Initial bed voidage 0.403 Same
Grid number (x × y × z) 25 × 2 × 80 Same
Normal spring stiffness kn = 12.000 N/m –
Particle-particle collision e = 0.97, 0.9, β0 = 0.33, μ = 0,

0.05, 0.15
Same

Particle-wall collision ew = 0.97, βw = 0.33, μw = 0.1 –
Specularity coefficient – 0.1
Simulation time 25 s Same
Superficial gas velocity 2.27 m/s Same
Drag relation Ergun [28], and Wen & Yu [29] Same
Frictional viscosity model – Srivastava and

Sundaresan [30]
Flow solver time step 10−4 s Same
Solid phase time step 10−5 s 10−4 s
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pointed out that the relation between the shear rigidity and the inter-
particle friction is still lacking.

Yang et al. [24] developed a KTGF for rough spheres including parti-
cle friction and rotation, where the rheological properties of the solid
phase are explicitly described in terms of the friction coefficient. This
new model has been incorporated into our in-house two-fluid model
(TFM) code for the modelling of dense gas-solid fluidized beds. This
model has been validated for a bubblingfluidized bed byYang et al. [25].

In this work, we employ the new KTGF model (called model A) and
compare it with the effective model by Jenkins and Zhang (model B) to
investigate the influence of friction coefficient and normal restitution
coefficient on the properties of a gas-solid fluidized bed. Similar to pre-
vious studies in the literature [18,26], we will compare our results with
detailed DPM simulation results, where DPM is used as an “indepen-
dent” modelling framework to further validate our KTGF in TFM.

2. Numerical models

The two fluidmodel treats both phases as fully interpenetrating con-
tinua. The continuity equations for the gas and solid phases are given re-
spectively by Eqs. (1) and (2). The correspondingmomentumequations
are given by Eqs. (3) and (4).

∂ εgρg

� �
∂t

þ ∂
∂r

� εgρgvg
� �

¼ 0 ð1Þ

∂ εsρsð Þ
∂t

þ ∂
∂r

� εsρsvsð Þ ¼ 0 ð2Þ

∂ εgρgvg
� �

∂t
þ ∇ � εgρgvgvg

� �
¼ −εg∇Pg−∇ � εgτg

þ εgρgg−βA vg−vs
� � ð3Þ

∂ εsρsvsð Þ
∂t

þ ∇ � εsρsvsvsð Þ ¼ −∇ � PsIþ εsτsð Þ þ εsρsg

þ βA vg−vs
� �

−εs∇Pg ð4Þ

The gas and solid phases are coupled through the interphase mo-
mentum transfer coefficient βA. To describe the solid phase, KTGF with
friction is used. In this work, particle surface friction and rotation are
considered explicitly. In order to describe the solid phase rheology thor-
oughly, an extra energy balance equation for the fluctuating rotational
kinetic energy of the solids was derived by Yang et al. [24].

3
2

∂ εsρsΘtð Þ
∂t

þ ∇ � εsρsvsΘtð Þ
� �

¼ −∇vs

: PsIþ εsτsð Þ−εs∇ � −κ t∇Θtð Þ−γt−3βAΘt ð5Þ

3
2

∂ εsρsΘrð Þ
∂t

þ ∇ � εsρsvsΘrð Þ
� �

¼ −εs∇ � −κ r1∇Θr−κ r2∇Θtð Þ−γr ð6Þ

Definitions of the translational granular temperature Θt and rota-
tional granular temperature Θr are Θt≡〈C2〉/3, Θr≡ I〈Ω2〉/3m, where I is
the particle's moment of inertia. The full expressions for the constitutive
equations are summarized in Table 1.

3. Model validation

3.1. Simulation settings

Comparisons between DPM and TFM simulation results will be pre-
sented to validate the newly-built kinetic theory. In the simulations, a
no-slip wall boundary condition for side walls (left, right, front and
back side of the rectangular domain) is used for the gas phase. At the
bottom inlet, a uniform gas velocity is specified, whereas at the top out-
let, atmospheric pressure (101,325 Pa) is prescribed. For the solid phase,
a partial slip boundary condition is used for the sidewalls. A relation for
the solids velocity gradient and an expression for the pseudo Fourier
fluctuation energy flux at the wall have been given by Sinclair and Jack-
son [27]. At high solids volume fraction, we employed the frictional
stress model from Srivastava and Sundaresan [30] to account for
dense packing. The simulation settings are specified as follows in
Table 2.

3.2. Results and discussion

3.2.1. Influence of normal restitution coefficient
Fig. 1 shows a comparison of time-averaged axial particle velocity

and solids volume fraction using different normal restitution coeffi-
cients. In all cases a solids circulation pattern emerges, in which small
bubbles increase rapidly in size due to coalescence. Consequently, a
zone of increased bubble development, initially close to the wall,
moves towards the center of bed with increasing height above the gas
inlet. Zones with high solids volume fraction near the lateral walls and
bottom of the bed are observed in both DPM and TFM model A, while
no dense zone near the bed bottom is present in TFMmodel B. Particles
appear to move upwards in regions of more intense bubble activity and
downwards in regions of lesser bubble activity, which results in the for-
mation of a pronounced global solids circulation pattern in all models.
Both solids circulation pattern and distribution are not very sensitive
with respect to the normal restitution coefficient. Comparing with



Fig. 1. Comparison of solid circulation pattern and solids volume fractionwith a friction coefficient of 0.15 and 0.05. Left column: DPMmodel, Middle column: present TFMmodel A, Right
column: TFMmodel B from Jenkins and Zhang. (a): e=0.80, β0= 0.33, μ=0.15, (b): e=0.90, β0= 0.33, μ=0.15, (c): e=0.97, β0= 0.33, μ=0.15, (d): e=0.97, β0= 0.33, μ=0.05.
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DPM simulations, it is observed that both TFMmodels underpredict the
axial particle velocity in the center, and TFMmodel A overpredicts it at
the bottom. Comparing figures (c) and (d), decreasing the friction
coefficient has significant influence on both the solids circulation pat-
tern, i.e. velocity magnitude in the center and solids distribution,
which indicates that friction coefficient plays important role in bubble



(a) z=0.05 m (b) z=0.15 m

Fig. 2. Comparison of time-averaged axial particle velocity at heights 0.05 m (left) and 0.15 m (right) for β0 = 0.33, μ=0.15 and various values of normal coefficient of restitution e (see
legend).

Fig. 3. Time-averaged (5–25 s) energy dissipation rate versus local solids concentration for
different normal restitution coefficients predicted by model A (main plot) and model B
(subplot) (β0 = 0.33, μ = 0.15).

259L. Yang et al. / Powder Technology 316 (2017) 256–264
motion. From Fig. 1(d), it seems that DPM simulation results are more
sensitive to the frictional coefficient. Finally, it can be seen that in
most cases TFM model A produces a somewhat better agreement with
the DPM simulations than TFM model B.

Fig. 2 shows the time-averaged axial particle velocities using differ-
ent normal restitution coefficients at two different heights. At a height
of 0.05 m, TFM model A overpredicts the particle axial velocity near
the wall but produces an excellent match with DPM simulation in the
bulk. This is possibly due to different boundary conditions used in
TFM versus DPM simulations. In our DPM model, we treat particle-
wall collisions individually through a linear spring-dashpot model
using three collisional parameters, which describes the result of parti-
cle-wall interactions quite accurately. However, in absence of TFM
wall boundary conditions that include the rotational granular tempera-
ture, in the TFM simulations the popular boundary conditions from Sin-
clair and Jackson [27] are employed. Here a “specularity coefficient” is
applied to characterize the amount of momentum and energy transfer
due to collisions between particles and wall. However, these boundary
conditions do not take into account the precise particle-wall frictional
effects. On the contrary, the TFM model B underpredicts the particle
axial velocity in the bulk and obtains good agreement with DPM simu-
lation near the wall. At a height of 0.15 m, although both TFM models
underestimate the particle axial velocity in the center, model A agrees
well with DPM simulation near the wall. All these results correspond
to the macroscopic solids circulation patterns shown in Fig. 1. It can be
observed that increasing the normal restitution coefficient results only
in slight changes in the particle axial velocity, i.e. a small decrease
close to the wall.

Fig. 3 shows the energy dissipation rate of both TFM models for dif-
ferent normal restitution coefficients. Model A generally predicts a
higher energy dissipation rate with increasing solids concentration.
However, the calculated energy dissipation rate from model B first in-
creases, reaches a maximum, then decreases, and finally keeps a pla-
teau. With decreasing normal restitution coefficient, it can be seen
that more energy is dissipated in particle-particle collisions for both
models, especially in the region of solids concentration 0–0.3. In region
of solids concentration 0.3–0.58, increasing the normal restitution coef-
ficient leads to larger changes in model B than inmodel A. This is due to
the different expressions for the energy dissipation rate γ. In model B, γ
is proportional to (1-e2), which is not true in model A, as can be seen
from Eq. (T1). However, both expressions have two terms. The first
term relates to the collisional rate of kinetic energy interchange. It incor-
porates the energy dissipation from inelasticity and particle surface fric-
tion. The second term includes the particle velocity divergence. The
resulting energy dissipation is the competition of these two terms. Fur-
thermore, a small amount of energy is dissipated by particle rotation in
model A. For rough particles (μ = 0.15), the kinetic energy is trans-
formed into rotation and subsequently less energy is dissipated in colli-
sions. Nevertheless, model A predicts a larger amount of energy
dissipation than model B in dense regions.

3.2.2. Influence of friction coefficient
Fig. 4 shows some instantaneous snapshots of bubble patterns ob-

tained by the different models. Small bubbles are generated at the bot-
tom and the wall, then grow in size due to coalescence, move towards



19.4 s                    19.5 s                     19.6 s           19.7 s

Fig. 4. Instantaneous snapshots of porosity fromdifferent simulations. Top row: DPM simulation,Middle row: TFMmodel A, Bottom row: TFMmodel B. For all cases e=0.9,β0=0.33, μ=
0.15.

Fig. 5. Comparison of time averaged (5–25 s) translational granular temperature (e = 0.97, β0 = 0.33, μ = 0). Left: DPM simulation, Middle: TFM model A, Right: TFM model B.
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the center [31], and finally burst through the bed surface. Because of the
inclusion of particle surface friction and rotation, our present model A
predicts a slightly more heterogeneous flow field than TFM model B.
We note that in the TFMmodels (both A and B) larger bubbles and larg-
er densely packed regions are formed than in the DPMmodel. However,
the snapshots also show that the high density structures in TFM model
A are more likely to span the entire width of the system than in TFM
model B. This tendency towards slugging fluidization of TFM model A
agrees better with the DPM simulations than TFMmodel B.

Fig. 5 shows a comparison of the distribution of translational granu-
lar temperature predicted by three models. In each computational cell
of the DPM simulation, we first determine the averaged translational
and rotational particle velocities of all particles located in that cell.
Then, the translational and rotational granular temperatures in that
cell are calculated based on the fluctuating velocities of each particle lo-
cated in the same cell. From the figure, it can be seen that both TFM
models predict a high granular temperatures above the bed surface
(height above 0.22 m), while the DPM simulation predicts a very low
granular temperature. This is an artefact caused by the fact that too
few particles are present per computational cell and therefore often
(in case of a single particle in a cell) a zero fluctuating velocity is deter-
mined in DPM in the region above 0.22m. On the contrary, TFM iswork-
ing with continuous fields, and a granular temperature is simulated
even in these very dilute regions. Neglecting this region, the zones
with high translational granular temperature are situated mainly at
the top of the bed, away from the side walls in all simulations. TFM
model A predicts a larger zone of translational granular temperature
(0.008–0.001 m2/s2) than model B, which is influenced by the fact
Fig. 6. Contour plots of time-averaged (5–25 s) and solids concentration weighted rotational gr
(a, top row): DPM simulation, (b, bottom row): present TFM model A. No rotational temperatu
that particle rotation and friction are not yet included in the boundary
conditions for rough side walls in Model A, therefore energy dissipation
during particle-wall collisions is underestimated. However, model B
predicts higher granular temperature in the up center of the bed than
model A. The translational granular temperature in all cases has a simi-
lar distribution (below 0.22 m) and the overall magnitude of transla-
tional granular temperature matches well.

Fig. 6 shows contour plots of the rotational granular temperatures of
TFM model A and DPM. The rotational granular temperature in TFM
model A shows an almost uniform distribution in the bed, but the over-
all magnitude agrees to a reasonable extent, except for the case without
friction. In this case, the wall serves as a source for particle rotation. The
rotational granular temperature increases with increasing friction coef-
ficient in both models. TFM model A obtains better agreement with
DPM for larger friction coefficient. The reason for the almost uniform
distribution of the rotational granular temperature in model A can be
due to two major assumptions made in the current version of KTGF.
Firstly, the mean rotational velocity is assumed to be zero, which
means that in the modelling of particle rotation only the rotational en-
ergy balance equation is solved. Secondly, the gradient of the rotational
granular temperature at the wall is assumed to be zero (corresponding
to adiabaticwalls for rotational granular temperature).We are currently
working on improved boundary conditions, relaxing the latter
limitation.

Fig. 7 shows a comparison of the time-averaged axial particle flux for
different friction coefficients. The axial flux is negative near thewall and
positive in the center, which indicates that particlesmove upward in the
center and move down near the wall. The simulated particle axial flux
anular temperature (m2/s2) for three friction coefficients (in all cases e=0.97, β0 = 0.33).
re is present in TFM model B.



(a) µ=0 (b) µ=0.05

(c) µ=0.15

Fig. 7. Comparison of time-averaged (5–25 s) axial particle flux (εsvs) at z = 0.15 m for different friction coefficients. In all cases e = 0.90, β0 = 0.33.
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from both TFM models A and model B underpredict the downward ve-
locity near the wall. TFMmodel A obtains an excellent agreement with
DPM at a friction coefficient of 0.15, except for small deviations for the
flux near the wall. This is due to the fact that slug fluidization happens
in model A, and more particles are pushed to the wall, leading to a
strong slip velocity. The maximum down-flow flux is close to the wall
in TFM models while it is at the wall in DPM model. As mentioned be-
fore, thephenomena are due to fact that a heuristic boundary conditions
for particle slip velocity is employed in TFM simulations. By contrast,
particle-wall collisions are considered realistically in DPM simulations.
Although the predictions for the velocity profiles are similar for models
A and B, it can be seen that for large friction TFM model A has a better
agreement with the DPM simulations than model B.

Fig. 8 shows the distribution of energy dissipation rate measured in
TFM models A and B as a function of the solids concentration. The sim-
ulated energy dissipation rate from bothmodels increases with increas-
ing solids concentration from 0 to 0.3, decreases when the solids
concentration is in the range of 0.3–0.4, and finally reaches a plateau.
Without friction, both TFMmodels predict almost the same energy dis-
sipation rate. The new model A predicts a larger amount of energy dis-
sipation with increasing friction coefficient. As has been pointed out,
energy dissipation is the combination of a term related to collisional
rate and the term due to compression of the granular medium. Model
A considers not only the particle surface friction but also particle rota-
tion. As a result, model A predicts a larger amount of energy dissipation.
Simply, comparing figures (a), (b) and (c) for model A, with increasing
particle friction there are more collisions between particles and thus
more energy is dissipated.

4. Conclusions

In this work, we investigated the effects of normal restitution coeffi-
cient and friction coefficient on the hydrodynamics of a dense solid-gas
fluidized bed, using a two fluidmodel (TFM) based on our recent kinetic
theory of granular flow (KTGF) for rotating rough particles. The simula-
tion results reveal that the coefficient of normal restitution and friction
coefficient play important roles in the homogeneity of a bubbling bed.
Variation of the normal restitution coefficient can slightly influence
the time-averaged solids distribution and the gas-solids flow field.
More energy is dissipated formore inelastic particles. However, the fric-
tion coefficient has a stronger effect on the solids flow patterns and dis-
tribution. The new KTGF model predicts a larger amount of energy
dissipation caused by explicit inclusion of particle friction.With increas-
ing friction coefficient, not only a larger amount of energy dissipation is



(a) µ=0 (b) µ=0.05

(c) µ=0.15

Fig. 8. Time-averaged (5–25 s) energy dissipation rate versus solids concentration for TFM models A and B and different friction coefficients. In all cases e = 0.90, β0 = 0.33.
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calculated but also the bed expands more rigorously as can be observed
in animations of the simulations. Comparingwith detailed DPM simula-
tions, the present KTGFmodel leads to better agreementwith DPM sim-
ulations for the axial particle velocity profiles and solids volume fraction
distribution.

Nomenclature
I moment of inertia, kg m2

m mass of the particle, kg
Umf minimum fluidization velocity, m/s
e normal restitution coefficient

Greek letters

ω magnitude of mean rotational velocity, rad/s
ρ density, kg/m3

Θ granular temperature, m2/s2

β0 tangential restitution coefficient
σ particle diameter, m
γ energy dissipation rate, J/(sm3)
βA inter-phase momentum transfer coefficient, J/(sm3)τ stress tensor, Pa
ε volume fraction
κ pseudo thermal conductivity, kg/(m·s)
μt translational shear viscosity, kg/(m·s)

Subscript

s solid phase
g gas phase
r rotational contribution
t translational contribution
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Appendix A

All the basic integrals which could be solved analytically using
Mathematica, are listed as follows,
a

a

a

a

a

A
A

1 ¼ ð1þ λÞ ∫π=2θ�
sin2θucos2θu
ð1þλcos2θuÞ3

dθu
 a2 ¼ ð1þ λÞ ∫θ�θ0 sin3θu cosθu
ð1þλcos2θuÞ3

dθu
3 ¼ ð1þ λÞ ∫π=2θ�
sinθucos3θu

ð1þλcos2θuÞ3
dθu
 a4 ¼ ð1þ λÞ3=2 ∫π=2θ�

sin2θucos3θu
ð1þλcos2θuÞ7=2

dθu
5 ¼ ð1þ λÞ3=2 ∫θ�0 sin3θucos2θu
ð1þλcos2θuÞ7=2

dθu
 a6 ¼ ð1þ λÞ3=2 ∫π=2θ�
cos4θu sinθu

ðλcos2θuþ1Þ7=2 dθu
10 ¼ ð1þ λÞ ∫π=2θ�
sin3θucos3θu
ð1þλcos2θuÞ4

dθu
 a14 ¼ ð1þ λÞ ∫θ�0 sin5θu cosθu
ð1þλcos2θuÞ4

dθu
17 ¼ ∫π=2θ�
sin2θucos2θu
ð1þλcos2θuÞ4

dθu
 A1=−(μη1a1+η2a2)
2=(1+λ)[(μη1)2a3+(η2)2a2]
 A3=−(μη1a4+η2a5)

4=(1+λ)[(μη1)2a6+(η2)2a5]
 A9=−(μη1a17+η2a16)

11=(μη1)2a10+(η2)2a14
 A12=(μη1)2a15+(η2)2a16
A
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